US20120068824A1 - Method of assigning a system address to control devices of a load control system - Google Patents

Method of assigning a system address to control devices of a load control system Download PDF

Info

Publication number
US20120068824A1
US20120068824A1 US13/270,777 US201113270777A US2012068824A1 US 20120068824 A1 US20120068824 A1 US 20120068824A1 US 201113270777 A US201113270777 A US 201113270777A US 2012068824 A1 US2012068824 A1 US 2012068824A1
Authority
US
United States
Prior art keywords
control device
power wiring
address
load
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/270,777
Inventor
James P. Steiner
Aaron Dobbins
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lutron Technology Co LLC
Original Assignee
Lutron Electronics Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lutron Electronics Co Inc filed Critical Lutron Electronics Co Inc
Priority to US13/270,777 priority Critical patent/US20120068824A1/en
Publication of US20120068824A1 publication Critical patent/US20120068824A1/en
Assigned to LUTRON TECHNOLOGY COMPANY LLC reassignment LUTRON TECHNOLOGY COMPANY LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LUTRON ELECTRONICS CO., INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0072Error control for data other than payload data, e.g. control data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end
    • H04L25/0282Provision for current-mode coupling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5412Methods of transmitting or receiving signals via power distribution lines by modofying wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5404Methods of transmitting or receiving signals via power distribution lines
    • H04B2203/5416Methods of transmitting or receiving signals via power distribution lines by adding signals to the wave form of the power source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B2203/00Indexing scheme relating to line transmission systems
    • H04B2203/54Aspects of powerline communications not already covered by H04B3/54 and its subgroups
    • H04B2203/5429Applications for powerline communications
    • H04B2203/5458Monitor sensor; Alarm systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/0266Arrangements for providing Galvanic isolation, e.g. by means of magnetic or capacitive coupling

Definitions

  • the present invention relates to an apparatus for independently controlling a motor, such as, for example, a fan motor, together with a lighting source contained within the same enclosure as the motor and coupled to the motor.
  • the invention also relates to a communication scheme for communicating over a power line to control the load, such as, for example, a fan motor and a light.
  • FIG. 1A shows a prior art light and fan motor control system 10 .
  • the system 10 includes a maintained switch 12 coupled between an alternating-current (AC) voltage source 14 and two loads, i.e., a fan motor 16 and a lighting load 18 , in an enclosure 19 .
  • the fan motor 16 and the lighting load 18 are connected in parallel such that when switch 12 is closed, the fan motor 16 and the lighting load 18 will both be on, and when the switch 12 is open, the fan motor 16 and the lighting load 18 will both be off.
  • AC alternating-current
  • FIG. 1B shows a prior art light and fan motor control system 20 , having a dual light and fan speed control 22 coupled to the AC voltage source 14 .
  • the dual light and fan speed control 22 has two outputs: the first coupled to the fan motor 16 and the second coupled to the lighting load 18 , to allow for independent control of the loads.
  • the dual light and fan speed control 22 includes a fan speed circuit for adjusting the speed at which the fan motor 16 turns and a dimmer circuit for changing the intensity of the lighting load 18 .
  • the dual light and fan speed control 22 is often mounted in a standard electrical wallbox and includes a user interface to allow a user to separately control the lighting load and the fan motor.
  • the dual light and fan speed control 22 requires two separate wires to be connected between the lamp and the fan motor. If these two connections are not provided between the wallbox and the enclosure containing the lamp and the fan motor, independent control of the lighting load 18 and the fan motor 16 will not be possible. Further, in the control system 20 of FIG. 1B , it is only possible to have one dual light and fan speed control 22 , and thus, only one user interface to allow for adjustment of the intensity of the lighting load 18 and the speed of the fan motor 16 . Control of the fan motor 16 and lighting load 18 from more than one location is not possible in this system.
  • FIG. 1C shows a prior art power-line carrier (PLC) control system 30 .
  • Power-line carrier control systems use the power system wiring to transmit control signals at high frequencies (i.e., much greater than the line frequency of 50 Hz or 60 Hz). All devices of the PLC system 30 are coupled across an AC power source 32 (from hot to neutral) to receive both power and communications from the same wiring.
  • the system 30 includes a PLC fan motor controller 34 coupled to a fan motor 36 , a PLC light controller 38 coupled to a lighting load 40 , and a remote control keypad 42 .
  • the remote control keypad 42 is operable to transmit a message across the power line to the PLC fan motor controller 34 and the PLC light controller 38 to control the respective loads.
  • the X10 protocol uses a voltage carrier technique to transmit messages between devices connected to the power system. Through the voltage carrier technology, the messages are transmitted on voltages signals referenced either between the hot and neutral connections of the AC power source 32 or between the hot connection of the AC power source and an earth ground connection.
  • the devices in an X10 system communicate using house addresses and unit addresses.
  • a two-wire device is a control device that has only two electrical connections, i.e., one for the AC source voltage and one for the fan/lamp, and does not have a neutral line connection. As shown in FIG.
  • this kind of system typically only includes the switch 12 in series electrical connection between the AC source 14 and the loads, and no neutral connection is available in the electrical wallbox where the switch is housed. Since it is desirable to control the fan motor 16 and the lighting load 18 independently, using the existing building wiring, it is necessary to develop a means to allow independent control over the existing building wiring consisting of a single wire connecting the wall control, i.e., the dual light and fan speed control 22 , to the enclosure of the fan motor 16 and the lighting load 18 .
  • the invention provides a system for communicating between a first control circuit portion and a remote second control circuit portion over electrical power wiring of a building.
  • the first control circuit portion has a user actuable control for remotely controlling an electrical load controlled by the second control circuit portion.
  • the system comprises a transmitter in the first circuit portion and a receiver in the second circuit portion.
  • the transmitter in the first circuit portion is operable to transmit control information over the power wiring to the second circuit portion, while the receiver in the second circuit portion is operable to receive the control information transmitted over the power wiring by the first circuit portion for controlling the load.
  • the first and second circuit portions each include a current responsive element coupled to the building power wiring for establishing a current signal loop in the building power wiring between the first and second control circuit portions for the exchange of the control information.
  • the electrical load preferably comprises an electrical motor.
  • the invention further provides a two-wire load control system for controlling the power delivered to an electrical load from an AC voltage source.
  • the two-wire load control system comprises a load control device and a two-wire remote control device.
  • the load control device is coupled to the electrical load for control of the load.
  • the load control device comprises a first current responsive element operatively coupled in series electrical connection between the AC source and the electrical load and a first communication circuit coupled to the first current responsive element for receiving message signals.
  • the two-wire remote control device comprises a second current responsive element operatively coupled in series electrical connection between the AC source and the electrical load and a second communication circuit coupled to the second current responsive element for transmitting the message signals.
  • the first current responsive element and the second current responsive element are operable to conduct a communication loop current.
  • the first communication circuit is operable to transmit and the second communication circuit operable to receive the message signals via the communication loop current.
  • the first and second communication circuits are operable to both transmit and receive the message signals via the communication loop current.
  • the plurality of loads and the AC voltage source are coupled together at a common neutral connection.
  • the load control device is coupled to the plurality of loads and is operable to individually control each of the plurality of loads.
  • the load control device comprises a first current responsive element coupled in series electrical connection between the AC source and the plurality of loads and a first communication circuit coupled to the first current responsive element for receipt of a message signal for controlling the plurality of loads.
  • the two-wire remote control device comprises a second current responsive element coupled in series electrical connection between the AC source and the plurality of loads and a second communication circuit coupled to the second current responsive element for transmission of the message signal for controlling the plurality of loads.
  • the capacitor, the AC source, the first current responsive element, and the second current responsive element are operable to conduct a communication loop current.
  • the second communication circuit is operable to transmit communication signals to the first communication circuit via the communication loop current.
  • the invention furthermore comprises a method for communicating between a first control circuit portion having a first current responsive element and a remote second control circuit portion having a second current responsive element over electrical power wiring of a building to control the operation of an electric motor, the first control circuit portion having a user actuable control for remotely controlling the electric motor controlled by the second control circuit portion, the method comprising the steps of: (1) coupling the first current responsive element to the electrical power wiring; (2) coupling the second current responsive element to the electrical power wiring; (3) establishing a current signal loop in the electrical power wiring between the first and second current responsive elements; (4) transmitting control information over the electrical power wiring from the first control circuit portion to the second control circuit portion; and (5) receiving the control information at the second circuit portion for controlling the electric motor.
  • the present invention provides a method for communicating a digital message from a two-wire remote control device to a load control device for independently controlling the power delivered to a plurality of loads from an AC voltage source.
  • the method comprises the steps of: (1) coupling the two-wire remote control device in series electrical connection between the AC source and the load control device; (2) coupling a capacitor in shunt electrical connection across the plurality of loads; (3) conducting a communication loop current through the AC source, the two-wire remote control device, the load control device, and the capacitor; and (4) transmitting the digital message from the two-wire remote control device to the load control device via the current loop.
  • the present invention further provides a method for assigning a system address to a control device in a load control system for controlling the amount of power delivered to an electrical load from an AC voltage source.
  • the method comprising the steps of: (1) coupling the control device in series electrical connection between the electrical load and the AC voltage source via a power wiring, such that a load current is operable to flow on the power wiring from the AC voltage source to the electrical load through the control device; (2) applying power to the control device; (3) subsequently transmitting an address initiation request via the power wiring; and (4) receiving the system address via the power wiring.
  • a method of filtering a received message signal having a sequence of samples comprises the steps of: (1) examining a set of N sequential samples of the received message signal; (2) determining the median of the N sequential samples; (3) providing the median as an output sample; and (4) repeating the steps of examining a set of N sequential samples, determining the median, and providing the median.
  • the present invention provides a method of communicating a message signal from a first control device to a second control device.
  • the message signal comprises a sequence of samples.
  • the method comprises the steps of: (1) transmitting the message signal from the first control device; (2) receiving the message signal at the second control device; (3) examining a set of N sequential samples of the received message signal; (4) determining the median of the N sequential samples; (5) providing the median as an output sample; and (6) repeating the steps of examining a set of N sequential samples, determining the median, and providing the median.
  • FIG. 1A is a simplified block diagram of a prior art electric light and electric motor control system
  • FIG. 1B is a simplified block diagram of a prior art electric light and electric motor control system including a dual light and motor speed control;
  • FIG. 1C is a simplified block diagram of a prior art power-line carrier control system for controlling an electric motor and an electric light;
  • FIG. 2 is a simplified block diagram of a system for control of electric lights and electric motors according to the present invention
  • FIG. 3 is a simplified block diagram of a wallstation of the system of FIG. 2 ;
  • FIG. 4 is a simplified block diagram of a light/motor control of the system of FIG. 2 ;
  • FIG. 5A shows a first example of the system of FIG. 2 demonstrating the current loop used for communication between the wallstations and the light/motor control unit;
  • FIG. 5B shows a second example of a system for independent control of a lighting load and a motor load to demonstrate an optimal communication loop current
  • FIG. 5C is a simplified block diagram of a system for control of a plurality of loads according to another embodiment of the present invention.
  • FIG. 6A shows example waveforms of the system of FIG. 2 ;
  • FIG. 6B shows the parts of a transmitted message of the system of FIG. 2 ;
  • FIG. 7 shows a simplified block diagram of a communication circuit of the system of FIG. 2 ;
  • FIG. 8 shows a simplified flowchart of the process of a receiver routine implemented in a controller of the system of FIG. 2 ;
  • FIGS. 9A , 9 B, and 9 C show waveforms that demonstrate the operation of a median filter of the receiver routine of FIG. 8 ;
  • FIG. 9D is a simplified flowchart of the process of the median filter of the receiver routine of FIG. 8 ;
  • FIGS. 10A and 10B show a simplified flowchart of an automatic addressing algorithm of the system of FIG. 2 .
  • a lamp and a fan motor are typically packaged in the same housing. It is desirable to be able to control the lamp and fan motor independently from the same remote location, by, for example, a wallstation.
  • the lamp may be controlled by a series switch, typically a phase-angle dimmer.
  • the fan motor may be controlled by a shunt switch in parallel with the fan motor, such as is disclosed in commonly-assigned co-pending U.S. patent application, Attorney Docket No. 04-11701-P2, filed on Jun. 6, 2006, entitled METHOD AND APPARATUS FOR QUIET VARIABLE MOTOR SPEED CONTROL, the entire disclosure of which is hereby incorporated by reference.
  • FIG. 2 A block diagram of a system 100 for independent control of lights and fan motors according to the present invention is shown in FIG. 2 .
  • the system includes a plurality of wallstations 104 that are connected in series between an AC voltage source 102 and a light/motor control unit 105 over the electrical power wiring of a building to form a power loop.
  • the light/motor control unit 105 is operable to control both the speed of a fan motor 106 and the intensity of a lighting load 108 .
  • the fan motor 106 and the lighting load 108 are preferably both mounted in a single enclosure 109 (sometimes referred to as the “canopy”).
  • FIG. 3 A simplified block diagram of the wallstation 104 is shown in FIG. 3 .
  • a power supply 110 is provided in series between a first electrical terminal H 1 and a second electrical terminal H 2 .
  • the power supply 110 provides a DC voltage, V CC , to power a controller 112 and a communication circuit 116 .
  • V CC DC voltage
  • the operation of the power supply 110 is described in greater detail in commonly-assigned co-pending U.S. patent application, Attorney Docket No. 05-12142-P2, filed Jun. 6, 2006, entitled POWER SUPPLY FOR A LOAD CONTROL DEVICE, the entire disclosure of which is hereby incorporated by reference.
  • the controller 112 is preferably implemented as a microcontroller, but may be any suitable processing device, such as a programmable logic device (PLD), a microprocessor, or an application specific integrated circuit (ASIC).
  • a user interface 114 includes a plurality of buttons for receiving inputs from a user and a plurality of light emitting diodes (LEDs) for providing visual feedback to the user.
  • the controller 112 accepts control inputs from the buttons of the user interface 114 and controls the operation of the LEDs. The operation of the LEDs is described in greater detail in commonly-assigned co-pending U.S.
  • the controller 112 is coupled to the communication circuit 116 for transmitting and receiving control information to and from the light/motor control unit 105 and the other wallstations 104 of system 100 .
  • the communication circuit 116 transmits and receives the control information via a communication transformer 118 over the electrical power wiring coupled from the AC voltage source 102 to the wallstations 104 and the light/motor control unit 105 .
  • the communication transformer 118 has a primary winding 118 A that is connected in series electrical connection with the terminals H 1 , H 2 of the wallstation 104 and a secondary winding 118 B that is coupled to the communication circuit 116 .
  • the wallstation 104 further includes an air-gap switch 117 in series with the power supply 110 .
  • the air-gap switch 117 When the air-gap switch 117 is opened, power is removed from all devices of the system 100 since the devices are coupled in a power loop.
  • the wallstations 104 are preferably coupled to the hot line of the electrical power wiring such that the hot line is not provided in the canopy when the air-gap switch 117 is open. However, the wallstations 104 may also be coupled to the neutral line.
  • the light/motor control unit 105 includes a HOT terminal H, a neutral terminal N, a dimmed hot terminal DH connected to the lighting load 108 , and a fan motor hot terminal MH connected to the fan motor 106 .
  • the light/motor control unit 105 includes a dimmer circuit 150 for controlling the intensity of the lighting load 108 and a fan motor control circuit 152 for controlling the rotational speed of the fan motor 106 .
  • the dimmer circuit 150 utilizes a semiconductor switch (not shown) to control the amount of current conducted to the lighting load 108 and thus the intensity of the lighting load.
  • the conduction time of the semiconductor switch is controlled by a controller 154 using standard phase-control dimming techniques as is well known in the art.
  • a motor voltage detect circuit 156 determines the zero-crossings of the motor voltage across the fan motor 106 and provides a control signal to the controller 154 , which operates the fan motor control circuit 152 accordingly.
  • a zero-crossing of the motor voltage is defined as the time at which the motor voltage transitions from positive to negative polarity, or from negative to positive polarity, at the beginning of each half-cycle of the motor voltage.
  • the controller 154 is coupled to a communication circuit 158 , which transmits and receives control information over the electrical power wiring via a communication transformer 160 .
  • the communication transformer 160 is a current transformer that has a primary winding 160 A that is connected in series with a hot terminal H of the motor/light control unit 105 and a secondary winding 160 B that is coupled to the communication circuit 158 .
  • a power supply 162 is coupled to the load-side of the communication transformer 160 and generates a DC voltage V CC to power the controller 154 and the other low-voltage circuitry.
  • Two diodes 164 A, 164 B are provided such that the power supply is operable to charge only during the positive half cycles.
  • the power supply 162 preferably comprises a capacitor (not shown) having a capacitance of approximately 680 ⁇ F.
  • a capacitor 165 is coupled between the cathode of the diode 164 A and the neutral terminal N and preferably has a capacitance of 2.2 ⁇ F.
  • a capacitor 166 is connected in parallel with the power supply 162 between the load-side of the communication transformer 160 and the cathode of the diode 164 A.
  • the capacitor 166 completes a communication loop with the wallstations 104 and isolates the communication transformer 160 from the high impedance of the fan motor 106 , particularly when the fan motor 106 is off.
  • the capacitor 166 is sized to pass the loop current carrier signal modulated with the control information, while blocking the 50/60 cycle power of the AC voltage source 102 .
  • a preferred value for the capacitor 161 is 10 nF.
  • a zero-cross detect circuit 168 is coupled between the load-side of the communication transformer 160 and the neutral terminal N for providing a signal representative of the zero-crossings of the AC voltage source 102 to the controller 154 .
  • a zero-crossing of the AC voltage is defined as the time at which the AC voltage transitions from positive to negative polarity, or from negative to positive polarity, at the beginning of each half-cycle of the AC voltage source 102 .
  • the controller 154 determines when to turn on or off the semiconductor switch of the dimmer circuit 150 each half-cycle by timing from each zero-crossing of the AC supply voltage.
  • the control system 100 preferably uses a current-carrier technique to communicate between the wallstations 104 and the light/motor control unit 105 .
  • FIG. 5A shows a first example of the system 100 for independent control of a lighting load 108 and a fan motor 106 demonstrating a communication loop current 172 used for communication between the wallstations 104 and the light/motor control unit 105 .
  • the load currents for powering the lighting load 108 and the fan motor 106 flow through the primary winding 118 A of the communication transformer 118 of the wallstation 104 and the primary winding 160 A of the communication transformer 160 of the light/motor control unit 105 .
  • the communication loop current 172 flows through the AC voltage source 102 , the communication transformer 118 of the wallstation 104 , the communication transformer 160 , and the capacitors 165 , 166 of the light/motor control unit 105 .
  • the capacitor 161 completes the communication loop and isolates the communication loop from the fan motor 106 . The isolation is needed because the fan motor provides a high impedance when the fan motor 106 is off and the inductive nature of the fan motor attenuates the communication loop current 172 .
  • the communication circuit 116 transmits a communication message from the controller via the communication transformer 118 , which couples the control information onto the hot line. Since the same current flows through the primary winding 118 A of the transformer 118 in the wallstation and the primary winding 160 A of the transformer 160 in the light/motor control unit 105 , the communication loop current 172 induces an output message on the secondary 160 B of transformer 160 . The output message is received by the communication circuit 158 of the light/motor control unit 105 and is then provided to the controller 154 to control the fan motor control circuit 152 and the dimmer circuit 150 .
  • FIG. 5B shows an example of a second system 180 for independent control of a lighting load 108 and a fan motor 106 demonstrating an optimal communication loop current 182 that does not flow through the AC voltage source 102 , the fan motor 106 , or the lighting load 108 .
  • the hot side of the AC voltage source 102 is provided at the canopy, i.e., at the mounting enclosure 109 ( FIG. 2 ) of the fan motor 106 and the lighting load 108 .
  • the system 180 includes a light/motor control unit 184 that comprises an additional communication terminal C and a capacitor 186 coupled between the terminal C and the neutral terminal N.
  • the terminal C is connected to the hot side of the AC voltage source 102 to complete the communication loop through the capacitor 186 such that the communication loop current 182 does not flow through the AC voltage source 102 .
  • the capacitor 186 is provided to terminate the communication loop and thereby prevent data being transferred between the wallstation 104 and the light/motor control unit 184 from entering the power system.
  • the capacitor 186 is sized to pass the loop current carrier signal containing the control information, while blocking the 50/60 cycle power of the AC voltage source.
  • a preferred value for the capacitor 186 is 10 nF.
  • FIG. 5C is a simplified block diagram of a system 189 for control of a plurality of loads according to another embodiment of the present invention.
  • Three light/motor control units 105 are coupled in parallel electrical connection. Each of the light/motor control units 105 is coupled to a fan motor (not shown) and/or a lighting load (not shown).
  • a communication loop current 189 flows through the wallstations 104 and communication currents 189 A, 189 B, 189 C flow through each of the light/motor control units 105 .
  • the communication currents 189 A, 189 B, 189 C each have a magnitude equal to approximately one-third of the magnitude of the communication current 189 .
  • Each of the wallstations 104 is operable to control all of the fan motors in unison and all of the lighting loads in unison. Power is removed from the all of the wallstations 104 and the light/motor control units 105 on the loop if the airgap switch 117 of any of the wallstations 104 is opened.
  • the message information may be modulated onto the hot line by any suitable modulation means, for example, amplitude modulation (AM), frequency modulation (FM), frequency shift keying (FSK), or binary phase shift keying (BPSK).
  • FIG. 6A shows examples of the transmitted and received signals of the control system 100 .
  • a transmitted message signal 190 is provided, for example, by the controller 112 to the communication circuit 116 of the wallstation 104 .
  • the transmitted message signal 190 is modulated onto a carrier, e.g., frequency-modulated onto the carrier, by the communication circuit 116 to produce a modulated signal 191 .
  • the modulated signal 191 is susceptible to noise and thus a noisy modulated signal 192 (which includes some noise 192 A) will be received, for example, by the communication circuit 158 of the light/motor control unit 105 . Accordingly, the communication circuit 158 will provide a noisy demodulated message 193 to the controller 154 of the light/motor control unit 105 . In order to avoid generating a noisy demodulated message 193 and to obtain a desired received message 194 , a suitable means for modulation, demodulation, and filtering is provided according to the invention (as will be described in greater detail below).
  • a transmitted message signal 190 has three components: a preamble 196 , a synchronization code 197 , and the message code 198 .
  • the preamble 196 is a code that is k bits in length and is used to coordinate the demodulation and the decoding of a received message.
  • the synchronization code 197 is an orthogonal pseudo random code with low cross-correlation properties that is n bits in length and that all devices in the loop of the system 100 try to detect in real time.
  • the synchronization code also serves the purpose of an address. The presence of this code indicates that a message is contained in the message code 198 that follows.
  • the message code 198 is a forward error correction code that is m bits in length that is received following the synchronization code. This bit stream is not decoded in real time but is passed to a message parser.
  • FIG. 7 shows a simplified block diagram of the communication circuit 158 of the motor/light control unit 105 .
  • the communication circuit 158 is coupled to the transformer 160 , which operates along with a capacitor 202 as a tuned filter to pass substantially only signals at substantially the transmission frequency of the modulated signals 192 , i.e., between 200 kHz and 300 kHz.
  • the voltage across the capacitor 202 is provided to a voltage clamp 204 to protect against high voltage transients.
  • a demodulator 206 receives the modulated message signal 192 and generates the demodulated received message signal 193 using standard demodulation techniques that are well-known in the art.
  • the demodulated message signal 193 is provided to a receiver routine 208 of the controller 154 that will be described in more detail with reference to FIG. 8 .
  • FIG. 7 also shows the transmitter portion of the communication circuit 158 .
  • the controller 154 implements a code generator 210 that produces the synchronization code 197 and the message code 198 of the transmitted message 190 .
  • the controller 154 could use a look-up table to generate the synchronization code 197 and the message code 198 based on the desired information to be transmitted for controlling the fan motor 106 and the lighting load 108 .
  • the coded signal is thereafter encoded at a Manchester encoder 212 .
  • Manchester encoding a bit of data is signified by a transition from a high state to a low state, or vice versa, as is well known in the art.
  • Manchester encoding is shown, other digital encoding schemes could be employed.
  • the encoded signal is then modulated on a carrier signal by a modulator 214 using, for example, AM, FM, or BPSK modulation. After amplification by a power amplifier 218 , the modulated signal is coupled to the tuned filter (comprising the capacitor 202 and the transformer 160 ) and is transmitted on to the hot line as a current signal. While the communication circuit 158 of the motor/light control unit 105 is described above and shown in FIG. 7 , the communication circuit 116 of the wallstation 104 will have the same implementation.
  • FIG. 8 shows a simplified block diagram of the process of the receiver routine 208 implemented in the controller 154 .
  • the demodulated signal 193 i.e. the input to the receiver routine 208
  • FIGS. 9A , 9 B, and 9 C show waveforms that demonstrate the operation of the median filter 220 .
  • FIG. 9A shows an example of an original Manchester encoded stream 250 , i.e., as generated by the Manchester encoder 212 of the controller 154 before transmission.
  • the original Manchester encoded stream 250 may be corrupted by noise during transmission such that a noisy Manchester encoded stream 252 shown in FIG. 9B (having noise impulses 252 A) is provided to the controller of the receiving device.
  • the transmitted current-carrier signals are much smaller in amplitude (approximately 5 mA) in comparison to the amplitude of the current used by the lighting load 108 and the fan motor 106 (approximately 5 A). Since the semiconductor switch of the dimmer circuit 150 controls the power delivered to the lighting load 108 using phase-control dimming, large current pulses through the lighting load 108 are induced in the communication transformers 118 , 160 . These large current pulses corrupt the modulated signal 191 and are detected as binary impulse noise in the demodulated bit stream. This is shown in the noisy Manchester encoded stream 252 by the plurality of noise impulses 252 A that are not in the original Manchester encoded stream 250 .
  • the resulting signal is much like digital shot noise and statistically is similar to the “random telegrapher's waveform”. As such, it is very impulsive in nature and can be modeled to a first order as a Poisson point process.
  • the median filter 220 is used to eliminate the noise corruption to generate the filtered
  • the median filter 220 is ideally suited to filtering a binary stream as shown in FIG. 9B .
  • a median filter of order N has a sliding window of width, W samples, defined by
  • the median filter 220 preserves any “root signal” passing through the window.
  • a root signal is defined as any signal that has a constant region N+ 1 points or greater with monotonic increasing or decreasing boundaries. By definition, root signals cannot contain any impulses or oscillations, i.e., signals with a width less than N+ 1 .
  • the filter removes the impulses in the regions where the signal should be a binary zero or binary one.
  • FIG. 9D is a flowchart of the median filter 220 according to the present invention.
  • the median filter 200 examines W samples of the corrupted Manchester encoded stream 252 at a time. For a 3 rd order median filter, seven samples are examined since
  • the median filter 220 After the median filter 220 has finished processing the previous W samples, the median filter discards the Nth sample, i.e., the first of the W samples that was received by the median filter at step 260 . At step 262 , the median filter 220 shifts the samples up leaving the first sample of the W samples empty and available to receive a new sample. The median filter 220 receives a new input sample 264 from the corrupted Manchester encoded stream 252 and shifts the sample into the first position of the sequence of W samples at step 266 .
  • the median filter 200 determines the median of the W samples at step 268 .
  • the median filter 200 groups (i.e., orders) the ones and zeros of the W samples and determines the value of the middle sample. For example, if the present W samples are
  • the median filter 220 will group the zeros and the ones to form a sorted sample stream
  • the median for the sorted sample stream is one, since the median or middle value is one.
  • the median filter 220 counts the number of ones in the W samples to determine the median at step 268 .
  • the median is one if the count of the ones is greater than or equal to the value of N+1. Otherwise, the median is zero.
  • the width W of the median filter 220 must always be an odd number, i.e., 2N+1.
  • the median filter 220 is preferably implemented with a lookup table that counts the ones and returns a one if the count is greater than or equal to N+1 or a zero otherwise. By using the lookup table, the filtering process is able to complete in a few instruction cycles thereby making the computation on a microcontroller exceptionally fast.
  • the median filter 220 provides the median determined in step 268 as the output sample 272 to form the filtered Manchester encoded stream 254 (shown in FIG. 9C ).
  • the median filter 220 removes the noise impulses 252 A from the corrupted Manchester encoded stream 252 .
  • the rising and falling edges of the filtered Manchester encoded stream 254 may occur at different times than the rising and falling edges of the original Manchester encoded stream 250 . Since the data is encoded in the Manchester encoded stream 250 by generating a rising edge or falling edge during a predetermined period of time, it is not critical exactly when the rising and falling edges occur in the filtered Manchester encoded stream 254 at the time of decoding. It is only important that incorrect rising and falling edges are removed from encoded stream.
  • the signal passes through a Manchester decoder 222 to produce a digital bit stream from the Manchester-encoded bit stream that is received.
  • the decoded signal and a pseudo random orthogonal synchronization code 224 are fed to a cross correlator 226 .
  • the output of the cross correlator 226 is integrated by an integrator 228 and provided to a threshold detector 230 . This processing occurs in real time with the output of the receiver routine 208 updated at the bit rate of the sequence.
  • the bit stream from the Manchester decoder 222 and the pseudo random orthogonal synchronization code 224 are input to an exclusive NOR (XNOR) logic gate.
  • XNOR exclusive NOR
  • the number of ones in the output of the XNOR gate is counted to perform the integration at the integrator 228 .
  • a lookup table is utilized to count the ones during the integration. Since the codes are orthogonal, the correlation will be small unless the codes match. The match does not have to be exact, merely close, for example a 75% match.
  • the next M decoded bits i.e., the message code 198
  • the forward error correction message codes 236 are then compared to the M decoded bits to find the best match, which determines the command at step 238 and the command is executed at step 240 .
  • This step is known as maximum likelihood decoding and is well known in the art.
  • the controller After receiving a decoded message, the controller will transmit an acknowledgement (ACK) to the device that transmitted the received message. Transmitting the ACK allows for a reliable communication scheme.
  • ACK acknowledgement
  • the devices of the system 100 for independent control of lights and fan motors all communicate using a system address.
  • the wallstations 104 and the light/motor control unit 105 execute an automatic addressing algorithm upon power up.
  • FIGS. 10A and 10B show a simplified flowchart of the automatic addressing algorithm.
  • the devices of system 100 are connected in a loop topology, it is possible to cause all devices to power up at one time by toggling (i.e., opening, then closing) the air-gap switch 117 of one of the wallstations 104 .
  • the devices in the system 100 Upon power-up at step 300 , the devices in the system 100 will enter an addressing mode at step 302 , meaning that the device is eligible to participate in the addressing algorithm and will communicate with other devices of the system using a broadcast system address 0.
  • addressing mode devices use a random back-off time when transmitting to minimize the probability of a collision since there could be many unaddressed devices in the system. After a suitable timeout period, e.g., 20 seconds, the devices leave the addressing mode.
  • the present device determines if all of the devices in the system have a system address at step 304 . Specifically, upon power-up, all devices that do not have a system address will transmit an address initiation request. At step 304 , the device waits for a predetermined amount of time to determine if any address initiation requests are transmitted. If the device determines that all devices in the system have the system address at step 304 , the device transmits the system address to all devices at step 306 .
  • the present device transmits a query message to each device at step 308 .
  • the present device determines if the system 100 is a “valid” system.
  • a valid system includes at least one wallstation 104 and at least one light/motor control unit 105 and does not have more than one system address, i.e., no two devices of the system have differing system addresses.
  • the present device determines if any of the devices of the system 100 have a system address at step 312 . If at least one device has a system address, the present device saves the received address as the system address at step 314 and transmits the received address at step 316 .
  • the present device attempts to select a new system address.
  • the device chooses a random address M, i.e., a random selection from the allowable address choices, as the system address candidate. For example, there may be 15 possible system addresses, i.e., 1-15. Since there may be neighboring systems already having address M assigned, the device transmits a “ping”, i.e., a query message, using address M at step 320 to verify the availability of the address. If any devices respond to the ping, i.e., the address M is already assigned, at step 322 , the device begins to step through all of the available system addresses.
  • a ping i.e., a query message
  • the device selects the next available address (e.g., by incrementing the system address candidate) at step 326 , and transmits another ping at step 320 . Otherwise, the process simply exits.
  • a suitable address M has been verified as being available, i.e., no devices respond at step 322
  • the present device sets the system address candidate as the system address at step 328 , and transmits address M on the broadcast channel 0 at step 316 . Accordingly, all unaddressed devices in addressing mode then save address M as the system address. The process then exits.
  • step 310 If the system 100 is not a valid system at step 310 , then all system devices that presently have the system address exit the addressing mode at step 330 . If the addressing assignment has only been attempted once at step 332 , then the device transmits another query message at step 308 . Otherwise, the process simply exits.
  • an address reset is included that re-addresses all devices in the system 100 .
  • a special key sequence may be entered by a user at the user interface 114 of the wallstation 104 .
  • the controller 112 of the wallstation 104 Upon receipt of this input from the user interface 114 , the controller 112 of the wallstation 104 transmits a message signal containing a “reset address” command over the power wiring to all devices.
  • the device in the addressing mode receives the reset address command, the device will set itself to the unaddressed state, i.e., the device will only be responsive to messages transmitted with the broadcast system address 0 while in the addressing mode.
  • the address assignment algorithm then proceeds as if all devices in the system 100 do not have a system address.
  • the words “device” and “unit” have been used to describe the elements of the systems for control of lights and fan motors of the present invention, it should be noted that each “device” and “unit” described herein need not be fully contained in a single enclosure or structure.
  • the light/motor control unit 105 may comprise a controller in a wall-mounted device and fan motor control circuit in a separate location, e.g., in the canopy of the fan motor and the lamp.
  • one “device” may be contained in another “device”.

Abstract

A system for independent control of electric motors and electric lights includes a plurality of two-wire wallstations coupled in series via power wires between an alternating-current (AC) source and a light/motor control unit. The light/motor control unit is preferably located in the same enclosure as an electric motor and an electric light and has two outputs for independent control of the motor and the light. The light/motor control unit and the wallstations each include a controller and a communication circuit that is coupled to the power wiring via a communication transformer and communicate with each other using a loop current carrier technique. The light/motor control unit and the wallstations utilize pseudo random orthogonal codes and a median filter in the communication process.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • The present application is a divisional under 37 C.F.R. §1.53(b) of prior application Ser. No. 11/447,431 filed Jun. 6, 2006, by James P. Steiner et al. entitled SYSTEM FOR CONTROL OF LIGHTS AND MOTORS, which application claims the benefit and priority of U.S. Provisional Application Ser. No. 60/687,689, filed Jun. 6, 2005, entitled SYSTEM FOR CONTROL OF LIGHT AND MOTORS, the entire disclosure of which is hereby incorporated by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an apparatus for independently controlling a motor, such as, for example, a fan motor, together with a lighting source contained within the same enclosure as the motor and coupled to the motor. The invention also relates to a communication scheme for communicating over a power line to control the load, such as, for example, a fan motor and a light.
  • 2. Description of the Related Art
  • It is often desirable to include a lamp and a fan motor in a single enclosure. Since the lamp and the fan motor are often wired in parallel, the lamp and the fan motor are generally controlled together from a switch located remotely from the lamp and the motor. FIG. 1A shows a prior art light and fan motor control system 10. The system 10 includes a maintained switch 12 coupled between an alternating-current (AC) voltage source 14 and two loads, i.e., a fan motor 16 and a lighting load 18, in an enclosure 19. The fan motor 16 and the lighting load 18 are connected in parallel such that when switch 12 is closed, the fan motor 16 and the lighting load 18 will both be on, and when the switch 12 is open, the fan motor 16 and the lighting load 18 will both be off.
  • There are also various schemes for independent control of a fan motor as well as a lighting load from a remote location such as a wallstation. FIG. 1B shows a prior art light and fan motor control system 20, having a dual light and fan speed control 22 coupled to the AC voltage source 14. The dual light and fan speed control 22 has two outputs: the first coupled to the fan motor 16 and the second coupled to the lighting load 18, to allow for independent control of the loads. Further, the dual light and fan speed control 22 includes a fan speed circuit for adjusting the speed at which the fan motor 16 turns and a dimmer circuit for changing the intensity of the lighting load 18. The dual light and fan speed control 22 is often mounted in a standard electrical wallbox and includes a user interface to allow a user to separately control the lighting load and the fan motor.
  • However, the dual light and fan speed control 22 requires two separate wires to be connected between the lamp and the fan motor. If these two connections are not provided between the wallbox and the enclosure containing the lamp and the fan motor, independent control of the lighting load 18 and the fan motor 16 will not be possible. Further, in the control system 20 of FIG. 1B, it is only possible to have one dual light and fan speed control 22, and thus, only one user interface to allow for adjustment of the intensity of the lighting load 18 and the speed of the fan motor 16. Control of the fan motor 16 and lighting load 18 from more than one location is not possible in this system.
  • FIG. 1C shows a prior art power-line carrier (PLC) control system 30. Power-line carrier control systems use the power system wiring to transmit control signals at high frequencies (i.e., much greater than the line frequency of 50 Hz or 60 Hz). All devices of the PLC system 30 are coupled across an AC power source 32 (from hot to neutral) to receive both power and communications from the same wiring. The system 30 includes a PLC fan motor controller 34 coupled to a fan motor 36, a PLC light controller 38 coupled to a lighting load 40, and a remote control keypad 42. The remote control keypad 42 is operable to transmit a message across the power line to the PLC fan motor controller 34 and the PLC light controller 38 to control the respective loads. One example of a communication protocol for home automation using power-line carrier technology is the industry standard X10. The X10 protocol uses a voltage carrier technique to transmit messages between devices connected to the power system. Through the voltage carrier technology, the messages are transmitted on voltages signals referenced either between the hot and neutral connections of the AC power source 32 or between the hot connection of the AC power source and an earth ground connection. The devices in an X10 system communicate using house addresses and unit addresses.
  • However, existing power-line carrier systems have some limitations. For example, all devices in a PLC system require a neutral connection. Also, since the X10 protocol utilizes voltage carrier technology, communication messages are transmitted throughout the power system and it is difficult to isolate the communication signals from other devices connected to the power system. Finally, the X10 protocol is not a “reliable” communication scheme since no acknowledgements are sent to a transmitting device when a receiving device has received a valid message.
  • Thus, it is desirable to provide a reliable means to independently control from a remote location a fan motor and a lighting load that are located in the same enclosure. Since a consumer may wish to locate the fan motor and the attached lamp in a position previously occupied by only a lamp controlled by a standard single-pole single-throw (SPST) wall switch, it is desirable to be able to control a fan motor as well as an attached lamp independently, using a two-wire control device. A two-wire device is a control device that has only two electrical connections, i.e., one for the AC source voltage and one for the fan/lamp, and does not have a neutral line connection. As shown in FIG. 1A, this kind of system typically only includes the switch 12 in series electrical connection between the AC source 14 and the loads, and no neutral connection is available in the electrical wallbox where the switch is housed. Since it is desirable to control the fan motor 16 and the lighting load 18 independently, using the existing building wiring, it is necessary to develop a means to allow independent control over the existing building wiring consisting of a single wire connecting the wall control, i.e., the dual light and fan speed control 22, to the enclosure of the fan motor 16 and the lighting load 18.
  • Prior art systems to accomplish this are known which provide a coding/communication scheme to independently control the fan motor and the lamp. However, many of these systems are unreliable, provide erratic, noisy operation, and require a neutral connection. It is desirable to provide a simple, reliable communication scheme for independently controlling the fan motor and lamp without a neutral connection.
  • SUMMARY OF THE INVENTION
  • The invention provides a system for communicating between a first control circuit portion and a remote second control circuit portion over electrical power wiring of a building. The first control circuit portion has a user actuable control for remotely controlling an electrical load controlled by the second control circuit portion. The system comprises a transmitter in the first circuit portion and a receiver in the second circuit portion. The transmitter in the first circuit portion is operable to transmit control information over the power wiring to the second circuit portion, while the receiver in the second circuit portion is operable to receive the control information transmitted over the power wiring by the first circuit portion for controlling the load. The first and second circuit portions each include a current responsive element coupled to the building power wiring for establishing a current signal loop in the building power wiring between the first and second control circuit portions for the exchange of the control information. The electrical load preferably comprises an electrical motor.
  • The invention further provides a two-wire load control system for controlling the power delivered to an electrical load from an AC voltage source. The two-wire load control system comprises a load control device and a two-wire remote control device. The load control device is coupled to the electrical load for control of the load. The load control device comprises a first current responsive element operatively coupled in series electrical connection between the AC source and the electrical load and a first communication circuit coupled to the first current responsive element for receiving message signals. The two-wire remote control device comprises a second current responsive element operatively coupled in series electrical connection between the AC source and the electrical load and a second communication circuit coupled to the second current responsive element for transmitting the message signals. The first current responsive element and the second current responsive element are operable to conduct a communication loop current. The first communication circuit is operable to transmit and the second communication circuit operable to receive the message signals via the communication loop current. Preferably, the first and second communication circuits are operable to both transmit and receive the message signals via the communication loop current.
  • According to another embodiment of the present invention, a two-wire load control system for controlling the power delivered to a plurality of electrical loads from an AC voltage source comprises a load control device, a two-wire remote control device, and a capacitor coupled in shunt electrical connection with the plurality of loads. The plurality of loads and the AC voltage source are coupled together at a common neutral connection. The load control device is coupled to the plurality of loads and is operable to individually control each of the plurality of loads. The load control device comprises a first current responsive element coupled in series electrical connection between the AC source and the plurality of loads and a first communication circuit coupled to the first current responsive element for receipt of a message signal for controlling the plurality of loads. The two-wire remote control device comprises a second current responsive element coupled in series electrical connection between the AC source and the plurality of loads and a second communication circuit coupled to the second current responsive element for transmission of the message signal for controlling the plurality of loads. The capacitor, the AC source, the first current responsive element, and the second current responsive element are operable to conduct a communication loop current. The second communication circuit is operable to transmit communication signals to the first communication circuit via the communication loop current.
  • The invention furthermore comprises a method for communicating between a first control circuit portion having a first current responsive element and a remote second control circuit portion having a second current responsive element over electrical power wiring of a building to control the operation of an electric motor, the first control circuit portion having a user actuable control for remotely controlling the electric motor controlled by the second control circuit portion, the method comprising the steps of: (1) coupling the first current responsive element to the electrical power wiring; (2) coupling the second current responsive element to the electrical power wiring; (3) establishing a current signal loop in the electrical power wiring between the first and second current responsive elements; (4) transmitting control information over the electrical power wiring from the first control circuit portion to the second control circuit portion; and (5) receiving the control information at the second circuit portion for controlling the electric motor.
  • In addition, the present invention provides a method for communicating a digital message from a two-wire remote control device to a load control device for independently controlling the power delivered to a plurality of loads from an AC voltage source. The method comprises the steps of: (1) coupling the two-wire remote control device in series electrical connection between the AC source and the load control device; (2) coupling a capacitor in shunt electrical connection across the plurality of loads; (3) conducting a communication loop current through the AC source, the two-wire remote control device, the load control device, and the capacitor; and (4) transmitting the digital message from the two-wire remote control device to the load control device via the current loop.
  • The present invention further provides a method for assigning a system address to a control device in a load control system for controlling the amount of power delivered to an electrical load from an AC voltage source. The method comprising the steps of: (1) coupling the control device in series electrical connection between the electrical load and the AC voltage source via a power wiring, such that a load current is operable to flow on the power wiring from the AC voltage source to the electrical load through the control device; (2) applying power to the control device; (3) subsequently transmitting an address initiation request via the power wiring; and (4) receiving the system address via the power wiring.
  • According to another aspect of the present invention, a method of filtering a received message signal having a sequence of samples comprises the steps of: (1) examining a set of N sequential samples of the received message signal; (2) determining the median of the N sequential samples; (3) providing the median as an output sample; and (4) repeating the steps of examining a set of N sequential samples, determining the median, and providing the median.
  • Further, the present invention provides a method of communicating a message signal from a first control device to a second control device. The message signal comprises a sequence of samples. The method comprises the steps of: (1) transmitting the message signal from the first control device; (2) receiving the message signal at the second control device; (3) examining a set of N sequential samples of the received message signal; (4) determining the median of the N sequential samples; (5) providing the median as an output sample; and (6) repeating the steps of examining a set of N sequential samples, determining the median, and providing the median.
  • Other features and advantages of the present invention will become apparent from the following description of the invention, which refers to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will now be describe in greater detail in the following detailed description with reference to the drawings in which:
  • FIG. 1A is a simplified block diagram of a prior art electric light and electric motor control system;
  • FIG. 1B is a simplified block diagram of a prior art electric light and electric motor control system including a dual light and motor speed control;
  • FIG. 1C is a simplified block diagram of a prior art power-line carrier control system for controlling an electric motor and an electric light;
  • FIG. 2 is a simplified block diagram of a system for control of electric lights and electric motors according to the present invention;
  • FIG. 3 is a simplified block diagram of a wallstation of the system of FIG. 2;
  • FIG. 4 is a simplified block diagram of a light/motor control of the system of FIG. 2;
  • FIG. 5A shows a first example of the system of FIG. 2 demonstrating the current loop used for communication between the wallstations and the light/motor control unit;
  • FIG. 5B shows a second example of a system for independent control of a lighting load and a motor load to demonstrate an optimal communication loop current;
  • FIG. 5C is a simplified block diagram of a system for control of a plurality of loads according to another embodiment of the present invention;
  • FIG. 6A shows example waveforms of the system of FIG. 2;
  • FIG. 6B shows the parts of a transmitted message of the system of FIG. 2;
  • FIG. 7 shows a simplified block diagram of a communication circuit of the system of FIG. 2;
  • FIG. 8 shows a simplified flowchart of the process of a receiver routine implemented in a controller of the system of FIG. 2;
  • FIGS. 9A, 9B, and 9C show waveforms that demonstrate the operation of a median filter of the receiver routine of FIG. 8;
  • FIG. 9D is a simplified flowchart of the process of the median filter of the receiver routine of FIG. 8; and
  • FIGS. 10A and 10B show a simplified flowchart of an automatic addressing algorithm of the system of FIG. 2.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • The foregoing summary, as well as the following detailed description of the preferred embodiments, is better understood when read in conjunction with the appended drawings. For the purposes of illustrating the invention, there is shown in the drawings an embodiment that is presently preferred, in which like numerals represent similar parts throughout the several views of the drawings, it being understood, however, that the invention is not limited to the specific methods and instrumentalities disclosed.
  • As is well known, a lamp and a fan motor are typically packaged in the same housing. It is desirable to be able to control the lamp and fan motor independently from the same remote location, by, for example, a wallstation. However, the two circuits to control the lamp and the fan motor are typically different. The lamp may be controlled by a series switch, typically a phase-angle dimmer. The fan motor may be controlled by a shunt switch in parallel with the fan motor, such as is disclosed in commonly-assigned co-pending U.S. patent application, Attorney Docket No. 04-11701-P2, filed on Jun. 6, 2006, entitled METHOD AND APPARATUS FOR QUIET VARIABLE MOTOR SPEED CONTROL, the entire disclosure of which is hereby incorporated by reference.
  • A block diagram of a system 100 for independent control of lights and fan motors according to the present invention is shown in FIG. 2. The system includes a plurality of wallstations 104 that are connected in series between an AC voltage source 102 and a light/motor control unit 105 over the electrical power wiring of a building to form a power loop. The light/motor control unit 105 is operable to control both the speed of a fan motor 106 and the intensity of a lighting load 108. The fan motor 106 and the lighting load 108 are preferably both mounted in a single enclosure 109 (sometimes referred to as the “canopy”).
  • In the system 100 of FIG. 2, it is desirable to provide substantially the full AC voltage from the AC voltage source 102 to the light/motor control unit 105 for operation of the fan motor 106 and the lighting load 108. Since the wallstations 104 are in series electrical connection, it is desirable to minimize the voltage drop across each wallstation 104. Thus, it is not desirable to develop a significant voltage across each of the wallstations 104 in order to charge an internal power supply to power the low-voltage circuitry of the wallstation.
  • A simplified block diagram of the wallstation 104 is shown in FIG. 3. A power supply 110 is provided in series between a first electrical terminal H1 and a second electrical terminal H2. The power supply 110 provides a DC voltage, VCC, to power a controller 112 and a communication circuit 116. The operation of the power supply 110 is described in greater detail in commonly-assigned co-pending U.S. patent application, Attorney Docket No. 05-12142-P2, filed Jun. 6, 2006, entitled POWER SUPPLY FOR A LOAD CONTROL DEVICE, the entire disclosure of which is hereby incorporated by reference.
  • The controller 112 is preferably implemented as a microcontroller, but may be any suitable processing device, such as a programmable logic device (PLD), a microprocessor, or an application specific integrated circuit (ASIC). A user interface 114 includes a plurality of buttons for receiving inputs from a user and a plurality of light emitting diodes (LEDs) for providing visual feedback to the user. The controller 112 accepts control inputs from the buttons of the user interface 114 and controls the operation of the LEDs. The operation of the LEDs is described in greater detail in commonly-assigned co-pending U.S. patent application Ser. No. 11/191,780, filed Jul. 28, 2005, entitled APPARATUS AND METHOD FOR DISPLAYING OPERATING CHARACTERISTICS ON STATUS INDICATORS, the entire disclosure of which is hereby incorporated by reference.
  • The controller 112 is coupled to the communication circuit 116 for transmitting and receiving control information to and from the light/motor control unit 105 and the other wallstations 104 of system 100. The communication circuit 116 transmits and receives the control information via a communication transformer 118 over the electrical power wiring coupled from the AC voltage source 102 to the wallstations 104 and the light/motor control unit 105. The communication transformer 118 has a primary winding 118A that is connected in series electrical connection with the terminals H1, H2 of the wallstation 104 and a secondary winding 118B that is coupled to the communication circuit 116.
  • The wallstation 104 further includes an air-gap switch 117 in series with the power supply 110. When the air-gap switch 117 is opened, power is removed from all devices of the system 100 since the devices are coupled in a power loop. To provide safety when servicing the loads, i.e., changing a light bulb canopy, the wallstations 104 are preferably coupled to the hot line of the electrical power wiring such that the hot line is not provided in the canopy when the air-gap switch 117 is open. However, the wallstations 104 may also be coupled to the neutral line.
  • A simplified block diagram of the light/motor control unit 105 is shown in FIG. 4. The light/motor control unit 105 includes a HOT terminal H, a neutral terminal N, a dimmed hot terminal DH connected to the lighting load 108, and a fan motor hot terminal MH connected to the fan motor 106. The light/motor control unit 105 includes a dimmer circuit 150 for controlling the intensity of the lighting load 108 and a fan motor control circuit 152 for controlling the rotational speed of the fan motor 106. The dimmer circuit 150 utilizes a semiconductor switch (not shown) to control the amount of current conducted to the lighting load 108 and thus the intensity of the lighting load. The conduction time of the semiconductor switch is controlled by a controller 154 using standard phase-control dimming techniques as is well known in the art.
  • A motor voltage detect circuit 156 determines the zero-crossings of the motor voltage across the fan motor 106 and provides a control signal to the controller 154, which operates the fan motor control circuit 152 accordingly. A zero-crossing of the motor voltage is defined as the time at which the motor voltage transitions from positive to negative polarity, or from negative to positive polarity, at the beginning of each half-cycle of the motor voltage. The operation of the fan motor control circuit 152 with the motor voltage detect circuit 156 is described in greater detail in previously-mentioned U.S. patent application, Attorney Docket No. 04-11701-P2.
  • The controller 154 is coupled to a communication circuit 158, which transmits and receives control information over the electrical power wiring via a communication transformer 160. The communication transformer 160 is a current transformer that has a primary winding 160A that is connected in series with a hot terminal H of the motor/light control unit 105 and a secondary winding 160B that is coupled to the communication circuit 158.
  • A power supply 162 is coupled to the load-side of the communication transformer 160 and generates a DC voltage VCC to power the controller 154 and the other low-voltage circuitry. Two diodes 164A, 164B are provided such that the power supply is operable to charge only during the positive half cycles. The power supply 162 preferably comprises a capacitor (not shown) having a capacitance of approximately 680 μF. A capacitor 165 is coupled between the cathode of the diode 164A and the neutral terminal N and preferably has a capacitance of 2.2 μF.
  • A capacitor 166 is connected in parallel with the power supply 162 between the load-side of the communication transformer 160 and the cathode of the diode 164A. The capacitor 166 completes a communication loop with the wallstations 104 and isolates the communication transformer 160 from the high impedance of the fan motor 106, particularly when the fan motor 106 is off. The capacitor 166 is sized to pass the loop current carrier signal modulated with the control information, while blocking the 50/60 cycle power of the AC voltage source 102. A preferred value for the capacitor 161 is 10 nF.
  • A zero-cross detect circuit 168 is coupled between the load-side of the communication transformer 160 and the neutral terminal N for providing a signal representative of the zero-crossings of the AC voltage source 102 to the controller 154. A zero-crossing of the AC voltage is defined as the time at which the AC voltage transitions from positive to negative polarity, or from negative to positive polarity, at the beginning of each half-cycle of the AC voltage source 102. The controller 154 determines when to turn on or off the semiconductor switch of the dimmer circuit 150 each half-cycle by timing from each zero-crossing of the AC supply voltage.
  • The control system 100 preferably uses a current-carrier technique to communicate between the wallstations 104 and the light/motor control unit 105. FIG. 5A shows a first example of the system 100 for independent control of a lighting load 108 and a fan motor 106 demonstrating a communication loop current 172 used for communication between the wallstations 104 and the light/motor control unit 105. The load currents for powering the lighting load 108 and the fan motor 106 flow through the primary winding 118A of the communication transformer 118 of the wallstation 104 and the primary winding 160A of the communication transformer 160 of the light/motor control unit 105. Since the AC voltage source 102, the wallstation 104, and the light/motor control unit 105 are all located in different locations, a portion of building electrical power wiring 170 exists between the system components. The communication loop current 172 flows through the AC voltage source 102, the communication transformer 118 of the wallstation 104, the communication transformer 160, and the capacitors 165, 166 of the light/motor control unit 105. The capacitor 161 completes the communication loop and isolates the communication loop from the fan motor 106. The isolation is needed because the fan motor provides a high impedance when the fan motor 106 is off and the inductive nature of the fan motor attenuates the communication loop current 172.
  • After the controller 112 has received user-actuated control information from the actuator buttons of the user interface 114 (FIG. 3), the communication circuit 116 transmits a communication message from the controller via the communication transformer 118, which couples the control information onto the hot line. Since the same current flows through the primary winding 118A of the transformer 118 in the wallstation and the primary winding 160A of the transformer 160 in the light/motor control unit 105, the communication loop current 172 induces an output message on the secondary 160B of transformer 160. The output message is received by the communication circuit 158 of the light/motor control unit 105 and is then provided to the controller 154 to control the fan motor control circuit 152 and the dimmer circuit 150.
  • FIG. 5B shows an example of a second system 180 for independent control of a lighting load 108 and a fan motor 106 demonstrating an optimal communication loop current 182 that does not flow through the AC voltage source 102, the fan motor 106, or the lighting load 108. Note that in this configuration, the hot side of the AC voltage source 102 is provided at the canopy, i.e., at the mounting enclosure 109 (FIG. 2) of the fan motor 106 and the lighting load 108. The system 180 includes a light/motor control unit 184 that comprises an additional communication terminal C and a capacitor 186 coupled between the terminal C and the neutral terminal N. In the layout of system 180, the terminal C is connected to the hot side of the AC voltage source 102 to complete the communication loop through the capacitor 186 such that the communication loop current 182 does not flow through the AC voltage source 102. The capacitor 186 is provided to terminate the communication loop and thereby prevent data being transferred between the wallstation 104 and the light/motor control unit 184 from entering the power system. The capacitor 186 is sized to pass the loop current carrier signal containing the control information, while blocking the 50/60 cycle power of the AC voltage source. A preferred value for the capacitor 186 is 10 nF.
  • FIG. 5C is a simplified block diagram of a system 189 for control of a plurality of loads according to another embodiment of the present invention. Three light/motor control units 105 are coupled in parallel electrical connection. Each of the light/motor control units 105 is coupled to a fan motor (not shown) and/or a lighting load (not shown). A communication loop current 189 flows through the wallstations 104 and communication currents 189A, 189B, 189C flow through each of the light/motor control units 105. The communication currents 189A, 189B, 189C each have a magnitude equal to approximately one-third of the magnitude of the communication current 189. Each of the wallstations 104 is operable to control all of the fan motors in unison and all of the lighting loads in unison. Power is removed from the all of the wallstations 104 and the light/motor control units 105 on the loop if the airgap switch 117 of any of the wallstations 104 is opened.
  • The message information may be modulated onto the hot line by any suitable modulation means, for example, amplitude modulation (AM), frequency modulation (FM), frequency shift keying (FSK), or binary phase shift keying (BPSK). FIG. 6A shows examples of the transmitted and received signals of the control system 100. A transmitted message signal 190 is provided, for example, by the controller 112 to the communication circuit 116 of the wallstation 104. The transmitted message signal 190 is modulated onto a carrier, e.g., frequency-modulated onto the carrier, by the communication circuit 116 to produce a modulated signal 191. During transmission, the modulated signal 191 is susceptible to noise and thus a noisy modulated signal 192 (which includes some noise 192A) will be received, for example, by the communication circuit 158 of the light/motor control unit 105. Accordingly, the communication circuit 158 will provide a noisy demodulated message 193 to the controller 154 of the light/motor control unit 105. In order to avoid generating a noisy demodulated message 193 and to obtain a desired received message 194, a suitable means for modulation, demodulation, and filtering is provided according to the invention (as will be described in greater detail below).
  • According to FIG. 6B, a transmitted message signal 190 has three components: a preamble 196, a synchronization code 197, and the message code 198. The preamble 196 is a code that is k bits in length and is used to coordinate the demodulation and the decoding of a received message. The synchronization code 197 is an orthogonal pseudo random code with low cross-correlation properties that is n bits in length and that all devices in the loop of the system 100 try to detect in real time. The synchronization code also serves the purpose of an address. The presence of this code indicates that a message is contained in the message code 198 that follows. Finally, the message code 198 is a forward error correction code that is m bits in length that is received following the synchronization code. This bit stream is not decoded in real time but is passed to a message parser.
  • FIG. 7 shows a simplified block diagram of the communication circuit 158 of the motor/light control unit 105. The communication circuit 158 is coupled to the transformer 160, which operates along with a capacitor 202 as a tuned filter to pass substantially only signals at substantially the transmission frequency of the modulated signals 192, i.e., between 200 kHz and 300 kHz. The voltage across the capacitor 202 is provided to a voltage clamp 204 to protect against high voltage transients. A demodulator 206 receives the modulated message signal 192 and generates the demodulated received message signal 193 using standard demodulation techniques that are well-known in the art. The demodulated message signal 193 is provided to a receiver routine 208 of the controller 154 that will be described in more detail with reference to FIG. 8.
  • FIG. 7 also shows the transmitter portion of the communication circuit 158. The controller 154 implements a code generator 210 that produces the synchronization code 197 and the message code 198 of the transmitted message 190. Alternatively, the controller 154 could use a look-up table to generate the synchronization code 197 and the message code 198 based on the desired information to be transmitted for controlling the fan motor 106 and the lighting load 108.
  • In a preferred embodiment, the coded signal is thereafter encoded at a Manchester encoder 212. With Manchester encoding, a bit of data is signified by a transition from a high state to a low state, or vice versa, as is well known in the art. Although Manchester encoding is shown, other digital encoding schemes could be employed. The encoded signal is then modulated on a carrier signal by a modulator 214 using, for example, AM, FM, or BPSK modulation. After amplification by a power amplifier 218, the modulated signal is coupled to the tuned filter (comprising the capacitor 202 and the transformer 160) and is transmitted on to the hot line as a current signal. While the communication circuit 158 of the motor/light control unit 105 is described above and shown in FIG. 7, the communication circuit 116 of the wallstation 104 will have the same implementation.
  • FIG. 8 shows a simplified block diagram of the process of the receiver routine 208 implemented in the controller 154. The demodulated signal 193 (i.e. the input to the receiver routine 208) is first filtered by a pipelined multi-pass median filter 220. FIGS. 9A, 9B, and 9C show waveforms that demonstrate the operation of the median filter 220. FIG. 9A shows an example of an original Manchester encoded stream 250, i.e., as generated by the Manchester encoder 212 of the controller 154 before transmission.
  • The original Manchester encoded stream 250 may be corrupted by noise during transmission such that a noisy Manchester encoded stream 252 shown in FIG. 9B (having noise impulses 252A) is provided to the controller of the receiving device. The transmitted current-carrier signals are much smaller in amplitude (approximately 5 mA) in comparison to the amplitude of the current used by the lighting load 108 and the fan motor 106 (approximately 5 A). Since the semiconductor switch of the dimmer circuit 150 controls the power delivered to the lighting load 108 using phase-control dimming, large current pulses through the lighting load 108 are induced in the communication transformers 118, 160. These large current pulses corrupt the modulated signal 191 and are detected as binary impulse noise in the demodulated bit stream. This is shown in the noisy Manchester encoded stream 252 by the plurality of noise impulses 252A that are not in the original Manchester encoded stream 250.
  • Most types of interference will only cause momentary excursions across the detection threshold. The resulting signal is much like digital shot noise and statistically is similar to the “random telegrapher's waveform”. As such, it is very impulsive in nature and can be modeled to a first order as a Poisson point process.
  • The median filter 220 is used to eliminate the noise corruption to generate the filtered
  • Manchester encoded stream 254 shown in FIG. 9C. The median filter 220 is ideally suited to filtering a binary stream as shown in FIG. 9B. A median filter of order N has a sliding window of width, W samples, defined by

  • W=2N+1.  (Equation 1)
  • The median filter 220 preserves any “root signal” passing through the window. A root signal is defined as any signal that has a constant region N+1 points or greater with monotonic increasing or decreasing boundaries. By definition, root signals cannot contain any impulses or oscillations, i.e., signals with a width less than N+1. When a corrupted binary signal is passed through the median filter, the filter removes the impulses in the regions where the signal should be a binary zero or binary one.
  • FIG. 9D is a flowchart of the median filter 220 according to the present invention. The median filter 200 examines W samples of the corrupted Manchester encoded stream 252 at a time. For a 3rd order median filter, seven samples are examined since

  • W (N=3)=2N+1=7.  (Equation 2)
  • After the median filter 220 has finished processing the previous W samples, the median filter discards the Nth sample, i.e., the first of the W samples that was received by the median filter at step 260. At step 262, the median filter 220 shifts the samples up leaving the first sample of the W samples empty and available to receive a new sample. The median filter 220 receives a new input sample 264 from the corrupted Manchester encoded stream 252 and shifts the sample into the first position of the sequence of W samples at step 266.
  • Next, the median filter 200 determines the median of the W samples at step 268. According to a first embodiment of the present invention, the median filter 200 groups (i.e., orders) the ones and zeros of the W samples and determines the value of the middle sample. For example, if the present W samples are

  • 1 0 1 1 0 0 1,
  • the median filter 220 will group the zeros and the ones to form a sorted sample stream

  • 0 0 0 1 1 1 1.
  • The median for the sorted sample stream is one, since the median or middle value is one.
  • According to a second embodiment of the present invention, the median filter 220 counts the number of ones in the W samples to determine the median at step 268. For an Nth order median filter, the median is one if the count of the ones is greater than or equal to the value of N+1. Otherwise, the median is zero. Thus, for a 3rd order median filter, if there are four ones in the W samples, the median will be equal to one. Accordingly, the width W of the median filter 220 must always be an odd number, i.e., 2N+1. The median filter 220 is preferably implemented with a lookup table that counts the ones and returns a one if the count is greater than or equal to N+1 or a zero otherwise. By using the lookup table, the filtering process is able to complete in a few instruction cycles thereby making the computation on a microcontroller exceptionally fast.
  • Finally, at the step 270, the median filter 220 provides the median determined in step 268 as the output sample 272 to form the filtered Manchester encoded stream 254 (shown in FIG. 9C). The median filter 220 removes the noise impulses 252A from the corrupted Manchester encoded stream 252. As a result of the filtering, the rising and falling edges of the filtered Manchester encoded stream 254 may occur at different times than the rising and falling edges of the original Manchester encoded stream 250. Since the data is encoded in the Manchester encoded stream 250 by generating a rising edge or falling edge during a predetermined period of time, it is not critical exactly when the rising and falling edges occur in the filtered Manchester encoded stream 254 at the time of decoding. It is only important that incorrect rising and falling edges are removed from encoded stream.
  • Referring back to FIG. 8, after passing through the median filter 220 one or more times, the signal passes through a Manchester decoder 222 to produce a digital bit stream from the Manchester-encoded bit stream that is received. The decoded signal and a pseudo random orthogonal synchronization code 224 are fed to a cross correlator 226. The output of the cross correlator 226 is integrated by an integrator 228 and provided to a threshold detector 230. This processing occurs in real time with the output of the receiver routine 208 updated at the bit rate of the sequence.
  • At the cross correlator 226, the bit stream from the Manchester decoder 222 and the pseudo random orthogonal synchronization code 224 are input to an exclusive NOR (XNOR) logic gate. The number of ones in the output of the XNOR gate is counted to perform the integration at the integrator 228. A lookup table is utilized to count the ones during the integration. Since the codes are orthogonal, the correlation will be small unless the codes match. The match does not have to be exact, merely close, for example a 75% match.
  • If the synchronization code is detected at step 232, the next M decoded bits (i.e., the message code 198) from the Manchester decoder 222 are saved at step 234. The forward error correction message codes 236 are then compared to the M decoded bits to find the best match, which determines the command at step 238 and the command is executed at step 240. This step is known as maximum likelihood decoding and is well known in the art. At step 232, if the synchronization code is not detected, the data is discarded and the process exits.
  • After receiving a decoded message, the controller will transmit an acknowledgement (ACK) to the device that transmitted the received message. Transmitting the ACK allows for a reliable communication scheme.
  • The devices of the system 100 for independent control of lights and fan motors all communicate using a system address. In order to establish a system address to use, the wallstations 104 and the light/motor control unit 105 execute an automatic addressing algorithm upon power up. FIGS. 10A and 10B show a simplified flowchart of the automatic addressing algorithm.
  • Since the devices of system 100 are connected in a loop topology, it is possible to cause all devices to power up at one time by toggling (i.e., opening, then closing) the air-gap switch 117 of one of the wallstations 104. Upon power-up at step 300, the devices in the system 100 will enter an addressing mode at step 302, meaning that the device is eligible to participate in the addressing algorithm and will communicate with other devices of the system using a broadcast system address 0. In addressing mode, devices use a random back-off time when transmitting to minimize the probability of a collision since there could be many unaddressed devices in the system. After a suitable timeout period, e.g., 20 seconds, the devices leave the addressing mode.
  • First, the present device determines if all of the devices in the system have a system address at step 304. Specifically, upon power-up, all devices that do not have a system address will transmit an address initiation request. At step 304, the device waits for a predetermined amount of time to determine if any address initiation requests are transmitted. If the device determines that all devices in the system have the system address at step 304, the device transmits the system address to all devices at step 306.
  • If all devices in the system do not have a system address at step 304, the present device transmits a query message to each device at step 308. The devices of the system will respond to the query message by transmitting the system address and their device type,=(i.e., a wallstation 104 or a light/motor control unit 105). At step 310, the present device determines if the system 100 is a “valid” system. A valid system includes at least one wallstation 104 and at least one light/motor control unit 105 and does not have more than one system address, i.e., no two devices of the system have differing system addresses. If the system is a valid system at step 310, the present device then determines if any of the devices of the system 100 have a system address at step 312. If at least one device has a system address, the present device saves the received address as the system address at step 314 and transmits the received address at step 316.
  • If the no devices have a system address at step 312, the present device attempts to select a new system address. At step 318, the device chooses a random address M, i.e., a random selection from the allowable address choices, as the system address candidate. For example, there may be 15 possible system addresses, i.e., 1-15. Since there may be neighboring systems already having address M assigned, the device transmits a “ping”, i.e., a query message, using address M at step 320 to verify the availability of the address. If any devices respond to the ping, i.e., the address M is already assigned, at step 322, the device begins to step through all of the available system addresses. If all available system addresses have not been attempted at step 324, the device selects the next available address (e.g., by incrementing the system address candidate) at step 326, and transmits another ping at step 320. Otherwise, the process simply exits. Once a suitable address M has been verified as being available, i.e., no devices respond at step 322, the present device sets the system address candidate as the system address at step 328, and transmits address M on the broadcast channel 0 at step 316. Accordingly, all unaddressed devices in addressing mode then save address M as the system address. The process then exits.
  • If the system 100 is not a valid system at step 310, then all system devices that presently have the system address exit the addressing mode at step 330. If the addressing assignment has only been attempted once at step 332, then the device transmits another query message at step 308. Otherwise, the process simply exits.
  • As a recovery method, an address reset is included that re-addresses all devices in the system 100. After power-up, i.e., when all the devices in the system are in addressing mode, a special key sequence may be entered by a user at the user interface 114 of the wallstation 104. Upon receipt of this input from the user interface 114, the controller 112 of the wallstation 104 transmits a message signal containing a “reset address” command over the power wiring to all devices. When a device in the addressing mode receives the reset address command, the device will set itself to the unaddressed state, i.e., the device will only be responsive to messages transmitted with the broadcast system address 0 while in the addressing mode. The address assignment algorithm then proceeds as if all devices in the system 100 do not have a system address.
  • Although the words “device” and “unit” have been used to describe the elements of the systems for control of lights and fan motors of the present invention, it should be noted that each “device” and “unit” described herein need not be fully contained in a single enclosure or structure. For example, the light/motor control unit 105 may comprise a controller in a wall-mounted device and fan motor control circuit in a separate location, e.g., in the canopy of the fan motor and the lamp. Also, one “device” may be contained in another “device”.
  • Although the present invention has been described in relation to particular embodiments thereof, many other variations and modifications and other uses will become apparent to those skilled in the art. Therefore, the present invention should be limited not by the specific disclosure herein, but only by the appended claims.

Claims (19)

What is claimed is:
1. A method for assigning a system address to a first control device in a load control system for controlling the amount of power delivered to an electrical load from an AC voltage source via a power wiring, the method comprising the steps of:
coupling the first control device in series electrical connection between the electrical load and the AC voltage source via the power wiring, such that a load current flows on the power wiring from the AC voltage source to the electrical load through the first control device;
coupling a second control device in series electrical connection between the electrical load and the AC voltage source via the power wiring, the second load control device in series with the first control device such that the load current flows on the power wiring from the AC voltage source to the electrical load through the second control device;
applying power to the first and second control devices;
subsequently transmitting an address initiation request via the power wiring; and
receiving the system address via the power wiring.
2. The method of claim 1, further comprising the steps of:
choosing a random address to be the system address;
subsequently storing the random address as the system address in a memory; and
transmitting the system address via the power wiring.
3. The method of claim 2, further comprising the steps of:
transmitting a query message via the power wiring using the random address; and
determining whether a second control device responds to the query message.
4. The method of claim 1, further comprising the step of:
storing the system address in a memory in response to the step of receiving the system address.
5. The method of claim 1, further comprising the steps of:
determining whether the control device has the system address stored in a memory; and
subsequently transmitting the system address via the power wiring.
6. The method of claim 1, further comprising the step of:
entering an addressing mode in response to the step of applying power to the control device.
7. The method of claim 6, further comprising the step of:
exiting the addressing mode after a predetermined time after the step of entering the addressing mode.
8. A load control system for controlling the amount of power delivered to an electrical load from an AC voltage source via a power wiring, the system comprising:
a first control device coupled in series electrical connection between the AC voltage source and the electrical load via the power wiring, such that a load current flows on the power wiring from the AC voltage source to the electrical load through the first control device; and
a second control device coupled in series electrical connection with the first control device between the AC voltage source and the electrical load via the power wiring, such that the load current flows on the power wiring from the AC voltage source to the electrical load through the second control device;
wherein the second control device is operable to transmit an address initiation request via the power wiring in response to power being applied to the second control device, and to subsequently receive a system address via the power wiring.
9. The system of claim 8, wherein the first control device is operable to transmit the system address to the second control device in response to receiving the address initiation request.
10. The system of claim 9, wherein the first control device is operable to choose a random address to be the system address, store the random address as the system address in a memory, and transmit the system address to the second control device via the power wiring.
11. The system of claim 10, wherein the first control device is operable to transmit a query message via the power wiring using the random address, and determine whether the second control device responds to the query message.
12. The method of claim 9, wherein the second control device is operable to store the system address in a memory in response to receiving the system address.
13. The method of claim 9, wherein the second control device is operable to determine if the second control device has the system address stored in a memory, and subsequently transmit the system address via the power wiring.
14. The system of claim 8, wherein the first and second control devices each include a current responsive element coupled to the power wiring for establishing a current signal loop in the power wiring between the first and second control circuit portions for the exchange of control information, the current responsive elements of the first and second circuit portions coupled in series electrical connection with the AC voltage source and with each other and further coupled so that the load current from the AC voltage source for powering the load is conducted through the current responsive elements.
15. The system of claim 14, wherein said first control device is operable to transmit the control information over the power wiring to the second control device, and the second control device is operable to control the load in response to the control information.
16. The system of claim 15, wherein said first control device comprises a user actuable control for remotely controlling the electrical load.
17. The system of claim 15, wherein said second control device comprises a capacitor coupled in parallel with the electrical load, such that the capacitor, the AC source, the first current responsive element, and the second current responsive element establish the current signal loop in the power wiring for exchange of the control information.
18. The system of claim 15, wherein the electrical load comprises a motor load.
19. The system of claim 14, wherein said current responsive elements each comprise a current transformer having a winding coupled to the building power wiring for establishing the current signal loop in the building power wiring between the first and second circuit portions for the exchange of the control information.
US13/270,777 2005-06-06 2011-10-11 Method of assigning a system address to control devices of a load control system Abandoned US20120068824A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/270,777 US20120068824A1 (en) 2005-06-06 2011-10-11 Method of assigning a system address to control devices of a load control system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US68768905P 2005-06-06 2005-06-06
US11/447,431 US8068014B2 (en) 2005-06-06 2006-06-06 System for control of lights and motors
US13/270,777 US20120068824A1 (en) 2005-06-06 2011-10-11 Method of assigning a system address to control devices of a load control system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/447,431 Division US8068014B2 (en) 2005-06-06 2006-06-06 System for control of lights and motors

Publications (1)

Publication Number Publication Date
US20120068824A1 true US20120068824A1 (en) 2012-03-22

Family

ID=37067437

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/447,431 Active 2030-05-18 US8068014B2 (en) 2005-06-06 2006-06-06 System for control of lights and motors
US11/644,652 Abandoned US20070110192A1 (en) 2005-06-06 2006-12-22 Method of communicating between control devices of a load control system
US13/270,704 Active US8471687B2 (en) 2005-06-06 2011-10-11 Method and apparatus for communicating message signals in a load control system
US13/270,777 Abandoned US20120068824A1 (en) 2005-06-06 2011-10-11 Method of assigning a system address to control devices of a load control system

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/447,431 Active 2030-05-18 US8068014B2 (en) 2005-06-06 2006-06-06 System for control of lights and motors
US11/644,652 Abandoned US20070110192A1 (en) 2005-06-06 2006-12-22 Method of communicating between control devices of a load control system
US13/270,704 Active US8471687B2 (en) 2005-06-06 2011-10-11 Method and apparatus for communicating message signals in a load control system

Country Status (8)

Country Link
US (4) US8068014B2 (en)
EP (1) EP1889377B1 (en)
JP (1) JP2009512233A (en)
CN (1) CN101569109B (en)
BR (1) BRPI0613236A2 (en)
CA (1) CA2611576C (en)
MX (1) MX2007015379A (en)
WO (1) WO2006133152A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9337943B2 (en) 2011-12-28 2016-05-10 Lutron Electronics Co., Inc. Load control system having a broadcast controller with a diverse wireless communication system
US10041292B2 (en) 2011-03-11 2018-08-07 Lutron Electronics Co., Inc. Low-power radio-frequency receiver
WO2019084744A1 (en) * 2017-10-31 2019-05-09 骆武宁 Method for generating low-frequency power carrier control signal

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7683777B2 (en) * 2004-11-17 2010-03-23 Arkados Inc Method and system for audio distribution in installations where the use of existing wiring is preferred
US7312695B2 (en) * 2005-06-06 2007-12-25 Lutron Electronics Co., Inc. Apparatus and method for displaying operating characteristics on status indicators
US7541697B2 (en) * 2005-10-14 2009-06-02 The Boeing Company Systems and methods for lighting control in flight deck devices
US7837344B2 (en) * 2006-03-17 2010-11-23 Lutron Electronics Co., Inc. Traditional-opening dimmer switch having a multi-functional button
US7872423B2 (en) 2008-02-19 2011-01-18 Lutron Electronics Co., Inc. Smart load control device having a rotary actuator
DE102006049507B4 (en) * 2006-10-17 2016-05-25 Sew-Eurodrive Gmbh & Co Kg Plant and method for operating a plant
US8049599B2 (en) * 2006-12-29 2011-11-01 Marvell World Trade Ltd. Power control device
US7872429B2 (en) * 2007-04-23 2011-01-18 Lutron Electronics Co., Inc. Multiple location load control system
WO2009027962A2 (en) * 2007-09-02 2009-03-05 Orziv - Design And Development Remote controlled electrical switch retrofit system
US8442769B2 (en) * 2007-11-12 2013-05-14 Schlumberger Technology Corporation Method of determining and utilizing high fidelity wellbore trajectory
US8067926B2 (en) 2007-12-21 2011-11-29 Lutron Electronics Co., Inc. Power supply for a load control device
EP2279567A1 (en) * 2008-04-24 2011-02-02 Siemens Aktiengesellschaft Method and device for processing data and system comprising such a device
IT1392039B1 (en) * 2008-07-23 2012-02-09 Bticino Spa GROUP AND DRIVING METHOD OF AN ELECTRIC LOAD POWERED THROUGH A TRADITIONAL CIVIL ELECTRIC SYSTEM
US8314511B2 (en) * 2008-08-12 2012-11-20 Mike Schuler Method and apparatus for allocating electricity from a distributor
WO2010095087A1 (en) * 2009-02-19 2010-08-26 Koninklijke Philips Electronics N.V. Lighting control network
US8760262B2 (en) * 2009-03-20 2014-06-24 Lutron Electronics Co., Inc. Method of automatically programming a load control device using a remote identification tag
CA2756303C (en) * 2009-05-04 2018-08-14 Delta T Corporation Ceiling fan with variable blade pitch and variable speed control
TW201043088A (en) * 2009-05-20 2010-12-01 Pixart Imaging Inc Light control system and control method thereof
EP2446713B1 (en) * 2009-06-24 2015-10-21 Koninklijke Philips N.V. Method and device for programming a microcontroller
WO2011001452A1 (en) * 2009-06-30 2011-01-06 E.D.P. S.R.L. System and device for power line communication
WO2011028908A1 (en) * 2009-09-03 2011-03-10 Lutron Electronics Co., Inc. Method of selecting a transmission frequency of a one-way wireless remote control device
US8957662B2 (en) * 2009-11-25 2015-02-17 Lutron Electronics Co., Inc. Load control device for high-efficiency loads
US8344666B1 (en) 2010-07-30 2013-01-01 John Joseph King Circuit for and method of implementing a configurable light timer
US8344667B1 (en) 2010-07-30 2013-01-01 John Joseph King Circuit for and method of enabling the use of timing characterization data in a configurable light timer
US8598978B2 (en) 2010-09-02 2013-12-03 Lutron Electronics Co., Inc. Method of configuring a two-way wireless load control system having one-way wireless remote control devices
US9615428B2 (en) 2011-02-01 2017-04-04 John Joseph King Arrangement for an outdoor light enabling motion detection
KR101333798B1 (en) 2011-06-21 2013-11-29 주식회사 아모텍 Motor drive apparatus for vehicle and water pump using the same
JP6059451B2 (en) * 2011-06-23 2017-01-11 ローム株式会社 Luminescent body driving device and lighting apparatus using the same
WO2013003804A2 (en) 2011-06-30 2013-01-03 Lutron Electronics Co., Inc. Method for programming a load control device using a smart phone
WO2013012547A1 (en) 2011-06-30 2013-01-24 Lutron Electronics Co., Inc. Load control device having internet connectivity, and method of programming the same using a smart phone
US9386666B2 (en) 2011-06-30 2016-07-05 Lutron Electronics Co., Inc. Method of optically transmitting digital information from a smart phone to a control device
US8716882B2 (en) 2011-07-28 2014-05-06 Powerline Load Control Llc Powerline communicated load control
US20130222122A1 (en) * 2011-08-29 2013-08-29 Lutron Electronics Co., Inc. Two-Part Load Control System Mountable To A Single Electrical Wallbox
FR2982092B1 (en) * 2011-11-02 2015-01-02 Valeo Systemes De Controle Moteur POWER MODULE AND ELECTRIC DEVICE FOR POWER SUPPLY AND CHARGING COMBINED WITH ACCUMULATOR AND MOTOR
US9736911B2 (en) 2012-01-17 2017-08-15 Lutron Electronics Co. Inc. Digital load control system providing power and communication via existing power wiring
KR20130090978A (en) * 2012-02-07 2013-08-16 삼성전자주식회사 Power line communication apparatus and method, and load power monitoring apparatus and method using the same
EP2632233B1 (en) * 2012-02-22 2017-07-26 Helvar Oy Ab An apparatus for controlling the operation of an electronic ballast
AT13088U1 (en) * 2012-02-22 2013-05-15 Rainer Dipl Ing Fh Schmid Data alternating voltage for control in the two-wire lighting network
US10244086B2 (en) 2012-12-21 2019-03-26 Lutron Electronics Co., Inc. Multiple network access load control devices
US9413171B2 (en) 2012-12-21 2016-08-09 Lutron Electronics Co., Inc. Network access coordination of load control devices
US10019047B2 (en) 2012-12-21 2018-07-10 Lutron Electronics Co., Inc. Operational coordination of load control devices for control of electrical loads
US9955547B2 (en) 2013-03-14 2018-04-24 Lutron Electronics Co., Inc. Charging an input capacitor of a load control device
US9392675B2 (en) 2013-03-14 2016-07-12 Lutron Electronics Co., Inc. Digital load control system providing power and communication via existing power wiring
US10135629B2 (en) 2013-03-15 2018-11-20 Lutron Electronics Co., Inc. Load control device user interface and database management using near field communication (NFC)
GB2511864A (en) * 2013-03-15 2014-09-17 Reactive Technologies Ltd Method, apparatus and computer program for transmitting and/orreceiving signals
US9226373B2 (en) 2013-10-30 2015-12-29 John Joseph King Programmable light timer and a method of implementing a programmable light timer
US9699870B2 (en) 2013-12-27 2017-07-04 Lutron Electronics Co., Inc. Wall-mountable wireless remote control device
US9236908B2 (en) * 2014-02-07 2016-01-12 Spx Corporation Obstruction lighting and power line communication system
US9699863B2 (en) 2014-05-30 2017-07-04 Lutron Electronics Co., Inc. Multiple location load control system
CA2961450C (en) 2014-09-23 2023-09-05 Switchbee Ltd. A method and apparatus for controlling a load
EP3243195A4 (en) 2015-01-06 2018-08-22 Cmoo Systems Itd. A method and apparatus for power extraction in a pre-existing ac wiring infrastructure
WO2016176653A1 (en) * 2015-04-30 2016-11-03 S.R. Smith, Llc Lighting devices employing class-e power amplifier for inductive power and data transfer in high-moisture operating environments
WO2017192610A1 (en) 2016-05-02 2017-11-09 Lutron Electronics Co., Inc. Fan speed control device
US10379208B2 (en) 2016-05-02 2019-08-13 Lutron Technology Company Llc Fan speed control device
EP3482534B1 (en) 2016-07-05 2022-11-23 Lutron Technology Company LLC Controlling groups of electrical loads via multicast and/or unicast messages
CA3221357A1 (en) 2016-07-22 2018-01-25 Lutron Technology Company Llc Modular lighting panel
US9859833B1 (en) * 2016-09-09 2018-01-02 William V. Cook Fixed and variable speed induction motor and light controller
CN107255945B (en) * 2017-06-08 2019-07-09 武汉迈信电气技术有限公司 A kind of encoder for servo motor power supply communication method and system
MX2019014839A (en) 2017-06-09 2020-08-03 Lutron Tech Co Llc Motor control device.
US11028854B2 (en) 2018-01-12 2021-06-08 Wangs Alliance Corporation Methods and apparatus for controlling fan devices
US10488897B2 (en) 2018-01-12 2019-11-26 Wangs Alliance Corporation Methods and apparatus relating to fan and/or lighting control
US10555404B2 (en) 2018-04-05 2020-02-04 Innovative Building Energy Control Systems and methods for dimming light sources
US10954948B1 (en) * 2018-07-31 2021-03-23 Chen Luen Industries CO., LTD., INC. DC motor controller for ceiling fan motor and lights
US20200233390A1 (en) * 2019-01-23 2020-07-23 Homeseer Technologies, LLC Wall switch with annunciator
CN209587769U (en) 2019-01-25 2019-11-05 广州腾龙电子塑胶科技有限公司 A kind of wireless swimming pool light
WO2021236174A1 (en) 2020-05-21 2021-11-25 Leviton Manufacturing Co., Inc. Switching control in electrical load controllers
US11903105B2 (en) 2020-05-21 2024-02-13 Leviton Manufacturing Co., Inc. Prediction and recovery of zero-crossing information and selective control signal pulse duration
FR3118185B1 (en) * 2020-12-21 2022-12-23 Safran Electronics & Defense TRANSMISSION LINE MONITORING
FR3118184B1 (en) * 2020-12-21 2022-12-23 Safran Electronics & Defense TRANSMISSION LINE MONITORING
US11871493B2 (en) * 2021-06-04 2024-01-09 Leviton Manufacturing Co., Inc. Timing adjustments for accurate zero-crossing determination

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742475A (en) * 1984-06-19 1988-05-03 Ibg International, Inc. Environmental control system
US5838226A (en) * 1996-02-07 1998-11-17 Lutron Electronics Co.Inc. Communication protocol for transmission system for controlling and determining the status of electrical devices from remote locations
US20020073183A1 (en) * 2000-12-13 2002-06-13 Yoon Sang Chul Apparatus and method for remotely controlling household appliances
US7163158B2 (en) * 2004-12-14 2007-01-16 Comverge, Inc. HVAC communication system

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3641326A (en) * 1968-11-22 1972-02-08 Buhr Machine Tool Co Circuit for and method of multiplexing for monitoring a plurality of separate machine tools
US4211956A (en) * 1977-10-14 1980-07-08 Aero-Metric General, Inc. Light indicating system having light emitting diodes and power reduction circuit
US4186873A (en) * 1978-04-25 1980-02-05 Russel W. Geisler Humidity control system and circuitry
US4527247A (en) * 1981-07-31 1985-07-02 Ibg International, Inc. Environmental control system
JPS5866493A (en) * 1981-10-15 1983-04-20 Matsushita Electric Works Ltd Transmitting system of load control data
US4560909A (en) * 1982-09-28 1985-12-24 General Electric Company Dual load remote power control for a ceiling fan
US4465956A (en) * 1983-02-25 1984-08-14 Fowler Ricky C Control circuit for switching dual function electrical appliances
US4563592A (en) * 1983-10-13 1986-01-07 Lutron Electronics Co. Inc. Wall box dimmer switch with plural remote control switches
US4641322A (en) * 1983-10-18 1987-02-03 Nec Corporation System for carrying out spread spectrum communication through an electric power line
US4535297A (en) * 1984-01-09 1985-08-13 General Electric Company Binary signal demodulator with comparative value decision circuitry
US4719446A (en) * 1984-05-07 1988-01-12 Casablanca Fan Company, Inc. Remote control for combined ceiling fan and light fixture
JPS61136327A (en) * 1984-12-06 1986-06-24 Nec Corp Signal coupling system for low voltage distribution line communication equipment
JPS61207149A (en) * 1985-03-07 1986-09-13 東京瓦斯株式会社 Equipment control/monitor system inside and outside buildingutilizing electric wire
US4868773A (en) * 1985-03-15 1989-09-19 Purdue Research Foundation Digital filtering by threshold decomposition
US4783581A (en) * 1985-10-29 1988-11-08 Lutron Electronics Co., Inc. Air gap switch assembly
JPS62107539A (en) * 1985-11-05 1987-05-18 Matsushita Electric Ind Co Ltd Power line carrier adaptor device
US4745351A (en) * 1986-04-29 1988-05-17 Lutron Electronics Co., Inc. Multiple location dimming system
US4689547A (en) * 1986-04-29 1987-08-25 Lutron Electronics Co., Inc. Multiple location dimming system
US4716409A (en) * 1986-07-16 1987-12-29 Homestead Products, Inc. Electrical appliance control system
US4785195A (en) * 1987-06-01 1988-11-15 University Of Tennessee Research Corporation Power line communication
US4841221A (en) * 1988-04-27 1989-06-20 Lutron Electronics Co., Inc. Position-sensing circuit
US4990908A (en) * 1989-03-23 1991-02-05 Michael Tung Remote power control for dual loads
US5187472A (en) * 1989-11-03 1993-02-16 Casablanca Industries, Inc. Remote control system for combined ceiling fan and light fixture
US5189412A (en) * 1990-05-11 1993-02-23 Hunter Fan Company Remote control for a ceiling fan
JP3110790B2 (en) * 1991-05-17 2000-11-20 株式会社日立製作所 Data processing device
US5365154A (en) * 1991-07-12 1994-11-15 North Coast Electronics, Inc. Appliance control system and method
US5248919A (en) * 1992-03-31 1993-09-28 Lutron Electronics Co., Inc. Lighting control device
JPH0662284A (en) * 1992-08-04 1994-03-04 Sharp Corp Noise removing device
US5668446A (en) * 1995-01-17 1997-09-16 Negawatt Technologies Inc. Energy management control system for fluorescent lighting
US5689230A (en) * 1995-11-09 1997-11-18 Motoral, Inc. Energy monitoring and control system using reverse transmission on AC line
US6658250B1 (en) * 1996-01-05 2003-12-02 Hughes Electronics Corporation System and method for a wide area wireless personal communication system incorporating advanced messaging
JPH10135878A (en) * 1996-10-31 1998-05-22 Sekisui Chem Co Ltd Spread spectrum communication method and device
US5798581A (en) * 1996-12-17 1998-08-25 Lutron Electronics Co., Inc. Location independent dimmer switch for use in multiple location switch system, and switch system employing same
US6616254B1 (en) 1997-06-20 2003-09-09 Itran Communications Ltd. Code shift keying transmitter for use in a spread spectrum communications system
JPH11195963A (en) * 1997-12-26 1999-07-21 Casio Comput Co Ltd Digital filter circuit
EP0949832A1 (en) * 1998-04-10 1999-10-13 Nortel Matra Cellular Method and apparatus for allocation of a transmission frequency within a given spectrum
US6798341B1 (en) * 1998-05-18 2004-09-28 Leviton Manufacturing Co., Inc. Network based multiple sensor and control device with temperature sensing and control
US6223083B1 (en) * 1999-04-16 2001-04-24 Medtronic, Inc. Receiver employing digital filtering for use with an implantable medical device
EP1188317A2 (en) * 1999-05-25 2002-03-20 Transtek, Inc. Facility-wide communication system and method
US6313588B1 (en) * 1999-09-22 2001-11-06 Lutron Electronics Company, Inc. Signal generator and control unit for sensing signals of signal generator
JP2001168729A (en) * 1999-12-13 2001-06-22 Ricoh Co Ltd Data transmission system
AU2001253630A1 (en) * 2000-04-17 2001-10-30 Adaptive Networks, Inc. Power line communication network
EP1184955A1 (en) * 2000-08-30 2002-03-06 Whirlpool Corporation A system for transmitting information, particularly between domestic appliances, over a power distribution network
GB0028300D0 (en) * 2000-11-21 2001-01-03 Pace Micro Tech Plc Adaptive nature a AGC thresholds and gains to maximise received signal quality
JP2004222312A (en) * 2001-02-14 2004-08-05 Matsushita Electric Ind Co Ltd Communication setting method and communication setting system for power line network
FR2826521B1 (en) * 2001-06-26 2003-09-26 Somfy RADIO-CONTROLLED CONTROL DEVICE
EP1415239B1 (en) * 2001-08-07 2019-06-19 Honeywell International Inc. Methods for efficient filtering of data
JP2004140756A (en) * 2002-10-21 2004-05-13 Renesas Technology Corp Load controller and power line communication apparatus
US7012518B2 (en) * 2003-04-18 2006-03-14 Cooper Wiring Devices, Inc. Dimmer control system with two-way master-remote communication
US7330129B2 (en) * 2003-07-16 2008-02-12 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4742475A (en) * 1984-06-19 1988-05-03 Ibg International, Inc. Environmental control system
US5838226A (en) * 1996-02-07 1998-11-17 Lutron Electronics Co.Inc. Communication protocol for transmission system for controlling and determining the status of electrical devices from remote locations
US20020073183A1 (en) * 2000-12-13 2002-06-13 Yoon Sang Chul Apparatus and method for remotely controlling household appliances
US7163158B2 (en) * 2004-12-14 2007-01-16 Comverge, Inc. HVAC communication system

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10041292B2 (en) 2011-03-11 2018-08-07 Lutron Electronics Co., Inc. Low-power radio-frequency receiver
US11946316B2 (en) 2011-03-11 2024-04-02 Lutron Technology Company Llc Low-power radio-frequency receiver
US11753866B2 (en) 2011-03-11 2023-09-12 Lutron Technology Company Llc Low-power radio-frequency receiver
US10734807B2 (en) 2011-12-28 2020-08-04 Lutron Technology Company Llc Load control system having a broadcast controller with a diverse wireless communication system
US10447036B2 (en) 2011-12-28 2019-10-15 Lutron Technology Company Llc Load control system having independently-controlled units responsive to a broadcast controller
US9337943B2 (en) 2011-12-28 2016-05-10 Lutron Electronics Co., Inc. Load control system having a broadcast controller with a diverse wireless communication system
US11005264B2 (en) 2011-12-28 2021-05-11 Lutron Technology Company Llc Load control system having independently-controlled units responsive to a broadcast controller
US11387671B2 (en) 2011-12-28 2022-07-12 Lutron Technology Company Llc Load control system having a broadcast controller with a diverse wireless communication system
US9847638B2 (en) 2011-12-28 2017-12-19 Lutron Electronics Co., Inc. Load control system having a broadcast controller with a diverse wireless communication system
US9553451B2 (en) 2011-12-28 2017-01-24 Lutron Electronics Co., Inc. Load control system having independently-controlled units responsive to a broadcast controller
WO2019084744A1 (en) * 2017-10-31 2019-05-09 骆武宁 Method for generating low-frequency power carrier control signal
CN111656663A (en) * 2017-10-31 2020-09-11 骆武宁 Method for generating low-frequency power carrier control signal
US11528055B2 (en) 2017-10-31 2022-12-13 Wuning LUO Method for generating low-frequency power carrier control signal

Also Published As

Publication number Publication date
WO2006133152A3 (en) 2007-06-21
US8068014B2 (en) 2011-11-29
EP1889377B1 (en) 2012-11-07
CN101569109B (en) 2013-05-15
US8471687B2 (en) 2013-06-25
CA2611576C (en) 2013-08-06
BRPI0613236A2 (en) 2012-12-04
EP1889377A2 (en) 2008-02-20
CN101569109A (en) 2009-10-28
JP2009512233A (en) 2009-03-19
MX2007015379A (en) 2008-02-19
CA2611576A1 (en) 2006-12-14
US20080278297A1 (en) 2008-11-13
US20120051444A1 (en) 2012-03-01
US20070110192A1 (en) 2007-05-17
WO2006133152A2 (en) 2006-12-14

Similar Documents

Publication Publication Date Title
US8471687B2 (en) Method and apparatus for communicating message signals in a load control system
EP0267930B1 (en) Power line communication apparatus
AU2009233635B2 (en) Mesh network of intelligent devices communicating via powerline and radio frequency
EP1938467B1 (en) Method, devices and system for transmitting information on power supply electric line
CA2811440A1 (en) Method and apparatus for communicating message signals in a load control system
JP2922860B2 (en) Power line communication device
Ackerman Timed power line data communication

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: LUTRON TECHNOLOGY COMPANY LLC, PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LUTRON ELECTRONICS CO., INC.;REEL/FRAME:049286/0001

Effective date: 20190304