US20120078675A1 - Traffic Based Labor Allocation Method And System - Google Patents

Traffic Based Labor Allocation Method And System Download PDF

Info

Publication number
US20120078675A1
US20120078675A1 US13/190,295 US201113190295A US2012078675A1 US 20120078675 A1 US20120078675 A1 US 20120078675A1 US 201113190295 A US201113190295 A US 201113190295A US 2012078675 A1 US2012078675 A1 US 2012078675A1
Authority
US
United States
Prior art keywords
labor
data
traffic
baseline
time interval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/190,295
Inventor
Dave McNeill
Jim Martin
Paige Stover
Gary Dispensa
Ian Harris
Eric Guanlao
Anurag Pande
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ShopperTrak RCT LLC
Original Assignee
ShopperTrak RCT LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ShopperTrak RCT LLC filed Critical ShopperTrak RCT LLC
Priority to US13/190,295 priority Critical patent/US20120078675A1/en
Assigned to SHOPPERTRAK RCT CORPORATION reassignment SHOPPERTRAK RCT CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DISPENSA, GARY, GUANLAO, ERIC, HARRIS, IAN, MARTIN, JIM, MCNEILL, DAVE, STOVER, PAIGE
Assigned to SHOPPERTRAK RCT CORPORATION reassignment SHOPPERTRAK RCT CORPORATION NUNC PRO TUNC ASSIGNMENT (SEE DOCUMENT FOR DETAILS). Assignors: PANDE, ANURAG
Publication of US20120078675A1 publication Critical patent/US20120078675A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0631Resource planning, allocation, distributing or scheduling for enterprises or organisations
    • G06Q10/06311Scheduling, planning or task assignment for a person or group
    • G06Q10/063116Schedule adjustment for a person or group
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • G06Q10/1093Calendar-based scheduling for persons or groups
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0201Market modelling; Market analysis; Collecting market data
    • G06Q30/0202Market predictions or forecasting for commercial activities

Definitions

  • the present invention generally relates to the field of labor or workforce management, and more specifically to a computerized method for determining the distribution of traffic and providing labor scheduling recommendations based on foot traffic information for facilities such as retail stores, malls, casinos, or the like.
  • U.S. Pat. No. 6,823,315 is directed to a cost-effective workforce scheduling system, which takes into consideration workforce requirements including employee preferences and job skills in addition to using a simulated annealing function.
  • An essential problem for labor scheduling is to accurately predict staffing needs for stores.
  • Stores tend to have varied foot traffic during different seasons. For example, the period between Thanksgiving and Christmas is usually very busy and thus more traffic is expected. On the other hand, a Tuesday afternoon in a month with no national holiday may expect less traffic than normally observed. Therefore, foot traffic for a given store is an important factor for predicting store sales and staffing needs for that given store.
  • Previous scheduling approaches have not come to realize the importance of store traffic and often used other data, such as historical store sales, as the main factor for predicting future store sales and labor demands.
  • historical store sales information may not be a good indication of potential sales, because being short handed at busy seasons is likely to have a negative impact on sales. Using old sales data to predict future sales is likely to suffer from repetitive mistakes.
  • the invention relates to, a staffing planning method for distributing store traffic forecast across a day and providing weekly staffing recommendations.
  • employees are scheduled at 1 ⁇ 2 or 1 hour intervals.
  • baseline days are selected from an historical traffic distribution database and used as references to compute the traffic distribution for a future date.
  • the method computes the average share of foot traffic in the store at each 1 ⁇ 2 or 1 hour interval for the baseline days.
  • the shares of foot traffic are used for calculating daily foot traffic distribution for the given date.
  • Staffing recommendations for a targeted period are computed by distributing labor as a linear function of the foot traffic and are also subject to user-defined guidelines.
  • the staffing recommendations are computed for each 1 ⁇ 2 or 1 hour interval of the targeted period and are expected to provide staffing forecasts as many as 16 weeks forward.
  • the staffing planning method has four inputs: historical traffic forecast, user-defined store hours, user-defined minimum and maximum coverage, and one method of distribution.
  • the user can choose between two methods of distribution: (1) distributing labor using a fixed number as the total number of payroll hours to be arranged in a given period; or (2) distributing labor using a targeted shopper-to-associate ratio without a fixed number of hours.
  • FIG. 1 is a schematic overview of one embodiment of the invention
  • FIG. 2 illustrates the process of selecting a baseline in the embodiment of FIG. 1 ;
  • FIG. 3 illustrates the process of distributing daily traffic in the embodiment of FIG. 1 ;
  • FIG. 4 illustrates the validation phase of distributing weekly labor in the embodiment of FIG. 1 ;
  • FIG. 5 illustrates the process of distributing labor and providing staffing recommendations in the embodiment of FIG. 1 ;
  • FIG. 6 illustrates the store hours setup in the embodiment of FIG. 1 ;
  • FIG. 7 illustrates the Min/Max coverage setup in the embodiment of FIG. 1
  • FIG. 8 illustrates the payroll hours setup in the embodiment of FIG. 1 ;
  • FIG. 9 illustrates the recommended staffing results by hour in the embodiment of FIG. 1 ;
  • FIG. 10 illustrates the power hours traffic forecast result in the embodiment of FIG. 1 ;
  • FIG. 11 illustrates the staffing performance result for a given week in the embodiment of FIG. 1 ;
  • FIG. 12 illustrates the staffing performance result for a given day in the embodiment of FIG. 1 ;
  • FIG. 13 illustrates the staffing performance result for a sample time period between Jul. 3, 2005 and Jul. 9, 2005 in the embodiment of FIG. 1 ;
  • FIG. 14 illustrates the selling performance result for a given week to date in the embodiment of FIG. 1 .
  • Store traffic is represented by foot traffic, which, for a store, is the count of shoppers in the store during a given interval.
  • a distribution is defined as a set of numbers, each number having a frequency of occurrence collected from measurements over a statistical population.
  • FIG. 1 illustrates the system architecture of one embodiment of the invention.
  • Major functions include select baseline 5 , distribute daily traffic 6 , and weekly labor distribution 7 , as will be described.
  • AutoBox (ABOX) 1 performs daily store foot traffic forecasts using state of the art statistical algorithms. Traffic forecast data on a day level are stored at the ABOX 1 . Another potential source of traffic forecast is from custody data.
  • FCST (Forecast) schema 2 is used to extract calendar/event information from the daily traffic forecast data.
  • the FCST schema 2 can also be triggered by Database Trigger (DB Trigger) 3 to be integrated into labor schema 4 .
  • DB Trigger Database Trigger
  • the function of select baseline 5 computes baseline days based on inputs such as calendar 8 , sister store definition 9 , historical traffic information 10 , and store hours 11 . The baseline days are used as references to distribute daily traffic for a future date at 1 ⁇ 2 or 1 hour intervals.
  • the daily traffic patterns are stored in the labor schema 4 ( FIG. 1 ) and can be accessed and viewed through a user interface 8 .
  • the daily traffic distribution is also used for computing weekly labor distributions 7 and providing labor recommendations at V2 or 1 hour intervals for a given week.
  • the weekly labor distributions 7 are also stored in the labor schema 4 and can be accessed through the user interface 8 .
  • the user interface 8 can be a web interface.
  • Select baseline function 5 is used to identify baseline days within the last year of history that are similar to a targeted future time period.
  • the baseline days can be selected as the same days of those weeks that have the closest open/close times as the targeted time period. For example, if the targeted time period is a Thursday, the baseline days can be selected as the last 3 Thursdays within the last 365 days that have similar open/close times. For the holiday period, the baseline days are usually selected to be the same dates in the last year, which gives more reliable indication of traffic distribution.
  • selecting a baseline involves both user-defined setup/configuration and system processing.
  • the setup/configuration defined by the user includes: (1) store hours 11 , i.e., daily operational hours for a given store; (2) holiday or event information from the calendar 8 ; and (3) historical traffic information from OutputDB 10 . If there is not enough historical traffic information accumulated for a given store, sister store information 9 will also be used to obtain the baseline.
  • After the setup/configuration is decided records of all days that qualify as matching days to the targeted time period are retrieved from the database. For example, all Thursdays for the last 365 days may be retrieved when the user is trying to schedule a Thursday.
  • the retrieved matching days are then ranked in the order of preference (such as the degree of similarity) according to baseline rules, and a certain number of days are selected to be the baseline days.
  • An example of baseline rules is shown in the order of preference in FIG. 2 .
  • the average value 16 at each V2 or 1 hour interval for the selected baseline days is computed and used as the baseline 18 for daily traffic distribution.
  • the daily traffic can be distributed by using daily forecast data from distributed control 20 , store hours 19 , and baseline percentage for each 1 ⁇ 2 or 1 hour interval of each targeted day.
  • the traffic distribution for each 1 ⁇ 2 or 1 hour interval is calculated as the product of the daily traffic forecast from distributed control 20 and the baseline percentage of that interval from the baseline 18 .
  • the result of the distribution can be accessed and viewed from the user interface 8 .
  • weekly labor distribution 32 can be computed for a given week.
  • the computation of weekly labor distribution 32 requires two inputs as pre-requisites: (1) traffic flags from distribution control 20 ; and (2) Min/Max coverage 23 at 1 ⁇ 2 or 1 hour intervals. If any of the required inputs are not valid or are missing, the weekly labor distribution cannot be performed and the user will be communicated through user interface 8 of the missing or invalid inputs.
  • the user may choose either Fixed method 25 or STARnd method 26 as the distribution method.
  • the Fixed method 25 uses a user-defined total number of employee hours available for selling for a given week to compute the labor distribution.
  • the STARThi method 26 does not require a fixed number of selling hours, but instead uses a Shopper-To-Associate Ratio (STAR) at % or 1 hour intervals for staffing computation.
  • STAR Shopper-To-Associate Ratio
  • the STAR 26 is computed as the amount of foot traffic in a store divided by the number of store employees on duty at a given interval. By studying trends in hourly and daily store traffic reports, district and store managers can identify an optimal STAR 26 value for a given store without overstaffing the store with unnecessary labor. Once the optimal STAR value is identified, scheduling additional personnel above the optimal STAR value will result in diminished returns on the retailer's labor investment, while scheduling below the optimal STAR value will result in insufficient employees on duty during peak selling hours or days, which may lead to lower service quality and lost sales.
  • the optimal STAR value is sometimes referred to as STAR target 29 . As seen in FIG. 4 , STAR targets 29 at each V2 hour intervals are used to compute labor distribution in the illustrated embodiment.
  • the Fixed method 25 the user is required to enter the total number of selling hours 27 available for the targeted week. If the STAR method 26 is chosen, the user is required to enter STAR targets 29 at 1 ⁇ 2 or 1 hour intervals for the targeted week. If the chosen method and method-specific inputs pass validation test 30 , the weekly labor distribution is performed 32 . Failure to pass validation test 30 will not generate weekly labor distribution results.
  • labor recommendations 33 are computed in two steps: (1) Using one of the two methods of distribution (the Fixed method 25 or the STAR method 26 ) to calculate ⁇ labor recommendations 34 at 1 ⁇ 2 or 1 hour intervals during operating hours of each day within the targeted time period; and (2) regulating the recommendations by user-defined minimum coverage 24 and maximum coverage 26 .
  • Input to the minimum coverage 24 indicates the minimum number of employees allowed in the given store.
  • input to the maximum coverage 26 indicates the maximum number of employees allowed in the given store.
  • Results of the labor recommendations 34 can be accessed and viewed through the user interface 8 .
  • FIGS. 6-14 are screenshots of an online demonstration of the present invention.
  • Each screenshot of the demonstration has a menu 36 on the left hand side and a data frame 38 on the right hand side of the page.
  • the menu 36 allows the user to select the data frame 38 he or she wants to view.
  • the user is prompted to enter or update the store hours for a given week at a given store by selecting from the menu 36 under the “administration” category and the “store hours” sub-category.
  • the user specifies four fields: “open” 76 , “store open” 78 , “store close” 80 , and “close” 82 .
  • Input to the “open” 76 text field indicates the time when employees start working at the store.
  • Input to the “store open” 78 text field indicates the time when the store is open for shoppers.
  • inputs to the “store close” 80 and “close” 82 fields indicate the time when the store is closed for shoppers and employees respectively.
  • the user can choose to load a template of store hours into the given store, or to input the hours manually and save the changes.
  • the user is prompted to enter or update the min/max coverage for a given week at a given store by selecting from the menu 36 under the “administration” category and the “min/max coverage” sub-category. For each half-hour on each day within the given week, the user specifies two fields: minimum coverage 24 and maximum coverage 18 . The user can choose to load a template of min/max coverage into the given store, or to input the numbers manually and save the changes.
  • the user is prompted to enter or update the payroll hours for a given week for a list of stores by selecting from the menu 36 under the “administration” category and the “payroll hours” sub-category.
  • the user specifies the selling hours 27 and the non-selling hours 28 for each store for the given week.
  • the user may also specify the sales forecast 29 for each listed store.
  • the selling hours 27 indicates the number of employee hours available at a given store during the time the store is open for shoppers, while the non-selling hours 28 indicates the number of employee hours available at the given store during the time the store will be open for employees but not shoppers.
  • the user can view the recommended staffing at 1 ⁇ 2 or 1 hour intervals for each day within a given time period (such as “this week”) at each store by selecting from the menu 36 under the “administration” category and the “store hours” sub-category.
  • the recommended staffing is given by the number of recommended employees on duty 76 shown in the data frame 38 .
  • the recommended staffing number for 18:00 on Monday Nov. 28, 2005 is 3.
  • Numbers 76 that are beyond a certain threshold are shaded and should be the focus of the store managers because they indicate periods of heavy store traffic.
  • Sales forecast 70 for the given time period, available selling hours 72 , and available non-selling hours 74 are also displayed in the same data frame 38 .
  • the user can view the power hours traffic forecast at 1 ⁇ 2 or 1 hour intervals for each day within a given period of time (such as “this week”) at each store by selecting from the menu 36 under the “power hours” category.
  • the power hours traffic forecast for each hour or half-hour for each day within the given week are given in the data frame 38 . Power hours beyond a certain threshold are shaded and those shaded power hours should be the focus of management. For example, the management can decide to avoid sending associates on breaks or lunches during these periods.
  • the user can view the staffing performance for a given week for each store by selecting from the menu 36 under the “staffing” category and inputting the week ending date 58 in the corresponding text field in the data frame 38 .
  • the data frame 38 shows for each day within that week the store foot traffic 50 , the recommended selling labor 40 a , the actual selling labor 40 b , the compliance 42 , the traffic percentage (percentage of traffic occurred in that day over the given week) 60 , the recommended labor percentage (the percentage of recommended labor occurred in that day over the given week) 62 , and the actual labor percentage 64 (the percentage of actual labor occurred in that day over the given week).
  • the user can view the staffing performance comparison in a bar chart 68 in the same data frame 38 .
  • the bar chart 68 visualizes the results of the traffic percentage 62 , the recommended labor percentage 62 , and the actual labor percentage 64 .
  • the recommended labor percentage 62 tends to be closer to the store foot traffic measured on the spot than the actual labor percentage 64 used at a given store. This shows that the recommended labor percentage 62 is a good indication of the store traffic and could be used to help a store adjust to achieve its optimal operating performance.
  • Conversion rate 40 is a retail performance metric computed by comparing a store's foot traffic during a time period to the number of retail transactions occurred during that time period.
  • the user can view the staffing performance for a given day (such as “yesterday”) for each store by selecting from the menu 36 under the “staffing” category.
  • the corresponding data frame 38 shows for each store hour during that day the selling labor 40 including recommended selling labor 40 a and actual selling labor 40 b , the compliance 42 , the STAR 26 values including the STAR values computed from recommended staffing 26 a and the STAR values computed from actual staffing 26 b , and the conversion rates 40 including the conversion rates computed from recommended staffing 40 a and the conversion rates computed from actual staffing.
  • sale impact 50 is the cost saved or lost by adopting the recommended staffing instead of the actual staffing.
  • the aggregated result for the specific day is also shown in the same data frame 38 .
  • the user can view the staffing performances for a user-defined time period for each store by selecting from the menu 36 under the “staffing” category and inputting the beginning date 44 and the end date 46 of the defined time period in corresponding text fields.
  • the user can also select the period level (such as “day” or “hour”) from a drop-down menu 48 in the corresponding data frame 38 .
  • the data frame 38 shows the selling labor 40 including recommended selling labor 40 a and actual selling labor 40 b , the compliance 42 , the STAR 26 values including the STAR values computed from recommended staffing 26 a and the STAR values computed from actual staffing 26 b , the conversion rates 40 including the conversion rates computed from recommended staffing 40 a and the conversion rates computed from actual staffing, and the sale impact 50 .
  • the aggregated result for the specified time period is also shown in the same data frame 38 .
  • the user can review the daily, weekly, or monthly selling performances for each store by selecting from the menu 36 under the “selling” category.
  • the corresponding data frame 38 shows the traffic volume 50 , the conversion rate 40 , the sales 52 , average transactions 54 , STAR value 26 , and sales per shopper 56 for each day within the given time period and the aggregated result for the given time period.

Abstract

A method and system for distributing labor based upon determinations of traffic in a facility, such as a store. Daily traffic forecast information is obtained for each day within a given time period from a source of such information. Calendar and event information for the facility for each day within the given time period is determined. Baseline days are selected from historical traffic data, and baseline averages and percentages for a predetermined time interval are also selected. The distribution of traffic for each day within the given time period at each time interval is determined using the baseline percentages for each time interval. Labor data is distributed. Labor recommendations are provided at each time interval for the given time period based on the distribution of traffic for each day, and at least one of other user-defined workforce requirements. The results of any or all of these steps are displayed to a user.

Description

    CROSS-REFERENCE
  • This application is a continuation of U.S. patent application Ser. No. 11/623,229, which was filed on Jan. 15, 2007. This prior application is incorporated herein in its entirety.
  • BACKGROUND
  • 1. Field of the Invention
  • The present invention generally relates to the field of labor or workforce management, and more specifically to a computerized method for determining the distribution of traffic and providing labor scheduling recommendations based on foot traffic information for facilities such as retail stores, malls, casinos, or the like.
  • 2. Related Prior Art
  • Traditionally, labor staffing was performed manually by the management of businesses. The invention of computer technology facilitated the labor staffing process by allowing humans to use computer programs. More recently, computer methods have been developed to determine improved workforce schedules. Examples include Gary M. Thompson (A Simulated-Annealing Heuristic For Shift Scheduling Using Non-continuously Available Employees, Computer Ops. Res. Vol. 23, No. 3, pp 275-288, 1996) and U.S. Pat. No. 6,823,315.
  • Gary M. Thompson described a method of labor scheduling using a simulated annealing process, which heuristically compares a trial schedule from an incumbent schedule. U.S. Pat. No. 6,823,315 is directed to a cost-effective workforce scheduling system, which takes into consideration workforce requirements including employee preferences and job skills in addition to using a simulated annealing function.
  • An essential problem for labor scheduling is to accurately predict staffing needs for stores. Stores tend to have varied foot traffic during different seasons. For example, the period between Thanksgiving and Christmas is usually very busy and thus more traffic is expected. On the other hand, a Tuesday afternoon in a month with no national holiday may expect less traffic than normally observed. Therefore, foot traffic for a given store is an important factor for predicting store sales and staffing needs for that given store. Previous scheduling approaches have not come to realize the importance of store traffic and often used other data, such as historical store sales, as the main factor for predicting future store sales and labor demands. However, historical store sales information may not be a good indication of potential sales, because being short handed at busy seasons is likely to have a negative impact on sales. Using old sales data to predict future sales is likely to suffer from repetitive mistakes.
  • Meanwhile, store traffic is a better representation of staffing demands and is perhaps the most accurate leading indicator for future sales. Research shows that, for example, a steady decline in store traffic indicates that sales will similarly decline within approximately 13 months. Therefore, if a store only sees that sales 1 steady but is unaware that the store traffic has declined, that store won't be prepared to take corrective action before facing a future loss in sales. Each shopper that walks through the door represents a sales opportunity. Syncing store labor to foot traffic and conversion rate does not require the retailers to spend more; rather it will allow more efficient management of labor. No prior invention has developed a labor scheduling method using traffic data as the leading input for predicting labor demands and recommendations.
  • Thus, it is a primary objective of this invention to provide a computerized labor scheduling method using traffic information.
  • SUMMARY OF THE INVENTION
  • The invention relates to, a staffing planning method for distributing store traffic forecast across a day and providing weekly staffing recommendations. In one form of the invention, employees are scheduled at ½ or 1 hour intervals. In order to predict the traffic distribution at ½ or 1 hour intervals across a day, baseline days are selected from an historical traffic distribution database and used as references to compute the traffic distribution for a future date. The method computes the average share of foot traffic in the store at each ½ or 1 hour interval for the baseline days. The shares of foot traffic are used for calculating daily foot traffic distribution for the given date. Staffing recommendations for a targeted period are computed by distributing labor as a linear function of the foot traffic and are also subject to user-defined guidelines. The staffing recommendations are computed for each ½ or 1 hour interval of the targeted period and are expected to provide staffing forecasts as many as 16 weeks forward.
  • The staffing planning method has four inputs: historical traffic forecast, user-defined store hours, user-defined minimum and maximum coverage, and one method of distribution. The user can choose between two methods of distribution: (1) distributing labor using a fixed number as the total number of payroll hours to be arranged in a given period; or (2) distributing labor using a targeted shopper-to-associate ratio without a fixed number of hours.
  • It is an objective of the present invention to provide a simplified, automated, and cost effective system for staffing recommendations.
  • It is a further objective of the present invention to help optimize associate performance by re-allocating more labor to the periods of highest traffic without further increase in labor cost.
  • It is yet another objective of the present invention to provide customized data models for each store and provide traffic projections for as many as 16 weeks in advance.
  • It is another objective of the present invention to provide a simple user interface that is easy to load and requires little or no maintenance.
  • It is a further objective of the present invention to provide a user interface with clear and intuitive reporting.
  • It is another objective of the present invention to incorporate various practical factors (such as store hours, min/max staffing requirements, available payroll hours, holiday and seasonal variations) into the staffing recommendation for a given time period.
  • It is another objective of the present invention to provide integrated performance measurements to allow the user to assess staffing effectiveness.
  • It is another objective of the present invention to provide a user with secure access to the system.
  • In accordance with these and other objectives that will become apparent hereafter, the present invention will be described with particular reference to the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic overview of one embodiment of the invention;
  • FIG. 2 illustrates the process of selecting a baseline in the embodiment of FIG. 1;
  • FIG. 3 illustrates the process of distributing daily traffic in the embodiment of FIG. 1;
  • FIG. 4 illustrates the validation phase of distributing weekly labor in the embodiment of FIG. 1;
  • FIG. 5 illustrates the process of distributing labor and providing staffing recommendations in the embodiment of FIG. 1;
  • FIG. 6 illustrates the store hours setup in the embodiment of FIG. 1;
  • FIG. 7 illustrates the Min/Max coverage setup in the embodiment of FIG. 1
  • FIG. 8 illustrates the payroll hours setup in the embodiment of FIG. 1;
  • FIG. 9 illustrates the recommended staffing results by hour in the embodiment of FIG. 1;
  • FIG. 10 illustrates the power hours traffic forecast result in the embodiment of FIG. 1;
  • FIG. 11 illustrates the staffing performance result for a given week in the embodiment of FIG. 1;
  • FIG. 12 illustrates the staffing performance result for a given day in the embodiment of FIG. 1;
  • FIG. 13 illustrates the staffing performance result for a sample time period between Jul. 3, 2005 and Jul. 9, 2005 in the embodiment of FIG. 1; and
  • FIG. 14 illustrates the selling performance result for a given week to date in the embodiment of FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • This detailed description is presented in terms of programs, data structures or procedures executed on a computer or network of computers. The software programs implemented by the system may be written in languages such as JAVA, C++, C#, Python, PHP, or HTML. However, one of skill in the art will appreciate that other languages may be used instead, or in combination with the foregoing.
  • Store traffic is represented by foot traffic, which, for a store, is the count of shoppers in the store during a given interval.
  • Statistically, a distribution is defined as a set of numbers, each number having a frequency of occurrence collected from measurements over a statistical population.
  • FIG. 1 illustrates the system architecture of one embodiment of the invention. Major functions include select baseline 5, distribute daily traffic 6, and weekly labor distribution 7, as will be described.
  • As seen in FIG. 1, AutoBox (ABOX) 1 performs daily store foot traffic forecasts using state of the art statistical algorithms. Traffic forecast data on a day level are stored at the ABOX 1. Another potential source of traffic forecast is from custody data. FCST (Forecast) schema 2 is used to extract calendar/event information from the daily traffic forecast data. The FCST schema 2 can also be triggered by Database Trigger (DB Trigger) 3 to be integrated into labor schema 4. Referring to FIG. 2, the function of select baseline 5 computes baseline days based on inputs such as calendar 8, sister store definition 9, historical traffic information 10, and store hours 11. The baseline days are used as references to distribute daily traffic for a future date at ½ or 1 hour intervals. The daily traffic patterns are stored in the labor schema 4 (FIG. 1) and can be accessed and viewed through a user interface 8. The daily traffic distribution is also used for computing weekly labor distributions 7 and providing labor recommendations at V2 or 1 hour intervals for a given week. The weekly labor distributions 7 are also stored in the labor schema 4 and can be accessed through the user interface 8. The user interface 8 can be a web interface.
  • Select baseline function 5 is used to identify baseline days within the last year of history that are similar to a targeted future time period. The baseline days can be selected as the same days of those weeks that have the closest open/close times as the targeted time period. For example, if the targeted time period is a Thursday, the baseline days can be selected as the last 3 Thursdays within the last 365 days that have similar open/close times. For the holiday period, the baseline days are usually selected to be the same dates in the last year, which gives more reliable indication of traffic distribution.
  • As seen in FIG. 2, selecting a baseline involves both user-defined setup/configuration and system processing. The setup/configuration defined by the user includes: (1) store hours 11, i.e., daily operational hours for a given store; (2) holiday or event information from the calendar 8; and (3) historical traffic information from OutputDB 10. If there is not enough historical traffic information accumulated for a given store, sister store information 9 will also be used to obtain the baseline. After the setup/configuration is decided, records of all days that qualify as matching days to the targeted time period are retrieved from the database. For example, all Thursdays for the last 365 days may be retrieved when the user is trying to schedule a Thursday. The retrieved matching days are then ranked in the order of preference (such as the degree of similarity) according to baseline rules, and a certain number of days are selected to be the baseline days. An example of baseline rules is shown in the order of preference in FIG. 2. The average value 16 at each V2 or 1 hour interval for the selected baseline days is computed and used as the baseline 18 for daily traffic distribution.
  • As seen in FIG. 3, once the baseline 18 for daily traffic distribution is computed, the daily traffic can be distributed by using daily forecast data from distributed control 20, store hours 19, and baseline percentage for each ½ or 1 hour interval of each targeted day. The traffic distribution for each ½ or 1 hour interval is calculated as the product of the daily traffic forecast from distributed control 20 and the baseline percentage of that interval from the baseline 18. The result of the distribution can be accessed and viewed from the user interface 8.
  • As seen in FIG. 4, in addition to the daily traffic distribution, weekly labor distribution 32 can be computed for a given week. The computation of weekly labor distribution 32 requires two inputs as pre-requisites: (1) traffic flags from distribution control 20; and (2) Min/Max coverage 23 at ½ or 1 hour intervals. If any of the required inputs are not valid or are missing, the weekly labor distribution cannot be performed and the user will be communicated through user interface 8 of the missing or invalid inputs. After the pre-requisites are validated 22, the user may choose either Fixed method 25 or STARnd method 26 as the distribution method.
  • The Fixed method 25 uses a user-defined total number of employee hours available for selling for a given week to compute the labor distribution. In comparison, the STARThi method 26 does not require a fixed number of selling hours, but instead uses a Shopper-To-Associate Ratio (STAR) at % or 1 hour intervals for staffing computation.
  • The STAR 26 is computed as the amount of foot traffic in a store divided by the number of store employees on duty at a given interval. By studying trends in hourly and daily store traffic reports, district and store managers can identify an optimal STAR 26 value for a given store without overstaffing the store with unnecessary labor. Once the optimal STAR value is identified, scheduling additional personnel above the optimal STAR value will result in diminished returns on the retailer's labor investment, while scheduling below the optimal STAR value will result in insufficient employees on duty during peak selling hours or days, which may lead to lower service quality and lost sales. The optimal STAR value is sometimes referred to as STAR target 29. As seen in FIG. 4, STAR targets 29 at each V2 hour intervals are used to compute labor distribution in the illustrated embodiment.
  • If the Fixed method 25 is chosen, the user is required to enter the total number of selling hours 27 available for the targeted week. If the STAR method 26 is chosen, the user is required to enter STAR targets 29 at ½ or 1 hour intervals for the targeted week. If the chosen method and method-specific inputs pass validation test 30, the weekly labor distribution is performed 32. Failure to pass validation test 30 will not generate weekly labor distribution results.
  • As seen in FIG. 5, labor recommendations 33 are computed in two steps: (1) Using one of the two methods of distribution (the Fixed method 25 or the STAR method 26) to calculate \ labor recommendations 34 at ½ or 1 hour intervals during operating hours of each day within the targeted time period; and (2) regulating the recommendations by user-defined minimum coverage 24 and maximum coverage 26. Input to the minimum coverage 24 indicates the minimum number of employees allowed in the given store. Similarly, input to the maximum coverage 26 indicates the maximum number of employees allowed in the given store. Results of the labor recommendations 34 can be accessed and viewed through the user interface 8.
  • FIGS. 6-14 are screenshots of an online demonstration of the present invention. Each screenshot of the demonstration has a menu 36 on the left hand side and a data frame 38 on the right hand side of the page. The menu 36 allows the user to select the data frame 38 he or she wants to view.
  • As seen in FIG. 6, the user is prompted to enter or update the store hours for a given week at a given store by selecting from the menu 36 under the “administration” category and the “store hours” sub-category. For each day within the given week, the user specifies four fields: “open” 76, “store open” 78, “store close” 80, and “close” 82. Input to the “open” 76 text field indicates the time when employees start working at the store. Input to the “store open” 78 text field indicates the time when the store is open for shoppers. Similarly, inputs to the “store close” 80 and “close” 82 fields indicate the time when the store is closed for shoppers and employees respectively. The user can choose to load a template of store hours into the given store, or to input the hours manually and save the changes.
  • As seen in FIG. 7, the user is prompted to enter or update the min/max coverage for a given week at a given store by selecting from the menu 36 under the “administration” category and the “min/max coverage” sub-category. For each half-hour on each day within the given week, the user specifies two fields: minimum coverage 24 and maximum coverage 18. The user can choose to load a template of min/max coverage into the given store, or to input the numbers manually and save the changes.
  • As seen in FIG. 8, the user is prompted to enter or update the payroll hours for a given week for a list of stores by selecting from the menu 36 under the “administration” category and the “payroll hours” sub-category. The user specifies the selling hours 27 and the non-selling hours 28 for each store for the given week. The user may also specify the sales forecast 29 for each listed store. The selling hours 27 indicates the number of employee hours available at a given store during the time the store is open for shoppers, while the non-selling hours 28 indicates the number of employee hours available at the given store during the time the store will be open for employees but not shoppers.
  • As seen in FIG. 9, the user can view the recommended staffing at ½ or 1 hour intervals for each day within a given time period (such as “this week”) at each store by selecting from the menu 36 under the “administration” category and the “store hours” sub-category. The recommended staffing is given by the number of recommended employees on duty 76 shown in the data frame 38. For example, the recommended staffing number for 18:00 on Monday Nov. 28, 2005 is 3. Numbers 76 that are beyond a certain threshold are shaded and should be the focus of the store managers because they indicate periods of heavy store traffic. Sales forecast 70 for the given time period, available selling hours 72, and available non-selling hours 74 are also displayed in the same data frame 38.
  • As seen in FIG. 10, the user can view the power hours traffic forecast at ½ or 1 hour intervals for each day within a given period of time (such as “this week”) at each store by selecting from the menu 36 under the “power hours” category. The power hours traffic forecast for each hour or half-hour for each day within the given week are given in the data frame 38. Power hours beyond a certain threshold are shaded and those shaded power hours should be the focus of management. For example, the management can decide to avoid sending associates on breaks or lunches during these periods.
  • As seen in FIG. 11, the user can view the staffing performance for a given week for each store by selecting from the menu 36 under the “staffing” category and inputting the week ending date 58 in the corresponding text field in the data frame 38. The data frame 38 shows for each day within that week the store foot traffic 50, the recommended selling labor 40 a, the actual selling labor 40 b, the compliance 42, the traffic percentage (percentage of traffic occurred in that day over the given week) 60, the recommended labor percentage (the percentage of recommended labor occurred in that day over the given week) 62, and the actual labor percentage 64 (the percentage of actual labor occurred in that day over the given week). In additional to viewing the numerical data displayed in table 66, the user can view the staffing performance comparison in a bar chart 68 in the same data frame 38. The bar chart 68 visualizes the results of the traffic percentage 62, the recommended labor percentage 62, and the actual labor percentage 64. As seen in FIG. 11 and from many other tests, the recommended labor percentage 62 tends to be closer to the store foot traffic measured on the spot than the actual labor percentage 64 used at a given store. This shows that the recommended labor percentage 62 is a good indication of the store traffic and could be used to help a store adjust to achieve its optimal operating performance.
  • Conversion rate 40 is a retail performance metric computed by comparing a store's foot traffic during a time period to the number of retail transactions occurred during that time period.
  • As seen in FIG. 12, the user can view the staffing performance for a given day (such as “yesterday”) for each store by selecting from the menu 36 under the “staffing” category. The corresponding data frame 38 shows for each store hour during that day the selling labor 40 including recommended selling labor 40 a and actual selling labor 40 b, the compliance 42, the STAR 26 values including the STAR values computed from recommended staffing 26 a and the STAR values computed from actual staffing 26 b, and the conversion rates 40 including the conversion rates computed from recommended staffing 40 a and the conversion rates computed from actual staffing. Also shown is sale impact 50, which is the cost saved or lost by adopting the recommended staffing instead of the actual staffing. The aggregated result for the specific day is also shown in the same data frame 38.
  • As seen in FIG. 13, the user can view the staffing performances for a user-defined time period for each store by selecting from the menu 36 under the “staffing” category and inputting the beginning date 44 and the end date 46 of the defined time period in corresponding text fields. The user can also select the period level (such as “day” or “hour”) from a drop-down menu 48 in the corresponding data frame 38. The data frame 38 shows the selling labor 40 including recommended selling labor 40 a and actual selling labor 40 b, the compliance 42, the STAR 26 values including the STAR values computed from recommended staffing 26 a and the STAR values computed from actual staffing 26 b, the conversion rates 40 including the conversion rates computed from recommended staffing 40 a and the conversion rates computed from actual staffing, and the sale impact 50. The aggregated result for the specified time period is also shown in the same data frame 38.
  • As seen in FIG. 14, the user can review the daily, weekly, or monthly selling performances for each store by selecting from the menu 36 under the “selling” category. The corresponding data frame 38 shows the traffic volume 50, the conversion rate 40, the sales 52, average transactions 54, STAR value 26, and sales per shopper 56 for each day within the given time period and the aggregated result for the given time period.
  • The invention is not limited by the embodiments disclosed herein and it will be appreciated that numerous modifications and embodiments may be devised by those skilled in the art. Therefore, it is intended that the following claims cover all such embodiments and modifications that fall within the true spirit and scope of the present invention.

Claims (24)

1. A method of distributing labor based upon determinations of traffic in a facility, the method being executed by at least one processor and comprising the steps of:
(a) obtaining daily traffic forecast information for a defined time period;
(b) determining calendar and event information for the defined time period;
(c) selecting baseline days for the defined time period from historical traffic data and computing via the at least one processor baseline averages and percentages for a predetermined time interval, wherein the selected baselines days are a comprised of a plurality of similar time periods from a prior time period that is similar to the defined time period, wherein each of the baseline averages is computed as an average value for the predetermined time interval of the baseline days, and wherein each of the baseline percentages is computed as a portion of the baseline averages for the predetermined time interval compared to the total number of the baseline averages;
(d) determining the distribution of traffic for the defined time period at each time interval using the baseline percentages for each time interval;
(e) providing access to the labor data and labor recommendations based on the distribution of traffic for the defined time period and at least one of other user-defined workforce requirements; and
(f) providing the results of any of the foregoing steps.
2. The method of claim 1 wherein:
the step of selecting baseline days comprises the step of obtaining setup/configuration data and the step of system processing the setup/configuration data with the historical traffic data of the facility and the sister facility.
3. The method of claim 2 wherein:
the setup/configuration data includes store hours and the calendar and event information.
4. The method of claim 2 wherein:
the step of selecting baseline days further includes using the setup/configuration data to select data from the historical traffic data of the facility and the sister facility, and ranking the selected data in order of preference, the preference defined by baseline rules.
5. The method of claim 4 wherein: the baseline days comprise days included in certain of the selected data that is preferentially ranked.
6. The method of claim 1 wherein:
the step of determining the distribution of traffic further includes multiplying a value for the baseline percentages by a value for the daily traffic forecast information for the predetermined time interval for each of the days in a given time period.
7. The method of claim 1 wherein the step of distributing labor data comprises the additional steps of:
(a) obtaining the traffic data;
(b) obtaining minimum and maximum coverage data for the predetermined time interval;
(c) validating the steps of obtaining the traffic data and obtaining minimum and maximum coverage data; and
(d) selecting a labor distribution procedure from among a plurality of labor distribution procedures.
8. The method of claim 7, wherein the plurality of labor distribution procedures includes at least one procedure comprising the steps of:
inputting the total number of employee hours available for selling in the facility;
assigning for the predetermined time interval the minimum employee coverage;
computing remaining available employee hours; and
assigning the additional available employee hours to the predetermined time interval.
9. The method of claim 7, wherein the plurality of labor distribution procedures includes at least one procedure comprising the steps of:
inputting data comprising a desired shopper-to-sales associate ratio for the facility at each time interval; and
the traffic distribution data by the desired shopper-to-associate ratio to produce recommended distribution of labor.
10. The method of claim 8 wherein:
the employee hours assigned to the time interval does not exceed the maximum coverage for the time interval.
11. The method of claim 1 wherein:
the step of providing the results comprises displaying the results on an electronic display device.
12. The method of claim 1 wherein:
the step of providing access to the labor data and the labor recommendations further includes providing access to the method for generating the labor data and the labor recommendations.
13. At least one computer readable medium encoded with computer-executable instructions that, when executed on a computer system, perform a method for distributing labor based upon determinations of traffic in a facility, the method comprising the steps of:
(a) obtaining daily traffic forecast information for a defined time period;
(b) determining calendar and event information for the defined time period;
(c) selecting baseline days for the defined time period from historical traffic data and computing via the at least one processor baseline averages and percentages for a predetermined time interval, wherein the selected baselines days are a comprised of a plurality of similar time periods from a prior time period that is similar to the defined time period, wherein each of the baseline averages is computed as an average value for the predetermined time interval of the baseline days, and wherein each of the baseline percentages is computed as a portion of the baseline averages for the predetermined time interval compared to the total number of the baseline averages;
(d) determining the distribution of traffic for the defined time period at each time interval using the baseline percentages for each time interval;
(e) providing access to the labor data and labor recommendations based on the distribution of traffic for the defined time period and at least one of other user-defined workforce requirements; and
(f) providing the results of any of the foregoing steps.
14. The at least one computer-readable medium of claim 13, wherein selecting baseline days comprises obtaining setup/configuration data and system processing the setup/configuration data with the historical traffic data of the facility and the sister facility.
15. The at least one computer-readable medium of claim 14, wherein the setup/configuration data includes store hours and the calendar and event information.
16. The at least one computer-readable medium of claim 14, wherein selecting baseline days further includes using the setup/configuration data to select data from the historical traffic data of the facility and the sister facility, and ranking the selected data in order of preference, the preference defined by baseline rules.
17. The at least one computer-readable medium of claim 16, wherein the baseline days comprised days included in certain of the selected data that is preferentially ranked.
18. The at least one computer-readable medium of claim 13, wherein determining the distribution of traffic comprises multiplying a value for the baseline percentages by a value for the daily traffic forecast information for the predetermined time interval for each of the days in a given time period.
19. The at least one computer-readable medium of claim 13, wherein distributing labor data comprises the additional steps of
(a) obtaining the traffic data;
(b) obtaining minimum and maximum coverage data for the predetermined time interval;
(c) validating the steps of obtaining the traffic data and obtaining minimum and maximum coverage data; and
(d) selecting a labor distribution procedure from among a plurality of labor distribution procedures.
20. The at least one computer-readable medium of claim 19, wherein the plurality of labor distribution procedures includes at least one procedure comprising the steps of:
inputting the total number of employee hours available for selling in the facility;
assigning for the predetermined time interval the minimum employee coverage;
computing remaining available employee hours; and
assigning the additional available employee hours to the time interval.
21. The at least one computer-readable medium of claim 19, wherein the plurality of labor distribution procedures includes at least one procedure comprising the steps of:
inputting data comprising a desired shopper-to-sales associate ratio for the facility at each time interval; and
dividing the traffic distribution data divided by the desired shopper-to-associate ratio to produce recommended distribution of labor.
22. The at least one computer-readable medium of claim 20 wherein:
the employee hours assigned to the time interval does not exceed the maximum coverage for the time interval.
23. The at least one computer-readable medium of claim 13 wherein:
the step of providing the results comprises displaying the results on an electronic display device.
24. The at least one computer-readable medium of claim 23 wherein:
the step of providing access to the labor data and the labor recommendations further includes providing access to the method for generating the labor data and the labor recommendations.
US13/190,295 2007-01-15 2011-07-25 Traffic Based Labor Allocation Method And System Abandoned US20120078675A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/190,295 US20120078675A1 (en) 2007-01-15 2011-07-25 Traffic Based Labor Allocation Method And System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/623,229 US7987105B2 (en) 2007-01-15 2007-01-15 Traffic based labor allocation method and system
US13/190,295 US20120078675A1 (en) 2007-01-15 2011-07-25 Traffic Based Labor Allocation Method And System

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/623,229 Continuation US7987105B2 (en) 2007-01-15 2007-01-15 Traffic based labor allocation method and system

Publications (1)

Publication Number Publication Date
US20120078675A1 true US20120078675A1 (en) 2012-03-29

Family

ID=39618473

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/623,229 Active 2030-04-21 US7987105B2 (en) 2007-01-15 2007-01-15 Traffic based labor allocation method and system
US13/190,295 Abandoned US20120078675A1 (en) 2007-01-15 2011-07-25 Traffic Based Labor Allocation Method And System

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/623,229 Active 2030-04-21 US7987105B2 (en) 2007-01-15 2007-01-15 Traffic based labor allocation method and system

Country Status (4)

Country Link
US (2) US7987105B2 (en)
EP (1) EP2122463A4 (en)
CA (1) CA2675389A1 (en)
WO (1) WO2008089131A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10262331B1 (en) 2016-01-29 2019-04-16 Videomining Corporation Cross-channel in-store shopper behavior analysis
US10354262B1 (en) 2016-06-02 2019-07-16 Videomining Corporation Brand-switching analysis using longitudinal tracking of at-shelf shopper behavior
US10387896B1 (en) 2016-04-27 2019-08-20 Videomining Corporation At-shelf brand strength tracking and decision analytics
US10963893B1 (en) 2016-02-23 2021-03-30 Videomining Corporation Personalized decision tree based on in-store behavior analysis
US11301794B2 (en) 2018-06-11 2022-04-12 International Business Machines Corporation Machine for labor optimization for efficient shipping
US11354683B1 (en) 2015-12-30 2022-06-07 Videomining Corporation Method and system for creating anonymous shopper panel using multi-modal sensor fusion

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050137925A1 (en) * 2003-10-23 2005-06-23 Lakritz Kenneth B. Resource scheduling and monitoring
US7987105B2 (en) 2007-01-15 2011-07-26 Shoppertrak Rct Corporation Traffic based labor allocation method and system
US8818841B2 (en) * 2007-04-27 2014-08-26 The Nielsen Company (Us), Llc Methods and apparatus to monitor in-store media and consumer traffic related to retail environments
US20090198559A1 (en) * 2008-02-06 2009-08-06 Disney Enterprises, Inc. Multi-resolutional forecasting system
US20110125549A1 (en) * 2009-11-24 2011-05-26 Oracle International Corporation Long-term moving average weekly forecast tools and techniques
US8694163B2 (en) * 2010-06-24 2014-04-08 Noveda Technologies, Inc. System and method for managing resource sustainability performance
US11354638B2 (en) * 2010-12-20 2022-06-07 Ncr Corporation Dynamic security for a self-checkout terminal
US20140229224A1 (en) * 2013-02-12 2014-08-14 International Business Machines Corporation Scheduling based on customer tracking
US20140278688A1 (en) * 2013-03-15 2014-09-18 Disney Enterprises, Inc. Guest movement and behavior prediction within a venue
US20150363720A1 (en) * 2014-06-13 2015-12-17 Vivint, Inc. Automated metric tracking for a business
US20160342929A1 (en) * 2015-05-22 2016-11-24 Percolata Corporation Method for determining staffing needs based in part on sensor inputs
US20170161652A1 (en) * 2015-12-08 2017-06-08 Formula Technologies, Inc. Financial Monitoring and Forecasting Systems and Methods
US10600033B2 (en) * 2017-06-20 2020-03-24 Cisco Technology, Inc. Delegating resources when scheduling meetings
US10891571B2 (en) * 2018-08-23 2021-01-12 Capital One Services, Llc Task management platform
US11109105B2 (en) 2019-01-11 2021-08-31 Sharp Nec Display Solutions, Ltd. Graphical user interface for insights on viewing of media content
CA3078881A1 (en) 2019-04-22 2020-10-22 Walmart Apollo, Llc Forecasting system
US11537961B2 (en) 2019-04-22 2022-12-27 Walmart Apollo, Llc Forecasting system

Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700295A (en) * 1985-04-18 1987-10-13 Barry Katsof System and method for forecasting bank traffic and scheduling work assignments for bank personnel
US5465115A (en) * 1993-05-14 1995-11-07 Rct Systems, Inc. Video traffic monitor for retail establishments and the like
US5491629A (en) * 1994-03-04 1996-02-13 Strategic Weather Services System and method for determining the impact of weather and other factors on managerial planning applications
US5634055A (en) * 1994-09-27 1997-05-27 Bidplus, Inc. Method for selecting assignments
US5712985A (en) * 1989-09-12 1998-01-27 Lee; Michael D. System and method for estimating business demand based on business influences
US5832456A (en) * 1996-01-18 1998-11-03 Strategic Weather Services System and method for weather adapted, business performance forecasting
US6032125A (en) * 1996-11-07 2000-02-29 Fujitsu Limited Demand forecasting method, demand forecasting system, and recording medium
US20010014868A1 (en) * 1997-12-05 2001-08-16 Frederick Herz System for the automatic determination of customized prices and promotions
US6493446B1 (en) * 1999-05-13 2002-12-10 Willow Csn Incorporated Call center posting program
US6584191B1 (en) * 1999-08-27 2003-06-24 Aspect Communications Corporation Staffing-based percentage-allocation routing using real-time data
US20030135406A1 (en) * 2002-01-11 2003-07-17 Rowe John J. Method and apparatus for identifying cash leakage
US6609101B1 (en) * 1999-03-26 2003-08-19 The Retail Pipeline Integration Group, Inc. Method and system for determining time-phased product sales forecasts and projected replenishment shipments for a retail stores supply chain
US6697104B1 (en) * 2000-01-13 2004-02-24 Countwise, Llc Video based system and method for detecting and counting persons traversing an area being monitored
US20040078257A1 (en) * 2002-10-21 2004-04-22 Laborsage, Inc. Labor and resource scheduling system
US20040098296A1 (en) * 2002-11-20 2004-05-20 Stephen Bamberg Method and system for forecasting demand of a distribution center and related stores
US6768995B2 (en) * 2002-09-30 2004-07-27 Adaytum, Inc. Real-time aggregation of data within an enterprise planning environment
US6788202B2 (en) * 2001-05-07 2004-09-07 Lp Innovations, Inc. Customer conversion system
US20050129212A1 (en) * 2003-12-12 2005-06-16 Parker Jane S. Workforce planning system incorporating historic call-center related data
US20050283393A1 (en) * 2003-11-20 2005-12-22 New England 800 Company D/B/A Taction System and method for event-based forecasting
US20060047551A1 (en) * 2004-08-26 2006-03-02 Sandra Cotten System and method for staffing promotional events with qualified event personnel
US7039607B2 (en) * 2001-04-26 2006-05-02 Dentsu Tec Inc. System for evaluating a company's customer equity
US7103652B1 (en) * 2000-12-23 2006-09-05 Emc Corporation Ambiguity-purging and template-conflict-resolution in computer network events-notification
US7103562B2 (en) * 2001-05-17 2006-09-05 Bay Bridge Decision Technologies, Inc. System and method for generating forecasts and analysis of contact center behavior for planning purposes
US7133848B2 (en) * 2000-05-19 2006-11-07 Manugistics Inc. Dynamic pricing system
US20070021999A1 (en) * 2005-07-19 2007-01-25 Michael James Whalen Labor and transaction management system and method
US7222082B1 (en) * 2000-06-28 2007-05-22 Kronos Technology Systems Limited Partnership Business volume and workforce requirements forecaster
US20080059256A1 (en) * 2006-07-19 2008-03-06 Kevin Maurice Lynch Event Management and Marketing System
US20080154673A1 (en) * 2006-12-20 2008-06-26 Microsoft Corporation Load-balancing store traffic
US20080172275A1 (en) * 2007-01-11 2008-07-17 Sanjay Ramanujan Resource planning to handle contact volume across a plurality of contact channels
US7415510B1 (en) * 1999-03-19 2008-08-19 Shoppertrack Rct Corporation System for indexing pedestrian traffic
US7457766B1 (en) * 2003-11-06 2008-11-25 Teradata Us, Inc. Methods and systems for determining daily weighting factors for use in forecasting daily product sales
US7503032B2 (en) * 2001-06-15 2009-03-10 International Business Machines Corporation Method and framework for model specification, consistency checking and coordination of business processes
US7533036B2 (en) * 2002-06-18 2009-05-12 Walgreen Co. Method and system for preparing a new store for opening and operation
US7612796B2 (en) * 2000-01-13 2009-11-03 Countwise, Llc Video-based system and method for counting persons traversing areas being monitored
US7778853B2 (en) * 2005-03-22 2010-08-17 Ticketmaster Computer-implemented systems and methods for resource allocation
US7987105B2 (en) * 2007-01-15 2011-07-26 Shoppertrak Rct Corporation Traffic based labor allocation method and system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911134A (en) * 1990-10-12 1999-06-08 Iex Corporation Method for planning, scheduling and managing personnel
US6823315B1 (en) * 1999-11-03 2004-11-23 Kronos Technology Systems Limited Partnership Dynamic workforce scheduler
US6628777B1 (en) * 1999-11-16 2003-09-30 Knowlagent, Inc. Method and system for scheduled delivery of training to call center agents
US6742002B2 (en) * 2000-03-27 2004-05-25 Mps Ip Services Corp. Computer-implemented and/or computer-assisted web database and/or interaction system for staffing of personnel in various employment related fields
IL138828A (en) * 2000-10-03 2005-07-25 Clicksoftware Technologies Ltd Method and system for assigning human resources to provide services
US20030055706A1 (en) * 2001-08-15 2003-03-20 Beth Statfeld System and method for determining staffing needs for functions in an office
DE10238476A1 (en) * 2001-09-28 2003-04-17 Ibm Dynamic management of help desks
US20040010437A1 (en) * 2002-06-29 2004-01-15 Kiran Ali Sukru Method and system for scheduling and sharing a pool of resources across multiple distributed forecasted workloads
US20040225521A1 (en) * 2003-01-24 2004-11-11 Jose Acosta Database system and method for managing labor costs against indicators
US7965866B2 (en) 2007-07-03 2011-06-21 Shoppertrak Rct Corporation System and process for detecting, tracking and counting human objects of interest

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700295A (en) * 1985-04-18 1987-10-13 Barry Katsof System and method for forecasting bank traffic and scheduling work assignments for bank personnel
US5712985A (en) * 1989-09-12 1998-01-27 Lee; Michael D. System and method for estimating business demand based on business influences
US5465115A (en) * 1993-05-14 1995-11-07 Rct Systems, Inc. Video traffic monitor for retail establishments and the like
US5491629A (en) * 1994-03-04 1996-02-13 Strategic Weather Services System and method for determining the impact of weather and other factors on managerial planning applications
US5634055A (en) * 1994-09-27 1997-05-27 Bidplus, Inc. Method for selecting assignments
US5832456A (en) * 1996-01-18 1998-11-03 Strategic Weather Services System and method for weather adapted, business performance forecasting
US6032125A (en) * 1996-11-07 2000-02-29 Fujitsu Limited Demand forecasting method, demand forecasting system, and recording medium
US20010014868A1 (en) * 1997-12-05 2001-08-16 Frederick Herz System for the automatic determination of customized prices and promotions
US7415510B1 (en) * 1999-03-19 2008-08-19 Shoppertrack Rct Corporation System for indexing pedestrian traffic
US6609101B1 (en) * 1999-03-26 2003-08-19 The Retail Pipeline Integration Group, Inc. Method and system for determining time-phased product sales forecasts and projected replenishment shipments for a retail stores supply chain
US6493446B1 (en) * 1999-05-13 2002-12-10 Willow Csn Incorporated Call center posting program
US6584191B1 (en) * 1999-08-27 2003-06-24 Aspect Communications Corporation Staffing-based percentage-allocation routing using real-time data
US7612796B2 (en) * 2000-01-13 2009-11-03 Countwise, Llc Video-based system and method for counting persons traversing areas being monitored
US6697104B1 (en) * 2000-01-13 2004-02-24 Countwise, Llc Video based system and method for detecting and counting persons traversing an area being monitored
US7133848B2 (en) * 2000-05-19 2006-11-07 Manugistics Inc. Dynamic pricing system
US7222082B1 (en) * 2000-06-28 2007-05-22 Kronos Technology Systems Limited Partnership Business volume and workforce requirements forecaster
US7103652B1 (en) * 2000-12-23 2006-09-05 Emc Corporation Ambiguity-purging and template-conflict-resolution in computer network events-notification
US7039607B2 (en) * 2001-04-26 2006-05-02 Dentsu Tec Inc. System for evaluating a company's customer equity
US6788202B2 (en) * 2001-05-07 2004-09-07 Lp Innovations, Inc. Customer conversion system
US7103562B2 (en) * 2001-05-17 2006-09-05 Bay Bridge Decision Technologies, Inc. System and method for generating forecasts and analysis of contact center behavior for planning purposes
US7503032B2 (en) * 2001-06-15 2009-03-10 International Business Machines Corporation Method and framework for model specification, consistency checking and coordination of business processes
US20030135406A1 (en) * 2002-01-11 2003-07-17 Rowe John J. Method and apparatus for identifying cash leakage
US7533036B2 (en) * 2002-06-18 2009-05-12 Walgreen Co. Method and system for preparing a new store for opening and operation
US6768995B2 (en) * 2002-09-30 2004-07-27 Adaytum, Inc. Real-time aggregation of data within an enterprise planning environment
US20040078257A1 (en) * 2002-10-21 2004-04-22 Laborsage, Inc. Labor and resource scheduling system
US20040098296A1 (en) * 2002-11-20 2004-05-20 Stephen Bamberg Method and system for forecasting demand of a distribution center and related stores
US7457766B1 (en) * 2003-11-06 2008-11-25 Teradata Us, Inc. Methods and systems for determining daily weighting factors for use in forecasting daily product sales
US20050283393A1 (en) * 2003-11-20 2005-12-22 New England 800 Company D/B/A Taction System and method for event-based forecasting
US20050129212A1 (en) * 2003-12-12 2005-06-16 Parker Jane S. Workforce planning system incorporating historic call-center related data
US20060047551A1 (en) * 2004-08-26 2006-03-02 Sandra Cotten System and method for staffing promotional events with qualified event personnel
US7778853B2 (en) * 2005-03-22 2010-08-17 Ticketmaster Computer-implemented systems and methods for resource allocation
US20070021999A1 (en) * 2005-07-19 2007-01-25 Michael James Whalen Labor and transaction management system and method
US20080059256A1 (en) * 2006-07-19 2008-03-06 Kevin Maurice Lynch Event Management and Marketing System
US20080154673A1 (en) * 2006-12-20 2008-06-26 Microsoft Corporation Load-balancing store traffic
US20080172275A1 (en) * 2007-01-11 2008-07-17 Sanjay Ramanujan Resource planning to handle contact volume across a plurality of contact channels
US7987105B2 (en) * 2007-01-15 2011-07-26 Shoppertrak Rct Corporation Traffic based labor allocation method and system

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
Brad, Jonathan F. et al., Weekly scheduling in the service industry: an application to mail processing and distribution centersIIE Transactions, Vol. 37, 2005 *
Discovery Channel Discovers Opportunities with Accurate Traffic Data Stores.org, December 2002 *
Hadfield, Will, H&M targets staff production gain with Europe-wide scheduling toolComputer Weekly, December 5, 2006 *
Kubak, Ozgur et al., Efficient shift scheduling in the retail sector through two-stage optimizationEuropean Journal of Operational Research, 2008 *
Lam, Syunyin et al., Retail Sales Scheduling Based on Store Traffic ForecastingJournal of Retailing, Vol. 74, No. 1, 1998 *
Mason, Andrew et al., Integrated Simulation, Heuristic and Optimisation Approaches to Staff SchedulingOperations Research, Vol. 46, No. 2, March/April 1998 *
Pereira, Joseph, Marketing Researcher's Cameras Tracking Shoppers in Stores: Videominer's tell merchants who's buying, browsing, Wall Street Journal, December 23, 2004 *
Quan, Vinh, Retail Labor SchedulingOR/MS Today, December 2004 *
Shoppertrack helps keep Nordictrak on track Chain Stor Age, Vol. 72, No. 2, February 1996 *
ShopperTrack.com Web Pages (2001) Shoppertrack, February 2001, Retreived from Archive.org June 2, 2010 *
ShopperTrack.com Web Pages Shoppertrack, 2003, Retrieved from Archive.org June 2, 2010 *
Workbrain Announces New Retail Scheduling Capabilities in Expanded Workbrain Retail SuiteBusiness Wire, June 10, 2003 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11354683B1 (en) 2015-12-30 2022-06-07 Videomining Corporation Method and system for creating anonymous shopper panel using multi-modal sensor fusion
US10262331B1 (en) 2016-01-29 2019-04-16 Videomining Corporation Cross-channel in-store shopper behavior analysis
US10963893B1 (en) 2016-02-23 2021-03-30 Videomining Corporation Personalized decision tree based on in-store behavior analysis
US10387896B1 (en) 2016-04-27 2019-08-20 Videomining Corporation At-shelf brand strength tracking and decision analytics
US10354262B1 (en) 2016-06-02 2019-07-16 Videomining Corporation Brand-switching analysis using longitudinal tracking of at-shelf shopper behavior
US11301794B2 (en) 2018-06-11 2022-04-12 International Business Machines Corporation Machine for labor optimization for efficient shipping

Also Published As

Publication number Publication date
US20080172282A1 (en) 2008-07-17
EP2122463A1 (en) 2009-11-25
WO2008089131A1 (en) 2008-07-24
CA2675389A1 (en) 2008-07-24
US7987105B2 (en) 2011-07-26
EP2122463A4 (en) 2011-11-30

Similar Documents

Publication Publication Date Title
US7987105B2 (en) Traffic based labor allocation method and system
Lazear et al. Making do with less: Working harder during recessions
US7103562B2 (en) System and method for generating forecasts and analysis of contact center behavior for planning purposes
US20170147960A1 (en) Systems and Methods for Project Planning and Management
EP1271379A1 (en) Method and apparatus for long range planning
Cox et al. Management’s perception of key performance indicators for construction
Wang et al. Channel coordination for a supply chain with a risk‐neutral manufacturer and a loss‐averse retailer
Wachtel et al. Review of behavioral operations experimental studies of newsvendor problems for operating room management
US7797182B2 (en) Method and apparatus for improved forecasting using multiple sources
US20050283393A1 (en) System and method for event-based forecasting
JP2014157605A (en) System and method for managing system-level workflow strategy and individual workflow activity
US10037500B2 (en) System and method for automatic shrinkage forecasting
US8401944B2 (en) Marketing investment optimizer with dynamic hierarchies
Arif The Effect of Managerial Competencies, Compesation and Career Planning Toward Employee Performance Through Job Satisfaction at PT. Bank BTPN Tbk Mikro Banking Division (MUR) Pekanbaru Branch.
JP2002203085A (en) Assistance system of employee shift plan
Alemayehu et al. Long-run labour flexibility in hospitality: A dynamic common correlated effects approach
JP6627157B1 (en) Payroll target determination support system, payroll target determination support method, and program
Melachrinoudis et al. A microcomputer cashier scheduling system for supermarket stores
Hogreve et al. Optimizing Service Productivity With Substitutable and Limited Resources
Apak et al. Employee scheduling problem for a retail store with multiple product categories and heterogeneous employees
da Conceição A workforce size optimization framework for retailers
US20160012383A1 (en) Impact of unplanned leaves on project cost
Ashshiddiqi et al. Analysis of Public Service Performance Risk Management in DPMPTSP Bandung District
Farmer Quantitative Data Analysis for Quality Control in Strategic Management
Hong The Cost of a New Boss: Supervisor changes, hierarchy, and firm performance

Legal Events

Date Code Title Description
AS Assignment

Owner name: SHOPPERTRAK RCT CORPORATION, ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCNEILL, DAVE;MARTIN, JIM;STOVER, PAIGE;AND OTHERS;REEL/FRAME:027332/0268

Effective date: 20070112

Owner name: SHOPPERTRAK RCT CORPORATION, ILLINOIS

Free format text: NUNC PRO TUNC ASSIGNMENT;ASSIGNOR:PANDE, ANURAG;REEL/FRAME:027340/0049

Effective date: 20111206

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION