US20110209705A1 - Tracheal catheter and prosthesis and method of respiratory support of a patient - Google Patents

Tracheal catheter and prosthesis and method of respiratory support of a patient Download PDF

Info

Publication number
US20110209705A1
US20110209705A1 US13/044,241 US201113044241A US2011209705A1 US 20110209705 A1 US20110209705 A1 US 20110209705A1 US 201113044241 A US201113044241 A US 201113044241A US 2011209705 A1 US2011209705 A1 US 2011209705A1
Authority
US
United States
Prior art keywords
catheter
patient
oxygen
respiration
support body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/044,241
Inventor
Lutz Freitag
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Breathe Technologies Inc
Original Assignee
Breathe Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Breathe Technologies Inc filed Critical Breathe Technologies Inc
Priority to US13/044,241 priority Critical patent/US20110209705A1/en
Publication of US20110209705A1 publication Critical patent/US20110209705A1/en
Assigned to TRIPLEPOINT CAPITAL LLC reassignment TRIPLEPOINT CAPITAL LLC SECURITY AGREEMENT Assignors: BREATHE TECHNOLOGIES, INC.
Assigned to BREATHE TECHNOLOGIES, INC. reassignment BREATHE TECHNOLOGIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: TRIPLEPOINT CAPITAL LLC
Assigned to SOLAR CAPITAL LTD. reassignment SOLAR CAPITAL LTD. SHORT-FORM PATENT SECURITY AGREEMENT Assignors: BREATHE TECHNOLOGIES, INC.
Assigned to BREATHE TECHNOLOGIES, INC. reassignment BREATHE TECHNOLOGIES, INC. TERMINATION OF PATENT SECURITY AGREEMENT Assignors: SOLAR CAPITAL LTD.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0057Pumps therefor
    • A61M16/0072Tidal volume piston pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/04Tracheal tubes
    • A61M16/0465Tracheostomy tubes; Devices for performing a tracheostomy; Accessories therefor, e.g. masks, filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/06Respiratory or anaesthetic masks
    • A61M16/0666Nasal cannulas or tubing
    • A61M16/0672Nasal cannula assemblies for oxygen therapy
    • A61M16/0677Gas-saving devices therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/10Preparation of respiratory gases or vapours
    • A61M16/12Preparation of respiratory gases or vapours by mixing different gases
    • A61M16/122Preparation of respiratory gases or vapours by mixing different gases with dilution
    • A61M16/125Diluting primary gas with ambient air
    • A61M16/127Diluting primary gas with ambient air by Venturi effect, i.e. entrainment mixers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • A61M2016/0018Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
    • A61M2016/0021Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with a proportional output signal, e.g. from a thermistor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • A61M2016/0033Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
    • A61M2016/0036Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the breathing tube and used in both inspiratory and expiratory phase
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M2025/0001Catheters; Hollow probes for pressure measurement
    • A61M2025/0002Catheters; Hollow probes for pressure measurement with a pressure sensor at the distal end
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/02Gases
    • A61M2202/0208Oxygen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/10General characteristics of the apparatus with powered movement mechanisms
    • A61M2205/106General characteristics of the apparatus with powered movement mechanisms reciprocating

Definitions

  • the present invention relates generally to respiratory systems directed and more particularly to specialized mechanisms for enhanced ventilation of a patient.
  • both components of the respiratory bronchial system must function—the lungs as a gas-exchanging organ and the respiratory pump as a ventilation organ that transports air into the lungs and back out again.
  • the breathing center in the brain, central and peripheral nerves, the osseous thorax and the breathing musculature as well as free, stable respiratory paths are necessary for a correct functioning of the respiratory pump.
  • a typical syndrome is pulmonary emphysema with flat-standing diaphragms without the ability to contract.
  • the respiratory paths are usually extremely slack and tend to collapse.
  • the patient cannot inhale deep enough.
  • the patient cannot exhale sufficiently on account of the collapsing respiratory paths. This results in an insufficient respiration with an undersupply of oxygen and a rise of carbon dioxide in the blood, the so-called ventilatory insufficiency.
  • the treatment for inhalation difficulty often makes use of a breathing device.
  • the so-called home respiration is an artificial respiration for supporting or completely relieving the respiratory pump.
  • the respiration can take place non-invasively via a tube and a nose mask or mouth mask that the patient can put on and take off as needed. However, this prevents the patient from breathing freely and speaking freely. In addition, a blocked tracheal cannula can be inserted into the trachea. This also has the consequence that the patient can no longer speak.
  • the present inventor provides a respiratory system that provides a more efficient method of supporting the respiration of a patient by providing additional oxygen when needed.
  • I is an additional objective in accordance with the present invention to provide as system that is portable and reliable in its use.
  • Yet another objective in accordance with the present invention is to provide a tracheal prosthesis and a catheter that make possible a respiratory support synchronized with the spontaneous respiration of the patient without adversely affecting the patient's ability to speak.
  • FIG. 1 shows the upper body of a patient carrying an apparatus in accordance with the invention for respiration support.
  • FIG. 2 shows a diagram with a view of the respiration flow of an emphysema patient with and without respiration support.
  • FIG. 3 shows a technically simplified view of a tracheal prosthesis in accordance with the invention.
  • FIG. 4 shows another embodiment of a tracheal prosthesis.
  • FIG. 5 shows, also in a scheme, an oxygen pump belonging to the apparatus of the invention showing the conduction of air and a control unit.
  • FIG. 6 shows the end section of a catheter in accordance with the invention.
  • FIG. 7 shows the catheter according to FIG. 6 inserted in a support body.
  • the present invention in a preferred embodiment, provides an apparatus for supporting the respiration of a patient and to a tracheal prosthesis.
  • the spontaneous respiration of a patient is detected by sensors and at the end of an inhalation procedure an additional amount of oxygen is administered to the lungs via a jet gas current. This improves the absorption of oxygen during inhalation.
  • the exhalation procedure of the patient can be arrested or slowed by a countercurrent in order to avoid a collapse of the respiration paths in this manner.
  • This procedure is realized by an apparatus comprising an oxygen pump that can be connected to an oxygen source and comprising a tracheal prosthesis that can be connected via a catheter.
  • the spontaneous respiration of the patient is detected by sensors connected to a control unit for activating the oxygen pump.
  • the tracheal prosthesis comprises a tubular support body with a connection for the catheter and two of the sensors are associated with the support body.
  • the tracheal prosthesis and the jet catheter that is integrated or can be introduced are dimensioned in such a manner that the patient can freely breath and speak without restriction.
  • P designates a patient suffering from a pulmonary emphysema with an overloading and exhaustion of the respiratory pump. As a consequence, the patient can not inhale deeply enough. In addition, the exhalation process is hindered by slack and collapsing respiratory paths.
  • FIG. 2 Such a respiration process with inhalation/inspiratory flow and exhalation (expiratory flow) without respiratory support is shown in FIG. 2 in the left half of the image.
  • the curve for inhalation is designated by E 1 and the curve for exhalation by A 1 .
  • an additional amount of oxygen is administered. This respiratory flow is illustrated in the right half of FIG. 2 .
  • the additional amount of oxygen increases the respiratory volume during inhalation according to curve E 2 by the difference volume shown darkened in the upper curve and designated by E 3 .
  • the additional amount of oxygen can have a volume between 25 ml and 150 ml.
  • the exhalation process of the patient is braked by a countercurrent.
  • the respiratory flow shifts during exhalation along the curved designated by A 2 .
  • This purposeful resistance acting opposite to the exhalation prevents a collapsing of the respiratory paths during exhalation.
  • the exhalation volume is increased by the volume also shown darkened and designated by A 3 .
  • this method avoids an insufficient respiration with an undersupply of oxygen and an increase of carbon dioxide in the blood.
  • Patient P is significantly less stressed and more mobile and in addition he perceives less or no shortage of air.
  • oxygen pump 1 that can be connected to an oxygen source (see FIG. 5 ) and comprising tracheal prosthesis 2 , 3 (see FIGS. 3 , 4 ).
  • oxygen pump 1 is a component of a compact, mobile respiration device 4 .
  • Oxygen pump 1 and tracheal prosthesis 2 , 3 are connected via catheter 5 .
  • each tracheal prosthesis 2 , 3 comprises tubular support body 6 with connection 7 for catheter 5 .
  • two sensors 8 , 9 in the form of thermistors are associated with support body 6 .
  • One sensor 8 is fixed on inner wall 10 of support body 6 and the other sensor 9 is located on outer wall 11 of support body 6 .
  • Sensors 8 , 9 communicate with control unit 12 for activating oxygen pump 2 .
  • Control unit 12 is schematically shown in FIG. 5 with its inputs and outputs.
  • sensors 8 , 9 are thermistors, that is, temperature-dependent resistors. They are connected together in a bridge circuit in the apparatus so that a compensation of measured value differences between inner sensor 8 and outer sensor takes place as a consequence of environmental influences.
  • FIG. 1 also shows that other respiration sensors 13 , 14 are provided. They are also sensors for detecting the spontaneous respiration of patient P. An exact image of the respiration process of patient P can be obtained by adjusting the measured values received via sensors 8 , 9 and 13 , 14 . In addition, the safety against false measurements or the failure of one of sensors 8 , 9 and/or 13 , 14 is increased.
  • the jet catheter 5 can be inserted via connection 7 into support body 6 .
  • End 15 of jet catheter 5 located in support body 6 is guided or deflected approximately parallel to its longitudinal axis L.
  • the data lines from sensors 8 , 9 to control unit 12 are designated with 16 , 17 running inside catheter 5 .
  • On the discharge side the end 15 of jet catheter 5 is designed as jet nozzle 25 . This can take place by reducing the cross section of the catheter. This increases the speed of the oxygen current at the discharge from catheter 5 and it is conducted in the direction of the bronchial tract.
  • the diameter of support body 6 is dimensioned with a sufficiently free lumen in such a manner that patient P can freely breathe and speak even with integrated catheter 5 .
  • Separate coupling 18 is provided on connection 7 in tracheal prosthesis 3 according to FIG. 4 via which catheter 5 is connected to tracheal prosthesis 3 .
  • fixed longitudinal section 19 aligned parallel to longitudinal axis L is provided as catheter end in support body 6 and the oxygen current is conducted via jet nozzle 26 in the direction of the bronchial tract.
  • Oxygen pump 1 is schematically shown in FIG. 5 . It is a piston pump with double-acting piston 20 arranged in cylinder 27 .
  • the apparatus comprises four valves V 1 to V 4 .
  • the supply of oxygen takes place from an external oxygen reservoir via connection 21 .
  • valves V 1 to V 4 and the supply lines and removal lines are designated by letters a to g.
  • Oxygen pump 1 functions in the apparatus during the support of respiration as follows: When valve V 1 is open from c to a (b to c closed) and valve V 2 open from b to e (e to d closed), piston 20 moves to the left in the plane of the figure and the oxygen flows via outlet 22 and jet catheter 5 to patient P. The additional amount of oxygen E 3 is administered during the inhalation process of patient P.
  • valve V 1 When valve V 1 is open from b to c (c to a closed) and valve V 2 is open from e to d (b to e closed), piston 20 moves to the right in the plane of the figure in the flow of oxygen takes place in the direction of valve V 3 .
  • Valve V 3 is connected to the ambient air via outlet 23 . In the instance in which valve V 3 is open from d to g the oxygen flows off without expiration brake. That means that the exhalation process is not braked by a countercurrent.
  • valve V 3 is closed from d to g and open from d to f the oxygen flows via access path 24 in the direction of outlet 22 and catheter 5 in order to be administered to patient P during the exhalation process and in order to break the respiratory flow.
  • the countercurrent prevents a collapsing of the respiratory paths and keeps them open. This makes a deeper exhalation possible.
  • valve V 4 is located in access path 24 of the apparatus, via which the flowthrough (f to a) can be variably adjusted.
  • This can advantageously be a proportional valve with pulse-width modulation.
  • FIG. 6 shows catheter 28 with long, flexible tube 29 and end 31 on the discharge side bent in curvature 30 .
  • Two sensors 32 , 33 for detecting the spontaneous respiration of patient P are fastened on the end.
  • Sensors 32 , 33 are preferably thermistors.
  • Data lines are not shown in the drawing for the sake of simplicity. They run through catheter 28 and the catheter wall.
  • 34 designates a stop.
  • end 31 of catheter 28 is provided with jet nozzle 35 .
  • the cross section of the flow is reduced relative to the cross section of the catheter in jet nozzle 35 so that the discharge rate of the supplied oxygen is increased.
  • Catheter 28 can be introduced into support body 36 , as FIG. 7 shows.
  • Support body 35 is located in the trachea of patient P.
  • the connection to the outside is established via connection 37 .
  • Support body 36 can be a traditional Montgomery T-stent.

Abstract

A method and apparatus is described for supporting the respiration of a patient. The spontaneous respiration of a patient can be detected by sensors and during inhalation an additional amount of oxygen can be administered to the lungs via a jet gas current. If required, during exhalation a countercurrent can be administered to avoid collapse of the respiration paths. This therapy can be realized by an apparatus including a transtracheal catheter, an oxygen pump connected to an oxygen source, spontaneous respiration sensor(s) connected to a control unit for activating the oxygen pump and, if needed, a tracheal prosthesis. The tracheal prosthesis may include a connection for the catheter and the breath sensor(s). The tracheal prosthesis, if used, and the catheter can be dimensioned so the patient can freely breathe, cough, swallow and speak without restriction, and the system can be wearable to promote mobility.

Description

    PRIORITY CLAIM
  • This application is a continuation of U.S. application Ser. No. 12/271,484, filed Nov. 14, 2008, which is a continuation of U.S. application Ser. No. 10/771,803, filed Feb. 4, 2004, which claims the benefit of priority under 35 U.S.C. §119 to co-pending German Patent Application Serial No. 10337138.9, filed Aug. 11, 2003, the contents of each of which is incorporated herein in its entirety.
  • FIELD OF INVENTION
  • The present invention relates generally to respiratory systems directed and more particularly to specialized mechanisms for enhanced ventilation of a patient.
  • BACKGROUND OF THE INVENTION
  • In order that the body can take in oxygen and give off carbon dioxide, both components of the respiratory bronchial system must function—the lungs as a gas-exchanging organ and the respiratory pump as a ventilation organ that transports air into the lungs and back out again. The breathing center in the brain, central and peripheral nerves, the osseous thorax and the breathing musculature as well as free, stable respiratory paths are necessary for a correct functioning of the respiratory pump.
  • In certain diseases there is a constant overload on or exhaustion of the respiratory pump. A typical syndrome is pulmonary emphysema with flat-standing diaphragms without the ability to contract. In the case of pulmonary emphysema the respiratory paths are usually extremely slack and tend to collapse. As a consequence of the flattened, over-extended diaphragms the patient cannot inhale deep enough. In addition, the patient cannot exhale sufficiently on account of the collapsing respiratory paths. This results in an insufficient respiration with an undersupply of oxygen and a rise of carbon dioxide in the blood, the so-called ventilatory insufficiency.
  • The treatment for inhalation difficulty often makes use of a breathing device. The so-called home respiration is an artificial respiration for supporting or completely relieving the respiratory pump.
  • The respiration can take place non-invasively via a tube and a nose mask or mouth mask that the patient can put on and take off as needed. However, this prevents the patient from breathing freely and speaking freely. In addition, a blocked tracheal cannula can be inserted into the trachea. This also has the consequence that the patient can no longer speak.
  • In the case of invasive respiration this usually occurs via a tracheostomy. This involves an opening placed in the trachea by an operation. A catheter about the diameter of a finger with a blocking balloon is inserted via the opening into the trachea and connected to a breathing apparatus. This makes a sufficiently deep respiration possible but prevents the patient from speaking. In addition to the respiration there is the transtracheal administration of oxygen via thinner catheters. U.S. Pat. Nos. 5,181,509 or 5,279,288 disclose corresponding embodiments. In this manner a highly dosed administration of oxygen is administered to the patient in a continuous stream with a permanently adjusted frequency. The flow of oxygen is regulated manually by a throttle device. However, simulation of the natural breathing process of a patient is not achieved because breathing is not deep enough. Also, the catheter end introduced into the trachea can result in irritations and a local traumatizing of the surrounding tissue in that it strikes against the trachea as a consequence of the respiratory movement or in that the surrounding tissue is dried out by the jet stream.
  • Furthermore, so-called “Montgomery T-tubes” are known that are inserted into the trachea. The patient can obtain oxygen via the shank of the T-piece run to the outside. In addition, the patient can draw off secretions himself if needed. The patient can breathe freely and speak when the front shank is closed; however, respiration is not possible via the Montgomery T-tube since the introduced air escapes upward into the buccal cavity or the pharyngeal area. An additional limitation of the above-referenced therapies is the impaired mobility of the patient because of inadequate ventilation as well as the bulk of the apparatus.
  • Therefore, there is an existing need for a respiratory system that provides a more efficient method for supporting the respiration of a patient and of creating an apparatus to this end that can also be taken along by the patient and is reliable in its use. Moreover, the there is a need for a tracheal prosthesis and a catheter that make possible a respiratory support synchronized with the spontaneous respiration of the patient without adversely affecting the patient's ability to speak.
  • SUMMARY OF EXEMPLARY EMBODIMENTS
  • It is a principal objective of the present invention to provide an apparatus and method that improves the quality of life of patients that require respiratory support. In the furtherance of this and other objectives, the present inventor provides a respiratory system that provides a more efficient method of supporting the respiration of a patient by providing additional oxygen when needed.
  • I is an additional objective in accordance with the present invention to provide as system that is portable and reliable in its use.
  • Yet another objective in accordance with the present invention is to provide a tracheal prosthesis and a catheter that make possible a respiratory support synchronized with the spontaneous respiration of the patient without adversely affecting the patient's ability to speak.
  • Further objectives, features and advantages of the invention will be apparent from the following detailed description taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 shows the upper body of a patient carrying an apparatus in accordance with the invention for respiration support.
  • FIG. 2 shows a diagram with a view of the respiration flow of an emphysema patient with and without respiration support.
  • FIG. 3 shows a technically simplified view of a tracheal prosthesis in accordance with the invention.
  • FIG. 4 shows another embodiment of a tracheal prosthesis.
  • FIG. 5 shows, also in a scheme, an oxygen pump belonging to the apparatus of the invention showing the conduction of air and a control unit.
  • FIG. 6 shows the end section of a catheter in accordance with the invention.
  • FIG. 7 shows the catheter according to FIG. 6 inserted in a support body.
  • DETAILED DESCRIPTION OF AN EMBODIMENT
  • The present invention, in a preferred embodiment, provides an apparatus for supporting the respiration of a patient and to a tracheal prosthesis. According to the invention the spontaneous respiration of a patient is detected by sensors and at the end of an inhalation procedure an additional amount of oxygen is administered to the lungs via a jet gas current. This improves the absorption of oxygen during inhalation. If required, the exhalation procedure of the patient can be arrested or slowed by a countercurrent in order to avoid a collapse of the respiration paths in this manner. This procedure is realized by an apparatus comprising an oxygen pump that can be connected to an oxygen source and comprising a tracheal prosthesis that can be connected via a catheter. The spontaneous respiration of the patient is detected by sensors connected to a control unit for activating the oxygen pump. The tracheal prosthesis comprises a tubular support body with a connection for the catheter and two of the sensors are associated with the support body. The tracheal prosthesis and the jet catheter that is integrated or can be introduced are dimensioned in such a manner that the patient can freely breath and speak without restriction.
  • Referring specifically to FIG. 1, P designates a patient suffering from a pulmonary emphysema with an overloading and exhaustion of the respiratory pump. As a consequence, the patient can not inhale deeply enough. In addition, the exhalation process is hindered by slack and collapsing respiratory paths.
  • Such a respiration process with inhalation/inspiratory flow and exhalation (expiratory flow) without respiratory support is shown in FIG. 2 in the left half of the image. The curve for inhalation is designated by E1 and the curve for exhalation by A1.
  • In order to support and relieve the strain on the respiratory pump the patient's spontaneous respiration is detected by sensor and at the end of an inhalation process of the lungs an additional amount of oxygen is administered. This respiratory flow is illustrated in the right half of FIG. 2. The additional amount of oxygen increases the respiratory volume during inhalation according to curve E2 by the difference volume shown darkened in the upper curve and designated by E3. The additional amount of oxygen can have a volume between 25 ml and 150 ml.
  • In addition, the exhalation process of the patient is braked by a countercurrent. As a consequence thereof, the respiratory flow shifts during exhalation along the curved designated by A2. This purposeful resistance acting opposite to the exhalation prevents a collapsing of the respiratory paths during exhalation. In this manner the exhalation volume is increased by the volume also shown darkened and designated by A3.
  • As a consequence, this method avoids an insufficient respiration with an undersupply of oxygen and an increase of carbon dioxide in the blood. Patient P is significantly less stressed and more mobile and in addition he perceives less or no shortage of air.
  • In order to carry out the respiration support of patient P, an apparatus is provided comprising oxygen pump 1 that can be connected to an oxygen source (see FIG. 5) and comprising tracheal prosthesis 2, 3 (see FIGS. 3, 4). According to FIG. 1 oxygen pump 1 is a component of a compact, mobile respiration device 4. Oxygen pump 1 and tracheal prosthesis 2, 3 are connected via catheter 5.
  • As FIGS. 3, 4 show, each tracheal prosthesis 2, 3 comprises tubular support body 6 with connection 7 for catheter 5. In order to detect the spontaneous respiration of patient P two sensors 8, 9 in the form of thermistors are associated with support body 6. One sensor 8 is fixed on inner wall 10 of support body 6 and the other sensor 9 is located on outer wall 11 of support body 6. Sensors 8, 9 communicate with control unit 12 for activating oxygen pump 2. Control unit 12 is schematically shown in FIG. 5 with its inputs and outputs. As already stated, sensors 8, 9 are thermistors, that is, temperature-dependent resistors. They are connected together in a bridge circuit in the apparatus so that a compensation of measured value differences between inner sensor 8 and outer sensor takes place as a consequence of environmental influences.
  • FIG. 1 also shows that other respiration sensors 13, 14 are provided. They are also sensors for detecting the spontaneous respiration of patient P. An exact image of the respiration process of patient P can be obtained by adjusting the measured values received via sensors 8, 9 and 13, 14. In addition, the safety against false measurements or the failure of one of sensors 8, 9 and/or 13, 14 is increased.
  • In tracheal prosthesis 2 according to FIG. 3 the jet catheter 5 can be inserted via connection 7 into support body 6. End 15 of jet catheter 5 located in support body 6 is guided or deflected approximately parallel to its longitudinal axis L. The data lines from sensors 8, 9 to control unit 12 are designated with 16, 17 running inside catheter 5. On the discharge side the end 15 of jet catheter 5 is designed as jet nozzle 25. This can take place by reducing the cross section of the catheter. This increases the speed of the oxygen current at the discharge from catheter 5 and it is conducted in the direction of the bronchial tract. The diameter of support body 6 is dimensioned with a sufficiently free lumen in such a manner that patient P can freely breathe and speak even with integrated catheter 5.
  • Separate coupling 18 is provided on connection 7 in tracheal prosthesis 3 according to FIG. 4 via which catheter 5 is connected to tracheal prosthesis 3. In this instance fixed longitudinal section 19 aligned parallel to longitudinal axis L is provided as catheter end in support body 6 and the oxygen current is conducted via jet nozzle 26 in the direction of the bronchial tract.
  • Oxygen pump 1 is schematically shown in FIG. 5. It is a piston pump with double-acting piston 20 arranged in cylinder 27. The apparatus comprises four valves V1 to V4. The supply of oxygen takes place from an external oxygen reservoir via connection 21.
  • The switching states of valves V1 to V4 and the supply lines and removal lines are designated by letters a to g.
  • Oxygen pump 1 functions in the apparatus during the support of respiration as follows: When valve V1 is open from c to a (b to c closed) and valve V2 open from b to e (e to d closed), piston 20 moves to the left in the plane of the figure and the oxygen flows via outlet 22 and jet catheter 5 to patient P. The additional amount of oxygen E3 is administered during the inhalation process of patient P.
  • When valve V1 is open from b to c (c to a closed) and valve V2 is open from e to d (b to e closed), piston 20 moves to the right in the plane of the figure in the flow of oxygen takes place in the direction of valve V3. Valve V3 is connected to the ambient air via outlet 23. In the instance in which valve V3 is open from d to g the oxygen flows off without expiration brake. That means that the exhalation process is not braked by a countercurrent.
  • If valve V3 is closed from d to g and open from d to f the oxygen flows via access path 24 in the direction of outlet 22 and catheter 5 in order to be administered to patient P during the exhalation process and in order to break the respiratory flow. The countercurrent prevents a collapsing of the respiratory paths and keeps them open. This makes a deeper exhalation possible.
  • Furthermore, valve V4 is located in access path 24 of the apparatus, via which the flowthrough (f to a) can be variably adjusted. This can advantageously be a proportional valve with pulse-width modulation.
  • FIG. 6 shows catheter 28 with long, flexible tube 29 and end 31 on the discharge side bent in curvature 30. Two sensors 32, 33 for detecting the spontaneous respiration of patient P are fastened on the end. Sensors 32, 33 are preferably thermistors. Data lines are not shown in the drawing for the sake of simplicity. They run through catheter 28 and the catheter wall. 34 designates a stop.
  • It can also be seen that end 31 of catheter 28 is provided with jet nozzle 35. The cross section of the flow is reduced relative to the cross section of the catheter in jet nozzle 35 so that the discharge rate of the supplied oxygen is increased.
  • Catheter 28 can be introduced into support body 36, as FIG. 7 shows. Support body 35 is located in the trachea of patient P. The connection to the outside is established via connection 37. Support body 36 can be a traditional Montgomery T-stent.
  • The present invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative, and not restrictive. The scope of the invention is, therefore, indicated by the appended claims, rather than by the foregoing description. All changes, which come within the meaning and range of equivalency of the claims, are to be embraced within their scope.

Claims (26)

1. A method for supporting the respiration of a patient comprising the steps of:
detecting the spontaneous respiration of the patient is by sensors;
identifying the end of the inhalation process; and
administering an additional amount of oxygen to the lungs.
2. The method of claim 1, wherein the additional amount of oxygen is administered at the end of an inhalation process.
3. The method of claim 1, wherein the amount of oxygen has a volume of about between 25 ml-150 ml.
4. The method of claim 2, wherein the amount of oxygen has a volume of about between 25 ml-150 ml.
5. The method of claim 1, further comprising the step of braking the exhalation process of the patient with a countercurrent.
6. The method of claim 2, further comprising the step of braking the exhalation process of the patient with a countercurrent.
7. An apparatus for supporting the respiration of a patient that comprises an oxygen pump operatively connected to an oxygen source, the apparatus further comprising sensors for detecting the spontaneous respiration of the patient, the sensors are connected to a control unit for activating the oxygen pump.
8. The apparatus of claim 7, wherein the oxygen pump comprises a tracheal prosthesis connectible by a catheter, the tracheal prosthesis having a tubular support body with a connection for the catheter.
9. The apparatus of claim 8, wherein the sensors are associated with the support body of the tracheal prosthesis.
10. The apparatus of claim 9, wherein at least one sensor is coupled with the inner wall of the support body.
11. The apparatus of claim 9, wherein the end of the catheter located in the support body is deflected approximately parallel to its longitudinal axis (L) and is provided on the end with a jet nozzle.
12. The apparatus of claim 10, wherein the end of the catheter located in the support body is deflected approximately parallel to its longitudinal axis and is provided on the end with a jet nozzle.
13. The apparatus of claim 7, wherein the oxygen pump is a piston pump.
14. The apparatus of claim 12, wherein the oxygen pump is a piston pump.
15. The apparatus of claim 8, wherein the catheter has a double-lumen design.
16. The apparatus of claim 14, wherein the catheter has a double-lumen design.
17. The apparatus of claim 7, further comprising additional respiration sensors.
18. The apparatus of claim 9, further comprising additional respiration sensors.
19. A tracheal prosthesis comprising a tubular support body, a connection for a jet catheter and at least two sensors coupled with the support body.
20. The tracheal prosthesis of claim 19, wherein at least one of the sensors is coupled with the inner wall of the support body.
21. The tracheal prosthesis of claim 19, wherein the catheter is operatively coupled with the support body.
22. The tracheal prosthesis of claim 20, wherein the catheter is operatively coupled with the support body.
23. A catheter having a first and second end, one end affixable by at least one sensor.
24. The catheter of claim 23, wherein the at least one end comprises a jet nozzle.
25. The catheter of claim 23, wherein the at least one end has a curved course.
26. The catheter of claim 24, wherein the at least one end has a curved course.
US13/044,241 2003-08-11 2011-03-09 Tracheal catheter and prosthesis and method of respiratory support of a patient Abandoned US20110209705A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/044,241 US20110209705A1 (en) 2003-08-11 2011-03-09 Tracheal catheter and prosthesis and method of respiratory support of a patient

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10337138.9-44 2003-08-11
DE10337138A DE10337138A1 (en) 2003-08-11 2003-08-11 Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
US10/771,803 US7487778B2 (en) 2003-08-11 2004-02-04 Tracheal catheter and prosthesis and method of respiratory support of a patient
US12/271,484 US20090151726A1 (en) 2003-08-11 2008-11-14 Tracheal catheter and prosthesis and method of respiratory support of a patient
US13/044,241 US20110209705A1 (en) 2003-08-11 2011-03-09 Tracheal catheter and prosthesis and method of respiratory support of a patient

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/271,484 Continuation US20090151726A1 (en) 2003-08-11 2008-11-14 Tracheal catheter and prosthesis and method of respiratory support of a patient

Publications (1)

Publication Number Publication Date
US20110209705A1 true US20110209705A1 (en) 2011-09-01

Family

ID=34129567

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/771,803 Active 2025-07-21 US7487778B2 (en) 2003-06-18 2004-02-04 Tracheal catheter and prosthesis and method of respiratory support of a patient
US10/567,746 Abandoned US20080041371A1 (en) 2003-06-18 2004-07-23 Method And Arrangement For Respiratory Support For A Patient Airway Prosthesis And Catheter
US12/271,484 Abandoned US20090151726A1 (en) 2003-08-11 2008-11-14 Tracheal catheter and prosthesis and method of respiratory support of a patient
US12/754,437 Abandoned US20100252043A1 (en) 2003-08-11 2010-04-05 Method and arrangement for respiratory support for a patient airway prosthesis and catheter
US13/044,241 Abandoned US20110209705A1 (en) 2003-08-11 2011-03-09 Tracheal catheter and prosthesis and method of respiratory support of a patient

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/771,803 Active 2025-07-21 US7487778B2 (en) 2003-06-18 2004-02-04 Tracheal catheter and prosthesis and method of respiratory support of a patient
US10/567,746 Abandoned US20080041371A1 (en) 2003-06-18 2004-07-23 Method And Arrangement For Respiratory Support For A Patient Airway Prosthesis And Catheter
US12/271,484 Abandoned US20090151726A1 (en) 2003-08-11 2008-11-14 Tracheal catheter and prosthesis and method of respiratory support of a patient
US12/754,437 Abandoned US20100252043A1 (en) 2003-08-11 2010-04-05 Method and arrangement for respiratory support for a patient airway prosthesis and catheter

Country Status (7)

Country Link
US (5) US7487778B2 (en)
EP (1) EP1654023B1 (en)
JP (1) JP4931586B2 (en)
CN (2) CN102416213B (en)
CA (1) CA2535450C (en)
DE (1) DE10337138A1 (en)
WO (1) WO2005014091A2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8136527B2 (en) 2003-08-18 2012-03-20 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US8381729B2 (en) 2003-06-18 2013-02-26 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
US8418694B2 (en) 2003-08-11 2013-04-16 Breathe Technologies, Inc. Systems, methods and apparatus for respiratory support of a patient
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8677999B2 (en) 2008-08-22 2014-03-25 Breathe Technologies, Inc. Methods and devices for providing mechanical ventilation with an open airway interface
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8776793B2 (en) 2008-04-18 2014-07-15 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8925545B2 (en) 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US8955518B2 (en) 2003-06-18 2015-02-17 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US8985099B2 (en) 2006-05-18 2015-03-24 Breathe Technologies, Inc. Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9180270B2 (en) 2009-04-02 2015-11-10 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US10058668B2 (en) 2007-05-18 2018-08-28 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
US10099028B2 (en) 2010-08-16 2018-10-16 Breathe Technologies, Inc. Methods, systems and devices using LOX to provide ventilatory support
US10252020B2 (en) 2008-10-01 2019-04-09 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7089941B2 (en) * 2002-08-20 2006-08-15 Bordewick Steven S Face mask support
US7845353B2 (en) * 2002-08-20 2010-12-07 Aeiomed, Inc. Face mask support
DE10337138A1 (en) * 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
FR2858236B1 (en) * 2003-07-29 2006-04-28 Airox DEVICE AND METHOD FOR SUPPLYING RESPIRATORY GAS IN PRESSURE OR VOLUME
DE102004019122A1 (en) * 2004-04-16 2005-11-10 Universitätsklinikum Freiburg Method for controlling a ventilator and installation therefor
WO2007062400A2 (en) 2005-11-23 2007-05-31 Jianguo Sun Method and apparatus for providing positive airway pressure to a patient
JP2009533147A (en) 2006-04-10 2009-09-17 エイオーメッド,インク. Apparatus and method for providing humidity in respiratory therapy
BRPI0709500A2 (en) 2006-04-10 2011-07-26 Aeiomed Inc apparatus for providing positive airway pressure for the treatment of sleep apnea, chronic pulmonary obstruction and snoring, and method for providing positive air pressure for the treatment of sleep apnea, chronic pulmonary obstruction and snoring
WO2007149446A2 (en) * 2006-06-16 2007-12-27 Aeiomed, Inc. Modular positive airway pressure therapy apparatus and methods
EP2035070B1 (en) * 2006-06-30 2019-10-30 Breas Medical AB Energy relief control in a mechanical ventilator
US20080006275A1 (en) * 2006-07-07 2008-01-10 Steven Nickelson Composite masks and methods for positive airway pressure therapies
US8020558B2 (en) * 2007-01-26 2011-09-20 Cs Medical, Inc. System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
US9586018B2 (en) 2007-01-26 2017-03-07 Cs Medical, Inc. System for providing flow-targeted ventilation synchronized to a patients breathing cycle
BRPI0813460A2 (en) * 2007-06-29 2014-12-23 Mermaid Care As GAS MIXING DEVICE FOR AN AIRWAY ADMINISTRATION SYSTEM, ITS USE, PIPE ADAPTATION, BREATHING OR NOZZLE MASK AND AIRWAY ADMINISTRATION SYSTEM
US20090078258A1 (en) * 2007-09-21 2009-03-26 Bowman Bruce R Pressure regulation methods for positive pressure respiratory therapy
US20090078255A1 (en) * 2007-09-21 2009-03-26 Bowman Bruce R Methods for pressure regulation in positive pressure respiratory therapy
US8181652B2 (en) * 2008-05-22 2012-05-22 Pierre Peron B Infant positive pressure tracheal device
US8794234B2 (en) 2008-09-25 2014-08-05 Covidien Lp Inversion-based feed-forward compensation of inspiratory trigger dynamics in medical ventilators
US8302602B2 (en) 2008-09-30 2012-11-06 Nellcor Puritan Bennett Llc Breathing assistance system with multiple pressure sensors
WO2010080709A1 (en) 2009-01-08 2010-07-15 Hancock Medical Self-contained, intermittent positive airway pressure systems and methods for treating sleep apnea, snoring, and other respiratory disorders
US8434479B2 (en) 2009-02-27 2013-05-07 Covidien Lp Flow rate compensation for transient thermal response of hot-wire anemometers
CN102762250B (en) 2009-09-03 2017-09-26 呼吸科技公司 Mthods, systems and devices for including the invasive ventilation with entrainment port and/or the non-tight vented interface of pressure characteristic
US8215302B2 (en) * 2009-09-22 2012-07-10 Kassatly L Samuel A Discontinuous positive airway pressure device and method of reducing sleep disordered breathing events
US8469030B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with selectable contagious/non-contagious latch
US8439037B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integrated filter and flow sensor
US8469031B2 (en) * 2009-12-01 2013-06-25 Covidien Lp Exhalation valve assembly with integrated filter
US8439036B2 (en) 2009-12-01 2013-05-14 Covidien Lp Exhalation valve assembly with integral flow sensor
US20110126832A1 (en) * 2009-12-01 2011-06-02 Nellcor Puritan Bennett Llc Exhalation Valve Assembly
US20110213215A1 (en) * 2010-02-26 2011-09-01 Nellcor Puritan Bennett Llc Spontaneous Breathing Trial Manager
US8327846B2 (en) 2011-02-08 2012-12-11 Hancock Medical, Inc. Positive airway pressure system with head position control
US8783250B2 (en) 2011-02-27 2014-07-22 Covidien Lp Methods and systems for transitory ventilation support
US9629971B2 (en) 2011-04-29 2017-04-25 Covidien Lp Methods and systems for exhalation control and trajectory optimization
US9364624B2 (en) 2011-12-07 2016-06-14 Covidien Lp Methods and systems for adaptive base flow
US9498589B2 (en) 2011-12-31 2016-11-22 Covidien Lp Methods and systems for adaptive base flow and leak compensation
US8844526B2 (en) 2012-03-30 2014-09-30 Covidien Lp Methods and systems for triggering with unknown base flow
US9993604B2 (en) 2012-04-27 2018-06-12 Covidien Lp Methods and systems for an optimized proportional assist ventilation
US9144658B2 (en) 2012-04-30 2015-09-29 Covidien Lp Minimizing imposed expiratory resistance of mechanical ventilator by optimizing exhalation valve control
US9375542B2 (en) 2012-11-08 2016-06-28 Covidien Lp Systems and methods for monitoring, managing, and/or preventing fatigue during ventilation
US10314989B2 (en) 2013-01-28 2019-06-11 Hancock Medical, Inc. Position control devices and methods for use with positive airway pressure systems
US9492629B2 (en) 2013-02-14 2016-11-15 Covidien Lp Methods and systems for ventilation with unknown exhalation flow and exhalation pressure
USD731049S1 (en) 2013-03-05 2015-06-02 Covidien Lp EVQ housing of an exhalation module
USD692556S1 (en) 2013-03-08 2013-10-29 Covidien Lp Expiratory filter body of an exhalation module
USD744095S1 (en) 2013-03-08 2015-11-24 Covidien Lp Exhalation module EVQ internal flow sensor
USD693001S1 (en) 2013-03-08 2013-11-05 Covidien Lp Neonate expiratory filter assembly of an exhalation module
USD701601S1 (en) 2013-03-08 2014-03-25 Covidien Lp Condensate vial of an exhalation module
USD736905S1 (en) 2013-03-08 2015-08-18 Covidien Lp Exhalation module EVQ housing
DE102013004115A1 (en) * 2013-03-08 2014-09-11 Universitätsmedizin Der Johannes Gutenberg-Universität Mainz TRACHEAL CANNULA AND SPEAKING VENTILATION SYSTEM FOR MACHINE VENTILATION
USD731048S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ diaphragm of an exhalation module
USD731065S1 (en) 2013-03-08 2015-06-02 Covidien Lp EVQ pressure sensor filter of an exhalation module
US9358355B2 (en) 2013-03-11 2016-06-07 Covidien Lp Methods and systems for managing a patient move
US9981096B2 (en) 2013-03-13 2018-05-29 Covidien Lp Methods and systems for triggering with unknown inspiratory flow
US9950135B2 (en) 2013-03-15 2018-04-24 Covidien Lp Maintaining an exhalation valve sensor assembly
WO2014140776A1 (en) 2013-03-15 2014-09-18 Trudell Medical International Breathing apparatus and method for the use thereof
US9610417B2 (en) 2013-05-07 2017-04-04 Gabrielle M Kassatly Portable discontinuous positive airway pressure (DPAP) device and method of using the same
US9839761B1 (en) 2013-07-04 2017-12-12 Hal Rucker Airflow control for pressurized air delivery
US20150165146A1 (en) 2013-12-17 2015-06-18 Bruce Bowman Humidification system and positive airway pressure apparatus incorporating same
US9839760B2 (en) * 2014-04-11 2017-12-12 Vyaire Medical Capital Llc Methods for controlling mechanical lung ventilation
US10881829B2 (en) 2014-08-18 2021-01-05 Resmed Inc. Portable pap device with humidification
US9950129B2 (en) 2014-10-27 2018-04-24 Covidien Lp Ventilation triggering using change-point detection
US9925346B2 (en) 2015-01-20 2018-03-27 Covidien Lp Systems and methods for ventilation with unknown exhalation flow
USD776802S1 (en) 2015-03-06 2017-01-17 Hancock Medical, Inc. Positive airway pressure system console
USD775345S1 (en) 2015-04-10 2016-12-27 Covidien Lp Ventilator console
CN107949411B (en) * 2015-08-26 2021-05-28 皇家飞利浦有限公司 Mechanical inspiration-expiration
EP3380177A4 (en) * 2015-11-19 2019-08-21 University of Utah Research Foundation Airway bronchoscope
JP2019518520A (en) 2016-05-19 2019-07-04 ハンコック メディカル, インコーポレイテッド Position obstructive sleep apnea detection system
US10820833B2 (en) 2016-12-09 2020-11-03 Physio-Control, Inc. Capnograph system further detecting spontaneous patient breaths
JP7133825B2 (en) 2016-12-27 2022-09-09 ホーユー株式会社 Hair cosmetic applicator
DE102017006655A1 (en) 2017-07-13 2019-01-17 GRÜNDLER GmbH Respiratory support system and patient set for this
CN110049799B (en) 2017-11-14 2022-04-26 柯惠有限合伙公司 Method and system for driving pressure spontaneous ventilation
CA3099804A1 (en) 2018-05-14 2019-11-21 Covidien Lp Systems and methods for respiratory effort detection utilizing signal distortion
US11517691B2 (en) 2018-09-07 2022-12-06 Covidien Lp Methods and systems for high pressure controlled ventilation
US11752287B2 (en) 2018-10-03 2023-09-12 Covidien Lp Systems and methods for automatic cycling or cycling detection
US11324954B2 (en) 2019-06-28 2022-05-10 Covidien Lp Achieving smooth breathing by modified bilateral phrenic nerve pacing
US11896767B2 (en) 2020-03-20 2024-02-13 Covidien Lp Model-driven system integration in medical ventilators

Citations (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US428592A (en) * 1890-05-27 Inspirator
US697181A (en) * 1901-08-20 1902-04-08 Lundy B Smith Instrument for cooling or for warming internal portions of the human body.
US718785A (en) * 1902-09-16 1903-01-20 James Welch Mcnary Respirator.
US853439A (en) * 1903-10-14 1907-05-14 Albert C Clark Inhaler.
US909002A (en) * 1908-06-03 1909-01-05 Napoleon Lambert Respirator.
US1125542A (en) * 1914-03-11 1915-01-19 Aubrey Humphries Apparatus for use in administering anesthetics.
US1129619A (en) * 1914-07-10 1915-02-23 Gustave A Zapf Inhaling system.
US1331297A (en) * 1918-11-13 1920-02-17 Luther J Walker Ventilating apparatus
US2552595A (en) * 1948-09-21 1951-05-15 Seeler Henry Oxygen demand breathing system, including means for automatic altitude regulation
US2735432A (en) * 1956-02-21 hudson
US2792000A (en) * 1953-01-20 1957-05-14 B S F A Holdings Ltd Face mask for use in dust-laden or other contaminated conditions
US2931358A (en) * 1958-07-30 1960-04-05 David S Sheridan Nasal cannulae
US3172407A (en) * 1961-09-29 1965-03-09 Baxter Don Inc Gas administration apparatus
US3319627A (en) * 1964-02-20 1967-05-16 Mine Safety Appliances Co Intermittent positive pressure breathing apparatus
US3437274A (en) * 1966-07-26 1969-04-08 Edward W Apri Liquid spray apparatus
US3493703A (en) * 1968-08-02 1970-02-03 James E Finan Body motion sensitive electrical switch with lost motion means
US3513844A (en) * 1968-04-30 1970-05-26 Metro Hospital Supply Co Inc Adjustable nonrestrictive nasal cannula
US3643660A (en) * 1969-11-21 1972-02-22 Allan C Hudson Nasal cannula
US3657740A (en) * 1969-11-26 1972-04-18 Armando A Cialone Ventilated welder{3 s mask assembly
US3721233A (en) * 1970-10-30 1973-03-20 W Montgomery T-shaped tracheal stent
US3726275A (en) * 1971-12-14 1973-04-10 I Jackson Nasal cannulae
US3727606A (en) * 1970-06-12 1973-04-17 Airco Inc Apnea detection device
US3733008A (en) * 1971-05-17 1973-05-15 Life Support Carrying case for oxygen generators
US3741208A (en) * 1971-02-23 1973-06-26 B Jonsson Lung ventilator
US3794072A (en) * 1972-06-26 1974-02-26 Hudson Oxygen Therapy Sales Co Oxygen diluter device
US3794026A (en) * 1970-07-29 1974-02-26 H Jacobs Ventilating apparatus embodying selective volume or pressure operation and catheter means for use therewith
US3802431A (en) * 1971-10-08 1974-04-09 Bard Inc C R Nasal cannula
US3881480A (en) * 1972-03-10 1975-05-06 Lafourcade Jean Michel Breathing aid apparatus
US3949749A (en) * 1974-02-24 1976-04-13 Bio-Med Devices Inc. Pediatric respirator
US3951143A (en) * 1974-11-20 1976-04-20 Searle Cardio-Pulmonary Systems Inc. Intermittent demand ventilator
US3961627A (en) * 1973-09-07 1976-06-08 Hoffmann-La Roche Inc. Automatic regulation of respirators
US4003377A (en) * 1975-08-21 1977-01-18 Sandoz, Inc. Patient ventilator
US4067328A (en) * 1975-07-29 1978-01-10 The Medishield Corporation Limited Lung ventilator
US4146885A (en) * 1977-10-13 1979-03-27 Lawson Jr William H Infant bed and apnea alarm
US4206754A (en) * 1976-06-02 1980-06-10 Boc Limited Lung ventilators
US4256101A (en) * 1979-03-05 1981-03-17 Bourns Medical Systems, Inc. Thermistor assist sensing
US4261355A (en) * 1978-09-25 1981-04-14 Glazener Edwin L Constant positive pressure breathing apparatus
US4263908A (en) * 1979-07-25 1981-04-28 Mizerak Vladimir S Nasal cannula mask
US4265237A (en) * 1978-07-17 1981-05-05 Dragerwerk Aktiengesellschaft Apparatus for enhancing a person's breathing and/or artificial respiration
US4266540A (en) * 1978-10-13 1981-05-12 Donald Panzik Nasal oxygen therapy mask
US4323064A (en) * 1976-10-26 1982-04-06 Puritan-Bennett Corporation Volume ventilator
US4367735A (en) * 1979-12-31 1983-01-11 Novametrix Medical Systems, Inc. Nasal cannula
US4377162A (en) * 1980-11-26 1983-03-22 Staver Peter J Facial protective device, and methods of constructing and utilizing same
US4449523A (en) * 1982-09-13 1984-05-22 Implant Technologies, Inc. Talking tracheostomy tube
US4495946A (en) * 1981-03-17 1985-01-29 Joseph Lemer Artificial breathing device
US4506667A (en) * 1983-04-06 1985-03-26 Figgie Int Inc Self-contained ventilator/resuscitator
US4506666A (en) * 1982-12-03 1985-03-26 Kircaldie, Randall And Mcnab Method and apparatus for rectifying obstructive apnea
US4571741A (en) * 1983-12-27 1986-02-25 Commissariat A L'energie Atomique Ergonomic helmet means
US4584996A (en) * 1984-03-12 1986-04-29 Blum Alvin S Apparatus for conservative supplemental oxygen therapy
US4590951A (en) * 1983-06-07 1986-05-27 Racal Safety Limited Breathing apparatus
US4644947A (en) * 1982-04-15 1987-02-24 Whitwam James G Respirator
US4648398A (en) * 1984-10-31 1987-03-10 Sherwood Medical Company Nasal cannula
US4648395A (en) * 1982-07-07 1987-03-10 Sanyo Densihkogyo Co. Ltd. Synchronized feed type oxygen concentrator for use in an open breathing system
US4658832A (en) * 1985-04-01 1987-04-21 Cosmed S.R.L. Portable device for the survey of the breathing ventilation and of the oxygen consumption, connected by means of radio signals to a fixed reception and elaboration station
US4660555A (en) * 1984-09-21 1987-04-28 Payton Hugh W Oxygen delivery and administration system
US4744356A (en) * 1986-03-03 1988-05-17 Greenwood Eugene C Demand oxygen supply device
US4747403A (en) * 1986-01-27 1988-05-31 Advanced Pulmonary Technologies, Inc. Multi-frequency jet ventilation technique and apparatus
US4803981A (en) * 1981-09-22 1989-02-14 Vickery Ian M Anaesthesia mask
US4807616A (en) * 1987-07-09 1989-02-28 Carmeli Adahan Portable ventilator apparatus
US4807617A (en) * 1988-02-01 1989-02-28 Massachusetts Eye And Ear Infirmary Scavenging mask
US4808160A (en) * 1986-04-14 1989-02-28 Timmons John W Nasal cannula apparatus
US4813431A (en) * 1987-07-22 1989-03-21 David Brown Intrapulmonary pressure monitoring system
US4817897A (en) * 1986-02-12 1989-04-04 Ulrich Kreusel Cross-connector to two crossing tubular elements
US4818320A (en) * 1984-04-04 1989-04-04 Sherwood Medical Company Nasal cannula harness and method of making the same
US4823788A (en) * 1988-04-18 1989-04-25 Smith Richard F M Demand oxygen controller and respiratory monitor
US4825859A (en) * 1987-03-11 1989-05-02 Ballard Medical Products Neonatal closed system for involuntary aspiration and ventilation and method
US4827922A (en) * 1987-03-05 1989-05-09 L'air Liquide Process and device for supplying respiratory oxygen
US4832014A (en) * 1985-10-02 1989-05-23 Perkins Warren E Method and means for dispensing two respirating gases by effecting a known displacement
US4899740A (en) * 1989-01-17 1990-02-13 E. D. Bullard Company Respirator system for use with a hood or face mask
US4905688A (en) * 1989-02-16 1990-03-06 Figgie International Inc. Portable light weight completely self-contained emergency single patient ventilator/resuscitator
US4915103A (en) * 1987-12-23 1990-04-10 N. Visveshwara, M.D., Inc. Ventilation synchronizer
US4915105A (en) * 1988-10-28 1990-04-10 Lee Tien Chu Miniature respiratory apparatus
US4919128A (en) * 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US4919132A (en) * 1987-08-21 1990-04-24 Miser Martin G Apparatus for supplying gas to a patient
US4982735A (en) * 1988-03-01 1991-01-08 Sumitomo Bakelite Company Limited Artificial ventilator
US4986269A (en) * 1985-05-23 1991-01-22 Etela-Hameen Keuhkovammayhdistys R.Y. Respiration therapy apparatus
US4990157A (en) * 1989-11-13 1991-02-05 Robhill Industries Inc. Soother retainer
US4989599A (en) * 1989-01-26 1991-02-05 Puritan-Bennett Corporation Dual lumen cannula
US5000175A (en) * 1979-08-08 1991-03-19 Pue Alexander F Meconium aspiration device
US5002050A (en) * 1986-09-17 1991-03-26 Mcginnis Gerald E Medical gas flow control valve, system and method
US5018519A (en) * 1990-08-03 1991-05-28 Brown Glenn E Mask for adminstering an anesthetic gas to a patient
US5097827A (en) * 1991-03-22 1992-03-24 Ddi Industries, Inc. Holder for medical tubing
US5099836A (en) * 1987-10-05 1992-03-31 Hudson Respiratory Care Inc. Intermittent oxygen delivery system and cannula
US5099837A (en) * 1990-09-28 1992-03-31 Russel Sr Larry L Inhalation-based control of medical gas
US5101820A (en) * 1989-11-02 1992-04-07 Christopher Kent L Apparatus for high continuous flow augmentation of ventilation and method therefor
US5103815A (en) * 1988-05-13 1992-04-14 Chrislyn Enterprises, Inc. Personal airflow gage for a personal breathing supply of respirable quality air, and related accessories, including a two way communication system, used while working in contaminated air spaces
US5105807A (en) * 1991-02-26 1992-04-21 Alternative Medical Products, Inc. Device and methods for securing nasal tubing
US5107830A (en) * 1987-02-21 1992-04-28 University Of Manitoba Lung ventilator device
US5107831A (en) * 1989-06-19 1992-04-28 Bear Medical Systems, Inc. Ventilator control system using sensed inspiratory flow rate
US5113857A (en) * 1990-08-27 1992-05-19 Stair Dickerman Breathing gas delivery system and holding clip member therefor
US5181509A (en) * 1984-11-21 1993-01-26 Spofford Bryan T Transtracheal catheter system
US5184610A (en) * 1989-03-06 1993-02-09 Hood Laboratories Tracheal cannulas and stents
US5186167A (en) * 1990-10-31 1993-02-16 The United States Of America As Represented By The Department Of Health And Human Services Catheter tip for intratracheal ventilation and intratracheal pulmonary ventilation
US5193533A (en) * 1990-07-09 1993-03-16 Brigham And Women's Hospital High-pressure jet ventilation catheter
US5193532A (en) * 1988-12-06 1993-03-16 Moa Conny P G Device for generating by means of ejector action a continuous positive airway pressure (cpap) during spontaneous breathing
US5199424A (en) * 1987-06-26 1993-04-06 Sullivan Colin E Device for monitoring breathing during sleep and control of CPAP treatment that is patient controlled

Family Cites Families (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267935A (en) 1961-05-04 1966-08-23 Air Shield Inc Respiratory assister
US3357427A (en) 1965-04-21 1967-12-12 John M Wittke Aerosol introducer device for dispensing a measured charge of therapeutic composition into body cavities
US3610247A (en) 1969-03-03 1971-10-05 Richard R Jackson Surface-anesthetizing medical appliance
US3991790A (en) 1973-09-28 1976-11-16 Sandoz, Inc. Patient ventilator trigger circuit
US4231365A (en) 1978-01-30 1980-11-04 Scarberry Eugene N Emergency resuscitation apparatus
US4274162A (en) 1979-05-23 1981-06-23 Michael Joy Artificial replacement for a larynx
US4413514A (en) 1981-05-22 1983-11-08 Hoffman Controls Corporation Air flow sensor
US4481944A (en) 1981-11-19 1984-11-13 Bunnell Life Systems, Inc. Apparatus and method for assisting respiration
JPS58112332U (en) 1982-01-26 1983-08-01 泉工医科工業株式会社 Jet tube for respirator
DE3206482C2 (en) 1982-02-23 1984-03-15 Drägerwerk AG, 2400 Lübeck Ventilation device with a device for safety monitoring
US4488548A (en) 1982-12-22 1984-12-18 Sherwood Medical Company Endotracheal tube assembly
DE3327342A1 (en) 1983-07-29 1985-02-07 Peter 7800 Freiburg Pedersen DEVICE FOR DETECTING AND EVALUATING THE PRESSURE IN THE BALLOON CUFF OF A CLOSED TRACHEAL TUBE
FR2559392B1 (en) * 1984-02-15 1986-07-04 Intertechnique Sa PERSONAL PROTECTION EQUIPMENT AGAINST CONTAMINATION
US4527557A (en) 1984-11-01 1985-07-09 Bear Medical Systems, Inc. Medical ventilator system
US5090408A (en) 1985-10-18 1992-02-25 Bryan T. Spofford Transtracheal catheter system and method
US4773411A (en) 1986-05-08 1988-09-27 Downs John B Method and apparatus for ventilatory therapy
US4850350A (en) 1986-06-23 1989-07-25 Sheridan Catheter Corp. Closed system combined suction and ventilation devices
JPS6357060A (en) * 1986-08-27 1988-03-11 オムロン株式会社 Inhalator
US5024219A (en) 1987-01-12 1991-06-18 Dietz Henry G Apparatus for inhalation therapy using triggered dose oxygenator employing an optoelectronic inhalation sensor
US4838255A (en) 1987-03-11 1989-06-13 Ballard Medical Products Neonatal closed system for involuntary aspiration and ventilation, and method
US4938212A (en) 1987-10-16 1990-07-03 Puritan-Bennett Corporation Inspiration oxygen saver
US5474062A (en) 1987-11-04 1995-12-12 Bird Products Corporation Medical ventilator
US5058580A (en) 1988-05-11 1991-10-22 Hazard Patrick B Percutaneous tracheostomy tube
US5022394A (en) 1988-10-11 1991-06-11 Homecare Of Dearborn Heat and moisture exchanger device for tracheostomy patients
US5048515A (en) 1988-11-15 1991-09-17 Sanso David W Respiratory gas supply apparatus and method
US5259373A (en) 1989-05-19 1993-11-09 Puritan-Bennett Corporation Inspiratory airway pressure system controlled by the detection and analysis of patient airway sounds
US5134995A (en) 1989-05-19 1992-08-04 Puritan-Bennett Corporation Inspiratory airway pressure system with admittance determining apparatus and method
GB8913084D0 (en) 1989-06-07 1989-07-26 Whitwam James G A medical ventilator
US5632269A (en) * 1989-09-22 1997-05-27 Respironics Inc. Breathing gas delivery method and apparatus
US5148802B1 (en) 1989-09-22 1997-08-12 Respironics Inc Method and apparatus for maintaining airway patency to treat sleep apnea and other disorders
US5419314A (en) 1989-11-02 1995-05-30 Christopher; Kent L. Method and apparatus for weaning ventilator-dependent patients
US4971049A (en) * 1989-11-06 1990-11-20 Pulsair, Inc. Pressure sensor control device for supplying oxygen
US5038771A (en) 1990-01-25 1991-08-13 Dietz Henry G Method and apparatus for respiratory therapy using intermittent flow having automatic adjustment of a dose of therapeutic gas to the rate of breathing
US5161525A (en) 1990-05-11 1992-11-10 Puritan-Bennett Corporation System and method for flow triggering of pressure supported ventilation
SE500550C2 (en) 1990-06-18 1994-07-11 Siemens Elema Ab Methods and apparatus for reducing gas re-breathing from the harmful space
US5233979A (en) 1990-10-22 1993-08-10 Ballard Medical Products Methods and apparatus for a micro-tracheal catheter hub assembly
US5255675A (en) 1990-10-31 1993-10-26 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Device for intratracheal ventilation and intratracheal pulmonary ventilation
US5054484A (en) * 1990-11-21 1991-10-08 Hebeler Jr Robert F Tracheostomy device
SE465952B (en) 1990-12-10 1991-11-25 Octagon Med Prod KONIOSTOMITUB WHICH AATMINSTONE IN ITS OPENED OPENING PART THROUGH THE FRONT WALL OPENING PARTS HAVE A SIGNIFICANT OVEL SECTION
US5134996A (en) 1991-01-09 1992-08-04 Smiths Industries Medical Systems, Inc. Inspiration and expiration indicator for a suction catheter
US5258027A (en) 1991-01-24 1993-11-02 Willy Rusch Ag Trachreal prosthesis
US5762638A (en) 1991-02-27 1998-06-09 Shikani; Alain H. Anti-infective and anti-inflammatory releasing systems for medical devices
DE4138702A1 (en) * 1991-03-22 1992-09-24 Madaus Medizin Elektronik METHOD AND DEVICE FOR THE DIAGNOSIS AND QUANTITATIVE ANALYSIS OF APNOE AND FOR THE SIMULTANEOUS DETERMINATION OF OTHER DISEASES
US5542415A (en) 1991-05-07 1996-08-06 Infrasonics, Inc. Apparatus and process for controlling the ventilation of the lungs of a patient
US5239994A (en) 1991-05-10 1993-08-31 Bunnell Incorporated Jet ventilator system
DE4122069A1 (en) 1991-07-04 1993-01-07 Draegerwerk Ag METHOD FOR DETECTING A PATIENT'S BREATHING PHASES IN ASSISTANT VENTILATION METHODS
US5711296A (en) * 1991-09-12 1998-01-27 The United States Of America As Represented By The Department Of Health And Human Services Continuous positive airway pressure system
US5339809A (en) 1991-12-04 1994-08-23 Beck Jr Charles A Method of inserting a cricothyroidal endotracheal device between the cricoid and thyroid cartilages for treatment of chronic respiratory disorders
US5490502A (en) * 1992-05-07 1996-02-13 New York University Method and apparatus for optimizing the continuous positive airway pressure for treating obstructive sleep apnea
US5331995A (en) 1992-07-17 1994-07-26 Bear Medical Systems, Inc. Flow control system for medical ventilator
US7081095B2 (en) * 2001-05-17 2006-07-25 Lynn Lawrence A Centralized hospital monitoring system for automatically detecting upper airway instability and for preventing and aborting adverse drug reactions
US5388575A (en) * 1992-09-25 1995-02-14 Taube; John C. Adaptive controller for automatic ventilators
US5349950A (en) 1992-10-28 1994-09-27 Smiths Industries Medical Systems, Inc. Suction catheter assemblies
US5243972A (en) 1992-12-07 1993-09-14 Huang Ho Tsun Smoke-proof mask
US5517983A (en) 1992-12-09 1996-05-21 Puritan Bennett Corporation Compliance meter for respiratory therapy
CA2109017A1 (en) * 1992-12-16 1994-06-17 Donald M. Smith Method and apparatus for the intermittent delivery of oxygen therapy to a person
US5438980A (en) 1993-01-12 1995-08-08 Puritan-Bennett Corporation Inhalation/exhalation respiratory phase detection circuit
US5287852A (en) 1993-01-13 1994-02-22 Direct Trends International Ltd. Apparatus and method for maintaining a tracheal stoma
US6758217B1 (en) * 1993-02-05 2004-07-06 University Of Manitoba Control of airway pressure during mechanical ventilation
GB9302291D0 (en) 1993-02-05 1993-03-24 Univ Manitoba Method for improved control of airway pressure during mechanical ventilation
US5546935A (en) 1993-03-09 1996-08-20 Medamicus, Inc. Endotracheal tube mounted pressure transducer
US5513628A (en) 1993-07-14 1996-05-07 Sorenson Critical Care, Inc. Apparatus and method for ventilating and aspirating
US5485850A (en) 1993-08-13 1996-01-23 Dietz; Henry G. Monitor of low pressure intervals with control capabilities
EP2113196A3 (en) * 1993-11-05 2009-12-23 ResMed Limited Control of CPAP treatment
US6675797B1 (en) * 1993-11-05 2004-01-13 Resmed Limited Determination of patency of the airway
US5595174A (en) * 1994-02-28 1997-01-21 Gwaltney; Max R. Nasal adaptor, mask, and method
US5582167A (en) 1994-03-02 1996-12-10 Thomas Jefferson University Methods and apparatus for reducing tracheal infection using subglottic irrigation, drainage and servoregulation of endotracheal tube cuff pressure
US5535738A (en) 1994-06-03 1996-07-16 Respironics, Inc. Method and apparatus for providing proportional positive airway pressure to treat sleep disordered breathing
US6932084B2 (en) * 1994-06-03 2005-08-23 Ric Investments, Inc. Method and apparatus for providing positive airway pressure to a patient
US6105575A (en) 1994-06-03 2000-08-22 Respironics, Inc. Method and apparatus for providing positive airway pressure to a patient
IL114154A0 (en) 1994-06-17 1995-10-31 Trudell Medical Ltd Nebulizing catheter system and methods of use and manufacture
GB9413499D0 (en) * 1994-07-05 1994-08-24 Pneupac Ltd Gas mixing devices for resuscitation/lung ventilation apparatus
US5695457A (en) * 1994-07-28 1997-12-09 Heartport, Inc. Cardioplegia catheter system
WO1996011717A1 (en) * 1994-10-14 1996-04-25 Bird Products Corporation Portable drag compressor powered mechanical ventilator
US5598840A (en) 1995-03-17 1997-02-04 Sorenson Critical Care, Inc. Apparatus and method for ventilation and aspiration
CA2215910C (en) 1995-03-28 2002-02-19 Ballard Medical Products Anti-contaminating catheter sheath with filter/closure barriers
US5593143A (en) * 1995-03-30 1997-01-14 Ferrarin; James A. Universal fence post connector
US5598837A (en) * 1995-06-06 1997-02-04 Respironics, Inc. Passive humidifier for positive airway pressure devices
US5735268A (en) 1995-06-07 1998-04-07 Salter Labs Intermitten gas-insufflation apparatus and method therefor
US5603315A (en) * 1995-08-14 1997-02-18 Reliable Engineering Multiple mode oxygen delivery system
US5687714A (en) 1995-10-10 1997-11-18 The United States Of America As Represented By The Department Of Health And Human Services Self-cleaning endotracheal tube apparatus
AUPN616795A0 (en) * 1995-10-23 1995-11-16 Rescare Limited Ipap duration in bilevel cpap or assisted respiration treatment
US5865173A (en) 1995-11-06 1999-02-02 Sunrise Medical Hhg Inc. Bilevel CPAP system with waveform control for both IPAP and EPAP
SE9504120D0 (en) * 1995-11-16 1995-11-16 Siemens Elema Ab Ventilator for respiratory treatment
SE9504313L (en) * 1995-12-01 1996-12-16 Siemens Elema Ab Method for pressure measurement in fan systems by means of two separate gas lines and one fan system
SE9504311D0 (en) 1995-12-01 1995-12-01 Siemens Elema Ab Breathing apparatus
US6463930B2 (en) * 1995-12-08 2002-10-15 James W. Biondi System for automatically weaning a patient from a ventilator, and method thereof
US5669380A (en) 1996-04-26 1997-09-23 New England Medical Center Hospitals, Inc. Laryngeal bypass
US5690097A (en) 1996-05-31 1997-11-25 Board Of Regents, The University Of Texas System Combination anesthetic mask and oxygen transport system
SE9602199D0 (en) 1996-06-03 1996-06-03 Siemens Ag ventilator
US5904648A (en) 1996-06-18 1999-05-18 Cook Incorporated Guided endobronchial blocker catheter
US5975081A (en) 1996-06-21 1999-11-02 Northrop Grumman Corporation Self-contained transportable life support system
FR2750315B1 (en) 1996-06-26 1998-12-18 Novatech Inc INTRALARYNGEAL PROSTHESIS
DE19626924C2 (en) * 1996-07-04 1999-08-19 Epazon B V Breathing gas supply device
US5865174A (en) * 1996-10-29 1999-02-02 The Scott Fetzer Company Supplemental oxygen delivery apparatus and method
US6019101A (en) * 1996-10-31 2000-02-01 Sleepnet Corporation Nasal air mask
US5906204A (en) 1996-12-19 1999-05-25 Respiratory Support Products, Inc. Endotracheal pressure monitoring and medication system
US6024089A (en) * 1997-03-14 2000-02-15 Nelcor Puritan Bennett Incorporated System and method for setting and displaying ventilator alarms
US5979440A (en) * 1997-06-16 1999-11-09 Sequal Technologies, Inc. Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator
US6371114B1 (en) * 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US5954050A (en) * 1997-10-20 1999-09-21 Christopher; Kent L. System for monitoring and treating sleep disorders using a transtracheal catheter
US6039696A (en) 1997-10-31 2000-03-21 Medcare Medical Group, Inc. Method and apparatus for sensing humidity in a patient with an artificial airway
GB9723319D0 (en) * 1997-11-04 1998-01-07 Protector Technologies Bv Oxygen therapy apparatus
US5918597A (en) 1998-01-15 1999-07-06 Nellcor Puritan Bennett Peep control in a piston ventilator
US20050121033A1 (en) * 1998-02-25 2005-06-09 Ric Investments, Llc. Respiratory monitoring during gas delivery
AUPP366398A0 (en) * 1998-05-22 1998-06-18 Resmed Limited Ventilatory assistance for treatment of cardiac failure and cheyne-stokes breathing
AUPP370198A0 (en) * 1998-05-25 1998-06-18 Resmed Limited Control of the administration of continuous positive airway pressure treatment
CA2239673A1 (en) * 1998-06-04 1999-12-04 Christer Sinderby Automatic adjustment of applied levels of ventilatory support and extrinsic peep by closed-loop control of neuro-ventilatory efficiency
US5975077A (en) 1998-07-28 1999-11-02 Hamilton Medical, Inc. Method and apparatus for assisting in breathing
US6220244B1 (en) * 1998-09-15 2001-04-24 Mclaughlin Patrick L. Conserving device for use in oxygen delivery and therapy
US6227200B1 (en) * 1998-09-21 2001-05-08 Ballard Medical Products Respiratory suction catheter apparatus
AU1210500A (en) * 1998-10-21 2000-05-08 Airsep Corporation Combined oxygen regulator and conservation device
US8701664B2 (en) * 1998-11-06 2014-04-22 Caradyne (R&D) Limited Apparatus and method for relieving dyspnoea
ATE456388T1 (en) * 1998-11-06 2010-02-15 Caradyne R & D Ltd PORTABLE VENTILATOR
US6102042A (en) * 1998-12-22 2000-08-15 Respironics, Inc. Insufflation system, attachment and method
EP1140263B1 (en) * 1999-01-15 2011-05-11 ResMed Limited Method and apparatus to counterbalance intrinsic positive end expiratory pressure
AUPQ019899A0 (en) * 1999-05-06 1999-06-03 Resmed Limited Control of supplied pressure in assisted ventilation
US6505623B1 (en) * 1999-06-04 2003-01-14 Mallinckrodt Inc. Hat-held respiratory mask
US6920875B1 (en) * 1999-06-15 2005-07-26 Respironics, Inc. Average volume ventilation
ATE483490T1 (en) * 1999-06-30 2010-10-15 Univ Florida MONITORING SYSTEM FOR FAN
US6192883B1 (en) * 1999-08-03 2001-02-27 Richard L. Miller, Jr. Oxygen flow control system and method
US6910480B1 (en) * 1999-09-15 2005-06-28 Resmed Ltd. Patient-ventilator synchronization using dual phase sensors
US6378520B1 (en) * 1999-10-29 2002-04-30 Salter Labs Variable pressure and flow control for a pneumatically-operated gas demand apparatus
DE60020593T2 (en) * 1999-10-29 2005-11-03 Mallinckrodt, Inc. PORTABLE LIQUID OXYGEN CONTAINER WITH MULTIPLE OPERATING POSITIONS
SE9904382D0 (en) * 1999-12-02 1999-12-02 Siemens Elema Ab High Frequency Oscillation Patient Fan System
DE19960404A1 (en) * 1999-12-15 2001-07-05 Messer Austria Gmbh Gumpoldski Expiration-dependent gas metering
US20010035185A1 (en) * 2000-04-26 2001-11-01 Christopher Kent L. Method and apparatus for pharyngeal augmentation of ventilation
FR2809329B1 (en) * 2000-05-25 2002-08-16 Air Liquide PORTABLE OXYGEN CONCENTRATOR
US6675901B2 (en) * 2000-06-01 2004-01-13 Schlumberger Technology Corp. Use of helically wound tubular structure in the downhole environment
US6938619B1 (en) * 2000-06-13 2005-09-06 Scott Laboratories, Inc. Mask free delivery of oxygen and ventilatory monitoring
EP1163924B1 (en) * 2000-06-14 2008-02-13 Fisher & Paykel Healthcare Limited A nasal mask
AU2001267097A1 (en) * 2000-06-16 2001-12-24 Rajiv Doshi Methods and devices for improving breathing in patients with pulmonary disease
US6575944B1 (en) * 2000-06-19 2003-06-10 Portex, Inc. Adapter for localized treatment through a tracheal tube and method for use thereof
US6532960B1 (en) * 2000-07-10 2003-03-18 Respironics, Inc. Automatic rise time adjustment for bi-level pressure support system
US6827340B2 (en) * 2000-08-14 2004-12-07 Taga Medical Technologies, Inc. CPAP humidifier
US6450164B1 (en) * 2000-08-17 2002-09-17 Michael J. Banner Endotracheal tube pressure monitoring system and method of controlling same
US6752151B2 (en) * 2000-09-25 2004-06-22 Respironics, Inc. Method and apparatus for providing variable positive airway pressure
US6626175B2 (en) * 2000-10-06 2003-09-30 Respironics, Inc. Medical ventilator triggering and cycling method and mechanism
US6357438B1 (en) * 2000-10-19 2002-03-19 Mallinckrodt Inc. Implantable sensor for proportional assist ventilation
US6571796B2 (en) * 2001-02-08 2003-06-03 University Of Florida Tracheal pressure ventilation respiratory system
US6860858B2 (en) * 2001-05-23 2005-03-01 Resmed Limited Ventilator patient synchronization
US6520183B2 (en) * 2001-06-11 2003-02-18 Memorial Sloan-Kettering Cancer Center Double endobronchial catheter for one lung isolation anesthesia and surgery
CA2458595C (en) * 2001-10-11 2007-12-04 Peter M. Wilson Bronchial flow control devices and methods of use
US7168429B2 (en) * 2001-10-12 2007-01-30 Ric Investments, Llc Auto-titration pressure support system and method of using same
US6837238B2 (en) * 2001-10-12 2005-01-04 Southmedic Incorporated Lightweight oxygen delivery device for patients
US6675796B2 (en) * 2001-10-12 2004-01-13 Southmedic Incorporated Lightweight oxygen delivery device for patients
US6910482B2 (en) * 2001-10-19 2005-06-28 Chart Inc. Self-calibrating supplemental oxygen delivery system
US6679265B2 (en) * 2001-10-25 2004-01-20 Worldwide Medical Technologies Nasal cannula
US7156097B2 (en) * 2001-11-27 2007-01-02 Norman Cardoso Nasal cannula
JP2003210585A (en) * 2002-01-21 2003-07-29 Hiroaki Nomori Tracheotomic tube
US6505624B1 (en) * 2002-01-29 2003-01-14 George Campbell, Sr. Gas delivery system retention device and method for retaining a gas delivery system
AUPS192602A0 (en) * 2002-04-23 2002-05-30 Resmed Limited Nasal mask
US6986353B2 (en) * 2002-08-21 2006-01-17 Medical Device Group, Inc. Divided nasal cannula assembly
US7080646B2 (en) * 2002-08-26 2006-07-25 Sekos, Inc. Self-contained micromechanical ventilator
US7320321B2 (en) * 2002-08-26 2008-01-22 Automedx Inc. Self-contained micromechanical ventilator
CA2492528C (en) * 2002-08-30 2014-03-18 University Of Florida Method and apparatus for predicting work of breathing
US20050010125A1 (en) * 2002-11-26 2005-01-13 Joy James A. Systems and methods for respiration measurement
GB2396426B (en) * 2002-12-21 2005-08-24 Draeger Medical Ag Artificial respiration system
DE10302310A1 (en) * 2003-01-20 2004-07-29 Freitag, Lutz, Dr. Patient lung reduction method, e.g. for treating pulmonary emphysema, whereby a bronchial catheter is inserted into an over-swollen lung area and the supplying bronchopulmonary closed in synchronism with patient breathing
NZ626589A (en) * 2003-02-21 2016-01-29 Resmed Ltd Nasal assembly
JP4602643B2 (en) * 2003-02-28 2010-12-22 帝人株式会社 Respiratory gas supply device
AU2003901042A0 (en) * 2003-03-07 2003-03-20 Resmed Limited Back-up rate for a ventilator
US7588033B2 (en) * 2003-06-18 2009-09-15 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
DE10337138A1 (en) * 2003-08-11 2005-03-17 Freitag, Lutz, Dr. Method and arrangement for the respiratory assistance of a patient as well as tracheal prosthesis and catheter
SE0301767D0 (en) * 2003-06-18 2003-06-18 Siemens Elema Ab User interface for a medical ventilator
FR2856930B1 (en) * 2003-07-04 2007-09-07 Saime Sarl MODULAR TURBINE BREATHING AIDING DEVICE.
US20050011524A1 (en) * 2003-07-17 2005-01-20 Marguerite Thomlinson Nasal interface apparatus
EP2374490A2 (en) * 2003-08-04 2011-10-12 CareFusion 203, Inc. Portable ventilator system
US7044129B1 (en) * 2003-09-03 2006-05-16 Ric Investments, Llc. Pressure support system and method
US7478641B2 (en) * 2003-10-22 2009-01-20 L'oreal Device for the combined presentation of two items
US7468054B2 (en) * 2003-11-03 2008-12-23 Becton, Dickinson And Company Safety shield system for a syringe
US20050098179A1 (en) * 2003-11-06 2005-05-12 Steve Burton Multi-level positive air pressure method and delivery apparatus
US7195016B2 (en) * 2004-01-07 2007-03-27 E. Benson Hood Laboratories Transtracheal oxygen stent
US7866318B2 (en) * 2004-01-07 2011-01-11 Resmed Limited Methods for providing expiratory pressure relief in positive airway pressure therapy
US7178525B2 (en) * 2004-02-06 2007-02-20 Ric Investments, Llc Patient interface assembly supported under the mandible
US7472702B2 (en) * 2004-03-25 2009-01-06 Maquet Critical Care Ab Method and device responsive to diaphragmatic activity for adjusting positive pressure assist during expiration
US7481219B2 (en) * 2004-06-18 2009-01-27 Mergenet Medical, Inc. Medicine delivery interface system
US7222624B2 (en) * 2004-07-02 2007-05-29 Praxair Technology, Inc. Dual sensor oxygen therapy device
US20060005834A1 (en) * 2004-07-07 2006-01-12 Acoba, Llc Method and system of providing therapeutic gas to a patient to prevent breathing airway collapse
US7013898B2 (en) * 2004-07-09 2006-03-21 Praxair Technology, Inc. Nasal pressure sensor oxygen therapy device
US20060096596A1 (en) * 2004-11-05 2006-05-11 Occhialini James M Wearable system for positive airway pressure therapy
DE102004055433B3 (en) * 2004-11-17 2005-11-17 Drägerwerk AG Breathing mask with integrated suction area
US20060201504A1 (en) * 2005-03-08 2006-09-14 Singhal Aneesh B High-flow oxygen delivery system and methods of use thereof
US7640934B2 (en) * 2005-12-02 2010-01-05 Carefusion 2200, Inc. Infant nasal interface prong device
WO2007082193A2 (en) * 2006-01-06 2007-07-19 Doreen Cleary Pulmonary rehabilitation providing respiratory assistance by application of positive airway pressure
US7373939B1 (en) * 2006-03-03 2008-05-20 Cardica, Inc. Tracheotomy procedure with integrated tool
WO2007142812A2 (en) * 2006-05-18 2007-12-13 Breathe Technologies, Inc. Tracheotomy method and device
US20080011297A1 (en) * 2006-06-30 2008-01-17 Scott Thomas Mazar Monitoring physiologic conditions via transtracheal measurement of respiratory parameters
US20080006271A1 (en) * 2006-07-08 2008-01-10 Acoba, Llc Method and system of generating indicia representative of start of an inhalation
US20080011301A1 (en) * 2006-07-12 2008-01-17 Yuancheng Qian Out flow resistance switching ventilator and its core methods
EP2231245B1 (en) * 2007-12-20 2014-10-29 Maquet Critical Care AB A computer program product, a control unit for a ventilator, and a ventilator
IL203129A (en) * 2009-01-05 2013-10-31 Oridion Medical Ltd Exhaled breath sampling systrm with delivery of gas

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US428592A (en) * 1890-05-27 Inspirator
US2735432A (en) * 1956-02-21 hudson
US697181A (en) * 1901-08-20 1902-04-08 Lundy B Smith Instrument for cooling or for warming internal portions of the human body.
US718785A (en) * 1902-09-16 1903-01-20 James Welch Mcnary Respirator.
US853439A (en) * 1903-10-14 1907-05-14 Albert C Clark Inhaler.
US909002A (en) * 1908-06-03 1909-01-05 Napoleon Lambert Respirator.
US1125542A (en) * 1914-03-11 1915-01-19 Aubrey Humphries Apparatus for use in administering anesthetics.
US1129619A (en) * 1914-07-10 1915-02-23 Gustave A Zapf Inhaling system.
US1331297A (en) * 1918-11-13 1920-02-17 Luther J Walker Ventilating apparatus
US2552595A (en) * 1948-09-21 1951-05-15 Seeler Henry Oxygen demand breathing system, including means for automatic altitude regulation
US2792000A (en) * 1953-01-20 1957-05-14 B S F A Holdings Ltd Face mask for use in dust-laden or other contaminated conditions
US2931358A (en) * 1958-07-30 1960-04-05 David S Sheridan Nasal cannulae
US3172407A (en) * 1961-09-29 1965-03-09 Baxter Don Inc Gas administration apparatus
US3319627A (en) * 1964-02-20 1967-05-16 Mine Safety Appliances Co Intermittent positive pressure breathing apparatus
US3437274A (en) * 1966-07-26 1969-04-08 Edward W Apri Liquid spray apparatus
US3513844A (en) * 1968-04-30 1970-05-26 Metro Hospital Supply Co Inc Adjustable nonrestrictive nasal cannula
US3493703A (en) * 1968-08-02 1970-02-03 James E Finan Body motion sensitive electrical switch with lost motion means
US3643660A (en) * 1969-11-21 1972-02-22 Allan C Hudson Nasal cannula
US3657740A (en) * 1969-11-26 1972-04-18 Armando A Cialone Ventilated welder{3 s mask assembly
US3727606A (en) * 1970-06-12 1973-04-17 Airco Inc Apnea detection device
US3794026A (en) * 1970-07-29 1974-02-26 H Jacobs Ventilating apparatus embodying selective volume or pressure operation and catheter means for use therewith
US3721233A (en) * 1970-10-30 1973-03-20 W Montgomery T-shaped tracheal stent
US3741208A (en) * 1971-02-23 1973-06-26 B Jonsson Lung ventilator
US3733008A (en) * 1971-05-17 1973-05-15 Life Support Carrying case for oxygen generators
US3802431A (en) * 1971-10-08 1974-04-09 Bard Inc C R Nasal cannula
US3726275A (en) * 1971-12-14 1973-04-10 I Jackson Nasal cannulae
US3881480A (en) * 1972-03-10 1975-05-06 Lafourcade Jean Michel Breathing aid apparatus
US3794072A (en) * 1972-06-26 1974-02-26 Hudson Oxygen Therapy Sales Co Oxygen diluter device
US3961627A (en) * 1973-09-07 1976-06-08 Hoffmann-La Roche Inc. Automatic regulation of respirators
US3949749A (en) * 1974-02-24 1976-04-13 Bio-Med Devices Inc. Pediatric respirator
US3951143A (en) * 1974-11-20 1976-04-20 Searle Cardio-Pulmonary Systems Inc. Intermittent demand ventilator
US4067328A (en) * 1975-07-29 1978-01-10 The Medishield Corporation Limited Lung ventilator
US4003377A (en) * 1975-08-21 1977-01-18 Sandoz, Inc. Patient ventilator
US4206754A (en) * 1976-06-02 1980-06-10 Boc Limited Lung ventilators
US4323064A (en) * 1976-10-26 1982-04-06 Puritan-Bennett Corporation Volume ventilator
US4146885A (en) * 1977-10-13 1979-03-27 Lawson Jr William H Infant bed and apnea alarm
US4265237A (en) * 1978-07-17 1981-05-05 Dragerwerk Aktiengesellschaft Apparatus for enhancing a person's breathing and/or artificial respiration
US4261355A (en) * 1978-09-25 1981-04-14 Glazener Edwin L Constant positive pressure breathing apparatus
US4266540A (en) * 1978-10-13 1981-05-12 Donald Panzik Nasal oxygen therapy mask
US4256101A (en) * 1979-03-05 1981-03-17 Bourns Medical Systems, Inc. Thermistor assist sensing
US4263908A (en) * 1979-07-25 1981-04-28 Mizerak Vladimir S Nasal cannula mask
US5000175A (en) * 1979-08-08 1991-03-19 Pue Alexander F Meconium aspiration device
US4367735A (en) * 1979-12-31 1983-01-11 Novametrix Medical Systems, Inc. Nasal cannula
US4377162A (en) * 1980-11-26 1983-03-22 Staver Peter J Facial protective device, and methods of constructing and utilizing same
US4495946A (en) * 1981-03-17 1985-01-29 Joseph Lemer Artificial breathing device
US4803981A (en) * 1981-09-22 1989-02-14 Vickery Ian M Anaesthesia mask
US4644947A (en) * 1982-04-15 1987-02-24 Whitwam James G Respirator
US4648395A (en) * 1982-07-07 1987-03-10 Sanyo Densihkogyo Co. Ltd. Synchronized feed type oxygen concentrator for use in an open breathing system
US4449523A (en) * 1982-09-13 1984-05-22 Implant Technologies, Inc. Talking tracheostomy tube
US4570631A (en) * 1982-12-03 1986-02-18 Kircaldie, Randall And Mcnab (As Trustee) Respirating gas supply method and apparatus therefor
US4519387A (en) * 1982-12-03 1985-05-28 Kircaldie, Randall And Mcnab, Trustee Respirating gas supply method and apparatus therefor
US4506666A (en) * 1982-12-03 1985-03-26 Kircaldie, Randall And Mcnab Method and apparatus for rectifying obstructive apnea
US4506667A (en) * 1983-04-06 1985-03-26 Figgie Int Inc Self-contained ventilator/resuscitator
US4590951A (en) * 1983-06-07 1986-05-27 Racal Safety Limited Breathing apparatus
US4571741A (en) * 1983-12-27 1986-02-25 Commissariat A L'energie Atomique Ergonomic helmet means
US4584996A (en) * 1984-03-12 1986-04-29 Blum Alvin S Apparatus for conservative supplemental oxygen therapy
US4818320A (en) * 1984-04-04 1989-04-04 Sherwood Medical Company Nasal cannula harness and method of making the same
US4660555A (en) * 1984-09-21 1987-04-28 Payton Hugh W Oxygen delivery and administration system
US4648398A (en) * 1984-10-31 1987-03-10 Sherwood Medical Company Nasal cannula
US5181509A (en) * 1984-11-21 1993-01-26 Spofford Bryan T Transtracheal catheter system
US4658832A (en) * 1985-04-01 1987-04-21 Cosmed S.R.L. Portable device for the survey of the breathing ventilation and of the oxygen consumption, connected by means of radio signals to a fixed reception and elaboration station
US4986269A (en) * 1985-05-23 1991-01-22 Etela-Hameen Keuhkovammayhdistys R.Y. Respiration therapy apparatus
US5005570A (en) * 1985-10-02 1991-04-09 Perkins Warren E Method and means for dispensing respirating gases by effecting a known displacement
US4832014A (en) * 1985-10-02 1989-05-23 Perkins Warren E Method and means for dispensing two respirating gases by effecting a known displacement
US4747403A (en) * 1986-01-27 1988-05-31 Advanced Pulmonary Technologies, Inc. Multi-frequency jet ventilation technique and apparatus
US4817897A (en) * 1986-02-12 1989-04-04 Ulrich Kreusel Cross-connector to two crossing tubular elements
US4744356A (en) * 1986-03-03 1988-05-17 Greenwood Eugene C Demand oxygen supply device
US4808160A (en) * 1986-04-14 1989-02-28 Timmons John W Nasal cannula apparatus
US5002050A (en) * 1986-09-17 1991-03-26 Mcginnis Gerald E Medical gas flow control valve, system and method
US5107830A (en) * 1987-02-21 1992-04-28 University Of Manitoba Lung ventilator device
US4827922A (en) * 1987-03-05 1989-05-09 L'air Liquide Process and device for supplying respiratory oxygen
US4825859A (en) * 1987-03-11 1989-05-02 Ballard Medical Products Neonatal closed system for involuntary aspiration and ventilation and method
US5199424A (en) * 1987-06-26 1993-04-06 Sullivan Colin E Device for monitoring breathing during sleep and control of CPAP treatment that is patient controlled
US4807616A (en) * 1987-07-09 1989-02-28 Carmeli Adahan Portable ventilator apparatus
US4813431A (en) * 1987-07-22 1989-03-21 David Brown Intrapulmonary pressure monitoring system
US4919132A (en) * 1987-08-21 1990-04-24 Miser Martin G Apparatus for supplying gas to a patient
US5099836A (en) * 1987-10-05 1992-03-31 Hudson Respiratory Care Inc. Intermittent oxygen delivery system and cannula
US4915103A (en) * 1987-12-23 1990-04-10 N. Visveshwara, M.D., Inc. Ventilation synchronizer
US4807617A (en) * 1988-02-01 1989-02-28 Massachusetts Eye And Ear Infirmary Scavenging mask
US4982735A (en) * 1988-03-01 1991-01-08 Sumitomo Bakelite Company Limited Artificial ventilator
US4823788A (en) * 1988-04-18 1989-04-25 Smith Richard F M Demand oxygen controller and respiratory monitor
US5103815A (en) * 1988-05-13 1992-04-14 Chrislyn Enterprises, Inc. Personal airflow gage for a personal breathing supply of respirable quality air, and related accessories, including a two way communication system, used while working in contaminated air spaces
US4919128A (en) * 1988-08-26 1990-04-24 University Technologies International Inc. Nasal adaptor device and seal
US4915105A (en) * 1988-10-28 1990-04-10 Lee Tien Chu Miniature respiratory apparatus
US5193532A (en) * 1988-12-06 1993-03-16 Moa Conny P G Device for generating by means of ejector action a continuous positive airway pressure (cpap) during spontaneous breathing
US4899740A (en) * 1989-01-17 1990-02-13 E. D. Bullard Company Respirator system for use with a hood or face mask
US4989599A (en) * 1989-01-26 1991-02-05 Puritan-Bennett Corporation Dual lumen cannula
US4905688A (en) * 1989-02-16 1990-03-06 Figgie International Inc. Portable light weight completely self-contained emergency single patient ventilator/resuscitator
US5184610A (en) * 1989-03-06 1993-02-09 Hood Laboratories Tracheal cannulas and stents
US5107831A (en) * 1989-06-19 1992-04-28 Bear Medical Systems, Inc. Ventilator control system using sensed inspiratory flow rate
US5101820A (en) * 1989-11-02 1992-04-07 Christopher Kent L Apparatus for high continuous flow augmentation of ventilation and method therefor
US4990157A (en) * 1989-11-13 1991-02-05 Robhill Industries Inc. Soother retainer
US5193533A (en) * 1990-07-09 1993-03-16 Brigham And Women's Hospital High-pressure jet ventilation catheter
US5018519A (en) * 1990-08-03 1991-05-28 Brown Glenn E Mask for adminstering an anesthetic gas to a patient
US5018519B1 (en) * 1990-08-03 2000-11-28 Porter Instr Company Inc Mask for administering an anesthetic gas to a patient
US5113857A (en) * 1990-08-27 1992-05-19 Stair Dickerman Breathing gas delivery system and holding clip member therefor
US5099837A (en) * 1990-09-28 1992-03-31 Russel Sr Larry L Inhalation-based control of medical gas
US5186167A (en) * 1990-10-31 1993-02-16 The United States Of America As Represented By The Department Of Health And Human Services Catheter tip for intratracheal ventilation and intratracheal pulmonary ventilation
US5105807A (en) * 1991-02-26 1992-04-21 Alternative Medical Products, Inc. Device and methods for securing nasal tubing
US5097827A (en) * 1991-03-22 1992-03-24 Ddi Industries, Inc. Holder for medical tubing

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8955518B2 (en) 2003-06-18 2015-02-17 Breathe Technologies, Inc. Methods, systems and devices for improving ventilation in a lung area
US8381729B2 (en) 2003-06-18 2013-02-26 Breathe Technologies, Inc. Methods and devices for minimally invasive respiratory support
US8418694B2 (en) 2003-08-11 2013-04-16 Breathe Technologies, Inc. Systems, methods and apparatus for respiratory support of a patient
US8573219B2 (en) 2003-08-18 2013-11-05 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US8136527B2 (en) 2003-08-18 2012-03-20 Breathe Technologies, Inc. Method and device for non-invasive ventilation with nasal interface
US8925545B2 (en) 2004-02-04 2015-01-06 Breathe Technologies, Inc. Methods and devices for treating sleep apnea
US8985099B2 (en) 2006-05-18 2015-03-24 Breathe Technologies, Inc. Tracheostoma spacer, tracheotomy method, and device for inserting a tracheostoma spacer
US10058668B2 (en) 2007-05-18 2018-08-28 Breathe Technologies, Inc. Methods and devices for sensing respiration and providing ventilation therapy
US8567399B2 (en) 2007-09-26 2013-10-29 Breathe Technologies, Inc. Methods and devices for providing inspiratory and expiratory flow relief during ventilation therapy
US8770193B2 (en) 2008-04-18 2014-07-08 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8776793B2 (en) 2008-04-18 2014-07-15 Breathe Technologies, Inc. Methods and devices for sensing respiration and controlling ventilator functions
US8677999B2 (en) 2008-08-22 2014-03-25 Breathe Technologies, Inc. Methods and devices for providing mechanical ventilation with an open airway interface
US10252020B2 (en) 2008-10-01 2019-04-09 Breathe Technologies, Inc. Ventilator with biofeedback monitoring and control for improving patient activity and health
US10046133B2 (en) 2009-04-02 2018-08-14 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for providing ventilation support
US9227034B2 (en) 2009-04-02 2016-01-05 Beathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for treating airway obstructions
US11707591B2 (en) 2009-04-02 2023-07-25 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube
US9675774B2 (en) 2009-04-02 2017-06-13 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles in free space
US9962512B2 (en) 2009-04-02 2018-05-08 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with a free space nozzle feature
US9180270B2 (en) 2009-04-02 2015-11-10 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within an outer tube
US10709864B2 (en) 2009-04-02 2020-07-14 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles with an outer tube
US10695519B2 (en) 2009-04-02 2020-06-30 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation with gas delivery nozzles within nasal pillows
US10232136B2 (en) 2009-04-02 2019-03-19 Breathe Technologies, Inc. Methods, systems and devices for non-invasive open ventilation for treating airway obstructions
US10265486B2 (en) 2009-09-03 2019-04-23 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US9132250B2 (en) 2009-09-03 2015-09-15 Breathe Technologies, Inc. Methods, systems and devices for non-invasive ventilation including a non-sealing ventilation interface with an entrainment port and/or pressure feature
US10099028B2 (en) 2010-08-16 2018-10-16 Breathe Technologies, Inc. Methods, systems and devices using LOX to provide ventilatory support
US8939152B2 (en) 2010-09-30 2015-01-27 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract
US9358358B2 (en) 2010-09-30 2016-06-07 Breathe Technologies, Inc. Methods, systems and devices for humidifying a respiratory tract

Also Published As

Publication number Publication date
WO2005014091A2 (en) 2005-02-17
WO2005014091A3 (en) 2005-03-17
JP4931586B2 (en) 2012-05-16
CN102416213B (en) 2016-08-31
CN102416213A (en) 2012-04-18
EP1654023B1 (en) 2014-07-16
CN1867371A (en) 2006-11-22
US20100252043A1 (en) 2010-10-07
JP2007501666A (en) 2007-02-01
US7487778B2 (en) 2009-02-10
CN1867371B (en) 2011-09-07
US20090151726A1 (en) 2009-06-18
US20050034721A1 (en) 2005-02-17
DE10337138A1 (en) 2005-03-17
CA2535450A1 (en) 2005-02-17
EP1654023A2 (en) 2006-05-10
US20080041371A1 (en) 2008-02-21
CA2535450C (en) 2015-11-24

Similar Documents

Publication Publication Date Title
US7487778B2 (en) Tracheal catheter and prosthesis and method of respiratory support of a patient
US8418694B2 (en) Systems, methods and apparatus for respiratory support of a patient
US9295795B2 (en) System for providing flow-targeted ventilation synchronized to a patients breathing cycle
US10946159B2 (en) System for providing flow-targeted ventilation synchronized to a patient's breathing cycle
Hess Facilitating speech in the patient with a tracheostomy
US8677999B2 (en) Methods and devices for providing mechanical ventilation with an open airway interface
US11285287B2 (en) Tracheostomy or endotracheal tube adapter for speech
US10532171B2 (en) Tracheostomy or endotracheal tube adapter for speech
CN215741174U (en) Noninvasive PEEP buffering positive pressure ventilation mask
JP4625640B2 (en) Cuffed tube

Legal Events

Date Code Title Description
AS Assignment

Owner name: TRIPLEPOINT CAPITAL LLC, CALIFORNIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:BREATHE TECHNOLOGIES, INC.;REEL/FRAME:028729/0374

Effective date: 20120727

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: BREATHE TECHNOLOGIES, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:TRIPLEPOINT CAPITAL LLC;REEL/FRAME:037070/0776

Effective date: 20151105

AS Assignment

Owner name: SOLAR CAPITAL LTD., NEW YORK

Free format text: SHORT-FORM PATENT SECURITY AGREEMENT;ASSIGNOR:BREATHE TECHNOLOGIES, INC.;REEL/FRAME:041222/0174

Effective date: 20161229

AS Assignment

Owner name: BREATHE TECHNOLOGIES, INC., CALIFORNIA

Free format text: TERMINATION OF PATENT SECURITY AGREEMENT;ASSIGNOR:SOLAR CAPITAL LTD.;REEL/FRAME:045484/0302

Effective date: 20180105