US20120186676A1 - Tidal flow modulator - Google Patents

Tidal flow modulator Download PDF

Info

Publication number
US20120186676A1
US20120186676A1 US13/282,330 US201113282330A US2012186676A1 US 20120186676 A1 US20120186676 A1 US 20120186676A1 US 201113282330 A US201113282330 A US 201113282330A US 2012186676 A1 US2012186676 A1 US 2012186676A1
Authority
US
United States
Prior art keywords
tidal
center
elongated blade
valve
terminus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/282,330
Inventor
Martin Burger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blue Energy Canada Inc
Original Assignee
Blue Energy Canada Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Blue Energy Canada Inc filed Critical Blue Energy Canada Inc
Priority to US13/282,330 priority Critical patent/US20120186676A1/en
Assigned to BLUE ENERGY CANADA INC. reassignment BLUE ENERGY CANADA INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BURGER, MARTIN
Publication of US20120186676A1 publication Critical patent/US20120186676A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/268Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy making use of a dam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/26Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
    • F03B13/264Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy using the horizontal flow of water resulting from tide movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B17/00Other machines or engines
    • F03B17/06Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head"
    • F03B17/062Other machines or engines using liquid flow with predominantly kinetic energy conversion, e.g. of swinging-flap type, "run-of-river", "ultra-low head" with rotation axis substantially at right angle to flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/13Stators to collect or cause flow towards or away from turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oceanography (AREA)
  • Power Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Tidal modulators are described by which the tidal flow may be started, stopped, or regulated by movable parts that open, shut, or partially obstruct one or more passageways to modulate the tidal flow so as to enhance capturing its energy.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The application claims the benefit of Provisional Application No. 61/406,910, filed Oct. 26, 2010, which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present subject matter is generally related to hydrodynamic machinery, and is specifically related to tidal regulators.
  • BACKGROUND
  • Tidal power is the future of electricity generation. Among the few sources of renewable energy, tidal power can be reaped from limited locales with sufficiently high tidal ranges or flow velocities. However, many recent innovations, such as dynamic tidal power, tidal lagoons, axial turbines, and cross-flow turbines, indicate that the total availability of tidal power can be much higher, and that economic and environmental costs may be much lower.
  • SUMMARY
  • This summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This summary is not intended to identify key features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
  • In one aspect, a product form of the subject matter comprises a tidal modulator, which includes a center valve and a pair of butterfly valves. Each of the butterfly valve's axial centers is oriented in a first plane that is in parallel to a second plane of an axial center of the center valve and is further oriented in a third plane that is perpendicular to the second plane of the axial center of the center valve. The third plane is collocated with respect to the first plane at a 90 degree angle. The center valve includes an elongated blade, and each butterfly valve includes another elongated blade. The elongated blade of the center valve is configured to be thick in the center and tapered towards its termini. The elongated blade of one butterfly valve is configured to be thick in the center and tapered towards its termini. In the same aspect, the tidal modulator further comprises a quartet of columns. The axial center of the center valve is equidistant to termini of the quartet of columns.
  • In the same aspect which may be couched as a shut position, the terminus of the elongated blade of one butterfly valve is in proximal relationship to a first terminus of the elongated blade of the center valve and another terminus of the elongated blade of another butterfly valve is in proximal relationship to a second terminus of the elongated blade of the center valve. In the same aspect which may be couched as an open position, the terminus of the elongated blade of one butterfly valve is in distal relationship to a first terminus of the elongated blade of the center valve and another terminus of the elongated blade of another butterfly valve is in distal relationship to a second terminus of the elongated blade of the center valve.
  • DESCRIPTION OF THE DRAWINGS
  • The foregoing aspects and many of the attendant advantages of this invention will become more readily appreciated as the same become better understood by reference to the following detailed description, when taken in conjunction with the accompanying drawings, wherein:
  • FIG. 1 is an isometric view of an archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 2 is a front view of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 3 is a back view of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 4 is a side view of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 5 is another side view of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 6 is a plan view of the top of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 7 is a plan view of the bottom of the archetypical tidal modulator in accordance with an embodiment of the present subject matter;
  • FIG. 8 is an isometric view of an archetypical movable part of the tidal modulator to effectuate modulation of the tidal flow in accordance with one embodiment;
  • FIG. 9 is a front or back view of the archetypical movable part of the tidal modulator in accordance with one embodiment;
  • FIG. 10 is a side view of the archetypical movable part of the tidal modulator in accordance with one embodiment;
  • FIG. 11 is a plan view of the top of the archetypical movable part of the tidal modulator in accordance with one embodiment; and
  • FIG. 12 is a plan view of the bottom of the archetypical movable part of the tidal modulator in accordance with one embodiment.
  • DETAILED DESCRIPTION
  • Various embodiments of the present subject matter are directed to hydrodynamic machinery by which the flow of fluid may be started, stopped, or regulated by movable and/or stationary parts that open, shut, or partially obstruct one or more ports or passageways. A tidal modulator 100 that modulates tidal flow is a suitable example of such hydrodynamic machinery. Various embodiments of the present subject matter modulate tidal flow through a hydrodynamic array, such as a tidal bridge. Tidal flow variances encompass a wide range of flow rates through the tidal bridge configured to product electricity not only from ocean tides but also river currents. Without modulation, conventional tidal capture devices operate in a much narrower range of tidal flows. By incorporating the tidal modulator 100, various embodiments of the present subject matter permit the tidal bridge to capture a wider range of tidal flow variances. Flow modulation is achieved by actuating butterfly valves 102 a, 102 b, such as in spaces between the caissons and storm surge areas above upper rotor assemblies and below a machinery chamber of the tidal bridge, and also in the marine loch system.
  • The tidal bridge is an array of hydrodynamic elements (not shown). Each hydrodynamic element is a set of members and includes four columns (such as columns 122 a, 122 b, 122 c, and 122 c). The four columns 122 a, 122 b, 122 c, and 122 c rest on grooves, which are bored into the top of a base plate block. The base plate block (not shown) has numerous feet to rest on the seafloor. Besides the four columns 122 a, 122 b, 122 c, and 122 c, and the base plate block, the hydrodynamic element also includes a nested machinery chamber (mentioned but not shown), rotor assemblies (mentioned but not shown), fins (not shown), and a platform/bearing assembly (not shown). In one embodiment, the hydrodynamic element includes mechanical, electrical, and electronic members to form a vertical axis hydraulic turbine for producing energy from ocean tides or river currents. Each hydrodynamic element is interconnected with other hydrodynamic element via latches to form the tidal bridge.
  • Each column, such as columns 122 a, 122 b, 122 c, and 122 d, includes a longitudinal mortise 106 at a top, situated between an upper lip 108 a and a lower lip 108 b. The longitudinal mortise 106 terminates at either end of the column, which opens to an L-shaped ledge. The bottom of each column is finished into a longitudinal tenon 110. At the shoulders from which the longitudinal tenon 110 is projected, two notched longitudinal members 112 a, 112 b are situated in parallel along the shoulders. Each longitudinal tenon 110 of one column from one quartet of columns is interconnected with another longitudinal mortise 106 of another column of another quartet of columns so that the shoulders and therefore the notched longitudinal members 112 a, 112 b of the longitudinal tenon 110 rest on the lips 108 a, 108 b of the corresponding longitudinal mortise 106, to link the quartets of columns together to obtain desired height.
  • In one embodiment, an arrangement of a quartet of columns 122 a, 122 b, 122 c, and 122 d, each thickly made from reinforced marine concrete having an elliptical or other suitable cross-sectional shape. In one embodiment, the quartet of columns 122 a, 122 b, 122 c, and 122 d guides the tidal flow through one or more butterfly valves 102 a, 102 b, and a center valve 104, so that tidal flow can be regulated. To facilitate this effect in which the flow of fluid may be started, stopped, or regulated by movable and/or stationary valves 102 a, 102 b, and 104 that open, shut, or partially obstruct fluid passageways created by the quartet of columns 122 a, 122 b, 122 c, and 122 d, the relationship of the butterfly valves 102 a, 102 b, one to the other, is controlled. Each butterfly valve 102 a, 102 b is actuated to achieve desired tidal flow within the rotor bays of the tidal bridge so as to allow the tidal bridge to harvest tidal power in greater range, and to allow for volumetric egress of water from storm surge or flooding conditions, which reduces flow velocities through the tidal bridge.
  • Each of the butterfly valves 102 a, 102 b, is an elongated blade, which in one embodiment is configured to be thicker in the center of the body of the elongated blade and is tapered toward either terminus 114 a, 114 b. In this embodiment, a cross-section of the elongated blade suitably has an elliptical shape. Other shapes can be suitably used in other embodiments for the elongated blade as long as the shape configuration facilitates the regulating function of the butterfly valves 102 a, 102 b, against tidal flow. At the center of the top of the elongated blade is a pivoting assembly 116 which topmost member 116 a is a cylinder with teeth around its circumference. This topmost member 116 a is situated axially on top of the remaining members of the pivoting assembly 116, which secure the topmost member 116 a to the elongated blade. When a pivoting controller mechanism (not shown) is coupled to the topmost member 116 a, rotational movement is communicated to the topmost member, causing it to pivot the butterfly valve 102 a, 102 b to a desired position to open, shut, or partially obstruct fluid passageways so as to regulate tidal flow. Axially corresponding to the pivoting assembly 116 is a tail assembly 118, which supports the elongated blade from the bottom.
  • As mentioned before, the tidal bridge comprising the hydrodynamic elements of which are arranged among quartets of columns (such as columns 122 a, 122 b, 122 c, and 122 d). Each hydrodynamic element of the tidal bridge comprises one or more rotor assemblies supported by the quartet of columns that sits upon a base plate block configured to receive the motion of ocean tides or river currents acting against each hydrodynamic element to generate electricity. The quartet of columns not only serves as structural support that also houses bearing assemblies, and in some embodiments enhances the hydrofoil aspect ratio, the quartet of columns also guides tidal flow into the butterfly valves 102 a, 102 b, and the center valve 104, a portion or all of which are configured to regulate the tidal flow.
  • Regarding the center valve 104, it is another elongated blade, which in one embodiment is configured to be thicker in the center of the body of the elongated blade and is then tapered toward either terminus 118 a, 118 b. In this embodiment, a cross-section of the elongated blade suitably has an elliptical shape. Other shapes can be suitably used in other embodiments for the elongated blade as long as the shape configuration facilitates the regulating function of the center valve 104, against tidal flow. At the center of the top of the elongated blade is a positioning assembly 120 which topmost member is a plate which center defining an orifice into which a structural shaft may be inserted to center the center valve 104 and orients it equidistant to the termini of the quartet of columns. This plate is situated axially on top of the positioning assembly 120 which secures the plate to the elongated blade. Axially corresponding to the positioning assembly 116 is a supporting assembly 124, which supports the elongated blade from the bottom.
  • In various figures, two members of the quartet of columns are in parallel to the other two remaining members of the quartet of columns. For example, columns 122 a, 122 b are in parallel position with respect to columns 122 c, 122 d. As mentioned above, the center valve 104 is oriented to be radially equidistant to the inner termini of the quartet of columns. The elongated blade of the center valve 104 is suitably situated so that its longitudinal body lies in parallel with the quartet of columns. The butterfly valves 102 a, 102 b are situated parallel to each other, each of which is on either side of the elongated blade of the center valve 104. Suitably, the axial center of each of the butterfly valve is oriented in a first plane that is in parallel to a second plane of the axial center of the center valve 104 and is further oriented in a third plane that is perpendicular to the second plane of the axial center of the center valve 104, wherein the third plane is collocated with respect to the first plane albeit at 90 degree angle.
  • In the shut position, the elongated blades of the butterfly valves 102 a, 102 b are oriented perpendicular to the elongated blade of the center valve 104 so that one of the termini of each butterfly valves 102 a, 102 b, is in proximity to the terminus of the elongated blade of the center valve 104, and the other termini of each butterfly valves 102 a, 102 b, is in proximity to the terminus of two members of the quartet of columns that are crosswise, such as columns 122 b, 122 c, or columns 122 a, 122 d. In the open position, the elongated blades of the butterfly valves 102 a, 102 b, are oriented in parallel to the elongated blade of the center valve 104, and is further oriented in parallel with each other. In the partial obstruction position, the elongated blades of the butterfly valves 102 a, 102 b, are oriented at a desired angle to regulate tidal flow.
  • While illustrative embodiments have been illustrated and described, it will be appreciated that various changes can be made therein without departing from the spirit and scope of the invention.

Claims (9)

1. A tidal modulator, comprising:
a center valve; and
a pair of butterfly valves, each of whose axial center being oriented in a first plane that is in parallel to a second plane of an axial center of the center valve and being further oriented in a third plane that is perpendicular to the second plane of the axial center of the center valve, the third plane being collocated with respect to the first plane at a 90 degree angle.
2. The tidal modulator of claim 1, wherein the center valve includes an elongated blade and each butterfly valve includes another elongated blade.
3. The tidal modulator of claim 2, wherein the elongated blade of the center valve is configured to be thick in the center and tapered towards its termini.
4. The tidal modulator of claim 2, wherein the elongated blade of one butterfly valve is configured to be thick in the center and tapered towards its termini.
5. The tidal modulator of claim 2, wherein a terminus of the elongated blade of one butterfly valve is in proximal relationship to a first terminus of the elongated blade of the center valve and another terminus of the elongated blade of another butterfly valve is in proximal relationship to a second terminus of the elongated blade of the center valve.
6. The tidal modulator of claim 2, wherein a terminus of the elongated blade of one butterfly valve is in distal relationship to a first terminus of the elongated blade of the center valve and another terminus of the elongated blade of another butterfly valve is in distal relationship to a second terminus of the elongated blade of the center valve.
7. The tidal modulator of claim 1, further comprising a quartet of columns.
8. The tidal modulator of claim 7, wherein an axial center of the center valve is equidistant to termini of the quartet of columns.
9. A tidal bridge comprising a tidal modulator as claimed in claim 8.
US13/282,330 2010-10-26 2011-10-26 Tidal flow modulator Abandoned US20120186676A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/282,330 US20120186676A1 (en) 2010-10-26 2011-10-26 Tidal flow modulator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40691010P 2010-10-26 2010-10-26
US13/282,330 US20120186676A1 (en) 2010-10-26 2011-10-26 Tidal flow modulator

Publications (1)

Publication Number Publication Date
US20120186676A1 true US20120186676A1 (en) 2012-07-26

Family

ID=45993022

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/282,330 Abandoned US20120186676A1 (en) 2010-10-26 2011-10-26 Tidal flow modulator

Country Status (7)

Country Link
US (1) US20120186676A1 (en)
EP (1) EP2635803A1 (en)
JP (1) JP2013542350A (en)
CN (1) CN103415695A (en)
CA (1) CA2815575A1 (en)
RU (1) RU2013123998A (en)
WO (1) WO2012055041A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153625A1 (en) * 2010-10-26 2012-06-21 Blue Energy Canada Inc. Hydrodynamic array with mass transit tunnels

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL250954B (en) * 2017-03-06 2019-08-29 Netta Weinroth A turbine system for producing electrical energy and method therefor
CN110863939B (en) * 2019-11-20 2021-04-20 利辛县雨若信息科技有限公司 Tidal power generation device for coastal region and use method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020869A (en) * 1975-06-20 1977-05-03 General Electric Company Combined stop and intercept valve for steam turbines
US5678956A (en) * 1996-02-07 1997-10-21 Freelain; Kenneth W. Navigational bypass, gate and pump device for use in water

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3993913A (en) * 1975-03-28 1976-11-23 Dickman Smith V Tidewater power system
US5440176A (en) * 1994-10-18 1995-08-08 Haining Michael L Ocean current power generator
GB0306809D0 (en) * 2003-03-25 2003-04-30 Marine Current Turbines Ltd Water current powered turbines installed on a deck or "false seabed"
US8072089B2 (en) * 2003-05-29 2011-12-06 Krouse Wayne F Fluid energy apparatus and method
US6779947B1 (en) * 2003-08-21 2004-08-24 Kevin Buchanan Gate systems and methods for regulating tidal flows
GB0621381D0 (en) * 2006-10-27 2006-12-06 Neptune Renewable Energy Ltd Tidal power apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4020869A (en) * 1975-06-20 1977-05-03 General Electric Company Combined stop and intercept valve for steam turbines
US5678956A (en) * 1996-02-07 1997-10-21 Freelain; Kenneth W. Navigational bypass, gate and pump device for use in water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153625A1 (en) * 2010-10-26 2012-06-21 Blue Energy Canada Inc. Hydrodynamic array with mass transit tunnels
US8836155B2 (en) * 2010-10-26 2014-09-16 Blue Energy Canada Inc. Hydrodynamic array with mass transit tunnels

Also Published As

Publication number Publication date
CN103415695A (en) 2013-11-27
WO2012055041A1 (en) 2012-05-03
RU2013123998A (en) 2014-12-10
JP2013542350A (en) 2013-11-21
CA2815575A1 (en) 2012-05-03
EP2635803A1 (en) 2013-09-11

Similar Documents

Publication Publication Date Title
US8956103B2 (en) Hydroelectricity generating unit capturing marine wave energy and marine current energy
CN206054171U (en) Modularity bi-directional current energy TRT
US8253263B2 (en) Wave-power system for extracting simultaneously both potential and kinetic energy at variable significant wave heights and periods
WO2009031016A3 (en) An energy generating system using a plurality of waterwheels
CN101828014A (en) Electrical generation device-turbine rotor shape for electrical power generation from moving fluid
US8196396B1 (en) Compact design of using instream river flow and/or pump discharge flow technology added to differentials between head water and turbine location
US20120248776A1 (en) Wave energy extraction system using an oscillating water column attached to the columns of an offshore platform
KR20140056254A (en) Arrangement for extracting energy from flowing liquid
CN105189874B (en) Hybrid energy equipment
US20120186676A1 (en) Tidal flow modulator
US10215151B2 (en) Aerating system for hydraulic turbine
KR101777966B1 (en) Cross-flow vertical-type wind power system with optimal energy harvesting function according to wind direction or speed
DK201300188A1 (en) Millfield Wing Converters: Millfield Wave & Tidewater Converters & Millfield Wind Converter
GB2396888A (en) Wind or water currect turbine
AU2013101419A4 (en) Medow Sea Wave Energy Converter (SWEC)
WO2016185189A1 (en) Wave energy capture device
KR101296859B1 (en) Wave power generation system using active breakwater
KR101310877B1 (en) Energy shaft, hydroelecric power generation using the same, and wind power generation using the same
DE102011109116A1 (en) Hydroelectric power plant (+ wind)
KR101375562B1 (en) Generating equipment
WO2013017214A1 (en) Hydroelectric power plant
JP2018090156A (en) Floating body structure
KR101273647B1 (en) Shaft for tidal power generator and tidal power generator having the same
KR101361728B1 (en) Floating water-flow power generating system
JP5162736B2 (en) Installation method of turbine blade in running water use

Legal Events

Date Code Title Description
AS Assignment

Owner name: BLUE ENERGY CANADA INC., CANADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BURGER, MARTIN;REEL/FRAME:027844/0564

Effective date: 20120303

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION