US20110214364A1 - Building with integrated natural systems - Google Patents

Building with integrated natural systems Download PDF

Info

Publication number
US20110214364A1
US20110214364A1 US12/717,762 US71776210A US2011214364A1 US 20110214364 A1 US20110214364 A1 US 20110214364A1 US 71776210 A US71776210 A US 71776210A US 2011214364 A1 US2011214364 A1 US 2011214364A1
Authority
US
United States
Prior art keywords
building
water
louvers
covering
rainwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US12/717,762
Other versions
US8371073B2 (en
Inventor
Michael B. Fuller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MICHAEL FULLER ARCHITECTS PC
Original Assignee
MICHAEL FULLER ARCHITECTS PC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MICHAEL FULLER ARCHITECTS PC filed Critical MICHAEL FULLER ARCHITECTS PC
Priority to US12/717,762 priority Critical patent/US8371073B2/en
Assigned to MICHAEL FULLER ARCHITECTS, PC reassignment MICHAEL FULLER ARCHITECTS, PC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FULLER, MICHAEL B.
Publication of US20110214364A1 publication Critical patent/US20110214364A1/en
Application granted granted Critical
Publication of US8371073B2 publication Critical patent/US8371073B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H14/00Buildings for combinations of different purposes not covered by any single one of main groups E04H1/00-E04H13/00 of this subclass, e.g. for double purpose; Buildings of the drive-in type
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F17/00Vertical ducts; Channels, e.g. for drainage
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H1/00Buildings or groups of buildings for dwelling or office purposes; General layout, e.g. modular co-ordination or staggered storeys
    • E04H1/02Dwelling houses; Buildings for temporary habitation, e.g. summer houses
    • E04H1/04Apartment houses arranged in two or more levels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B2001/0053Buildings characterised by their shape or layout grid

Definitions

  • the present invention relates to buildings that incorporate natural systems to cool, heat, ventilate, collect and purify water, and generate power for operation of the building. More particularly the invention relates to a building that integrates these natural systems in a sustainable, functional and economical manner.
  • Solar panel arrays are often installed on existing buildings. In most cases, the solar panels are mounted on the roof of the building, and therefore are limited in terms of the amount of solar panels that can be used to produce power. When land is available, an increased number of solar panel arrays can be situated at a location adjacent the building(s) to be powered, however increasing solar panels in this manner is not a viable solution for powering buildings within most cities.
  • solar power can be a useful means of power generation for a building; however, other traditional power sources typically have to be included to supplement shortcomings with the solar power supply. For example, it is rare that a solar panel array in a larger building located in a desert climate will be capable of powering high energy consumption cooling systems, such as the building's HVAC systems. Similarly, in colder climates, while solar panels may provide enough power for electrical lighting, it is uncommon for solar panels to be able to produce enough energy to effectively heat the building.
  • a building there is also a need for a building to have the capability to react to changing weather conditions to include sun angles and daily temperature shifts.
  • passive cooling and heating to regulate the temperature of the building, and this passive system being independently controlled as compared to the power generation system of the building.
  • a building in which a significant greenhouse space or area is available for growing vegetation that not only enhances the interior décor of the building, but also can be a space large enough to accommodate other plant uses such as fruits and vegetables that can be consumed by the inhabitants of the building.
  • the present invention provides a building with integrated natural systems to perform a number of sustainable functions for the building to include cooling, heating, ventilating, and the production of electricity to power the building. Additional sustainable functions include the collection of rainwater for various uses and treatment of waste water for re-use in the building. The collected water is used for many building functions including potable drinking water, and non-potable grey water applications such as bathroom water and irrigation. The collected water can be purified to desired levels for both non-potable and potable water uses.
  • One general functional aspect of the present invention is to provide a building that is designed to respond to changing sun and weather conditions in order to provide the most efficient heating and cooling for the building. It is yet another aspect of the present invention to provide a building that takes advantage of natural systems to produce functional requirements of the building and therefore the building's functions can be characterized as taking advantage of bio-mimicry to solve functional requirements.
  • a dual exterior cover construction is provided, along with a plurality of louvers that are mounted on the most exterior cover/covering.
  • the outer covering is preferably in the form of a transparent or translucent membrane that allows sunlight to pass through, thus creating an interior greenhouse space within the membrane.
  • the louvers provide a number of functions to include shade and power generation by the incorporation of photovoltaic cells on all or selected louvers.
  • the louvers are adjustable to track the path of the sun, or may otherwise be controlled to selectively capture sunlight and/or to shade the underlying interior structure.
  • the dual exterior cover construction with the mounted louvers and the interior building components work together as an integrated natural system to provide power generation, passive cooling and heating, natural and supplemented lighting conditions, and an interior greenhouse space for growing plants.
  • the inner wall of the dual exterior cover construction comprises the structural exterior of the living space of the building.
  • the gap between the inner walls and the exterior cover is available as a greenhouse space to cultivate plants.
  • This greenhouse space also serves as an insulating barrier for more efficient regulation of the temperature within the living space.
  • the components of the interior building system include an interior habitable space with one or more floors.
  • the room spaces on each floor may include movable interior walls that can be adjusted by the user.
  • a central open area provides a thermal mass of air for heating/cooling of the habitable space.
  • a well containing a supply of water is positioned centrally within the building, and the water is continually re-circulated.
  • a controlled temperature air supply is provided to ventilate the building and otherwise provide a fresh air supply.
  • the air supply passes through subterranean passages that communicate with water from the well, and the air supply then flows through the central mass to heat or cool the habitable space. Humidification of the air can be achieved by contact of the air supply with the water. Alternatively, the subterranean passages can be isolated from the well in order to de-humidify the air.
  • the louvers are positioned on the exterior cover which, in the preferred embodiment, has a compound curved-shape thereby affording an increased area for mounting of the louvers to produce power. Additionally, this curved-shaped exterior cover provides a natural gap or space between the interior structure that has vertical walls.
  • the louvers are selectively positioned to capture sunlight and/or provide shading. Additionally, it is contemplated that the louvers could also include material which reflects sunlight, in which the louvers could be positioned to thereby direct sunlight to the interior structure for lighting purposes.
  • the subterranean air supply flows through an underground system of passageways such as pipes that will pre-cool or preheat the outside air source, depending upon ambient temperature conditions.
  • the fresh air enters the building core through the foundation and is forced into the central open area within the interior building structure.
  • the air is then distributed through the interior building through floor plenums that communicate with the central thermal mass.
  • the air may communicate with the water in the well, which provides humidification for the incoming air.
  • Air is allowed to circulate through the interior habitable space, and may be vented into the greenhouse space. Air within the green house space may be circulated by one or more mechanical fans. Air is evacuated from the building through vents located near the apexes of the exterior cover. A natural circulation pattern develops as air is warmed in the greenhouse space such that an upward circulation or flow is created. Accordingly, forced air requirements are reduced as compared to most traditional building spaces.
  • the exterior cover construction includes a relatively thin film of transparent or translucent material, such as a polymer which can be molded into a desired shape.
  • a polymer that can be used includes ethylenetetraflowro-ethylene (ETFE).
  • ETFE ethylenetetraflowro-ethylene
  • the exterior cover or skin is supported by an underlying aluminum frame which generally conforms to the shape of the exterior cover/skin.
  • the aluminum frame provides adequate support against loading conditions such as wind/snow.
  • the skin provides protection for the interior structure. Vents are located in the apex of the exterior cover/skin as mentioned in order to allow a continual circulation of air through the greenhouse space.
  • the louvers are mounted to the exterior cover so that the louvers can be rotated along at least one axis in order to track the path of the sun, or otherwise provide the ability to adjustably place the louvers for optimal sunlight capture, shading, or reflection of light into the interior structure.
  • the central thermal mass is defined as an internal central tower made of thickened masonry walls, and further including a subterranean extension that incorporates the well.
  • the interior building structure may include a single floor or multiple floors.
  • the support superstructure of the building may comprise steel and/or concrete constructions.
  • An interior building floor system that may be adopted includes a steel superstructure with concrete floor slabs supported by steel posts and beams.
  • the enclosing walls at the perimeter of the floor system may be frame construction supported by the floor system, or curtain wall construction attached to the exterior of the floor system and supported by the steel superstructure.
  • the enclosing walls of the interior structure may have operable glass panels, doors and windows that open to the greenhouse space.
  • the central tower includes a plurality of openings creating walkways between opposite sides of the superstructure. Windows may also be formed in the central tower enabling air and light to readily pass between opposite sides of the structures.
  • the living space of the building is preferably arranged in two sections located on opposite sides of the central tower. The living space may include one or more floors.
  • the well located on the ground floor receives collected rainwater for storage, and the water is continuously circulated by pumps in the well to humidify the air.
  • Planter boxes and planting platforms may be attached at each floor level as by steel beams that extend beyond the concrete floor slabs.
  • a drip irrigation system can also be provided to water the planted areas, and this drip irrigation system uses collected rainwater stored in the well.
  • a relatively large garden area may be provided on the roof of the interior structure, and may be referred to as an arboretum.
  • the arboretum is also structurally supported by reinforced steel beams located on the roof and capable of carrying the additional weight of the soil that is used for planting.
  • a waterproof liner is used to keep the lower levels dry in the event the structure is built with multiple floors.
  • external water collection can be achieved by a system of rain collecting troughs or/channels to catch rainfall that strikes the louvers.
  • the louvers guide and direct the rainwater to collection points where the water is transferred to a filtration system.
  • the filtered water may then be stored for subsequent use within the building.
  • the collected water may be used multiple times within the building by incorporation of an interior water treatment system.
  • the treatment system may treat the water to desired levels for subsequent potable and non-potable uses.
  • FIG. 1 is a perspective view of the building with integrated natural systems of the present invention
  • FIG. 2 is a plan view of the building
  • FIG. 3 is another perspective view of the building
  • FIG. 4 is a cross-sectional elevation view of the building
  • FIG. 5 is an enlarged fragmentary cross-sectional view of the building showing details of the exterior cover and solar panels;
  • FIG. 6 is another enlarged fragmentary cross sectional view showing the solar panels in a different position
  • FIG. 7 is a schematic diagram of a water treatment system for treating water for re-use with the building
  • FIG. 8 is a schematic diagram of an interior water collection and humidity control system.
  • FIG. 9 is a schematic diagram of an exterior rainwater collection system.
  • FIGS. 1-3 illustrate the building with the integrated natural systems in accordance with a preferred embodiment of the present invention.
  • the building 10 is characterized as a complex-shaped structure having a plurality of curved exterior sections 12 .
  • Each of the curved exterior sections 12 include a pair of symmetrical extensions 32 that are joined along a crest or ridge line 34 .
  • the building is further characterized as having two groups of the curved exterior sections 12 interconnected by a pair of central facing curved exterior sections 40 , as best seen in FIG. 2 .
  • the curved exterior sections 12 are connected to one another in a circumferential fashion and are joined along receding areas or troughs. Rain collection gutters 36 are located in these receding areas. When viewed as from the plan view of FIG.
  • the two groups of exterior sections 12 each form shapes that have a center or apex 38 .
  • the rain collection gutters 36 each extend radially outward from the apexes 38 .
  • the rain collection gutters 36 form part of the rain water collection system as described further below with respect to FIG. 9 .
  • Two habitable spaces of an interior structure or core 14 are oriented under the groups of exterior sections 12 , while a central tower 60 is located between the habitable spaces and under the central facing exterior sections 40 , as discussed in more detail below in reference to FIG. 4 .
  • the central tower may be constructed of thickened masonry walls, stone, or adobe materials.
  • each of the crests 34 have one end that intersects with the corresponding apex 38 , and the crests 34 each extend downwardly and outwardly forming a generally convex curved shape.
  • the lower ends of the crests 34 terminate at a foundation 20 of the building (see FIG. 4 ).
  • a plurality of louvers 18 are mounted to the exterior cover of the building as shown.
  • the louvers are arranged in a plurality of horizontally extending rows, and each of the rows between each of the curved exterior sections 12 are aligned at the same elevation therefore providing a generally uniform series of horizontally extending rows that are spaced vertically along substantially the entire height of the building.
  • the louvers substantially cover the entire exterior cover of the building.
  • the curved shape of the exterior cover enhances the number of rows of louvers that can be attached directly to the building thereby also enhancing the power generation capability of the building.
  • the exterior cover is defined by a curved-shaped shell or layer 16 .
  • the interior structure or core 14 that forms the habitable space for users. More specifically, the interior structure or building core 14 includes a central tower 60 disposed between two lateral wings of habitable living spaces. The living spaces each include a plurality of floors 68 and enclosing walls 70 . As shown in FIGS. 1 and 3 , a portion of the core 14 is exposed, while the lateral wings of the core 14 are housed within the exterior cover or shell 16 .
  • the core 14 may include a plurality of core windows 22 , an entrance 24 , stairs 26 and a walkway 28 .
  • the central tower 60 is defined by walls 62 forming a cylindrical-shaped edifice.
  • a plurality of ports or openings 64 in the walls 62 enable users to travel between the floors 68 of the living spaces located on opposites sides of the core.
  • the enclosing walls 70 of the interior structure may also include a plurality of windows/window panels in order to selectively distribute light into the habitable spaces within the interior structure.
  • One or more staircases 78 may be located between the floors enabling access between the floors. In the preferred embodiment of FIG. 4 , a pair of stairwells 78 is located at opposite sides of the interior structure.
  • a plurality of planters 72 may be formed as extensions of the various floors 68 for planting and cultivating vegetation.
  • the roof or upper floor of the interior structure may include an arboretum 74 that has larger vegetation grown thereon to include trees and shrubbery.
  • the most upper floor 68 and arboretum sidewalls 76 form containment areas for the arboretum.
  • a foundation 20 may extend below the surface of the ground G, and can also provide additional habitable space in the form of a basement.
  • a plurality of subsurface supports 80 such as pilings may be used to support the exterior cover layer.
  • the pilings 80 may be used in conjunction with footers 82 to provide adequate stabilization for the overhead superstructure.
  • the lower portion of the core 14 within the tower 60 may incorporate an integral subsurface water storage facility 66 .
  • the water storage facility 66 can be formed in a cylindrical shape, thus resembling a well. Ornamental aspects may be added to the well to include a fountain if desired.
  • the water storage facility 66 receives its water from either an external water supply and/or water that is collected by a rainwater collection system incorporated on the exterior structural layer of the building, as discussed in more detail in reference to FIG. 9 .
  • FIG. 4 more specifically illustrates the water storage facility 66 receiving water from an external water source W which may or may not be a potable water source.
  • a water treatment element (not shown) may be used to treat the incoming flow of water from the water source W.
  • the water then travels through one or more subsurface channels or pipes 86 and carries the water to the water storage 66 .
  • one or more fluidic pumps 88 may provide adequate force for transfer of the water to the water storage facility 66 .
  • One or more check valves 90 may be provided to prevent backflow of water once it has been transported into the water storage 66 .
  • additional air pipes or conduits 92 may be incorporated for transporting a flow of air from the environment through the subsurface air pipes 92 into the building.
  • the air pipes 92 as shown in FIG. 4 communicate with an air handling device, such as air filtration devices 94 .
  • the air pipes 92 may communicate directly with the water pipes 86 , or the air pipes 92 may be separate and independently traverse through the ground and into the building core 14 adjacent the water storage 66 .
  • the air lines 92 connect to the respective water pipes 86 .
  • Check valves 96 may also be used to prevent a backflow of water in the event of an excess amount of water contained within the water storage 66 backs up through pipes 86 .
  • FIG. 4 illustrates the flow path of air through the building in which the air enters the building through the building core 14 adjacent the water storage 66 .
  • the air is then transferred radially outward from the building core into the habitable spaces between floors 68 .
  • Vents or windows 71 provided on the enclosing walls 70 allow the air to flow upwards in the greenhouse space between the interior structure and the exterior cover, and ultimately the air may exit the exterior cover through vents (not shown) formed at the apexes 38 .
  • the building is symmetrical about two axes, namely the axis Y-Y and the axis X-X.
  • the symmetry along the X-X axis enables the building have two functional halves. Each half may serve a different purpose for the inhabitants, or be used to segregate inhabitants/users. For example, if the building was to be used as a spa, one half of the interior building could be used for men, the other half for women, and the central tower 60 could be used as a central gathering place.
  • the central tower 60 could be used as a central gathering or interaction area.
  • louvers 18 are shown in their mounted position along the curvature of the exterior cover 16 .
  • the louvers can also provide a significant degree of shade for the underlying interior structure.
  • the louvers each include a main panel 100 , a telescopic actuator 102 and a base support or base mount 104 .
  • the main panel 100 is rotatable about a hinge/pin 106 and the telescoping actuator 102 has a telescoping element 103 that may be retracted or extended to angularly position the panel 100 .
  • FIG. 5 illustrates the louvers 18 in a position to capture sunlight, the sunlight shown as the directional arrows S.
  • FIG. 5 also illustrates a truss support for supporting the exteriorly mounted louvers 18 .
  • This truss support includes a main abutting support member 110 that substantially parallels the exterior cover 16 .
  • the support member 110 may comprise a plurality of a structural steel or aluminum beams that are curved to match the shape of the exterior cover 16 .
  • a plurality of interconnecting rods 112 are used to mount the louvers 18 to the exterior cover 16 as shown. The rods 112 pass through openings in the exterior cover 16 and are secured to the support member 110 as shown.
  • the truss support further includes an interior truss member 114 that extends into the greenhouse space. Orthogonal truss extensions 116 interconnect the main support member 110 and the interior truss member 114 .
  • the truss support may include a plurality of interconnecting cables or rods 118 that provide the necessary support between the main support member 110 and the interior truss member 114 .
  • the lower ends of the truss support and the exterior cover 16 may be supported by the piles 80 , as shown in FIG. 4 .
  • a plurality of spaced truss supports can be mounted to locations along the interior surface of the cover 16 , and the number of supports and their spacing to one another can be altered to provide the necessary support for the particular arrangement of louvers 18 incorporated on the exterior cover 16 .
  • the telescoping elements 102 have been extended such that the lower surfaces of the main panels 100 are exposed. These lower surfaces may be coated with a reflective surface.
  • the louvers are capable of directing sunlight within the interior of the structure.
  • the louver assembly may have a rotatable connection for the telescoping element 102 shown as rotatable connection 107 .
  • the telescoping element 102 could be placed in two distinct positions functional, one position being that shown in FIG. 5 for capturing sunlight on the upper surfaces of the louvers, and second being shown in FIG. 6 for capturing sunlight on the lower surfaces of the louvers.
  • the louvers may be incrementally positioned at any angle to best capture sunlight on either the upper or lower surfaces of the louvers to best accommodate power generation, interior lighting, or combinations of the two.
  • FIGS. 5 and 6 additional detail is shown for the planters 72 that may be incorporated adjacent the enclosing walls 70 of the interior structure.
  • the planters 72 may be suitable for growing vine-like plants, smaller bushes or other vegetation.
  • the enclosing walls 70 may include the vents 71 that enable the flow of air into the greenhouse space.
  • FIGS. 5 and 6 also show floor mounted plenums 69 that communicate with the building core 14 providing air into the habitable spaces between the floors 68 .
  • the truss structure may be constructed of a rigid aluminum tubular frame system configured as a grid/matrix as shown.
  • the exterior cover may be a transparent polymer, such as ethylenetetraflowro-ethylene (ETFE). This thin film makes the interior airspace relatively air tight.
  • the louvers may be constructed of tempered glass that may be opaque, translucent, fritted or clear depending upon the desired light transmission. If the louvers are to support PV panels, then the louvers may include an underlying frame which supports the PV panel portions. It is also contemplated that the louvers can be a combined construction in which one portion thereof is made of a tempered glass and the other portion includes a PV panel.
  • louvers could be constructed of sheet metal, either solid or perforated, which would therefore reflect or allow at least some light transmission therethrough. It is also contemplated that in some orientations of the building, the upper and/or lower surfaces of the louvers can act as a light shelf and, therefore, may have white/reflective coatings to direct light into the building interior.
  • FIG. 6 is an example of in which a reflective coating could be applied to the lower surfaces of the louvers in order to enhance sunlight transmission into the building.
  • a treatment system 120 is provided to treat water for non-potable uses.
  • a multi-stage process is used to generate water that can be re-used, for example, in a bathroom in which a shower 122 , a sink 124 and a toilet 126 are found.
  • a first step in the process is to direct the waste water through waste line 128 to a solids settling tank 130 where solids can be captured. As shown, solids 132 settle to the bottom of the tank, and can be removed by solids line 134 .
  • the water from the settling tank 130 is released into a dosing tank 136 of a desired volume.
  • the water from the dosing tank 136 is then metered into a treatment station 140 as by pump 138 .
  • the treatment station 140 operates to clean the water to a degree so that it can be returned to the bathroom for re-use as non-potable water.
  • the treatment station 140 preferably takes advantage of various biological processes to treat the water.
  • the station 140 may contain microbes to treat the water both aerobically and anaerobically.
  • the station may include a biofilter material 146 that filters the water and may also function as a medium to grow plants 144 that also assist in bio-remediation of the water.
  • the station 140 may simulate, for example, a wetlands area in which the combination of plants, microbes, and filter material (soil/sand) act together to treat the water.
  • the station 140 may be located within the greenhouse space between the building core 14 and the exterior cover 16 .
  • the station 140 has a transparent cover 142 that prevents escape of odors and also enhances plant and microbial growth in a greenhouse environment. Depending upon space available and the size of the station 140 , it is also contemplated that the station 140 could be placed outside of the building.
  • the treated water is then conveyed to storage, shown as a gray water storage tank 150 .
  • the treated water may then be returned to the bathroom via pump 152 and return line 154 .
  • the system 120 is shown as a closed loop, it shall be understood that some amount of water will be lost in solids removal and therefore, some amount of water is necessary to replace the lost water.
  • the system 160 includes an exposed condensing line 162 that is maintained at a temperature to condense water vapor in the air.
  • the collected liquid water may then be used to water vegetation V, or may otherwise be collected for re-use within the building.
  • the system 160 comprises a chiller 164 that functions to chill a cooling medium, such as glycol, that is circulated through an insulated delivery line 166 .
  • a cooling medium such as glycol
  • the cooling medium flows back into the core 14 by the insulated return line 166 .
  • a cooling fan 168 can be incorporated prior to the cooling medium returning to the chiller 164 .
  • the condensing line 162 is oriented to collect water so that the collected water flows into a receptacle 170 , and receptacle 170 connects to drip line 172 which is used to water the vegetation V.
  • Other drip/collection lines can be used to collect the liquid for transport to a desired use within the building. Under particularly humid conditions, the system 160 can be effective to de-humidify the air.
  • One or more condensing lines 162 may be positioned to water vegetation or otherwise collect water for transport to a desired use.
  • the collection system 178 includes a plurality of horizontally oriented rain collection flanges 180 (also shown in FIGS. 6 and 8 ), that are mounted to the free ends of the panels 100 .
  • the flanges preferably extend along the horizontal length of the free ends, and therefore provide the appearance of the panels 100 having upturned ends.
  • the flanges 180 are oriented in this upturned fashion to create a rain collection trough or channel on each of the panels 100 .
  • the flanges 180 intersect at each end with a corresponding vertically oriented rain collection gutter 36 . Water is collected on the panels 100 and is directed by the rainwater troughs to the rain collection gutters 36 .
  • the gutters 36 communicate with inlet transfer pipes 194 that convey the water to one or more rainwater collection receptacles 190 .
  • the receptacles 190 achieve two primary purposes: to collect the rain water in a central location and to provide initial filtration for the collected water.
  • the receptacles 190 each include one or more types of gravel and porous fabric layers placed between layers of gravel. The combination of gravel and fabric layers provides coarse filtration to remove larger particle contaminants.
  • the coarsely filtered water is then transported by conveying line 196 to a main filtration station 198 .
  • Within the filtration station 198 are a plurality of selected materials for filtration, shown as filter layers 199 .
  • a downstream pump 202 in line 200 draws the filtered water to a temporary storage location within tank 204 .
  • the water can then be transported for further filtration/treatment (e.g., for creating potable water), or the filtered water in tank 204 can be directly used for grey water applications within the structure, for example as a supply of water for plants and/or water for use in bathrooms.
  • the panels 100 are positioned so that excess water that overfills the troughs is received in the next lower level trough, and this repeated overflow pattern is achieved so that the overflow water reaches the most lower level panel 100 that is centered over the collection receptacle. It may be advantageous to encourage the flow of rainwater in this cascading fashion by minimizing the height of the flanges or the angle at which the flanges 180 extend from the free ends of the panels.
  • the cascading water in this manner becomes oxygenated that may assist in purification of the water.
  • the water can be directed in the cascading fashion and/or through the vertically oriented gutters 36 for collection into the receptacles 190 .
  • the receptacles 190 extend along selected lengths of the structure in order to receive cascading water from all or selected portions of the panels 100 .
  • the central tower 60 of the core forms an open vertical area for enabling air to circulate between the floors.
  • the size of the airspace within the central core acts as a thermal mass in which the large open airspace helps to further modulate or regulate the interior air temperature between the floors.
  • the central tower of the building is built around a central water storage facility in the form of a well which may incorporate a fountain. The water may be continuously circulated by pumps within the well casing to humidify the air traveling upward through the core.
  • the interior building construction may include floors constructed of concrete slabs over steel decking and supported by steel post and beam construction.
  • the enclosing walls 70 located at the perimeters of the floors may be frame construction resting on the floors or curtain wall constructions attached to the floors.
  • the enclosing walls may further include operable glass panels and doors as well as doors that open to the greenhouse space between the enclosing walls and exterior cover.
  • the greenhouse space provides an area for growing vegetation, and planters and an arboretum may be incorporated in this greenhouse space.
  • a drip irrigation system (not shown) can also provide water to the roots of the plants to minimize water use.
  • the arboretum may be structurally supported by a reinforced steel beam pattern located on the roof in order to better carry the load of the additional weight of the soil necessary for the arboretum to grow larger plants, such as trees.
  • a water proofing system (not shown) can be used to include waterproof liners and drainage systems in order to keep the lower levels dry and isolated as between the arboretum and planter boxes.
  • the water proofing system may include several layers of materials to enable irrigation of the vegetation and drainage of excess water.
  • a fabric layer can be used under the soil, and then one or more impermeable layers can be used to direct the excess water to a water storage tank.
  • the fabric layer allows passage of water but not soil.
  • the impermeable layers may include a drain mat that collects the water and directs it to a storage tank.
  • Another underlying impermeable protection layer can be placed under the drain mat to protect the above disposed layers.
  • the control system would include temperature and humidity monitoring devices provided as inputs to a central controller.
  • the user can program the central controller in order to establish desired temperature and humidity conditions within the habitable space within the interior structure, as well as temperature and humidity conditions for the greenhouse space. For example, assuming ambient temperature conditions are very high, the louvers 18 can be adjusted to provide maximum shade based upon the position of the sun, and an increased flow rate of air within the structure could be provided to provide better air exchange for cooling of the interior.
  • the louvers 18 could be positioned to allow maximum penetration of sunlight with minimal shading by the louvers 18 .
  • the water recovery/humidity control system 160 can be controlled with the central control system to set the air at a desired humidity.
  • the present invention may include an electrical storage capacity for storing electrical energy generated by the solar panels.
  • the natural systems incorporated in the present invention provide a number of functional and sustainable advantages.
  • One of the natural systems may be identified as use of solar energy to power the building, such as to produce heat, cooling or to power other electrical equipment such as lighting.
  • Selected ones or all of the louvers 18 may incorporate photo-voltaic (PV) panels which provide power to the building.
  • the louvers may incorporate reflective surfaces for purposes of transmitting sunlight into the interior of the building, and more specifically to act as a source of light in lieu of electrical lighting.
  • One unique combination may include the provision of PV panels on the upper surfaces of the panels, with reflective material on the lower surfaces of the louvers.
  • the louvers 18 may be selectively positioned such that the upper and lower surfaces of the louvers are capable of capturing sunlight and/or reflecting light into the interior of the building.
  • Another natural system of the present invention includes the ability to regulate air temperature within the building by provision of the subsurface air pipes that are used to regulate the temperature of air introduced into the building.
  • Using the ground as the primary heat exchanger eliminates significant capacity otherwise required for a traditional HVAC system.
  • the water which is regulated by contact with the subsurface ground also acts as a natural system to humidify the air passing through the piping system, as well as to provide an aesthetically pleasing central well is located within the building core.
  • Heating, cooling and power are provided to the building by complementing features which each reduce the dependency of the building on exterior resources.
  • the extensive array of louvers can provide an increased amount of power as opposed to traditional solar panels which are only roof mounted.
  • the louvers can also be used for purposes of shading as well as to act as a light shelf in order to direct light into the interior of the building.
  • both incoming air and water may be temperature regulated to maintain the desired temperature of the interior airspace within the structure.
  • a collection of rainwater can be used for many purposes to include not only the well which helps humidify the air, but also as a potable source by inclusion of a small water treatment facility within the building.
  • Air is evacuated from the building at the most upper portion, which facilitates a continual circulation of air upwards through the building structure.
  • Air can be most optimally circulated and evacuated through a series of blowers or fans which can be located within selected locations within the greenhouse space as well as within the interior building structure.
  • blowers or fans may be mounted to the truss structure at the openings located at the apexes 38 in order to provide an upward flow of air through the greenhouse space.
  • the blowers/fans can be sized and located at the appropriate conditions based upon where the building is installed to accommodate the necessary flow of air through the interior of the building structure into the greenhouse space to accommodate desired temperatures and humidity.

Abstract

A building is provided with integrated natural systems that reduce dependency on external resources to operate and maintain the building. A source of electricity is provided through an extensive set of solar panels that may be incorporated on louvers mounted to the exterior of the building. The building has a double insulative layer to include an outer airtight membrane or cover, and an internal building structure that defines habitable space within the structure. Rainwater may be collected and stored within a subsurface well. The space between the internal structure and outer membrane may support the growth of vegetation in a greenhouse environment. A flow of temperature regulated air is provided through the structure by a set of underground pipes in which the air is circulated through a central core of the building, into the habitable space, and then outward into the greenhouse space.

Description

    FIELD OF THE INVENTION
  • The present invention relates to buildings that incorporate natural systems to cool, heat, ventilate, collect and purify water, and generate power for operation of the building. More particularly the invention relates to a building that integrates these natural systems in a sustainable, functional and economical manner.
  • BACKGROUND OF THE INVENTION
  • The use of solar power has become quite common as a means to provide power for man-made structures to include both residential and commercial buildings. With the increased cost of energy from traditional sources such as fossil fuels, coupled with a transition in industry towards eco-friendly or “green” technologies, building architectures and designs continue to evolve to incorporate solar power systems.
  • Solar panel arrays are often installed on existing buildings. In most cases, the solar panels are mounted on the roof of the building, and therefore are limited in terms of the amount of solar panels that can be used to produce power. When land is available, an increased number of solar panel arrays can be situated at a location adjacent the building(s) to be powered, however increasing solar panels in this manner is not a viable solution for powering buildings within most cities.
  • In extreme climate conditions such as desert or arctic environments, solar power can be a useful means of power generation for a building; however, other traditional power sources typically have to be included to supplement shortcomings with the solar power supply. For example, it is rare that a solar panel array in a larger building located in a desert climate will be capable of powering high energy consumption cooling systems, such as the building's HVAC systems. Similarly, in colder climates, while solar panels may provide enough power for electrical lighting, it is uncommon for solar panels to be able to produce enough energy to effectively heat the building.
  • There are a great number of patents that disclose solar panel systems to include those that are incorporated on buildings. One example is found in the U.S. Pat. No. 5,524,381. This reference discloses a building including a high efficiency transparent insulation and optical shutter solar collector to effectively control heat loss and gain in a passive solar climate control system. This invention also includes a layer of protective glazing, a transparent insulation, an optical shutter, an optional solar radiation absorbing material, and an optional heat storage element. When the building and its heat storage are too warm, the optical shutter layer becomes opaque to prevent overheating. During cloudy and cold days, the system still has a solar transmission and insulation efficiency great enough to collect sufficient sunlight for heating.
  • Although there are a number of existing systems for providing power, cooling, heating and ventilating for a building structure, there is still a need to provide a building which can more efficiently incorporate these systems in a very functional, but yet aesthetically pleasing design. There is also a need to increase the surface area available for mounting of solar panels without requiring adjacent land for a separate solar power generation area.
  • There is also a need for a building to have the capability to react to changing weather conditions to include sun angles and daily temperature shifts. There is also a need to provide passive cooling and heating to regulate the temperature of the building, and this passive system being independently controlled as compared to the power generation system of the building. Further, there is a need to provide a building in which a significant greenhouse space or area is available for growing vegetation that not only enhances the interior décor of the building, but also can be a space large enough to accommodate other plant uses such as fruits and vegetables that can be consumed by the inhabitants of the building.
  • There is also a need to integrate natural systems in the design of a building that can create a more pleasant livable place. It has been shown that incorporating elements from nature has many benefits to include enhancing productivity, reducing the number of sick days in the workplace, promoting learning in schools, and shortening recovery times in hospitals.
  • Finally, there is a need to incorporate other natural systems in a building to create a building that is more sustainable in terms of not having to rely upon traditional utilities, these other natural systems including the collection of rainwater and recycling of the collected water for re-use within the building.
  • SUMMARY OF THE INVENTION
  • The present invention provides a building with integrated natural systems to perform a number of sustainable functions for the building to include cooling, heating, ventilating, and the production of electricity to power the building. Additional sustainable functions include the collection of rainwater for various uses and treatment of waste water for re-use in the building. The collected water is used for many building functions including potable drinking water, and non-potable grey water applications such as bathroom water and irrigation. The collected water can be purified to desired levels for both non-potable and potable water uses.
  • One general functional aspect of the present invention is to provide a building that is designed to respond to changing sun and weather conditions in order to provide the most efficient heating and cooling for the building. It is yet another aspect of the present invention to provide a building that takes advantage of natural systems to produce functional requirements of the building and therefore the building's functions can be characterized as taking advantage of bio-mimicry to solve functional requirements.
  • In a preferred embodiment of the present invention, a dual exterior cover construction is provided, along with a plurality of louvers that are mounted on the most exterior cover/covering. The outer covering is preferably in the form of a transparent or translucent membrane that allows sunlight to pass through, thus creating an interior greenhouse space within the membrane. The louvers provide a number of functions to include shade and power generation by the incorporation of photovoltaic cells on all or selected louvers. The louvers are adjustable to track the path of the sun, or may otherwise be controlled to selectively capture sunlight and/or to shade the underlying interior structure. In general, the dual exterior cover construction with the mounted louvers and the interior building components work together as an integrated natural system to provide power generation, passive cooling and heating, natural and supplemented lighting conditions, and an interior greenhouse space for growing plants.
  • The inner wall of the dual exterior cover construction comprises the structural exterior of the living space of the building. The gap between the inner walls and the exterior cover is available as a greenhouse space to cultivate plants. This greenhouse space also serves as an insulating barrier for more efficient regulation of the temperature within the living space.
  • The components of the interior building system include an interior habitable space with one or more floors. The room spaces on each floor may include movable interior walls that can be adjusted by the user. A central open area provides a thermal mass of air for heating/cooling of the habitable space. A well containing a supply of water is positioned centrally within the building, and the water is continually re-circulated. A controlled temperature air supply is provided to ventilate the building and otherwise provide a fresh air supply. The air supply passes through subterranean passages that communicate with water from the well, and the air supply then flows through the central mass to heat or cool the habitable space. Humidification of the air can be achieved by contact of the air supply with the water. Alternatively, the subterranean passages can be isolated from the well in order to de-humidify the air.
  • The louvers are positioned on the exterior cover which, in the preferred embodiment, has a compound curved-shape thereby affording an increased area for mounting of the louvers to produce power. Additionally, this curved-shaped exterior cover provides a natural gap or space between the interior structure that has vertical walls. The louvers are selectively positioned to capture sunlight and/or provide shading. Additionally, it is contemplated that the louvers could also include material which reflects sunlight, in which the louvers could be positioned to thereby direct sunlight to the interior structure for lighting purposes.
  • The subterranean air supply flows through an underground system of passageways such as pipes that will pre-cool or preheat the outside air source, depending upon ambient temperature conditions. The fresh air enters the building core through the foundation and is forced into the central open area within the interior building structure. The air is then distributed through the interior building through floor plenums that communicate with the central thermal mass. Optionally, the air may communicate with the water in the well, which provides humidification for the incoming air.
  • Air is allowed to circulate through the interior habitable space, and may be vented into the greenhouse space. Air within the green house space may be circulated by one or more mechanical fans. Air is evacuated from the building through vents located near the apexes of the exterior cover. A natural circulation pattern develops as air is warmed in the greenhouse space such that an upward circulation or flow is created. Accordingly, forced air requirements are reduced as compared to most traditional building spaces.
  • The exterior cover construction includes a relatively thin film of transparent or translucent material, such as a polymer which can be molded into a desired shape. One example of a polymer that can be used includes ethylenetetraflowro-ethylene (ETFE). The exterior cover or skin is supported by an underlying aluminum frame which generally conforms to the shape of the exterior cover/skin. The aluminum frame provides adequate support against loading conditions such as wind/snow. Although relatively thin and transparent, the skin provides protection for the interior structure. Vents are located in the apex of the exterior cover/skin as mentioned in order to allow a continual circulation of air through the greenhouse space.
  • The louvers are mounted to the exterior cover so that the louvers can be rotated along at least one axis in order to track the path of the sun, or otherwise provide the ability to adjustably place the louvers for optimal sunlight capture, shading, or reflection of light into the interior structure.
  • With respect to the interior building construction, the central thermal mass is defined as an internal central tower made of thickened masonry walls, and further including a subterranean extension that incorporates the well. The interior building structure may include a single floor or multiple floors. The support superstructure of the building may comprise steel and/or concrete constructions. One specific example of an interior building floor system that may be adopted includes a steel superstructure with concrete floor slabs supported by steel posts and beams. The enclosing walls at the perimeter of the floor system may be frame construction supported by the floor system, or curtain wall construction attached to the exterior of the floor system and supported by the steel superstructure. Optionally, the enclosing walls of the interior structure may have operable glass panels, doors and windows that open to the greenhouse space.
  • The central tower includes a plurality of openings creating walkways between opposite sides of the superstructure. Windows may also be formed in the central tower enabling air and light to readily pass between opposite sides of the structures. The living space of the building is preferably arranged in two sections located on opposite sides of the central tower. The living space may include one or more floors.
  • Preferably, the well located on the ground floor, receives collected rainwater for storage, and the water is continuously circulated by pumps in the well to humidify the air.
  • Planter boxes and planting platforms may be attached at each floor level as by steel beams that extend beyond the concrete floor slabs. A drip irrigation system can also be provided to water the planted areas, and this drip irrigation system uses collected rainwater stored in the well. A relatively large garden area may be provided on the roof of the interior structure, and may be referred to as an arboretum. The arboretum is also structurally supported by reinforced steel beams located on the roof and capable of carrying the additional weight of the soil that is used for planting. A waterproof liner is used to keep the lower levels dry in the event the structure is built with multiple floors.
  • It is also contemplated that external water collection can be achieved by a system of rain collecting troughs or/channels to catch rainfall that strikes the louvers. The louvers guide and direct the rainwater to collection points where the water is transferred to a filtration system. The filtered water may then be stored for subsequent use within the building. The collected water may be used multiple times within the building by incorporation of an interior water treatment system. The treatment system may treat the water to desired levels for subsequent potable and non-potable uses.
  • Other features and advantages of the present invention will become apparent from a review of the following detailed description taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of the building with integrated natural systems of the present invention;
  • FIG. 2 is a plan view of the building;
  • FIG. 3 is another perspective view of the building;
  • FIG. 4 is a cross-sectional elevation view of the building;
  • FIG. 5 is an enlarged fragmentary cross-sectional view of the building showing details of the exterior cover and solar panels;
  • FIG. 6 is another enlarged fragmentary cross sectional view showing the solar panels in a different position;
  • FIG. 7 is a schematic diagram of a water treatment system for treating water for re-use with the building;
  • FIG. 8 is a schematic diagram of an interior water collection and humidity control system; and
  • FIG. 9 is a schematic diagram of an exterior rainwater collection system.
  • DETAILED DESCRIPTION
  • FIGS. 1-3 illustrate the building with the integrated natural systems in accordance with a preferred embodiment of the present invention. The building 10 is characterized as a complex-shaped structure having a plurality of curved exterior sections 12. Each of the curved exterior sections 12 include a pair of symmetrical extensions 32 that are joined along a crest or ridge line 34. The building is further characterized as having two groups of the curved exterior sections 12 interconnected by a pair of central facing curved exterior sections 40, as best seen in FIG. 2. The curved exterior sections 12 are connected to one another in a circumferential fashion and are joined along receding areas or troughs. Rain collection gutters 36 are located in these receding areas. When viewed as from the plan view of FIG. 2, the two groups of exterior sections 12 each form shapes that have a center or apex 38. As shown from the plan view of FIG. 2, the rain collection gutters 36 each extend radially outward from the apexes 38. The rain collection gutters 36 form part of the rain water collection system as described further below with respect to FIG. 9. Two habitable spaces of an interior structure or core 14 are oriented under the groups of exterior sections 12, while a central tower 60 is located between the habitable spaces and under the central facing exterior sections 40, as discussed in more detail below in reference to FIG. 4. The central tower may be constructed of thickened masonry walls, stone, or adobe materials.
  • Referring specifically to FIG. 1, it is seen that each of the crests 34 have one end that intersects with the corresponding apex 38, and the crests 34 each extend downwardly and outwardly forming a generally convex curved shape. The lower ends of the crests 34 terminate at a foundation 20 of the building (see FIG. 4). A plurality of louvers 18 are mounted to the exterior cover of the building as shown. The louvers are arranged in a plurality of horizontally extending rows, and each of the rows between each of the curved exterior sections 12 are aligned at the same elevation therefore providing a generally uniform series of horizontally extending rows that are spaced vertically along substantially the entire height of the building. When viewing the louvers from the plan view of FIG. 2, it is shown that the louvers substantially cover the entire exterior cover of the building. The curved shape of the exterior cover enhances the number of rows of louvers that can be attached directly to the building thereby also enhancing the power generation capability of the building.
  • Referring to FIG. 4, the exterior cover is defined by a curved-shaped shell or layer 16. Within the shell 16 resides the interior structure or core 14 that forms the habitable space for users. More specifically, the interior structure or building core 14 includes a central tower 60 disposed between two lateral wings of habitable living spaces. The living spaces each include a plurality of floors 68 and enclosing walls 70. As shown in FIGS. 1 and 3, a portion of the core 14 is exposed, while the lateral wings of the core 14 are housed within the exterior cover or shell 16. As best seen in FIG. 1, the core 14 may include a plurality of core windows 22, an entrance 24, stairs 26 and a walkway 28.
  • The central tower 60 is defined by walls 62 forming a cylindrical-shaped edifice. A plurality of ports or openings 64 in the walls 62 enable users to travel between the floors 68 of the living spaces located on opposites sides of the core. The enclosing walls 70 of the interior structure may also include a plurality of windows/window panels in order to selectively distribute light into the habitable spaces within the interior structure. One or more staircases 78 may be located between the floors enabling access between the floors. In the preferred embodiment of FIG. 4, a pair of stairwells 78 is located at opposite sides of the interior structure.
  • A plurality of planters 72 may be formed as extensions of the various floors 68 for planting and cultivating vegetation. The roof or upper floor of the interior structure may include an arboretum 74 that has larger vegetation grown thereon to include trees and shrubbery. The most upper floor 68 and arboretum sidewalls 76 form containment areas for the arboretum.
  • Depending upon where the building is located, a foundation 20 may extend below the surface of the ground G, and can also provide additional habitable space in the form of a basement. A plurality of subsurface supports 80 such as pilings may be used to support the exterior cover layer. The pilings 80 may be used in conjunction with footers 82 to provide adequate stabilization for the overhead superstructure.
  • The lower portion of the core 14 within the tower 60 may incorporate an integral subsurface water storage facility 66. For aesthetic purposes, the water storage facility 66 can be formed in a cylindrical shape, thus resembling a well. Ornamental aspects may be added to the well to include a fountain if desired. The water storage facility 66 receives its water from either an external water supply and/or water that is collected by a rainwater collection system incorporated on the exterior structural layer of the building, as discussed in more detail in reference to FIG. 9. FIG. 4 more specifically illustrates the water storage facility 66 receiving water from an external water source W which may or may not be a potable water source. As necessary, a water treatment element (not shown) may be used to treat the incoming flow of water from the water source W. The water then travels through one or more subsurface channels or pipes 86 and carries the water to the water storage 66. As necessary, one or more fluidic pumps 88 may provide adequate force for transfer of the water to the water storage facility 66. One or more check valves 90 may be provided to prevent backflow of water once it has been transported into the water storage 66.
  • In addition to subsurface pipes that carry water to the water storage 66, additional air pipes or conduits 92 may be incorporated for transporting a flow of air from the environment through the subsurface air pipes 92 into the building. The air pipes 92 as shown in FIG. 4 communicate with an air handling device, such as air filtration devices 94. The air pipes 92 may communicate directly with the water pipes 86, or the air pipes 92 may be separate and independently traverse through the ground and into the building core 14 adjacent the water storage 66. In the example of FIG. 4, the air lines 92 connect to the respective water pipes 86. Check valves 96 may also be used to prevent a backflow of water in the event of an excess amount of water contained within the water storage 66 backs up through pipes 86. The passage of the air and water through an underground series of passageways allows the ground to act as a heat exchanger in which the water and air is heated/cooled to a temperature which more closely matches that of the subsurface ground. In desert regions, this is particularly advantageous in that both air and water from ambient conditions will have a much higher temperature and effective cooling of the air and water can occur by the system of pipes. Similarly, in arctic conditions, air and water may be effectively heated by passage of the air and water through the subsurface pipe systems.
  • The directional arrows in FIG. 4 illustrate the flow path of air through the building in which the air enters the building through the building core 14 adjacent the water storage 66. The air is then transferred radially outward from the building core into the habitable spaces between floors 68. Vents or windows 71 provided on the enclosing walls 70 (See FIGS. 5 and 6) allow the air to flow upwards in the greenhouse space between the interior structure and the exterior cover, and ultimately the air may exit the exterior cover through vents (not shown) formed at the apexes 38.
  • In viewing the building from FIG. 2, it is shown that the building is symmetrical about two axes, namely the axis Y-Y and the axis X-X. The symmetry along the X-X axis enables the building have two functional halves. Each half may serve a different purpose for the inhabitants, or be used to segregate inhabitants/users. For example, if the building was to be used as a spa, one half of the interior building could be used for men, the other half for women, and the central tower 60 could be used as a central gathering place. Further for example, if the building were to be used as a home, one side or half of the building could be used for bedrooms and sleeping quarters, while the other half could be used for recreational areas, kitchens, or other specific uses. Again, the central tower 60 could be used as a central gathering or interaction area.
  • Referring to FIG. 5, additional construction details are provided for the interior building structure, the exterior cover and the louvers. Referring first to the exterior cover 16, the plurality of louvers 18 are shown in their mounted position along the curvature of the exterior cover 16. As shown, the louvers can also provide a significant degree of shade for the underlying interior structure. The louvers each include a main panel 100, a telescopic actuator 102 and a base support or base mount 104. The main panel 100 is rotatable about a hinge/pin 106 and the telescoping actuator 102 has a telescoping element 103 that may be retracted or extended to angularly position the panel 100. FIG. 5 illustrates the louvers 18 in a position to capture sunlight, the sunlight shown as the directional arrows S.
  • FIG. 5 also illustrates a truss support for supporting the exteriorly mounted louvers 18. This truss support includes a main abutting support member 110 that substantially parallels the exterior cover 16. The support member 110 may comprise a plurality of a structural steel or aluminum beams that are curved to match the shape of the exterior cover 16. A plurality of interconnecting rods 112 are used to mount the louvers 18 to the exterior cover 16 as shown. The rods 112 pass through openings in the exterior cover 16 and are secured to the support member 110 as shown.
  • The truss support further includes an interior truss member 114 that extends into the greenhouse space. Orthogonal truss extensions 116 interconnect the main support member 110 and the interior truss member 114. The truss support may include a plurality of interconnecting cables or rods 118 that provide the necessary support between the main support member 110 and the interior truss member 114. As shown in FIG. 4, the lower ends of the truss support and the exterior cover 16 may be supported by the piles 80, as shown in FIG. 4. A plurality of spaced truss supports can be mounted to locations along the interior surface of the cover 16, and the number of supports and their spacing to one another can be altered to provide the necessary support for the particular arrangement of louvers 18 incorporated on the exterior cover 16.
  • Referring to FIG. 6, the telescoping elements 102 have been extended such that the lower surfaces of the main panels 100 are exposed. These lower surfaces may be coated with a reflective surface. In this position, assuming the sunlight is generally in the direction as shown by the directional arrows S, the louvers are capable of directing sunlight within the interior of the structure. In order to place the louvers 18 in the position shown in FIG. 6, it is also contemplated that the louver assembly may have a rotatable connection for the telescoping element 102 shown as rotatable connection 107. Thus, the telescoping element 102 could be placed in two distinct positions functional, one position being that shown in FIG. 5 for capturing sunlight on the upper surfaces of the louvers, and second being shown in FIG. 6 for capturing sunlight on the lower surfaces of the louvers. It shall be understood that the louvers may be incrementally positioned at any angle to best capture sunlight on either the upper or lower surfaces of the louvers to best accommodate power generation, interior lighting, or combinations of the two.
  • Referring again to FIGS. 5 and 6, additional detail is shown for the planters 72 that may be incorporated adjacent the enclosing walls 70 of the interior structure. The planters 72 may be suitable for growing vine-like plants, smaller bushes or other vegetation. The enclosing walls 70 may include the vents 71 that enable the flow of air into the greenhouse space. FIGS. 5 and 6 also show floor mounted plenums 69 that communicate with the building core 14 providing air into the habitable spaces between the floors 68.
  • The truss structure may be constructed of a rigid aluminum tubular frame system configured as a grid/matrix as shown. The exterior cover may be a transparent polymer, such as ethylenetetraflowro-ethylene (ETFE). This thin film makes the interior airspace relatively air tight. The louvers may be constructed of tempered glass that may be opaque, translucent, fritted or clear depending upon the desired light transmission. If the louvers are to support PV panels, then the louvers may include an underlying frame which supports the PV panel portions. It is also contemplated that the louvers can be a combined construction in which one portion thereof is made of a tempered glass and the other portion includes a PV panel. Additionally, the louvers could be constructed of sheet metal, either solid or perforated, which would therefore reflect or allow at least some light transmission therethrough. It is also contemplated that in some orientations of the building, the upper and/or lower surfaces of the louvers can act as a light shelf and, therefore, may have white/reflective coatings to direct light into the building interior. FIG. 6 is an example of in which a reflective coating could be applied to the lower surfaces of the louvers in order to enhance sunlight transmission into the building.
  • Referring to FIG. 7, a treatment system 120 is provided to treat water for non-potable uses. A multi-stage process is used to generate water that can be re-used, for example, in a bathroom in which a shower 122, a sink 124 and a toilet 126 are found. A first step in the process is to direct the waste water through waste line 128 to a solids settling tank 130 where solids can be captured. As shown, solids 132 settle to the bottom of the tank, and can be removed by solids line 134. The water from the settling tank 130 is released into a dosing tank 136 of a desired volume. The water from the dosing tank 136 is then metered into a treatment station 140 as by pump 138. The treatment station 140 operates to clean the water to a degree so that it can be returned to the bathroom for re-use as non-potable water. The treatment station 140 preferably takes advantage of various biological processes to treat the water. For example, the station 140 may contain microbes to treat the water both aerobically and anaerobically. The station may include a biofilter material 146 that filters the water and may also function as a medium to grow plants 144 that also assist in bio-remediation of the water. The station 140 may simulate, for example, a wetlands area in which the combination of plants, microbes, and filter material (soil/sand) act together to treat the water. The station 140 may be located within the greenhouse space between the building core 14 and the exterior cover 16. Preferably, the station 140 has a transparent cover 142 that prevents escape of odors and also enhances plant and microbial growth in a greenhouse environment. Depending upon space available and the size of the station 140, it is also contemplated that the station 140 could be placed outside of the building. The treated water is then conveyed to storage, shown as a gray water storage tank 150. The treated water may then be returned to the bathroom via pump 152 and return line 154. Although the system 120 is shown as a closed loop, it shall be understood that some amount of water will be lost in solids removal and therefore, some amount of water is necessary to replace the lost water.
  • Referring to FIG. 8, an internal water recovery and humidity control system 160 is illustrated. The system 160 includes an exposed condensing line 162 that is maintained at a temperature to condense water vapor in the air. The collected liquid water may then be used to water vegetation V, or may otherwise be collected for re-use within the building. As shown, the system 160 comprises a chiller 164 that functions to chill a cooling medium, such as glycol, that is circulated through an insulated delivery line 166. When the line 166 reaches the air in the greenhouse space between the core 14 and the exterior cover 16, the line is exposed by removing the insulation and thus defines a condensing line 162 that maximizes heat transfer to condense water vapor in the air. The cooling medium flows back into the core 14 by the insulated return line 166. Depending upon the temperature of the return line 166, it can be used to either supplement heating or cooling of the airspace within the core 14. In order to pre-cool the heated cooling medium in the return line 166, a cooling fan 168 can be incorporated prior to the cooling medium returning to the chiller 164. As also shown in FIG. 8, the condensing line 162 is oriented to collect water so that the collected water flows into a receptacle 170, and receptacle 170 connects to drip line 172 which is used to water the vegetation V. Other drip/collection lines can be used to collect the liquid for transport to a desired use within the building. Under particularly humid conditions, the system 160 can be effective to de-humidify the air. One or more condensing lines 162 may be positioned to water vegetation or otherwise collect water for transport to a desired use.
  • Referring to FIG. 9, an external rain water collection system 178 is illustrated. The collection system 178 includes a plurality of horizontally oriented rain collection flanges 180 (also shown in FIGS. 6 and 8), that are mounted to the free ends of the panels 100. The flanges preferably extend along the horizontal length of the free ends, and therefore provide the appearance of the panels 100 having upturned ends. The flanges 180 are oriented in this upturned fashion to create a rain collection trough or channel on each of the panels 100. The flanges 180 intersect at each end with a corresponding vertically oriented rain collection gutter 36. Water is collected on the panels 100 and is directed by the rainwater troughs to the rain collection gutters 36. The gutters 36 communicate with inlet transfer pipes 194 that convey the water to one or more rainwater collection receptacles 190. The receptacles 190 achieve two primary purposes: to collect the rain water in a central location and to provide initial filtration for the collected water. For filtration, the receptacles 190 each include one or more types of gravel and porous fabric layers placed between layers of gravel. The combination of gravel and fabric layers provides coarse filtration to remove larger particle contaminants. The coarsely filtered water is then transported by conveying line 196 to a main filtration station 198. Within the filtration station 198 are a plurality of selected materials for filtration, shown as filter layers 199. In order to encourage high output of water through the main filtration station 198, a downstream pump 202 in line 200 draws the filtered water to a temporary storage location within tank 204. From the tank 204, the water can then be transported for further filtration/treatment (e.g., for creating potable water), or the filtered water in tank 204 can be directly used for grey water applications within the structure, for example as a supply of water for plants and/or water for use in bathrooms.
  • It is also illustrated in FIG. 9 that the panels 100 are positioned so that excess water that overfills the troughs is received in the next lower level trough, and this repeated overflow pattern is achieved so that the overflow water reaches the most lower level panel 100 that is centered over the collection receptacle. It may be advantageous to encourage the flow of rainwater in this cascading fashion by minimizing the height of the flanges or the angle at which the flanges 180 extend from the free ends of the panels. The cascading water in this manner becomes oxygenated that may assist in purification of the water. In any event, the water can be directed in the cascading fashion and/or through the vertically oriented gutters 36 for collection into the receptacles 190. The receptacles 190 extend along selected lengths of the structure in order to receive cascading water from all or selected portions of the panels 100.
  • In summary, the central tower 60 of the core forms an open vertical area for enabling air to circulate between the floors. The size of the airspace within the central core acts as a thermal mass in which the large open airspace helps to further modulate or regulate the interior air temperature between the floors. The central tower of the building is built around a central water storage facility in the form of a well which may incorporate a fountain. The water may be continuously circulated by pumps within the well casing to humidify the air traveling upward through the core. The interior building construction may include floors constructed of concrete slabs over steel decking and supported by steel post and beam construction. The enclosing walls 70 located at the perimeters of the floors may be frame construction resting on the floors or curtain wall constructions attached to the floors. The enclosing walls may further include operable glass panels and doors as well as doors that open to the greenhouse space between the enclosing walls and exterior cover.
  • The greenhouse space provides an area for growing vegetation, and planters and an arboretum may be incorporated in this greenhouse space. A drip irrigation system (not shown) can also provide water to the roots of the plants to minimize water use. The arboretum may be structurally supported by a reinforced steel beam pattern located on the roof in order to better carry the load of the additional weight of the soil necessary for the arboretum to grow larger plants, such as trees. A water proofing system (not shown) can be used to include waterproof liners and drainage systems in order to keep the lower levels dry and isolated as between the arboretum and planter boxes. The water proofing system may include several layers of materials to enable irrigation of the vegetation and drainage of excess water. For example, a fabric layer can be used under the soil, and then one or more impermeable layers can be used to direct the excess water to a water storage tank. The fabric layer allows passage of water but not soil. The impermeable layers may include a drain mat that collects the water and directs it to a storage tank. Another underlying impermeable protection layer can be placed under the drain mat to protect the above disposed layers.
  • It is also contemplated within the present invention to provide a central control system in order to provide a user with convenient way in which to monitor, adjust, and otherwise control the natural systems incorporated within the building's structure. The control system would include temperature and humidity monitoring devices provided as inputs to a central controller. The user can program the central controller in order to establish desired temperature and humidity conditions within the habitable space within the interior structure, as well as temperature and humidity conditions for the greenhouse space. For example, assuming ambient temperature conditions are very high, the louvers 18 can be adjusted to provide maximum shade based upon the position of the sun, and an increased flow rate of air within the structure could be provided to provide better air exchange for cooling of the interior. In yet another example, assuming ambient temperature conditions were very cold, the louvers 18 could be positioned to allow maximum penetration of sunlight with minimal shading by the louvers 18. For humidity control, it is also contemplated that the water recovery/humidity control system 160 can be controlled with the central control system to set the air at a desired humidity. With respect to production of electrical power by the solar panels incorporated on the louvers, it is also contemplated that the present invention may include an electrical storage capacity for storing electrical energy generated by the solar panels.
  • The natural systems incorporated in the present invention provide a number of functional and sustainable advantages. One of the natural systems may be identified as use of solar energy to power the building, such as to produce heat, cooling or to power other electrical equipment such as lighting. Selected ones or all of the louvers 18 may incorporate photo-voltaic (PV) panels which provide power to the building. Additionally, the louvers may incorporate reflective surfaces for purposes of transmitting sunlight into the interior of the building, and more specifically to act as a source of light in lieu of electrical lighting. One unique combination may include the provision of PV panels on the upper surfaces of the panels, with reflective material on the lower surfaces of the louvers. As described with respect to the FIGS. 5 and 6, the louvers 18 may be selectively positioned such that the upper and lower surfaces of the louvers are capable of capturing sunlight and/or reflecting light into the interior of the building.
  • Another natural system of the present invention includes the ability to regulate air temperature within the building by provision of the subsurface air pipes that are used to regulate the temperature of air introduced into the building. Using the ground as the primary heat exchanger eliminates significant capacity otherwise required for a traditional HVAC system. Similarly, the water which is regulated by contact with the subsurface ground also acts as a natural system to humidify the air passing through the piping system, as well as to provide an aesthetically pleasing central well is located within the building core.
  • There are a number of advantages to the present invention. Heating, cooling and power are provided to the building by complementing features which each reduce the dependency of the building on exterior resources. The extensive array of louvers can provide an increased amount of power as opposed to traditional solar panels which are only roof mounted. The louvers can also be used for purposes of shading as well as to act as a light shelf in order to direct light into the interior of the building. Using the temperature of the subsurface ground as a heat exchanger, both incoming air and water may be temperature regulated to maintain the desired temperature of the interior airspace within the structure. A collection of rainwater can be used for many purposes to include not only the well which helps humidify the air, but also as a potable source by inclusion of a small water treatment facility within the building.
  • Air is evacuated from the building at the most upper portion, which facilitates a continual circulation of air upwards through the building structure. Air can be most optimally circulated and evacuated through a series of blowers or fans which can be located within selected locations within the greenhouse space as well as within the interior building structure. For example, it is contemplated that one or more fans/blowers may be mounted to the truss structure at the openings located at the apexes 38 in order to provide an upward flow of air through the greenhouse space. The blowers/fans can be sized and located at the appropriate conditions based upon where the building is installed to accommodate the necessary flow of air through the interior of the building structure into the greenhouse space to accommodate desired temperatures and humidity. While the present invention has been described with respect to one or more preferred embodiments, it shall be understood that various other modifications and changes may be adopted commensurate with the scope of the claims appended hereto.

Claims (31)

1. A building comprising:
an exterior covering formed of an impermeable skin or membrane, said covering being made of one of a substantially translucent or clear material enabling passage of sunlight therethrough;
an interior structure disposed in an open area covered by said exterior covering;
a plurality of louvers secured to said covering, said louvers being arranged in a plurality of rows and said rows being spaced vertically along said covering;
at least one of said louvers having photovoltaic cells incorporated thereon for production of electricity;
a first subsurface passageway for carrying air from an environment outside of said covering to the open area within the covering;
a second subsurface passageway for carrying water from a water source collected outside of said covering and for transporting the water to a water storage element within the interior structure; and
said interior structure comprising an enclosing wall and a plurality of floors, habitable space in the interior structure being formed by space within the interior structure between said floors and said enclosing wall, and said interior structure further comprising a central core separating said enclosing wall and said floors, said central core communicating with said first and second subsurface passageways for receiving the water and air.
2. A building as claimed in claim 1 further including:
means for actuating the louvers to selectively place the louvers in a desired position to best capture sunlight or to transmit sunlight into the open area within the covering.
3. A building, as claimed in claim 1, further including:
a plurality of planters incorporated in the floors for growing vegetation.
4. A building, as claimed in claim 1, further including:
an arboretum located on a most upper floor of said interior structure for growing vegetation.
5. A building, as claimed in claim 1, wherein:
a gap located between said interior structure and said exterior covering form a greenhouse space.
6. A building, as claimed in claim 1, wherein:
said enclosing wall comprises a plurality of windows for facilitating transfer of sunlight into the interior of said interior structure.
7. A building as claimed in claim 1, for:
said louvers are rotatable for selective position for about at least one point of rotation.
8. A building, as claimed in claim 1, wherein:
said louvers are selectively positionable about two points of rotation.
9. A building, as claimed in claim 1, further including:
a truss support secured to said exterior covering.
10. A building, as claimed in claim 1, wherein:
said exterior covering comprises a plurality of curved exterior sections, and each of the curved exterior sections includes a pair of symmetrical extensions joined along a corresponding ridgeline.
11. A building, as claimed in claim 10, wherein:
said curved exterior sections are arranged in two groups interconnected by a pair of facing curved exterior sections.
12. A building, as claimed in claim 10, wherein:
each of said exterior sections forms shapes that have an apex constituting a most upper portion of the exterior sections.
13. A building, as claimed in claim 10, wherein:
each of the ridgelines have one end that intersects with an apex, and the ridgelines extend downwardly and outwardly forming a generally convex curved-shape.
14. A building, as claimed in claim 1, wherein:
said central core comprises a cylindrical-shaped tower having a plurality of ports enabling users to travel between said floors located on opposite sides of the core.
15. A building, as claimed in claim 1, further including:
a water treatment system for treating water for reuse within the building, said water treatment system including: a solids settling tank, a dosing tank, a treatment station, and a storage tank, treated water being held in said storage tank and transported for reuse within said building.
16. A building, as claimed in claim 1, further including:
an interior water collection and humidity control system including a condensing line for condensing water vapor for collection,
a chiller for cooling fluid passing through said condensing line, and
a cooling fan for cooling the fluid after being heated by exposure within said condensing line.
17. A building, as claimed in claim 1, further including:
an exterior rainwater collection system, said exterior rainwater collection system including a plurality of rainwater diverters secured to said louvers to create respective channels for collecting rainwater that strikes said louvers, at least one rainwater collection receptacle for receiving the collected rainwater from said respective channels, at least one filter element in said receptacle for filtering the collected rainwater, and a storage tank for storing the rainwater from said receptacle.
18. A building, as claimed in claim 17, when:
said rainwater collection system further includes a plurality of gutters disposed on the exterior covering, said gutters for receiving water collected from said rainwater diverters and for transporting the collected rainwater to said rainwater collection receptacle.
19. A method of providing operational functions for a building through incorporation of natural systems, said method comprising:
providing:
(i) an exterior covering formed of an impermeable skin or membrane, said covering being made of one of a substantially translucent or clear material enabling passage of sunlight therethrough;
(ii) an interior structure disposed in an open area covered by said exterior covering;
(iii) a plurality of louvers secured to said covering, said louvers being arranged in a plurality of rows and said rows being spaced vertically along said covering;
(iv) at least one of said louvers having photovoltaic cells incorporated thereon for production of electricity;
(v) a first subsurface passageway for carrying air from an environment outside of said covering to the open area within the covering;
(vi) a second subsurface passageway for carrying water from a water source collected outside of said covering and for transporting the water to a water storage element within the interior structure;
(vii) said interior structure comprising an enclosing wall and a plurality of floors, habitable space in the interior structure being formed by space within the interior structure between said floors and said enclosing wall, and said interior structure further comprising a central core separating said enclosing wall and said floors, said central core communicating with said first and second subsurface passageways for receiving the water and air;
generating electric power from sunlight striking said photovoltaic cells on said louvers;
controlling air temperature within the open area covered by the covering by heat exchange between the ground and the air passing through the first subsurface passageway;
controlling humidity within the open area by contact of said air with water contained in a water storage element located within the interior structure.
20. A method, as claimed in claim 19, further including:
means for actuating the louvers to selectively place the louvers in a desired position to best capture sunlight or to transmit sunlight into the open area within the covering.
21. A method, as claimed in claim 19, further including:
a plurality of planters incorporated in the floors for growing vegetation.
22. A method, as claimed in claim 19, further including:
an arboretum located on a most upper floor of said interior structure for growing vegetation.
23. A method, as claimed in claim 19, wherein:
a gap located between said interior structure and said exterior covering form a greenhouse space.
24. A method, as claimed in claim 19, wherein:
said enclosing wall comprises a plurality of windows for facilitating transfer of sunlight into the interior of said interior structure.
25. A method, as claimed in claim 19, for:
said louvers are rotatable for selective position for about at least one point of rotation.
26. A method, as claimed in claim 19, wherein:
said louvers are selectively positionable about two points of rotation.
27. A method, as claimed in claim 19, further including:
a truss support secured to said exterior covering.
28. A method, as claimed in claim 19, wherein:
said exterior covering comprises a plurality of curved exterior sections, and each of the curved exterior sections includes a pair of symmetrical extensions joined along a corresponding ridgeline.
29. A method, as claimed in claim 19, further including:
providing:
(i) an interior water collection and humidity control system including a condensing line for condensing water vapor for collection,
(ii) a chiller for cooling fluid passing through said condensing line, and
(iii) a cooling fan for cooling the fluid after being heated by exposure within said condensing line; and
condensing water vapor by the condensing line being exposed to the air within said building.
30. A method, as claimed in claim 19, further including:
providing an exterior rainwater collection system, said exterior rainwater collection system including (i) a plurality of rainwater diverters secured to said louvers to create respective channels for collecting rainwater that strikes said louvers, (ii) at least one rainwater collection receptacle for receiving the collected rainwater from said respective channels, (iii) at least one filter element in said receptacle for filtering the collected rainwater, and a storage tank for storing the rainwater from said receptacle; and
collecting rainwater in said respective channels, filtering the collected rainwater, and storing the collected rainwater.
31. A method, as claimed in claim 30, wherein:
said rainwater collection system further includes a plurality of gutters disposed on the exterior covering, said gutters for receiving water collected from said rainwater diverters and for transporting the collected rainwater to said rainwater collection receptacle.
US12/717,762 2010-03-04 2010-03-04 Building with integrated natural systems Expired - Fee Related US8371073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/717,762 US8371073B2 (en) 2010-03-04 2010-03-04 Building with integrated natural systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/717,762 US8371073B2 (en) 2010-03-04 2010-03-04 Building with integrated natural systems

Publications (2)

Publication Number Publication Date
US20110214364A1 true US20110214364A1 (en) 2011-09-08
US8371073B2 US8371073B2 (en) 2013-02-12

Family

ID=44530106

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/717,762 Expired - Fee Related US8371073B2 (en) 2010-03-04 2010-03-04 Building with integrated natural systems

Country Status (1)

Country Link
US (1) US8371073B2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110232209A1 (en) * 2008-09-25 2011-09-29 Kornelis Hendrik Boersema Computer room
US20120006412A1 (en) * 2010-07-07 2012-01-12 ATOPIA Research Sports Pitch Rainwater Harvesting Systems Suitable for Use in Developing Countries
US20120131865A1 (en) * 2010-06-07 2012-05-31 Schuco International Kg Wall construction
US20120243236A1 (en) * 2010-11-15 2012-09-27 Gerard James Schoeb Indirect daylighting device
ITFI20120056A1 (en) * 2012-03-15 2013-09-16 Artigianfer Di Virgilio Cardelli S R L "GREENHOUSE AND SYSTEM FOR THE PRODUCTION OF ELECTRICITY AND CULTIVATION IN GREENHOUSE"
US20140157690A1 (en) * 2011-06-27 2014-06-12 Ko Muroi Building
NL2011048C2 (en) * 2013-06-27 2015-01-05 Mamadeus Invest B V Novel building concept.
US20150052675A1 (en) * 2013-08-22 2015-02-26 Steven Desmelyk Greenhouse Outdoor Shower
JP2016050414A (en) * 2014-08-29 2016-04-11 旭化成ホームズ株式会社 Apartment house
US20160113214A1 (en) * 2013-05-13 2016-04-28 Otkrytoe Aktsionernoe Obschestov "Kontsern "Promyshlenno-Investitsionny Kapital" Solar bio-greenhouse
WO2016126198A1 (en) * 2015-02-05 2016-08-11 Skanska Sverige Ab Green indoor cultivation
US20170025988A1 (en) * 2014-04-01 2017-01-26 Noah House Kft. Mobile house utilising renewable energy
CN106884477A (en) * 2017-04-25 2017-06-23 江苏沪宁钢机股份有限公司 A kind of stable type different formed steel construction building and its construction technology
CN107155837A (en) * 2017-06-27 2017-09-15 王磊 Collect the method and system that nature condensate and rainwater supply water to vegetation
US9970208B2 (en) * 2016-07-15 2018-05-15 Morgan Arena Irons Ecological system model for a self-sustaining and resilient human habitation on the Moon and Mars and for food security and climate change mitigation anywhere on Earth
CN108442455A (en) * 2018-05-11 2018-08-24 张寅� Dew collection device
US10154611B2 (en) * 2014-06-27 2018-12-11 Amazon Technologies, Inc. Deployable barrier for data center
USD855828S1 (en) * 2017-10-03 2019-08-06 Sea Top Homes Ltd. Marine residential unit
USD859689S1 (en) * 2018-07-24 2019-09-10 Nino R. Vaghi Foundation Combination parking structure and train station
US10426103B2 (en) * 2015-02-24 2019-10-01 Gaïa Écosystèmes Inc. Multilevel closed ecosystem greenhouse
US20210148115A1 (en) * 2018-07-11 2021-05-20 Veev Group, Inc. Prefabricated construction wall assembly
US20220196295A1 (en) * 2020-12-17 2022-06-23 Hamilton Sundstrand Corporation Extraplanetary heat exchanger
CN114673384A (en) * 2022-03-22 2022-06-28 中国建筑第二工程局有限公司 Multifunctional energy-saving exhibition hall building
US20230097951A1 (en) * 2021-09-29 2023-03-30 University Of Seoul Industry Cooperation Foundation Greenhouse-linked air conditioning system and air conditioning method using the same
WO2023078045A1 (en) * 2021-11-02 2023-05-11 江苏凯伦建材股份有限公司 Water collecting tank and water collecting tank assembly
EP4035261A4 (en) * 2019-09-23 2023-06-21 Three Sixty Solar Ltd. Solar tower

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9212826B2 (en) * 2011-09-01 2015-12-15 Steve Eugene Everett Method and apparatus for climatic conditioning of space within a building structure
CA2895192A1 (en) * 2012-12-24 2014-07-03 Purepods Limited A dwelling
CN104989039B (en) * 2015-07-09 2017-06-13 安徽理工大学 A kind of multifunctional green solar energy house ejection device
US9758982B2 (en) * 2015-12-10 2017-09-12 Smart Vent Products, Inc. Flood vent having a panel
US9783983B1 (en) 2016-06-13 2017-10-10 Richard Fairbanks Lotus dome
US10260229B2 (en) * 2017-04-12 2019-04-16 Southern Comfort Shelters, Inc. Blast resistant shelter and method of assembly
USD966553S1 (en) 2020-06-05 2022-10-11 Sean Sunghwa Lee Enclosed building structure

Citations (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883764A (en) * 1929-11-04 1932-10-18 Sun Bath Company Sun bath apparatus
US2914074A (en) * 1957-03-01 1959-11-24 Fuller Richard Buckminster Geodesic tent
US3354591A (en) * 1964-12-07 1967-11-28 Fuller Richard Buckminster Octahedral building truss
US3768754A (en) * 1971-01-26 1973-10-30 Org Europ De Rech Spatiales Louver system with sandwich type blades
US3872911A (en) * 1973-06-26 1975-03-25 Org Europeene De Rech Louver system with hinged blades
US3981294A (en) * 1973-11-16 1976-09-21 The Boeing Company All glass composite building panels
US4000850A (en) * 1975-05-14 1977-01-04 Diggs Richard E Solar heated and cooled modular building
US4011697A (en) * 1975-12-08 1977-03-15 Luke J. Roddy Building construction
US4028854A (en) * 1975-05-14 1977-06-14 Diggs Richard E Fireproof modular building
US4033081A (en) * 1975-05-16 1977-07-05 Perkins Jr Fred M Modular building system
US4049195A (en) * 1976-12-08 1977-09-20 Rugenstein Robert W Solar heated building structure
US4137901A (en) * 1977-01-03 1979-02-06 Maier Henry B Solar energy collecting and trapping apparatus for home heating or cooling
US4141498A (en) * 1977-10-31 1979-02-27 Walter Marschner Combination structure and greenhouse utilizing indirect solar energy
US4192454A (en) * 1978-04-11 1980-03-11 Rugenstein Robert W Solar heated building structure
US4206575A (en) * 1978-09-18 1980-06-10 Leonard Marvin L Energy saving cover for mobile home
US4217742A (en) * 1978-03-16 1980-08-19 Evans Daniel D Roof louver apparatus
US4228788A (en) * 1979-01-08 1980-10-21 John Moeser Self-contained all-terrain living apparatus
US4245621A (en) * 1978-05-22 1981-01-20 Hollobaugh George E Structural building component
USD260437S (en) * 1979-01-08 1981-08-25 Hiller Enterprises Building with forward facing solar panel
USD260436S (en) * 1979-01-08 1981-08-25 Hiller Enterprises Building with side facing solar panel
USD261037S (en) * 1980-01-07 1981-09-29 Schlageter Thomas P Modular passive solar home
US4291674A (en) * 1978-02-17 1981-09-29 Agence Nationale De Valorisation De La Recherche Processes and devices for climatizing greenhouses
USD262058S (en) * 1979-01-08 1981-11-24 Hiller Enterprises Building with rearward facing solar panel
US4329919A (en) * 1978-11-13 1982-05-18 Andersen Ariel A Time-energy conserving low cost home pressure cooking system
US4351320A (en) * 1979-11-13 1982-09-28 Tetirick Jack E Solar energy heating panel for a building
US4385625A (en) * 1981-03-02 1983-05-31 Lee Kap Joong Building heating system
US4407028A (en) * 1981-02-13 1983-10-04 Nolan William D Energy water-saver home shampooer
US4409960A (en) * 1981-06-26 1983-10-18 Eric Balzer Louver solar panel
US4442826A (en) * 1980-11-04 1984-04-17 Pleasants Frank M Prefabricated panel for building construction and method of manufacturing
US4458669A (en) * 1981-03-02 1984-07-10 Lee Kap Joong Building heating system
US4515150A (en) * 1980-02-15 1985-05-07 Mcglew John J Building structure and building panel and method of controlling appearance and lighting of a building
US4594470A (en) * 1983-08-26 1986-06-10 Headrick Richard T Solar generator mounting structure
US4625961A (en) * 1982-12-30 1986-12-02 Brand Dieter C H Transportable home energy training device and sprocket
US4644320A (en) * 1984-09-14 1987-02-17 Carr R Stephen Home energy monitoring and control system
US4644716A (en) * 1984-03-29 1987-02-24 Schott Glaswerke Building-integrated fluorescent solar collector
US4668841A (en) * 1983-08-26 1987-05-26 Headrick Richard T Solar generator mounting structure
US4837989A (en) * 1988-04-15 1989-06-13 Levy Jacques S Combined above and below grade dwelling with marine habitat
US4899728A (en) * 1989-01-27 1990-02-13 Solarwall International Limited Method and apparatus for preheating ventilation air for a building
US4956936A (en) * 1988-12-07 1990-09-18 Sprung Philip D Method and system for purification of water for greenhouse structures
JPH0424376A (en) * 1990-05-18 1992-01-28 Okumura Corp Composite leisure facility
US5341610A (en) * 1992-07-27 1994-08-30 Moss C William Portable dome-shaped structure
US5483774A (en) * 1991-07-30 1996-01-16 Siemerink; Bernadinus F. A. Construction according to a double-curved surface
US5524381A (en) * 1991-03-19 1996-06-11 Chahroudi; Day Solar heated building designs for cloudy winters
US5536395A (en) * 1993-03-22 1996-07-16 Amway Corporation Home water purification system with automatic disconnecting of radiant energy source
US5544036A (en) * 1992-03-25 1996-08-06 Brown, Jr.; Robert J. Energy management and home automation system
US5645248A (en) * 1994-08-15 1997-07-08 Campbell; J. Scott Lighter than air sphere or spheroid having an aperture and pathway
US5761083A (en) * 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US6131363A (en) * 1998-03-20 2000-10-17 Innovative Greenhousing Systems, Inc. Greenhouse roof glazing system
US6351130B1 (en) * 1998-06-26 2002-02-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Foschung E.V. Device for testing solar home systems
US6408644B1 (en) * 2000-08-21 2002-06-25 Don Williams Microwave home energy heating and cooling system
US6538796B1 (en) * 2000-03-31 2003-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration MEMS device for spacecraft thermal control applications
JP2003221896A (en) * 2002-01-30 2003-08-08 Sekisui House Ltd Louver device equipped with function of photovoltaic power generation
US6819760B1 (en) * 1999-06-21 2004-11-16 Advanced Micro Devices, Inc. Adaptive energy detector gain control in physical layer transceiver for home telephone wire network
US6832452B1 (en) * 2001-07-28 2004-12-21 Robert R. Simens Mega pyramid stadium complex
DE10353544B3 (en) * 2003-11-14 2005-09-08 Karl Reinhard Zeiss Double pyramid structure for building has outer pyramid with slits to admit visible light and IR and has inner pyramid containing accommodation and has spray producing stream of water down outside
US20050210767A1 (en) * 2004-02-21 2005-09-29 Defever Michael D Trilithic and/or twin shell dome type structures and method of making same
US20060059772A1 (en) * 2003-07-10 2006-03-23 David Brault Structure of a greenhouse
US7032588B2 (en) * 2004-05-14 2006-04-25 John Hollick Method and apparatus for preheating ventilation air for a building
US7190531B2 (en) * 2003-06-03 2007-03-13 Rensselaer Polytechnic Institute Concentrating type solar collection and daylighting system within glazed building envelopes
US7210312B2 (en) * 2004-08-03 2007-05-01 Sunpower, Inc. Energy efficient, inexpensive extraction of oxygen from ambient air for portable and home use
US7292908B2 (en) * 2004-10-13 2007-11-06 Robotic Built Structures, Inc. Systems and methods for manufacturing customized prefabricated buildings including arbitrarily modularizing a building specification without using any pre-defined modules
US7389157B2 (en) * 2005-04-01 2008-06-17 The Nelrod Company Method and system for inspecting a home for energy efficiency
US20080163562A1 (en) * 2007-01-08 2008-07-10 David Conant Gutter cleaning system with an independent water supply
US20080229704A1 (en) * 2007-03-23 2008-09-25 Birdair, Inc. Architectural membrane structures and methods for producing them
US7444782B2 (en) * 2001-03-11 2008-11-04 Crowell James H Building system, structure and method
US20090032089A1 (en) * 2007-08-03 2009-02-05 Atomic Energy Council - Institute Of Nuclear Energy Research Solar tracker having louver frames
US20090049763A1 (en) * 2007-08-21 2009-02-26 Joseph Timothy Blundell C.O.R.E. - Continuous Omnidirectional Radian Energy geodesic hubs/structures
US7555658B2 (en) * 2004-09-30 2009-06-30 Regents Of The University Of California Embedded electronics building blocks for user-configurable monitor/control networks
USD596313S1 (en) * 2008-03-11 2009-07-14 Perrine Jean-Mic Modular building
US7561977B2 (en) * 2002-06-13 2009-07-14 Whirlpool Corporation Total home energy management system
US20090183764A1 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
US7574505B2 (en) * 2005-12-07 2009-08-11 Electronics And Telecommunications Research Institute Home server capable of implementing energy-saving and service convergence and method for controlling the same
US20090255568A1 (en) * 2007-05-01 2009-10-15 Morgan Solar Inc. Solar panel window
US20090301399A1 (en) * 2008-06-06 2009-12-10 O'brien & Gere Engineers, Inc Fish and plant factory
US20090320388A1 (en) * 2005-08-31 2009-12-31 Doriano Lilli Double-skin and moveable-sunshade facade system
US20100300010A1 (en) * 2009-05-27 2010-12-02 Maria Eugenia Vallejo Eco sphere
US20110023937A1 (en) * 2009-07-31 2011-02-03 Palo Alto Research Center Incorporated Solar energy converter assembly incorporating display system and method of fabricating the same
US20110146166A1 (en) * 2008-08-08 2011-06-23 David Noble Inhabitable space frames
US20110167737A1 (en) * 2010-01-11 2011-07-14 Kuang-Hsi Wu Protective cover for buildings
US8024891B2 (en) * 2006-10-04 2011-09-27 Jacobus Christiaan Gerardus Maria Ruiter Strip assembly
US8028691B2 (en) * 2008-10-27 2011-10-04 Johnson Screens, Inc. Passive solar wire screens for buildings
US20120131858A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Revolving roof for an indoor/outdoor stadium
US20120131860A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Microclimate cooling system for an indoor/outdoor stadium
US20120131861A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Indoor/outdoor stadium system for energy use reduction
US20120131859A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Multi-layer, revolving stadium roof
US20120135673A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Systems and methods for controlling an indoor/outdoor stadium
US20120174478A1 (en) * 2010-07-07 2012-07-12 Kuei-Kuang Chen Solar Module for Greenhouse

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4132356A (en) 1976-03-19 1979-01-02 Ramer James L Solar heating for home use

Patent Citations (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1883764A (en) * 1929-11-04 1932-10-18 Sun Bath Company Sun bath apparatus
US2914074A (en) * 1957-03-01 1959-11-24 Fuller Richard Buckminster Geodesic tent
US3354591A (en) * 1964-12-07 1967-11-28 Fuller Richard Buckminster Octahedral building truss
US3768754A (en) * 1971-01-26 1973-10-30 Org Europ De Rech Spatiales Louver system with sandwich type blades
US3872911A (en) * 1973-06-26 1975-03-25 Org Europeene De Rech Louver system with hinged blades
US3981294A (en) * 1973-11-16 1976-09-21 The Boeing Company All glass composite building panels
US4000850A (en) * 1975-05-14 1977-01-04 Diggs Richard E Solar heated and cooled modular building
US4028854A (en) * 1975-05-14 1977-06-14 Diggs Richard E Fireproof modular building
US4033081A (en) * 1975-05-16 1977-07-05 Perkins Jr Fred M Modular building system
US4011697A (en) * 1975-12-08 1977-03-15 Luke J. Roddy Building construction
US4049195A (en) * 1976-12-08 1977-09-20 Rugenstein Robert W Solar heated building structure
US4137901A (en) * 1977-01-03 1979-02-06 Maier Henry B Solar energy collecting and trapping apparatus for home heating or cooling
US4141498A (en) * 1977-10-31 1979-02-27 Walter Marschner Combination structure and greenhouse utilizing indirect solar energy
US4291674A (en) * 1978-02-17 1981-09-29 Agence Nationale De Valorisation De La Recherche Processes and devices for climatizing greenhouses
US4217742A (en) * 1978-03-16 1980-08-19 Evans Daniel D Roof louver apparatus
US4192454A (en) * 1978-04-11 1980-03-11 Rugenstein Robert W Solar heated building structure
US4245621A (en) * 1978-05-22 1981-01-20 Hollobaugh George E Structural building component
US4206575A (en) * 1978-09-18 1980-06-10 Leonard Marvin L Energy saving cover for mobile home
US4329919A (en) * 1978-11-13 1982-05-18 Andersen Ariel A Time-energy conserving low cost home pressure cooking system
US4228788A (en) * 1979-01-08 1980-10-21 John Moeser Self-contained all-terrain living apparatus
USD260437S (en) * 1979-01-08 1981-08-25 Hiller Enterprises Building with forward facing solar panel
USD260436S (en) * 1979-01-08 1981-08-25 Hiller Enterprises Building with side facing solar panel
USD262058S (en) * 1979-01-08 1981-11-24 Hiller Enterprises Building with rearward facing solar panel
US4351320A (en) * 1979-11-13 1982-09-28 Tetirick Jack E Solar energy heating panel for a building
USD261037S (en) * 1980-01-07 1981-09-29 Schlageter Thomas P Modular passive solar home
US4515150A (en) * 1980-02-15 1985-05-07 Mcglew John J Building structure and building panel and method of controlling appearance and lighting of a building
US4442826A (en) * 1980-11-04 1984-04-17 Pleasants Frank M Prefabricated panel for building construction and method of manufacturing
US4407028A (en) * 1981-02-13 1983-10-04 Nolan William D Energy water-saver home shampooer
US4458669A (en) * 1981-03-02 1984-07-10 Lee Kap Joong Building heating system
US4385625A (en) * 1981-03-02 1983-05-31 Lee Kap Joong Building heating system
US4409960A (en) * 1981-06-26 1983-10-18 Eric Balzer Louver solar panel
US4625961A (en) * 1982-12-30 1986-12-02 Brand Dieter C H Transportable home energy training device and sprocket
US4668841A (en) * 1983-08-26 1987-05-26 Headrick Richard T Solar generator mounting structure
US4594470A (en) * 1983-08-26 1986-06-10 Headrick Richard T Solar generator mounting structure
US4644716A (en) * 1984-03-29 1987-02-24 Schott Glaswerke Building-integrated fluorescent solar collector
US4644320A (en) * 1984-09-14 1987-02-17 Carr R Stephen Home energy monitoring and control system
US4837989A (en) * 1988-04-15 1989-06-13 Levy Jacques S Combined above and below grade dwelling with marine habitat
US4956936A (en) * 1988-12-07 1990-09-18 Sprung Philip D Method and system for purification of water for greenhouse structures
US4899728A (en) * 1989-01-27 1990-02-13 Solarwall International Limited Method and apparatus for preheating ventilation air for a building
US4934338A (en) * 1989-01-27 1990-06-19 Solarwall International Limited Method and apparatus for preheating ventilation air for a building
JPH0424376A (en) * 1990-05-18 1992-01-28 Okumura Corp Composite leisure facility
US5524381A (en) * 1991-03-19 1996-06-11 Chahroudi; Day Solar heated building designs for cloudy winters
US5483774A (en) * 1991-07-30 1996-01-16 Siemerink; Bernadinus F. A. Construction according to a double-curved surface
US5544036A (en) * 1992-03-25 1996-08-06 Brown, Jr.; Robert J. Energy management and home automation system
US5761083A (en) * 1992-03-25 1998-06-02 Brown, Jr.; Robert J. Energy management and home automation system
US5341610A (en) * 1992-07-27 1994-08-30 Moss C William Portable dome-shaped structure
US5536395A (en) * 1993-03-22 1996-07-16 Amway Corporation Home water purification system with automatic disconnecting of radiant energy source
US5645248A (en) * 1994-08-15 1997-07-08 Campbell; J. Scott Lighter than air sphere or spheroid having an aperture and pathway
US6131363A (en) * 1998-03-20 2000-10-17 Innovative Greenhousing Systems, Inc. Greenhouse roof glazing system
US6351130B1 (en) * 1998-06-26 2002-02-26 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Foschung E.V. Device for testing solar home systems
US6819760B1 (en) * 1999-06-21 2004-11-16 Advanced Micro Devices, Inc. Adaptive energy detector gain control in physical layer transceiver for home telephone wire network
US6538796B1 (en) * 2000-03-31 2003-03-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration MEMS device for spacecraft thermal control applications
US6408644B1 (en) * 2000-08-21 2002-06-25 Don Williams Microwave home energy heating and cooling system
US7444782B2 (en) * 2001-03-11 2008-11-04 Crowell James H Building system, structure and method
US6832452B1 (en) * 2001-07-28 2004-12-21 Robert R. Simens Mega pyramid stadium complex
JP2003221896A (en) * 2002-01-30 2003-08-08 Sekisui House Ltd Louver device equipped with function of photovoltaic power generation
US7561977B2 (en) * 2002-06-13 2009-07-14 Whirlpool Corporation Total home energy management system
US7190531B2 (en) * 2003-06-03 2007-03-13 Rensselaer Polytechnic Institute Concentrating type solar collection and daylighting system within glazed building envelopes
US20060059772A1 (en) * 2003-07-10 2006-03-23 David Brault Structure of a greenhouse
DE10353544B3 (en) * 2003-11-14 2005-09-08 Karl Reinhard Zeiss Double pyramid structure for building has outer pyramid with slits to admit visible light and IR and has inner pyramid containing accommodation and has spray producing stream of water down outside
US20050210767A1 (en) * 2004-02-21 2005-09-29 Defever Michael D Trilithic and/or twin shell dome type structures and method of making same
US7032588B2 (en) * 2004-05-14 2006-04-25 John Hollick Method and apparatus for preheating ventilation air for a building
US7210312B2 (en) * 2004-08-03 2007-05-01 Sunpower, Inc. Energy efficient, inexpensive extraction of oxygen from ambient air for portable and home use
US7555658B2 (en) * 2004-09-30 2009-06-30 Regents Of The University Of California Embedded electronics building blocks for user-configurable monitor/control networks
US7292908B2 (en) * 2004-10-13 2007-11-06 Robotic Built Structures, Inc. Systems and methods for manufacturing customized prefabricated buildings including arbitrarily modularizing a building specification without using any pre-defined modules
US7389157B2 (en) * 2005-04-01 2008-06-17 The Nelrod Company Method and system for inspecting a home for energy efficiency
US20090320388A1 (en) * 2005-08-31 2009-12-31 Doriano Lilli Double-skin and moveable-sunshade facade system
US7574505B2 (en) * 2005-12-07 2009-08-11 Electronics And Telecommunications Research Institute Home server capable of implementing energy-saving and service convergence and method for controlling the same
US8024891B2 (en) * 2006-10-04 2011-09-27 Jacobus Christiaan Gerardus Maria Ruiter Strip assembly
US20080163562A1 (en) * 2007-01-08 2008-07-10 David Conant Gutter cleaning system with an independent water supply
US20080229704A1 (en) * 2007-03-23 2008-09-25 Birdair, Inc. Architectural membrane structures and methods for producing them
US20090255568A1 (en) * 2007-05-01 2009-10-15 Morgan Solar Inc. Solar panel window
US20090032089A1 (en) * 2007-08-03 2009-02-05 Atomic Energy Council - Institute Of Nuclear Energy Research Solar tracker having louver frames
US20090049763A1 (en) * 2007-08-21 2009-02-26 Joseph Timothy Blundell C.O.R.E. - Continuous Omnidirectional Radian Energy geodesic hubs/structures
US20090183764A1 (en) * 2008-01-18 2009-07-23 Tenksolar, Inc Detachable Louver System
USD596313S1 (en) * 2008-03-11 2009-07-14 Perrine Jean-Mic Modular building
US20090301399A1 (en) * 2008-06-06 2009-12-10 O'brien & Gere Engineers, Inc Fish and plant factory
US20110146166A1 (en) * 2008-08-08 2011-06-23 David Noble Inhabitable space frames
US8028691B2 (en) * 2008-10-27 2011-10-04 Johnson Screens, Inc. Passive solar wire screens for buildings
US20100300010A1 (en) * 2009-05-27 2010-12-02 Maria Eugenia Vallejo Eco sphere
US20110023937A1 (en) * 2009-07-31 2011-02-03 Palo Alto Research Center Incorporated Solar energy converter assembly incorporating display system and method of fabricating the same
US20110167737A1 (en) * 2010-01-11 2011-07-14 Kuang-Hsi Wu Protective cover for buildings
US20120174478A1 (en) * 2010-07-07 2012-07-12 Kuei-Kuang Chen Solar Module for Greenhouse
US20120131858A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Revolving roof for an indoor/outdoor stadium
US20120131860A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Microclimate cooling system for an indoor/outdoor stadium
US20120131861A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Indoor/outdoor stadium system for energy use reduction
US20120131859A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Multi-layer, revolving stadium roof
US20120135673A1 (en) * 2010-11-29 2012-05-31 Qatar Football Association Systems and methods for controlling an indoor/outdoor stadium
US8215066B2 (en) * 2010-11-29 2012-07-10 Qatar Football Association Multi-layer, revolving stadium roof

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8844220B2 (en) * 2008-09-25 2014-09-30 Boersema Installatie-Adviseurs B.V. Computer room
US20110232209A1 (en) * 2008-09-25 2011-09-29 Kornelis Hendrik Boersema Computer room
US20120131865A1 (en) * 2010-06-07 2012-05-31 Schuco International Kg Wall construction
US20120006412A1 (en) * 2010-07-07 2012-01-12 ATOPIA Research Sports Pitch Rainwater Harvesting Systems Suitable for Use in Developing Countries
US8640387B2 (en) * 2010-07-07 2014-02-04 ATOPIA Research Sports pitch rainwater harvesting systems suitable for use in developing countries
US20120243236A1 (en) * 2010-11-15 2012-09-27 Gerard James Schoeb Indirect daylighting device
US10047923B2 (en) 2010-11-15 2018-08-14 Tubelite, Inc. Indirect daylighting device
US9557023B2 (en) * 2010-11-15 2017-01-31 Tubelite, Inc. Indirect daylighting device
AU2011372144B2 (en) * 2011-06-27 2015-11-26 Ko Muroi Architectural structure
US9127468B2 (en) * 2011-06-27 2015-09-08 Ko Muroi Building
US20140157690A1 (en) * 2011-06-27 2014-06-12 Ko Muroi Building
WO2013136276A1 (en) 2012-03-15 2013-09-19 Artigianfer Di Virgilio Cardelli S.R.L. Greenhouse and system for generating electrical energy and greenhouse cultivation
ITFI20120056A1 (en) * 2012-03-15 2013-09-16 Artigianfer Di Virgilio Cardelli S R L "GREENHOUSE AND SYSTEM FOR THE PRODUCTION OF ELECTRICITY AND CULTIVATION IN GREENHOUSE"
US20160113214A1 (en) * 2013-05-13 2016-04-28 Otkrytoe Aktsionernoe Obschestov "Kontsern "Promyshlenno-Investitsionny Kapital" Solar bio-greenhouse
NL2011048C2 (en) * 2013-06-27 2015-01-05 Mamadeus Invest B V Novel building concept.
US20150052675A1 (en) * 2013-08-22 2015-02-26 Steven Desmelyk Greenhouse Outdoor Shower
US20170025988A1 (en) * 2014-04-01 2017-01-26 Noah House Kft. Mobile house utilising renewable energy
US10420249B2 (en) 2014-06-27 2019-09-17 Amazon Technologies, Inc. Deployable barrier for data center
US10154611B2 (en) * 2014-06-27 2018-12-11 Amazon Technologies, Inc. Deployable barrier for data center
JP2016050414A (en) * 2014-08-29 2016-04-11 旭化成ホームズ株式会社 Apartment house
WO2016126198A1 (en) * 2015-02-05 2016-08-11 Skanska Sverige Ab Green indoor cultivation
EP3253195A4 (en) * 2015-02-05 2018-10-17 Skanska Sverige AB Green indoor cultivation
US10426103B2 (en) * 2015-02-24 2019-10-01 Gaïa Écosystèmes Inc. Multilevel closed ecosystem greenhouse
US9970208B2 (en) * 2016-07-15 2018-05-15 Morgan Arena Irons Ecological system model for a self-sustaining and resilient human habitation on the Moon and Mars and for food security and climate change mitigation anywhere on Earth
CN106884477A (en) * 2017-04-25 2017-06-23 江苏沪宁钢机股份有限公司 A kind of stable type different formed steel construction building and its construction technology
CN107155837A (en) * 2017-06-27 2017-09-15 王磊 Collect the method and system that nature condensate and rainwater supply water to vegetation
USD855828S1 (en) * 2017-10-03 2019-08-06 Sea Top Homes Ltd. Marine residential unit
CN108442455A (en) * 2018-05-11 2018-08-24 张寅� Dew collection device
US11885124B2 (en) * 2018-07-11 2024-01-30 Veev Group, Inc. Prefabricated construction wall assembly
US20210148115A1 (en) * 2018-07-11 2021-05-20 Veev Group, Inc. Prefabricated construction wall assembly
USD859689S1 (en) * 2018-07-24 2019-09-10 Nino R. Vaghi Foundation Combination parking structure and train station
EP4035261A4 (en) * 2019-09-23 2023-06-21 Three Sixty Solar Ltd. Solar tower
US20220196295A1 (en) * 2020-12-17 2022-06-23 Hamilton Sundstrand Corporation Extraplanetary heat exchanger
US20230097951A1 (en) * 2021-09-29 2023-03-30 University Of Seoul Industry Cooperation Foundation Greenhouse-linked air conditioning system and air conditioning method using the same
WO2023078045A1 (en) * 2021-11-02 2023-05-11 江苏凯伦建材股份有限公司 Water collecting tank and water collecting tank assembly
CN114673384A (en) * 2022-03-22 2022-06-28 中国建筑第二工程局有限公司 Multifunctional energy-saving exhibition hall building

Also Published As

Publication number Publication date
US8371073B2 (en) 2013-02-12

Similar Documents

Publication Publication Date Title
US8371073B2 (en) Building with integrated natural systems
Erell Roof cooling techniques: a design handbook
US7757490B2 (en) Power generation from solar and waste heat
US20050138867A1 (en) Multifunctional tridimensional combined green building
Elgizawy The effect of green facades in landscape ecology
CN103842598B (en) Building
Gupta et al. Energy efficiency in buildings
US4331128A (en) Climate-controlled building
CN105275224A (en) Mountain villa
KR20100106040A (en) An eco-friendly prefabricated house designed ro promote health
Sabeh Rooftop plant production systems in urban areas
CN1856646B (en) Energy transfering system used for combining with building
Strumiłło Sustainable city-green walls and roofs as ecological solution
US8500996B1 (en) Self sustaining vegetated roof for harvesting and recycling rain water
CN211973813U (en) Energy-saving building
Papadopoulou Green Walls as element of bioclimatic design in Mediterranean Urban Buildings
RU2630317C2 (en) Modular building with enhanced consumer properties
CN1309216A (en) Design and construction for planting on roof
Modirrousta et al. Necessity and methods of designing green buildings in cities and its effect on energy efficiency
KR20140042590A (en) Device having base for planting plants and self-supporting type green system using the same
KR101251616B1 (en) Energy save country house use greenhouse
Arbona et al. Nature's technology: The fab tree hab house
XUAN Use greenhouse buffer space strategy to build a sustainable rooftop neighborhood. Retrofitting of a social house design in Giudecca, Venice
Chakraborty Passive Design Strategies for Affordable Housing in Indian Tropical Regions
ElHussieny Design Solutions and Architectural Treatments to Achieve Thermal Comfort in the Interior Space of the Building

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICHAEL FULLER ARCHITECTS, PC, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FULLER, MICHAEL B.;REEL/FRAME:024053/0764

Effective date: 20100226

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: SMALL ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20210212