US20110283786A1 - Utility valve access and performance evaluation method - Google Patents

Utility valve access and performance evaluation method Download PDF

Info

Publication number
US20110283786A1
US20110283786A1 US13/136,090 US201113136090A US2011283786A1 US 20110283786 A1 US20110283786 A1 US 20110283786A1 US 201113136090 A US201113136090 A US 201113136090A US 2011283786 A1 US2011283786 A1 US 2011283786A1
Authority
US
United States
Prior art keywords
valve
valve stem
utility
rotation
documenting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/136,090
Inventor
Lynn A. Buckner
Don M. Buckner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/136,090 priority Critical patent/US20110283786A1/en
Publication of US20110283786A1 publication Critical patent/US20110283786A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/22Tank vehicles
    • B60P3/224Tank vehicles comprising auxiliary devices, e.g. for unloading or level indicating
    • B60P3/2245Adaptations for loading or unloading
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60PVEHICLES ADAPTED FOR LOAD TRANSPORTATION OR TO TRANSPORT, TO CARRY, OR TO COMPRISE SPECIAL LOADS OR OBJECTS
    • B60P3/00Vehicles adapted to transport, to carry or to comprise special loads or objects
    • B60P3/22Tank vehicles
    • B60P3/224Tank vehicles comprising auxiliary devices, e.g. for unloading or level indicating
    • B60P3/227Methods for tracing the load
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/6851With casing, support, protector or static constructional installations
    • Y10T137/6855Vehicle
    • Y10T137/6914Vehicle supports fluid compressor and compressed fluid storage tank

Definitions

  • Utility valves have historically been buried either on purpose of by silt from storms. Access to the valve was accomplished mechanically by a shovel and hand digging. A hand wrench or hand tool is used to open or close the valve. In the case of fire hydrants the valve was opened by hand, a fire hose attached and the water flow through the hose was released under pressure on the highway or yard, eroding and doing damage to an expensive fire truck that was driven to the hydrant to receive the water.
  • the present invention uses hydro vacuum excavation to access buried valves, a power head to actuate the valve and in the case of hydrants, a liquid pressure dissipater consisting of a plurality of baffles releases the discharged water with minimum pressure like rain onto the ground thus reducing erosion.
  • a GPS documents physical location and measuring means document maintenance condition of the valve and characteristics of the utility. Controllers manage the interaction of the various functions of the invention.
  • the system is mounted on a transportable means.
  • the present invention relates to using a vacuum container having a vacuum producing means and vacuum hose to vacuum debris from around valves so that the valve stem or valve handle may be accessed in order to actuate the valve.
  • a pressure washer or water jetter may also accompany the vacuum system in order to dislodge and make vacuum able the debris around a valve or in a valve box.
  • a power head such as a hydraulic motor, D.C. motor, air motor or air cylinder may be used to actuate a valve.
  • a power boom arm may be used to locate the power head into position. Extensions may be used between the power head and the valve stem especially when a valve is located below ground level.
  • Control means are needed to operate the forward and reverse rotation of the valve stem as well as power head positioning onto the valve stem.
  • Metering and monitoring means are needed to document the opening, closing, and torque required to operate the valve, as well as utility flow volumes and characteristics. When large volumes or water are released under pressure such as in the testing of fire hydrants, a pressure dissipating means may be used to avoid water damage to the surrounding area without obstructing the flow from test valves.
  • the above-mentioned means function as a unit to accomplish a common objective, which is to access, actuate, and document location, flow rates, pressure, utility characteristics, and condition of utility valves.
  • a transportable unit consisting of a vacuum container system, a water pressure cleaning and jettering system, a power supply, a power head to actuate the valves, a pressure dissipating means and a hose to connect the valve to the pressure dissipating means along with a GPS locator system, performance documenting means and controls to operate the intersection of the above mentioned system.
  • a de-chlorinator may be added so as to decontaminate water before it is released into a storm drain or onto the ground.
  • FIG. 1 is an end view of a truck with a liquid pressure dissipater 95 mounted on a hitch 101 plugged into a receiver coupler 100 at the back bumper of a vehicle.
  • a hitch stabilizer 102 secures the unit.
  • a fire hose 93 attaches the liquid pressure dissipater 95 to a fire hydrant 94 , which has been opened by a power head 85 , which is supported by an articulating boom arm 86 , which is mounted to the liquid pressure dissipater 95 .
  • a hydraulic power supply 104 powers the hydraulic drive motor 85 .
  • the hydraulic power supply 104 is battery operated and the battery is charged by the truck electrical system by way of the electrical plug in 103 .
  • a GPS 90 locates the physical position of the water hydrant.
  • the baffles 99 in the liquid pressure dissipater 95 allow the water 97 to fall to the ground like rain.
  • Controls 87 operate the drive motor 85 and measuring devices 88 record the torque & revolutions to open or
  • FIG. 2 is a side view of a vacuum debris tank 12 having a filter housing 62 a hose reel 37 and a single rear door 18 access to the debris tank 12 .
  • a power plant 67 consists of a diesel or gas engine to power an air compressor 105 , or 12-VDC generator for charging batteries and powering the control systems.
  • a hydraulic power supply 83 may be direct engine driven, belt driven or 12-VDC battery powered. The hydraulic power supply 83 may have connections 84 to power tools and portable equipment. The hydraulic power supply 83 may also power the drive motor 85 .
  • the articulated boom arm 86 may also be hydraulically manipulated.
  • a liquid pressure dissipater 95 is, shown mounted to the rear door 18 and liquid 2 is shown dropping to the ground.
  • a hose storage area 96 is shown over the pressure dissipater 95 .
  • An articulated boom arm 86 which holds the valve actuator motor 85 , is shown attached to the vacuum container filter housing 62 .
  • This boom arm 86 may also be used to support a vacuum hose.
  • the boom may be powered by air pressure or hydraulic or linear actuator.
  • An air reservoir 107 , air hose 108 and air nozzle 109 are shown loosening debris 45 from a valve box 98 .
  • Vacuum hose 17 is shown vacuuming the debris 45 in to a vacuum tank 12 .
  • the vacuum producing means in this case is shown to be a compressed air venture vacuum source 106 .
  • the above system is skid mounted 64 so it can be mobilized by a skid steer, forklift, truck bed or other mobile vehicle.
  • FIG. 4 is similar to FIG. 2 with the exception that the system is mounted on a trailer and vacuum hose 17 is shown vacuuming debris 45 , which has been loosened by a water jetter, which consists of a water jet 40 , a water hose 58 , a jetter water pump 7 , a water storage tank 8 , and a hose reel 37 .
  • the above vacuum and jetter system cleans debris 45 from an in-ground casing 98 or valve box, which allows access to the buried valve 92 stem.
  • a de-chlorinator 110 is also shown.
  • FIG. 5 is similar to FIG. 2 with the exception that the system is shown mounted on a zero turn radius vehicle 31 having a powered vacuum boom 36 .
  • the power head 85 articulating boom 86 which may also be powered or manual with spring balancing is shown actuating a buried valve 92 by means of an extension rod 91 .
  • FIG. 6 is similar to FIG. 1 with the addition of a Trailer 31 , a Hydraulic power supply 83 for operating hydraulic tools 84 ; a de-chlorinator 110 is also shown.
  • the de-chlorinator removes chlorine before hydrant water is disposed on to the ground or storm drain.
  • a tool box 111 may also have a workbench or workstation attached.
  • a power head 85 which may consist of a hydraulically driven drive motor or a DC electric motor or AC electric motor or an air driven motor or cylinder to turn a valve stem in order to open or shut the valve 92 or hydrant 94 .
  • a liquid pressure dissipater 95 (consisting of an outer shell, an open bottom, a fire hose connection and multiple baffles 99 to dissipate energy before releasing the water to the ground) is attached to the discharge of a fire hose 93 , which has its supply end connected to a fire hydrant 94 .
  • This liquid pressure dissipater 95 drops the water to the ground like rain thus reducing erosion.
  • the above described means may be mounted on a plug in hitch 101 attachment to a vehicle hitch receiver 100 or it may be mounted on the bed of a truck, or skid mounted to be transported by a skid steer or forklift.
  • the system may also be mounted on a trailer.
  • a vacuum container system vacuums an access to the valve stem 92 .
  • a valve box 98 can have silt vacuumed from it with a vacuum hose 17 attached to a vacuum debris tank 12 , having a filter housing 62 and a vacuum producing means 11 . Said vacuum producing means 11 may be generated by a compressed air venturi system or a mechanical vacuum pump blower.

Abstract

A vacuum container having a vacuum producing means, mounted on a vehicle, a trailer, or skid mounted, with options chosen from an articulating boom, a water jetter system, a liquid pressure dissipating means, a valve actuator, and a drive motor for the valve actuator being either hydraulic, air, or electric powered, a global positioning system to determine and log the position of work, service or hardware, controls and measuring devices and de-chlorinator.

Description

  • This application is a continuation of application Ser. No. 12/584,441 filed 4 Sep. 2009 which is a continuation of the parent application Ser. No. 10/683,674 filed Oct. 14, 2003 and claims the benefits of the parent application Ser. No. 10/683,674 filed Oct. 14, 2003 which became U.S. Pat. No. 7,604,023.
  • BACKGROUND OF THE INVENTION
  • Utility valves have historically been buried either on purpose of by silt from storms. Access to the valve was accomplished mechanically by a shovel and hand digging. A hand wrench or hand tool is used to open or close the valve. In the case of fire hydrants the valve was opened by hand, a fire hose attached and the water flow through the hose was released under pressure on the highway or yard, eroding and doing damage to an expensive fire truck that was driven to the hydrant to receive the water.
  • The present invention uses hydro vacuum excavation to access buried valves, a power head to actuate the valve and in the case of hydrants, a liquid pressure dissipater consisting of a plurality of baffles releases the discharged water with minimum pressure like rain onto the ground thus reducing erosion. A GPS documents physical location and measuring means document maintenance condition of the valve and characteristics of the utility. Controllers manage the interaction of the various functions of the invention. The system is mounted on a transportable means.
  • SUMMARY OF THE INVENTION
  • The present invention relates to using a vacuum container having a vacuum producing means and vacuum hose to vacuum debris from around valves so that the valve stem or valve handle may be accessed in order to actuate the valve.
  • A pressure washer or water jetter may also accompany the vacuum system in order to dislodge and make vacuum able the debris around a valve or in a valve box. A power head such as a hydraulic motor, D.C. motor, air motor or air cylinder may be used to actuate a valve. A power boom arm may be used to locate the power head into position. Extensions may be used between the power head and the valve stem especially when a valve is located below ground level. Control means are needed to operate the forward and reverse rotation of the valve stem as well as power head positioning onto the valve stem. Metering and monitoring means are needed to document the opening, closing, and torque required to operate the valve, as well as utility flow volumes and characteristics. When large volumes or water are released under pressure such as in the testing of fire hydrants, a pressure dissipating means may be used to avoid water damage to the surrounding area without obstructing the flow from test valves.
  • The above-mentioned means function as a unit to accomplish a common objective, which is to access, actuate, and document location, flow rates, pressure, utility characteristics, and condition of utility valves.
  • The above-mentioned objectives are accomplished by the present invention by constructing a transportable unit consisting of a vacuum container system, a water pressure cleaning and jettering system, a power supply, a power head to actuate the valves, a pressure dissipating means and a hose to connect the valve to the pressure dissipating means along with a GPS locator system, performance documenting means and controls to operate the intersection of the above mentioned system. A de-chlorinator may be added so as to decontaminate water before it is released into a storm drain or onto the ground.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an end view of a truck with a liquid pressure dissipater 95 mounted on a hitch 101 plugged into a receiver coupler 100 at the back bumper of a vehicle. A hitch stabilizer 102 secures the unit. A fire hose 93 attaches the liquid pressure dissipater 95 to a fire hydrant 94, which has been opened by a power head 85, which is supported by an articulating boom arm 86, which is mounted to the liquid pressure dissipater 95. A hydraulic power supply 104 powers the hydraulic drive motor 85. The hydraulic power supply 104 is battery operated and the battery is charged by the truck electrical system by way of the electrical plug in 103. A GPS 90 locates the physical position of the water hydrant. The baffles 99 in the liquid pressure dissipater 95 allow the water 97 to fall to the ground like rain. Controls 87 operate the drive motor 85 and measuring devices 88 record the torque & revolutions to open or close the valve.
  • FIG. 2 is a side view of a vacuum debris tank 12 having a filter housing 62 a hose reel 37 and a single rear door 18 access to the debris tank 12. A power plant 67 consists of a diesel or gas engine to power an air compressor 105, or 12-VDC generator for charging batteries and powering the control systems. A hydraulic power supply 83 may be direct engine driven, belt driven or 12-VDC battery powered. The hydraulic power supply 83 may have connections 84 to power tools and portable equipment. The hydraulic power supply 83 may also power the drive motor 85. The articulated boom arm 86 may also be hydraulically manipulated. A liquid pressure dissipater 95 is, shown mounted to the rear door 18 and liquid 2 is shown dropping to the ground. A hose storage area 96 is shown over the pressure dissipater 95. An articulated boom arm 86, which holds the valve actuator motor 85, is shown attached to the vacuum container filter housing 62. This boom arm 86 may also be used to support a vacuum hose. The boom may be powered by air pressure or hydraulic or linear actuator. An air reservoir 107, air hose 108 and air nozzle 109 are shown loosening debris 45 from a valve box 98. Vacuum hose 17 is shown vacuuming the debris 45 in to a vacuum tank 12. The vacuum producing means in this case is shown to be a compressed air venture vacuum source 106. The above system is skid mounted 64 so it can be mobilized by a skid steer, forklift, truck bed or other mobile vehicle.
  • FIG. 3 is similar to FIG. 2 with the exception that the system is shown mounted on a truck bed secured by a gooseneck trailer coupler 63.
  • FIG. 4 is similar to FIG. 2 with the exception that the system is mounted on a trailer and vacuum hose 17 is shown vacuuming debris 45, which has been loosened by a water jetter, which consists of a water jet 40, a water hose 58, a jetter water pump 7, a water storage tank 8, and a hose reel 37. The above vacuum and jetter system cleans debris 45 from an in-ground casing 98 or valve box, which allows access to the buried valve 92 stem. A de-chlorinator 110 is also shown.
  • FIG. 5 is similar to FIG. 2 with the exception that the system is shown mounted on a zero turn radius vehicle 31 having a powered vacuum boom 36. The power head 85 articulating boom 86, which may also be powered or manual with spring balancing is shown actuating a buried valve 92 by means of an extension rod 91.
  • FIG. 6 is similar to FIG. 1 with the addition of a Trailer 31, a Hydraulic power supply 83 for operating hydraulic tools 84; a de-chlorinator 110 is also shown. The de-chlorinator removes chlorine before hydrant water is disposed on to the ground or storm drain. A tool box 111 may also have a workbench or workstation attached.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • It is the objective of this invention to provide a power head 85, which may consist of a hydraulically driven drive motor or a DC electric motor or AC electric motor or an air driven motor or cylinder to turn a valve stem in order to open or shut the valve 92 or hydrant 94.
  • The power head 85 may be articulated into place over the valve by the aid of an articulating boom arm, which may be manually moved with the aid of springs or it may be powered. Adapters and extension rods 91 assist in reaching and coupling the power head 85 to the valve stem of the valve 92 or hydrant 94. A Global Positioning System 90 may be used to document and transmit the date to a computer-mapping program. Measuring devices 88 may document and transmit to a computer program the torque required to open and close a valve, the number revolution to open and close the valve, the flow through the valve at full open, full closed, and values in between, as well as temperature, pressure and mechanical condition of the valve. In the case of fire hydrants 94, which are typically checked for full flow through a fire hose to atmosphere under pressure, a liquid pressure dissipater 95 (consisting of an outer shell, an open bottom, a fire hose connection and multiple baffles 99 to dissipate energy before releasing the water to the ground) is attached to the discharge of a fire hose 93, which has its supply end connected to a fire hydrant 94. This liquid pressure dissipater 95 drops the water to the ground like rain thus reducing erosion.
  • The above described means may be mounted on a plug in hitch 101 attachment to a vehicle hitch receiver 100 or it may be mounted on the bed of a truck, or skid mounted to be transported by a skid steer or forklift. The system may also be mounted on a trailer.
  • It is a further objective of the invention to access below ground utility valves, which often requires the removal of debris, gravel, or dirt before the valve stem is accessible to be opened or closed by a power head 85. With hard to turn valves the power head 85 will consist of an impact torque or pulsed torque to loosen frozen valves. Debris, gravel, or dirt 45 may be loosened by water pressure or air pressure to make it vacuum able. A vacuum container system vacuums an access to the valve stem 92. A valve box 98 can have silt vacuumed from it with a vacuum hose 17 attached to a vacuum debris tank 12, having a filter housing 62 and a vacuum producing means 11. Said vacuum producing means 11 may be generated by a compressed air venturi system or a mechanical vacuum pump blower.
  • # DEFINITION
      • 2—Liquid
      • 7—Liquid Transfer Pump
      • 8—Container to hold dispensed liquids
      • 11—Container to hold dispensed solids
      • 12—Vacuum Container
      • 17—Vacuum Conduit
      • 18—End Door to Vacuum Container 12
      • 31—Mobile Platform
      • 36—Means to Mobilize Vacuum Conduit 17 with Attachment 32
      • 37—Hose Reel
      • 40—Water Jet
      • 45—Debris
      • 58—Jetter Hose
      • 62—Filter Housing
      • 63—Gooseneck Trailer Coupler
      • 64—Skid and Lifting Receiver
      • 65—Fill Pipe to Water Tank
      • 67—Power Plant
      • 75—Independent Hydraulic Drive Wheels
      • 83—Hydraulic Power Supply
      • 84—Hydraulic Tool and Equipment Connection
      • 85—Hydraulic driven motor or electric driven motor
      • 86—Articulating boom arm
      • 87—Control system for drive motor
      • 88—Revolution and/or counter torque for drive motor
      • 90—GPS (Global Positioning System) to map location Of drive motor operation such as the location of a valve to be opened or closed or a core sample to be taken or a man hole location or repair point location or bored hole location.
      • 91—Adapters for the drive motor such as extensions to Reach and connect to valve stems or augers
      • 92—Valve with valve stem
      • 93—Hose
      • 94—Hydrant
      • 95—Water pressure reducer-diffuser
      • 96—Hose storage
      • 98—In-ground casing to valve
      • 99—Baffling to absorb energy and reduce water pressure
      • 100—Hitch Receiver
      • 101—Hitch Receiver plug in
      • 102—Hitch Stabilizer means
      • 103—Vehicle plug in power supply
      • 104—Power Supply for drive motor
      • 105—Air Compressor
      • 106—Compressed Air Venture Vacuum Source
      • 107—Air Reservoir
      • 108—Air Hose
      • 109—Air Nozzle
      • 110—De-chlorinator
      • 111—Tool Box with workbench top or workstation
      • 112—Battery

Claims (18)

1. An apparatus for opening or closing an in ground utility valve and measuring means for determining a condition of said utility valve comprising:
a mobile platform; a valve actuator wherein said valve actuator further comprises a drive motor means for rotating a valve stem of said utility valve; a support means for positioning said valve actuator relative to said utility valve; an attachment means for connecting said valve actuator to a valve stem of said utility valve; a controller means for controlling a rotation of said drive motor; a Global Positioning System (GPS) means for determining a location; and a measuring means for determining a torque required for rotating said valve stem.
2. An apparatus for rotating a valve stem of an in ground utility valve, comprising:
a support;
a drive motor means for rotating a valve stem of said utility valve;
a control means for controlling characteristics relative to a rotation of said valve stem;
a measuring means for documenting a condition relative to said rotation of said valve stem;
and a Global Positioning System (GPS) means for determining a location with respect to an operation of said drive motor.
3. An apparatus for rotating a valve stem of an in ground utility valve, comprising:
a support;
a drive motor means for rotating a valve stem of said utility valve;
a control means for controlling a function relative to a rotation of said valve stem;
a measuring means for determining a condition relative to said rotation of said valve stem;
and a Global Positioning System (GPS) means for determining a location with respect to an operation of said drive motor, wherein said determining of a location occurs during a rotation of said valve stem and said control means causes the location determining means to determine a location of said apparatus in response to a rotation of said rotation means.
4. The apparatus according to claim 1, and further comprising a recording means for documenting said torque in combination with said location.
5. The apparatus according to claim 1, wherein said GPS determines a location relative to said valve stem.
6. The apparatus according to claim 2, and further comprising a recording means for documenting at least one condition relative to said utility valve.
7. The apparatus according to claim 1, and further comprising a rotation counter means for counting a rotation of said valve stem.
8. The apparatus according to claim 1, and further comprising a recording means for documenting at least one condition relative to said utility valve.
9. The apparatus according to claim 1, and further comprising a recording means for documenting at least one condition relative to said utility valve onto a computer mapping program.
10. The apparatus according to claim 2, and further comprising a recording means for documenting at least one condition relative to said utility valve onto a computer mapping program.
11. The apparatus according to claim 3, and further comprising a recording means for documenting at least one condition relative to said utility valve onto a computer mapping program.
12. An apparatus for testing a fire hydrant, comprising: a mobile platform; a valve actuator which comprises a drive motor means for rotating a valve stem of said fire hydrant; a support means for positioning said valve actuator relative to said fire hydrant; an attachment means for connecting said valve actuator to a valve stem of said fire hydrant; a controller means for controlling a rotation of said valve stem; a pressure dissipating means for dissipating pressure which further comprises a means for receiving and dispensing water from said fire hydrant; and a measuring means for detecting an effect of testing said fire hydrant on a utilities ability to flow volumes of water.
13. The apparatus according to claim 12 and further comprising a measuring means for measuring at least one condition relative to said fire hydrant.
14. The apparatus according to claim 12 and further comprising a measuring means for measuring water pressure, water flow, and or water temperature.
15. The apparatus according to claim 12 and further comprising a recording means for documenting the performance of said test hydrant with respect to said utilities ability to flow volumes of water.
16. The apparatus according to claim 12 and further comprising a de-chlorinator means for removing chlorine from water before said water is placed on to the ground or into a storm drain.
17. The apparatus according to claim 12, and further comprising a recording means for documenting at least one condition relative to said fire hydrant.
18. The apparatus according to claim 12, and further comprising a recording means for documenting at least one condition relative to said fire hydrant onto a computer mapping program.
US13/136,090 2003-10-14 2011-07-22 Utility valve access and performance evaluation method Abandoned US20110283786A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/136,090 US20110283786A1 (en) 2003-10-14 2011-07-22 Utility valve access and performance evaluation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/683,674 US7604023B2 (en) 2003-10-14 2003-10-14 Utility valve access and performance evaluation means
US12/584,441 US8033299B2 (en) 2003-10-14 2009-09-04 Utility valve access and performance evalutation method
US13/136,090 US20110283786A1 (en) 2003-10-14 2011-07-22 Utility valve access and performance evaluation method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/584,441 Continuation US8033299B2 (en) 2003-10-14 2009-09-04 Utility valve access and performance evalutation method

Publications (1)

Publication Number Publication Date
US20110283786A1 true US20110283786A1 (en) 2011-11-24

Family

ID=34422795

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/683,674 Expired - Fee Related US7604023B2 (en) 2003-10-14 2003-10-14 Utility valve access and performance evaluation means
US12/584,441 Expired - Fee Related US8033299B2 (en) 2003-10-14 2009-09-04 Utility valve access and performance evalutation method
US13/136,090 Abandoned US20110283786A1 (en) 2003-10-14 2011-07-22 Utility valve access and performance evaluation method

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/683,674 Expired - Fee Related US7604023B2 (en) 2003-10-14 2003-10-14 Utility valve access and performance evaluation means
US12/584,441 Expired - Fee Related US8033299B2 (en) 2003-10-14 2009-09-04 Utility valve access and performance evalutation method

Country Status (1)

Country Link
US (3) US7604023B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110715766A (en) * 2019-10-24 2020-01-21 上海蜀昌电气有限公司 Fire emergency evacuation residual pressure monitoring system
US11179737B1 (en) 2019-06-17 2021-11-23 Cash Nicolson Water deflection tool
US20220322622A1 (en) * 2021-04-12 2022-10-13 James Hobbs Irrigation Solenoid Valve Switch Assembly Operable on a Mesh Network

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7503134B2 (en) * 2000-11-27 2009-03-17 Buckner Lynn A Inclined slope vacuum excavation container
US7703473B1 (en) 2003-01-24 2010-04-27 Hurco Technologies, Inc. Valve tester suspension assembly
US7607624B1 (en) 2003-01-24 2009-10-27 Hurco Technologies, Inc. Valve tester suspension assembly
US7415376B1 (en) * 2003-01-24 2008-08-19 Hurley Lyndon J Valve tester control enhancements
US7604023B2 (en) * 2003-10-14 2009-10-20 Buckner Lynn A Utility valve access and performance evaluation means
US20050166350A1 (en) * 2004-01-29 2005-08-04 Buckner Don M. Self contained vacuum boom
US8657021B1 (en) * 2004-11-16 2014-02-25 Joseph Frank Preta Smart fire hydrants
US7980317B1 (en) * 2007-03-15 2011-07-19 F.C. Patents Smart monitor for fire hydrants
US7917324B2 (en) 2007-05-07 2011-03-29 Hurley Lyndon J Flow testing system for fluid networks
US7983869B1 (en) 2007-05-07 2011-07-19 Hurley Lyndon J Flow testing system for fluid networks
US7845447B2 (en) * 2007-10-09 2010-12-07 Victor Samaniego System and methods for adjustment of vehicle bodies
US8025078B2 (en) 2008-04-29 2011-09-27 Illinois Tool Works Inc. Vehicle mountable arm for valve operating machine
US20120068094A1 (en) * 2009-05-21 2012-03-22 Kenneth Michael Terrell Apparatus and Method for Remotely Operating Manual Valves
US20110012752A1 (en) * 2009-07-14 2011-01-20 Illinois Tool Works Inc. Wireless control for valve operating machine
US8156822B2 (en) * 2009-12-01 2012-04-17 Bettelle Energy Alliance, Llc Force measuring valve assemblies, systems including such valve assemblies and related methods
US9719230B2 (en) 2010-01-04 2017-08-01 Vac-Tron Equipment, Llc Mobile vacuum with remote debris tank
US8864101B1 (en) * 2010-09-14 2014-10-21 Lynn A. Buckner Machine implemented utility valve exercising apparatus
BR112015007185B1 (en) 2012-10-04 2020-11-03 Gates Corporation transportable test system for testing hoses, other tubular products or fluid conduits and method for testing a hose
US8914938B1 (en) * 2013-09-18 2014-12-23 Calvin E. Lee Municipal sewer cleaning system
US20150294339A1 (en) * 2014-04-10 2015-10-15 Bank Of America Corporation System for Secure Transactions
US10119380B2 (en) * 2015-09-14 2018-11-06 Schlumberger Technology Corporation Centralized articulating power system
CA2999489C (en) * 2015-09-21 2021-09-28 AMI Investments, LLC Remote monitoring of water distribution system
US9719630B1 (en) 2016-02-08 2017-08-01 Hurco Technologies, Inc. Pivoting support assembly
US9835285B1 (en) 2016-02-08 2017-12-05 Hurco Technologies, Inc. Pivoting support assembly
EP3652404A4 (en) 2017-07-14 2021-04-07 Vermeer Manufacturing Company Hydro excavation vacuum apparatus
EP3693642B1 (en) 2019-01-17 2022-06-15 Illinois Tool Works, Inc. Valve operating device having a movable arm for use in exercising valves
US11514383B2 (en) 2019-09-13 2022-11-29 Schlumberger Technology Corporation Method and system for integrated well construction
US11920695B2 (en) 2020-02-14 2024-03-05 Illinois Tool Works, Inc. Portable valve operating machine for use in exercising valves having a torque management system
US20210254746A1 (en) * 2020-02-14 2021-08-19 Illinois Tool Works Inc. Portable valve operating device for use in exercising valves
CN114019128A (en) * 2021-11-09 2022-02-08 山东省地质矿产勘查开发局八〇一水文地质工程地质大队 Underground water quality layered monitoring and sampling device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561459A (en) * 1984-09-17 1985-12-31 William Jackman Remote fire hydrant actuator
US6095429A (en) * 1999-01-13 2000-08-01 Killgrove; Jack G. Wheeled fire hydrant diffuser
US6125868A (en) * 1998-06-18 2000-10-03 Hydra-Stop, Inc. Method and apparatus for maintaining valves in a water distribution system
US20040252556A1 (en) * 2003-05-31 2004-12-16 Taylor Thomas M. Remotely actuated quick connect/disconnect coupling
US7604023B2 (en) * 2003-10-14 2009-10-20 Buckner Lynn A Utility valve access and performance evaluation means

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3267509A (en) * 1965-02-12 1966-08-23 Holmes E Boyd Apparatus for cleaning septic tanks
US3395467A (en) * 1965-06-18 1968-08-06 Michigan Peat Inc Method and apparatus for harvesting peat moss
US3678534A (en) * 1970-07-06 1972-07-25 Rohr Corp Vacuum cleaner head with supersonic gas jets
GB1559674A (en) * 1975-08-08 1980-01-23 Ward M M Grinding machines
US4322868A (en) * 1980-09-11 1982-04-06 Super Products Corporation Sewer and catch basin cleaner
US5848373A (en) * 1994-06-24 1998-12-08 Delorme Publishing Company Computer aided map location system
US5713583A (en) * 1995-11-20 1998-02-03 Hansen; Thomas E. Utility cart for concrete finishing operations
US5946767A (en) * 1998-04-02 1999-09-07 Gapvax, Inc. Pipe cleaning vehicle
US6453257B1 (en) * 1998-12-18 2002-09-17 Larson Testing Laboratories Apparatus for testing the ability of a filter to filter contaminants
DE19936944A1 (en) * 1999-08-05 2001-02-08 Bosch Gmbh Robert Method for metering fuel using a fuel injector
AU2002324865A1 (en) * 2001-09-06 2003-03-24 Wtd Technologies, Inc. Accident evidence recording method
US6776584B2 (en) * 2002-01-09 2004-08-17 Itt Manufacturing Enterprises, Inc. Method for determining a centrifugal pump operating state without using traditional measurement sensors
US6776068B2 (en) * 2002-09-06 2004-08-17 Wm. F. Hurst Co., Inc. Valve operator
US7607624B1 (en) * 2003-01-24 2009-10-27 Hurco Technologies, Inc. Valve tester suspension assembly
US7703473B1 (en) * 2003-01-24 2010-04-27 Hurco Technologies, Inc. Valve tester suspension assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4561459A (en) * 1984-09-17 1985-12-31 William Jackman Remote fire hydrant actuator
US6125868A (en) * 1998-06-18 2000-10-03 Hydra-Stop, Inc. Method and apparatus for maintaining valves in a water distribution system
US6095429A (en) * 1999-01-13 2000-08-01 Killgrove; Jack G. Wheeled fire hydrant diffuser
US20040252556A1 (en) * 2003-05-31 2004-12-16 Taylor Thomas M. Remotely actuated quick connect/disconnect coupling
US7604023B2 (en) * 2003-10-14 2009-10-20 Buckner Lynn A Utility valve access and performance evaluation means
US8033299B2 (en) * 2003-10-14 2011-10-11 Buckner Lynn A Utility valve access and performance evalutation method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11179737B1 (en) 2019-06-17 2021-11-23 Cash Nicolson Water deflection tool
CN110715766A (en) * 2019-10-24 2020-01-21 上海蜀昌电气有限公司 Fire emergency evacuation residual pressure monitoring system
US20220322622A1 (en) * 2021-04-12 2022-10-13 James Hobbs Irrigation Solenoid Valve Switch Assembly Operable on a Mesh Network

Also Published As

Publication number Publication date
US20050076965A1 (en) 2005-04-14
US8033299B2 (en) 2011-10-11
US7604023B2 (en) 2009-10-20
US20100024153A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
US8033299B2 (en) Utility valve access and performance evalutation method
US11041287B2 (en) Collection tank
US7503134B2 (en) Inclined slope vacuum excavation container
US5016717A (en) Vacuum excavator
US10443210B2 (en) Digging and backfill apparatus
US8739354B2 (en) Mobile method for servicing or cleaning a utility sewer or drainage pipe
US20100095559A1 (en) Mobile vacuum excavation attachment for vehicle
US7644523B2 (en) Mobile vacuum boring and excavation method
US20100196129A1 (en) Mobile vacuum excavation process
US20080244859A1 (en) Vacuum system with improved mobility
US20060118338A1 (en) Drill base
US10773877B2 (en) Fill device for a water reservoir tank
US9719230B2 (en) Mobile vacuum with remote debris tank
KR20100072520A (en) Air compressible boom structure
KR200348479Y1 (en) Sewer Cleaner Truck
JPH0720196Y2 (en) Vacuum cleaner for earth and sand
KR20080104612A (en) Compressed air supply structure of excavator

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION