US20120073161A1 - Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts - Google Patents

Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts Download PDF

Info

Publication number
US20120073161A1
US20120073161A1 US13/237,566 US201113237566A US2012073161A1 US 20120073161 A1 US20120073161 A1 US 20120073161A1 US 201113237566 A US201113237566 A US 201113237566A US 2012073161 A1 US2012073161 A1 US 2012073161A1
Authority
US
United States
Prior art keywords
air
shoe
bladder
pump
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/237,566
Inventor
Harold S. Doyle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/237,566 priority Critical patent/US20120073161A1/en
Publication of US20120073161A1 publication Critical patent/US20120073161A1/en
Priority to US14/694,343 priority patent/US20150305436A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/20Pneumatic soles filled with a compressible fluid, e.g. air, gas
    • A43B13/206Pneumatic soles filled with a compressible fluid, e.g. air, gas provided with tubes or pipes or tubular shaped cushioning members
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/20Pneumatic soles filled with a compressible fluid, e.g. air, gas
    • A43B13/203Pneumatic soles filled with a compressible fluid, e.g. air, gas provided with a pump or valve

Definitions

  • the present invention generally relates to shoes, and, more particularly, to pneumatic cushioning therein.
  • a need addressed by the present invention includes providing an improved pneumatic cushioning system for shoes that overcomes some of the problems with the prior art systems.
  • a pneumatically cushioned shoe or shoe insert including a plurality of regions, each region including a respective plurality of air bladders; each respective air bladder having a self-sealing valve disposed thereon and configured to allow air to enter the bladder through the valve while maintaining air pressure within the air bladder; and each self-sealing valve configured to allow air to escape through the valve via an air pump needle or via an integrated pump and release valve device.
  • One or more of the respective air bladders can be configured in a predetermined shape so as to correct for a corresponding type of foot pronation when inflated.
  • the device can be integrated into a sole of a shoe.
  • valves can be disposed on the shoe so as to be accessible external to the shoe for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
  • the device can be configured as a shoe insert with the valves disposed on the shoe insert so as to be accessible for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
  • the plurality of air bladders can be selectively connected to the air pump needle or the integrated pump and release valve device via an air flow switching device accessible external to the shoe to selectively inflate or deflate each of the respective air bladders.
  • FIG. 1 is a general schematic of the inflating arrangement utilized in the shoe
  • FIG. 2 is a horizontal cross section of the shoe sole, revealing the inflation bladders and conduits;
  • FIG. 3 is a side view of the shoe showing transparent conduits and the flow switching device
  • FIG. 4 shows a side bellows air pressurization unit coupled with an air release valve and a flow switching device
  • FIG. 5 shows the air pressurization unit in the closed position
  • FIG. 6 shows the air pressurization unit in the open position
  • FIG. 7 is a sectional view of a switching input device
  • FIG. 8 is a sectional view of the switching input device in a second position
  • FIG. 9 is a sectional view of the switching device in a closed position
  • FIG. 10 is a sectional view of a bladder with a foam core
  • FIG. 11 is a horizontal cross section of the shoe sole, revealing the inflation bladder and conduits;
  • FIG. 12A is prospective view of a side of the inventive shoe
  • FIG. 12B is a prospective view of the back of the inventive shoe
  • FIG. 13A is a side view of the piston rod and cap disconnected
  • FIG. 13B is a prospective view of the pump actuator and pump cylinder
  • FIG. 13C is a side view of the pump cylinder and pump-cylinder top disconnected
  • FIGS. 14A-14D are side views of an integrated air pump and air release valve that can be used with the embodiments of FIGS. 1-13 ;
  • FIGS. 15-16 are used to illustrate one or more of the embodiments of FIGS. 1-14 configured as a shoe insert and that can employ one or more of the various features thereof;
  • FIGS. 17A-17C are used to illustrate one or more of the embodiments of FIGS. 1-16 configured for pronation correction and that can employ one or more of the various features thereof;
  • FIGS. 18A-18B are used to illustrate the use of an Ethylene Vinyl Acetate (EVA) material for securing air bladders in one or more of the embodiments of FIGS. 1-16 ; and
  • EVA Ethylene Vinyl Acetate
  • FIG. 19 is used to illustrate one or more of the embodiments of FIGS. 1-18 configured for individual air bladder selection via a flow switching device and employing an external pumping mechanism.
  • FIG. 1 there is illustrated
  • the present invention is directed to a shoe with a pneumatic inflating device disposed therein.
  • the general schematic of the shoe inflating arrangement is shown in FIG. 1 and includes three bladder sets. However, it will be apparent that the arrangement is adaptable to any plurality of bladder sets.
  • the arrangement includes a pump 12 with an inlet 14 and an outlet 16 .
  • Outlet 16 is connected to a flow switching device 18 at a flow switching input 20 .
  • Flow switching device 18 operates as a selective valve which allows air flow into at least two outlets, the preferred embodiment having a first outlet 22 , a second outlet 24 , and a third outlet 26 .
  • Each outlet 22 , 24 , and 26 is connected to a corresponding conduit 28 , 30 , and 32 .
  • Each conduit 28 , 30 , and 32 is associated with corresponding unidirectional flow valves 34 , 36 , and 38 .
  • Each unidirectional flow valve 34 , 36 , and 38 is connected to corresponding conduit 40 , 42 , and 44 .
  • Each conduit 40 , 42 , and 44 is further associated with corresponding pressure release valves 46 , 48 , and 50 .
  • Conduits 52 , 54 , and 56 are connected to release valves 46 , 48 , and 50 and each conduit is connected to corresponding bladder sets 58 , 60 , and 62 .
  • FIG. 2 shows one arrangement of separate bladder sets 58 , 60 and 62 in the sole of shoe 100 in which forefoot bladder 62 is comprised of mid-forefoot bladder 64 and toe forefoot bladder 66 .
  • Bladders 64 and 66 are interconnected by conduits 68 and 70 . This multiple bladder configuration may also be implemented on the other bladder sets.
  • the wearer preferably engages outlet 16 of pump 12 with switching input 20 .
  • Pump 12 is mounted on a base portion 74 in which inlet 14 comprises an orifice 76 having an unidirectional inlet valve 78 .
  • inlet 14 comprises an orifice 76 having an unidirectional inlet valve 78 .
  • bellows 82 is lifted, the change in volume of air chamber 80 causes a corresponding reduction in pressure, thus causing air to flow through orifice 76 and valve 78 into chamber 80 .
  • Bellows 82 is operatively connected with cover 84 pivotally connected at hinge portion 86 .
  • Cover 84 is latchable to lock 88 through means of flange 90 engaging lock 88 .
  • Cover 84 is releasable through use of a semi-rigid material in its construction which will enable flexing and thereby cause disengagement of flange 90 from latch 88 .
  • the wearer then compresses bellows 82 which allows air flow into switching input 20 . This in turn allows air to fill the selected bladder set via flow switching device 18 in which the wearer can selectively control the air input to bladder sets 58 , 60 , and 62 .
  • the wearer may also adjust the pressure in each bladder set via the respective pressure release valve.
  • pump 12 could utilize an integral heel mounted plunger-type pump, as taught in U.S. Pat. No. 5,222,312, which is incorporated by reference herein.
  • the plunger type pump could also be disposed in the sole of the shoe, or for that matter, located at any convenient place on the shoe.
  • the bellows-type pump of FIGS. 4 , 5 , and 6 could also be used.
  • a first embodiment could utilize a simple “lie” type flow switching device in which pressure at input 20 is applied equally at each of conduits 52 , 54 , and 56 applying equilibrium pressure at 20 using pump 12 and valves 34 , 36 , and 38 would result in equal pressurization of each bladder arrangement 58 , 60 , and 62 .
  • Customization of pressures could be accomplished by the simple expedient of bleeding off high pressure to reduce pressure in one or more of the selected bladder arrangements 58 , 60 , and 62 .
  • Well known valves of the Schrader type could be utilized with push button release or variations such as the Presta type which is effectively lockable for the tightening of a threaded collar on the valve needle.
  • switching device 118 in FIGS. 7 , 8 , and 9 uses rotor 122 contained within circumferential wall 124 of body 126 of device 118 .
  • Body 126 also has a floor 128 and a top (not shown) to completely define an enclosed plenum 130 .
  • Rotor 122 is sealed against wall 126 in such manner that rotor 122 may be turned in a plurality of positions.
  • inlet chamber 132 is aligned with inlet 20 and in communication with passageway 134 that, in FIG. 7 , further communicates to outlet 24 .
  • rotor 122 has been turned so that conduit 134 is now in communication with outlet 22 while chamber 132 owing to its elongated configuration.
  • rotor 122 has been further turned so that both chamber 132 and conduit 134 abut wall 126 , thereby restricting passage of air between inlet 20 and any of outlets 22 , 24 , or 26 .
  • the rotor could be aligned with outlet 26 and inlet 20 . It is also possible to adapt flow switching device 118 to a greater or lesser number of outlets, as desired.
  • outlets 22 , 24 , and 26 would be associated with valves 34 , 36 , and 38 , respectively.
  • An additional variation would be to use a separable pump. This would save the user the bulk of having an attached pump, further enabling the use of a larger capacity pump obviating bulk or weight concerns and enabling the use of higher strength or more economical materials than would be desirable with an integral, attached pump. Use of a separable pump would be more likely to take advantage of the use of a valve 72 associated with inlet 20 , in the manner shown in FIG. 5 .
  • the bladders 58 , 60 , and 62 can be any plastic envelope.
  • the bladder membranes forming the envelope are resistant to the passage of gas molecules but need not be totally impermeable. The gas within the bladder should not escape so rapidly that re-inflation of the bladder will be needed more often than every thirty minutes of use.
  • the bladder may also contain a foam core 61 where the foam may be any foam such as ethyl vinyl acetate, polyurethane, a composite using these materials, or any other resilient sponge material known or that may become known in the footwear industry.
  • One face of the foam core is secured to one interior wall or surface of the bladder. In the preferred embodiment shown in cross section in FIG.
  • the top surface of the foam core 61 is secured by an adhesive 63 to the interior surface of the top membrane 55 of the inflatable bladder 57 .
  • the adhesive 63 may be contact cement, heat activated cement, or solvent based cement.
  • the bladder membrane may be attached to the foam core 61 by heat or radio welding.
  • Alternative embodiments are the attachment of the bladder membrane to the sides of the foam core or attachment of the lower membrane in the lower surface of the foam element.
  • FIGS. 11 , 12 A and 12 B, and 13 A, 13 B and 13 C depict the preferred inflation device disposed completely within the shoe sole.
  • FIG. 11 is a horizontal cross section of the shoe sole, revealing the inflation bladder and conduits.
  • the embodiment shown includes only one inflatable bladder 58 .
  • Pump 12 is received within the recess occupied by bladder 58 so that the space necessary for pump 12 is minimized Pump 12 is positioned substantially perpendicular to the axis passing from the heel to the toes. Pump 12 is positioned between heel-pressure portion 250 and forefoot-pressure portion 260 so that pump 12 is not damaged through normal shoe use.
  • Pump actuator 210 is positioned within pump 12 (and is shown in phantom withdrawn from pump 12 ).
  • Actuator 210 comprises a piston rod 230 with at least one radially extending side 234 .
  • Radially extending side 234 fits within slot 280 on cylinder top 242 so that piston rod 230 may be moved in and out of pump cylinder 240 .
  • Piston rod 230 includes gap 236 which is positioned between cap 200 and radially extending side 234 .
  • cap 200 can be moved in the direction of the arrows to either lock or unlock pump actuator 210 .
  • Cap 200 is flush with the outer wall 220 of the sole when pump actuator 210 is locked in position.
  • cylinder top 242 is removable from pump cylinder 240 to allow for the insertion of pump actuator 210 therein. Cylinder 242 is thereafter sufficiently secured to cylinder 240 to prevent non-intentional removal thereof.
  • FIG. 13A depicts cap 200 disengaged from distal end 232 of piston rod 230 .
  • cap 200 is sufficiently secured to rod 230 so that separation does not occur.
  • Piston 238 is sized such that movement into cylinder 240 causes air to be force out of the pump chamber into the bladder.
  • Pump 12 is connected to bladder 58 via inlet conduit 28 and unidirectional valve 34 .
  • Unidirectional valve 34 prevents air from escaping bladder 58 back into inlet conduit 28 .
  • Bladder 58 is connected to pressure-release valve 46 via exit conduit 52 .
  • FIGS. 14A-14D are side views of an integrated air pump and air release valve 1400 that can be used with the embodiments of FIGS. 1-13 .
  • the integrated air pump and air release valve 1400 include a piston heel 302 , stopper(s) 304 , a piston 306 , a holder 308 , a first spring 310 , a first rubber gasket 312 , a second spring 314 , a second rubber gasket 316 , an integrated check valve 318 , and a cylindrical housing 320 .
  • the integrated air pump and air release valve 1400 is shown in the opened position, configured for starting the pumping of air into the system.
  • the integrated air pump and air release valve 1400 is shown in the pumping down stroke position, configured for pumping air into the system via the integrated check valve 318 , as shown by arrow 322 .
  • the integrated air pump and air release valve 1400 is shown in the locked position configured for maintaining air pumped into the system in the system via the integrated check valve 318 .
  • the integrated air pump and air release valve 1400 is shown in the air release position, configured for releasing air from the system via the integrated check valve 318 , as shown by arrow 324 .
  • the overall size of the system can be reduced.
  • FIGS. 15-16 are used to illustrate one or more of the embodiments of FIGS. 1-14 configured as a shoe insert and that can employ one or more of the various features thereof.
  • a shoe insert 1500 e.g., made from a molded plastic material, etc.
  • a plurality of interconnected or individual air bladder sections 1502 - 1508 e.g., for the inner heel, outer heel, arch, and metatarsal areas of the foot, etc.
  • an external pumping mechanism can be employed, such that the area taken up by the air bladder sections 1502 - 1508 can be increased.
  • FIG. 15A a shoe insert 1500 (e.g., made from a molded plastic material, etc.) can be configured with a plurality of interconnected or individual air bladder sections 1502 - 1508 (e.g., for the inner heel, outer heel, arch, and metatarsal areas of the foot, etc.).
  • an external pumping mechanism can be employed, such that the area taken up by the air bladder sections 1502 - 1508 can
  • the shoe insert 1500 is shown with respective self sealing valves 1510 (e.g., as used in basketballs, footballs, soccer balls, etc.).
  • the integrated air pump and air release valve 1400 can be employed in this embodiment, such that the use of air release valves to release air from the air bladders 1502 - 1508 need not be employed.
  • a shoe insert 1600 e.g., made from a molded plastic material, etc.
  • the respective self sealing valves 1610 e.g., as used in basketballs, footballs, soccer balls, etc.
  • a conventional air pump 1612 with needle 1614 (e.g., based on the type used to inflate basketballs, footballs, soccer balls, etc.) can be employed in this embodiment, and such that the use of air release valves to release air from the air bladders 1502 - 1508 need not be employed.
  • air can be individually released from the air bladder 1502 - 1508 by inserting the needle 1614 in the respective valve 1610 without the pump 1612 attached.
  • FIGS. 17A-17C are used to illustrate one or more of the embodiments of FIGS. 1-16 configured for pronation correction and that can employ one or more of the various features thereof.
  • the air bladder 1502 is configured in a wedge shape, such that inflation thereof can be used to correct for pronation.
  • FIG. 17B shows the air bladder 1502 in a deflated configuration
  • FIG. 17C shows the air bladder 1502 in an inflated configuration so as to correct for pronation.
  • the bladder 1502 can be provided between an outsole 1702 and an insole 1704 with a layer 1706 (e.g., made from an Ethylene Vinyl Acetate (EVA) material, etc.) surrounding the bladder 1502 to firmly hold the bladder 1502 in place.
  • EVA Ethylene Vinyl Acetate
  • a raised ridge 1708 (e.g., raised by about 1.5 to 2.5 mm, etc.) is provided on the outsole 1702 to contain the air bladder 1502 therewithin.
  • the air bladder 1502 can be configured in any suitable shape and location to correct for any suitable type of pronation.
  • one or more of the air bladders 1504 - 1508 can be configured as described with respect to the air bladder 1502 , advantageously, to correct for pronation within their respective areas.
  • FIGS. 18A-18B are used to illustrate the use of an EVA material for securing air bladders in one or more of the embodiments of FIGS. 1-16 .
  • raised and rounded EVA ridges 1706 e.g., raised by about 1.5-2.5 mm, etc.
  • FIG. 18A shows the air bladder 1502 in a deflated configuration
  • FIG. 18B shows the air bladder 1502 in an inflated configuration.
  • the ridges 1706 are configured (e.g., about 3 to 4 mm below the bladder 1502 ) such that when the air bladder 1502 is deflated the ridges 1706 are level with the air bladder 1502 , so the ridges 1702 cannot be felt when the air bladder 1502 is deflated, as shown in FIG. 18A .
  • the EVA material 1706 can be glued down to the outsole 1702 (e.g., using any suitable adhesive, etc.) so that a rigid area is provided underneath the air bladder 1502 for support therefor.
  • one or more of the air bladders 1504 - 1508 can be configured as described with respect to the air bladder 1502 .
  • FIG. 19 is used to illustrate one or more of the embodiments of FIGS. 1-18 configured for individual air bladder selection via a flow switching device and employing an external pumping mechanism.
  • an air flow switching device 18 e.g., as previously described and configured as a dial, etc.
  • individual connections 1902 to the respective air bladders 1502 - 1508 can be employed to individually fill one or more of the air bladders 1502 - 1508 and can be used with a suitable pumping mechanism (e.g., the pumping mechanisms 1400 , 1612 , etc.).
  • a suitable pumping mechanism e.g., the pumping mechanisms 1400 , 1612 , etc.
  • the air bladders 1502 - 1508 of the inflating device can be made thinner than when integrated within a shoe, and can include a soft sock type liner (e.g., made of deer skin leather, EVA material, etc.) provided thereover.
  • a soft sock type liner e.g., made of deer skin leather, EVA material, etc.
  • the configurations depicting the inflating device being positioned entirely within the sole or as a shoe insert can include one set of air bladders, inlet and exit conduits, and pressure-release valves, etc., it is understood that such an inflating device could be used with each of the above-described configurations which utilize more than one such set.
  • air valves can be employed downstream of the integrated air pump and air release valve to help maintain air pressure within the air bladders and reduce the air pressure load on the integrated air pump and air release valve.

Abstract

A pneumatically cushioned shoe or shoe insert including a plurality of regions, each region including a respective plurality of air bladders; each respective air bladder having a self-sealing valve disposed thereon and configured to allow air to enter the bladder through the valve while maintaining air pressure within the air bladder; and each self-sealing valve configured to allow air to escape through the valve via an air pump needle or via an integrated pump and release valve device.

Description

    CROSS REFERENCE TO RELATED DOCUMENTS
  • The present invention claims benefit of priority to U.S. Provisional Patent Application No. 61/386,274 filed Sep. 24, 2010, and is related to commonly-assigned U.S. patent application Ser. No. 12/884,132, and U.S. Pat. Nos. 5,222,312; 6,305,102; and 6,725,573 of Harold S. DOYLE, the entire disclosures of all of which are hereby incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention generally relates to shoes, and, more particularly, to pneumatic cushioning therein.
  • 2. Discussion of the Background
  • There is a variety of prior art shoes including a variety of inflation devices disposed at different locations therein. However, many of such designs still suffer from various problems relating to air bladder placement, and inflation thereof, and complex manufacturing for integrating the inflation devices within the shoes themselves.
  • It is, therefore, desirable to provide for improved pneumatic cushioning in footwear so as to avoid many of the problems with prior art shoe designs.
  • SUMMARY OF THE INVENTION
  • Therefore, a need addressed by the present invention includes providing an improved pneumatic cushioning system for shoes that overcomes some of the problems with the prior art systems.
  • Accordingly, in exemplary aspects of the present invention there is provided a pneumatically cushioned shoe or shoe insert including a plurality of regions, each region including a respective plurality of air bladders; each respective air bladder having a self-sealing valve disposed thereon and configured to allow air to enter the bladder through the valve while maintaining air pressure within the air bladder; and each self-sealing valve configured to allow air to escape through the valve via an air pump needle or via an integrated pump and release valve device.
  • One or more of the respective air bladders can be configured in a predetermined shape so as to correct for a corresponding type of foot pronation when inflated.
  • The device can be integrated into a sole of a shoe.
  • The valves can be disposed on the shoe so as to be accessible external to the shoe for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
  • The device can be configured as a shoe insert with the valves disposed on the shoe insert so as to be accessible for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
  • The plurality of air bladders can be selectively connected to the air pump needle or the integrated pump and release valve device via an air flow switching device accessible external to the shoe to selectively inflate or deflate each of the respective air bladders.
  • Still other aspects, features, and advantages of the present invention are readily apparent from the following detailed description, by illustrating a number of exemplary embodiments and implementations, including the best mode contemplated for carrying out the present invention. The present invention is also capable of other and different embodiments, and its several details can be modified in various respects, all without departing from the spirit and scope of the present invention. Accordingly, the drawings and descriptions are to be regarded as illustrative in nature, and not as restrictive.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The embodiments of the present invention are illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
  • FIG. 1 is a general schematic of the inflating arrangement utilized in the shoe;
  • FIG. 2 is a horizontal cross section of the shoe sole, revealing the inflation bladders and conduits;
  • FIG. 3 is a side view of the shoe showing transparent conduits and the flow switching device;
  • FIG. 4 shows a side bellows air pressurization unit coupled with an air release valve and a flow switching device;
  • FIG. 5 shows the air pressurization unit in the closed position;
  • FIG. 6 shows the air pressurization unit in the open position;
  • FIG. 7 is a sectional view of a switching input device;
  • FIG. 8 is a sectional view of the switching input device in a second position;
  • FIG. 9 is a sectional view of the switching device in a closed position;
  • FIG. 10 is a sectional view of a bladder with a foam core;
  • FIG. 11 is a horizontal cross section of the shoe sole, revealing the inflation bladder and conduits;
  • FIG. 12A is prospective view of a side of the inventive shoe;
  • FIG. 12B is a prospective view of the back of the inventive shoe;
  • FIG. 13A is a side view of the piston rod and cap disconnected;
  • FIG. 13B is a prospective view of the pump actuator and pump cylinder;
  • FIG. 13C is a side view of the pump cylinder and pump-cylinder top disconnected;
  • FIGS. 14A-14D are side views of an integrated air pump and air release valve that can be used with the embodiments of FIGS. 1-13;
  • FIGS. 15-16 are used to illustrate one or more of the embodiments of FIGS. 1-14 configured as a shoe insert and that can employ one or more of the various features thereof;
  • FIGS. 17A-17C are used to illustrate one or more of the embodiments of FIGS. 1-16 configured for pronation correction and that can employ one or more of the various features thereof;
  • FIGS. 18A-18B are used to illustrate the use of an Ethylene Vinyl Acetate (EVA) material for securing air bladders in one or more of the embodiments of FIGS. 1-16; and
  • FIG. 19 is used to illustrate one or more of the embodiments of FIGS. 1-18 configured for individual air bladder selection via a flow switching device and employing an external pumping mechanism.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to the drawings, wherein like reference numerals designate identical or corresponding parts throughout the several views, and more particularly to FIG. 1 thereof, there is illustrated
  • The present invention is directed to a shoe with a pneumatic inflating device disposed therein. The general schematic of the shoe inflating arrangement is shown in FIG. 1 and includes three bladder sets. However, it will be apparent that the arrangement is adaptable to any plurality of bladder sets. The arrangement includes a pump 12 with an inlet 14 and an outlet 16. Outlet 16 is connected to a flow switching device 18 at a flow switching input 20. Flow switching device 18 operates as a selective valve which allows air flow into at least two outlets, the preferred embodiment having a first outlet 22, a second outlet 24, and a third outlet 26. Each outlet 22, 24, and 26 is connected to a corresponding conduit 28, 30, and 32. Each conduit 28, 30, and 32 is associated with corresponding unidirectional flow valves 34, 36, and 38. Each unidirectional flow valve 34, 36, and 38 is connected to corresponding conduit 40, 42, and 44. Each conduit 40, 42, and 44 is further associated with corresponding pressure release valves 46, 48, and 50. Conduits 52, 54, and 56 are connected to release valves 46, 48, and 50 and each conduit is connected to corresponding bladder sets 58, 60, and 62.
  • FIG. 2 shows one arrangement of separate bladder sets 58, 60 and 62 in the sole of shoe 100 in which forefoot bladder 62 is comprised of mid-forefoot bladder 64 and toe forefoot bladder 66. Bladders 64 and 66 are interconnected by conduits 68 and 70. This multiple bladder configuration may also be implemented on the other bladder sets.
  • To pressurize the pneumatic system, the wearer preferably engages outlet 16 of pump 12 with switching input 20. Pump 12 is mounted on a base portion 74 in which inlet 14 comprises an orifice 76 having an unidirectional inlet valve 78. As the bellows 82 is lifted, the change in volume of air chamber 80 causes a corresponding reduction in pressure, thus causing air to flow through orifice 76 and valve 78 into chamber 80. Bellows 82 is operatively connected with cover 84 pivotally connected at hinge portion 86. Cover 84 is latchable to lock 88 through means of flange 90 engaging lock 88. Cover 84 is releasable through use of a semi-rigid material in its construction which will enable flexing and thereby cause disengagement of flange 90 from latch 88. The wearer then compresses bellows 82 which allows air flow into switching input 20. This in turn allows air to fill the selected bladder set via flow switching device 18 in which the wearer can selectively control the air input to bladder sets 58, 60, and 62. The wearer may also adjust the pressure in each bladder set via the respective pressure release valve.
  • The invention can be adapted to utilize a number of different combinations of elements to effectuate the goals of the invention. Thus, in FIG. 3, pump 12 could utilize an integral heel mounted plunger-type pump, as taught in U.S. Pat. No. 5,222,312, which is incorporated by reference herein. The plunger type pump could also be disposed in the sole of the shoe, or for that matter, located at any convenient place on the shoe. As an alternative to the plunger-type pump 12, the bellows-type pump of FIGS. 4, 5, and 6 could also be used.
  • Another variation is in the use, in the alternative, of different arrangements for flow switching device 18. A first embodiment could utilize a simple “lie” type flow switching device in which pressure at input 20 is applied equally at each of conduits 52, 54, and 56 applying equilibrium pressure at 20 using pump 12 and valves 34, 36, and 38 would result in equal pressurization of each bladder arrangement 58, 60, and 62. Customization of pressures could be accomplished by the simple expedient of bleeding off high pressure to reduce pressure in one or more of the selected bladder arrangements 58, 60, and 62. Well known valves of the Schrader type could be utilized with push button release or variations such as the Presta type which is effectively lockable for the tightening of a threaded collar on the valve needle.
  • A second alternative is to use a specially designed flow switching device having both flow directional control and valve control. Thus, switching device 118 in FIGS. 7, 8, and 9 uses rotor 122 contained within circumferential wall 124 of body 126 of device 118. Body 126 also has a floor 128 and a top (not shown) to completely define an enclosed plenum 130. Rotor 122 is sealed against wall 126 in such manner that rotor 122 may be turned in a plurality of positions. In FIG. 7, inlet chamber 132 is aligned with inlet 20 and in communication with passageway 134 that, in FIG. 7, further communicates to outlet 24. By comparison, in FIG. 8, rotor 122 has been turned so that conduit 134 is now in communication with outlet 22 while chamber 132 owing to its elongated configuration. In FIG. 9, rotor 122 has been further turned so that both chamber 132 and conduit 134 abut wall 126, thereby restricting passage of air between inlet 20 and any of outlets 22, 24, or 26. In like manner, of course, the rotor could be aligned with outlet 26 and inlet 20. It is also possible to adapt flow switching device 118 to a greater or lesser number of outlets, as desired. In the preferred embodiment, outlets 22, 24, and 26 would be associated with valves 34, 36, and 38, respectively. As described above, these could be of the Schrader or other improved Schrader types. Use of this approach in addition to the positional adjustment of rotor 122 to the closed position as shown in FIG. 9 would minimize pressure loss from bladders 58, 60, and 62.
  • Nevertheless, with the use of suitable sealing materials, and an integral pump, the user could dispense with all valves save the flow switching device 118. Use of a resilient, air impervious rotor 122 could provide self-sealing while appropriate coatings or seals, in the nature of gaskets or O-rings, could also be utilized.
  • An additional variation would be to use a separable pump. This would save the user the bulk of having an attached pump, further enabling the use of a larger capacity pump obviating bulk or weight concerns and enabling the use of higher strength or more economical materials than would be desirable with an integral, attached pump. Use of a separable pump would be more likely to take advantage of the use of a valve 72 associated with inlet 20, in the manner shown in FIG. 5.
  • The bladders 58, 60, and 62 can be any plastic envelope. The bladder membranes forming the envelope are resistant to the passage of gas molecules but need not be totally impermeable. The gas within the bladder should not escape so rapidly that re-inflation of the bladder will be needed more often than every thirty minutes of use. The bladder may also contain a foam core 61 where the foam may be any foam such as ethyl vinyl acetate, polyurethane, a composite using these materials, or any other resilient sponge material known or that may become known in the footwear industry. One face of the foam core is secured to one interior wall or surface of the bladder. In the preferred embodiment shown in cross section in FIG. 10, the top surface of the foam core 61 is secured by an adhesive 63 to the interior surface of the top membrane 55 of the inflatable bladder 57. The adhesive 63 may be contact cement, heat activated cement, or solvent based cement. Alternatively, the bladder membrane may be attached to the foam core 61 by heat or radio welding.
  • Alternative embodiments are the attachment of the bladder membrane to the sides of the foam core or attachment of the lower membrane in the lower surface of the foam element.
  • FIGS. 11, 12A and 12B, and 13A, 13B and 13C depict the preferred inflation device disposed completely within the shoe sole.
  • FIG. 11 is a horizontal cross section of the shoe sole, revealing the inflation bladder and conduits. The embodiment shown includes only one inflatable bladder 58.
  • Pump 12 is received within the recess occupied by bladder 58 so that the space necessary for pump 12 is minimized Pump 12 is positioned substantially perpendicular to the axis passing from the heel to the toes. Pump 12 is positioned between heel-pressure portion 250 and forefoot-pressure portion 260 so that pump 12 is not damaged through normal shoe use.
  • Pump actuator 210 is positioned within pump 12 (and is shown in phantom withdrawn from pump 12). Actuator 210 comprises a piston rod 230 with at least one radially extending side 234. Radially extending side 234 fits within slot 280 on cylinder top 242 so that piston rod 230 may be moved in and out of pump cylinder 240. Piston rod 230 includes gap 236 which is positioned between cap 200 and radially extending side 234. When pump actuator 210 is inserted completely within the shoe sole, slot 260 and gap 236 are juxtaposed, thus allowing pump actuator 210 to be rotated. When radially extending side 234 is moved to a position not in-line with slot 236, pump actuator 210 cannot be withdrawn from pump cylinder 240 and is locked in position. As shown in FIG. 12A, cap 200 can be moved in the direction of the arrows to either lock or unlock pump actuator 210. Cap 200 is flush with the outer wall 220 of the sole when pump actuator 210 is locked in position.
  • As shown in FIG. 13C, cylinder top 242 is removable from pump cylinder 240 to allow for the insertion of pump actuator 210 therein. Cylinder 242 is thereafter sufficiently secured to cylinder 240 to prevent non-intentional removal thereof.
  • FIG. 13A depicts cap 200 disengaged from distal end 232 of piston rod 230. In use cap 200 is sufficiently secured to rod 230 so that separation does not occur. Piston 238 is sized such that movement into cylinder 240 causes air to be force out of the pump chamber into the bladder.
  • Pump 12 is connected to bladder 58 via inlet conduit 28 and unidirectional valve 34. Unidirectional valve 34 prevents air from escaping bladder 58 back into inlet conduit 28. Bladder 58 is connected to pressure-release valve 46 via exit conduit 52.
  • FIGS. 14A-14D are side views of an integrated air pump and air release valve 1400 that can be used with the embodiments of FIGS. 1-13. In FIG. 14A, the integrated air pump and air release valve 1400, include a piston heel 302, stopper(s) 304, a piston 306, a holder 308, a first spring 310, a first rubber gasket 312, a second spring 314, a second rubber gasket 316, an integrated check valve 318, and a cylindrical housing 320.
  • In FIG. 14A, the integrated air pump and air release valve 1400 is shown in the opened position, configured for starting the pumping of air into the system. In FIG. 14B, the integrated air pump and air release valve 1400 is shown in the pumping down stroke position, configured for pumping air into the system via the integrated check valve 318, as shown by arrow 322. In FIG. 14C, the integrated air pump and air release valve 1400 is shown in the locked position configured for maintaining air pumped into the system in the system via the integrated check valve 318. In FIG. 14D, the integrated air pump and air release valve 1400 is shown in the air release position, configured for releasing air from the system via the integrated check valve 318, as shown by arrow 324. Advantageously, by integrating the air pump and the air release valve, as described with respect to FIGS. 14A-14D, the overall size of the system can be reduced.
  • FIGS. 15-16 are used to illustrate one or more of the embodiments of FIGS. 1-14 configured as a shoe insert and that can employ one or more of the various features thereof. In FIG. 15A, a shoe insert 1500 (e.g., made from a molded plastic material, etc.) can be configured with a plurality of interconnected or individual air bladder sections 1502-1508 (e.g., for the inner heel, outer heel, arch, and metatarsal areas of the foot, etc.). Advantageously, with this embodiment, an external pumping mechanism can be employed, such that the area taken up by the air bladder sections 1502-1508 can be increased. In FIG. 15B, the shoe insert 1500 is shown with respective self sealing valves 1510 (e.g., as used in basketballs, footballs, soccer balls, etc.). Advantageously, the integrated air pump and air release valve 1400 can be employed in this embodiment, such that the use of air release valves to release air from the air bladders 1502-1508 need not be employed. In FIG. 16, a shoe insert 1600 (e.g., made from a molded plastic material, etc.) also includes the respective self sealing valves 1610 (e.g., as used in basketballs, footballs, soccer balls, etc.). Advantageously, a conventional air pump 1612 with needle 1614 (e.g., based on the type used to inflate basketballs, footballs, soccer balls, etc.) can be employed in this embodiment, and such that the use of air release valves to release air from the air bladders 1502-1508 need not be employed. With this embodiment, air can be individually released from the air bladder 1502-1508 by inserting the needle 1614 in the respective valve 1610 without the pump 1612 attached.
  • FIGS. 17A-17C are used to illustrate one or more of the embodiments of FIGS. 1-16 configured for pronation correction and that can employ one or more of the various features thereof. In FIGS. 17A-17C, the air bladder 1502 is configured in a wedge shape, such that inflation thereof can be used to correct for pronation. FIG. 17B shows the air bladder 1502 in a deflated configuration, and FIG. 17C shows the air bladder 1502 in an inflated configuration so as to correct for pronation. The bladder 1502 can be provided between an outsole 1702 and an insole 1704 with a layer 1706 (e.g., made from an Ethylene Vinyl Acetate (EVA) material, etc.) surrounding the bladder 1502 to firmly hold the bladder 1502 in place. A raised ridge 1708 (e.g., raised by about 1.5 to 2.5 mm, etc.) is provided on the outsole 1702 to contain the air bladder 1502 therewithin. Advantageously, the air bladder 1502 can be configured in any suitable shape and location to correct for any suitable type of pronation. Similarly, one or more of the air bladders 1504-1508 can be configured as described with respect to the air bladder 1502, advantageously, to correct for pronation within their respective areas.
  • FIGS. 18A-18B are used to illustrate the use of an EVA material for securing air bladders in one or more of the embodiments of FIGS. 1-16. In FIG. 18A-18B, raised and rounded EVA ridges 1706 (e.g., raised by about 1.5-2.5 mm, etc.) are provided to secure the air bladder 1502 firmly in place. FIG. 18A shows the air bladder 1502 in a deflated configuration, and FIG. 18B shows the air bladder 1502 in an inflated configuration. The ridges 1706 are configured (e.g., about 3 to 4 mm below the bladder 1502) such that when the air bladder 1502 is deflated the ridges 1706 are level with the air bladder 1502, so the ridges 1702 cannot be felt when the air bladder 1502 is deflated, as shown in FIG. 18A. The EVA material 1706 can be glued down to the outsole 1702 (e.g., using any suitable adhesive, etc.) so that a rigid area is provided underneath the air bladder 1502 for support therefor. Advantageously, one or more of the air bladders 1504-1508 can be configured as described with respect to the air bladder 1502.
  • FIG. 19 is used to illustrate one or more of the embodiments of FIGS. 1-18 configured for individual air bladder selection via a flow switching device and employing an external pumping mechanism. In FIG. 19, an air flow switching device 18 (e.g., as previously described and configured as a dial, etc.) with individual connections 1902 to the respective air bladders 1502-1508 can be employed to individually fill one or more of the air bladders 1502-1508 and can be used with a suitable pumping mechanism (e.g., the pumping mechanisms 1400, 1612, etc.).
  • For use as shoe inserts, the air bladders 1502-1508 of the inflating device can be made thinner than when integrated within a shoe, and can include a soft sock type liner (e.g., made of deer skin leather, EVA material, etc.) provided thereover.
  • Although the configurations depicting the inflating device being positioned entirely within the sole or as a shoe insert can include one set of air bladders, inlet and exit conduits, and pressure-release valves, etc., it is understood that such an inflating device could be used with each of the above-described configurations which utilize more than one such set.
  • Although configurations are shown depicting the inflating device employing an integrated air pump and air release valve to maintain air pressure within the air bladders, additional one-way, two-way, and the like, air valves can be employed downstream of the integrated air pump and air release valve to help maintain air pressure within the air bladders and reduce the air pressure load on the integrated air pump and air release valve.
  • Thus, it should be apparent that there has been provided, in accordance with the present invention, a shoe or shoe insert with an inflation device for providing pneumatic cushioning and with the noted advantages thereof.
  • While the present invention have been described in connection with a number of exemplary embodiments and implementations, the present invention is not so limited, but rather covers various modifications and equivalent arrangements, which fall within the purview of the appended claims.

Claims (6)

1. A pneumatically cushioned shoe or shoe insert device, comprising:
a plurality of regions, each region including a respective plurality of air bladders;
each respective air bladder having a self-sealing valve disposed thereon and configured to allow air to enter the bladder through the valve while maintaining air pressure within the air bladder; and
each self-sealing valve configured to allow air to escape through the valve via an air pump needle or via an integrated pump and release valve device.
2. The device of claim 1, wherein one or more of the respective air bladders are configured in a predetermined shape so as to correct for a corresponding type of foot pronation when inflated.
3. The device of claim 1, wherein the device is integrated into a sole of a shoe.
4. The device of claim 3, wherein the valves are disposed on the shoe so as to be accessible external to the shoe for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
5. The device of claim 1, wherein the device is configured as a shoe insert with the valves disposed on the shoe insert so as to be accessible for inflation and deflation via the air pump needle or via the integrated pump and release valve device.
6. The device of claim 3, wherein the plurality of air bladders are selectively connected to the air pump needle or the integrated pump and release valve device via an air flow switching device accessible external to the shoe to selectively inflate or deflate each of the respective air bladders.
US13/237,566 2010-09-24 2011-09-20 Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts Abandoned US20120073161A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/237,566 US20120073161A1 (en) 2010-09-24 2011-09-20 Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts
US14/694,343 US20150305436A1 (en) 2010-09-24 2015-04-23 Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38627410P 2010-09-24 2010-09-24
US13/237,566 US20120073161A1 (en) 2010-09-24 2011-09-20 Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts

Publications (1)

Publication Number Publication Date
US20120073161A1 true US20120073161A1 (en) 2012-03-29

Family

ID=45869185

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/237,566 Abandoned US20120073161A1 (en) 2010-09-24 2011-09-20 Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts

Country Status (1)

Country Link
US (1) US20120073161A1 (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120198729A1 (en) * 2009-10-29 2012-08-09 Gruppo Meccaniche Luciani S.R.L. Shoe with ventilation system
CN103054268A (en) * 2013-01-18 2013-04-24 周恩洪 Far-infrared radiation healthcare shoe
US8453351B1 (en) * 2011-05-16 2013-06-04 Allisa J. Hale Shoe with a height-adjustable heel
US20140259746A1 (en) * 2013-03-14 2014-09-18 Newton Running Sole Construction for Elastic Energy Return
US20140259750A1 (en) * 2013-03-18 2014-09-18 Torng-Haur Yeh Air-cushioned heel with breathing function
US20140331525A1 (en) * 2013-05-13 2014-11-13 Ariel West Footwear with plantar misting system
CN105581435A (en) * 2014-10-23 2016-05-18 欣合信股份有限公司 Foot arch protecting device
US9468236B1 (en) * 2013-07-31 2016-10-18 Raymond C. Sherry Inflatable bra
US20170311658A1 (en) * 2016-05-02 2017-11-02 Abu Dhabi University Self-sustainable body-cooling garment
US20180008005A1 (en) * 2016-07-06 2018-01-11 Patricia Vandervoort Footwear with deployable and retractable tractive features
US20180038361A1 (en) * 2016-08-02 2018-02-08 Performance Creations Llc Air pump with retractable needle and/or method of making the same
US20180042335A1 (en) * 2016-08-11 2018-02-15 Yu Ching Lan Front cushion pad
US20180140045A1 (en) * 2016-11-21 2018-05-24 Nike, Inc. Sole structure with piston and adaptive cushioning system
AU2017201603B1 (en) * 2017-03-08 2018-07-05 Welter’s Co., Ltd. Airbag device with pressure regulating function
US20180199661A1 (en) * 2016-06-03 2018-07-19 Shenzhen Breo Technology Co., Ltd. Method for manufacturing a massaging shoe
US10130504B1 (en) 2016-06-29 2018-11-20 Rodney Matthews Inflatable prosthetic boot insole
US10667576B2 (en) * 2014-08-13 2020-06-02 Adidas Ag Co-molded 3D elements
US11033071B2 (en) 2016-11-21 2021-06-15 Nike, Inc. Sole structure with progressively adaptive stiffness
US20210361030A1 (en) * 2020-05-22 2021-11-25 Nike, Inc. Foot Support Systems, Sole Structures, and Articles of Footwear Including Interconnected Bladder Chambers for Inducing Tilt
US20210368926A1 (en) * 2020-05-28 2021-12-02 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US20220125162A1 (en) * 2020-10-23 2022-04-28 Tbl Licensing Llc Stretchable Waterproof Liner
US11407191B2 (en) 2016-05-24 2022-08-09 Adidas Ag Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article
US11938697B2 (en) 2016-05-24 2024-03-26 Adidas Ag Method and apparatus for automatically manufacturing shoe soles
US11957207B2 (en) * 2021-05-28 2024-04-16 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462171A (en) * 1982-05-28 1984-07-31 Whispell Louis J Inflatable sole construction
US5179792A (en) * 1991-04-05 1993-01-19 Brantingham Charles R Shoe sole with randomly varying support pattern
US5199191A (en) * 1987-05-29 1993-04-06 Armenak Moumdjian Athletic shoe with inflatable mobile inner sole
US5222312A (en) * 1991-07-02 1993-06-29 Doyle Harold S Shoe with pneumatic inflating device
US5295314A (en) * 1987-07-17 1994-03-22 Armenak Moumdjian Shoe with sole including hollow space inflatable through removable bladder
US5813142A (en) * 1996-02-09 1998-09-29 Demon; Ronald S. Shoe sole with an adjustable support pattern
US6305102B1 (en) * 1997-06-03 2001-10-23 Harold S. Doyle Pneumatic inflating device
US6519873B1 (en) * 1999-10-21 2003-02-18 Yamamoto Limited Plastic bellows inserted into soles
US6725573B2 (en) * 1997-06-03 2004-04-27 Harold S. Doyle Pneumatic inflating device contained entirely within shoe sole
US6892477B2 (en) * 2000-04-18 2005-05-17 Nike, Inc. Dynamically-controlled cushioning system for an article of footwear
US7014582B2 (en) * 2002-12-20 2006-03-21 Russell Asset Management, Inc. Sport ball with self-contained inflation mechanism having pressure relief and indication capability

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4462171A (en) * 1982-05-28 1984-07-31 Whispell Louis J Inflatable sole construction
US5199191A (en) * 1987-05-29 1993-04-06 Armenak Moumdjian Athletic shoe with inflatable mobile inner sole
US5295314A (en) * 1987-07-17 1994-03-22 Armenak Moumdjian Shoe with sole including hollow space inflatable through removable bladder
US5179792A (en) * 1991-04-05 1993-01-19 Brantingham Charles R Shoe sole with randomly varying support pattern
US5222312A (en) * 1991-07-02 1993-06-29 Doyle Harold S Shoe with pneumatic inflating device
US5813142A (en) * 1996-02-09 1998-09-29 Demon; Ronald S. Shoe sole with an adjustable support pattern
US6305102B1 (en) * 1997-06-03 2001-10-23 Harold S. Doyle Pneumatic inflating device
US6725573B2 (en) * 1997-06-03 2004-04-27 Harold S. Doyle Pneumatic inflating device contained entirely within shoe sole
US6519873B1 (en) * 1999-10-21 2003-02-18 Yamamoto Limited Plastic bellows inserted into soles
US6892477B2 (en) * 2000-04-18 2005-05-17 Nike, Inc. Dynamically-controlled cushioning system for an article of footwear
US7014582B2 (en) * 2002-12-20 2006-03-21 Russell Asset Management, Inc. Sport ball with self-contained inflation mechanism having pressure relief and indication capability

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120198729A1 (en) * 2009-10-29 2012-08-09 Gruppo Meccaniche Luciani S.R.L. Shoe with ventilation system
US8453351B1 (en) * 2011-05-16 2013-06-04 Allisa J. Hale Shoe with a height-adjustable heel
CN103054268A (en) * 2013-01-18 2013-04-24 周恩洪 Far-infrared radiation healthcare shoe
CN103054268B (en) * 2013-01-18 2016-01-20 周恩洪 far infrared radiation health shoes
US20140259746A1 (en) * 2013-03-14 2014-09-18 Newton Running Sole Construction for Elastic Energy Return
US20140259750A1 (en) * 2013-03-18 2014-09-18 Torng-Haur Yeh Air-cushioned heel with breathing function
US20140331525A1 (en) * 2013-05-13 2014-11-13 Ariel West Footwear with plantar misting system
US9468236B1 (en) * 2013-07-31 2016-10-18 Raymond C. Sherry Inflatable bra
US11284669B2 (en) * 2014-08-13 2022-03-29 Adidas Ag Co-molded 3D elements
US10667576B2 (en) * 2014-08-13 2020-06-02 Adidas Ag Co-molded 3D elements
CN105581435A (en) * 2014-10-23 2016-05-18 欣合信股份有限公司 Foot arch protecting device
US20170311658A1 (en) * 2016-05-02 2017-11-02 Abu Dhabi University Self-sustainable body-cooling garment
US10772364B2 (en) * 2016-05-02 2020-09-15 Abu Dhabi University Self-sustainable body-cooling garment
US11938697B2 (en) 2016-05-24 2024-03-26 Adidas Ag Method and apparatus for automatically manufacturing shoe soles
US11407191B2 (en) 2016-05-24 2022-08-09 Adidas Ag Method for the manufacture of a shoe sole, shoe sole, and shoe with pre-manufactured TPU article
US20180199661A1 (en) * 2016-06-03 2018-07-19 Shenzhen Breo Technology Co., Ltd. Method for manufacturing a massaging shoe
US10130504B1 (en) 2016-06-29 2018-11-20 Rodney Matthews Inflatable prosthetic boot insole
US20180008005A1 (en) * 2016-07-06 2018-01-11 Patricia Vandervoort Footwear with deployable and retractable tractive features
US20180038361A1 (en) * 2016-08-02 2018-02-08 Performance Creations Llc Air pump with retractable needle and/or method of making the same
US11371495B2 (en) * 2016-08-02 2022-06-28 Performance Creations Llc Air pump with retractable needle and/or method of making the same
US20180042335A1 (en) * 2016-08-11 2018-02-15 Yu Ching Lan Front cushion pad
US10743613B2 (en) * 2016-11-21 2020-08-18 Nike, Inc. Sole structure with piston and adaptive cushioning system
US20180140045A1 (en) * 2016-11-21 2018-05-24 Nike, Inc. Sole structure with piston and adaptive cushioning system
US11033071B2 (en) 2016-11-21 2021-06-15 Nike, Inc. Sole structure with progressively adaptive stiffness
AU2017201603B1 (en) * 2017-03-08 2018-07-05 Welter’s Co., Ltd. Airbag device with pressure regulating function
US20210361030A1 (en) * 2020-05-22 2021-11-25 Nike, Inc. Foot Support Systems, Sole Structures, and Articles of Footwear Including Interconnected Bladder Chambers for Inducing Tilt
US20210368930A1 (en) * 2020-05-28 2021-12-02 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US20210368938A1 (en) * 2020-05-28 2021-12-02 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US20210368937A1 (en) * 2020-05-28 2021-12-02 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US11832686B2 (en) * 2020-05-28 2023-12-05 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US20210368926A1 (en) * 2020-05-28 2021-12-02 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure
US20220125162A1 (en) * 2020-10-23 2022-04-28 Tbl Licensing Llc Stretchable Waterproof Liner
US11957207B2 (en) * 2021-05-28 2024-04-16 Nike, Inc. Foot support systems including fluid movement controllers and adjustable foot support pressure

Similar Documents

Publication Publication Date Title
US20120073161A1 (en) Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts
US8800167B2 (en) Pneumatic inflating device contained entirely within shoe sole
US20150305436A1 (en) Pneumatically inflatable air bladder devices contained entirely within shoe sole or configured as shoe inserts
US6725573B2 (en) Pneumatic inflating device contained entirely within shoe sole
US6305102B1 (en) Pneumatic inflating device
US7784196B1 (en) Article of footwear having an inflatable ground engaging surface
JP5219510B2 (en) Air venting mechanism of footwear with inflatable air bag
CN109123905B (en) Adjustable multi-bladder system for an article of footwear
US7694438B1 (en) Article of footwear having an adjustable ride
EP3777594B1 (en) Article of footwear with an adaptive fluid system
US7409780B2 (en) Bellowed chamber for a shoe
US10258102B2 (en) Airbag device with pressure regulating function
US9687045B2 (en) Article of footwear having an upper with inflation system
CN107259704A (en) Electronically controlled air bag component
EP3547865B1 (en) Sports shoe with inflatable tightening system
US6938360B2 (en) Athletic shoe with inflatable tongue
US20150135554A1 (en) Article Of Footwear Having Chamber Capable Of Holding Vacuum
US8230874B2 (en) Configurable fluid transfer manifold for inflatable footwear
CN113873913A (en) Foot support system including fluid movement controller
US8858200B2 (en) Pump and valve combination for an article of footwear incorporating an inflatable bladder
GB2560701B (en) A shoe structure
AU2002337960A1 (en) Pneumatic inflating device contained entirely within shoe sole
CN112754107A (en) Shoe tightening and loosening device
AU2017201603B1 (en) Airbag device with pressure regulating function

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION