US20110268446A1 - Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods - Google Patents

Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods Download PDF

Info

Publication number
US20110268446A1
US20110268446A1 US12/892,424 US89242410A US2011268446A1 US 20110268446 A1 US20110268446 A1 US 20110268446A1 US 89242410 A US89242410 A US 89242410A US 2011268446 A1 US2011268446 A1 US 2011268446A1
Authority
US
United States
Prior art keywords
communications
downlink
uplink
optical
electrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/892,424
Inventor
William P. Cune
Michael Sauer
Wolfgang Gottfried Tobias Schweiker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Research and Development Corp
Original Assignee
Corning Optical Communications LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Optical Communications LLC filed Critical Corning Optical Communications LLC
Priority to US12/892,424 priority Critical patent/US20110268446A1/en
Assigned to CORNING CABLE SYSTEMS LLC reassignment CORNING CABLE SYSTEMS LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CUNE, WILLIAM P., SAUER, MICHAEL, SCHWEIKER, WOLFGANG GOTTFRIED TOBIAS
Priority to CN201180024499.4A priority patent/CN102918924B/en
Priority to PCT/US2011/034738 priority patent/WO2011139942A1/en
Priority to CN201610029179.2A priority patent/CN105577282B/en
Priority to EP11721160A priority patent/EP2567592A1/en
Publication of US20110268446A1 publication Critical patent/US20110268446A1/en
Priority to US13/785,603 priority patent/US9042732B2/en
Priority to US14/711,306 priority patent/US9270374B2/en
Priority to US15/049,913 priority patent/US20160173201A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0298Wavelength-division multiplex systems with sub-carrier multiplexing [SCM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0005Switch and router aspects
    • H04Q2011/0007Construction
    • H04Q2011/0016Construction using wavelength multiplexing or demultiplexing

Definitions

  • the technology of the disclosure relates to optical fiber-based distributed communications systems for distributing radio frequency (RF) signals over optical fiber.
  • RF radio frequency
  • Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication.
  • WiFi wireless fidelity
  • WLANs wireless local area networks
  • Distributed communications systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.
  • Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide distributed communications system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include increased bandwidth.
  • Radio-over-Fiber utilizes RF signals sent over optical fibers.
  • Such systems can include a head-end station optically coupled to a plurality of remote antenna units that each provides antenna coverage areas.
  • the remote antenna units can each include RF transceivers coupled to an antenna to transmit RF signals wirelessly, wherein the remote antenna units are coupled to the head-end station via optical fiber links.
  • the RF transceivers in the remote antenna units are transparent to the RF signals.
  • the remote antenna units convert incoming optical RF signals from an optical fiber downlink to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver.
  • O/E optical-to-electrical
  • the RF transceiver converts the electrical RF signals to electromagnetic signals via antennas coupled to the RF transceiver provided in the remote antenna units.
  • the antennas also receive electromagnetic signals (i.e., electromagnetic radiation) from clients in the antenna coverage area and convert them to electrical RF signals (i.e., electrical RF signals in wire).
  • the remote antenna units then convert the electrical RF signals to optical RF signals via electrical-to-optical (E/O) converters.
  • the optical RF signals are then sent over an optical fiber uplink to the head-end station.
  • Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services.
  • the RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example.
  • Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services.
  • digital data services can be distributed over common optical fiber with RF communication services.
  • digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM).
  • WDM wavelength-division multiplexing
  • FDM frequency-division multiplexing
  • Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.
  • a distributed antenna system for distributing RF communications and digital data services (DDS) to at least one remote antenna unit (RAU) is provided.
  • the distributed antenna system includes a head-end unit (HEU).
  • the HEU is configured to receive at least one downlink electrical RF communications signal.
  • the HEU is also configured to convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU.
  • the HEU is also configured to receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU.
  • the HEU is also configured to convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal.
  • the distributed antenna system also includes a DDS controller.
  • the DDS controller is configured to receive at least one downlink optical digital signal containing at least one DDS, and provide the at least one downlink optical digital signal over at least one second communications downlink to the at least one R
  • a method of distributing RF communications and DDS to at least one RAU in a distributed antenna system includes receiving at an HEU at least one downlink electrical RF communications signal. The method also includes converting the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU. The method also includes receiving at the HEU at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU. The method also includes converting the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal. The method also includes receiving at a DDS controller at least one downlink optical digital signal containing at least one DDS, and providing the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.
  • an RAU for use in a distributed antenna system.
  • the RAU includes an optical-to-electrical (O-E) converter configured to convert received downlink optical RF communications signals to downlink electrical RF communications signals and provide the downlink electrical RF communications signals at least one first port.
  • the RAU also includes an electrical-to-optical (E-O) converter configured to convert uplink electrical RF communications signals received from the at least one first port into uplink optical RF communications signals.
  • the RAU also includes a DDS interface coupled to at least one second port. The DDS interface is configured to convert downlink optical digital signals into downlink electrical digital signals to provide to the at least one second port, and convert uplink electrical digital signals received from the at least one second port into uplink optical digital signals.
  • FIG. 1 is a schematic diagram of an exemplary optical fiber-based distributed communications system
  • FIG. 2 is a more detailed schematic diagram of an exemplary head-end unit (HEU) and a remote antenna unit (RAU) that can be deployed in the optical fiber-based distributed communications system of FIG. 1 ;
  • HEU head-end unit
  • RAU remote antenna unit
  • FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the optical fiber-based distributed communications system in FIG. 1 can be employed;
  • FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over downlink and uplink optical fibers separate from optical fibers providing radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system;
  • RF radio frequency
  • FIG. 5 is a diagram of an exemplary head-end media converter (HMC) employed in the optical fiber-based distributed communications system of FIG. 4 containing digital media converters (DMCs) configured to convert electrical digital signals to optical digital signals and vice versa;
  • HMC head-end media converter
  • DMCs digital media converters
  • FIG. 6 is a diagram of exemplary DMCs employed in the HMC of FIG. 5 ;
  • FIG. 7 is a schematic diagram of an exemplary building infrastructure in which digital data services and RF communication services are provided in an optical fiber-based distributed communications system;
  • FIG. 8 is a schematic diagram of an exemplary RAU that can be employed in an optical fiber-based distributed communications system providing exemplary digital data services and RF communication services;
  • FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communication services to RAUs in an optical fiber-based distributed communications system;
  • FIG. 10A is a schematic diagram of an exemplary embodiment of employing wavelength-division multiplexing (WDM) to multiplex digital data services and RF communication services at different wavelengths over downlink and uplink optical fibers in an optical fiber-based distributed communications system;
  • WDM wavelength-division multiplexing
  • FIG. 10B is a schematic diagram of an exemplary embodiment of employing WDM to multiplex uplink and downlink communications for each channel over a common optical fiber;
  • FIG. 11 is a schematic diagram of another exemplary embodiment of employing WDM in a co-located HEU and HMC to multiplex digital data services and RF communication services at different wavelengths over common downlink optical fibers and common uplink optical fibers in an optical fiber-based distributed communications system;
  • FIG. 12 is a schematic diagram of another exemplary embodiment of employing WDM in a common housing HEU and MC to multiplex digital data services and RF communication services at different wavelengths over a common downlink optical fiber and a common uplink optical fiber in an optical fiber-based distributed communications system;
  • FIG. 13 is a schematic diagram of another exemplary embodiment of employing frequency-division multiplexing (FDM) to multiplex digital data services and RF communication services at different frequencies over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system; and
  • FDM frequency-division multiplexing
  • FIG. 14 is a schematic diagram of another exemplary embodiment of employing FDM and WDM to multiplex digital data services and RF communication services at different frequencies and at different wavelengths over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system.
  • Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services.
  • the RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example.
  • client devices such as remote antenna units for example.
  • digital data services include Ethernet, WLAN, Worldwide Interoperability for Microwave Access (WiMax), Wireless Fidelity (WiFi), Digital Subscriber Line (DSL), and Long Term Evolution (LTE), etc.
  • Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services.
  • digital data services can be distributed over common optical fiber with RF communication services.
  • digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM).
  • WDM wavelength-division multiplexing
  • FDM frequency-division multiplexing
  • Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.
  • FIG. 4 an exemplary optical fiber-based distributed communications system that provides RF communication services without providing digital data services is described with regard to FIGS. 1-3 .
  • FIG. 4 Various embodiments of additionally providing digital data services in conjunction with RF communication services in optical fiber-based distributed communications systems starts at FIG. 4 .
  • FIG. 1 is a schematic diagram of an embodiment of an optical fiber-based distributed communications system.
  • the system is an optical fiber-based distributed communications system 10 that is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the radio frequency (RF) range of the antenna coverage areas.
  • the optical fiber-based distributed communications system 10 provides RF communications service (e.g., cellular services).
  • the optical fiber-based distributed communications system 10 includes a head-end unit (HEU) 12 , one or more remote antenna units (RAUs) 14 , and an optical fiber 16 that optically couples the HEU 12 to the RAU 14 .
  • HEU head-end unit
  • RAUs remote antenna units
  • the HEU 12 is configured to receive communications over downlink electrical RF signals 18 D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14 .
  • the HEU 12 is also configured to return communications received from the RAU 14 , via uplink electrical RF signals 18 U, back to the source or sources.
  • the optical fiber 16 includes at least one downlink optical fiber 16 D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16 U to carry signals communicated from the RAU 14 back to the HEU 12 .
  • the optical fiber-based distributed communications system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14 .
  • the antenna coverage area 20 of the RAU 14 forms an RF coverage area 21 .
  • the HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency (RF) identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service.
  • RFID radio frequency identification
  • WLAN wireless local-area network
  • cellular phone service Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example.
  • the client device 24 can be any device that is capable of receiving RF communication signals.
  • the client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.
  • the HEU 12 includes an electrical-to-optical (E/O) converter 28 .
  • the E-O converter 28 converts the downlink electrical RF signals 18 D to downlink optical RF signals 22 D to be communicated over the downlink optical fiber 16 D.
  • the RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22 D back to electrical RF signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20 .
  • O/E optical-to-electrical
  • the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20 .
  • the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the RAU 14 .
  • the E-O converter 34 converts the electrical RF signals into uplink optical RF signals 22 U to be communicated over the uplink optical fiber 16 U.
  • An O/E converter 36 provided in the HEU 12 converts the uplink optical RF signals 22 U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18 U back to a network or other source.
  • the HEU 12 in this embodiment is not able to distinguish the location of the client devices 24 in this embodiment.
  • the client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14 .
  • FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber-based distributed communications system of FIG. 1 that provides electrical RF service signals for a particular RF service or application.
  • the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39 .
  • this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF signal frequencies are possible.
  • the service unit 37 provides electrical RF service signals by generating the signals directly.
  • the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20 .
  • the service unit 37 is electrically coupled to the E-O converter 28 that receives the downlink electrical RF signals 18 D from the service unit 37 and converts them to corresponding downlink optical RF signals 22 D.
  • the E-O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser.
  • suitable lasers for the E-O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).
  • the HEU 12 also includes the O-E converter 36 , which is electrically coupled to the service unit 37 .
  • the O-E converter 36 receives the uplink optical RF signals 22 U and converts them to corresponding uplink electrical RF signals 18 U.
  • the O-E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier.
  • the E-O converter 28 and the O-E converter 36 constitute a “converter pair” 35 , as illustrated in FIG. 2 .
  • the service unit 37 in the HEU 12 can include an RF signal modulator/demodulator unit 40 for modulating/demodulating the downlink electrical RF signals 18 D and the uplink electrical RF signals 18 U, respectively.
  • the service unit 37 can include a digital signal processing unit (“digital signal processor”) 42 for providing to the RF signal modulator/demodulator unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF signal 18 D.
  • the digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF signal 18 U by the RF signal modulator/demodulator unit 40 .
  • the HEU 12 can also include an optional central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.
  • CPU central processing unit
  • the RAU 14 also includes a converter pair 48 comprising the O-E converter 30 and the E-O converter 34 .
  • the O-E converter 30 converts the received downlink optical RF signals 22 D from the HEU 12 back into downlink electrical RF signals 50 D.
  • the E-O converter 34 converts uplink electrical RF signals 50 U received from the client device 24 into the uplink optical RF signals 22 U to be communicated to the HEU 12 .
  • the O-E converter 30 and the E-O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52 , such as a circulator for example.
  • the RF signal-directing element 52 serves to direct the downlink electrical RF signals 50 D and the uplink electrical RF signals 50 U, as discussed below.
  • the antenna 32 can include one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “Centralized Optical Fiber-Based Wireless Picocellular Systems and Methods,” both of which are incorporated herein by reference in their entireties.
  • the optical fiber-based distributed communications system 10 also includes a power supply 54 that generates an electrical power signal 56 .
  • the power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein.
  • an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O-E converter 30 and the E-O converter 34 in the converter pair 48 , the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided.
  • the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14 .
  • the DC power converter 64 is electrically coupled to the O-E converter 30 and the E-O converter 34 in the converter pair 48 , and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14 .
  • the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58 .
  • the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12 .
  • the electrical power line 58 includes more than two wires and carries multiple voltages.
  • FIG. 3 is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed communications system.
  • the system may be the optical fiber-based distributed communications system 10 of FIGS. 1 and 2 .
  • the building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed communications system 10 can be deployed.
  • the optical fiber-based distributed communications system 10 incorporates the HEU 12 to provide various types of communication services to coverage areas within the building infrastructure 70 , as an example.
  • the optical fiber-based distributed communications system 10 in this embodiment is configured to receive wireless RF signals and convert the RF signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14 .
  • the optical fiber-based distributed communications system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70 .
  • These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.
  • the building infrastructure 70 in this embodiment includes a first (ground) floor 72 , a second floor 74 , and a third floor 76 .
  • the floors 72 , 74 , 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70 . Only the ceilings of the floors 72 , 74 , 76 are shown in FIG. 3 for simplicity of illustration.
  • a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70 .
  • Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80 .
  • the main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16 D, 16 U to and from the HEU 12 .
  • the riser cable 84 may be routed through an interconnect unit (ICU) 85 .
  • the ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2 .
  • the ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58 , as illustrated in FIG. 2 and discussed above, provided inside an array cable 87 and distributed with the downlink and uplink optical fibers 16 D, 16 U to the RAUs 14 .
  • the main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16 D, 16 U, along with an electrical power line, to a number of optical fiber cables 86 .
  • MC multi-cable
  • the main cable 82 enables multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72 , 74 , 76 ) to provide the antenna coverage areas 80 for the first, second and third floors 72 , 74 and 76 .
  • the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment the HEU 12 may be located outside of the building infrastructure 70 at a remote location.
  • a base transceiver station (BTS) 88 which may be provided by a second party such as a cellular service provider, is connected to the HEU 12 , and can be co-located or located remotely from the HEU 12 .
  • a BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12 .
  • a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage.
  • Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station.
  • Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.
  • the optical fiber-based distributed communications system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14 .
  • Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications.
  • the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12 .
  • the downlink and uplink optical fibers may be provided in the optical fiber 16 .
  • Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG.
  • RAUs 14 installed on a given floor 72 , 74 , or 76 may be serviced from the same optical fiber 16 .
  • the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14 .
  • Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services.
  • Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, DSL, and LTE, etc.
  • Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet.
  • Example of digital data devices include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells.
  • WAPs wireless access points
  • RRHs remote radio heads
  • BBUs baseband units
  • femtocells femtocells.
  • a separate digital data services network can be provided to provide digital data services to digital data devices.
  • embodiments disclosed herein provide optical fiber-based distributed communications systems that support both RF communication services and digital data services.
  • the RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example.
  • Digital data services can be distributed over optical fiber separate from the optical fiber distributing RF communication services.
  • digital data services can be both distributed over common optical fiber with RF communication services in an optical fiber-based distributed communications system.
  • digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM).
  • WDM wavelength-division multiplexing
  • FDM frequency-division multiplexing
  • FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system 90 .
  • the optical fiber-based distributed communications system 90 includes some optical communication components provided in the optical fiber-based distributed communications system 10 of FIGS. 1-3 . These common components are illustrated in FIG. 4 with common element numbers with FIGS. 1-3 .
  • the HEU 12 is provided.
  • the HEU 12 receives the downlink electrical RF signals 18 D from the BTS 88 .
  • the HEU 12 converts the downlink electrical RF signals 18 D to downlink optical RF signals 22 D to be distributed to the RAUs 14 .
  • the HEU 12 is also configured to convert the uplink optical RF signals 22 U received from the RAUs 14 into uplink electrical RF signals 18 U to be provided to the BTS 88 and on to a network 93 connected to the BTS 88 .
  • a patch panel 92 may be provided to receive the downlink and uplink optical fibers 16 D, 16 U configured to carry the downlink and uplink optical RF signals 22 D, 22 U.
  • the downlink and uplink optical fibers 16 D, 16 U may be bundled together in one or more riser cables 84 and provided to one or more ICU 85 , as previously discussed and illustrated in FIG. 3 .
  • a digital data service controller in the form of a head-end media converter (HMC) 94 in this example is provided.
  • the DDS controller 94 can include only a media converter for provision media conversion functionality or can include additional functionality to facilitate digital data services.
  • a DDS controller is a controller configured to provide digital data services over a communications link, interface, or other communications channel or line, which may be either wired, wireless, or a combination of both.
  • FIG. 5 illustrates an example of the HMC 94 .
  • the HMC 94 includes a housing 95 configured to house digital media converters (DMCs) 97 to interface to a digital data services switch 96 to support and provide digital data services.
  • DMCs digital media converters
  • the digital data services switch 96 could be an Ethernet switch.
  • the digital data services switch 96 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example.
  • the DMCs 97 are configured to convert electrical digital signals to optical digital signals, and vice versa.
  • the DMCs 97 may be configured for plug and play installation (i.e., installation and operability without user configuration required) into the HMC 94 .
  • FIG. 6 illustrates an exemplary DMC 97 that can be disposed in the housing 95 of the HMC 94 .
  • the DMC 97 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., LC, SC, ST, MTP).
  • the HMC 94 (via the DMCs 97 ) in this embodiment is configured to convert downlink electrical digital signals (or downlink electrical digital data services signals) 98 D over digital line cables 99 from the digital data services switch 96 into downlink optical digital signals (or downlink optical digital data services signals) 100 D that can be communicated over downlink optical fiber 102 D to RAUs 14 .
  • the HMC 94 (via the DMCs 97 ) is also configured to receive uplink optical digital signals 100 U from the RAUs 14 via the uplink optical fiber 102 U and convert the uplink optical digital signals 100 U into uplink electrical digital signals 98 U to be communicated to the digital data services switch 96 .
  • the digital data services can be provided over optical fiber as part of the optical fiber-based distributed communications system 90 to provide digital data services in addition to RF communication services.
  • Client devices located at the RAUs 94 can access these digital data services and/or RF communication services depending on their configuration.
  • FIG. 7 illustrates the building infrastructure 70 of FIG. 3 , but with illustrative examples of digital data services and digital client devices that can be provided to client devices in addition to RF communication services in the optical fiber-based distributed communications system 90 .
  • exemplary digital data services include WLAN 106 , femtocells 108 , gateways 110 , baseband units (BBU) 112 , remote radio heads (RRH) 114 , and servers 116 .
  • BBU baseband units
  • RRH remote radio heads
  • the downlink and uplink optical fibers 102 D, 102 U are provided in a fiber optic cable 104 that is interfaced to the ICU 85 .
  • the ICU 85 provides a common point in which the downlink and uplink optical fibers 102 D, 102 U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16 U, 16 D carrying RF optical signals.
  • One or more of the fiber optic cables 104 also referenced herein as array cables 104 , can be provided containing the downlink and uplink optical fibers 16 D, 16 U for RF communication services and downlink and uplink optical fibers 102 D, 102 U for digital data services to be routed and provided to the RAUs 14 . Any combination of services or types of optical fibers can be provided in the array cable 104 .
  • the array cable 104 may include single mode and/or multi-mode optical fibers for RF communication services and/or digital data services.
  • ICUs that may be provided in the optical fiber-based distributed communications system 90 to distribute both downlink and uplink optical fibers 16 D, 16 U for RF communication services and downlink and uplink optical fibers 102 D, 102 U for digital data services are described in U.S. patent application Ser. No. 12/466,514 filed on May 15, 2009 and entitled “Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,” incorporated herein by reference in its entirety, and U.S. Provisional Patent Application Ser. No.
  • some RAUs 14 can be connected to access points (APs) 118 or other devices supporting digital data services.
  • APs 118 are illustrated, but the APs 118 could be any other device supporting digital data services.
  • the APs 118 provide access to the digital data services provided by the digital data services switch 96 .
  • the downlink and uplink optical fibers 102 D, 102 U carrying downlink and uplink optical digital signals 100 D, 100 U converted from downlink and uplink electrical digital signals 98 D, 98 U from the digital data services switch 96 are provided to the APs 118 via the array cables 104 and RAUs 14 .
  • Digital data client devices can access the APs 118 to access digital data services provided through the digital data services switch 96 .
  • Digital data service clients such as APs, require power to operate and to receive digital data services.
  • power distributed to the RAUs in the optical fiber-based distributed communications system can also be used to provide access to power for digital data service clients. This may be a convenient method of providing power to digital data service clients as opposed to providing separate power sources for digital data service clients.
  • power distributed to the RAUs 14 in FIG. 4 by or through the ICU 85 can also be used to provide power to the APs 118 located at RAUs 14 in the optical fiber-based distributed communications system 90 .
  • the ICUs 85 may be configured to provide power for both RAUs 14 and the APs 118 .
  • a power supply may be located within the ICU 85 , but could also be located outside of the ICU 85 and provided over an electrical power line 120 , as illustrated in FIG. 4 .
  • the ICU 85 may receive either alternating current (AC) or direct current (DC) power.
  • the ICU 85 may receive 110 Volts (V) to 240V AC or DC power.
  • the ICU 85 can be configured to produce any voltage and power level desired. The power level is based on the number of RAUs 14 and the expected loads to be supported by the RAUs 14 and any digital devices connected to the RAUs 14 in FIG. 4 . It may further be desired to provide additional power management features in the ICU 85 . For example, one or more voltage protection circuits may be provided.
  • FIG. 8 is a schematic diagram of exemplary internal components in the RAU 14 of FIG. 4 to further illustrate how the downlink and uplink optical fibers 16 D, 16 D for RF communications, the downlink and uplink optical fibers 102 D, 102 U for digital data services, and electrical power are provided to the RAU 14 and can be distributed therein.
  • the array cable 104 is illustrated that contains the downlink and uplink optical fibers 16 D, 16 D for RF communications, the downlink and uplink optical fibers 102 D, 102 U for digital data services, and the electrical power line 58 (see also, FIG. 2 ) carrying power from the ICU 85 .
  • the electrical power line 58 may comprise two wires 60 , 62 , which may be copper lines for example.
  • the downlink and uplink optical fibers 16 D, 16 U for RF communications, the downlink and uplink optical fibers 102 D, 102 U for digital data services, and the electrical power line 58 come into a housing 124 of the RAU 14 .
  • the downlink and uplink optical fibers 16 D, 16 U for RF communications are routed to the O-E converter 30 and E-O converter 34 , respectively, and to the antenna 32 , as also illustrated in FIG. 2 and previously discussed.
  • the downlink and uplink optical fibers 102 D, 102 U for digital data services are routed to a digital data services interface 126 provided as part of the RAU 14 to provide access to digital data services via a port 128 , which will be described in more detail below.
  • the electrical power line 58 carries power that is configured to provide power to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126 .
  • the electrical power line 58 is coupled to a voltage controller 130 that regulates and provides the correct voltage to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126 and other circuitry in the RAU 14 .
  • the digital data services interface 126 is configured to convert downlink optical digital signals 100 D on the downlink optical fiber 102 D into downlink electrical digital signals 132 D that can be accessed via the port 128 .
  • the digital data services interface 126 is also configured to convert uplink electrical digital signals 132 U received through the port 128 into uplink optical digital signals 100 U to be provided back to the HMC 94 (see FIG. 4 ).
  • a media converter 134 is provided in the digital data services interface 126 to provide these conversions.
  • the media converter 134 contains an O-E digital converter 136 to convert downlink optical digital signals 100 D on the downlink optical fiber 102 D into downlink electrical digital signals 132 D.
  • the media converter 134 also contains an E-O digital converter 138 to convert uplink electrical digital signals 132 U received through the port 128 into uplink optical digital signals 100 U to be provided back to the HMC 94 .
  • power from the electrical power line 58 is provided to the digital data services interface 126 to provide power to the O-E digital converter 136 and E-O digital converter 138 .
  • a power interface 140 is also provided in the digital data services interface 126 , as illustrated in FIG. 8 .
  • the power interface 140 is configured to receive power from the electrical power line 58 via the voltage controller 130 and to also make power accessible through the port 128 . In this manner, if a client device contains a compatible connector to connect to the port 128 , not only will digital data services be accessible, but power from the electrical power line 58 can also be accessed through the same port 128 .
  • the power interface 140 could be coupled to a separate port from the port 128 for digital data services.
  • the power interface 140 could be provided as a Power-over-Ethernet (PoE) interface.
  • the port 128 could be configured to receive a RJ-45 Ethernet connector compatible with PoE as an example. In this manner, an Ethernet connector connected into the port 128 would be able to access both Ethernet digital data services to and from the downlink and uplink optical fibers 102 D, 102 U to the HMC 94 as well as access power distributed by the ICU 85 over the array cable 104 provided by the electrical power line 58 .
  • the HEU 12 could include low level control and management of the media converter 134 using communication supported by the HEU 12 .
  • the media converter 134 could report functionality data (e.g., power on, reception of optical digital data, etc.) to the HEU 12 over the uplink optical fiber 16 U that carries communication services.
  • the RAU 14 can include a microprocessor that communicates with the media converter 134 to receive this data and communicate this data over the uplink optical fiber 16 U to the HEU 12 .
  • FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system configured to provide RF communication services.
  • FIG. 9 provides an optical fiber-based distributed communications system 150 .
  • the optical fiber-based distributed communications system 150 may be similar to and include common components provided in the optical fiber-based distributed communications system 90 in FIG. 4 .
  • the HMC 94 is co-located with the HEU 12 .
  • the downlink and uplink optical fibers 102 D, 102 U for providing digital data services from the digital data services switch 96 are also connected to the patch panel 92 .
  • the downlink and uplink optical fibers 16 D, 16 U for RF communications and the downlink and uplink optical fibers 102 D, 102 U for digital data services are then routed to the ICU 85 , similar to FIG. 2 .
  • the downlink and uplink optical fibers 16 D, 16 U for RF communications, and the downlink and uplink optical fibers 102 D, 102 U for digital data services, may be provided in a common fiber optic cable or provided in separate fiber optic cables.
  • standalone media converters (MCs) 141 may be provided separately from the RAUs 14 in lieu of being integrated with RAUs 14 , as illustrated in FIG. 4 .
  • the stand alone MCs 141 can be configured to contain the same components as provided in the digital data services interface 126 in FIG. 8 , including the media converter 134 .
  • the APs 118 may also each include antennas 152 to provide wireless digital data services in lieu of or in addition to wired services through the port 128 through the RAUs 14 .
  • FIG. 10A is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system.
  • FIG. 10A provides an optical fiber-based distributed communications system 160 .
  • the optical fiber-based distributed communications system 160 may be similar to and include common components provided in the optical fiber-based distributed communications systems 90 , 150 in FIGS. 4 and 9 .
  • wavelength-division multiplexing is employed to multiplex digital data services and RF communication services together at different wavelengths over downlink and uplink optical fibers 162 D( 1 -N), 162 U( 1 -N) in the optical fiber-based distributed communications system 160 .
  • “ 1 -N” downlink and uplink optical fiber pairs are provided to the ICU 85 to be distributed to the RAUs 14 and stand alone MCs 141 . Multiplexing could be used to further reduce the cost for the digital data services overlay.
  • WDM digital data signals are transmitted on the same optical fibers as the RF communication signals, but on different wavelengths. Separate media conversion and WDM filters at the transmit locations and at the receive locations (e.g., HMC 96 and RAUs 14 ) would be employed to receive signals at the desired wavelength.
  • the HMC 94 and HEU 12 are co-located in the optical fiber-based distributed communications system 160 in FIG. 10A .
  • a plurality of wavelength-division multiplexers 164 ( 1 )- 164 (N) are provided that each multiplex the downlink optical RF signal(s) 22 D for RF communications and the downlink optical digital signal(s) 100 D for digital data services together on a common downlink optical fiber(s) 162 D( 1 -N).
  • a plurality of wavelength-division de-multiplexers 168 ( 1 )- 168 (N) are provided that each de-multiplex the uplink optical RF signal(s) 22 U from the uplink optical digital signal(s) 100 U from a common uplink optical fiber(s) 162 U( 1 -N) to provide the uplink optical RF signals 22 U to the HEU 12 and the uplink optical digital signal 100 U to the HMC 94 .
  • Wavelength-division de-multiplexing (WDD) and WDM are also employed in the RAUs 14 to de-multiplex multiplexed downlink optical RF signals 22 D and downlink optical digital signals 100 D on the common downlink optical fibers 162 D( 1 -N) and to multiplex uplink optical RF signals 22 U and uplink optical digital signals 100 U on the common uplink optical fibers 162 U( 1 -N).
  • FIG. 10B is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system 160 ′.
  • the optical fiber-based distributed communications system 160 ′ in FIG. 10B is the same as the optical fiber-based distributed communications system 160 in FIG. 10A , except that WDM is employed to multiplex uplink and downlink communication services at different wavelengths over common optical fiber that includes both downlink and uplink optical fibers 162 D( 1 -N), 162 U( 1 -N),
  • FIG. 11 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system.
  • an optical fiber-based distributed communications system 170 is provided that can also deliver digital data services.
  • a wavelength-division multiplexer 172 is provided instead of wavelength-division multiplexing the downlink optical RF signal(s) 22 D for RF communications with the downlink optical digital signal(s) 100 D for digital data services together on a common downlink optical fiber(s) 162 D( 1 -N) as provided in FIG. 10A .
  • the wavelength-division multiplexer 172 multiplexes all downlink optical RF signals 22 D with all downlink optical digital signal 100 D to a single downlink optical fiber 174 D.
  • a wavelength-division de-multiplexer 176 is provided to de-multiplex all uplink optical RF signals 22 U from all uplink optical digital signals 100 U from the common uplink optical fiber 174 U at the desired wavelength.
  • a wavelength-division de-multiplexer 175 and a wavelength-division multiplexer 177 are also employed in the ICU 85 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22 D and uplink optical digital signals 100 U on the common downlink optical fiber 174 D, and to wavelength-division multiplex uplink optical RF signals 22 U and uplink optical digital signals 100 U on the common uplink optical fiber 174 U, respectively.
  • WDD and WDM could also be employed in the RAUs 14 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22 D and downlink optical digital signals 100 D on the common downlink optical fiber 174 D, and to wavelength-division multiplex uplink optical RF signals 22 U and uplink optical digital signals 100 U on the common uplink optical fiber 174 U.
  • de-multiplexing at the RAUs 14 could be done where a common WDM signal would be distributed from RAU 14 to RAU 14 in a daisy-chain configuration.
  • optical splitters could be employed at break-out points in the fiber optic cable 104 .
  • FIG. 12 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system.
  • an optical fiber-based distributed communications system 180 is provided that can also deliver digital data services.
  • the optical fiber-based distributed communications system 180 is the same as the optical fiber-based distributed communications system 170 in FIG. 11 , except that the HEU 12 and HMC 94 are provided in a common housing 182 that also houses the wavelength-division multiplexer 172 and wavelength-division de-multiplexer 176 .
  • a plurality of wavelength-division multiplexers and plurality of wavelength-division de-multiplexers like provided in FIG. 10A ( 164 ( 1 -N)) and 168 ( 1 -N)) can be provided in the common housing 182 .
  • FIG. 13 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system providing digital data services.
  • an optical fiber-based distributed communications system 190 is provided.
  • frequency-division multiplexing (FDM) is employed to multiplex digital data services and RF communication services at different frequencies over downlink optical fibers and uplink optical fibers.
  • FDM frequency-division multiplexing
  • E-O converters would be used simultaneously for converting RF communication signals and digital data signals into respective optical signals. Therefore, additional media converters for converting electrical digital signals to optical digital signals can be avoided to reduce complexity and save costs.
  • fast Ethernet e.g., 100 Megabits/second (Mbs)
  • Mbs Megabits/second
  • More than one (1) channel could be transmitted simultaneously in this frequency range.
  • the HEU 12 and HEC 94 are both disposed in the common housing 182 , as illustrated in FIG. 13 .
  • a plurality of frequency-division multiplexers 192 ( 1 -N) are provided in the common housing 182 and are each configured to multiplex the downlink electrical digital signal(s) 98 D with the downlink electrical RF signal(s) 18 D at different frequencies prior to optical conversion.
  • a common optical fiber downlink 194 D( 1 -N) can carry frequency-division multiplexed downlink optical RF signal 22 D and downlink optical digital signal 102 D on the same downlink optical fiber 194 D( 1 -N).
  • a plurality of frequency-division de-multiplexers 196 are provided in the common housing 182 to de-multiplex an uplink optical RF signal 22 U and an uplink optical digital signal 100 U on an uplink optical fiber 194 U( 1 -N).
  • Frequency-division de-multiplexing (FDD) and FDM are also employed in the RAUs 14 .
  • FDD is employed in the RAU 14 to de-multiplex frequency multiplexed downlink electrical RF signals 18 D and downlink electrical digital signals 98 D after being converted from optical signals from the common downlink optical fiber 174 D to electrical signals.
  • FDM is also provided in the RAU 14 to frequency multiplex uplink electrical signals in the RAU 14 before being converted to uplink optical RF signals 22 U and uplink optical digital signals 100 U provided on the common uplink optical fiber 174 U.
  • FIG. 14 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system that employs both WDM and FDM.
  • FIG. 14 illustrates an optical fiber-based distributed communications system 200 .
  • the optical fiber-based distributed communications system 200 employs the WDM and WDD of the optical fiber-based distributed communications system 180 of FIG. 12 combined with FDM and FDD of the optical fiber-based distributed communications system 190 of FIG. 13 .
  • the wavelength-division multiplexed and frequency-division multiplexed downlink signals are provided over downlink optical fiber 202 D.
  • the wavelength-division multiplexed and frequency-division multiplexed uplink signals are provided over uplink optical fiber 202 U.
  • a digital data services interface provided in an RAU or stand alone MC could include more than one digital data services port.
  • a switch 203 such as an Ethernet switch for example, may be disposed in the RAUs 14 to provide RAUs 14 that can support more than one digital data services port.
  • An HMC could have an integrated Ethernet switch so that, for example, several APs could be attached via cables (e.g., Cat 5/6/7 cables) in a star architecture.
  • the Ethernet channel could be used for control, management, and/or communication purposes for an optical fiber-based distributed communications system as well as the Ethernet media conversion layer.
  • the HMC could be either single channel or multi-channel (e.g., twelve (12) channel) solutions.
  • the multi-channel solution may be cheaper per channel than a single channel solution.
  • uplink and downlink electrical digital signals can be provided over mediums other than optical fiber, including electrical conducting wire and/or wireless communications, as examples.
  • Frequency up conversions or down conversions may be employed when providing FDM if RF communication signals have frequencies too close to the frequencies of the digital data signals to avoid interference. While digital baseband transmission of a baseband digital data signals below the spectrum of the RF communication signals can be considered, intermodulation distortion on the RF communication signals may be generated. Another approach is to up convert the digital data signals above the frequencies of the RF communication signals and also use, for example, a constant envelope modulation format for digital data signal modulation. Frequency Shift Keying (FSK) and Minimum Shift Keying (MSK) modulation are suitable examples for such modulation formats.
  • FSK Frequency Shift Keying
  • MSK Minimum Shift Keying
  • higher-level modulation formats can be considered to transmit high data rates (e.g., one (1) Gb, or ten (10) Gb) over the same optical fiber as the RF communication signals.
  • high data rates e.g., one (1) Gb, or ten (10) Gb
  • multiple solutions using single-carrier (with e.g., 8-FSK or 16-QAM as examples) or multi-carrier (OFDM) are conceivable.
  • fiber optic cables and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like.
  • the optical fibers disclosed herein can be single mode or multi-mode optical fibers.
  • other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals.
  • An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.

Abstract

Optical fiber-based distributed communications systems that provide and support both RF communication services and digital data services are disclosed herein. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. In certain embodiments, digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. In other embodiments, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.

Description

    RELATED APPLICATIONS
  • The present application claims priority to U.S. Provisional Patent Application No. 61/330,386 filed on May 2, 2010 entitled, “Providing Digital Data Services in Optical Fiber-based Distributed Radio Frequency (RF) Communications Systems, and Related Components and Methods,” which is incorporated herein by reference in its entirety.
  • The present application is related to U.S. Provisional Patent Application No. 61/330,385 filed on May 2, 2010 entitled, “Power Distribution in Optical Fiber-based Distributed Communications Systems Providing Digital Data and Radio Frequency (RF) Communications Services, and Related Components and Methods,” which is incorporated herein by reference in its entirety.
  • The present application is also related to U.S. Provisional Patent Application No. 61/330,383 filed on May 2, 2010 entitled, “Optical Fiber-based Distributed Communications Systems, and Related Components and Methods,” which is incorporated herein by reference in its entirety.
  • BACKGROUND
  • 1. Field of the Disclosure
  • The technology of the disclosure relates to optical fiber-based distributed communications systems for distributing radio frequency (RF) signals over optical fiber.
  • 2. Technical Background
  • Wireless communication is rapidly growing, with ever-increasing demands for high-speed mobile data communication. As an example, so-called “wireless fidelity” or “WiFi” systems and wireless local area networks (WLANs) are being deployed in many different types of areas (e.g., coffee shops, airports, libraries, etc.). Distributed communications systems communicate with wireless devices called “clients,” which must reside within the wireless range or “cell coverage area” in order to communicate with an access point device.
  • One approach to deploying a distributed communications system involves the use of radio frequency (RF) antenna coverage areas, also referred to as “antenna coverage areas.” Antenna coverage areas can have a radius in the range from a few meters up to twenty meters as an example. Combining a number of access point devices creates an array of antenna coverage areas. Because the antenna coverage areas each cover small areas, there are typically only a few users (clients) per antenna coverage area. This allows for minimizing the amount of RF bandwidth shared among the wireless system users. It may be desirable to provide antenna coverage areas in a building or other facility to provide distributed communications system access to clients within the building or facility. However, it may be desirable to employ optical fiber to distribute communication signals. Benefits of optical fiber include increased bandwidth.
  • One type of distributed communications system for creating antenna coverage areas, called “Radio-over-Fiber” or “RoF,” utilizes RF signals sent over optical fibers. Such systems can include a head-end station optically coupled to a plurality of remote antenna units that each provides antenna coverage areas. The remote antenna units can each include RF transceivers coupled to an antenna to transmit RF signals wirelessly, wherein the remote antenna units are coupled to the head-end station via optical fiber links. The RF transceivers in the remote antenna units are transparent to the RF signals. The remote antenna units convert incoming optical RF signals from an optical fiber downlink to electrical RF signals via optical-to-electrical (O/E) converters, which are then passed to the RF transceiver. The RF transceiver converts the electrical RF signals to electromagnetic signals via antennas coupled to the RF transceiver provided in the remote antenna units. The antennas also receive electromagnetic signals (i.e., electromagnetic radiation) from clients in the antenna coverage area and convert them to electrical RF signals (i.e., electrical RF signals in wire). The remote antenna units then convert the electrical RF signals to optical RF signals via electrical-to-optical (E/O) converters. The optical RF signals are then sent over an optical fiber uplink to the head-end station.
  • SUMMARY OF THE DETAILED DESCRIPTION
  • Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.
  • In one embodiment, a distributed antenna system for distributing RF communications and digital data services (DDS) to at least one remote antenna unit (RAU) is provided. The distributed antenna system includes a head-end unit (HEU). The HEU is configured to receive at least one downlink electrical RF communications signal. The HEU is also configured to convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU. The HEU is also configured to receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU. The HEU is also configured to convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal. The distributed antenna system also includes a DDS controller. The DDS controller is configured to receive at least one downlink optical digital signal containing at least one DDS, and provide the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.
  • In another embodiment, a method of distributing RF communications and DDS to at least one RAU in a distributed antenna system is provided. The method includes receiving at an HEU at least one downlink electrical RF communications signal. The method also includes converting the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU. The method also includes receiving at the HEU at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU. The method also includes converting the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal. The method also includes receiving at a DDS controller at least one downlink optical digital signal containing at least one DDS, and providing the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.
  • In another embodiment, an RAU for use in a distributed antenna system is provided. The RAU includes an optical-to-electrical (O-E) converter configured to convert received downlink optical RF communications signals to downlink electrical RF communications signals and provide the downlink electrical RF communications signals at least one first port. The RAU also includes an electrical-to-optical (E-O) converter configured to convert uplink electrical RF communications signals received from the at least one first port into uplink optical RF communications signals. The RAU also includes a DDS interface coupled to at least one second port. The DDS interface is configured to convert downlink optical digital signals into downlink electrical digital signals to provide to the at least one second port, and convert uplink electrical digital signals received from the at least one second port into uplink optical digital signals.
  • Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
  • It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a schematic diagram of an exemplary optical fiber-based distributed communications system;
  • FIG. 2 is a more detailed schematic diagram of an exemplary head-end unit (HEU) and a remote antenna unit (RAU) that can be deployed in the optical fiber-based distributed communications system of FIG. 1;
  • FIG. 3 is a partially schematic cut-away diagram of an exemplary building infrastructure in which the optical fiber-based distributed communications system in FIG. 1 can be employed;
  • FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over downlink and uplink optical fibers separate from optical fibers providing radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system;
  • FIG. 5 is a diagram of an exemplary head-end media converter (HMC) employed in the optical fiber-based distributed communications system of FIG. 4 containing digital media converters (DMCs) configured to convert electrical digital signals to optical digital signals and vice versa;
  • FIG. 6 is a diagram of exemplary DMCs employed in the HMC of FIG. 5;
  • FIG. 7 is a schematic diagram of an exemplary building infrastructure in which digital data services and RF communication services are provided in an optical fiber-based distributed communications system;
  • FIG. 8 is a schematic diagram of an exemplary RAU that can be employed in an optical fiber-based distributed communications system providing exemplary digital data services and RF communication services;
  • FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from RF communication services to RAUs in an optical fiber-based distributed communications system;
  • FIG. 10A is a schematic diagram of an exemplary embodiment of employing wavelength-division multiplexing (WDM) to multiplex digital data services and RF communication services at different wavelengths over downlink and uplink optical fibers in an optical fiber-based distributed communications system;
  • FIG. 10B is a schematic diagram of an exemplary embodiment of employing WDM to multiplex uplink and downlink communications for each channel over a common optical fiber;
  • FIG. 11 is a schematic diagram of another exemplary embodiment of employing WDM in a co-located HEU and HMC to multiplex digital data services and RF communication services at different wavelengths over common downlink optical fibers and common uplink optical fibers in an optical fiber-based distributed communications system;
  • FIG. 12 is a schematic diagram of another exemplary embodiment of employing WDM in a common housing HEU and MC to multiplex digital data services and RF communication services at different wavelengths over a common downlink optical fiber and a common uplink optical fiber in an optical fiber-based distributed communications system;
  • FIG. 13 is a schematic diagram of another exemplary embodiment of employing frequency-division multiplexing (FDM) to multiplex digital data services and RF communication services at different frequencies over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system; and
  • FIG. 14 is a schematic diagram of another exemplary embodiment of employing FDM and WDM to multiplex digital data services and RF communication services at different frequencies and at different wavelengths over downlink optical fibers and uplink optical fibers in an optical fiber-based distributed communications system.
  • DETAILED DESCRIPTION
  • Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
  • Embodiments disclosed in the detailed description include optical fiber-based distributed communications systems that provide and support both radio frequency (RF) communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. For example, non-limiting examples of digital data services include Ethernet, WLAN, Worldwide Interoperability for Microwave Access (WiMax), Wireless Fidelity (WiFi), Digital Subscriber Line (DSL), and Long Term Evolution (LTE), etc. Digital data services can be distributed over optical fiber separate from optical fiber distributing RF communication services. Alternatively, digital data services can be distributed over common optical fiber with RF communication services. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM). Power distributed in the optical fiber-based distributed communications system to provide power to remote antenna units can also be accessed to provide power to digital data service components.
  • In this regard, an exemplary optical fiber-based distributed communications system that provides RF communication services without providing digital data services is described with regard to FIGS. 1-3. Various embodiments of additionally providing digital data services in conjunction with RF communication services in optical fiber-based distributed communications systems starts at FIG. 4.
  • In this regard, FIG. 1 is a schematic diagram of an embodiment of an optical fiber-based distributed communications system. In this embodiment, the system is an optical fiber-based distributed communications system 10 that is configured to create one or more antenna coverage areas for establishing communications with wireless client devices located in the radio frequency (RF) range of the antenna coverage areas. The optical fiber-based distributed communications system 10 provides RF communications service (e.g., cellular services). In this embodiment, the optical fiber-based distributed communications system 10 includes a head-end unit (HEU) 12, one or more remote antenna units (RAUs) 14, and an optical fiber 16 that optically couples the HEU 12 to the RAU 14. The HEU 12 is configured to receive communications over downlink electrical RF signals 18D from a source or sources, such as a network or carrier as examples, and provide such communications to the RAU 14. The HEU 12 is also configured to return communications received from the RAU 14, via uplink electrical RF signals 18U, back to the source or sources. In this regard in this embodiment, the optical fiber 16 includes at least one downlink optical fiber 16D to carry signals communicated from the HEU 12 to the RAU 14 and at least one uplink optical fiber 16U to carry signals communicated from the RAU 14 back to the HEU 12.
  • The optical fiber-based distributed communications system 10 has an antenna coverage area 20 that can be substantially centered about the RAU 14. The antenna coverage area 20 of the RAU 14 forms an RF coverage area 21. The HEU 12 is adapted to perform or to facilitate any one of a number of Radio-over-Fiber (RoF) applications, such as radio frequency (RF) identification (RFID), wireless local-area network (WLAN) communication, or cellular phone service. Shown within the antenna coverage area 20 is a client device 24 in the form of a mobile device as an example, which may be a cellular telephone as an example. The client device 24 can be any device that is capable of receiving RF communication signals. The client device 24 includes an antenna 26 (e.g., a wireless card) adapted to receive and/or send electromagnetic RF signals.
  • With continuing reference to FIG. 1, to communicate the electrical RF signals over the downlink optical fiber 16D to the RAU 14, to in turn be communicated to the client device 24 in the antenna coverage area 20 formed by the RAU 14, the HEU 12 includes an electrical-to-optical (E/O) converter 28. The E-O converter 28 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be communicated over the downlink optical fiber 16D. The RAU 14 includes an optical-to-electrical (O/E) converter 30 to convert received downlink optical RF signals 22D back to electrical RF signals to be communicated wirelessly through an antenna 32 of the RAU 14 to client devices 24 located in the antenna coverage area 20.
  • Similarly, the antenna 32 is also configured to receive wireless RF communications from client devices 24 in the antenna coverage area 20. In this regard, the antenna 32 receives wireless RF communications from client devices 24 and communicates electrical RF signals representing the wireless RF communications to an E/O converter 34 in the RAU 14. The E-O converter 34 converts the electrical RF signals into uplink optical RF signals 22U to be communicated over the uplink optical fiber 16U. An O/E converter 36 provided in the HEU 12 converts the uplink optical RF signals 22U into uplink electrical RF signals, which can then be communicated as uplink electrical RF signals 18U back to a network or other source. The HEU 12 in this embodiment is not able to distinguish the location of the client devices 24 in this embodiment. The client device 24 could be in the range of any antenna coverage area 20 formed by an RAU 14.
  • FIG. 2 is a more detailed schematic diagram of the exemplary optical fiber-based distributed communications system of FIG. 1 that provides electrical RF service signals for a particular RF service or application. In an exemplary embodiment, the HEU 12 includes a service unit 37 that provides electrical RF service signals by passing (or conditioning and then passing) such signals from one or more outside networks 38 via a network link 39. In a particular example embodiment, this includes providing WLAN signal distribution as specified in the Institute of Electrical and Electronics Engineers (IEEE) 802.11 standard, i.e., in the frequency range from 2.4 to 2.5 GigaHertz (GHz) and from 5.0 to 6.0 GHz. Any other electrical RF signal frequencies are possible. In another exemplary embodiment, the service unit 37 provides electrical RF service signals by generating the signals directly. In another exemplary embodiment, the service unit 37 coordinates the delivery of the electrical RF service signals between client devices 24 within the antenna coverage area 20.
  • With continuing reference to FIG. 2, the service unit 37 is electrically coupled to the E-O converter 28 that receives the downlink electrical RF signals 18D from the service unit 37 and converts them to corresponding downlink optical RF signals 22D. In an exemplary embodiment, the E-O converter 28 includes a laser suitable for delivering sufficient dynamic range for the RoF applications described herein, and optionally includes a laser driver/amplifier electrically coupled to the laser. Examples of suitable lasers for the E-O converter 28 include, but are not limited to, laser diodes, distributed feedback (DFB) lasers, Fabry-Perot (FP) lasers, and vertical cavity surface emitting lasers (VCSELs).
  • With continuing reference to FIG. 2, the HEU 12 also includes the O-E converter 36, which is electrically coupled to the service unit 37. The O-E converter 36 receives the uplink optical RF signals 22U and converts them to corresponding uplink electrical RF signals 18U. In an example embodiment, the O-E converter 36 is a photodetector, or a photodetector electrically coupled to a linear amplifier. The E-O converter 28 and the O-E converter 36 constitute a “converter pair” 35, as illustrated in FIG. 2.
  • In accordance with an exemplary embodiment, the service unit 37 in the HEU 12 can include an RF signal modulator/demodulator unit 40 for modulating/demodulating the downlink electrical RF signals 18D and the uplink electrical RF signals 18U, respectively. The service unit 37 can include a digital signal processing unit (“digital signal processor”) 42 for providing to the RF signal modulator/demodulator unit 40 an electrical signal that is modulated onto an RF carrier to generate a desired downlink electrical RF signal 18D. The digital signal processor 42 is also configured to process a demodulation signal provided by the demodulation of the uplink electrical RF signal 18U by the RF signal modulator/demodulator unit 40. The HEU 12 can also include an optional central processing unit (CPU) 44 for processing data and otherwise performing logic and computing operations, and a memory unit 46 for storing data, such as data to be transmitted over a WLAN or other network for example.
  • With continuing reference to FIG. 2, the RAU 14 also includes a converter pair 48 comprising the O-E converter 30 and the E-O converter 34. The O-E converter 30 converts the received downlink optical RF signals 22D from the HEU 12 back into downlink electrical RF signals 50D. The E-O converter 34 converts uplink electrical RF signals 50U received from the client device 24 into the uplink optical RF signals 22U to be communicated to the HEU 12. The O-E converter 30 and the E-O converter 34 are electrically coupled to the antenna 32 via an RF signal-directing element 52, such as a circulator for example. The RF signal-directing element 52 serves to direct the downlink electrical RF signals 50D and the uplink electrical RF signals 50U, as discussed below. In accordance with an exemplary embodiment, the antenna 32 can include one or more patch antennas, such as disclosed in U.S. patent application Ser. No. 11/504,999, filed Aug. 16, 2006 entitled “Radio-over-Fiber Transponder With A Dual-Band Patch Antenna System,” and U.S. patent application Ser. No. 11/451,553, filed Jun. 12, 2006 entitled “Centralized Optical Fiber-Based Wireless Picocellular Systems and Methods,” both of which are incorporated herein by reference in their entireties.
  • With continuing reference to FIG. 2, the optical fiber-based distributed communications system 10 also includes a power supply 54 that generates an electrical power signal 56. The power supply 54 is electrically coupled to the HEU 12 for powering the power-consuming elements therein. In an exemplary embodiment, an electrical power line 58 runs through the HEU 12 and over to the RAU 14 to power the O-E converter 30 and the E-O converter 34 in the converter pair 48, the optional RF signal-directing element 52 (unless the RF signal-directing element 52 is a passive device such as a circulator for example), and any other power-consuming elements provided. In an exemplary embodiment, the electrical power line 58 includes two wires 60 and 62 that carry a single voltage and that are electrically coupled to a DC power converter 64 at the RAU 14. The DC power converter 64 is electrically coupled to the O-E converter 30 and the E-O converter 34 in the converter pair 48, and changes the voltage or levels of the electrical power signal 56 to the power level(s) required by the power-consuming components in the RAU 14. In an exemplary embodiment, the DC power converter 64 is either a DC/DC power converter or an AC/DC power converter, depending on the type of electrical power signal 56 carried by the electrical power line 58. In another example embodiment, the electrical power line 58 (dashed line) runs directly from the power supply 54 to the RAU 14 rather than from or through the HEU 12. In another example embodiment, the electrical power line 58 includes more than two wires and carries multiple voltages.
  • To provide further exemplary illustration of how an optical fiber-based distributed communications system can be deployed indoors, FIG. 3 is provided. FIG. 3 is a partially schematic cut-away diagram of a building infrastructure 70 employing an optical fiber-based distributed communications system. The system may be the optical fiber-based distributed communications system 10 of FIGS. 1 and 2. The building infrastructure 70 generally represents any type of building in which the optical fiber-based distributed communications system 10 can be deployed. As previously discussed with regard to FIGS. 1 and 2, the optical fiber-based distributed communications system 10 incorporates the HEU 12 to provide various types of communication services to coverage areas within the building infrastructure 70, as an example. For example, as discussed in more detail below, the optical fiber-based distributed communications system 10 in this embodiment is configured to receive wireless RF signals and convert the RF signals into RoF signals to be communicated over the optical fiber 16 to multiple RAUs 14. The optical fiber-based distributed communications system 10 in this embodiment can be, for example, an indoor distributed antenna system (IDAS) to provide wireless service inside the building infrastructure 70. These wireless signals can include cellular service, wireless services such as RFID tracking, Wireless Fidelity (WiFi), local area network (LAN), WLAN, and combinations thereof, as examples.
  • With continuing reference to FIG. 3, the building infrastructure 70 in this embodiment includes a first (ground) floor 72, a second floor 74, and a third floor 76. The floors 72, 74, 76 are serviced by the HEU 12 through a main distribution frame 78 to provide antenna coverage areas 80 in the building infrastructure 70. Only the ceilings of the floors 72, 74, 76 are shown in FIG. 3 for simplicity of illustration. In the example embodiment, a main cable 82 has a number of different sections that facilitate the placement of a large number of RAUs 14 in the building infrastructure 70. Each RAU 14 in turn services its own coverage area in the antenna coverage areas 80. The main cable 82 can include, for example, a riser cable 84 that carries all of the downlink and uplink optical fibers 16D, 16U to and from the HEU 12. The riser cable 84 may be routed through an interconnect unit (ICU) 85. The ICU 85 may be provided as part of or separate from the power supply 54 in FIG. 2. The ICU 85 may also be configured to provide power to the RAUs 14 via the electrical power line 58, as illustrated in FIG. 2 and discussed above, provided inside an array cable 87 and distributed with the downlink and uplink optical fibers 16D, 16U to the RAUs 14. The main cable 82 can include one or more multi-cable (MC) connectors adapted to connect select downlink and uplink optical fibers 16D, 16U, along with an electrical power line, to a number of optical fiber cables 86.
  • The main cable 82 enables multiple optical fiber cables 86 to be distributed throughout the building infrastructure 70 (e.g., fixed to the ceilings or other support surfaces of each floor 72, 74, 76) to provide the antenna coverage areas 80 for the first, second and third floors 72, 74 and 76. In an example embodiment, the HEU 12 is located within the building infrastructure 70 (e.g., in a closet or control room), while in another example embodiment the HEU 12 may be located outside of the building infrastructure 70 at a remote location. A base transceiver station (BTS) 88, which may be provided by a second party such as a cellular service provider, is connected to the HEU 12, and can be co-located or located remotely from the HEU 12. A BTS is any station or source that provides an input signal to the HEU 12 and can receive a return signal from the HEU 12. In a typical cellular system, for example, a plurality of BTSs are deployed at a plurality of remote locations to provide wireless telephone coverage. Each BTS serves a corresponding cell and when a mobile station enters the cell, the BTS communicates with the mobile station. Each BTS can include at least one radio transceiver for enabling communication with one or more subscriber units operating within the associated cell.
  • The optical fiber-based distributed communications system 10 in FIGS. 1-3 and described above provides point-to-point communications between the HEU 12 and the RAU 14. Each RAU 14 communicates with the HEU 12 over a distinct downlink and uplink optical fiber pair to provide the point-to-point communications. Whenever an RAU 14 is installed in the optical fiber-based distributed communications system 10, the RAU 14 is connected to a distinct downlink and uplink optical fiber pair connected to the HEU 12. The downlink and uplink optical fibers may be provided in the optical fiber 16. Multiple downlink and uplink optical fiber pairs can be provided in a fiber optic cable to service multiple RAUs 14 from a common fiber optic cable. For example, with reference to FIG. 3, RAUs 14 installed on a given floor 72, 74, or 76 may be serviced from the same optical fiber 16. In this regard, the optical fiber 16 may have multiple nodes where distinct downlink and uplink optical fiber pairs can be connected to a given RAU 14.
  • It may be desirable to provide both digital data services and RF communication services for client devices. For example, it may be desirable to provide digital data services and RF communication services in the building infrastructure 70 to client devices located therein. Wired and wireless devices may be located in the building infrastructure 70 that are configured to access digital data services. Examples of digital data services include, but are not limited to, Ethernet, WLAN, WiMax, WiFi, DSL, and LTE, etc. Ethernet standards could be supported, including but not limited to 100 Megabits per second (Mbs) (i.e., fast Ethernet) or Gigabit (Gb) Ethernet, or ten Gigabit (10G) Ethernet. Example of digital data devices include, but are not limited to, wired and wireless servers, wireless access points (WAPs), gateways, desktop computers, hubs, switches, remote radio heads (RRHs), baseband units (BBUs), and femtocells. A separate digital data services network can be provided to provide digital data services to digital data devices.
  • In this regard, embodiments disclosed herein provide optical fiber-based distributed communications systems that support both RF communication services and digital data services. The RF communication services and digital data services can be distributed over optical fiber to client devices, such as remote antenna units for example. Digital data services can be distributed over optical fiber separate from the optical fiber distributing RF communication services. Alternatively, digital data services can be both distributed over common optical fiber with RF communication services in an optical fiber-based distributed communications system. For example, digital data services can be distributed over common optical fiber with RF communication services at different wavelengths through wavelength-division multiplexing (WDM) and/or at different frequencies through frequency-division multiplexing (FDM).
  • FIG. 4 is a schematic diagram of an exemplary embodiment of providing digital data services over separate downlink and uplink optical fibers from radio frequency (RF) communication services to RAUs in an optical fiber-based distributed communications system 90. The optical fiber-based distributed communications system 90 includes some optical communication components provided in the optical fiber-based distributed communications system 10 of FIGS. 1-3. These common components are illustrated in FIG. 4 with common element numbers with FIGS. 1-3. As illustrated in FIG. 4, the HEU 12 is provided. The HEU 12 receives the downlink electrical RF signals 18D from the BTS 88. As previously discussed, the HEU 12 converts the downlink electrical RF signals 18D to downlink optical RF signals 22D to be distributed to the RAUs 14. The HEU 12 is also configured to convert the uplink optical RF signals 22U received from the RAUs 14 into uplink electrical RF signals 18U to be provided to the BTS 88 and on to a network 93 connected to the BTS 88. A patch panel 92 may be provided to receive the downlink and uplink optical fibers 16D, 16U configured to carry the downlink and uplink optical RF signals 22D, 22U. The downlink and uplink optical fibers 16D, 16U may be bundled together in one or more riser cables 84 and provided to one or more ICU 85, as previously discussed and illustrated in FIG. 3.
  • To provide digital data services in the optical fiber-based distributed communications system 90 in this embodiment, a digital data service controller (also referred to as “DDS controller”) in the form of a head-end media converter (HMC) 94 in this example is provided. The DDS controller 94 can include only a media converter for provision media conversion functionality or can include additional functionality to facilitate digital data services. A DDS controller is a controller configured to provide digital data services over a communications link, interface, or other communications channel or line, which may be either wired, wireless, or a combination of both. FIG. 5 illustrates an example of the HMC 94. The HMC 94 includes a housing 95 configured to house digital media converters (DMCs) 97 to interface to a digital data services switch 96 to support and provide digital data services. For example, the digital data services switch 96 could be an Ethernet switch. The digital data services switch 96 may be configured to provide Gigabit (Gb) Ethernet digital data service as an example. The DMCs 97 are configured to convert electrical digital signals to optical digital signals, and vice versa. The DMCs 97 may be configured for plug and play installation (i.e., installation and operability without user configuration required) into the HMC 94. FIG. 6 illustrates an exemplary DMC 97 that can be disposed in the housing 95 of the HMC 94. For example, the DMC 97 may include Ethernet input connectors or adapters (e.g., RJ-45) and optical fiber output connectors or adapters (e.g., LC, SC, ST, MTP).
  • With reference to FIG. 4, the HMC 94 (via the DMCs 97) in this embodiment is configured to convert downlink electrical digital signals (or downlink electrical digital data services signals) 98D over digital line cables 99 from the digital data services switch 96 into downlink optical digital signals (or downlink optical digital data services signals) 100D that can be communicated over downlink optical fiber 102D to RAUs 14. The HMC 94 (via the DMCs 97) is also configured to receive uplink optical digital signals 100U from the RAUs 14 via the uplink optical fiber 102U and convert the uplink optical digital signals 100U into uplink electrical digital signals 98U to be communicated to the digital data services switch 96. In this manner, the digital data services can be provided over optical fiber as part of the optical fiber-based distributed communications system 90 to provide digital data services in addition to RF communication services. Client devices located at the RAUs 94 can access these digital data services and/or RF communication services depending on their configuration. For example, FIG. 7 illustrates the building infrastructure 70 of FIG. 3, but with illustrative examples of digital data services and digital client devices that can be provided to client devices in addition to RF communication services in the optical fiber-based distributed communications system 90. As illustrated in FIG. 7, exemplary digital data services include WLAN 106, femtocells 108, gateways 110, baseband units (BBU) 112, remote radio heads (RRH) 114, and servers 116.
  • With reference back to FIG. 4, in this embodiment, the downlink and uplink optical fibers 102D, 102U are provided in a fiber optic cable 104 that is interfaced to the ICU 85. The ICU 85 provides a common point in which the downlink and uplink optical fibers 102D, 102U carrying digital optical signals can be bundled with the downlink and uplink optical fibers 16U, 16D carrying RF optical signals. One or more of the fiber optic cables 104, also referenced herein as array cables 104, can be provided containing the downlink and uplink optical fibers 16D, 16U for RF communication services and downlink and uplink optical fibers 102D, 102U for digital data services to be routed and provided to the RAUs 14. Any combination of services or types of optical fibers can be provided in the array cable 104. For example, the array cable 104 may include single mode and/or multi-mode optical fibers for RF communication services and/or digital data services.
  • Examples of ICUs that may be provided in the optical fiber-based distributed communications system 90 to distribute both downlink and uplink optical fibers 16D, 16U for RF communication services and downlink and uplink optical fibers 102D, 102U for digital data services are described in U.S. patent application Ser. No. 12/466,514 filed on May 15, 2009 and entitled “Power Distribution Devices, Systems, and Methods For Radio-Over-Fiber (RoF) Distributed Communication,” incorporated herein by reference in its entirety, and U.S. Provisional Patent Application Ser. No. 61/330,385, filed on May 2, 2010 and entitled “Power Distribution in Optical Fiber-based Distributed Communication Systems Providing Digital Data and Radio-Frequency (RF) Communication Services, and Related Components and Methods,” both of which are incorporated herein by reference in their entireties.
  • With continuing reference to FIG. 4, some RAUs 14 can be connected to access points (APs) 118 or other devices supporting digital data services. APs 118 are illustrated, but the APs 118 could be any other device supporting digital data services. In the example of APs, the APs 118 provide access to the digital data services provided by the digital data services switch 96. This is because the downlink and uplink optical fibers 102D, 102U carrying downlink and uplink optical digital signals 100D, 100U converted from downlink and uplink electrical digital signals 98D, 98U from the digital data services switch 96 are provided to the APs 118 via the array cables 104 and RAUs 14. Digital data client devices can access the APs 118 to access digital data services provided through the digital data services switch 96.
  • Digital data service clients, such as APs, require power to operate and to receive digital data services. By providing digital data services as part of an optical fiber-based distributed communications system, power distributed to the RAUs in the optical fiber-based distributed communications system can also be used to provide access to power for digital data service clients. This may be a convenient method of providing power to digital data service clients as opposed to providing separate power sources for digital data service clients. For example, power distributed to the RAUs 14 in FIG. 4 by or through the ICU 85 can also be used to provide power to the APs 118 located at RAUs 14 in the optical fiber-based distributed communications system 90. In this regard, the ICUs 85 may be configured to provide power for both RAUs 14 and the APs 118. A power supply may be located within the ICU 85, but could also be located outside of the ICU 85 and provided over an electrical power line 120, as illustrated in FIG. 4. The ICU 85 may receive either alternating current (AC) or direct current (DC) power. The ICU 85 may receive 110 Volts (V) to 240V AC or DC power. The ICU 85 can be configured to produce any voltage and power level desired. The power level is based on the number of RAUs 14 and the expected loads to be supported by the RAUs 14 and any digital devices connected to the RAUs 14 in FIG. 4. It may further be desired to provide additional power management features in the ICU 85. For example, one or more voltage protection circuits may be provided.
  • FIG. 8 is a schematic diagram of exemplary internal components in the RAU 14 of FIG. 4 to further illustrate how the downlink and uplink optical fibers 16D, 16D for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and electrical power are provided to the RAU 14 and can be distributed therein. As illustrated in FIG. 8, the array cable 104 is illustrated that contains the downlink and uplink optical fibers 16D, 16D for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and the electrical power line 58 (see also, FIG. 2) carrying power from the ICU 85. As previously discussed in regard to FIG. 2, the electrical power line 58 may comprise two wires 60, 62, which may be copper lines for example.
  • The downlink and uplink optical fibers 16D, 16U for RF communications, the downlink and uplink optical fibers 102D, 102U for digital data services, and the electrical power line 58 come into a housing 124 of the RAU 14. The downlink and uplink optical fibers 16D, 16U for RF communications are routed to the O-E converter 30 and E-O converter 34, respectively, and to the antenna 32, as also illustrated in FIG. 2 and previously discussed. The downlink and uplink optical fibers 102D, 102U for digital data services are routed to a digital data services interface 126 provided as part of the RAU 14 to provide access to digital data services via a port 128, which will be described in more detail below. The electrical power line 58 carries power that is configured to provide power to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126. In this regard, the electrical power line 58 is coupled to a voltage controller 130 that regulates and provides the correct voltage to the O-E converter 30 and E-O converter 34 and to the digital data services interface 126 and other circuitry in the RAU 14.
  • In this embodiment, the digital data services interface 126 is configured to convert downlink optical digital signals 100D on the downlink optical fiber 102D into downlink electrical digital signals 132D that can be accessed via the port 128. The digital data services interface 126 is also configured to convert uplink electrical digital signals 132U received through the port 128 into uplink optical digital signals 100U to be provided back to the HMC 94 (see FIG. 4). In this regard, a media converter 134 is provided in the digital data services interface 126 to provide these conversions. The media converter 134 contains an O-E digital converter 136 to convert downlink optical digital signals 100D on the downlink optical fiber 102D into downlink electrical digital signals 132D. The media converter 134 also contains an E-O digital converter 138 to convert uplink electrical digital signals 132U received through the port 128 into uplink optical digital signals 100U to be provided back to the HMC 94. In this regard, power from the electrical power line 58 is provided to the digital data services interface 126 to provide power to the O-E digital converter 136 and E-O digital converter 138.
  • Because electrical power is provided to the RAU 14 and the digital data services interface 126, this also provides an opportunity to provide power for digital devices connected to the RAU 14 via the port 128. In this regard, a power interface 140 is also provided in the digital data services interface 126, as illustrated in FIG. 8. The power interface 140 is configured to receive power from the electrical power line 58 via the voltage controller 130 and to also make power accessible through the port 128. In this manner, if a client device contains a compatible connector to connect to the port 128, not only will digital data services be accessible, but power from the electrical power line 58 can also be accessed through the same port 128. Alternatively, the power interface 140 could be coupled to a separate port from the port 128 for digital data services.
  • For example, if the digital data services are provided over Ethernet, the power interface 140 could be provided as a Power-over-Ethernet (PoE) interface. The port 128 could be configured to receive a RJ-45 Ethernet connector compatible with PoE as an example. In this manner, an Ethernet connector connected into the port 128 would be able to access both Ethernet digital data services to and from the downlink and uplink optical fibers 102D, 102U to the HMC 94 as well as access power distributed by the ICU 85 over the array cable 104 provided by the electrical power line 58.
  • Further, the HEU 12 could include low level control and management of the media converter 134 using communication supported by the HEU 12. For example, the media converter 134 could report functionality data (e.g., power on, reception of optical digital data, etc.) to the HEU 12 over the uplink optical fiber 16U that carries communication services. The RAU 14 can include a microprocessor that communicates with the media converter 134 to receive this data and communicate this data over the uplink optical fiber 16U to the HEU 12.
  • Other configurations are possible to provide digital data services in an optical fiber-based distributed communications system. For example, FIG. 9 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system configured to provide RF communication services. In this regard, FIG. 9 provides an optical fiber-based distributed communications system 150. The optical fiber-based distributed communications system 150 may be similar to and include common components provided in the optical fiber-based distributed communications system 90 in FIG. 4. In this embodiment, instead of the HMC 94 being provided separate from the HEU 12, the HMC 94 is co-located with the HEU 12. The downlink and uplink optical fibers 102D, 102U for providing digital data services from the digital data services switch 96 are also connected to the patch panel 92. The downlink and uplink optical fibers 16D, 16U for RF communications and the downlink and uplink optical fibers 102D, 102U for digital data services are then routed to the ICU 85, similar to FIG. 2.
  • The downlink and uplink optical fibers 16D, 16U for RF communications, and the downlink and uplink optical fibers 102D, 102U for digital data services, may be provided in a common fiber optic cable or provided in separate fiber optic cables. Further, as illustrated in FIG. 9, standalone media converters (MCs) 141 may be provided separately from the RAUs 14 in lieu of being integrated with RAUs 14, as illustrated in FIG. 4. The stand alone MCs 141 can be configured to contain the same components as provided in the digital data services interface 126 in FIG. 8, including the media converter 134. The APs 118 may also each include antennas 152 to provide wireless digital data services in lieu of or in addition to wired services through the port 128 through the RAUs 14.
  • FIG. 10A is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. In this regard, FIG. 10A provides an optical fiber-based distributed communications system 160. The optical fiber-based distributed communications system 160 may be similar to and include common components provided in the optical fiber-based distributed communications systems 90, 150 in FIGS. 4 and 9.
  • In this embodiment, as illustrated in FIG. 10A, wavelength-division multiplexing (WDM) is employed to multiplex digital data services and RF communication services together at different wavelengths over downlink and uplink optical fibers 162D(1-N), 162U(1-N) in the optical fiber-based distributed communications system 160. “1-N” downlink and uplink optical fiber pairs are provided to the ICU 85 to be distributed to the RAUs 14 and stand alone MCs 141. Multiplexing could be used to further reduce the cost for the digital data services overlay. By using WDM, digital data signals are transmitted on the same optical fibers as the RF communication signals, but on different wavelengths. Separate media conversion and WDM filters at the transmit locations and at the receive locations (e.g., HMC 96 and RAUs 14) would be employed to receive signals at the desired wavelength.
  • The HMC 94 and HEU 12 are co-located in the optical fiber-based distributed communications system 160 in FIG. 10A. A plurality of wavelength-division multiplexers 164(1)-164(N) are provided that each multiplex the downlink optical RF signal(s) 22D for RF communications and the downlink optical digital signal(s) 100D for digital data services together on a common downlink optical fiber(s) 162D(1-N). Similarly, a plurality of wavelength-division de-multiplexers 168(1)-168(N) (e.g., wavelength filters) are provided that each de-multiplex the uplink optical RF signal(s) 22U from the uplink optical digital signal(s) 100U from a common uplink optical fiber(s) 162U(1-N) to provide the uplink optical RF signals 22U to the HEU 12 and the uplink optical digital signal 100U to the HMC 94. Wavelength-division de-multiplexing (WDD) and WDM are also employed in the RAUs 14 to de-multiplex multiplexed downlink optical RF signals 22D and downlink optical digital signals 100D on the common downlink optical fibers 162D(1-N) and to multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fibers 162U(1-N).
  • FIG. 10B is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system 160′. The optical fiber-based distributed communications system 160′ in FIG. 10B is the same as the optical fiber-based distributed communications system 160 in FIG. 10A, except that WDM is employed to multiplex uplink and downlink communication services at different wavelengths over common optical fiber that includes both downlink and uplink optical fibers 162D(1-N), 162U(1-N),
  • FIG. 11 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. As illustrated in FIG. 11, an optical fiber-based distributed communications system 170 is provided that can also deliver digital data services. Instead of wavelength-division multiplexing the downlink optical RF signal(s) 22D for RF communications with the downlink optical digital signal(s) 100D for digital data services together on a common downlink optical fiber(s) 162D(1-N) as provided in FIG. 10A, a wavelength-division multiplexer 172 is provided. The wavelength-division multiplexer 172 multiplexes all downlink optical RF signals 22D with all downlink optical digital signal 100D to a single downlink optical fiber 174D. Similarly, a wavelength-division de-multiplexer 176 is provided to de-multiplex all uplink optical RF signals 22U from all uplink optical digital signals 100U from the common uplink optical fiber 174U at the desired wavelength. A wavelength-division de-multiplexer 175 and a wavelength-division multiplexer 177 are also employed in the ICU 85 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22D and uplink optical digital signals 100U on the common downlink optical fiber 174D, and to wavelength-division multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fiber 174U, respectively.
  • Alternatively, WDD and WDM could also be employed in the RAUs 14 to de-multiplex wavelength-division multiplexed downlink optical RF signals 22D and downlink optical digital signals 100D on the common downlink optical fiber 174D, and to wavelength-division multiplex uplink optical RF signals 22U and uplink optical digital signals 100U on the common uplink optical fiber 174U. In this alternative embodiment, de-multiplexing at the RAUs 14 could be done where a common WDM signal would be distributed from RAU 14 to RAU 14 in a daisy-chain configuration. Alternatively, optical splitters could be employed at break-out points in the fiber optic cable 104.
  • FIG. 12 is a schematic diagram of another exemplary embodiment of providing digital data services in an optical fiber-based distributed communications system. As illustrated in FIG. 12, an optical fiber-based distributed communications system 180 is provided that can also deliver digital data services. The optical fiber-based distributed communications system 180 is the same as the optical fiber-based distributed communications system 170 in FIG. 11, except that the HEU 12 and HMC 94 are provided in a common housing 182 that also houses the wavelength-division multiplexer 172 and wavelength-division de-multiplexer 176. Alternatively, a plurality of wavelength-division multiplexers and plurality of wavelength-division de-multiplexers like provided in FIG. 10A (164(1-N)) and 168(1-N)) can be provided in the common housing 182.
  • FIG. 13 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system providing digital data services. As illustrated in FIG. 13, an optical fiber-based distributed communications system 190 is provided. In this embodiment, frequency-division multiplexing (FDM) is employed to multiplex digital data services and RF communication services at different frequencies over downlink optical fibers and uplink optical fibers. One advantage of employing FDM is that E-O converters would be used simultaneously for converting RF communication signals and digital data signals into respective optical signals. Therefore, additional media converters for converting electrical digital signals to optical digital signals can be avoided to reduce complexity and save costs. For example, fast Ethernet (e.g., 100 Megabits/second (Mbs)) could be transmitted below the cellular spectrum (e.g., below 700 MHz). More than one (1) channel could be transmitted simultaneously in this frequency range.
  • In this regard, the HEU 12 and HEC 94 are both disposed in the common housing 182, as illustrated in FIG. 13. A plurality of frequency-division multiplexers 192(1-N) are provided in the common housing 182 and are each configured to multiplex the downlink electrical digital signal(s) 98D with the downlink electrical RF signal(s) 18D at different frequencies prior to optical conversion. In this manner, after optical conversion, a common optical fiber downlink 194D(1-N) can carry frequency-division multiplexed downlink optical RF signal 22D and downlink optical digital signal 102D on the same downlink optical fiber 194D(1-N). Similarly, a plurality of frequency-division de-multiplexers 196(1-N) are provided in the common housing 182 to de-multiplex an uplink optical RF signal 22U and an uplink optical digital signal 100U on an uplink optical fiber 194U(1-N). Frequency-division de-multiplexing (FDD) and FDM are also employed in the RAUs 14. FDD is employed in the RAU 14 to de-multiplex frequency multiplexed downlink electrical RF signals 18D and downlink electrical digital signals 98D after being converted from optical signals from the common downlink optical fiber 174D to electrical signals. FDM is also provided in the RAU 14 to frequency multiplex uplink electrical signals in the RAU 14 before being converted to uplink optical RF signals 22U and uplink optical digital signals 100U provided on the common uplink optical fiber 174U.
  • FIG. 14 is a schematic diagram of another exemplary embodiment of an optical fiber-based distributed communications system that employs both WDM and FDM. In this regard, FIG. 14 illustrates an optical fiber-based distributed communications system 200. The optical fiber-based distributed communications system 200 employs the WDM and WDD of the optical fiber-based distributed communications system 180 of FIG. 12 combined with FDM and FDD of the optical fiber-based distributed communications system 190 of FIG. 13. The wavelength-division multiplexed and frequency-division multiplexed downlink signals are provided over downlink optical fiber 202D. The wavelength-division multiplexed and frequency-division multiplexed uplink signals are provided over uplink optical fiber 202U.
  • Options and alternatives can be provided for the above-described embodiments. A digital data services interface provided in an RAU or stand alone MC could include more than one digital data services port. For example, referring to FIG. 14 as an example, a switch 203, such as an Ethernet switch for example, may be disposed in the RAUs 14 to provide RAUs 14 that can support more than one digital data services port. An HMC could have an integrated Ethernet switch so that, for example, several APs could be attached via cables (e.g., Cat 5/6/7 cables) in a star architecture. The Ethernet channel could be used for control, management, and/or communication purposes for an optical fiber-based distributed communications system as well as the Ethernet media conversion layer. The HMC could be either single channel or multi-channel (e.g., twelve (12) channel) solutions. The multi-channel solution may be cheaper per channel than a single channel solution. Further, uplink and downlink electrical digital signals can be provided over mediums other than optical fiber, including electrical conducting wire and/or wireless communications, as examples.
  • Frequency up conversions or down conversions may be employed when providing FDM if RF communication signals have frequencies too close to the frequencies of the digital data signals to avoid interference. While digital baseband transmission of a baseband digital data signals below the spectrum of the RF communication signals can be considered, intermodulation distortion on the RF communication signals may be generated. Another approach is to up convert the digital data signals above the frequencies of the RF communication signals and also use, for example, a constant envelope modulation format for digital data signal modulation. Frequency Shift Keying (FSK) and Minimum Shift Keying (MSK) modulation are suitable examples for such modulation formats. Further, in the case of FDM for digital data services, higher-level modulation formats can be considered to transmit high data rates (e.g., one (1) Gb, or ten (10) Gb) over the same optical fiber as the RF communication signals. Multiple solutions using single-carrier (with e.g., 8-FSK or 16-QAM as examples) or multi-carrier (OFDM) are conceivable.
  • Further, as used herein, it is intended that terms “fiber optic cables” and/or “optical fibers” include all types of single mode and multi-mode light waveguides, including one or more optical fibers that may be upcoated, colored, buffered, ribbonized and/or have other organizing or protective structure in a cable such as one or more tubes, strength members, jackets or the like. The optical fibers disclosed herein can be single mode or multi-mode optical fibers. Likewise, other types of suitable optical fibers include bend-insensitive optical fibers, or any other expedient of a medium for transmitting light signals. An example of a bend-insensitive, or bend resistant, optical fiber is ClearCurve® Multimode fiber commercially available from Corning Incorporated. Suitable fibers of this type are disclosed, for example, in U.S. Patent Application Publication Nos. 2008/0166094 and 2009/0169163, the disclosures of which are incorporated herein by reference in their entireties.
  • Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims (36)

1. A distributed antenna system for distributing radio frequency (RF) communications and digital data services (DDS) to at least one remote antenna unit (RAU), comprising:
a head-end unit (HEU) configured to:
receive at least one downlink electrical RF communications signal;
convert the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU;
receive at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU; and
convert the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal; and
a DDS controller configured to:
receive at least one downlink optical digital signal containing at least one DDS; and
provide the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.
2. The distributed antenna system of claim 1, wherein the DDS controller is further configured to:
receive at least one uplink optical digital signal over at least one second communications uplink from the at least one RAU; and
convert the at least one uplink optical digital signal to at least one uplink electrical digital signal.
3. The distributed antenna system of claim 2, wherein the DDS controller is further configured to:
receive at least one second uplink optical digital signal over the at least one second communications uplink from at least one media controller (MC);
and
convert the at least one second uplink optical digital signal to the at least one second uplink electrical digital signal.
4. The distributed antenna system of claim 1, wherein the at least one DDS is comprised from the group consisting of Ethernet, Wireless Local Area Network (WLAN), Worldwide Interoperability for Microwave Access (WiMax), Digital Subscriber Line (DSL), and Long Term Evolution (LTE).
5. The distributed antenna system of claim 1, wherein the DDS controller is comprised of a media converter.
6. The distributed antenna system of claim 1, wherein the at least one communications downlink and the at least one communications uplink include optical fiber.
7. The distributed antenna system of claim 1, further comprising an interconnect unit (ICU) configured to:
receive the at least one downlink optical RF communications signal;
receive the at least one downlink optical digital signal;
provide the at least one downlink optical RF communications signal over the at least one communications downlink to the at least one RAU; and
provide the at least one downlink optical digital signal over the at least one second communications downlink to the at least one RAU.
8. The distributed antenna system of claim 2, further comprising an interconnect unit (ICU) configured to:
receive the at least one uplink optical RF communications signal from the at least one RAU over the at least one communications uplink;
provide the at least one uplink optical RF communications signal to the HEU;
receive the at least one uplink optical digital signal from the at least one RAU over the at least one second communications uplink; and
provide the at least one uplink optical digital signal to the DDS controller.
9. The distributed antenna system of claim 8, wherein the ICU is further configured to:
provide the at least one uplink optical RF communications signal to the HEU; and
provide the at least one uplink optical digital signal to the DDS controller.
10. The distributed antenna system of claim 1, further comprising at least one wave-division multiplexer (WDM) configured to wave-division multiplex the at least one downlink optical RF communications signal and the at least one downlink optical digital signal at different wavelengths over at least one optical fiber communications downlink.
11. The distributed antenna system of claim 10, further comprising at least one wave-division de-multiplexer (WDD) associated with the at least one RAU and configured to separate the at least one downlink optical RF communications signal from the at least one downlink optical digital signal received over the at least one communications downlink.
12. The distributed antenna system of claim 2, further comprising at least one wave-division de-multiplexer (WDM) associated with the at least one RAU and configured to wave-division multiplex the at least one uplink optical RF communications signal and the at least one uplink optical digital signal at different wavelengths over the at least one communications uplink.
13. The distributed antenna system of claim 12, further comprising at least one wave-division de-multiplexer (WDD) configured to separate the at least one uplink optical RF communications signal from the at least one uplink optical digital signal received over the at least one communications uplink.
14. The distributed antenna system of claim 10, further comprising at least one frequency-division multiplexer (FDM) configured to frequency-division multiplex the at least one downlink electrical RF communications signal and at least one downlink electrical digital signal at different frequencies over the at least one communications downlink.
15. The distributed antenna system of claim 14, further comprising at least one frequency-division de-multiplexer (FDD) associated with the at least one RAU and configured to separate the at least one downlink electrical RF communications signal from the at least one downlink electrical digital signal from the at least one communications downlink.
16. The distributed antenna system of claim 12, further comprising at least one frequency-division multiplexer (FDM) associated with the at least one RAU and configured to frequency-division multiplex the at least one uplink electrical RF communications signal and the at least one uplink electrical digital signal at different frequencies from the at least one communications uplink.
17. The distributed antenna system of claim 16, further comprising at least one frequency-division de-multiplexer (FDD) configured to separate the at least one uplink electrical RF communications signal from the at least one uplink electrical digital signal from the at least one communications uplink.
18. The distributed antenna system of claim 1, further comprising at least one frequency-division multiplexer (FDM) configured to frequency-division multiplex the at least one downlink electrical RF communications signal and the at least one downlink electrical digital signal at different frequencies over the at least one communications downlink.
19. The distributed antenna system of claim 18, further comprising at least one frequency-division de-multiplexer (FDD) associated with the at least one RAU and configured to separate the at least one downlink optical RF communications signal from the at least one downlink optical digital signal received over the at least one communications downlink.
20. The distributed antenna system of claim 2, further comprising at least one frequency-division multiplexer (FDM) associated with the at least one RAU and configured to frequency-division multiplex the at least one uplink electrical RF communications signal and the at least one uplink electrical digital signal at different frequencies from at least one communications uplink.
21. The distributed antenna system of claim 20, further comprising at least one frequency-division de-multiplexer (FDD) configured to separate the at least one uplink electrical RF communications signal from the at least one uplink electrical digital signal from the at least one communications uplink.
22. The distributed antenna system of claim 1, wherein the at least one second communications downlink is comprised of at least one second optical fiber communications downlink.
23. The distributed antenna system of claim 2, wherein the at least one second communications uplink is comprised of at least one second optical fiber communications uplink.
24. A method of distributing radio frequency (RF) communications and digital data services (DDS) to at least one remote antenna unit (RAU) in a distributed antenna system, comprising:
receiving at a head-end unit (HEU) at least one downlink electrical RF communications signal;
converting the at least one downlink electrical RF communications signal into at least one downlink optical RF communications signal to be communicated over at least one communications downlink to the at least one RAU;
receiving at the HEU at least one uplink optical RF communications signal over at least one communications uplink from the at least one RAU;
converting the at least one uplink optical RF communications signal into at least one uplink electrical RF communications signal;
receiving at a digital data services (DDS) controller at least one downlink optical digital signal containing at least one DDS; and
providing the at least one downlink optical digital signal over at least one second communications downlink to the at least one RAU.
25. The method of claim 24, further comprising:
receiving at the DDS controller at least one uplink optical digital signal over at least one second communications uplink from the at least one RAU; and
providing at least one second uplink optical digital signal to a DDS network.
26. The method of claim 24, further comprising wave-division multiplexing the at least one downlink optical RF communications signal and the at least one downlink optical digital signal at different wavelengths over at least one optical fiber communications downlink.
27. The method of claim 26, further comprising wave-division de-multiplexing the at least one downlink optical RF communications signal from the at least one downlink optical digital signal received over the at least one optical fiber communications downlink.
28. The method of claim 24, further comprising frequency-division multiplexing the at least one downlink electrical RF communications signal and the at least one downlink optical digital signal at different frequencies over the at least one communications downlink.
29. The method of claim 28, further comprising frequency-division de-multiplexing the at least one downlink optical RF communications signal from the at least one downlink optical digital signal received over the at least one communications downlink.
30. A remote antenna unit for use in a distributed antenna system, comprising:
an optical-to-electrical (0-E) converter configured to convert received downlink optical radio frequency (RF) communications signals to downlink electrical RF communications signals and provide the downlink electrical RF communications signals at least one first port;
an electrical-to-optical (E-O) converter configured to convert uplink electrical RF communications signals received from the at least one first port to uplink optical RF communication signals; and
a digital data services (DDS) interface coupled to at least one second port and configured to:
convert downlink optical digital signals into downlink electrical digital signals to provide to the at least one second port; and
convert uplink electrical digital signals received from the at least one second port into uplink optical digital signals.
31. The remote antenna unit of claim 30, wherein the downlink optical RF communications signals are received over at least one first communications downlink connected to a head-end unit (HEU).
32. The remote antenna unit of claim 30, wherein the downlink optical digital signals are received over at least one second communications downlink connected to a DDS controller.
33. The remote antenna unit of claim 30, wherein the DDS interface further comprises a power interface configured to receive electrical power and provide the electrical power to the at least one second port.
34. The remote antenna unit of claim 33, wherein the at least one second port is configured to support Power-over-Ethernet (PoE).
35. The remote antenna unit of claim 34, wherein the DDS interface is configured to receive the electrical power from an electrical power line provided in at least one array cable.
36. The remote antenna unit of claim 30, configured to receive the downlink optical RF communications signals and downlink digital optical signals from at least one array cable.
US12/892,424 2010-05-02 2010-09-28 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods Abandoned US20110268446A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US12/892,424 US20110268446A1 (en) 2010-05-02 2010-09-28 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
CN201180024499.4A CN102918924B (en) 2010-05-02 2011-05-02 Digital data service is provided in based on distributed radio frequency (RF) communication system of optical fiber
PCT/US2011/034738 WO2011139942A1 (en) 2010-05-02 2011-05-02 Providing digital data services in optical fiber -based distributed radio frequency (rf) communications system
CN201610029179.2A CN105577282B (en) 2010-05-02 2011-05-02 In the distributed radio frequency based on optical fiber(RF)Digital data service is provided in communication system
EP11721160A EP2567592A1 (en) 2010-05-02 2011-05-02 Providing digital data services in optical fiber -based distributed radio frequency (rf) communications system
US13/785,603 US9042732B2 (en) 2010-05-02 2013-03-05 Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US14/711,306 US9270374B2 (en) 2010-05-02 2015-05-13 Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US15/049,913 US20160173201A1 (en) 2010-05-02 2016-02-22 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US33038510P 2010-05-02 2010-05-02
US33038310P 2010-05-02 2010-05-02
US33038610P 2010-05-02 2010-05-02
US12/892,424 US20110268446A1 (en) 2010-05-02 2010-09-28 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/785,603 Continuation US9042732B2 (en) 2010-05-02 2013-03-05 Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods

Publications (1)

Publication Number Publication Date
US20110268446A1 true US20110268446A1 (en) 2011-11-03

Family

ID=44858332

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/892,424 Abandoned US20110268446A1 (en) 2010-05-02 2010-09-28 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
US13/785,603 Active US9042732B2 (en) 2010-05-02 2013-03-05 Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US14/711,306 Active US9270374B2 (en) 2010-05-02 2015-05-13 Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US15/049,913 Abandoned US20160173201A1 (en) 2010-05-02 2016-02-22 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/785,603 Active US9042732B2 (en) 2010-05-02 2013-03-05 Providing digital data services in optical fiber-based distributed radio frequency (RF) communication systems, and related components and methods
US14/711,306 Active US9270374B2 (en) 2010-05-02 2015-05-13 Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US15/049,913 Abandoned US20160173201A1 (en) 2010-05-02 2016-02-22 Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods

Country Status (1)

Country Link
US (4) US20110268446A1 (en)

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012071367A1 (en) 2010-11-24 2012-05-31 Corning Cable Systems Llc Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US20120269509A1 (en) * 2011-04-21 2012-10-25 Antonius Petrus Hultermans Remote Electronic Component, Such As Remote Radio Head, For A Wireless Communication System, Remote Electronic Component Array And External Distributor Unit
WO2013130921A1 (en) * 2012-03-02 2013-09-06 Corning Cable Systems Llc OPTICAL NETWORK UNITS (ONUs) FOR HIGH BANDWIDTH CONNECTIVITY, AND RELATED COMPONENTS AND METHODS
US20130236180A1 (en) * 2012-03-12 2013-09-12 Bung Chul Kim Distributed antenna system and method
US20130330085A1 (en) * 2012-06-12 2013-12-12 Ricoh Company, Ltd. Light device, communication unit and positional information management system
WO2013181320A3 (en) * 2012-05-31 2014-01-23 Corning Cable Systems Llc Location tracking for mobile terminals in distributed antenna systems by geo-tagged ssids
WO2014048866A1 (en) * 2012-09-26 2014-04-03 Deltanode Solutions Ab Distribution network for a distributed antenna system
WO2014083564A1 (en) * 2012-11-28 2014-06-05 Corning Mobileaccess Ltd Power management for distributed communication systems, and related components, systems, and methods
EP2770655A1 (en) * 2013-02-22 2014-08-27 Alcatel Lucent Method to transmit a signal in a mobile network
WO2014133892A1 (en) * 2013-02-27 2014-09-04 Corning Optical Communications Wireless, Ltd. Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US20140308044A1 (en) * 2010-10-13 2014-10-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US20140308043A1 (en) * 2010-10-13 2014-10-16 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
KR20150003847A (en) * 2012-05-25 2015-01-09 알까뗄 루슨트 Method for operating a network element of a wireless communication network and network element
US20150037041A1 (en) * 2012-04-25 2015-02-05 Corning Optical Communications LLC Distributed antenna system architectures
WO2015063758A1 (en) 2013-10-28 2015-05-07 Corning Optical Communications Wireless Ltd. Unified optical fiber-based distributed antenna systems (dass) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods
WO2015044942A3 (en) * 2013-09-30 2015-05-21 Corning Optical Communications Wireless Ltd. Determining efficiency of an optical signal source in distributed communication systems
CN104919728A (en) * 2012-09-25 2015-09-16 康宁光电通信有限责任公司 Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
WO2016028463A1 (en) * 2014-08-22 2016-02-25 Adc Telecommunications, Inc. Distributed antenna system to transport first cellular rf band concurrently with ethernet or second cellular rf band
US9323020B2 (en) 2008-10-09 2016-04-26 Corning Cable Systems (Shanghai) Co. Ltd Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
US20160226652A1 (en) * 2010-08-26 2016-08-04 Golba Llc Method and system for distributed communication
US20160294475A1 (en) * 2013-03-18 2016-10-06 Eric Ryan CHAPPELL Architecture fo ra wireless network
WO2016160894A1 (en) * 2015-04-03 2016-10-06 Wlanjv, Inc. Multiple service distributed-antenna system
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9547145B2 (en) 2010-10-19 2017-01-17 Corning Optical Communications LLC Local convergence point for multiple dwelling unit fiber optic distribution network
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9780841B2 (en) 2014-02-26 2017-10-03 Corning Optical Communications Wireless Ltd Distributed antenna systems (DAS) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9794795B1 (en) 2016-04-29 2017-10-17 Corning Optical Communications Wireless Ltd Implementing a live distributed antenna system (DAS) configuration from a virtual DAS design using an original equipment manufacturer (OEM) specific software system in a DAS
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9826507B2 (en) 2011-12-06 2017-11-21 Advanced Rf Technologies, Inc. Method for setting a filter coefficient for a communication system
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9977208B2 (en) 2013-03-18 2018-05-22 Commscope Technologies Llc Power and optical fiber interface
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10209450B2 (en) 2014-08-15 2019-02-19 Corning Optical Communications LLC Methods for coupling of waveguides with dissimilar mode field diameters, and related apparatuses, components, and systems
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10374711B2 (en) * 2015-02-02 2019-08-06 Huawei Technologies Co., Ltd. Communications system, method for managing communications system, and controller
US10404373B2 (en) * 2016-11-29 2019-09-03 Electronics And Telecommunications Research Institute Transmission apparatus and reception apparatus using mobile fronthaul
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
RU2716269C1 (en) * 2019-09-15 2020-03-11 Михаил Васильевич Захаров Radio-photonic transmitting path for transmission of powerful broadband signals and efficient excitation of antennae
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10735838B2 (en) 2016-11-14 2020-08-04 Corning Optical Communications LLC Transparent wireless bridges for optical fiber-wireless networks and related methods and systems
US10797759B2 (en) 2014-08-22 2020-10-06 Commscope Technologies Llc Distributed antenna system with adaptive allocation between digitized RF data and IP formatted data
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11119546B2 (en) 2016-11-09 2021-09-14 Commscope, Inc. Of North Carolina Exchangeable powered infrastructure module
US11177649B2 (en) * 2017-03-31 2021-11-16 Corning Optical Communications LLC Safety power disconnection for power distribution over power conductors to power consuming devices
US11271652B2 (en) * 2018-08-01 2022-03-08 Chifeng ShareTechnology Co., Ltd. Distributed internet of things terminal system and method based on optical fiber bus RoF
US11271317B2 (en) * 2017-02-23 2022-03-08 Wiser Systems, Inc. Systems and related adapters for providing power to devices in a system
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11564110B2 (en) 2011-11-07 2023-01-24 Dali Wireless, Inc. Soft hand-off and routing data in a virtualized distributed antenna system
US11563492B2 (en) 2013-12-23 2023-01-24 Dali Wireless, Inc. Virtual radio access network using software-defined network of remotes and digital multiplexing switches
US11943004B1 (en) * 2019-12-11 2024-03-26 Cable Television Laboratories, Inc. Systems and methods for extending wireline communication networks

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
CN103119865A (en) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
AU2015227155B2 (en) * 2014-03-05 2019-07-04 Dali Systems Co. Ltd. Distributed Radio System with Remote Radio Heads
EP3130087B1 (en) 2014-04-11 2020-04-01 CommScope Technologies LLC Frequency-division duplexing in a time-division duplexing mode for a telecommunications system
EP3018512A1 (en) * 2014-11-05 2016-05-11 Corning Optical Communications LLC Bi-directional data center architectures employing a jacketless trunk cable
CN105676380B (en) 2014-11-21 2019-07-12 泰科电子(上海)有限公司 Cable runs system and multifibre joint
US20160294568A1 (en) * 2015-04-03 2016-10-06 John Mezzalingua Associates, LLC Packet energy transfer powered telecommunications system for distributed antenna systems and integrated wireless fidelity system
US10164329B2 (en) 2015-05-08 2018-12-25 Ethertronics, Inc. Wideband MIMO array with low passive intermodulation attributes
EP3365981A1 (en) * 2015-10-20 2018-08-29 Corning Optical Communications Wireless Ltd. Selective multichannel amplification in a distributed antenna system (das)
KR101822863B1 (en) 2016-09-09 2018-01-29 주식회사 쏠리드 cellular communication system
US10348405B2 (en) * 2016-11-21 2019-07-09 Corning Incorporated Multi-functional units incorporating lighting capabilities in converged networks
EP3518615B1 (en) 2018-01-25 2020-12-16 SOLiD Inc. Cellular communication system
WO2020086780A1 (en) 2018-10-25 2020-04-30 Corning Optical Communications LLC Power distribution system
US11442177B2 (en) * 2019-06-20 2022-09-13 Intelibs, Inc. System and method to transport GPS signals and radio frequency signals over a fiber optic channel with power supplied over the fiber optic channel
CN110661573B (en) * 2019-09-27 2020-12-08 京信通信系统(中国)有限公司 ROF communication remote terminal and ROF system
US11791656B2 (en) 2020-04-23 2023-10-17 Corning Research & Development Corporation Systems and methods for synchronizing subunits in a multi-unit power distribution network
US11855455B2 (en) 2020-04-23 2023-12-26 Corning Research & Development Corporation Systems and methods for power start up in a multi-unit power distribution network
US11621776B2 (en) 2020-07-29 2023-04-04 Corning Research & Development Corporation Systems for low power distribution in a power distribution network

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226625A1 (en) * 2004-04-09 2005-10-13 Microwave Photonics, Inc. Optical fiber communications method and system without a remote electrical power supply
US20090087181A1 (en) * 2007-10-01 2009-04-02 Teknovus In-wall optical network unit
US20090092394A1 (en) * 2007-10-08 2009-04-09 Nec Laboratories America, Inc. Orthogonal Frequency Division Multiple Access Based Virtual Passive Optical Network (VPON)
US20110241881A1 (en) * 2010-04-06 2011-10-06 Christopher Badinelli Systems and methods for optical secure alarmed protective fiber distribution systems and management
US20110268452A1 (en) * 2010-05-02 2011-11-03 Beamon Hubert B Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (rf) communications services, and related components and methods

Family Cites Families (665)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4365865A (en) 1981-01-30 1982-12-28 Sea-Log Corporation Hybrid cable construction
IT1202720B (en) 1987-03-31 1989-02-09 Pirelli Cavi Spa CABLE FOR THE TRANSPORT OF ELECTRICITY AND THE TRANSMISSION OF OPTICAL SIGNALS
US4896939A (en) 1987-10-30 1990-01-30 D. G. O'brien, Inc. Hybrid fiber optic/electrical cable and connector
US4889977A (en) 1987-12-21 1989-12-26 Southwestern Bell Telephone Company Method of identifying the disposition of plug-in units at a warehouse
GB2214755B (en) 1988-01-29 1992-06-24 Walmore Electronics Limited Distributed antenna system
US5682256A (en) 1988-11-11 1997-10-28 British Telecommunications Public Limited Company Communications system
US5042086A (en) 1988-11-16 1991-08-20 Dylor Corporation Method and means for transmitting large dynamic analog signals in optical fiber systems
US4972505A (en) 1988-12-06 1990-11-20 Isberg Reuben A Tunnel distributed cable antenna system with signal top coupling approximately same radiated energy
US5790536A (en) 1989-01-31 1998-08-04 Norand Corporation Hierarchical communication system providing intelligent data, program and processing migration
US5726984A (en) 1989-01-31 1998-03-10 Norand Corporation Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
CA2008900C (en) 1989-04-04 1998-01-20 Ta-Shing Chu Optical fiber microcellular mobile radio
US5428636A (en) 1993-05-03 1995-06-27 Norand Corporation Radio frequency local area network
US5001303A (en) 1989-05-26 1991-03-19 Coleman Cable Systems, Inc. Metallic sheath electrical cable
US6389010B1 (en) 1995-10-05 2002-05-14 Intermec Ip Corp. Hierarchical data collection network supporting packetized voice communications among wireless terminals and telephones
FR2659501B1 (en) 1990-03-09 1992-07-31 Alcatel Espace HIGH EFFICIENCY PRINTED ACTIVE ANTENNA SYSTEM FOR AGILE SPATIAL RADAR.
US5299947A (en) 1990-04-18 1994-04-05 Rachael Barnard Utility raceway
US5039195A (en) 1990-05-29 1991-08-13 At&T Bell Laboratories Composite cable including portions having controlled flexural rigidities
FI86016C (en) 1990-06-12 1992-06-25 Nokia Oy Ab OPTISKT OEVERFOERINGSSYSTEM OCH -FOERFARANDE.
DE69123674T2 (en) 1990-09-17 1997-04-17 Nec Corp Mobile communication system
CA2049680A1 (en) 1990-09-28 1992-03-29 Irwin L. Newberg Reconfigurable rf matching circuit
JP2991346B2 (en) 1990-11-02 1999-12-20 株式会社日立製作所 Optical connector
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc CDMA microcellular telephone system and distributed antenna system therefor
US5802173A (en) 1991-01-15 1998-09-01 Rogers Cable Systems Limited Radiotelephony system
US5574815A (en) 1991-01-28 1996-11-12 Kneeland; Foster C. Combination cable capable of simultaneous transmission of electrical signals in the radio and microwave frequency range and optical communication signals
CA2054591C (en) 1991-02-28 1996-09-03 Giovanni Vannucci Wireless telecommunication systems
EP0501314B1 (en) 1991-02-28 1998-05-20 Hewlett-Packard Company Modular distributed antenna system
US5189718A (en) 1991-04-02 1993-02-23 Siecor Corporation Composite cable containing light waveguides and electrical conductors
US5210812A (en) 1991-04-05 1993-05-11 Alcatel Na Cable Systems, Inc. Optical fiber cable having spliced fiber branch and method of making the same
US5125060A (en) 1991-04-05 1992-06-23 Alcatel Na Cable Systems, Inc. Fiber optic cable having spliceless fiber branch and method of making
US6374311B1 (en) 1991-10-01 2002-04-16 Intermec Ip Corp. Communication network having a plurality of bridging nodes which transmit a beacon to terminal nodes in power saving state that it has messages awaiting delivery
US5504746A (en) 1991-10-01 1996-04-02 Norand Corporation Radio frequency local area network
DE69233608T2 (en) 1991-10-01 2007-03-01 Broadcom Corp., Irvine Local radio frequency network
JP2897492B2 (en) 1991-10-24 1999-05-31 日本電気株式会社 Mobile communication device
US5268971A (en) 1991-11-07 1993-12-07 Alcatel Na Cable Systems, Inc. Optical fiber/metallic conductor composite cable
WO1993012596A1 (en) 1991-12-16 1993-06-24 Motorola, Inc. Optical distribution system
JPH05260018A (en) 1992-03-12 1993-10-08 Kokusai Denshin Denwa Co Ltd <Kdd> Optical transmission system for radio signal
US5267122A (en) 1992-06-15 1993-11-30 Alcatel Network Systems, Inc. Optical network unit
US5339184A (en) 1992-06-15 1994-08-16 Gte Laboratories Incorporated Fiber optic antenna remoting for multi-sector cell sites
US5627879A (en) 1992-09-17 1997-05-06 Adc Telecommunications, Inc. Cellular communications system with centralized base stations and distributed antenna units
US5339058A (en) 1992-10-22 1994-08-16 Trilogy Communications, Inc. Radiating coaxial cable
US5546443A (en) 1992-10-26 1996-08-13 Ericsson Ge Mobile Communications, Inc. Communication management technique for a radiotelephone system including microcells
US5260957A (en) 1992-10-29 1993-11-09 The Charles Stark Draper Laboratory, Inc. Quantum dot Laser
US7917145B2 (en) 1992-11-02 2011-03-29 Broadcom Corporation Radio frequency local area network
US5404570A (en) 1992-11-23 1995-04-04 Telefonaktiebolaget L M Ericsson Radio coverage in closed environments
JP2777861B2 (en) 1992-12-10 1998-07-23 国際電信電話株式会社 Mobile communication system
US5949564A (en) 1993-03-01 1999-09-07 British Telecommunications Public Limited Company Transducer
US6970434B1 (en) 1995-06-07 2005-11-29 Broadcom Corporation Hierarchical communication system providing intelligent data, program and processing migration
US7924783B1 (en) 1994-05-06 2011-04-12 Broadcom Corporation Hierarchical communications system
US5499241A (en) 1993-09-17 1996-03-12 Scientific-Atlanta, Inc. Broadband communications system
US5377035A (en) 1993-09-28 1994-12-27 Hughes Aircraft Company Wavelength division multiplexed fiber optic link for RF polarization diversity receiver
US6088590A (en) 1993-11-01 2000-07-11 Omnipoint Corporation Method and system for mobile controlled handoff and link maintenance in spread spectrum communication
CA2118355C (en) 1993-11-30 2002-12-10 Michael James Gans Orthogonal polarization and time varying offsetting of signals for digital data transmission or reception
US5960344A (en) 1993-12-20 1999-09-28 Norand Corporation Local area network having multiple channel wireless access
US5790606A (en) 1994-01-11 1998-08-04 Ericsson Inc. Joint demodulation using spatial maximum likelihood
US5457557A (en) 1994-01-21 1995-10-10 Ortel Corporation Low cost optical fiber RF signal distribution system
US5444564A (en) 1994-02-09 1995-08-22 Hughes Aircraft Company Optoelectronic controlled RF matching circuit
EP0674452B1 (en) 1994-03-24 2002-07-03 Hitachi Kokusai Electric Inc. Repeater for radio paging system
KR100322813B1 (en) 1994-03-30 2002-06-26 내쉬 로저 윌리엄 Radiocommunication system via radiofrequency modulated optical radiation source and containing fiber
US5553064A (en) 1994-04-05 1996-09-03 Stanford Telecommunications, Inc. High speed bidirectional digital cable transmission system
US5519691A (en) 1994-06-03 1996-05-21 At&T Corp. Arrangement for and method of providing radio frequency access to a switching system
US5469523A (en) 1994-06-10 1995-11-21 Commscope, Inc. Composite fiber optic and electrical cable and associated fabrication method
GB2290195B (en) 1994-06-10 1998-08-05 Northern Telecom Ltd Automatic determination and tuning of pico-cell topology for low-power wireless systems
US5557698A (en) 1994-08-19 1996-09-17 Belden Wire & Cable Company Coaxial fiber optical cable
DE69519384T2 (en) 1994-09-29 2001-05-23 British Telecomm Optical fiber with quantum dots
US5910776A (en) 1994-10-24 1999-06-08 Id Technologies, Inc. Method and apparatus for identifying locating or monitoring equipment or other objects
JP3290831B2 (en) 1994-11-21 2002-06-10 明星電気株式会社 Antenna device and base station
EP0714218A1 (en) 1994-11-23 1996-05-29 Telecommunication Laboratories, Dgt, Motc. Digital signal modulation in an optical fibre of a microcellular mobile communication system
JP2616468B2 (en) 1994-11-25 1997-06-04 日本電気株式会社 Optical microcell transmission system
CA2162515C (en) 1994-12-22 2000-03-21 Leonard George Cohen Jumper tracing system
JPH08181661A (en) 1994-12-27 1996-07-12 Fujitsu Ltd Radio signal transmitter
US6895253B1 (en) 1995-03-14 2005-05-17 Lucent Technologies Inc. Wireless indoor communications using antenna arrays
US5684799A (en) 1995-03-28 1997-11-04 Bell Atlantic Network Services, Inc. Full service network having distributed architecture
US5544161A (en) 1995-03-28 1996-08-06 Bell Atlantic Network Services, Inc. ATM packet demultiplexer for use in full service network having distributed architecture
JP3645308B2 (en) 1995-05-01 2005-05-11 富士通株式会社 Service distribution method with mixed analog and digital broadcasting services
US5854986A (en) 1995-05-19 1998-12-29 Northern Telecom Limited Cellular communication system having device coupling distribution of antennas to plurality of transceivers
IL114176A (en) 1995-06-15 2000-02-29 Jolt Ltd Wireless communication system
US5825829A (en) 1995-06-30 1998-10-20 Scientific-Atlanta, Inc. Modulator for a broadband communications system
US5890055A (en) 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5598288A (en) 1995-07-31 1997-01-28 Northrop Grumman Corporation RF fiber optic transmission utilizing dither
WO1997008856A1 (en) 1995-08-23 1997-03-06 Ntt Mobile Communications Network Inc. Optical fiber transmission system
US5677974A (en) 1995-08-28 1997-10-14 Southern New England Telephone Company Hybrid communications and power cable and distribution method and network using the same
EP0762674A3 (en) 1995-09-08 2001-03-21 Siemens Aktiengesellschaft Method and circuit to transmit received signals from an antenna to a base station of a radio system
JP2900853B2 (en) 1995-09-14 1999-06-02 日本電気株式会社 Wireless base station, wireless local area network, and optical fiber feeder
US5832364A (en) 1995-10-06 1998-11-03 Airnet Communications Corp. Distributing wireless system carrier signals within a building using existing power line wiring
US5903834A (en) 1995-10-06 1999-05-11 Telefonaktiebolaget L/M Ericsson Distributed indoor digital multiple-access cellular telephone system
US6005884A (en) 1995-11-06 1999-12-21 Ems Technologies, Inc. Distributed architecture for a wireless data communications system
US6070071A (en) 1995-11-13 2000-05-30 Interwave Communications International Ltd. Multiple antenna cellular network
JPH09162810A (en) 1995-12-12 1997-06-20 Tokin Corp Optical transmission/reception antenna system
US5774789A (en) 1995-12-14 1998-06-30 Allen Telecom Inc. RF communication signal distribution system and method
JPH09200840A (en) 1996-01-16 1997-07-31 Kokusai Electric Co Ltd Private radio communication system
US5880863A (en) 1996-02-13 1999-03-09 Gte Laboratories Incorporated Reconfigurable ring system for the transport of RF signals over optical fibers
US6177911B1 (en) 1996-02-20 2001-01-23 Matsushita Electric Industrial Co., Ltd. Mobile radio antenna
US5809422A (en) 1996-03-08 1998-09-15 Watkins Johnson Company Distributed microcellular communications system
US6931183B2 (en) 1996-03-29 2005-08-16 Dominion Lasercom, Inc. Hybrid electro-optic cable for free space laser antennas
US5983070A (en) 1996-04-19 1999-11-09 Lgc Wireless, Inc. Method and system providing increased antenna functionality in a RF distribution system
US6014546A (en) 1996-04-19 2000-01-11 Lgc Wireless, Inc. Method and system providing RF distribution for fixed wireless local loop service
US6157810A (en) 1996-04-19 2000-12-05 Lgc Wireless, Inc Distribution of radio-frequency signals through low bandwidth infrastructures
US5668562A (en) 1996-04-19 1997-09-16 Lgc Wireless, Inc. Measurement-based method of optimizing the placement of antennas in a RF distribution system
US5930682A (en) 1996-04-19 1999-07-27 Lgc Wireless, Inc. Centralized channel selection in a distributed RF antenna system
US5987303A (en) 1996-05-29 1999-11-16 At&T Corp. Wireless transmission using fiber link
US5867485A (en) 1996-06-14 1999-02-02 Bellsouth Corporation Low power microcellular wireless drop interactive network
US5703602A (en) 1996-06-14 1997-12-30 Metricom, Inc. Portable RF antenna
US6580905B1 (en) 1996-07-02 2003-06-17 Ericsson Inc. System and method for controlling the level of signals output to transmission media in a distributed antenna network
US5805983A (en) 1996-07-18 1998-09-08 Ericsson Inc. System and method for equalizing the delay time for transmission paths in a distributed antenna network
US6128470A (en) 1996-07-18 2000-10-03 Ericsson Inc. System and method for reducing cumulative noise in a distributed antenna network
US6525855B1 (en) 1996-07-19 2003-02-25 British Telecommunications Public Limited Company Telecommunications system simultaneously receiving and modulating an optical signal
US6480702B1 (en) 1996-08-01 2002-11-12 Transcept, Inc. Apparatus and method for distributing wireless communications signals to remote cellular antennas
US6006105A (en) 1996-08-02 1999-12-21 Lsi Logic Corporation Multi-frequency multi-protocol wireless communication device
US5825651A (en) 1996-09-03 1998-10-20 Trilogy Development Group, Inc. Method and apparatus for maintaining and configuring systems
US6330244B1 (en) 1996-09-05 2001-12-11 Jerome Swartz System for digital radio communication between a wireless lan and a PBX
US5896568A (en) 1996-09-06 1999-04-20 Northern Telecom Limited Wireless architecture having redistributed access functions
US6236365B1 (en) 1996-09-09 2001-05-22 Tracbeam, Llc Location of a mobile station using a plurality of commercial wireless infrastructures
US6016426A (en) 1996-10-10 2000-01-18 Mvs, Incorporated Method and system for cellular communication with centralized control and signal processing
US6812824B1 (en) 1996-10-17 2004-11-02 Rf Technologies, Inc. Method and apparatus combining a tracking system and a wireless communication system
EP0932840A1 (en) 1996-10-17 1999-08-04 Pinpoint Corporation Article tracking system
US6353406B1 (en) 1996-10-17 2002-03-05 R.F. Technologies, Inc. Dual mode tracking system
US5946622A (en) 1996-11-19 1999-08-31 Ericsson Inc. Method and apparatus for providing cellular telephone service to a macro-cell and pico-cell within a building using shared equipment
US5936754A (en) 1996-12-02 1999-08-10 At&T Corp. Transmission of CDMA signals over an analog optical link
IL119832A (en) 1996-12-15 2001-01-11 Foxcom Wireless Ltd Wireless communications systems employing optical fibers
GB9720152D0 (en) 1996-12-18 1997-11-26 Mayup Limited Communications system and method
IL119972A (en) 1997-01-07 2001-01-28 Foxcom Ltd Satellite distributed television
US5913003A (en) 1997-01-10 1999-06-15 Lucent Technologies Inc. Composite fiber optic distribution cable
US6222503B1 (en) 1997-01-10 2001-04-24 William Gietema System and method of integrating and concealing antennas, antenna subsystems and communications subsystems
US6049593A (en) 1997-01-17 2000-04-11 Acampora; Anthony Hybrid universal broadband telecommunications using small radio cells interconnected by free-space optical links
US5883882A (en) 1997-01-30 1999-03-16 Lgc Wireless Fault detection in a frequency duplexed system
DE19705253A1 (en) 1997-02-12 1998-08-13 Hertz Inst Heinrich Wireless network connection device for mobile operated radio station via optical fibres
US6023625A (en) 1997-02-18 2000-02-08 Ericsson Inc. System and method for reducing multicast interference in a distributed antenna network
US5914671A (en) 1997-02-27 1999-06-22 Micron Communications, Inc. System and method for locating individuals and equipment, airline reservation system, communication system
GB2323252A (en) 1997-03-11 1998-09-16 Nicholas John Nelson Radio frequency tagging of stock items
US6219553B1 (en) 1997-03-31 2001-04-17 Texas Instruments Incorporated Low power wireless network using desktop antenna
US6885846B1 (en) 1997-03-31 2005-04-26 Texas Instruments Incorporated Low power wireless network
CA2242707C (en) 1997-07-21 2002-09-10 Pirelli Cable Corporation Combination optical fiber cable
DE19733857C1 (en) 1997-08-05 1999-02-18 Nokia Mobile Phones Ltd Cellular telecommunication system
JPH1168675A (en) 1997-08-08 1999-03-09 Tokin Corp Optical transmission reception system
KR100244979B1 (en) 1997-08-14 2000-02-15 서정욱 The cdma micro-cellular communication system for pcs
JPH1188265A (en) 1997-09-02 1999-03-30 Brother Ind Ltd Radio system adopting optical relay system
JP3812787B2 (en) 1997-11-20 2006-08-23 株式会社日立国際電気 Optical conversion repeater amplification system
JP3974984B2 (en) 1997-11-28 2007-09-12 松下電器産業株式会社 Multipoint optical transmission system
JP3737896B2 (en) 1997-11-28 2006-01-25 株式会社日立国際電気 Relay system
US6078622A (en) 1997-12-22 2000-06-20 Delco Electronics Corporation Distributed digital radio system
US6088381A (en) 1997-12-23 2000-07-11 Ericsson Inc. System for transporting frequency hopping signals
US6374124B1 (en) 1997-12-24 2002-04-16 Transcept, Inc. Dynamic reallocation of transceivers used to interconnect wireless telephones to a broadband network
US6223021B1 (en) 1997-12-24 2001-04-24 Transcept, Inc. Signal filtering in a transceiver for a wireless telephone system
EP0962076B1 (en) 1997-12-31 2005-12-28 Koninklijke Philips Electronics N.V. A wireless universal building information infrastructure
KR100257184B1 (en) 1998-01-31 2000-05-15 정장호 Optic relay system for extending coverage
US6124957A (en) 1998-02-13 2000-09-26 Lucent Technologies Inc. Optical signal translator unit
US6301240B1 (en) 1998-02-19 2001-10-09 Transcept, Inc. Centrally located equipment for wireless telephone system
US6323980B1 (en) 1998-03-05 2001-11-27 Air Fiber, Inc. Hybrid picocell communication system
JP3348196B2 (en) 1998-03-06 2002-11-20 独立行政法人通信総合研究所 Wireless transmission system
US6374078B1 (en) 1998-04-17 2002-04-16 Direct Wireless Corporation Wireless communication system with multiple external communication links
JP2981880B2 (en) 1998-04-23 1999-11-22 郵政省通信総合研究所長 Multi-mode service wireless communication system
EP1356783A3 (en) 1998-05-14 2003-11-05 Kazuhiro Nagata Full reproduction articulator
FR2779022B1 (en) 1998-05-20 2000-07-28 Nortel Matra Cellular RADIOCOMMUNICATION BASE STATION
US6504636B1 (en) 1998-06-11 2003-01-07 Kabushiki Kaisha Toshiba Optical communication system
US6373611B1 (en) 1998-06-22 2002-04-16 Scientific-Atlanta, Inc. Digital optical transmitter
US6268946B1 (en) 1998-07-01 2001-07-31 Radio Frequency Systems, Inc. Apparatus for communicating diversity signals over a transmission medium
US6452915B1 (en) 1998-07-10 2002-09-17 Malibu Networks, Inc. IP-flow classification in a wireless point to multi-point (PTMP) transmission system
US5959531A (en) 1998-07-24 1999-09-28 Checkpoint Systems, Inc. Optical interface between receiver and tag response signal analyzer in RFID system for detecting low power resonant tags
EP1770591B1 (en) 1998-08-14 2010-04-28 3M Innovative Properties Company RFID reader
US6657535B1 (en) 1998-08-31 2003-12-02 Hawkeye Global, Inc. System for signaling a device at a remote location
JP2000147306A (en) 1998-08-31 2000-05-26 Kokusai Electric Co Ltd Wavelength region multiple light beam star coupler, communication station and light transmission system
JP2000151489A (en) 1998-09-11 2000-05-30 Kokusai Electric Co Ltd Relay amplifier device
JP4063419B2 (en) 1998-10-06 2008-03-19 松下電器産業株式会社 Optical transmission system
US6356374B1 (en) 1998-10-09 2002-03-12 Scientific-Atlanta, Inc. Digital optical transmitter
US6501768B2 (en) 1998-11-02 2002-12-31 Cisco Technology, Inc. Local multipoint distribution service base station apparatus
JP4095185B2 (en) 1998-11-06 2008-06-04 株式会社東芝 Wireless communication base station equipment
KR100319298B1 (en) 1998-11-23 2002-04-22 윤종용 ADSS cable and manufacturing method
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
US6405018B1 (en) 1999-01-11 2002-06-11 Metawave Communications Corporation Indoor distributed microcell
US7346785B2 (en) 1999-01-12 2008-03-18 Microsemi Corp. - Analog Mixed Signal Group Ltd. Structure cabling system
GB2345811B (en) 1999-01-16 2001-04-04 Marconi Caswell Ltd Radio frequency receiver circuit
US7016308B1 (en) 1999-03-19 2006-03-21 Broadband Royalty Corporation Digital return path for hybrid fiber/coax network
US6523177B1 (en) 1999-04-01 2003-02-18 Scientific-Atlanta, Inc. Cable television system with digital reverse path architecture
EP1043845A1 (en) 1999-04-06 2000-10-11 Telefonaktiebolaget L M Ericsson (Publ) A method of and equipment for performing radio communication in a plurality of radio communication environments
AU4239800A (en) 1999-04-15 2000-11-02 Transcept, Inc. Low noise in-building distribution network for wireless signals
US6240274B1 (en) 1999-04-21 2001-05-29 Hrl Laboratories, Llc High-speed broadband wireless communication system architecture
US6812905B2 (en) 1999-04-26 2004-11-02 Andrew Corporation Integrated active antenna for multi-carrier applications
US6583763B2 (en) 1999-04-26 2003-06-24 Andrew Corporation Antenna structure and installation
KR100441147B1 (en) 1999-05-14 2004-07-19 가부시키가이샤 히다치 고쿠사이 덴키 Mobile communication system
GB9911698D0 (en) 1999-05-20 1999-07-21 Univ Southampton Developing holey fibers for evanescent field devices
DE60041946D1 (en) 1999-05-26 2009-05-20 Telefonica Sa Module for transmitting radio data via optical fiber
US6317599B1 (en) 1999-05-26 2001-11-13 Wireless Valley Communications, Inc. Method and system for automated optimization of antenna positioning in 3-D
JP3734982B2 (en) 1999-05-27 2006-01-11 株式会社エヌ・ティ・ティ・ドコモ Wireless device
US6556551B1 (en) 1999-05-27 2003-04-29 Lgc Wireless, Inc. Multi-frequency pilot beacon for CDMA systems
JP4172120B2 (en) 1999-06-29 2008-10-29 ソニー株式会社 COMMUNICATION DEVICE AND COMMUNICATION METHOD, COMMUNICATION TERMINAL DEVICE
US6438301B1 (en) 1999-07-07 2002-08-20 Trw Inc. Low-torque electro-optical laminated cable and cablewrap
WO2001052447A2 (en) 2000-01-14 2001-07-19 Andrew Corporation Repeaters for wireless communication systems
US6714121B1 (en) 1999-08-09 2004-03-30 Micron Technology, Inc. RFID material tracking method and apparatus
KR100376298B1 (en) 1999-09-13 2003-03-17 가부시끼가이샤 도시바 Radio communication system
EP1085773A1 (en) 1999-09-20 2001-03-21 Nortel Matra Cellular Mobile telecommunications network with distributed base stations
US6654616B1 (en) 1999-09-27 2003-11-25 Verizon Laboratories Inc. Wireless area network having flexible backhauls for creating backhaul network
US6577794B1 (en) 1999-09-27 2003-06-10 Robert M. Currie Compound optical and electrical conductors, and connectors therefor
US6658269B1 (en) 1999-10-01 2003-12-02 Raytheon Company Wireless communications system
US6501942B1 (en) 1999-10-29 2002-12-31 Qualcomm, Incorporated In-building radio-frequency coverage
US6784802B1 (en) 1999-11-04 2004-08-31 Nordx/Cdt, Inc. Real time monitoring of cable patch panel
US6640103B1 (en) 1999-11-23 2003-10-28 Telefonaktiebolaget Lm Ericsson (Publ) Method and system for cellular system border analysis
US6634811B1 (en) 1999-11-30 2003-10-21 Jds Corporation High performance optical link
US7257328B2 (en) 1999-12-13 2007-08-14 Finisar Corporation System and method for transmitting data on return path of a cable television system
US6697603B1 (en) 1999-12-13 2004-02-24 Andrew Corporation Digital repeater
JP2001177864A (en) 1999-12-15 2001-06-29 Toshiba Corp Wireless communication system, wireless communication method, and wireless control station
US6512478B1 (en) 1999-12-22 2003-01-28 Rockwell Technologies, Llc Location position system for relay assisted tracking
US6236789B1 (en) 1999-12-22 2001-05-22 Pirelli Cables And Systems Llc Composite cable for access networks
JP3594862B2 (en) 1999-12-28 2004-12-02 株式会社エヌ・ティ・ティ・ドコモ Radio base station system, control station, and signal processing method in control station
US6466718B1 (en) 1999-12-29 2002-10-15 Emc Corporation Method and apparatus for transmitting fiber-channel and non-fiber channel signals through common cable
US7047042B2 (en) 2000-01-10 2006-05-16 Airnet Communications Corporation Method and apparatus for equalization in transmit and receive levels in a broadband transceiver system
GB2366131A (en) 2000-01-28 2002-02-27 Mitel Telecom Ltd A short reach communication network
US7142503B1 (en) 2000-02-11 2006-11-28 Nortel Networks Limited Communication system architecture and operating methodology providing a virtual neighborhood network
CN1107358C (en) 2000-02-24 2003-04-30 信息产业部电信科学技术研究院 Distributed intelligent antenna system
US6876852B1 (en) 2000-03-09 2005-04-05 Lucent Technologies Inc. Integrated cable and cellular network
AU2001247819A1 (en) 2000-03-27 2001-10-08 Transcept Opencell, Inc. Multi-protocol distributed wireless system architecture
GB2361385A (en) 2000-04-12 2001-10-17 Queen Mary & Westfield College Intelligent control of radio resorces in a wireless network
WO2001084865A1 (en) 2000-04-27 2001-11-08 Lgc Wireless, Inc. Adaptive capacity management in a centralized basestation architecture
AU2001295202A1 (en) 2000-04-28 2001-11-12 Lgc Wireless, Inc. A cellular communications system with centralized capacity resources using dwdm fiber optic backbone
US6353600B1 (en) 2000-04-29 2002-03-05 Lgc Wireless, Inc. Dynamic sectorization in a CDMA cellular system employing centralized base-station architecture
US6519395B1 (en) 2000-05-04 2003-02-11 Northrop Grumman Corporation Fiber optic array harness
WO2001086982A1 (en) 2000-05-10 2001-11-15 Ntt Docomo, Inc. Wireless base station network system, control station, base station switching method, signal processing method, and handover control method
US6405058B2 (en) 2000-05-16 2002-06-11 Idigi Labs, Llc Wireless high-speed internet access system allowing multiple radio base stations in close confinement
US6687437B1 (en) 2000-06-05 2004-02-03 Essex Group, Inc. Hybrid data communications cable
US6788666B1 (en) 2000-06-13 2004-09-07 Sprint Communications Company, L.P. Hybrid fiber wireless communication system
US20020012495A1 (en) 2000-06-29 2002-01-31 Hiroyuki Sasai Optical transmission system for radio access and high frequency optical transmitter
US20020031113A1 (en) 2000-07-07 2002-03-14 Dodds David E. Extended distribution of ADSL signals
KR100338623B1 (en) 2000-07-10 2002-05-30 윤종용 Mobile communication network system using digital optic link
US6704545B1 (en) 2000-07-19 2004-03-09 Adc Telecommunications, Inc. Point-to-multipoint digital radio frequency transport
US6724308B2 (en) 2000-08-11 2004-04-20 Escort Memory Systems RFID tracking method and system
US6968107B2 (en) 2000-08-18 2005-11-22 University Of Southampton Holey optical fibres
US6652158B2 (en) 2000-09-05 2003-11-25 Optical Zonu Corporation Optical networking unit employing optimized optical packaging
US6606430B2 (en) 2000-09-05 2003-08-12 Optical Zonu Corporation Passive optical network with analog distribution
JP2004526268A (en) 2000-09-25 2004-08-26 シメトリックス・コーポレーション Ferroelectric memory and operation method thereof
SE0003610L (en) 2000-10-06 2002-04-07 Telia Ab Device in mobile telecommunication system
US6883710B2 (en) 2000-10-11 2005-04-26 Amerasia International Technology, Inc. Article tracking system and method
US6758913B1 (en) 2000-10-12 2004-07-06 General Electric Company Method of cleaning pressurized containers containing anhydrous ammonia
DE60127791T2 (en) 2000-10-25 2007-12-27 Ntt Docomo Inc. Transmission system with optical units coupled to radio units
WO2002037706A1 (en) 2000-11-03 2002-05-10 Aryya Communications, Inc. Wideband multi-protocol wireless radio transceiver system
US20020114038A1 (en) 2000-11-09 2002-08-22 Shlomi Arnon Optical communication system
US20020055371A1 (en) 2000-11-09 2002-05-09 Shlomi Arnon Cellular base station with remote antenna
GB2370170B (en) 2000-12-15 2003-01-29 Ntl Group Ltd Signal transmission systems
KR100352852B1 (en) 2000-12-22 2002-09-16 엘지전자 주식회사 A transmitting device of receiving signal for optical bts
US6879290B1 (en) 2000-12-26 2005-04-12 France Telecom Compact printed “patch” antenna
US20020123365A1 (en) 2000-12-31 2002-09-05 Thorson Walter R. Scalable base station architecture
US20020092347A1 (en) 2001-01-17 2002-07-18 Niekerk Jan Van Radio frequency identification tag tire inflation pressure monitoring and location determining method and apparatus
US6801767B1 (en) 2001-01-26 2004-10-05 Lgc Wireless, Inc. Method and system for distributing multiband wireless communications signals
JP4028178B2 (en) 2001-02-09 2007-12-26 株式会社東芝 Mobile antenna device
US6704579B2 (en) 2001-02-15 2004-03-09 Ensemble Communications System and method of automatically calibrating the gain for a distributed wireless communication system
DE20102892U1 (en) 2001-02-17 2001-05-03 Fischer Wolfgang Telephone holder for a cell phone in a vehicle
JP2002264617A (en) 2001-03-07 2002-09-18 Hanex Co Ltd Structure for installing rfid tag on tire
NL1017619C2 (en) 2001-03-16 2002-10-07 Koninkl Kpn Nv Method for installing a broadband infrastructure in a building by means of optical fibers.
US6771933B1 (en) 2001-03-26 2004-08-03 Lgc Wireless, Inc. Wireless deployment of bluetooth access points using a distributed antenna architecture
DE60219712T2 (en) 2001-04-19 2008-02-28 Interuniversitair Microelektronica Centrum Vzw Manufacture of integrated tunable / switchable passive micro and millimeter wave modules
US6842433B2 (en) 2001-04-24 2005-01-11 Wideray Corporation System and method for communicating information from a computerized distributor to portable computing devices
US8090379B2 (en) 2001-05-02 2012-01-03 Trex Enterprises Corp Cellular systems with distributed antennas
US7133697B2 (en) 2001-05-14 2006-11-07 Andrew Corporation Translation unit for wireless communications system
US6662024B2 (en) 2001-05-16 2003-12-09 Qualcomm Incorporated Method and apparatus for allocating downlink resources in a multiple-input multiple-output (MIMO) communication system
US20030078052A1 (en) 2001-05-23 2003-04-24 Celerica, Inc. Method and apparatus for sharing infrastructure between wireless network operators
US20020181668A1 (en) 2001-06-01 2002-12-05 Lee Masoian Method and system for radio frequency/fiber optic antenna interface
EP1400141B1 (en) 2001-06-08 2010-03-10 Nextg Networks Network and method for connecting antennas to base stations in a wireless communication network using space diversity
US6826164B2 (en) 2001-06-08 2004-11-30 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US7127175B2 (en) 2001-06-08 2006-10-24 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US6865390B2 (en) 2001-06-25 2005-03-08 Lucent Technologies Inc. Cellular communications system featuring a central radio pool/traffic router
CA2383717A1 (en) 2001-06-28 2002-12-28 Telecommunications Research Laboratories An optical fiber based on wireless scheme for wideband multimedia access
US7409159B2 (en) 2001-06-29 2008-08-05 Hrl Laboratories, Llc Wireless wavelength division multiplexed system
US6580402B2 (en) 2001-07-26 2003-06-17 The Boeing Company Antenna integrated ceramic chip carrier for a phased array antenna
US6710366B1 (en) 2001-08-02 2004-03-23 Ultradots, Inc. Nanocomposite materials with engineered properties
US7082320B2 (en) 2001-09-04 2006-07-25 Telefonaktiebolaget Lm Ericsson (Publ) Integration of wireless LAN and cellular distributed antenna
US20030045284A1 (en) 2001-09-05 2003-03-06 Copley Richard T. Wireless communication system, apparatus and method for providing communication service using an additional frequency band through an in-building communication infrastructure
SE523065C2 (en) 2001-09-07 2004-03-23 Telia Ab An interface and system for managing digital and analog radio frequency signals in a local network
GB0122163D0 (en) 2001-09-13 2001-10-31 Tagtec Ltd Wireless communication system
US7103312B2 (en) 2001-09-20 2006-09-05 Andrew Corporation Method and apparatus for band-to-band translation in a wireless communication system
US7181206B2 (en) 2001-10-11 2007-02-20 Lyndale Trading Company Ltd. Broadband communication platform and methods of network operation
US7228072B2 (en) 2001-10-16 2007-06-05 Telefonaktiebolaget Lm Ericsson (Publ) System and method for integrating a fiber optic fixed access network and a fiber optic radio access network
JP4043761B2 (en) 2001-11-08 2008-02-06 古河電気工業株式会社 Detecting elongate body and method for detecting pipeline information
EP1446689B1 (en) 2001-11-19 2013-01-30 Prysmian Cables & Systems Limited Optical fibre drop cables
WO2003044743A2 (en) 2001-11-20 2003-05-30 Hutchins Nicholas D Facilities management system
US6771862B2 (en) 2001-11-27 2004-08-03 Intel Corporation Signaling medium and apparatus
SE523400C2 (en) 2001-11-30 2004-04-13 Ericsson Telefon Ab L M Cellular radio communication system utilizing wireless optical links and method of operating the system
US6986021B2 (en) 2001-11-30 2006-01-10 Quick Silver Technology, Inc. Apparatus, method, system and executable module for configuration and operation of adaptive integrated circuitry having fixed, application specific computational elements
US6670930B2 (en) 2001-12-05 2003-12-30 The Boeing Company Antenna-integrated printed wiring board assembly for a phased array antenna system
JP3857580B2 (en) 2001-12-06 2006-12-13 株式会社ジャパンリーコム Optical cable connection switching closure
US6970652B2 (en) 2001-12-07 2005-11-29 Oplink Communications, Inc. Auto-setting and optimization of EAM with optical line systems
JP2003198464A (en) 2001-12-28 2003-07-11 Mitsubishi Electric Corp Optical transmitter-receiver
TWI269235B (en) 2002-01-09 2006-12-21 Mead Westvaco Corp Intelligent station using multiple RF antennae and inventory control system and method incorporating same
US20030141962A1 (en) 2002-01-25 2003-07-31 Bernard Barink RFID systems - antenna system and software method to spatially locate transponders
EP1488474A1 (en) 2002-02-22 2004-12-22 Arizona Board of Regents Integration of filters using on-chip transformers for rf and wireless applications
US6882833B2 (en) 2002-02-22 2005-04-19 Blue7 Communications Transferring data in a wireless communication system
AU2003230558A1 (en) 2002-02-25 2003-09-09 Radioframe Networks, Inc. Radio system having distributed real-time processing
JP2003324393A (en) 2002-02-26 2003-11-14 Matsushita Electric Ind Co Ltd Bi-directional optical transmission system, and master and slave stations used therefor
US20030165287A1 (en) 2002-02-27 2003-09-04 Krill Jerry A. System and method for distribution of information using wideband wireless networks
US7715466B1 (en) 2002-02-27 2010-05-11 Sprint Spectrum L.P. Interference cancellation system and method for wireless antenna configuration
US7039399B2 (en) 2002-03-11 2006-05-02 Adc Telecommunications, Inc. Distribution of wireless telephony and data signals in a substantially closed environment
GB2386757A (en) 2002-03-16 2003-09-24 Qinetiq Ltd Signal processing
US6920330B2 (en) 2002-03-26 2005-07-19 Sun Microsystems, Inc. Apparatus and method for the use of position information in wireless applications
US7015826B1 (en) 2002-04-02 2006-03-21 Digital Angel Corporation Method and apparatus for sensing and transmitting a body characteristic of a host
TW201002122A (en) 2002-04-12 2010-01-01 Interdigital Tech Corp Access burst detector correlator pool
ES2198206B2 (en) 2002-04-12 2004-09-16 Telefonica, S.A. CONNECTION SYSTEM THROUGH OPTICAL FIBER USING DWDM / SCM HYBRID TECHNIQUES BETWEEN BASE STATIONS AND REMOTE AERIALS IN A RADIOCOMMUNICATION SYSTEM, AS WELL AS ACCESS METHOD.
KR100745749B1 (en) 2002-04-25 2007-08-02 삼성전자주식회사 Method and apparatus for duplex communication in optical fiber-radio hybrid system
US6847912B2 (en) 2002-05-07 2005-01-25 Marconi Intellectual Property (Us) Inc. RFID temperature device and method
US7069483B2 (en) 2002-05-13 2006-06-27 Kiyon, Inc. System and method for identifying nodes in a wireless mesh network
JP2003332817A (en) 2002-05-14 2003-11-21 Alps Electric Co Ltd Antenna system
CA2387106A1 (en) 2002-05-21 2003-11-21 Information Mediary Corporation Method for measuring temperature using a remote, passive, calibrated rf/rfid tag including a method for calibration
US6831901B2 (en) 2002-05-31 2004-12-14 Opencell Corporation System and method for retransmission of data
US7263293B2 (en) 2002-06-10 2007-08-28 Andrew Corporation Indoor wireless voice and data distribution system
US20040198451A1 (en) 2002-06-11 2004-10-07 Andrew Corporation Tower top antenna structure with fiber optic communications link
US7460831B2 (en) 2002-06-20 2008-12-02 Dekolink Wireless Ltd. System and method for excluding narrow band noise from a communication channel
US6873823B2 (en) 2002-06-20 2005-03-29 Dekolink Wireless Ltd. Repeater with digital channelizer
JP2004032412A (en) 2002-06-26 2004-01-29 Oki Electric Ind Co Ltd Optical transmission system
US6933849B2 (en) 2002-07-09 2005-08-23 Fred Sawyer Method and apparatus for tracking objects and people
US20040017785A1 (en) 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US6763226B1 (en) 2002-07-31 2004-07-13 Computer Science Central, Inc. Multifunctional world wide walkie talkie, a tri-frequency cellular-satellite wireless instant messenger computer and network for establishing global wireless volp quality of service (qos) communications, unified messaging, and video conferencing via the internet
US7020446B2 (en) 2002-07-31 2006-03-28 Mitsubishi Electric Research Laboratories, Inc. Multiple antennas at transmitters and receivers to achieving higher diversity and data rates in MIMO systems
US7050017B2 (en) 2002-08-14 2006-05-23 King Patrick F RFID tire belt antenna system and method
EP1391897A1 (en) 2002-08-21 2004-02-25 Lucent Technologies Inc. A cable, a two-part connector therefor, a unit comprising a part of the two-part connector, and a fixed station for mobile telecommunications
US7583642B2 (en) 2002-09-10 2009-09-01 Harris Corporation Communication system providing hybrid optical/wireless communications and related methods
WO2004025887A2 (en) 2002-09-13 2004-03-25 Strix Systems, Inc. Network access points using multiple devices
DE10244304B3 (en) 2002-09-23 2004-03-18 Data-Complex E.K. Arrangement for monitoring patch panels at distributor points in data networks has patch cables that can be plugged into connections in patch fields with plugs, each fitted with a transponder
US7280848B2 (en) 2002-09-30 2007-10-09 Andrew Corporation Active array antenna and system for beamforming
US7441133B2 (en) 2002-10-15 2008-10-21 Microsemi Corp. - Analog Mixed Signal Group Ltd. Rack level power management for power over Ethernet
JP4124710B2 (en) 2002-10-17 2008-07-23 松下電器産業株式会社 Wireless communication system
US6963289B2 (en) 2002-10-18 2005-11-08 Aeroscout, Ltd. Wireless local area network (WLAN) channel radio-frequency identification (RFID) tag system and method therefor
DE10249414A1 (en) 2002-10-23 2004-05-13 Siemens Ag Electronic communications-compatible pluggable connector unit e.g. for product data handling, has component-specific information electronically stored by data carrier
US7047028B2 (en) 2002-11-15 2006-05-16 Telefonaktiebolaget Lm Ericsson (Publ) Optical fiber coupling configurations for a main-remote radio base station and a hybrid radio base station
JP2004172734A (en) 2002-11-18 2004-06-17 Hitachi Kokusai Electric Inc Wireless relay system
US7200305B2 (en) 2002-11-21 2007-04-03 Bae Systems Information And Electronic Systems Integration Inc. Electro-optical cable for use in transmission of high voltage and optical signals under extremes of temperature
US20040100930A1 (en) 2002-11-25 2004-05-27 Foxcom Wireless WLAN distributed antenna system
US8958789B2 (en) 2002-12-03 2015-02-17 Adc Telecommunications, Inc. Distributed digital antenna system
AU2003280179A1 (en) 2002-12-04 2004-06-23 Koninklijke Philips Electronics N.V. Method and apparatus for true diversity reception with single antenna
US6785558B1 (en) 2002-12-06 2004-08-31 Lgc Wireless, Inc. System and method for distributing wireless communication signals over metropolitan telecommunication networks
US7200391B2 (en) 2002-12-06 2007-04-03 Airvana, Inc. Capacity enhancement schemes for forward and reverse links of distributed cellular base stations
GB0229238D0 (en) 2002-12-13 2003-01-22 Univ London An optical communication system
KR20040053467A (en) 2002-12-14 2004-06-24 김을산 system and method watching sub power supply of network in a remote place
US7024166B2 (en) 2002-12-18 2006-04-04 Qualcomm, Incorporated Transmission diversity systems
WO2004059934A1 (en) 2002-12-24 2004-07-15 Pirelli & C. S.P.A. Radio base station receiver having digital filtering and reduced sampling frequency
US7295119B2 (en) 2003-01-22 2007-11-13 Wireless Valley Communications, Inc. System and method for indicating the presence or physical location of persons or devices in a site specific representation of a physical environment
JP2004229180A (en) 2003-01-27 2004-08-12 Oki Electric Ind Co Ltd Relay communication system
ATE392057T1 (en) 2003-01-29 2008-04-15 Siemens Spa Italiana IMPROVED VCSEL ANALOG OPTICAL CONNECTION
KR100532299B1 (en) 2003-01-30 2005-11-29 삼성전자주식회사 Apparatus for measuring and compensating delay between remote base station and main base station inter-connected by optic cable
US6953919B2 (en) 2003-01-30 2005-10-11 Thermal Solutions, Inc. RFID-controlled smart range and method of cooking and heating
GB2399963B (en) 2003-02-05 2006-04-05 Zinwave Ltd Multimode fibre optical communication system
CN100362365C (en) 2003-02-07 2008-01-16 西门子公司 Method for finding the position of a subscriber in a radio communications system
US20040162115A1 (en) 2003-02-14 2004-08-19 Martin Smith Wireless antennas, networks, methods, software, and services
JP2004265624A (en) 2003-02-12 2004-09-24 Fujikura Ltd Connected long body and cable
JP2004245963A (en) 2003-02-12 2004-09-02 Fujikura Ltd Continuously long body provided with rfid and method for manufacturing the same and optical fiber cable using the continuously long body
JP2004247090A (en) 2003-02-12 2004-09-02 Fujikura Ltd Lengthy body, manufacturing method of the same, and cable
JP2004264901A (en) 2003-02-12 2004-09-24 Fujikura Ltd Successively patterned body, its manufacturing method, and cable
US6973243B2 (en) 2003-02-13 2005-12-06 Fujikura Ltd. Cable
US20040162116A1 (en) 2003-02-14 2004-08-19 Lucent Technologies Inc. User programmable voice dialing for mobile handset
US6915058B2 (en) 2003-02-28 2005-07-05 Corning Cable Systems Llc Retractable optical fiber assembly
ITMI20030402A1 (en) 2003-03-05 2004-09-06 Sirti Spa NETWORK MAPPING SYSTEM.
US7962042B2 (en) 2003-03-07 2011-06-14 At&T Intellectual Property I, L.P. Method and system for delivering broadband services over an ultrawide band radio system integrated with a passive optical network
GB2399990B (en) 2003-03-28 2005-10-26 Motorola Inc Method for determining a coverage area in a cell-based communication system
GB2402300B (en) 2003-03-31 2006-08-30 British Telecomm Network
US7424228B1 (en) 2003-03-31 2008-09-09 Lockheed Martin Corporation High dynamic range radio frequency to optical link
JP2004317737A (en) 2003-04-15 2004-11-11 Fujikura Ltd Mt connector, guide members used in the same and optical fiber management method using the same connector
WO2004095776A2 (en) 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Wireless lan system wherein an access point is connected to remote slave stations via an optical multiplexing system
JP2004325783A (en) 2003-04-24 2004-11-18 Sony Corp Optical-electrical composite connector, and optical-electrical composite cable and network equipment using the same
US7155622B2 (en) 2003-05-15 2006-12-26 3Com Corporation System and method for the management of power supplied over data lines
KR100547880B1 (en) 2003-05-20 2006-01-31 삼성전자주식회사 Indoor Short-range Communication Network System Using Ultra-Wideband Communication System
JP2004349184A (en) 2003-05-26 2004-12-09 Oki Electric Cable Co Ltd Connection management system for cable with connector using rfid tag and jack component
US7054513B2 (en) 2003-06-09 2006-05-30 Virginia Tech Intellectual Properties, Inc. Optical fiber with quantum dots
US20040258105A1 (en) 2003-06-19 2004-12-23 Spathas Matthew T. Building optical network
JP2005018175A (en) 2003-06-24 2005-01-20 Ritsumeikan Sensor system
DE60331480D1 (en) 2003-06-27 2010-04-08 Pirelli & C Spa METHOD FOR CONFIGURING A COMMUNICATION NETWORK, THE SAME NETWORK ARCHITECTURE AND COMPUTER PROGRAM PRODUCT THEREFOR
KR20070100430A (en) 2003-06-30 2007-10-11 데코링크 와이어리스 엘티디. Method for automatic control of rf output level of a repeater
KR100526550B1 (en) 2003-06-30 2005-11-03 삼성전자주식회사 Access point for constructing an optical wireless network system based on optical fiber
US7646777B2 (en) 2003-07-07 2010-01-12 At&T Intellectual Property I, L.P. Communication environment switchover
US8719053B2 (en) 2003-07-17 2014-05-06 Ventana Medical Systems, Inc. Laboratory instrumentation information management and control network
KR101064386B1 (en) 2003-07-25 2011-09-14 파나소닉 주식회사 Wireless communication system
KR100526552B1 (en) 2003-08-01 2005-11-03 삼성전자주식회사 Wireless personal area network for extending service area
US20050058451A1 (en) 2003-08-12 2005-03-17 Barrett Ross Enhanced fiber infrastructure for building interiors
US6847856B1 (en) 2003-08-29 2005-01-25 Lucent Technologies Inc. Method for determining juxtaposition of physical components with use of RFID tags
US20050201761A1 (en) 2003-09-05 2005-09-15 Optical Zonu Corporation SINGLE FIBER TRANSCEIVER with FAULT LOCALIZATION
EP1665828A4 (en) 2003-09-11 2014-12-17 Kohl Group Inc Flexible transport system including support for bilateral user access
JP2005087135A (en) 2003-09-18 2005-04-07 Hitachi Plant Eng & Constr Co Ltd Method for determining cooking history of food and apparatus therefor
US7026936B2 (en) 2003-09-30 2006-04-11 Id Solutions, Inc. Distributed RF coupled system
US20050076982A1 (en) 2003-10-09 2005-04-14 Metcalf Arthur Richard Post patch assembly for mounting devices in a tire interior
US6919858B2 (en) 2003-10-10 2005-07-19 Broadcom, Corp. RF antenna coupling structure
CN1860645B (en) 2003-10-23 2013-04-03 意大利电信股份公司 Antenna system and method for configurating radiating pattern
JP2005134125A (en) 2003-10-28 2005-05-26 Mitsubishi Materials Corp Tire pressure measurement means and rfid system using the same means
AU2003278162A1 (en) 2003-10-30 2005-06-08 Pirelli And C. S.P.A. Method and system for performing digital beam forming at intermediate frequency on the radiation pattern of an array antenna
US7176797B2 (en) 2003-10-31 2007-02-13 Li-Cheng Richard Zai Method and system of using active RFID tags to provide a reliable and secure RFID system
EP1530316A1 (en) 2003-11-10 2005-05-11 Go Networks Improving the performance of a wireless packet data communication system
US6914570B2 (en) 2003-11-10 2005-07-05 Motorola, Inc. Antenna system for a communication device
US20050116821A1 (en) 2003-12-01 2005-06-02 Clifton Labs, Inc. Optical asset tracking system
JP2005175826A (en) 2003-12-10 2005-06-30 Matsushita Electric Ind Co Ltd Optical fiber radio transmission system, transmitter, and receiver
FR2864256B1 (en) 2003-12-19 2006-03-03 Cit Alcatel CONDUCTOR MODULE, ESPECIALLY OF OPTICAL FIBER TYPE, WITH RELATIVE SLIDING AND CONTROLLED SEALING, AND METHOD OF MANUFACTURING THE SAME
KR100617671B1 (en) 2003-12-22 2006-08-28 삼성전자주식회사 High-speed wireless lan system
GB0329908D0 (en) 2003-12-23 2004-01-28 Univ Cambridge Tech Multiservice optical communication
US20050143077A1 (en) 2003-12-24 2005-06-30 Hugo Charbonneau System and method for designing a communications network
US20080026765A1 (en) 2003-12-24 2008-01-31 Hugo Charbonneau Tool for Multi-Technology Distributed Antenna Systems
US6909399B1 (en) 2003-12-31 2005-06-21 Symbol Technologies, Inc. Location system with calibration monitoring
US8208449B2 (en) 2004-01-05 2012-06-26 Broadcom Corporation Multi-mode WLAN/PAN MAC
US20050148306A1 (en) 2004-01-05 2005-07-07 Hiddink Gerrit W. Predictive method and apparatus for antenna selection in a wireless communication system
US7457693B2 (en) 2004-01-09 2008-11-25 United Parcel Service Of America, Inc. System, method, and apparatus for collecting telematics and sensor information in a delivery vehicle
US6974262B1 (en) 2004-01-21 2005-12-13 Robert Rickenbach Communication cable
AR043357A1 (en) 2004-01-23 2005-07-27 Salva Calcagno Eduardo Luis PROCEDURE OF IDENTIFICATION OF PERSONS THROUGH THE CONVERSION OF DACTILAR FOOTPRINTS AND GENETIC CODES IN BAR CODES AND DISPOSAL USED IN THIS PROCEDURE
US20050174236A1 (en) 2004-01-29 2005-08-11 Brookner George M. RFID device tracking and information gathering
FI20040220A0 (en) 2004-02-12 2004-02-12 Nokia Corp Identification of remote radio devices in a communication system
US7423527B2 (en) 2004-02-13 2008-09-09 Blue Vector Systems Radio frequency identification (RFID) network system and method
US6965718B2 (en) 2004-02-20 2005-11-15 Hewlett-Packard Development Company, L.P. Apparatus and method for supplying power over an optical link
US7315735B2 (en) 2004-02-24 2008-01-01 P.G. Electronics Ltd. System and method for emergency 911 location detection
JP4256804B2 (en) 2004-03-08 2009-04-22 富士通株式会社 Multi antenna system
US7466925B2 (en) 2004-03-19 2008-12-16 Emcore Corporation Directly modulated laser optical transmission system
US7170393B2 (en) 2004-03-30 2007-01-30 Lucent Technologies, Inc. Method and apparatus for the automatic determination of network cable connections using RFID tags and an antenna grid
US7599420B2 (en) 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US20050224585A1 (en) 2004-04-02 2005-10-13 Durrant Richard C E Radio frequency identification of a connector by a patch panel or other similar structure
US7542452B2 (en) 2004-04-09 2009-06-02 Sharp Laboratories Of America, Inc. Systems and methods for implementing an enhanced multi-channel direct link protocol between stations in a wireless LAN environment
US7404520B2 (en) 2004-04-28 2008-07-29 Symbol Technologies, Inc. System and method for providing location information in transaction processing
GB0409855D0 (en) 2004-05-01 2004-06-09 Univ Bristol A low cost wireless optical transceiver module
IL161869A (en) 2004-05-06 2014-05-28 Serconet Ltd System and method for carrying a wireless based signal over wiring
JP4900609B2 (en) 2004-05-07 2012-03-21 センサーマティック・エレクトロニクス・エルエルシー Method for assigning and estimating the position of an article detected by a multi-RFID antenna
US7422152B2 (en) 2004-05-13 2008-09-09 Cisco Technology, Inc. Methods and devices for providing scalable RFID networks
US7353407B2 (en) 2004-05-20 2008-04-01 Cisco Technology, Inc. Methods and apparatus for provisioning phantom power to remote devices
US7324730B2 (en) 2004-05-19 2008-01-29 Schlumberger Technology Corporation Optical fiber cables for wellbore applications
EP1617455B1 (en) 2004-06-01 2007-08-01 Matsushita Toshiba Picture Display Co., Ltd. Color picture tube
US7496070B2 (en) 2004-06-30 2009-02-24 Symbol Technologies, Inc. Reconfigureable arrays of wireless access points
US7093985B2 (en) 2004-07-12 2006-08-22 Protokraft, Llc Wall mount fiber optic connector and associated method for forming the same
US20060014548A1 (en) 2004-07-16 2006-01-19 Telefonaktiebolaget Lm Ericsson (Publ) Determination of mobile terminal position
KR100590486B1 (en) 2004-07-29 2006-06-19 에스케이 텔레콤주식회사 Method and System for Generating Switching Timing Signal for Separating Transmitting and Receiving Signal in Optical Repeater of Mobile Telecommunication Network Using TDD and ODFM Modulation
CN100544458C (en) 2004-08-13 2009-09-23 Ut斯达康通讯有限公司 Dynamic resource allocation method in the centralized base station
WO2006018592A1 (en) 2004-08-20 2006-02-23 Zinwave Limited Multimode fibre optical communication system
US7477597B2 (en) 2004-09-08 2009-01-13 Alcatel Lucent Rural broadband hybrid satellite/terrestrial solution
US20090149221A1 (en) 2004-09-08 2009-06-11 Utstarcom Telecom Co., Ltd. Centralized base station system based on advanced telecommunication computer architecture platform
KR20060025743A (en) 2004-09-17 2006-03-22 삼성전자주식회사 Optical network for bi-directional wireless communication
JPWO2006033279A1 (en) 2004-09-24 2008-05-15 松下電器産業株式会社 Data processing device
US9894044B2 (en) 2004-10-15 2018-02-13 Telecom Italia S.P.A. Method for secure signal transmission in a telecommunication network, in particular in a local area network
US7548695B2 (en) 2004-10-19 2009-06-16 Nextg Networks, Inc. Wireless signal distribution system and method
DE602004018399D1 (en) 2004-10-25 2009-01-22 Pirelli & C Spa COMMUNICATION PROCESS, ESPECIALLY FOR A MOBILE RADIO NETWORK
US7313415B2 (en) 2004-11-01 2007-12-25 Nextg Networks, Inc. Communications system and method
AU2005303660B2 (en) 2004-11-15 2011-04-28 Bae Systems Plc Data communications system
KR100617839B1 (en) 2004-11-16 2006-08-28 삼성전자주식회사 Optical network for bidirectional- wireless communication
AU2004325175B2 (en) 2004-11-25 2010-08-26 Telecom Italia S.P.A. Joint IC card and wireless transceiver module for mobile communication equipment
JP2006197348A (en) 2005-01-14 2006-07-27 Pacific Ind Co Ltd Optical path switching device in optical lan system
US7751374B2 (en) 2005-01-18 2010-07-06 Marvell World Trade Ltd. WLAN TDM protocol
WO2006077569A1 (en) 2005-01-18 2006-07-27 Powerdsine, Ltd. Rack level power management
US7764978B1 (en) 2005-01-26 2010-07-27 Nextel Communications Inc. System and method for providing in-building wireless network coverage
US7787854B2 (en) 2005-02-01 2010-08-31 Adc Telecommunications, Inc. Scalable distributed radio network
US20070060045A1 (en) 2005-02-02 2007-03-15 Prautzsch Frank R System and technique for situational awareness
US20060182449A1 (en) 2005-02-16 2006-08-17 John Iannelli Optical transmitter with integrated amplifier and pre-distortion circuit
KR100744372B1 (en) 2005-02-17 2007-07-30 삼성전자주식회사 Wired and wireless convergence network based on WDM-PON using injection locked FP-EML
KR100640385B1 (en) 2005-02-18 2006-10-31 삼성전자주식회사 BTS Apparatus with mobile and fixed wireless service distribution function
US7672591B2 (en) 2005-03-01 2010-03-02 Soto Alexander I System and method for a subscriber-powered network element
CN100375550C (en) 2005-03-07 2008-03-12 大唐移动通信设备有限公司 Base station system
US7877101B1 (en) 2006-12-28 2011-01-25 Marvell International Ltd. Locating a WLAN station using signal propagation delay
KR100617806B1 (en) 2005-04-04 2006-08-28 삼성전자주식회사 Remote antenna unit and wavelength division multiplexing radio-over-fiber network using the same
CN101160542B (en) 2005-04-19 2010-10-13 Adc电信公司 Loop back plug and method
US7359674B2 (en) 2005-05-10 2008-04-15 Nokia Corporation Content distribution & communication system for enhancing service distribution in short range radio environment
US7881755B1 (en) 2005-05-26 2011-02-01 Marvell International Ltd. Wireless LAN power savings
US7114859B1 (en) 2005-05-31 2006-10-03 Nokia Corporation Electrical-optical/optical-electrical board to board connector
US20060274704A1 (en) 2005-06-01 2006-12-07 Prasanna Desai Method and apparatus for collaborative coexistence between Bluetooth and IEEE 802.11 G with both technologies integrated onto a system-on-a-chip (SOC) device
US9059782B2 (en) 2005-06-01 2015-06-16 Broadcom Corporation Method and system for antenna and radio front-end topologies for a system-on-a-chip (SOC) device that combines bluetooth and IEEE 802.11 b/g WLAN technologies
US20070008939A1 (en) 2005-06-10 2007-01-11 Adc Telecommunications, Inc. Providing wireless coverage into substantially closed environments
CN100341198C (en) 2005-06-13 2007-10-03 京信通信技术(广州)有限公司 High-isolatting-degree plate-shape directinal intelligent antenna array
GB0512817D0 (en) 2005-06-23 2005-08-03 Zinwave Ltd Optical communication system
GB2428149B (en) 2005-07-07 2009-10-28 Agilent Technologies Inc Multimode optical fibre communication system
US7684835B1 (en) 2005-07-12 2010-03-23 Marvell Interntional Ltd. Wake on wireless LAN schemes
CH705337B1 (en) 2005-07-14 2013-02-15 Brugg Ag Kabelwerke Electro-optical communications and power cables.
CN107425296B (en) 2005-07-22 2021-05-04 英特尔公司 Antenna device with staggered antenna elements
US7551641B2 (en) 2005-07-26 2009-06-23 Dell Products L.P. Systems and methods for distribution of wireless network access
US9189036B2 (en) 2005-08-19 2015-11-17 Akros Silicon, Inc. Ethernet module
KR100703367B1 (en) 2005-09-12 2007-04-03 삼성전자주식회사 Wireless remote access base station and pico-cell system using the same
US20070076649A1 (en) 2005-09-30 2007-04-05 Intel Corporation Techniques for heterogeneous radio cooperation
CN100407825C (en) 2005-10-18 2008-07-30 上海贝尔阿尔卡特股份有限公司 A distributed base station, communication system and its used signal transmission method
ATE522030T1 (en) 2005-10-27 2011-09-15 Telecom Italia Spa METHOD AND SYSTEM FOR MULTI-ANTENNA COMMUNICATION USING MULTIPLE TRANSMISSION TYPES, APPARATUS AND COMPUTER PROGRAM PRODUCT
US7412224B2 (en) 2005-11-14 2008-08-12 Nokia Corporation Portable local server with context sensing
US8390456B2 (en) 2008-12-03 2013-03-05 Tego Inc. RFID tag facility with access to external devices
US20070274279A1 (en) 2005-12-19 2007-11-29 Wood Steven A Distributed antenna system employing digital forward deployment of wireless transmit/receive locations
CN100525236C (en) 2005-12-19 2009-08-05 华为技术有限公司 Optic network and radio communication network interconnection system and its communication method
GB0600162D0 (en) 2006-01-05 2006-02-15 Zinwave Ltd Communications device
US7672667B2 (en) 2006-01-17 2010-03-02 Telefonaktiebolaget L M Ericsson (Publ) Broadcast-centric cellular communication system
EP1980039A1 (en) 2006-02-03 2008-10-15 Pirelli & C. S.p.A. Passive optical network comprising multi-longitudinal mode emitting devices
GB0602770D0 (en) 2006-02-10 2006-03-22 Zinwave Ltd Optical communication
US7653038B2 (en) 2006-02-16 2010-01-26 Marvell World Trade Ltd. Dual MAC arbitration
US8457576B2 (en) 2006-03-23 2013-06-04 Marvell International Ltd. Cellular phone with integrated FM radio and remote low noise amplifier
US7929940B1 (en) 2006-04-18 2011-04-19 Nextel Communications Inc. System and method for transmitting wireless digital service signals via power transmission lines
US20070248358A1 (en) 2006-04-19 2007-10-25 Michael Sauer Electrical-optical cable for wireless systems
US7805073B2 (en) 2006-04-28 2010-09-28 Adc Telecommunications, Inc. Systems and methods of optical path protection for distributed antenna systems
US7495560B2 (en) 2006-05-08 2009-02-24 Corning Cable Systems Llc Wireless picocellular RFID systems and methods
US7693486B2 (en) 2006-05-11 2010-04-06 Nokia Corporation Distributed multiradio controller
WO2007136289A1 (en) 2006-05-23 2007-11-29 Intel Corporation Millimeter-wave chip-lens array antenna systems for wireless networks
US8164773B2 (en) 2006-05-26 2012-04-24 Marvell World Trade Ltd. Wireless system-in-package and image processing control apparatus
US7310430B1 (en) 2006-06-02 2007-12-18 Sbc Knowledge Ventures Hybrid cables for communication networks
EP2025072A1 (en) 2006-06-02 2009-02-18 Qualcomm Incorporated Multi-antenna station with distributed antennas
US8300570B2 (en) 2006-06-02 2012-10-30 Research In Motion Limited Ranging regions for wireless communication relay stations
US20080007453A1 (en) 2006-06-12 2008-01-10 Bill Vassilakis Smart antenna array over fiber
US20070286599A1 (en) 2006-06-12 2007-12-13 Michael Sauer Centralized optical-fiber-based wireless picocellular systems and methods
US20070292136A1 (en) 2006-06-16 2007-12-20 Michael Sauer Transponder for a radio-over-fiber optical fiber cable
US20080013909A1 (en) 2006-07-14 2008-01-17 Tenvera, Inc. Modular Optical Fiber Network Interface
US20080013956A1 (en) 2006-07-14 2008-01-17 Tenvera, Inc. Provisioning of Services Via an Optical Fiber Network
US7844273B2 (en) 2006-07-14 2010-11-30 Lgc Wireless, Inc. System for and method of for providing dedicated capacity in a cellular network
US20080013957A1 (en) 2006-07-14 2008-01-17 Tenvera, Inc. Service Aggregation Gateway
GB2440192B (en) 2006-07-17 2011-05-04 Ubidyne Inc Antenna array system
US7627250B2 (en) 2006-08-16 2009-12-01 Corning Cable Systems Llc Radio-over-fiber transponder with a dual-band patch antenna system
US8325703B2 (en) 2006-08-16 2012-12-04 Nokia Corporation Multiradio scheduling including clock synchronization validity protection
US7848770B2 (en) 2006-08-29 2010-12-07 Lgc Wireless, Inc. Distributed antenna communications system and methods of implementing thereof
KR100819257B1 (en) 2006-08-31 2008-04-02 삼성전자주식회사 Radio Over Fiber System and Method for Controlling Transmission Time
US7787823B2 (en) 2006-09-15 2010-08-31 Corning Cable Systems Llc Radio-over-fiber (RoF) optical fiber cable system with transponder diversity and RoF wireless picocellular system using same
CA2664573C (en) 2006-09-26 2015-07-07 Extenet Systems, Inc. A method and apparatus for using distributed antennas
US7848654B2 (en) 2006-09-28 2010-12-07 Corning Cable Systems Llc Radio-over-fiber (RoF) wireless picocellular system with combined picocells
US7684709B2 (en) 2006-09-29 2010-03-23 Massachusetts Institute Of Technology Fiber aided wireless network architecture
US7949364B2 (en) 2006-10-03 2011-05-24 Nokia Corporation System for managing radio modems
US7778603B2 (en) 2006-10-26 2010-08-17 Nokia Corporation Bandwidth conservation by reallocating unused time scheduled for a radio to another radio
US7668565B2 (en) 2006-11-07 2010-02-23 Nokia Corporation Multiradio priority control based on modem buffer load
US20080118014A1 (en) 2006-11-16 2008-05-22 Nokia Corporation Utilizing wake-up signals for synchronizing multiradio timing
EP1924109B1 (en) 2006-11-20 2013-11-06 Alcatel Lucent Method and system for wireless cellular indoor communications
US9391723B2 (en) 2006-11-27 2016-07-12 At&T Intellectual Property I, Lp System and method for high speed data communications
US20080129634A1 (en) 2006-11-30 2008-06-05 Pera Robert J Multi-polarization antenna feeds for mimo applications
US7991375B2 (en) 2006-12-06 2011-08-02 Broadcom Corporation RFIC with high power PA
KR100842533B1 (en) 2006-12-13 2008-07-01 삼성전자주식회사 Radio over fiber rink based on time division duplex
US7783263B2 (en) 2006-12-14 2010-08-24 Texas Instruments Incorporated Simplified digital predistortion in a time-domain duplexed transceiver
FI20065841A0 (en) 2006-12-21 2006-12-21 Nokia Corp Communication method and systems
US7817958B2 (en) 2006-12-22 2010-10-19 Lgc Wireless Inc. System for and method of providing remote coverage area for wireless communications
US7557758B2 (en) 2007-03-26 2009-07-07 Broadcom Corporation Very high frequency dielectric substrate wave guide
CN101212809B (en) 2006-12-29 2012-11-14 朗迅科技公司 Method for handling coverage in radio communication system
US7787731B2 (en) 2007-01-08 2010-08-31 Corning Incorporated Bend resistant multimode optical fiber
JP4708370B2 (en) 2007-01-12 2011-06-22 日本電信電話株式会社 Wireless communication apparatus, wireless communication system, digital fiber wireless communication method and program
US8737454B2 (en) 2007-01-25 2014-05-27 Adc Telecommunications, Inc. Modular wireless communications platform
EP1954019A1 (en) 2007-02-01 2008-08-06 Research In Motion Limited System and method for providing simulated spatial sound in a wireless communication device during group voice communication sessions
US7653397B2 (en) 2007-02-09 2010-01-26 Nokia Corporation Managing unscheduled wireless communication in a multiradio device
US20080194302A1 (en) 2007-02-12 2008-08-14 Broadcom Corporation Mobile phone with an antenna structure having improved performance
WO2008099383A2 (en) 2007-02-12 2008-08-21 Mobileaccess Networks Ltd. Mimo-adapted distributed antenna system
US20080194226A1 (en) 2007-02-13 2008-08-14 Antonio Rivas Method and Apparatus for Providing Location Services for a Distributed Network
US7809012B2 (en) 2007-02-16 2010-10-05 Nokia Corporation Managing low-power wireless mediums in multiradio devices
US20080207253A1 (en) 2007-02-27 2008-08-28 Nokia Corporation Multiradio management through quality level control
US8036308B2 (en) 2007-02-28 2011-10-11 Broadcom Corporation Method and system for a wideband polar transmitter
KR100871229B1 (en) 2007-03-06 2008-12-01 삼성전자주식회사 Radio Over Fiber System and Signal Control Method For Executing Wireless-Communication-Service Hybrid Deplexing Technology Based
JP2007228603A (en) 2007-03-20 2007-09-06 Toshiba Corp Radio communication base station device, receiver for optical transmission of radio signal and transceiver for optical transmission of radio signal
US7668153B2 (en) 2007-03-27 2010-02-23 Adc Telecommunications, Inc. Method for data converter sample clock distribution
US20080268833A1 (en) 2007-03-30 2008-10-30 Leping Huang System and Method for Self-Optimization of Interference Coordination in Communication Systems
US8265712B2 (en) 2007-04-13 2012-09-11 Nokia Corporation Multiradio power aware traffic management
KR20080093746A (en) 2007-04-18 2008-10-22 삼성전자주식회사 Radio over optical fiver remote station and cable relaying method using low noise amplifier as common amplifier of up and down link
US7920764B2 (en) 2007-05-04 2011-04-05 Anthony Stephen Kewitsch Electrically traceable and identifiable fiber optic cables and connectors
US20080279137A1 (en) 2007-05-10 2008-11-13 Nokia Corporation Discontinuous inquiry for wireless communication
US8666257B2 (en) 2007-05-24 2014-03-04 Finisar Corporation Optoelectronic devices with intelligent transmitter modules
US20080291830A1 (en) 2007-05-25 2008-11-27 Nokia Corporation Multiradio control incorporating quality of service
KR100921861B1 (en) 2007-05-29 2009-10-13 광주과학기술원 All-optical Frequency Up-Converter, And All-optical Frequency Up-Converting Method in Radio Over Fiber System
US7990925B2 (en) 2007-05-30 2011-08-02 Qualcomm Incorporated Method and apparatus for communication handoff
US20080304831A1 (en) 2007-06-08 2008-12-11 Miller Ii Robert Raymond Mesh free-space optical system for wireless local area network backhaul
US8041333B2 (en) 2007-06-14 2011-10-18 Broadcom Corporation Method and system for 60 GHz antenna adaptation and user coordination based on base station beacons
JP4962152B2 (en) 2007-06-15 2012-06-27 日立電線株式会社 Opto-electric composite transmission assembly
WO2009002938A2 (en) 2007-06-22 2008-12-31 Clariton Networks, Ltd. Method and apparatus for proividing wimax over catv, dbs, pon infrastructure
US8010116B2 (en) 2007-06-26 2011-08-30 Lgc Wireless, Inc. Distributed antenna communications system
US20090086693A1 (en) 2007-06-26 2009-04-02 Kennedy Joseph P System and method for RF space protection and control
US20100054746A1 (en) 2007-07-24 2010-03-04 Eric Raymond Logan Multi-port accumulator for radio-over-fiber (RoF) wireless picocellular systems
US20090028317A1 (en) 2007-07-26 2009-01-29 The Directv Group, Inc. Method and system for providing callbacks from a user device using an ip network
US8964734B2 (en) 2007-07-26 2015-02-24 The Directv Group, Inc. Method and system for communicating content having modified packet headers through a satellite
US7627218B2 (en) 2007-08-08 2009-12-01 Corning Cable Systems Llc Retractable optical fiber tether assembly and associated fiber optic cable
US7848731B1 (en) 2007-08-14 2010-12-07 Sprint Spectrum L.P. System and method for communicating a combined digital signal for wireless service via integrated hybrid fiber coax and power line communication devices for a distributed antenna system over shared broadband media
US7948897B2 (en) 2007-08-15 2011-05-24 Adc Telecommunications, Inc. Delay management for distributed communications networks
US8121539B2 (en) 2007-08-27 2012-02-21 Nokia Corporation Antenna arrangement
US8055300B2 (en) 2007-08-29 2011-11-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for indoor coverage of user equipment terminals
US8036626B2 (en) 2007-09-24 2011-10-11 Broadcom Corporation Method and system for a distributed transceiver with DDFS channel selection
US9071324B2 (en) 2007-09-30 2015-06-30 Broadcom Corporation Method and system for communicating up to extreme high frequencies using a mesh network of repeaters
US8913951B2 (en) 2007-09-30 2014-12-16 Broadcom Corporation Method and system for 60 GHz distributed communication utilizing a mesh network of repeaters
WO2009044345A2 (en) 2007-10-01 2009-04-09 Nokia Corporation System and method for controlling base stations for multimedia broadcast communications
CA2698328A1 (en) 2007-10-02 2009-04-09 Nokia Corporation Ip mtu control based on multiradio schedule
US8175459B2 (en) 2007-10-12 2012-05-08 Corning Cable Systems Llc Hybrid wireless/wired RoF transponder and hybrid RoF communication system using same
WO2009050539A1 (en) 2007-10-19 2009-04-23 Nokia Corporation Radio access control utilizing quality of service access windows
US20090169163A1 (en) 2007-12-13 2009-07-02 Abbott Iii John Steele Bend Resistant Multimode Optical Fiber
WO2009081376A2 (en) 2007-12-20 2009-07-02 Mobileaccess Networks Ltd. Extending outdoor location based services and applications into enclosed areas
KR101529852B1 (en) 2008-01-02 2015-07-01 인터디지탈 테크날러지 코포레이션 Method and apparatus for cooperative wireless communications
US7870321B2 (en) 2008-02-06 2011-01-11 Broadcom Corporation Extended computing unit with stand-alone application
WO2009100396A1 (en) 2008-02-08 2009-08-13 Adc Telecommunications, Inc. An enterprise mobile network for providing cellular wireless service using licensed radio frequency spectrum and internet protocol backhaul
US8415777B2 (en) 2008-02-29 2013-04-09 Broadcom Corporation Integrated circuit with millimeter wave and inductive coupling and methods for use therewith
US20090218657A1 (en) 2008-03-03 2009-09-03 Broadcom Corporation Inductively coupled integrated circuit with near field communication and methods for use therewith
US8233939B2 (en) 2008-03-31 2012-07-31 Intel Corporation Multiuser sector micro diversity system
US20090245221A1 (en) 2008-03-31 2009-10-01 Nokia Corporation Multiradio operation using interference reporting
US8274921B2 (en) 2008-04-01 2012-09-25 Harris Corporation System and method for communicating data using efficient fast fourier transform (FFT) for orthogonal frequency division multiplexing (OFDM)
US20090252204A1 (en) 2008-04-04 2009-10-08 Delphi Technologies, Inc. Receiver system for receiving analog and digital signals
EP2110955A1 (en) 2008-04-17 2009-10-21 Alcatel Lucent Base station for a mobile communication network
US20090286544A1 (en) 2008-05-13 2009-11-19 At&T Mobility Ii Llc Administration of an access control list to femto cell coverage
US8175028B2 (en) 2008-05-16 2012-05-08 Redline Communications Inc. Isolation measurement and self-oscillation prevention in TDD-OFDM repeater for wireless broadband distribution to shadowed areas
US8174428B2 (en) 2008-05-21 2012-05-08 Integrated Device Technology, Inc. Compression of signals in base transceiver systems
US8005152B2 (en) 2008-05-21 2011-08-23 Samplify Systems, Inc. Compression of baseband signals in base transceiver systems
WO2009145789A1 (en) 2008-05-30 2009-12-03 Hewlett-Packard Development Company, L.P. Wireless access point
US7969009B2 (en) 2008-06-30 2011-06-28 Qualcomm Incorporated Through silicon via bridge interconnect
EP2291051B1 (en) 2008-07-03 2015-01-28 ZTE Corporation Hierarchical wireless access system including a plurality of access point management units
KR101488028B1 (en) 2008-07-17 2015-01-30 엘지전자 주식회사 Method for transmitting reference signal in multiple antenna system
US8116230B2 (en) 2008-07-31 2012-02-14 Motorola Solutions, Inc. Establishing communication pathways between infrastructure devices in a group communication system implemented over a wide area network
KR101646249B1 (en) 2008-08-11 2016-08-16 엘지전자 주식회사 Method and apparatus of transmitting information in wireless communication system
EP2159933B1 (en) 2008-08-28 2013-03-27 Alcatel Lucent Levelling amplifiers in a distributed antenna system
US8103213B2 (en) 2008-09-03 2012-01-24 Nokia Corporation Software-defined radio configuration
DE602009000531D1 (en) 2008-09-04 2011-02-17 Alcatel Lucent Systems and methods for providing broadband mobile communication services on board an aircraft
US8428018B2 (en) 2008-09-26 2013-04-23 Lg Electronics Inc. Method of transmitting reference signals in a wireless communication having multiple antennas
US20100087227A1 (en) 2008-10-02 2010-04-08 Alvarion Ltd. Wireless base station design
US20100091475A1 (en) 2008-10-15 2010-04-15 Qualcomm Incorporated Electrostatic Discharge (ESD) Shielding For Stacked ICs
US20100127937A1 (en) 2008-11-25 2010-05-27 Qualcomm Incorporated Antenna Integrated in a Semiconductor Chip
US8116772B2 (en) 2008-12-04 2012-02-14 Qualcomm Incorporated System and method to facilitate acquisition of access point base stations
US8310061B2 (en) 2008-12-17 2012-11-13 Qualcomm Incorporated Stacked die parallel plate capacitor
US10014910B2 (en) 2008-12-30 2018-07-03 Telecom Italia S.P.A. Method for distributed mobile communications, corresponding system and computer program product
US8816904B2 (en) 2009-01-06 2014-08-26 Jeremy Keith Raines Intelligent signal booster
US8346278B2 (en) 2009-01-13 2013-01-01 Adc Telecommunications, Inc. Systems and methods for mobile phone location with digital distributed antenna systems
US8270387B2 (en) 2009-01-13 2012-09-18 Adc Telecommunications, Inc. Systems and methods for improved digital RF transport in distributed antenna systems
US8213401B2 (en) 2009-01-13 2012-07-03 Adc Telecommunications, Inc. Systems and methods for IP communication over a distributed antenna system transport
US8326319B2 (en) 2009-01-23 2012-12-04 At&T Mobility Ii Llc Compensation of propagation delays of wireless signals
US20100189439A1 (en) 2009-01-23 2010-07-29 Dalma Novak Optical fiber distributed wireless personal area network
US8854993B2 (en) 2009-01-23 2014-10-07 Nokia Corporation Interoperability interface for modem control
EP2392075A4 (en) 2009-01-27 2013-08-07 Adc Telecommunications Inc Method and apparatus for digitally equalizing a signal in a distributed antenna system
US8306563B2 (en) 2009-01-29 2012-11-06 Adc Telecommunications, Inc. Method and apparatus for muting a digital link in a distributed antenna system
KR101755038B1 (en) 2009-01-30 2017-07-06 엘지전자 주식회사 Apparatus and method of transmitting reference signal in wireless communication system
EP2394378A1 (en) 2009-02-03 2011-12-14 Corning Cable Systems LLC Optical fiber-based distributed antenna systems, components, and related methods for monitoring and configuring thereof
US8249523B2 (en) 2009-02-09 2012-08-21 Broadcom Corporation Method and system for a multi-port distributed antenna
US8676214B2 (en) 2009-02-12 2014-03-18 Adc Telecommunications, Inc. Backfire distributed antenna system (DAS) with delayed transport
US20100208777A1 (en) 2009-02-17 2010-08-19 Adc Telecommunications, Inc. Distributed antenna system using gigabit ethernet physical layer device
US8219048B2 (en) 2009-03-03 2012-07-10 Broadcom Corporation Method and system for receiving signals via multi-port distributed antenna
US8238842B2 (en) 2009-03-03 2012-08-07 Broadcom Corporation Method and system for an on-chip and/or an on-package transmit/receive switch and antenna
US8155601B2 (en) 2009-03-03 2012-04-10 Broadcom Corporation Method and system for power combining in a multi-port distributed antenna
US8086192B2 (en) 2009-03-03 2011-12-27 Broadcom Corporation Method and system for power control with optimum power efficiency with a multi-port distributed antenna
US8305953B2 (en) 2009-03-31 2012-11-06 Intel Corporation Narrowband transmissions using a plurality of antennas
US8140007B2 (en) 2009-04-01 2012-03-20 Ubidyne, Inc. Radio system and method for relaying radio signals with a power calibration of transmit radio signals
US8198736B2 (en) 2009-04-09 2012-06-12 Qualcomm Incorporated Reduced susceptibility to electrostatic discharge during 3D semiconductor device bonding and assembly
WO2010129367A2 (en) 2009-04-28 2010-11-11 Zte (Usa) Inc. Dedicated acknowledgement and delivery of management messages in wireless communication systems
US8346091B2 (en) 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
US8686902B2 (en) 2009-05-13 2014-04-01 Norberto Lopez Antenna structures
US8155525B2 (en) 2009-05-15 2012-04-10 Corning Cable Systems Llc Power distribution devices, systems, and methods for radio-over-fiber (RoF) distributed communication
US8144613B2 (en) 2009-05-18 2012-03-27 Empire Technology Development Llc Achieving quality of service in a wireless local area network
US9001811B2 (en) 2009-05-19 2015-04-07 Adc Telecommunications, Inc. Method of inserting CDMA beacon pilots in output of distributed remote antenna nodes
US8588614B2 (en) 2009-05-22 2013-11-19 Extenet Systems, Inc. Flexible distributed antenna system
EP2253980A1 (en) 2009-05-23 2010-11-24 CCS Technology Inc. Radio-over-fiber optical fiber cable system and cable of the same
US20100309049A1 (en) 2009-06-05 2010-12-09 Nokia Corporation Directional data distribution
US8422967B2 (en) 2009-06-09 2013-04-16 Broadcom Corporation Method and system for amplitude modulation utilizing a leaky wave antenna
US8326156B2 (en) 2009-07-07 2012-12-04 Fiber-Span, Inc. Cell phone/internet communication system for RF isolated areas
KR101691661B1 (en) 2009-08-10 2016-12-30 한국전자통신연구원 Method and Apparatus for spatial reuse by assistance of distributed devices over wireless system using directional antennas
US8423043B2 (en) 2009-09-14 2013-04-16 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for location fingerprinting
US8346432B2 (en) 2009-09-23 2013-01-01 Ford Global Technologies, Llc System and method for remotely controlling vehicle components from a nomadic communication device or computer
US8224233B2 (en) 2009-10-09 2012-07-17 At&T Mobility Ii Llc Regulation of service in restricted telecommunication service area
US8285298B2 (en) 2009-12-23 2012-10-09 At&T Mobility Ii Llc Chromatic scheduler for network traffic with disparate service requirements
US20110158298A1 (en) 2009-12-30 2011-06-30 Silicon Laboratories, Inc. Tuner circuit with an inter-chip transmitter and method of providing an inter-chip link frame
US8503514B2 (en) 2010-01-14 2013-08-06 Integrated Device Technology Inc. High speed switch with data converter physical ports
US8503515B2 (en) 2010-01-14 2013-08-06 Integrated Device Technology Inc. High speed switch with data converter physical ports and processing unit
KR101674209B1 (en) 2010-01-27 2016-11-08 삼성전자주식회사 Apparatus and method for transmitting and receiving ethernet data between digital unit and rf unit
US8717957B2 (en) 2010-02-10 2014-05-06 Broadcom Corporation Preamble and header bit allocation for power savings within multiple user, multiple access, and/or MIMO wireless communications
IT1398025B1 (en) 2010-02-12 2013-02-07 Andrew Llc DISTRIBUTED ANTENNA SYSTEM FOR MIMO COMMUNICATIONS.
US8354300B2 (en) 2010-02-23 2013-01-15 Qualcomm Incorporated Reducing susceptibility to electrostatic discharge damage during die-to-die bonding for 3-D packaged integrated circuits
US8804518B2 (en) 2010-02-26 2014-08-12 Qualcomm Incorporated Quality of service (QoS) acquisition and provisioning within a wireless communications system
US8614622B2 (en) 2010-03-08 2013-12-24 Ford Global Technologies, Llc Method and system for enabling an authorized vehicle driveaway
US20110223958A1 (en) 2010-03-10 2011-09-15 Fujitsu Limited System and Method for Implementing Power Distribution
US8792933B2 (en) 2010-03-10 2014-07-29 Fujitsu Limited Method and apparatus for deploying a wireless network
US9030961B2 (en) 2010-03-15 2015-05-12 Fujitsu Limited Method and system for implementing link adaptation based on an application profile
US9148375B2 (en) 2010-03-15 2015-09-29 Fujitsu Limited Method and system for implementing link adaptation based on mobility
US8467823B2 (en) 2010-03-24 2013-06-18 Fujitsu Limited Method and system for CPRI cascading in distributed radio head architectures
US8422884B2 (en) 2010-03-24 2013-04-16 Fujitsu Limited Method and apparatus for picocell distributed radio heads providing macrocell capabilities
US8428510B2 (en) 2010-03-25 2013-04-23 Adc Telecommunications, Inc. Automatic gain control configuration for a wideband distributed antenna system
US10270152B2 (en) 2010-03-31 2019-04-23 Commscope Technologies Llc Broadband transceiver and distributed antenna system utilizing same
US8620341B2 (en) 2010-04-12 2013-12-31 Fujitsu Limited Method and apparatus for adjusting bandwidth allocations in a wireless network
US8837940B2 (en) 2010-04-14 2014-09-16 Adc Telecommunications, Inc. Methods and systems for distributing fiber optic telecommunication services to local areas and for supporting distributed antenna systems
US20110268446A1 (en) 2010-05-02 2011-11-03 Cune William P Providing digital data services in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
CN105577282B (en) 2010-05-02 2018-09-18 康宁光缆系统有限责任公司 In the distributed radio frequency based on optical fiber(RF)Digital data service is provided in communication system
WO2011139937A1 (en) 2010-05-02 2011-11-10 Corning Cable Systems Llc Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (rf) communications services, and related components and methods
WO2011139939A1 (en) 2010-05-02 2011-11-10 Corning Cable Systems Llc Optical fiber-based distributed communications systems, and related components and methods
US8934387B2 (en) 2010-05-07 2015-01-13 Qualcomm Incorporated Detecting a WLAN signal using a bluetooth receiver during bluetooth scan activity
US8509850B2 (en) 2010-06-14 2013-08-13 Adc Telecommunications, Inc. Systems and methods for distributed antenna system reverse path summation using signal-to-noise ratio optimization
US8472579B2 (en) 2010-07-28 2013-06-25 Adc Telecommunications, Inc. Distributed digital reference clock
CN103119865A (en) 2010-08-16 2013-05-22 康宁光缆系统有限责任公司 Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
EP2628272A1 (en) 2010-10-13 2013-08-21 CCS Technology, Inc. Power management for remote antenna units in distributed antenna systems
WO2012051227A1 (en) 2010-10-13 2012-04-19 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US8532242B2 (en) 2010-10-27 2013-09-10 Adc Telecommunications, Inc. Distributed antenna system with combination of both all digital transport and hybrid digital/analog transport
US8462683B2 (en) 2011-01-12 2013-06-11 Adc Telecommunications, Inc. Distinct transport path for MIMO transmissions in distributed antenna systems
CN203504582U (en) 2011-02-21 2014-03-26 康宁光缆系统有限责任公司 Distributed antenna system and power supply apparatus for distributing electric power thereof
US8743718B2 (en) 2011-06-21 2014-06-03 Adc Telecommunications, Inc. End-to-end delay management for distributed communications networks
KR101971584B1 (en) 2011-06-29 2019-04-23 콤스코프 커넥티비티 엘엘씨 Evolved distributed antenna system
US8693342B2 (en) 2011-10-28 2014-04-08 Adc Telecommunications, Inc. Distributed antenna system using time division duplexing scheme
CN104221304B (en) 2012-02-14 2016-10-19 Adc长途电讯有限公司 The sequential of small-sized honeycomb distributing antenna system adjusts
US20140016583A1 (en) 2012-07-11 2014-01-16 Adc Telecommunications, Inc. Distributed antenna system with managed connectivity
US9191993B2 (en) 2012-11-20 2015-11-17 Adc Telecommunications, Inc. Distributed antenna system with uplink bandwidth for signal analysis
CA2892508A1 (en) 2012-11-26 2014-05-30 Adc Telecommunications, Inc. Timeslot mapping and/or aggregation element for digital radio frequency transport architecture
CN105075211B (en) 2012-11-26 2019-08-13 Adc电信股份有限公司 Forward path number summation in digital RF transmission
KR102131909B1 (en) 2012-11-26 2020-07-08 콤스코프 테크놀로지스 엘엘씨 Flexible, reconfigurable multipoint-to-multipoint digital radio frequency transport architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050226625A1 (en) * 2004-04-09 2005-10-13 Microwave Photonics, Inc. Optical fiber communications method and system without a remote electrical power supply
US20090087181A1 (en) * 2007-10-01 2009-04-02 Teknovus In-wall optical network unit
US20090092394A1 (en) * 2007-10-08 2009-04-09 Nec Laboratories America, Inc. Orthogonal Frequency Division Multiple Access Based Virtual Passive Optical Network (VPON)
US20110241881A1 (en) * 2010-04-06 2011-10-06 Christopher Badinelli Systems and methods for optical secure alarmed protective fiber distribution systems and management
US20110268452A1 (en) * 2010-05-02 2011-11-03 Beamon Hubert B Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (rf) communications services, and related components and methods

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9323020B2 (en) 2008-10-09 2016-04-26 Corning Cable Systems (Shanghai) Co. Ltd Fiber optic terminal having adapter panel supporting both input and output fibers from an optical splitter
US9900097B2 (en) 2009-02-03 2018-02-20 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9673904B2 (en) 2009-02-03 2017-06-06 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US10153841B2 (en) 2009-02-03 2018-12-11 Corning Optical Communications LLC Optical fiber-based distributed antenna systems, components, and related methods for calibration thereof
US9590733B2 (en) 2009-07-24 2017-03-07 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US10070258B2 (en) 2009-07-24 2018-09-04 Corning Optical Communications LLC Location tracking using fiber optic array cables and related systems and methods
US9729238B2 (en) 2009-11-13 2017-08-08 Corning Optical Communications LLC Radio-over-fiber (ROF) system for protocol-independent wired and/or wireless communication
US9967032B2 (en) 2010-03-31 2018-05-08 Corning Optical Communications LLC Localization services in optical fiber-based distributed communications components and systems, and related methods
US9853732B2 (en) 2010-05-02 2017-12-26 Corning Optical Communications LLC Digital data services and/or power distribution in optical fiber-based distributed communications systems providing digital data and radio frequency (RF) communications services, and related components and methods
US10448205B2 (en) 2010-08-09 2019-10-15 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9185674B2 (en) 2010-08-09 2015-11-10 Corning Cable Systems Llc Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US9913094B2 (en) 2010-08-09 2018-03-06 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US10959047B2 (en) 2010-08-09 2021-03-23 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US11653175B2 (en) 2010-08-09 2023-05-16 Corning Optical Communications LLC Apparatuses, systems, and methods for determining location of a mobile device(s) in a distributed antenna system(s)
US20160226652A1 (en) * 2010-08-26 2016-08-04 Golba Llc Method and system for distributed communication
US9979532B2 (en) * 2010-08-26 2018-05-22 Golba Llc Method and system for distributed communication
US11283585B2 (en) 2010-08-26 2022-03-22 Golba Llc Method and system for distributed communication
US11924147B2 (en) 2010-08-26 2024-03-05 Golba Llc Method and system for distributed communication
US11664965B2 (en) 2010-08-26 2023-05-30 Golba Llc Method and system for distributed communication
US11212745B2 (en) 2010-10-13 2021-12-28 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10849064B2 (en) 2010-10-13 2020-11-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9160449B2 (en) * 2010-10-13 2015-10-13 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US9699723B2 (en) * 2010-10-13 2017-07-04 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US10425891B2 (en) 2010-10-13 2019-09-24 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10045288B2 (en) 2010-10-13 2018-08-07 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US10104610B2 (en) 2010-10-13 2018-10-16 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US9252874B2 (en) * 2010-10-13 2016-02-02 Ccs Technology, Inc Power management for remote antenna units in distributed antenna systems
US20140308043A1 (en) * 2010-10-13 2014-10-16 Ccs Technology, Inc. Local power management for remote antenna units in distributed antenna systems
US20140308044A1 (en) * 2010-10-13 2014-10-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US10750442B2 (en) 2010-10-13 2020-08-18 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US10420025B2 (en) 2010-10-13 2019-09-17 Corning Optical Communications LLC Local power management for remote antenna units in distributed antenna systems
US11671914B2 (en) 2010-10-13 2023-06-06 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US11224014B2 (en) 2010-10-13 2022-01-11 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9419712B2 (en) 2010-10-13 2016-08-16 Ccs Technology, Inc. Power management for remote antenna units in distributed antenna systems
US11178609B2 (en) 2010-10-13 2021-11-16 Corning Optical Communications LLC Power management for remote antenna units in distributed antenna systems
US9547145B2 (en) 2010-10-19 2017-01-17 Corning Optical Communications LLC Local convergence point for multiple dwelling unit fiber optic distribution network
US9720197B2 (en) 2010-10-19 2017-08-01 Corning Optical Communications LLC Transition box for multiple dwelling unit fiber optic distribution network
US9685782B2 (en) 2010-11-24 2017-06-20 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US11715949B2 (en) 2010-11-24 2023-08-01 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
WO2012071367A1 (en) 2010-11-24 2012-05-31 Corning Cable Systems Llc Power distribution module(s) capable of hot connection and/or disconnection for distributed antenna systems, and related power units, components, and methods
US11296504B2 (en) 2010-11-24 2022-04-05 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US11114852B2 (en) 2010-11-24 2021-09-07 Corning Optical Communications LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US10454270B2 (en) 2010-11-24 2019-10-22 Corning Optical Communicatons LLC Power distribution module(s) capable of hot connection and/or disconnection for wireless communication systems, and related power units, components, and methods
US9813164B2 (en) 2011-02-21 2017-11-07 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US10205538B2 (en) 2011-02-21 2019-02-12 Corning Optical Communications LLC Providing digital data services as electrical signals and radio-frequency (RF) communications over optical fiber in distributed communications systems, and related components and methods
US20120269509A1 (en) * 2011-04-21 2012-10-25 Antonius Petrus Hultermans Remote Electronic Component, Such As Remote Radio Head, For A Wireless Communication System, Remote Electronic Component Array And External Distributor Unit
US10148347B2 (en) 2011-04-29 2018-12-04 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9806797B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
US9807722B2 (en) 2011-04-29 2017-10-31 Corning Optical Communications LLC Determining propagation delay of communications in distributed antenna systems, and related components, systems, and methods
US9343797B2 (en) 2011-05-17 2016-05-17 3M Innovative Properties Company Converged in-building network
US11564110B2 (en) 2011-11-07 2023-01-24 Dali Wireless, Inc. Soft hand-off and routing data in a virtualized distributed antenna system
US9826507B2 (en) 2011-12-06 2017-11-21 Advanced Rf Technologies, Inc. Method for setting a filter coefficient for a communication system
US10085238B2 (en) 2011-12-06 2018-09-25 Advanced Rf Technologies, Inc. Method for setting a filter coefficient for a communication system
US9219546B2 (en) 2011-12-12 2015-12-22 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US9602209B2 (en) 2011-12-12 2017-03-21 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US10110305B2 (en) 2011-12-12 2018-10-23 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
US9800339B2 (en) 2011-12-12 2017-10-24 Corning Optical Communications LLC Extremely high frequency (EHF) distributed antenna systems, and related components and methods
WO2013130921A1 (en) * 2012-03-02 2013-09-06 Corning Cable Systems Llc OPTICAL NETWORK UNITS (ONUs) FOR HIGH BANDWIDTH CONNECTIVITY, AND RELATED COMPONENTS AND METHODS
US10110307B2 (en) 2012-03-02 2018-10-23 Corning Optical Communications LLC Optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US10530479B2 (en) 2012-03-02 2020-01-07 Corning Optical Communications LLC Systems with optical network units (ONUs) for high bandwidth connectivity, and related components and methods
US20130236180A1 (en) * 2012-03-12 2013-09-12 Bung Chul Kim Distributed antenna system and method
US9374187B2 (en) * 2012-03-12 2016-06-21 Advanced Rf Technologies, Inc. Distributed antenna system and method
US9813127B2 (en) 2012-03-30 2017-11-07 Corning Optical Communications LLC Reducing location-dependent interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9781553B2 (en) 2012-04-24 2017-10-03 Corning Optical Communications LLC Location based services in a distributed communication system, and related components and methods
US20170201815A1 (en) * 2012-04-25 2017-07-13 Corning Optical Communications LLC Distributed antenna system architectures
US20150037041A1 (en) * 2012-04-25 2015-02-05 Corning Optical Communications LLC Distributed antenna system architectures
US10652636B2 (en) * 2012-04-25 2020-05-12 Corning Optical Communications LLC Distributed antenna system architectures
US10349156B2 (en) * 2012-04-25 2019-07-09 Corning Optical Communications LLC Distributed antenna system architectures
US10136200B2 (en) * 2012-04-25 2018-11-20 Corning Optical Communications LLC Distributed antenna system architectures
KR20150003847A (en) * 2012-05-25 2015-01-09 알까뗄 루슨트 Method for operating a network element of a wireless communication network and network element
US10178652B2 (en) 2012-05-25 2019-01-08 Alcatel Lucent Method for operating a network element of a wireless communication network and network element
KR101640338B1 (en) 2012-05-25 2016-07-15 알까뗄 루슨트 Method for operating a network element of a wireless communication network and network element
US9684060B2 (en) 2012-05-29 2017-06-20 CorningOptical Communications LLC Ultrasound-based localization of client devices with inertial navigation supplement in distributed communication systems and related devices and methods
WO2013181320A3 (en) * 2012-05-31 2014-01-23 Corning Cable Systems Llc Location tracking for mobile terminals in distributed antenna systems by geo-tagged ssids
US9301090B2 (en) * 2012-06-12 2016-03-29 Ricoh Company, Ltd. Light device, communication unit and positional information management system
US20130330085A1 (en) * 2012-06-12 2013-12-12 Ricoh Company, Ltd. Light device, communication unit and positional information management system
US9729251B2 (en) 2012-07-31 2017-08-08 Corning Optical Communications LLC Cooling system control in distributed antenna systems
CN104919728A (en) * 2012-09-25 2015-09-16 康宁光电通信有限责任公司 Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
US9166690B2 (en) 2012-09-25 2015-10-20 Corning Optical Communications LLC Power distribution module(s) for distributed antenna systems, and related power units, components, systems, and methods
WO2014048866A1 (en) * 2012-09-26 2014-04-03 Deltanode Solutions Ab Distribution network for a distributed antenna system
US9906302B2 (en) * 2012-09-26 2018-02-27 Deltanode Solutions Aktiebolag Distribution network for a distributed antenna system
US20150223242A1 (en) * 2012-09-26 2015-08-06 Deltanode Solutions Ab Distribution network for a distributed antenna system
US9935713B2 (en) 2012-09-26 2018-04-03 Deltanode Solutions Aktiebolag Communication system for analog and digital communication services
WO2014048919A1 (en) * 2012-09-26 2014-04-03 Deltanode Solutions Ab Communication system for analog and digital communication services
US9660728B2 (en) 2012-09-26 2017-05-23 Deltanode Solutions Aktiebolag Communication system for analog and digital communication services
US11665069B2 (en) 2012-11-28 2023-05-30 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
WO2014083564A1 (en) * 2012-11-28 2014-06-05 Corning Mobileaccess Ltd Power management for distributed communication systems, and related components, systems, and methods
US10257056B2 (en) 2012-11-28 2019-04-09 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10530670B2 (en) * 2012-11-28 2020-01-07 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10999166B2 (en) 2012-11-28 2021-05-04 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US20190190801A1 (en) * 2012-11-28 2019-06-20 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US9158864B2 (en) 2012-12-21 2015-10-13 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9414192B2 (en) 2012-12-21 2016-08-09 Corning Optical Communications Wireless Ltd Systems, methods, and devices for documenting a location of installed equipment
US9949209B2 (en) 2013-02-20 2018-04-17 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
US9497706B2 (en) 2013-02-20 2016-11-15 Corning Optical Communications Wireless Ltd Power management in distributed antenna systems (DASs), and related components, systems, and methods
EP2770655A1 (en) * 2013-02-22 2014-08-27 Alcatel Lucent Method to transmit a signal in a mobile network
US11750289B2 (en) * 2013-02-27 2023-09-05 Corning Optical Communications LLC Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US20170163344A1 (en) * 2013-02-27 2017-06-08 Corning Optical Communications Wireless Ltd Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US9602898B2 (en) * 2013-02-27 2017-03-21 Corning Optical Communications Wireless Ltd Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US10014945B2 (en) * 2013-02-27 2018-07-03 Corning Optical Communications Wireless Ltd Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US20220069909A1 (en) * 2013-02-27 2022-03-03 Corning Opitcal Communications LLC Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US10601511B2 (en) * 2013-02-27 2020-03-24 Corning Optical Communications LLC Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
WO2014133892A1 (en) * 2013-02-27 2014-09-04 Corning Optical Communications Wireless, Ltd. Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US10911146B2 (en) * 2013-02-27 2021-02-02 Corning Optical Communications LLC Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US20180287704A1 (en) * 2013-02-27 2018-10-04 Corning Optical Communications Wireless Ltd. Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US20150350756A1 (en) * 2013-02-27 2015-12-03 Corning Optical Communications Wireless Ltd Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US11177884B2 (en) * 2013-02-27 2021-11-16 Corning Optical Communications LLC Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
EP2965450A1 (en) * 2013-02-27 2016-01-13 Corning Optical Communications Wireless Ltd Providing simultaneous digital and analog services and optical fiber-based distributed antenna systems, and related components and methods
US9893811B2 (en) * 2013-03-18 2018-02-13 Commscope Technologies Llc Architecture for a wireless network
US20160294475A1 (en) * 2013-03-18 2016-10-06 Eric Ryan CHAPPELL Architecture fo ra wireless network
US11656418B2 (en) 2013-03-18 2023-05-23 Commscope Technologies Llc Power and optical fiber interface
US11215776B2 (en) 2013-03-18 2022-01-04 Commscope Technologies Llc Power and optical fiber interface
US10502912B2 (en) 2013-03-18 2019-12-10 Commscope Technologies Llc Power and optical fiber interface
US9977208B2 (en) 2013-03-18 2018-05-22 Commscope Technologies Llc Power and optical fiber interface
US10257828B2 (en) 2013-06-12 2019-04-09 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASS)
US10694519B2 (en) 2013-06-12 2020-06-23 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASS)
US11291001B2 (en) 2013-06-12 2022-03-29 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US9974074B2 (en) 2013-06-12 2018-05-15 Corning Optical Communications Wireless Ltd Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US11792776B2 (en) 2013-06-12 2023-10-17 Corning Optical Communications LLC Time-division duplexing (TDD) in distributed communications systems, including distributed antenna systems (DASs)
US10567974B2 (en) 2013-07-23 2020-02-18 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASS)
US10292056B2 (en) 2013-07-23 2019-05-14 Corning Optical Communications LLC Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9526020B2 (en) 2013-07-23 2016-12-20 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US9967754B2 (en) 2013-07-23 2018-05-08 Corning Optical Communications Wireless Ltd Monitoring non-supported wireless spectrum within coverage areas of distributed antenna systems (DASs)
US10992484B2 (en) 2013-08-28 2021-04-27 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US11516030B2 (en) 2013-08-28 2022-11-29 Corning Optical Communications LLC Power management for distributed communication systems, and related components, systems, and methods
US10003404B2 (en) 2013-09-30 2018-06-19 Corning Optical Communications Wireless Ltd Determining efficiency of an optical signal source in distributed communication systems
US9385810B2 (en) 2013-09-30 2016-07-05 Corning Optical Communications Wireless Ltd Connection mapping in distributed communication systems
WO2015044942A3 (en) * 2013-09-30 2015-05-21 Corning Optical Communications Wireless Ltd. Determining efficiency of an optical signal source in distributed communication systems
US10291323B2 (en) 2013-09-30 2019-05-14 Corning Optical Communications LLC Determining efficiency of an optical signal source in distributed communication systems
WO2015063758A1 (en) 2013-10-28 2015-05-07 Corning Optical Communications Wireless Ltd. Unified optical fiber-based distributed antenna systems (dass) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods
US9800340B2 (en) 2013-10-28 2017-10-24 Corning Optical Communications Wireless Ltd Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods
US10200124B2 (en) 2013-10-28 2019-02-05 Corning Optical Communications Wireless Ltd Unified optical fiber-based distributed antenna systems (DASs) for supporting small cell communications deployment from multiple small cell service providers, and related devices and methods
US10455497B2 (en) 2013-11-26 2019-10-22 Corning Optical Communications LLC Selective activation of communications services on power-up of a remote unit(s) in a wireless communication system (WCS) based on power consumption
US11563492B2 (en) 2013-12-23 2023-01-24 Dali Wireless, Inc. Virtual radio access network using software-defined network of remotes and digital multiplexing switches
US9780841B2 (en) 2014-02-26 2017-10-03 Corning Optical Communications Wireless Ltd Distributed antenna systems (DAS) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US10419078B2 (en) 2014-02-26 2019-09-17 Corning Optical Communications LLC Distributed antenna systems (DAS) supporting expanded, programmable communications services distribution to programmable remote communications service sector areas
US9509133B2 (en) 2014-06-27 2016-11-29 Corning Optical Communications Wireless Ltd Protection of distributed antenna systems
US9525472B2 (en) 2014-07-30 2016-12-20 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10256879B2 (en) 2014-07-30 2019-04-09 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US9929786B2 (en) 2014-07-30 2018-03-27 Corning Incorporated Reducing location-dependent destructive interference in distributed antenna systems (DASS) operating in multiple-input, multiple-output (MIMO) configuration, and related components, systems, and methods
US10209450B2 (en) 2014-08-15 2019-02-19 Corning Optical Communications LLC Methods for coupling of waveguides with dissimilar mode field diameters, and related apparatuses, components, and systems
US10797759B2 (en) 2014-08-22 2020-10-06 Commscope Technologies Llc Distributed antenna system with adaptive allocation between digitized RF data and IP formatted data
WO2016028463A1 (en) * 2014-08-22 2016-02-25 Adc Telecommunications, Inc. Distributed antenna system to transport first cellular rf band concurrently with ethernet or second cellular rf band
US10164689B2 (en) 2014-08-22 2018-12-25 Commscope Technologies Llc Distributed antenna system to transport first cellular RF band concurrently with Ethernet or second cellular RF band
US9653861B2 (en) 2014-09-17 2017-05-16 Corning Optical Communications Wireless Ltd Interconnection of hardware components
US10659163B2 (en) 2014-09-25 2020-05-19 Corning Optical Communications LLC Supporting analog remote antenna units (RAUs) in digital distributed antenna systems (DASs) using analog RAU digital adaptors
US10096909B2 (en) 2014-11-03 2018-10-09 Corning Optical Communications Wireless Ltd. Multi-band monopole planar antennas configured to facilitate improved radio frequency (RF) isolation in multiple-input multiple-output (MIMO) antenna arrangement
US10135533B2 (en) 2014-11-13 2018-11-20 Corning Optical Communications Wireless Ltd Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10523326B2 (en) 2014-11-13 2019-12-31 Corning Optical Communications LLC Analog distributed antenna systems (DASS) supporting distribution of digital communications signals interfaced from a digital signal source and analog radio frequency (RF) communications signals
US10135561B2 (en) 2014-12-11 2018-11-20 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US9729267B2 (en) 2014-12-11 2017-08-08 Corning Optical Communications Wireless Ltd Multiplexing two separate optical links with the same wavelength using asymmetric combining and splitting
US10187151B2 (en) 2014-12-18 2019-01-22 Corning Optical Communications Wireless Ltd Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10523327B2 (en) 2014-12-18 2019-12-31 Corning Optical Communications LLC Digital-analog interface modules (DAIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10110308B2 (en) 2014-12-18 2018-10-23 Corning Optical Communications Wireless Ltd Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10361783B2 (en) 2014-12-18 2019-07-23 Corning Optical Communications LLC Digital interface modules (DIMs) for flexibly distributing digital and/or analog communications signals in wide-area analog distributed antenna systems (DASs)
US10374711B2 (en) * 2015-02-02 2019-08-06 Huawei Technologies Co., Ltd. Communications system, method for managing communications system, and controller
US10292114B2 (en) 2015-02-19 2019-05-14 Corning Optical Communications LLC Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9807700B2 (en) 2015-02-19 2017-10-31 Corning Optical Communications Wireless Ltd Offsetting unwanted downlink interference signals in an uplink path in a distributed antenna system (DAS)
US9785175B2 (en) 2015-03-27 2017-10-10 Corning Optical Communications Wireless, Ltd. Combining power from electrically isolated power paths for powering remote units in a distributed antenna system(s) (DASs)
US9712212B2 (en) 2015-04-03 2017-07-18 Wlanjv, Inc. Multiple service distributed-antenna system
WO2016160894A1 (en) * 2015-04-03 2016-10-06 Wlanjv, Inc. Multiple service distributed-antenna system
US9681313B2 (en) 2015-04-15 2017-06-13 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US10009094B2 (en) 2015-04-15 2018-06-26 Corning Optical Communications Wireless Ltd Optimizing remote antenna unit performance using an alternative data channel
US9948349B2 (en) 2015-07-17 2018-04-17 Corning Optical Communications Wireless Ltd IOT automation and data collection system
US9648580B1 (en) 2016-03-23 2017-05-09 Corning Optical Communications Wireless Ltd Identifying remote units in a wireless distribution system (WDS) based on assigned unique temporal delay patterns
US10236924B2 (en) 2016-03-31 2019-03-19 Corning Optical Communications Wireless Ltd Reducing out-of-channel noise in a wireless distribution system (WDS)
US10390234B2 (en) 2016-04-29 2019-08-20 Corning Optical Communications LLC Implementing a live distributed antenna system (DAS) configuration from a virtual DAS design using an original equipment manufacturer (OEM) specific software system in a DAS
US10003977B2 (en) 2016-04-29 2018-06-19 Corning Optical Communications Wireless Ltd Implementing a live distributed antenna system (DAS) configuration from a virtual DAS design using an original equipment manufacturer (OEM) specific software system in a DAS
US9794795B1 (en) 2016-04-29 2017-10-17 Corning Optical Communications Wireless Ltd Implementing a live distributed antenna system (DAS) configuration from a virtual DAS design using an original equipment manufacturer (OEM) specific software system in a DAS
US11119546B2 (en) 2016-11-09 2021-09-14 Commscope, Inc. Of North Carolina Exchangeable powered infrastructure module
US10735838B2 (en) 2016-11-14 2020-08-04 Corning Optical Communications LLC Transparent wireless bridges for optical fiber-wireless networks and related methods and systems
US10404373B2 (en) * 2016-11-29 2019-09-03 Electronics And Telecommunications Research Institute Transmission apparatus and reception apparatus using mobile fronthaul
US11271317B2 (en) * 2017-02-23 2022-03-08 Wiser Systems, Inc. Systems and related adapters for providing power to devices in a system
US11876310B2 (en) 2017-02-23 2024-01-16 Wiser Systems, Inc. Systems and related adapters for providing power to devices in a system
US11177649B2 (en) * 2017-03-31 2021-11-16 Corning Optical Communications LLC Safety power disconnection for power distribution over power conductors to power consuming devices
US11843246B2 (en) 2017-03-31 2023-12-12 Corning Optical Communications LLC Safety power disconnection for power distribution over power conductors to power consuming devices
US11271652B2 (en) * 2018-08-01 2022-03-08 Chifeng ShareTechnology Co., Ltd. Distributed internet of things terminal system and method based on optical fiber bus RoF
RU2716269C1 (en) * 2019-09-15 2020-03-11 Михаил Васильевич Захаров Radio-photonic transmitting path for transmission of powerful broadband signals and efficient excitation of antennae
US11943004B1 (en) * 2019-12-11 2024-03-26 Cable Television Laboratories, Inc. Systems and methods for extending wireline communication networks

Also Published As

Publication number Publication date
US9270374B2 (en) 2016-02-23
US20130188959A1 (en) 2013-07-25
US9042732B2 (en) 2015-05-26
US20160173201A1 (en) 2016-06-16
US20150249502A1 (en) 2015-09-03

Similar Documents

Publication Publication Date Title
US9270374B2 (en) Providing digital data services in optical fiber-based distributed radio frequency (RF) communications systems, and related components and methods
US11212745B2 (en) Power management for remote antenna units in distributed antenna systems
US10420025B2 (en) Local power management for remote antenna units in distributed antenna systems
US10148347B2 (en) Systems, methods, and devices for increasing radio frequency (RF) power in distributed antenna systems
WO2011139942A1 (en) Providing digital data services in optical fiber -based distributed radio frequency (rf) communications system
US9037143B2 (en) Remote antenna clusters and related systems, components, and methods supporting digital data signal propagation between remote antenna units
WO2012064333A1 (en) Providing digital data services using electrical power line(s) in optical fiber-based distributed radio frequency (rf) communications systems, and related components and methods
EP2628271B1 (en) Local power management for remote antenna units in distributed antenna systems
AU2012101562A4 (en) Providing digital data services in optical fiber-based distributed radio frequency (RF) communications system

Legal Events

Date Code Title Description
AS Assignment

Owner name: CORNING CABLE SYSTEMS LLC, NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CUNE, WILLIAM P.;SAUER, MICHAEL;SCHWEIKER, WOLFGANG GOTTFRIED TOBIAS;SIGNING DATES FROM 20100917 TO 20100927;REEL/FRAME:025054/0916

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION