US20130046209A1 - Systems and methods for improving an outside appearance of skin using ultrasound as an energy source - Google Patents

Systems and methods for improving an outside appearance of skin using ultrasound as an energy source Download PDF

Info

Publication number
US20130046209A1
US20130046209A1 US13/545,954 US201213545954A US2013046209A1 US 20130046209 A1 US20130046209 A1 US 20130046209A1 US 201213545954 A US201213545954 A US 201213545954A US 2013046209 A1 US2013046209 A1 US 2013046209A1
Authority
US
United States
Prior art keywords
skin
subcutaneous tissue
reducing
skin surface
appearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/545,954
Inventor
Michael H. Slayton
Peter G. Barthe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guided Therapy Systems LLC
Original Assignee
Guided Therapy Systems LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guided Therapy Systems LLC filed Critical Guided Therapy Systems LLC
Priority to US13/545,954 priority Critical patent/US20130046209A1/en
Assigned to GUIDED THERAPY SYSTEMS, LLC reassignment GUIDED THERAPY SYSTEMS, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARTHE, PETER G., SLAYTON, MICHAEL H.
Publication of US20130046209A1 publication Critical patent/US20130046209A1/en
Priority to US14/868,947 priority patent/US20160016015A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00642Sensing and controlling the application of energy with feedback, i.e. closed loop control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0092Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin using ultrasonic, sonic or infrasonic vibrations, e.g. phonophoresis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0017Wound healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0004Applications of ultrasound therapy
    • A61N2007/0034Skin treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0039Ultrasound therapy using microbubbles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0052Ultrasound therapy using the same transducer for therapy and imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/006Lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0073Ultrasound therapy using multiple frequencies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • A61N2007/027Localised ultrasound hyperthermia with multiple foci created simultaneously

Definitions

  • ultrasound energy can be applied to treat tissue or perform traditionally invasive procedures in a non-invasive manner.
  • the application of ultrasound energy provides both thermal and/or mechanical effects that help treat certain ailments such as acne and enable many traditional invasive procedures to be performed non-invasively.
  • ultrasound devices typically affect a specific portion of the tissue at a certain depth within the region of interest based upon the configuration of the particular ultrasound device.
  • an ultrasound device might be configured to affect an area five millimeters below the surface of the skin.
  • the tissue from the surface of the skin to the depth of five millimeters is spared and not treated by the ultrasound energy. Sparing these intervening spaces of tissue hinders the overall beneficial effect of ultrasound as treatment of this intervening tissue increases ultrasound treatment's overall efficacy. Accordingly, new approaches of cosmetic enhancement of skin are needed, which are rapid and non-invasive.
  • ultrasound energy can be focused, unfocused or defocused and can be applied to a region of interest containing subcutaneous tissue below a surface to achieve a cosmetic effect.
  • the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • the system can further comprise a hand-held probe comprising: an ultrasound transducer; an indicator display; at least one input/output control; a position sensor; and a rechargeable battery configured to power the hand-held probe.
  • the system can further comprise a controller configured to control the hand-held probe and a wireless interface configured to couple communication between the controller and the hand-held probe.
  • the controller is at least one of a personal data assistant, a cell phone, an iPhone, an iPad, a computer, a laptop, and a netbook.
  • the transducer is configured as a 2 dimensional linear array.
  • FIG. 1 is a flow chart illustrating methods of cosmetic enhancement, according to various non-limiting embodiments
  • FIG. 2 is a flow chart illustrating methods according to various non-limiting embodiments
  • FIG. 3 is a cross sectional view illustrating ultrasound energy directed to various subcutaneous tissue layers below a surface, according to various non-limiting embodiments
  • FIG. 4 is a cross sectional view illustrating ultrasound energy directed to two targets in subcutaneous tissue below a surface, according to various non-limiting embodiments
  • FIG. 5 is a cross sectional view illustrating a conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments
  • FIG. 6 is a cross sectional view illustrating a conformal region of elevated temperature in various layers of subcutaneous tissue, according to various non-limiting embodiments
  • FIG. 7 is a cross sectional view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments
  • FIG. 8 is a prospective view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments
  • FIG. 9 is a cross sectional view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in various layers of subcutaneous tissue, according to various non-limiting embodiments.
  • FIGS. 10 A-B are a cross sectional views illustrating conformal region of elevated temperature and second conformal region of elevated temperature in soft tissue, according to various non-limiting embodiments;
  • FIGS. 11 A-B are a cross sectional views illustrating conformal region of elevated temperature and second conformal region of elevated temperature in soft tissue, according to various non-limiting embodiments;
  • FIG. 12 is a cross sectional view illustrating a plurality of conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments.
  • FIG. 13 is a cross sectional view illustrating a hand held probe, according to various non-limiting embodiments.
  • the phrase “at least one of A, B, and C” should be construed to mean a logical (A or B or C), using a non-exclusive logical “or.”
  • the phrase “A, 3 and/or C” should be construed to mean (A, B, and C) or alternatively (A or B or C), using a non-exclusive logical “or.” It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
  • various embodiments may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions.
  • various embodiments may employ various medical treatment devices, visual imaging and display devices, input terminals and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices.
  • the embodiments may be practiced in any number of medical contexts and that the various embodiments relating to a method and system for acoustic tissue treatment as described herein are merely indicative of exemplary applications for the invention.
  • the principles, features and methods discussed may be applied to any medical application.
  • various aspects of the various embodiments may be suitably applied to cosmetic applications.
  • some of the embodiments may be applied to cosmetic enhancement of skin and/or various subcutaneous tissue layers.
  • methods and systems useful for cosmetic rejuvenation of face and body are provided herein.
  • the methods and systems provided herein are noninvasive, for example, no cutting or injecting into the skin is required.
  • Cosmetic rejuvenation of the face and/or body using the methods and systems provided herein minimize recover time and may in some cases eliminate downtime for recovery. Further cosmetic rejuvenation using the methods and systems provided herein minimize discomfort to a patient having such a rejuvenation procedure.
  • a hand-held extracorporeal apparatus which emits controlled ultrasound energy into layers of the skin to create a conformal region of elevated temperature in tissue of the skin.
  • a system useful for cosmetic rejuvenation of the face and/or body is in a handheld format which may include a rechargeable power supply.
  • a cosmetic enhancement can be a procedure but not limited to procedures that are used to improve or change the appearance of a nose, eyes, eyebrows and/or other facial features, or to improve or change the appearance and/or the texture and/or the elasticity of skin, or to improve or change the appearance of a mark or scar on a skin surface, or to improve or change the appearance and/or the content of fat near a skin surface, or the targeting of a gland to improve or change the appearance a portion of the body.
  • cosmetic enhancement is a non-surgical and non-invasive procedure.
  • cosmetic enhancement provides rejuvenation to at least one portion of the body.
  • methods of cosmetic enhancement can increase elasticity of skin by thinning a dermis layer, thereby rejuvenating a portion of skin.
  • methods of cosmetic enhancement can stimulate initiation of internal body resources for the purpose of repairing an injury and/or cell defienticy.
  • the method can comprise locating a targeted portion of skin surface; targeting a region of interest comprising the targeted portion of the skin surface and subcutaneous tissue below the skin surface; delivering ultrasound energy to the region of interest; producing an effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • the method can further comprise imaging the subcutaneous tissue below the skin surface. In some embodiments, the method can further comprise administering a medicant to the region of interest. In some embodiments, the method can further comprise activating the medicant in the region of interest with the ultrasound energy at the same frequency or a different frequency.
  • the effect is a cosmetic effect.
  • the cosmetic effect is at least one of increasing skin elasticity/tighten skin, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, reducing fat, reducing cellulite, treating and/or preventing acne, treating hyperhidrosis, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, treating of soft tissue in the region of interest, rejuvenating skin, increasing skin elasticity, increasing collagen in tissue, smoothing of the texture of skin, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, lifting of skin, body sculpting, generating new tissue in the subcutaneous tissue, and combinations thereof.
  • the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • the method can further comprise delivering a medicant to the subcutaneous tissue below the skin surface. In some embodiments, the method can further comprise comprising activating the medicant in the region of interest with the ultrasound energy at the same frequency or a different frequency. In some embodiments, the method can further comprise delivering a cosmeceutical to the subcutaneous tissue below the skin surface.
  • the method can further comprise delivering a secondary energy to the subcutaneous tissue below the skin surface.
  • the secondary energy is a photon-based energy.
  • the secondary energy is radio frequency based energy.
  • the biological effect is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of a portion of the subcutaneous tissue, accelerating ta wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth in the subcutaneous tissue, increasing the liberation of cytokines within the subcutaneous layer, peaking inflammation in the subcutaneous tissue, partially shrinking collagen in a portion of the subcutaneous tissue, denaturing of proteins in the subcutaneous tissue, and combinations thereof.
  • the biological effect is at least one of creating immediate or delayed cell death in the subcutaneous tissue, collagen remodeling in the subcutaneous tissue, disrupting or modifying of biochemical cascades in at least one of the skin surface and the subcutaneous tissue, producing new collagen in the subcutaneous tissue, stimulating cell growth in the subcutaneous tissue, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to in the subcutaneous tissue, and combinations thereof.
  • the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • the system can further comprise a hand-held probe comprising: an ultrasound transducer; an indicator display; at least one input/output control; a position sensor; and a rechargeable battery configured to power the hand-held probe.
  • the system can further comprise a controller configured to control the hand-held probe and a wireless interface configured to couple communication between the controller and the hand-held probe.
  • the controller is at least one of a personal data assistant, a cell phone, an iPhone, an iPad, a computer, a laptop, and a netbook.
  • the transducer is configured as a 2 dimensional linear array.
  • the system and the related method of the present invention apply ultrasound energy to a region of interest at the surface of the patient's skin and ultrasound energy travels from the surface to a location within the region of interest and treats all the tissue within the region of interest with a combined energy profile without sparing any of such tissue.
  • the ultrasound transducer is configured to simultaneously create a first conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue.
  • the first conformal region of elevated temperature and second conformal region of elevated temperature intersect in the subcutaneous tissue.
  • the first conformal region of elevated temperature and second conformal region of elevated temperature are positioned perpendicular to each other in the subcutaneous tissue.
  • the method can comprise creating a conformal region of elevated temperature; treating a surface and subsurface of skin simultaneously; creating a transitional biological effect on the surface of the skin without causing cell death, a scar, or permanent damage to the surface of the skin; creating a thermal effect to the subsurface of the skin; and initiating a permanent biological effect to the subsurface of the skin.
  • the method can further comprise creating an optically visible effect on the surface of the skin.
  • the transitional biological effect can be one of erythema, edema, and a transitional coagulative point.
  • the optically visible effect on the surface of the skin can be at least one of at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • the permanent biological effect can be at least one of is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of a portion of the subcutaneous tissue, accelerating ta wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth in the subcutaneous tissue, increasing the liberation of cytokines within the subcutaneous layer, peaking inflammation in the subcutaneous tissue, partially shrinking collagen in a portion of the subcutaneous tissue, denaturing of proteins in the subcutaneous tissue, and combinations thereof.
  • the permanent biological effect is at least one of creating immediate or delayed cell death in the subcutaneous tissue, collagen remodeling in the subcutaneous tissue, disrupting or modifying of biochemical cascades in at least one of the skin surface and the subcutaneous tissue, producing new collagen in the subcutaneous tissue, stimulating cell growth in the subcutaneous tissue, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to in the subcutaneous tissue, and combinations thereof.
  • Step 10 is identifying a targeted skin surface, which may be located anywhere on the body, such as, for example, in any of the following: face, neck, hands, arms, legs, buttocks, and combinations thereof.
  • Step 12 is targeting a region of interest (“ROI”).
  • the ROI can be located in subcutaneous tissue below the targeted skin surface, which can be anywhere in the body, such as, those listed previously.
  • the subcutaneous tissue can comprise any or all of the following tissues: an epidermal layer, a dermal layer, a fat layer, a SMAS layer, and a muscle layer.
  • step 22 is imaging subcutaneous tissue below the targeted skin surface can be between steps 10 and 12 or can be substantially simultaneous with or be part of step 12 .
  • step 14 is directing ultrasound energy to ROI.
  • the ultrasound energy may be focused, defocused, or unfocused.
  • the ultrasound sound energy can be weakly focused.
  • the ultrasound energy can be directed to the subcutaneous tissue layer below the targeted skin surface.
  • the ultrasound energy may be streaming.
  • the ultrasound energy may be directed to a first depth and then directed to a second depth.
  • the ultrasound energy may force a pressure gradient in the subcutaneous tissue layer below the targeted skin surface.
  • the ultrasound energy may be a first ultrasound energy effect, which comprises an ablative or a hemostatic effect, and a second ultrasound energy effect, which comprises at least one of non-thermal streaming, hydrodynamic, diathermic, and resonance induced tissue effects. Directing ultrasound energy to the ROI is a non-invasive technique.
  • the targeted skin surface and the layers above a target point in the subcutaneous layer are spared from injury.
  • the targeted skin surface and the layers above a target point in the subcutaneous layer are heated to a 10° C. to 15° C. above the tissue's natural state. Such treatment does not require an incision in order to reach the subcutaneous tissue layer below the targeted skin surface to enhance the targeted skin surface.
  • the ultrasound energy level is in a range of about 0.1 joules to about 500 joules in order to create an ablative lesion.
  • the ultrasound energy 108 level can be in a range of from about 0.1 joules to about 100 joules, or from about 1 joules to about 50 joules, or from about 0.1 joules to about 10 joules, or from about 50 joules to about 100 joules, or from about 100 joules to about 500 joules, or from about 50 joules to about 250 joules.
  • the amount of time ultrasound energy is applied at these levels to create a lesion varies in the range from approximately 1 millisecond to several minutes.
  • a range can be from about 1 millisecond to about 5 minutes, or from about 1 millisecond to about 1 minute, or from about 1 millisecond to about 30 seconds, or from about 1 millisecond to about 10 seconds, or from about 1 millisecond to about 1 second, or from about 1 millisecond to about 0.1 seconds, or about 0.1 seconds to about 10 seconds, or about 0.1 seconds to about 1 second, or from about 1 millisecond to about 200 milliseconds, or from about 1 millisecond to about 0.5 seconds.
  • the frequency of the ultrasound energy can be in a range from about 0.1 MHz to about 100 MHz, or from about 0.1 MHz to about 50 MHz, or from about 1 MHz to about 50 MHz or about 0.1 MHz to about 30 MHz, or from about 10 MHz to about 30 MHz, or from about 0.1 MHz to about 20 MHz, or from about 1 MHz to about 20 MHz, or from about 20 MHz to about 30 MHz.
  • the frequency of the ultrasound energy can be in a range from about 1 MHz to about 12 MHz, or from about 5 MHz to about 15 MHz, or from about 2 MHz to about 12 MHz or from about 3 MHz to about 7 MHz.
  • the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 0 mm to about 150 mm, or from about 0 mm to about 100 mm, or from about 0 mm to about 50 mm, or from about 0 mm to about 30 mm, or from about 0 mm to about 20 mm, or from about 0 mm to about 10 mm, or from about 0 mm to about 5 mm.
  • the ultrasound energy can be emitted to depths below a skin surface in a range from about 5 mm to about 150 mm, or from about 5 mm to about 100 mm, or from about 5 mm to about 50 mm, or from about 5 mm to about 30 mm, or from about 5 mm to about 20 mm, or from about 5 mm to about 10 mm.
  • the ultrasound energy can be emitted to depths below a skin surface in a range from about 10 mm to about 150 mm, or from about 10 mm to about 100 mm, or from about 10 mm to about 50 mm, or from about mm to about 30 mm, or from about 10 mm to about 20 mm, or from about 0 mm to about 10 mm.
  • the ultrasound energy can be emitted to depths at or below a skin surface in the range from about 20 mm to about 150 mm, or from about 20 mm to about 100 mm, or from about 20 mm to about 50 mm, or from about 20 mm to about 30 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 30 mm to about 150 mm, or from about 30 mm to about 100 mm, or from about 30 mm to about 50 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 50 mm to about 150 mm, or from about 50 mm to about 100 mm.
  • the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 20 mm to about 60 mm, or from about 40 mm to about 80 mm, or from about 10 mm to about 40 mm, or from about 5 mm to about 40 mm, or from about 0 mm to about 40 nm, or from about 10 mm to about 30 mm, or from about 5 mm to about 30 mm, or from about 0 mm to about 30 mm.
  • the ultrasound energy may be emitted at various energy levels, such as for example, the energy levels described herein. Further, the amount of time ultrasound energy is applied at these levels for various time ranges, such as for example, the ranges of time described herein.
  • the frequency of the ultrasound energy is in various frequency ranges, such as for example, the frequency ranges described herein.
  • the ultrasound energy can be emitted to various depths below a targeted skin surface, such as for example, the depths described herein.
  • the ultrasound energy may coagulate a portion of the subcutaneous tissue layer below the targeted skin surface.
  • the ultrasound energy may score a portion of subcutaneous tissue layer below the targeted skin surface.
  • step 24 which is administering a medicant and/or cosmeceutical to the ROI, can be between steps 12 and 14 .
  • the medicant and/or cosmeceutical can be any chemical or naturally occurring substance that can assist in cosmetic enhancement.
  • the medicant and/or cosmeceutical can be but not limited to a pharmaceutical, a drug, a medication, a nutriceutical, an herb, a vitamin, a cosmetic, an amino acid, a collagen derivative, a holistic mixture, and combinations thereof.
  • the medicant and/or cosmeceutical can be administered by applying it to the skin above the ROI.
  • the medicant and/or cosmeceutical can be administered to the circulatory system.
  • the medicant and/or cosmeceutical can be in the blood stream and can be activated or moved to the ROI by the ultrasound energy.
  • the medicant and/or cosmeceutical can be administered by injection into or near the ROI. Any naturally occurring proteins, stem cells, growth factors and the like can be used as medicant and/or cosmeceutical in accordance to various embodiments.
  • a medicant and/or cosmeceutical can be mixed in a coupling gel or can be used as a coupling gel.
  • Step 16 is producing a cosmetic effect in the ROI.
  • a cosmetic effect can be increase skin elasticity/tighten skin.
  • a cosmetic effect can be reducing skin oiliness.
  • a cosmetic effect can be reducing skin pore size/smooth skin texture.
  • a cosmetic effect can be reducing hyperpigmentation.
  • a cosmetic effect can be reducing fat and/or cellulite.
  • a cosmetic effect can be treating and/or preventing acne.
  • a cosmetic effect can be treating hyperhidrosis.
  • a cosmetic effect can be reducing an appearance of spider veins and/or rosacea.
  • a cosmetic effect can be reducing an appearance of scars.
  • a cosmetic effect can be reducing an appearance of stretch marks.
  • a cosmetic effect can be treatment of soft tissue.
  • a cosmetic effect can be rejuvenation of skin.
  • a cosmetic effect can be increasing skin elasticity.
  • a cosmetic effect can be increasing collagen in tissue.
  • a cosmetic effect can be a smoothing of the texture of skin.
  • a cosmetic effect can be a tightening of sagging sink.
  • a cosmetic effect may be the rejuvenation of photoaged skin.
  • a cosmetic effect can be increasing a thickness of a dermal layer.
  • a cosmetic effect can be a reduction of wrinkle on a skin surface.
  • a cosmetic effect can be a lifting of skin, for example, a facelift, a neck lift, a brow lift, and/or a jowl lift.
  • a cosmetic effect can be body sculpting.
  • a cosmetic effect can be generating new tissue in the subcutaneous layer.
  • a cosmetic effect can be synergetic with the medicant and/or cosmeceutical administered to ROI in steps 24 and/or 26 . Cosmetic effects can be combined.
  • a cosmetic effect can be produced by a biological effect that initiated or stimulated by the ultrasound energy.
  • a biological effect can be stimulating or increase an amount of heat shock proteins.
  • Such a biological effect can cause white blood cells to promote healing of a portion of the subcutaneous layer in the ROI.
  • a biological effect can be to restart or increase the wound healing cascade at the injury location.
  • a biological effect can be increasing the blood perfusion to the injury location.
  • a biological effect can be encouraging collagen growth.
  • a biological effect may increase the liberation of cytokines and may produce reactive changes within the subcutaneous layer.
  • a biological effect may by peaking inflammation in the ROI.
  • a biological effect may at least partially shrinking collagen portion of soft tissue.
  • a biological effect may be denaturing of proteins in the ROI.
  • a biological effect may be creating immediate or delayed cell death (apoptosis) in the ROI.
  • a biological effect may be collagen remodeling in the ROI.
  • a biological effect may be the disruption or modification of biochemical cascades.
  • a biological effect may be the production of new collagen.
  • a biological effect may a stimulation of cell growth in the ROI.
  • a biological effect may be angiogenesis.
  • a biological effect may a cell permeability response.
  • a biological effect may be an enhanced delivery of medicants to soft tissue.
  • ultrasound energy is deposited in the subcutaneous layer changes at least one of concentration and activity of inflammatory mediators (TNF-A, IL-1) as well as growth factors (TGF-B1, TGF-B3) below the targeted skin surface.
  • TNF-A inflammatory mediators
  • TGF-B1, TGF-B3 growth factors
  • step 26 which is administering medicant and/or cosmeceutical to ROI, can be between steps 14 and 16 or can be substantially simultaneous with or be part of step 16 .
  • the medicant and/or cosmeceutical useful in step 26 are essentially the same as those discussed for step 24 .
  • ultrasound energy is deposited, which can stimulate a change in at least one of concentration and activity of one or more of the following: Adrenomedullin (AM), Autocrine motility factor, Bone morphogenetic proteins (BMPs), Brain-derived neurotrophic factor (BDNF), Epidermal growth factor (EGF), Erythropoietin (EPO), Fibroblast growth factor (FGF), Glial cell line-derived neurotrophic factor (GDNF), Granulocyte colony-stimulating factor (G-CSF), Granulocyte macrophage colony-stimulating factor (GM-CSF), Growth differentiation factor-9 (GDF9), Hepatocyte growth factor (HGF), Hepatoma-derived growth factor (HDGF), Insulin-like growth factor (NGF), Migration-stimulating factor, Myostatin (GDF-8), Nerve growth factor (NGF) and other neurotrophins, Platelet-derived growth factor (PDGF), Thrombopoietin (TPO), Transforming growth factor alpha
  • medicants can include a drug, a medicine, or a protein, and combinations thereof.
  • Medicants can also include adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly.
  • Thrombin and fibrin glue are used surgically to treat bleeding and to thrombose aneurysms.
  • Medicants can include Desmopressin is used to improve platelet function by activating arginine vasopressin receptor 1 A.
  • Medicants can include coagulation factor concentrates are used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption.
  • Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma are commonly-used coagulation factor products.
  • Recombinant activated human factor VII can be used in the treatment of major bleeding.
  • Medicants can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate.
  • medicants can include steroids like the glucocorticoid cortisol.
  • step 25 which is directing secondary energy to the ROT can be substantially simultaneous with or be part of step 16 .
  • step 25 can be administered at least one of before and after step 16 .
  • Step 25 can be alternated with step 16 , which can create a pulse of two different energy emissions to the ROI.
  • step 25 which is directing secondary energy to the ROI can be substantially simultaneous with or be part of step 16 .
  • step 25 can be administered at least one of before and after step 16 .
  • Step 25 can be alternated with step 16 , which can create a pulse of two different energy emissions to the ROI.
  • Secondary energy can be provided by a laser source, or an intense pulsed light source, or a light emitting diode, or a radio frequency, or a plasma source, or a magnetic resonance source, or a mechanical energy source, or any other photon-based energy source.
  • Secondary energy can be provided by any appropriate energy source now known or created in the future. More than one secondary energy source may be used for step 25 .
  • various embodiments provide energy, which may be a first energy and a second energy.
  • a first energy may be followed by a second energy either immediately or after a delay period.
  • a first energy and a second energy can be delivered simultaneously.
  • the first energy and the second energy is ultrasound energy.
  • the first energy is ultrasound and the second energy is generated by one of a laser, an intense pulsed light, a light emitting diode, a radiofrequency generator, photon-based energy source, plasma source, a magnetic resonance source, or a mechanical energy source, such as for example, pressure, either positive or negative.
  • energy may be a first energy, a second energy, and a third energy, emitted simultaneously or with a time delay or a combination thereof.
  • energy may be a first energy, a second energy, a third energy, and an nth energy, emitted simultaneously or with a time delay or a combination thereof.
  • Any of the a first energy, a second energy, a third energy, and a nth may be generated by at least one of a laser, an intense pulsed light, a light emitting diode, a radiofrequency generator, an acoustic source, photon-based energy source, plasma source, a magnetic resonance source, and/or a mechanical energy source.
  • Step 20 is cosmetically enhancing the targeted skin surface.
  • step 30 is determining results. If the results of step 30 are acceptable within the parameters of the treatment then Yes direction 34 is followed to step 20 . If the results of step 30 are not acceptable within the parameters of the treatment then No direction 32 is followed back to step 12 . Further examples and variations of treatment method 100 are discussed herein.
  • method 100 may be used with an extracorporeal, non-invasive procedure.
  • temperature may increase within ROI may range from approximately 10° C. to about 15° C.
  • Other bio-effects to target tissue can include heating, cavitation, streaming, or vibro-accoustic stimulation, and combinations thereof.
  • ultrasound probe is coupled directly to ROI, as opposed to targeted skin surface 104 , to affect the subcutaneous tissue.
  • Step 50 is identifying a skin surface.
  • the skin surface can be located anywhere on the body. However, the skin surface may be located on the face and/or neck.
  • the skin surface contains a defect or other undesirable characteristic that is to be cosmetically enhanced or rejuvenated.
  • the defect or other undesirable characteristic may be, for example, but not limited to a wrinkle, oiliness, pore size, rough skin texture, sun spots, liver spots, sagging skin, lack of glow, a scar, a stretch mark, a blemish, and the like.
  • Step 60 is directing ultrasound energy into tissue below the skin surface.
  • the ultrasound energy may be unfocused and deposited in a volume that spans from the skin surface into one or more of subcutaneous tissue below.
  • the ultrasound energy can have any of the characteristics as described herein.
  • the ultrasound energy can be controlled using spatial parameters.
  • the ultrasound energy can be controlled using temporal parameters.
  • the ultrasound energy can be controlled using a combination of temporal parameters and spatial parameters. Also, depending at least in part upon the specific bio-effect and tissue targeted, temperature of the subcutaneous tissue may increase within ROI may range from approximately 10° C. to about 15° C.
  • step 55 may be implemented, which is coupling a medicant or cosmeceutical to the skin surface. If step 55 is implemented, step 65 can be employed which is driving the medicant or cosmeceutical in to the subcutaneous layer below the skin surface. The medicant or cosmeceutical may be driven into the subcutaneous layer using the ultrasound energy of step 60 or an alternate frequency of ultrasound energy.
  • step 67 can be employed, which is directing a second energy below the skin surface.
  • the second energy can be a second ultrasound energy having different characteristics than the ultrasound energy in step 60 .
  • the second energy can be provided by a laser source, or an IPL source, or a radio frequency, or a plasma source, or a magnetic resonance source.
  • Secondary energy can be provided by any appropriate energy source now known or created in the future. More than one secondary energy source may be used for step 67
  • Step 70 is producing a bio-effect in tissue below the skin surface.
  • a biological effect can be stimulating or increase an amount of heat shock proteins. Such a biological effect can cause white blood cells to promote healing of a portion of the subcutaneous layer in the ROI.
  • a biological effect can be to restart or increase the wound healing cascade at the injury location.
  • a biological effect can be increasing the blood perfusion to the injury location.
  • a biological effect can be encouraging collagen growth.
  • a biological effect may increase the liberation of cytokines and may produce reactive changes within the subcutaneous layer.
  • a biological effect may by peaking inflammation in the ROI.
  • a biological effect may at least partially shrinking collagen portion of soft tissue.
  • a biological effect may be denaturing of proteins in the ROI.
  • a biological effect may be creating immediate or delayed cell death (apoptosis) in the ROI.
  • a biological effect may be collagen remodeling in the ROI.
  • a biological effect may be the disruption or modification of biochemical cascades.
  • a biological effect may be the production of new collagen.
  • a biological effect may a stimulation of cell growth in the ROI.
  • a biological effect may be angiogenesis.
  • a biological effect may a cell permeability response.
  • a biological effect may be an enhanced delivery of medicants to soft tissue.
  • Step 80 is improving an appearance of the skin surface.
  • This can be a cosmetic effect.
  • the improving an appearance of the skin surface can be an increase in skin elasticity.
  • the improving an appearance of the skin surface can be reducing skin oiliness.
  • the improving an appearance of the skin surface can be reducing skin pore size.
  • the improving an appearance of the skin surface can be smoothing skin texture.
  • the improving an appearance of the skin surface can be reducing hyperpigmentation.
  • the improving an appearance of the skin surface can be treating and/or preventing acne.
  • the improving an appearance of the skin surface can be reducing a blemish.
  • the improving an appearance of the skin surface can be reducing an appearance of spider veins and/or rosacea.
  • the improving an appearance of the skin surface can be reducing an appearance of scars.
  • the improving an appearance of the skin surface can be reducing an appearance of stretch marks.
  • the improving an appearance of the skin surface can be rejuvenation of skin.
  • the improving an appearance of the skin surface can be increasing collagen in tissue.
  • the improving an appearance of the skin surface can be a tightening of sagging sink.
  • the improving an appearance of the skin surface can be the rejuvenation of photoaged skin.
  • the improving an appearance of the skin surface can be increasing a thickness of a dermal layer.
  • the improving an appearance of the skin surface can be a reduction of wrinkle on a skin surface.
  • the improving an appearance of the skin surface can be generating new tissue in the subcutaneous layer.
  • the improving an appearance of the skin surface can be synergetic with the medicant and/or cosmeceutical administered to ROI in steps 55 and 65 .
  • ultrasound energy propagates as a wave with relatively little scattering, over depths up to many centimeters in tissue depending on the ultrasound frequency.
  • the focal spot size achievable with any propagating wave energy depends on wavelength.
  • Ultrasound wavelength is equal to the acoustic velocity divided by the ultrasound frequency.
  • Attenuation (absorption, mainly) of ultrasound by tissue also depends on frequency.
  • Shaped conformal distribution of elevated temperature can be created through adjustment of the strength, depth, and type of focusing, energy levels and timing cadence.
  • focused ultrasound can be used to create precise arrays of microscopic thermal ablation zones.
  • Ultrasound energy 120 can produce an array of ablation zones deep into the layers of the soft tissue. Detection of changes in the reflection of ultrasound energy can be used for feedback control to detect a desired effect on the tissue and used to control the exposure intensity, time, and/or position.
  • ultrasound probe 105 is configured with the ability to controllably produce conformal distribution of elevated temperature in soft tissue within ROI 115 through precise spatial and temporal control of acoustic energy deposition, i.e., control of ultrasound probe 105 is confined within selected time and space parameters, with such control being independent of the tissue.
  • the ultrasound energy 120 can be controlled using spatial parameters.
  • the ultrasound energy 120 can be controlled using temporal parameters.
  • the ultrasound energy 120 can be controlled using a combination of temporal parameters and spatial parameters.
  • control system and ultrasound probe 105 can be configured for spatial control of ultrasound energy 120 by controlling the manner of distribution of the ultrasound energy 120 .
  • spatial control may be realized through selection of the type of one or more transducer configurations insonifying ROI 115 , selection of the placement and location of ultrasound probe 105 for delivery of ultrasound energy 120 relative to ROI 115 e.g., ultrasound probe 105 being configured for scanning over part or whole of ROI 115 to produce contiguous thermal injury having a particular orientation or otherwise change in distance from ROI 115 , and/or control of other environment parameters, e.g., the temperature at the acoustic coupling interface can be controlled, and/or the coupling of ultrasound probe 105 to tissue.
  • Other spatial control can include but are not limited to geometry configuration of ultrasound probe 105 or transducer assembly, lens, variable focusing devices, variable focusing lens, stand-offs, movement of ultrasound probe, in any of six degrees of motion, transducer backing, matching layers, number of transduction elements in transducer, number of electrodes, or combinations thereof.
  • control system and ultrasound probe 105 can also be configured for temporal control, such as through adjustment and optimization of drive amplitude levels, frequency, waveform selections, e.g., the types of pulses, bursts or continuous waveforms, and timing sequences and other energy drive characteristics to control thermal ablation of tissue.
  • Other temporal control can include but are not limited to full power burst of energy, shape of burst, timing of energy bursts, such as, pulse rate duration, continuous, delays, etc., change of frequency of burst, burst amplitude, phase, apodization, energy level, or combinations thereof.
  • the spatial and/or temporal control can also be facilitated through open-loop and closed-loop feedback arrangements, such as through the monitoring of various spatial and temporal characteristics.
  • control of acoustical energy within six degrees of freedom e.g., spatially within the X, Y and Z domain, as well as the axis of rotation within the XY, YZ and XZ domains, can be suitably achieved to generate conformal distribution of elevated temperature of variable shape, size and orientation.
  • ultrasound probe 105 can enable the regions of elevated temperature possess arbitrary shape and size and allow the tissue to be heated in a controlled manner.
  • Ultrasound probe 105 emits ultrasound energy 120 in ROI 115 .
  • ultrasound probe 105 is capable of emitting ultrasound energy 120 at variable depths in ROI 115 , such as, for example, the depths described herein.
  • Ultrasound probe 105 is capable of emitting ultrasound energy as a single frequency, variable frequencies, or a plurality of frequencies, such as, for example, the frequency ranges described herein.
  • Ultrasound probe 105 is capable of emitting ultrasound energy that is weakly focused.
  • Ultrasound probe 105 is capable of emitting ultrasound energy 120 for variable time periods or to pulse the emission over time, such as, for example, those time intervals described herein. Ultrasound probe 105 is capable of providing various energy levels of ultrasound energy, such as, for example, the energy levels described herein.
  • Ultrasound probe 105 may be individual hand-held device, or may be part of a treatment system.
  • the ultrasound probe 105 can provide both ultrasound energy and imaging ultrasound energy. However, ultrasound probe 105 may provide only ultrasound energy.
  • Ultrasound probe 105 may comprise a therapeutic transducer and a separate imaging transducer.
  • Ultrasound probe 105 may comprise a transducer or a transducer array capable of both cosmetic rejuvenation and imaging applications. According an alternative embodiment, ultrasound probe 105 is coupled directly to one of the tissue layers, as opposed to targeted skin surface 104 to treat the tissue layer.
  • ultrasound probe 105 may be used for method 100 or method 150 .
  • method 100 or method 150 can be implemented using any or all of the elements illustrated in FIG. 3 .
  • at least a portion of method 100 or a variation of method 100 can be implemented using any or all of the elements illustrated in FIG. 3 .
  • at least a portion of method 150 or a variation of method 150 can be implemented using any or all of the elements illustrated in FIG. 3 .
  • Transduction element 125 B comprises first transduction element 121 and second transduction element 122 .
  • first transduction element 121 and second transduction element 122 can have the same focus, which can be mechanical focus, electronic focus, or combinations thereof.
  • first transduction element 121 and second transduction element 122 can have different focal points.
  • first transduction element 121 and second transduction element 122 can be multiple elements of the same therapy transducer, sectioned for different f-numbers.
  • first transduction element 121 is operable to focus ultrasound energy 148 to target zone 142 and second transduction element 122 is operable to focus ultrasound energy 108 to second target zone 142 A.
  • first transduction element 121 and second transduction element 122 may be controlled in a combination of different frequencies, different time periods, and different power levels to focus ultrasound energy 148 to at least one of target zone 142 and second target zone 142 A.
  • Annular array 131 can be controlled to weakly focused ultrasound energy 133 into subcutaneous layer 127 .
  • the weakly focused ultrasound energy 133 is controlled to create a conformal region 133 of elevated temperature in the subcutaneous layer 127 .
  • the conformal region 133 of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127 .
  • the conformal region 133 of elevated temperature may be directed to span from skin surface 104 to the epidermal layer 102 .
  • the conformal region 133 of elevated temperature may be directed to span from skin surface 104 , through the epidermal layer 102 , to at least a portion of the dermal layer 106 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , and fat layer 108 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , fat layer 108 , and SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , fat layer 108 , and SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , fat layer 108 , SMAS layer 110 and muscle layer 112 .
  • the conformal region 133 of elevated temperature may include epidermal layer 102 , dermis layer 106 , fat layer 108 , SMAS layer 110 and muscle layer 112 .
  • the conformal region 133 of elevated temperature may include dermis layer 106 , fat layer 108 , SMAS layer 110 and muscle layer 112 .
  • the conformal region 133 of elevated temperature may include SMAS layer 110 and muscle layer 112 .
  • the conformal region 133 of elevated temperature may include the muscle layer 112 .
  • the conformal region 133 of elevated temperature may include epidermal layer 102 , dermis layer 106 , fat layer 108 , and SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include dermis layer 106 , fat layer 108 , and SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include fat layer 108 , and SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include SMAS layer 110 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , and fat layer 108 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , dermis layer 106 , and fat layer 108 .
  • the conformal region 133 of elevated temperature may include dermis layer 106 , and fat layer 108 .
  • the conformal region 133 of elevated temperature may include dermis the fat layer 108 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 , epidermal layer 102 , and dermis layer 106 .
  • the conformal region 133 of elevated temperature may include epidermal layer 102 , and dermis layer 106 .
  • the conformal region 133 of elevated temperature may include the dermis layer 106 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 and the epidermal layer 102 .
  • the conformal region 133 of elevated temperature may include the epidermal layer 102 .
  • the conformal region 133 of elevated temperature may include targeted skin surface 104 .
  • the conformal region 133 of elevated temperature may include a junction between the dermis layer 106 and the SMAS layer 110 .
  • transducer 125 is configured to create conformal region 133 of elevated temperature and second conformal region 133 A, in accordance to various embodiments.
  • ultrasound probe 105 comprises enclosure 78 containing transducer 125 and optionally position sensor 107 .
  • Ultrasound probe 105 can be coupled to targeted skin surface 104 .
  • Ultrasound energy 131 and 131 A can be emitted by transducer 125 to create conformal region 133 of elevated temperature and second conformal region 133 A of elevated temperature in subcutaneous tissue 127 .
  • weakly focused ultrasound energy 131 and second weakly focused ultrasound energy 131 A can create conformal region 133 of elevated temperature and second conformal region 133 A.
  • conformal region 133 of elevated temperature and second conformal region 133 A intersect.
  • transducer 125 is elongated and may comprise a plurality of transduction elements. In this configuration, transducer 125 can create conformal region 133 of elevated temperature and second conformal region 133 A along dimension 129 . In this configuration, probe 105 can provide a cosmetic effect to a larger area of targeted skin surface 104 .
  • conformal region 133 of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127 .
  • second conformal region 133 A of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127 , as described herein in regards to conformal region 133 of elevated temperature.
  • at least a portion both conformal region 133 of elevated temperature and second conformal region 133 A of elevated temperature are directed to the same layer of combination of layers in the subcutaneous tissue 127 .
  • ultrasound probe 105 is illustrated.
  • ultrasound probe 105 comprises enclosure 78 containing transducer 125 and optionally position sensor 107 .
  • Ultrasound probe 105 can be coupled to targeted skin surface 104 .
  • Ultrasound energy 131 and 131 A can be emitted by transducer 125 to create conformal region 133 of elevated temperature and second conformal region 133 A of elevated temperature in subcutaneous tissue 127 .
  • weakly focused ultrasound energy 131 and second weakly focused ultrasound energy 131 A can create conformal region 133 of elevated temperature and second conformal region 133 A
  • position sensor 107 may determine a distance 117 between pulses of therapeutic ultrasound energy 108 to create a plurality of conformal region 133 of elevated temperature which are evenly spaced or disposed in any spatial configuration in one-, two-, or three-dimensions. As ultrasound probe 105 is moved in direction 130 , position sensor 107 determines distance 117 , regardless of a speed that ultrasound probe 105 is move, at which a pulse of ultrasound energy 131 or 131 A is to be emitted in to ROI. In various embodiments ultrasound probe 105 is triggered automatically via a timer and in combination with a position sensor 107 to assure motion.
  • ultrasound probe 105 comprises position sensor 107 .
  • Position sensor 107 can be integrated into ultrasound probe 105 or attached to ultrasound probe 105 .
  • position sensor 107 is a motion sensor measuring position of ultrasound probe 105 .
  • Such a motion sensor can calculate distance traveled along skin surface 104 .
  • Such a motion sensor may determine a speed of movement of ultrasound probe 105 along skin surface 104 and determine if the speed is accurate for the cosmetic procedure that is elected. For example if the speed is too fast, motion sensor can signal an indicator to slow the speed and/or can signal transducer 125 to stop emitting ultrasound energy 131 and 131 A.
  • position sensor 107 can include a laser position sensor.
  • position sensor 107 can track position like a computer mouse that uses a laser sensor as opposed to an older version of a mouse with a roller ball.
  • Position sensor 107 can communicate position data versus time to a display to track a position of ultrasound probe 105 , such as, for example, overlaid on an image of ROI, overlaid on an image of skin surface 104 , as referenced to geotagged features, as reference to targeted location, as referenced to a prior procedures, and combinations thereof.
  • a treatment plan can include a movement pattern of ultrasound probe 105 .
  • Such a movement pattern can be displayed and the position sensor 107 can track a position of ultrasound probe 105 during a cosmetic procedure as compared to the movement pattern. Tracking ultrasound probe 105 with position sensor and comparing the tracked movement to a predetermined movement may be useful as a training tool.
  • laser position sensor can geotag a feature on skin surface 104 .
  • position sensor 107 may determine a distance 117 between pulses of therapeutic ultrasound energy 108 to create a plurality of lesions 25 which are evenly spaced or disposed in any spatial configuration in one-, two-, or three-dimensions. As ultrasound probe 105 is moved in direction 130 , position sensor 107 determines distance 117 , regardless of a speed that ultrasound probe 105 is move, at which a pulse of therapeutic ultrasound energy 108 is to be emitted in to ROI. In various embodiments ultrasound probe 105 is triggered automatically via a timer and in combination with a position sensor 107 to assure motion.
  • Position sensor 107 may be located behind a transducer, in front of a transducer array, or integrated into a transducer array.
  • Ultrasound probe 105 may comprise more than one position sensor 107 , such as, for example, a laser position sensor and a motion sensor, or a laser position sensor and a visual device, or a motion sensor and a visual device, or a laser position sensor, a motion sensor, and a visual device. Additional embodiments of position sensor 107 may be found in U.S. Pat. No. 7,142,905, entitled “Visual Imaging System for Ultrasonic Probe” issued Nov. 28, 2006, and U.S. Pat. No. 6,540,679, entitled “Visual Imaging System for Ultrasonic Probe” issued Apr. 1, 2003, both of which are incorporated by reference.
  • Position sensor 107 can be integrated into ultrasound probe 105 or attached to ultrasound probe 105 .
  • position sensor 107 is an optical sensor measuring 1-D, 2-D, or 3-D movement 130 of ultrasound probe 105 versus time while probe travels along skin surface 104 .
  • Such a position sensor may control conformal region 133 of elevated temperature sequence directly, by using position information in the treatment system to trigger emission of ultrasound energy 131 and 131 A.
  • cosmetic enhancement can be triggered when the ultrasound probe 105 reaches a fixed or pre-determined range away from the last ablation zone 112 .
  • Speed of motion can be used to control therapeutic ultrasound energy 108 . For example, if the motion is too fast information can be provided to the user to slow down and/or energy can be dynamically adjusted within limits.
  • Position information may also be used to suppress energy if crossing over the same spatial position, if desired.
  • Such a position sensor 107 may also determine if ultrasound probe 105 is coupled to skin surface 104 , to safely control energy delivery and provide information to users.
  • ultrasound probe 105 comprises transducer 125 , as described herein, and may be controlled and operated by a hand-held format control system.
  • An external battery charger can be used with rechargeable-type batteries 84 or the batteries 84 can be single-use disposable types, such as M-sized cells.
  • Power converters produce voltages for powering a driver/feedback circuit with tuning network driving transducer array 100 .
  • Ultrasound probe 105 is coupled to targeted skin surface 104 via one or more tips 88 , which can be composed of at least one of a solid media, semi-solid, such as, for example, a gelatinous media, and liquid media equivalent to an acoustic coupling agent contained within a housing in tip.
  • Tip 88 is coupled to targeted skin surface 104 with an acoustic coupling agent.
  • ultrasound probe 105 comprises position sensor 107 , as described herein.
  • tip 88 may comprise transducer 125 . In such embodiments, the tip 88 and transducer 125 can be disposable and replaceable.
  • a microcontroller and timing circuits with associated software and algorithms provide control and user interfacing via a display or LED-type indicators 83 , and other input/output controls 82 , such as switches and audio devices.
  • a storage element such as an Electrically Erasable Programmable Read-Only Memory (“EEPROM”), secure EEPROM, tamper-proof EEPROM, or similar device can hold calibration and usage data.
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • secure EEPROM secure EEPROM
  • tamper-proof EEPROM or similar device can hold calibration and usage data.
  • a motion mechanism with feedback can be controlled to scan the transducer 125 in a linear pattern or a two-dimensional pattern or over a varied depth.
  • Other feedback controls comprise capacitive, acoustic, or other coupling detection means, limiting controls, and thermal sensor.
  • EEPROM can be coupled with at least one of tip 88 , transducer array 100 , thermal sensor, coupling detector, and tuning network
  • data from EEPROM can be downloaded to a user's computer via any interface type, such as, for example, a USB interface, a RS 232 interface, a IEEE interface, a fire-wire interface, a blue tooth interface, an infrared interface, a 802.1 interface, via the web, and the like.
  • Downloadable data can include hours of use, frequency during use, power levels, depths, codes from tips used, error codes, user ID, and other such data. The data can be parsed by user ID so more than one user can track user data.
  • EEPROM can be interfaced, using any of the methods or devices described herein, to a computer or the web to receive software updates. Still further, EEPROM can be interfaced, using any of the methods or devices described herein, to a computer or the web for at least one of diagnosis, trouble shooting, service, repair, and combinations thereof.
  • ultrasound probe 105 can be in communication with wireless device 200 via wireless interface 204 .
  • wireless device 200 has display 206 and a user interface such as, for example, a keyboard.
  • Examples of wireless device 200 can include but are not limited to: personal data assistants (“PDA”), cell phone, iPhone, iPad, computer, laptop, netbook, or any other such device now known or developed in the future.
  • Examples of wireless interface 204 include but are not limited to any wireless interface described herein and any such wireless interface now known or developed in the future.
  • ultrasound probe 105 comprises any hardware, such as, for example, electronics, antenna, and the like, as well as, any software that may be used to communicate via wireless interface 204 .
  • device 200 can display an image generated by handheld probe 105 . In various embodiments, device 200 can control handheld ultrasound probe 105 . In various embodiments, device 200 can store data generated by handheld ultrasound probe 105 .
  • transducer 125 optionally and imaging transducer array 110 , and optionally, position sensor 107 can held within enclosure 78 .
  • enclosure 78 is designed for comfort and control while used in an operator's hand.
  • Enclosure 78 may also contain various electronics, such as, for example, EEPROM, interface connection, motion mechanisms, and/or ram for holding programs, and combinations thereof.
  • Ultrasound energy 131 and 131 A from transducer 125 may be spatially and/or temporally controlled at least in part by changing the spatial parameters of transducer 125 , such as the placement, distance, treatment depth and transducer 125 structure, as well as by changing the temporal parameters of transducer 125 , such as the frequency, drive amplitude, and timing, with such control handled via controller in hand-held assembly of ultrasound probe 105 .
  • ultrasound probe 105 comprises a transducer 125 capable of emitting ultrasound energy 131 and 131 A into ROI. This may heat ROI at a specific depth to target tissue as described herein
  • Ultrasound energy 131 creates create conformal region 133 of elevated temperature in a tissue layer, at which a temperature of tissue is raised by 10° C. to 15° C., or is raised to a temperature in the range form about 4° C. to about 55° C., or from about 43° C. to about 48° C., or below a threshold of ablation of the tissue.
  • the ultrasound energy level is in a range of about 0.1 joules to about 500 joules in order to create an ablative lesion.
  • the ultrasound energy 108 level can be in a range of from about 0.1 joules to about 100 joules, or from about 1 joules to about 50 joules, or from about 0.1 joules to about 10 joules, or from about 50 joules to about 100 joules, or from about 100 joules to about 500 joules, or from about 50 joules to about 250 joules.
  • the amount of time ultrasound energy is applied at these levels to create a lesion varies in the range from approximately 1 millisecond to several minutes.
  • a range can be from about 1 millisecond to about 5 minutes, or from about 1 millisecond to about 1 minute, or from about 1 millisecond to about 30 seconds, or from about 1 millisecond to about 10 seconds, or from about 1 millisecond to about 1 second, or from about 1 millisecond to about 0.1 seconds, or about 0.1 seconds to about 10 seconds, or about 0.1 seconds to about 1 second, or from about 1 millisecond to about 200 milliseconds, or from about 1 millisecond to about 0.5 seconds.
  • the frequency of the ultrasound energy can be in a range from about 0.1 MHz to about 100 MHz, or from about 0.1 MHz to about 50 MHz, or from about 1 MHz to about 50 MHz or about 0.1 MHz to about 30 MHz, or from about 10 MHz to about 30 MHz, or from about 0.1 MHz to about 20 MHz, or from about 11 MHz to about 20 MHz, or from about 20 MHz to about 30 MHz.
  • the frequency of the ultrasound energy can be in a range from about 1 MHz to about 12 MHz, or from about 5 MHz to about 15 MHz, or from about 2 MHz to about 12 MHz or from about 3 MHz to about 7 MHz.
  • the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 0 mm to about 150 mm, or from about 0 mm to about 100 mm, or from about 0 mm to about 50 mm, or from about 0 mm to about 30 mm, or from about 0 mm to about 20 mm, or from about 0 mm to about 10 mm, or from about 0 mm to about 5 mm.
  • the ultrasound energy can be emitted to depths below a skin surface in a range from about 5 mm to about 150 mm, or from about 5 mm to about 100 mm, or from about 5 mm to about 50 mm, or from about 5 mm to about 30 mm, or from about 5 mm to about 20 mm, or from about 5 mm to about 10 nm.
  • the ultrasound energy can be emitted to depths below a skin surface in a range from about 10 mm to about 150 mm, or from about 10 mm to about 100 mm, or from about 10 mm to about 50 mm, or from about 10 mm to about 30 mm, or from about 10 mm to about 20 mm, or from about 0 mm to about 10 mm.
  • the ultrasound energy can be emitted to depths at or below a skin surface in the range from about 20 mm to about 150 mm, or from about 20 mm to about 100 mm, or from about 20 mm to about 50 mm, or from about 20 mm to about 30 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 30 mm to about 150 mm, or from about 30 mm to about 100 mm, or from about 30 mm to about 50 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 50 mm to about 150 mm, or from about 50 mm to about 100 mm.
  • the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 20 mm to about 60 mm, or from about 40 mm to about 80 mm, or from about 10 mm to about 40 mm, or from about 5 mm to about 40 mm, or from about 0 mm to about 40 mm, or from about 10 mm to about 30 mm, or from about 5 mm to about 30 mm, or from about 0 mm to about 30 mm.
  • the probe 105 comprises a transducer 125 operating frequency range of 2-12 MHz or 4-8 MHz or 6 MHz. In various embodiments, the probe 105 comprises a transducer 125 with an operating power of about 1 watt. In various embodiments, the probe 105 comprises a transducer 125 having an operating intensity range: 10-500 W/cm 2 or 20-100 W/cm 2 . In various embodiments, the probe 105 comprises a transducer 125 that is a consumable transducer.
  • medicant and/or cosmeceutical can include a drug, a medicine, or a protein, and combinations thereof.
  • Medicant and/or cosmeceutical can also include a vaccine, blood or blood component, allergenic, somatic cell, gene therapy, tissue, recombinant therapeutic protein, or living cells that are used as therapeutics to treat diseases or as actives to produce a cosmetic effect.
  • Medicant and/or cosmeceutical can also include a biologic, such as for example a recombinant DNA therapy, synthetic growth hormone, monoclonal antibodies, or receptor constructs.
  • Medicant and/or cosmeceutical can also include adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly.
  • Thrombin and fibrin glue are used surgically to treat bleeding and to thrombose aneurysms.
  • Medicant and/or cosmeceutical can include Desmopressin is used to improve platelet function by activating arginine vasopressin receptor 1 A.
  • Medicant and/or cosmeceutical can include coagulation factor concentrates are used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption.
  • Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma are commonly-used coagulation factor products.
  • Recombinant activated human factor VII can be used in the treatment of major bleeding.
  • Medicant and/or cosmeceutical can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate.
  • medicant and/or cosmeceutical can include steroids like the glucocorticoid cortisol.
  • a medicant and/or cosmeceutical can include can include compounds as alpha lipoic Acid, DMAE, vitamin C ester, tocotrienols, and phospholipids.
  • Medicant 202 can be a pharmaceutical compound such as for example, cortisone, Etanercept, Abatacept, Adalimumrab, or Infliximab.
  • Medicant 202 can include platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors.
  • PRP platelet-rich plasma
  • mesenchymal stem cells or growth factors.
  • PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury.
  • the PRP typically contains thrombocytes (platelets) and cytokines (growth factors).
  • the PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue.
  • Medicant 202 can be a prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma, which are commonly-used coagulation factor products.
  • Medicant 202 can be a recombinant activated human factor VII, which can be used in the treatment of major bleeding.
  • Medicant 202 can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate.
  • medicant can be Botox.
  • a medicant and/or cosmeceutical can include platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors.
  • PRP platelet-rich plasma
  • mesenchymal stem cells or growth factors.
  • PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury.
  • the PRP typically contains thrombocytes (platelets) and cytokines (growth factors).
  • the PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface. Improving the appearance of the skin surface can be at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/506, 125, entitled “Systems and Methods for Creating Shaped Lesions” filed Jul. 10, 2011; U.S. Provisional Patent Application Ser. No. 61/506,127, entitled “Systems and Methods for Treating Injuries to Joints and Connective Tissue,” filed Jul. 10, 2011; U.S. Provisional Patent Application Ser. No. 61/506,126, entitled “System and Methods for Accelerating Healing of Implanted Materials and/or Native Tissue,” filed Jul. 10, 2011; U.S. Provisional Patent Application Ser. No. 61/506,160, entitled “Systems and Methods for Cosmetic Rejuvenation,” filed Jul. 10, 2011; U.S. Provisional Patent Application Ser. No. 61/506,163, entitled “Methods and Systems for Ultrasound Treatment,” filed Jul. 10, 2011; U.S. Provisional Patent Application Ser. No. 61/506,609, entitled “Systems and Methods for Monitoring Ultrasound Power Efficiency,” filed Jul. 11, 2011; and U.S. Provisional Patent Application Ser. No. 61/506,610, entitled “Methods and Systems for Controlling Acoustic Energy Deposition into a Medium,” filed Jul. 11, 2011; all of which are incorporated by reference herein.
  • BACKGROUND
  • Energy, such as ultrasound energy, can be applied to treat tissue or perform traditionally invasive procedures in a non-invasive manner. The application of ultrasound energy provides both thermal and/or mechanical effects that help treat certain ailments such as acne and enable many traditional invasive procedures to be performed non-invasively.
  • Typically, ultrasound devices only affect a specific portion of the tissue at a certain depth within the region of interest based upon the configuration of the particular ultrasound device. For example, an ultrasound device might be configured to affect an area five millimeters below the surface of the skin. The tissue from the surface of the skin to the depth of five millimeters is spared and not treated by the ultrasound energy. Sparing these intervening spaces of tissue hinders the overall beneficial effect of ultrasound as treatment of this intervening tissue increases ultrasound treatment's overall efficacy. Accordingly, new approaches of cosmetic enhancement of skin are needed, which are rapid and non-invasive.
  • SUMMARY
  • Various embodiments described herein provide methods and systems for cosmetic enhancement of tissue. Accordingly, ultrasound energy can be focused, unfocused or defocused and can be applied to a region of interest containing subcutaneous tissue below a surface to achieve a cosmetic effect.
  • Various embodiments provide a method for improving an appearance of a skin surface. In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • In some embodiments, the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • Various embodiments provide a method for improving an appearance of a skin surface. In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • Various embodiments provide a system for improving the appearance of a skin surface. In some embodiments, the system can further comprise a hand-held probe comprising: an ultrasound transducer; an indicator display; at least one input/output control; a position sensor; and a rechargeable battery configured to power the hand-held probe. In some embodiments, the system can further comprise a controller configured to control the hand-held probe and a wireless interface configured to couple communication between the controller and the hand-held probe.
  • In some embodiments, the controller is at least one of a personal data assistant, a cell phone, an iPhone, an iPad, a computer, a laptop, and a netbook. In some embodiments, the transducer is configured as a 2 dimensional linear array.
  • DRAWINGS
  • The present disclosure will become more fully understood from the detailed description and the accompanying drawings, wherein:
  • FIG. 1 is a flow chart illustrating methods of cosmetic enhancement, according to various non-limiting embodiments;
  • FIG. 2 is a flow chart illustrating methods according to various non-limiting embodiments;
  • FIG. 3 is a cross sectional view illustrating ultrasound energy directed to various subcutaneous tissue layers below a surface, according to various non-limiting embodiments;
  • FIG. 4 is a cross sectional view illustrating ultrasound energy directed to two targets in subcutaneous tissue below a surface, according to various non-limiting embodiments;
  • FIG. 5 is a cross sectional view illustrating a conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments;
  • FIG. 6 is a cross sectional view illustrating a conformal region of elevated temperature in various layers of subcutaneous tissue, according to various non-limiting embodiments;
  • FIG. 7 is a cross sectional view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments;
  • FIG. 8 is a prospective view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments;
  • FIG. 9 is a cross sectional view illustrating conformal region of elevated temperature and second conformal region of elevated temperature in various layers of subcutaneous tissue, according to various non-limiting embodiments;
  • FIGS. 10 A-B are a cross sectional views illustrating conformal region of elevated temperature and second conformal region of elevated temperature in soft tissue, according to various non-limiting embodiments;
  • FIGS. 11 A-B are a cross sectional views illustrating conformal region of elevated temperature and second conformal region of elevated temperature in soft tissue, according to various non-limiting embodiments;
  • FIG. 12 is a cross sectional view illustrating a plurality of conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue, according to various non-limiting embodiments; and
  • FIG. 13 is a cross sectional view illustrating a hand held probe, according to various non-limiting embodiments.
  • DESCRIPTION
  • The following description is merely exemplary in nature and is in no way intended to limit the various embodiments, their application, or uses. As used herein, the phrase “at least one of A, B, and C” should be construed to mean a logical (A or B or C), using a non-exclusive logical “or.” As used herein, the phrase “A, 3 and/or C” should be construed to mean (A, B, and C) or alternatively (A or B or C), using a non-exclusive logical “or.” It should be understood that steps within a method may be executed in different order without altering the principles of the present disclosure.
  • The drawings described herein are for illustrative purposes only of selected embodiments and not all possible implementations, and are not intended to limit the scope of any of the various embodiments disclosed herein or any equivalents thereof. It is understood that the drawings are not drawn to scale. For purposes of clarity, the same reference numbers will be used in the drawings to identify similar elements.
  • The various embodiments may be described herein in terms of various functional components and processing steps. It should be appreciated that such components and steps may be realized by any number of hardware components configured to perform the specified functions. For example, various embodiments may employ various medical treatment devices, visual imaging and display devices, input terminals and the like, which may carry out a variety of functions under the control of one or more control systems or other control devices. In addition, the embodiments may be practiced in any number of medical contexts and that the various embodiments relating to a method and system for acoustic tissue treatment as described herein are merely indicative of exemplary applications for the invention. For example, the principles, features and methods discussed may be applied to any medical application. Further, various aspects of the various embodiments may be suitably applied to cosmetic applications. Moreover, some of the embodiments may be applied to cosmetic enhancement of skin and/or various subcutaneous tissue layers.
  • According to various embodiments, methods and systems useful for cosmetic rejuvenation of face and body are provided herein. The methods and systems provided herein are noninvasive, for example, no cutting or injecting into the skin is required. Cosmetic rejuvenation of the face and/or body using the methods and systems provided herein minimize recover time and may in some cases eliminate downtime for recovery. Further cosmetic rejuvenation using the methods and systems provided herein minimize discomfort to a patient having such a rejuvenation procedure.
  • Various embodiments provide a hand-held extracorporeal apparatus, which emits controlled ultrasound energy into layers of the skin to create a conformal region of elevated temperature in tissue of the skin. In some embodiments, a system useful for cosmetic rejuvenation of the face and/or body is in a handheld format which may include a rechargeable power supply.
  • In various embodiments, rejuvenation is a reversal or an attempt to reverse the aging process. Rejuvenation can be the reversal of aging and is namely repair of the damage that is associated with aging or replacement of damaged tissue with new tissue. In some embodiments, cosmetic enhancement can refer to procedures, which may not be medically necessary but can be used to improve or change the appearance of a portion of the body. For example, a cosmetic enhancement can be a procedure but not limited to procedures that are used to improve or change the appearance of a nose, eyes, eyebrows and/or other facial features, or to improve or change the appearance and/or the texture and/or the elasticity of skin, or to improve or change the appearance of a mark or scar on a skin surface, or to improve or change the appearance and/or the content of fat near a skin surface, or the targeting of a gland to improve or change the appearance a portion of the body. In at least some embodiments, cosmetic enhancement is a non-surgical and non-invasive procedure. In various embodiments, cosmetic enhancement provides rejuvenation to at least one portion of the body.
  • In some embodiments, methods of cosmetic enhancement can increase elasticity of skin by thinning a dermis layer, thereby rejuvenating a portion of skin. In some embodiments, methods of cosmetic enhancement can stimulate initiation of internal body resources for the purpose of repairing an injury and/or cell defienticy.
  • Various embodiments provide a method for improving an appearance of a skin surface. In some embodiments, the method can comprise locating a targeted portion of skin surface; targeting a region of interest comprising the targeted portion of the skin surface and subcutaneous tissue below the skin surface; delivering ultrasound energy to the region of interest; producing an effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • In some embodiments, the method can further comprise imaging the subcutaneous tissue below the skin surface. In some embodiments, the method can further comprise administering a medicant to the region of interest. In some embodiments, the method can further comprise activating the medicant in the region of interest with the ultrasound energy at the same frequency or a different frequency.
  • In some embodiments, the method can further comprise delivering a secondary energy to the region of interest. In some embodiments, the secondary energy is a photon-based energy. In some embodiments, the secondary energy is radio frequency based energy. In some embodiments, the method can further comprise determining results of the effect in at least one of the skin surface and the subcutaneous tissue.
  • In some embodiments, the effect is a cosmetic effect. In some embodiments, the cosmetic effect is at least one of increasing skin elasticity/tighten skin, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, reducing fat, reducing cellulite, treating and/or preventing acne, treating hyperhidrosis, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, treating of soft tissue in the region of interest, rejuvenating skin, increasing skin elasticity, increasing collagen in tissue, smoothing of the texture of skin, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, lifting of skin, body sculpting, generating new tissue in the subcutaneous tissue, and combinations thereof.
  • In some embodiments, the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • Various embodiments provide a method for improving an appearance of a skin surface. In some embodiments, the method can comprise locating a targeted portion of skin surface; delivering ultrasound energy to subcutaneous tissue below the skin surface; producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and improving the appearance of the targeted portion of the skin surface.
  • In some embodiments, the method can further comprise delivering a medicant to the subcutaneous tissue below the skin surface. In some embodiments, the method can further comprise comprising activating the medicant in the region of interest with the ultrasound energy at the same frequency or a different frequency. In some embodiments, the method can further comprise delivering a cosmeceutical to the subcutaneous tissue below the skin surface.
  • In some embodiments, the method can further comprise delivering a secondary energy to the subcutaneous tissue below the skin surface. In some embodiments, the secondary energy is a photon-based energy. In some embodiments, the secondary energy is radio frequency based energy.
  • In some embodiments, the biological effect is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of a portion of the subcutaneous tissue, accelerating ta wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth in the subcutaneous tissue, increasing the liberation of cytokines within the subcutaneous layer, peaking inflammation in the subcutaneous tissue, partially shrinking collagen in a portion of the subcutaneous tissue, denaturing of proteins in the subcutaneous tissue, and combinations thereof.
  • In some embodiments, the biological effect is at least one of creating immediate or delayed cell death in the subcutaneous tissue, collagen remodeling in the subcutaneous tissue, disrupting or modifying of biochemical cascades in at least one of the skin surface and the subcutaneous tissue, producing new collagen in the subcutaneous tissue, stimulating cell growth in the subcutaneous tissue, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to in the subcutaneous tissue, and combinations thereof.
  • In some embodiments, the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • Various embodiments provide a system for improving the appearance of a skin surface. In some embodiments, the system can further comprise a hand-held probe comprising: an ultrasound transducer; an indicator display; at least one input/output control; a position sensor; and a rechargeable battery configured to power the hand-held probe. In some embodiments, the system can further comprise a controller configured to control the hand-held probe and a wireless interface configured to couple communication between the controller and the hand-held probe.
  • In some embodiments, the controller is at least one of a personal data assistant, a cell phone, an iPhone, an iPad, a computer, a laptop, and a netbook. In some embodiments, the transducer is configured as a 2 dimensional linear array.
  • In various embodiments, the system and the related method of the present invention apply ultrasound energy to a region of interest at the surface of the patient's skin and ultrasound energy travels from the surface to a location within the region of interest and treats all the tissue within the region of interest with a combined energy profile without sparing any of such tissue.
  • In some embodiments, the ultrasound transducer is configured to simultaneously create a first conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue. In some embodiment, the first conformal region of elevated temperature and second conformal region of elevated temperature intersect in the subcutaneous tissue. In some embodiments, the first conformal region of elevated temperature and second conformal region of elevated temperature are positioned perpendicular to each other in the subcutaneous tissue.
  • Various embodiments provide a method for treating a surface of skin. In some embodiments, the method can comprise creating a conformal region of elevated temperature; treating a surface and subsurface of skin simultaneously; creating a transitional biological effect on the surface of the skin without causing cell death, a scar, or permanent damage to the surface of the skin; creating a thermal effect to the subsurface of the skin; and initiating a permanent biological effect to the subsurface of the skin. The method can further comprise creating an optically visible effect on the surface of the skin. The transitional biological effect can be one of erythema, edema, and a transitional coagulative point. In some embodiments, the optically visible effect on the surface of the skin can be at least one of at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
  • In some embodiments, the permanent biological effect can be at least one of is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of a portion of the subcutaneous tissue, accelerating ta wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth in the subcutaneous tissue, increasing the liberation of cytokines within the subcutaneous layer, peaking inflammation in the subcutaneous tissue, partially shrinking collagen in a portion of the subcutaneous tissue, denaturing of proteins in the subcutaneous tissue, and combinations thereof.
  • In some embodiments, the permanent biological effect is at least one of creating immediate or delayed cell death in the subcutaneous tissue, collagen remodeling in the subcutaneous tissue, disrupting or modifying of biochemical cascades in at least one of the skin surface and the subcutaneous tissue, producing new collagen in the subcutaneous tissue, stimulating cell growth in the subcutaneous tissue, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to in the subcutaneous tissue, and combinations thereof.
  • With reference to FIG. 1, a method of cosmetic enhancement 100 is illustrated according to various embodiments. Step 10 is identifying a targeted skin surface, which may be located anywhere on the body, such as, for example, in any of the following: face, neck, hands, arms, legs, buttocks, and combinations thereof. Next, Step 12 is targeting a region of interest (“ROI”). The ROI can be located in subcutaneous tissue below the targeted skin surface, which can be anywhere in the body, such as, those listed previously. The subcutaneous tissue can comprise any or all of the following tissues: an epidermal layer, a dermal layer, a fat layer, a SMAS layer, and a muscle layer. Optionally, step 22 is imaging subcutaneous tissue below the targeted skin surface can be between steps 10 and 12 or can be substantially simultaneous with or be part of step 12.
  • After step 12, step 14 is directing ultrasound energy to ROI. The ultrasound energy may be focused, defocused, or unfocused. The ultrasound sound energy can be weakly focused. The ultrasound energy can be directed to the subcutaneous tissue layer below the targeted skin surface. The ultrasound energy may be streaming. The ultrasound energy may be directed to a first depth and then directed to a second depth. The ultrasound energy may force a pressure gradient in the subcutaneous tissue layer below the targeted skin surface. The ultrasound energy may be a first ultrasound energy effect, which comprises an ablative or a hemostatic effect, and a second ultrasound energy effect, which comprises at least one of non-thermal streaming, hydrodynamic, diathermic, and resonance induced tissue effects. Directing ultrasound energy to the ROI is a non-invasive technique. As such, the targeted skin surface and the layers above a target point in the subcutaneous layer are spared from injury. Alternatively, the targeted skin surface and the layers above a target point in the subcutaneous layer are heated to a 10° C. to 15° C. above the tissue's natural state. Such treatment does not require an incision in order to reach the subcutaneous tissue layer below the targeted skin surface to enhance the targeted skin surface.
  • In various embodiments, the ultrasound energy level is in a range of about 0.1 joules to about 500 joules in order to create an ablative lesion. However, the ultrasound energy 108 level can be in a range of from about 0.1 joules to about 100 joules, or from about 1 joules to about 50 joules, or from about 0.1 joules to about 10 joules, or from about 50 joules to about 100 joules, or from about 100 joules to about 500 joules, or from about 50 joules to about 250 joules.
  • Further, the amount of time ultrasound energy is applied at these levels to create a lesion varies in the range from approximately 1 millisecond to several minutes. However, a range can be from about 1 millisecond to about 5 minutes, or from about 1 millisecond to about 1 minute, or from about 1 millisecond to about 30 seconds, or from about 1 millisecond to about 10 seconds, or from about 1 millisecond to about 1 second, or from about 1 millisecond to about 0.1 seconds, or about 0.1 seconds to about 10 seconds, or about 0.1 seconds to about 1 second, or from about 1 millisecond to about 200 milliseconds, or from about 1 millisecond to about 0.5 seconds.
  • The frequency of the ultrasound energy can be in a range from about 0.1 MHz to about 100 MHz, or from about 0.1 MHz to about 50 MHz, or from about 1 MHz to about 50 MHz or about 0.1 MHz to about 30 MHz, or from about 10 MHz to about 30 MHz, or from about 0.1 MHz to about 20 MHz, or from about 1 MHz to about 20 MHz, or from about 20 MHz to about 30 MHz.
  • The frequency of the ultrasound energy can be in a range from about 1 MHz to about 12 MHz, or from about 5 MHz to about 15 MHz, or from about 2 MHz to about 12 MHz or from about 3 MHz to about 7 MHz.
  • In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 0 mm to about 150 mm, or from about 0 mm to about 100 mm, or from about 0 mm to about 50 mm, or from about 0 mm to about 30 mm, or from about 0 mm to about 20 mm, or from about 0 mm to about 10 mm, or from about 0 mm to about 5 mm. In some embodiments, the ultrasound energy can be emitted to depths below a skin surface in a range from about 5 mm to about 150 mm, or from about 5 mm to about 100 mm, or from about 5 mm to about 50 mm, or from about 5 mm to about 30 mm, or from about 5 mm to about 20 mm, or from about 5 mm to about 10 mm. In some embodiments, the ultrasound energy can be emitted to depths below a skin surface in a range from about 10 mm to about 150 mm, or from about 10 mm to about 100 mm, or from about 10 mm to about 50 mm, or from about mm to about 30 mm, or from about 10 mm to about 20 mm, or from about 0 mm to about 10 mm.
  • In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in the range from about 20 mm to about 150 mm, or from about 20 mm to about 100 mm, or from about 20 mm to about 50 mm, or from about 20 mm to about 30 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 30 mm to about 150 mm, or from about 30 mm to about 100 mm, or from about 30 mm to about 50 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 50 mm to about 150 mm, or from about 50 mm to about 100 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 20 mm to about 60 mm, or from about 40 mm to about 80 mm, or from about 10 mm to about 40 mm, or from about 5 mm to about 40 mm, or from about 0 mm to about 40 nm, or from about 10 mm to about 30 mm, or from about 5 mm to about 30 mm, or from about 0 mm to about 30 mm.
  • In various embodiments, the ultrasound energy may be emitted at various energy levels, such as for example, the energy levels described herein. Further, the amount of time ultrasound energy is applied at these levels for various time ranges, such as for example, the ranges of time described herein. The frequency of the ultrasound energy is in various frequency ranges, such as for example, the frequency ranges described herein. The ultrasound energy can be emitted to various depths below a targeted skin surface, such as for example, the depths described herein. The ultrasound energy may coagulate a portion of the subcutaneous tissue layer below the targeted skin surface. The ultrasound energy may score a portion of subcutaneous tissue layer below the targeted skin surface.
  • Optionally, step 24, which is administering a medicant and/or cosmeceutical to the ROI, can be between steps 12 and 14. The medicant and/or cosmeceutical can be any chemical or naturally occurring substance that can assist in cosmetic enhancement. For example the medicant and/or cosmeceutical can be but not limited to a pharmaceutical, a drug, a medication, a nutriceutical, an herb, a vitamin, a cosmetic, an amino acid, a collagen derivative, a holistic mixture, and combinations thereof.
  • The medicant and/or cosmeceutical can be administered by applying it to the skin above the ROI. The medicant and/or cosmeceutical can be administered to the circulatory system. For example, the medicant and/or cosmeceutical can be in the blood stream and can be activated or moved to the ROI by the ultrasound energy. The medicant and/or cosmeceutical can be administered by injection into or near the ROI. Any naturally occurring proteins, stem cells, growth factors and the like can be used as medicant and/or cosmeceutical in accordance to various embodiments. A medicant and/or cosmeceutical can be mixed in a coupling gel or can be used as a coupling gel.
  • Step 16 is producing a cosmetic effect in the ROI. A cosmetic effect can be increase skin elasticity/tighten skin. A cosmetic effect can be reducing skin oiliness. A cosmetic effect can be reducing skin pore size/smooth skin texture. A cosmetic effect can be reducing hyperpigmentation. A cosmetic effect can be reducing fat and/or cellulite. A cosmetic effect can be treating and/or preventing acne. A cosmetic effect can be treating hyperhidrosis. A cosmetic effect can be reducing an appearance of spider veins and/or rosacea. A cosmetic effect can be reducing an appearance of scars. A cosmetic effect can be reducing an appearance of stretch marks. A cosmetic effect can be treatment of soft tissue. A cosmetic effect can be rejuvenation of skin. A cosmetic effect can be increasing skin elasticity. A cosmetic effect can be increasing collagen in tissue. A cosmetic effect can be a smoothing of the texture of skin. A cosmetic effect can be a tightening of sagging sink. A cosmetic effect may be the rejuvenation of photoaged skin. A cosmetic effect can be increasing a thickness of a dermal layer. A cosmetic effect can be a reduction of wrinkle on a skin surface. A cosmetic effect can be a lifting of skin, for example, a facelift, a neck lift, a brow lift, and/or a jowl lift. A cosmetic effect can be body sculpting. A cosmetic effect can be generating new tissue in the subcutaneous layer. A cosmetic effect can be synergetic with the medicant and/or cosmeceutical administered to ROI in steps 24 and/or 26. Cosmetic effects can be combined.
  • A cosmetic effect can be produced by a biological effect that initiated or stimulated by the ultrasound energy. A biological effect can be stimulating or increase an amount of heat shock proteins. Such a biological effect can cause white blood cells to promote healing of a portion of the subcutaneous layer in the ROI. A biological effect can be to restart or increase the wound healing cascade at the injury location. A biological effect can be increasing the blood perfusion to the injury location. A biological effect can be encouraging collagen growth. A biological effect may increase the liberation of cytokines and may produce reactive changes within the subcutaneous layer. A biological effect may by peaking inflammation in the ROI. A biological effect may at least partially shrinking collagen portion of soft tissue. A biological effect may be denaturing of proteins in the ROI.
  • A biological effect may be creating immediate or delayed cell death (apoptosis) in the ROI. A biological effect may be collagen remodeling in the ROI. A biological effect may be the disruption or modification of biochemical cascades. A biological effect may be the production of new collagen. A biological effect may a stimulation of cell growth in the ROI. A biological effect may be angiogenesis. A biological effect may a cell permeability response. A biological effect may be an enhanced delivery of medicants to soft tissue.
  • In various embodiments, ultrasound energy is deposited in the subcutaneous layer changes at least one of concentration and activity of inflammatory mediators (TNF-A, IL-1) as well as growth factors (TGF-B1, TGF-B3) below the targeted skin surface.
  • Optionally, step 26, which is administering medicant and/or cosmeceutical to ROI, can be between steps 14 and 16 or can be substantially simultaneous with or be part of step 16. The medicant and/or cosmeceutical useful in step 26 are essentially the same as those discussed for step 24.
  • In various embodiments, ultrasound energy is deposited, which can stimulate a change in at least one of concentration and activity of one or more of the following: Adrenomedullin (AM), Autocrine motility factor, Bone morphogenetic proteins (BMPs), Brain-derived neurotrophic factor (BDNF), Epidermal growth factor (EGF), Erythropoietin (EPO), Fibroblast growth factor (FGF), Glial cell line-derived neurotrophic factor (GDNF), Granulocyte colony-stimulating factor (G-CSF), Granulocyte macrophage colony-stimulating factor (GM-CSF), Growth differentiation factor-9 (GDF9), Hepatocyte growth factor (HGF), Hepatoma-derived growth factor (HDGF), Insulin-like growth factor (NGF), Migration-stimulating factor, Myostatin (GDF-8), Nerve growth factor (NGF) and other neurotrophins, Platelet-derived growth factor (PDGF), Thrombopoietin (TPO), Transforming growth factor alpha (TGF-α), Transforming growth factor beta (TGF-β), Tumor necrosis factor-alpha (TNF-α), Vascular endothelial growth factor (VEGF), Wnt Signaling Pathway, placental growth factor (PlGF), [(Foetal Bovine Somatotrophin)](FBS), IL-1-Cofactor for IL-3 and IL-6, which can activate T cells, IL-2-T-cell growth factor, which can stimulate IL-1 synthesis and can activate B-cells and NK cells, IL-3, which can stimulate production of all non-lymphoid cells, IL-4-Growth factor for activating B cells, resting T cells, and mast cells, IL-5, which can induce differentiation of activated B cells and eosinophils, IL-6, which can stimulate Ig synthesis and growth factor for plasma cells, IL-7 growth factor for pre-B cells, and/or any other growth factor not listed herein, and combinations thereof.
  • Further, medicants, as described above, can include a drug, a medicine, or a protein, and combinations thereof. Medicants can also include adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly. Thrombin and fibrin glue are used surgically to treat bleeding and to thrombose aneurysms. Medicants can include Desmopressin is used to improve platelet function by activating arginine vasopressin receptor 1A. Medicants can include coagulation factor concentrates are used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption. Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma are commonly-used coagulation factor products. Recombinant activated human factor VII can be used in the treatment of major bleeding. Medicants can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate. In addition, medicants can include steroids like the glucocorticoid cortisol.
  • Optionally, after step 12, step 25, which is directing secondary energy to the ROT can be substantially simultaneous with or be part of step 16. However, step 25 can be administered at least one of before and after step 16. Step 25 can be alternated with step 16, which can create a pulse of two different energy emissions to the ROI.
  • Optionally, after step 2, step 25, which is directing secondary energy to the ROI can be substantially simultaneous with or be part of step 16. However, step 25 can be administered at least one of before and after step 16. Step 25 can be alternated with step 16, which can create a pulse of two different energy emissions to the ROI. Secondary energy can be provided by a laser source, or an intense pulsed light source, or a light emitting diode, or a radio frequency, or a plasma source, or a magnetic resonance source, or a mechanical energy source, or any other photon-based energy source. Secondary energy can be provided by any appropriate energy source now known or created in the future. More than one secondary energy source may be used for step 25.
  • Furthermore, various embodiments provide energy, which may be a first energy and a second energy. For example, a first energy may be followed by a second energy either immediately or after a delay period. In another example, a first energy and a second energy can be delivered simultaneously. In some embodiments, the first energy and the second energy is ultrasound energy. In some embodiments, the first energy is ultrasound and the second energy is generated by one of a laser, an intense pulsed light, a light emitting diode, a radiofrequency generator, photon-based energy source, plasma source, a magnetic resonance source, or a mechanical energy source, such as for example, pressure, either positive or negative. In other embodiments, energy may be a first energy, a second energy, and a third energy, emitted simultaneously or with a time delay or a combination thereof. In some embodiments, energy may be a first energy, a second energy, a third energy, and an nth energy, emitted simultaneously or with a time delay or a combination thereof. Any of the a first energy, a second energy, a third energy, and a nth may be generated by at least one of a laser, an intense pulsed light, a light emitting diode, a radiofrequency generator, an acoustic source, photon-based energy source, plasma source, a magnetic resonance source, and/or a mechanical energy source.
  • Step 20 is cosmetically enhancing the targeted skin surface. Optionally, between steps 16 and 20 is step 30, which is determining results. If the results of step 30 are acceptable within the parameters of the treatment then Yes direction 34 is followed to step 20. If the results of step 30 are not acceptable within the parameters of the treatment then No direction 32 is followed back to step 12. Further examples and variations of treatment method 100 are discussed herein.
  • Depending at least in part upon the desired bio-effect and the subcutaneous tissue being treated, method 100 may be used with an extracorporeal, non-invasive procedure. Also, depending at least in part upon the specific bio-effect and tissue targeted, temperature may increase within ROI may range from approximately 10° C. to about 15° C. Other bio-effects to target tissue can include heating, cavitation, streaming, or vibro-accoustic stimulation, and combinations thereof.
  • In addition, various different subcutaneous tissues may be treated by method 100 to produce different bio-effects, according to some embodiments of the present disclosure. According to various embodiments of method 100, ultrasound probe is coupled directly to ROI, as opposed to targeted skin surface 104, to affect the subcutaneous tissue.
  • With reference to FIG. 2, a method 150 of cosmetic rejuvenation is illustrated, which can be a subset of method 100, as illustrated in FIG. 1. Step 50 is identifying a skin surface. The skin surface can be located anywhere on the body. However, the skin surface may be located on the face and/or neck. The skin surface contains a defect or other undesirable characteristic that is to be cosmetically enhanced or rejuvenated. The defect or other undesirable characteristic may be, for example, but not limited to a wrinkle, oiliness, pore size, rough skin texture, sun spots, liver spots, sagging skin, lack of glow, a scar, a stretch mark, a blemish, and the like.
  • Step 60 is directing ultrasound energy into tissue below the skin surface. The ultrasound energy may be unfocused and deposited in a volume that spans from the skin surface into one or more of subcutaneous tissue below. The ultrasound energy can have any of the characteristics as described herein. The ultrasound energy can be controlled using spatial parameters. The ultrasound energy can be controlled using temporal parameters. The ultrasound energy can be controlled using a combination of temporal parameters and spatial parameters. Also, depending at least in part upon the specific bio-effect and tissue targeted, temperature of the subcutaneous tissue may increase within ROI may range from approximately 10° C. to about 15° C.
  • In between step 50 and step 60, option step 55 may be implemented, which is coupling a medicant or cosmeceutical to the skin surface. If step 55 is implemented, step 65 can be employed which is driving the medicant or cosmeceutical in to the subcutaneous layer below the skin surface. The medicant or cosmeceutical may be driven into the subcutaneous layer using the ultrasound energy of step 60 or an alternate frequency of ultrasound energy.
  • After step 60, optional step 67 can be employed, which is directing a second energy below the skin surface. The second energy can be a second ultrasound energy having different characteristics than the ultrasound energy in step 60. The second energy can be provided by a laser source, or an IPL source, or a radio frequency, or a plasma source, or a magnetic resonance source. Secondary energy can be provided by any appropriate energy source now known or created in the future. More than one secondary energy source may be used for step 67
  • Step 70 is producing a bio-effect in tissue below the skin surface. A biological effect can be stimulating or increase an amount of heat shock proteins. Such a biological effect can cause white blood cells to promote healing of a portion of the subcutaneous layer in the ROI. A biological effect can be to restart or increase the wound healing cascade at the injury location. A biological effect can be increasing the blood perfusion to the injury location. A biological effect can be encouraging collagen growth. A biological effect may increase the liberation of cytokines and may produce reactive changes within the subcutaneous layer. A biological effect may by peaking inflammation in the ROI. A biological effect may at least partially shrinking collagen portion of soft tissue. A biological effect may be denaturing of proteins in the ROI.
  • A biological effect may be creating immediate or delayed cell death (apoptosis) in the ROI. A biological effect may be collagen remodeling in the ROI. A biological effect may be the disruption or modification of biochemical cascades. A biological effect may be the production of new collagen. A biological effect may a stimulation of cell growth in the ROI. A biological effect may be angiogenesis. A biological effect may a cell permeability response. A biological effect may be an enhanced delivery of medicants to soft tissue.
  • Step 80 is improving an appearance of the skin surface. This can be a cosmetic effect. The improving an appearance of the skin surface can be an increase in skin elasticity. The improving an appearance of the skin surface can be reducing skin oiliness. The improving an appearance of the skin surface can be reducing skin pore size. The improving an appearance of the skin surface can be smoothing skin texture. The improving an appearance of the skin surface can be reducing hyperpigmentation. The improving an appearance of the skin surface can be treating and/or preventing acne. The improving an appearance of the skin surface can be reducing a blemish. The improving an appearance of the skin surface can be reducing an appearance of spider veins and/or rosacea. The improving an appearance of the skin surface can be reducing an appearance of scars. The improving an appearance of the skin surface can be reducing an appearance of stretch marks. The improving an appearance of the skin surface can be rejuvenation of skin. The improving an appearance of the skin surface can be increasing collagen in tissue. The improving an appearance of the skin surface can be a tightening of sagging sink. The improving an appearance of the skin surface can be the rejuvenation of photoaged skin. The improving an appearance of the skin surface can be increasing a thickness of a dermal layer. The improving an appearance of the skin surface can be a reduction of wrinkle on a skin surface. The improving an appearance of the skin surface can be generating new tissue in the subcutaneous layer. The improving an appearance of the skin surface can be synergetic with the medicant and/or cosmeceutical administered to ROI in steps 55 and 65.
  • Now moving to FIG. 3, a cross sectional view of tissue layers and ultrasound energy directed to a subcutaneous layer, according to various embodiments, is illustrated. Typically, ultrasound energy propagates as a wave with relatively little scattering, over depths up to many centimeters in tissue depending on the ultrasound frequency. The focal spot size achievable with any propagating wave energy depends on wavelength. Ultrasound wavelength is equal to the acoustic velocity divided by the ultrasound frequency. Attenuation (absorption, mainly) of ultrasound by tissue also depends on frequency. Shaped conformal distribution of elevated temperature can be created through adjustment of the strength, depth, and type of focusing, energy levels and timing cadence. For example, focused ultrasound can be used to create precise arrays of microscopic thermal ablation zones. Ultrasound energy 120 can produce an array of ablation zones deep into the layers of the soft tissue. Detection of changes in the reflection of ultrasound energy can be used for feedback control to detect a desired effect on the tissue and used to control the exposure intensity, time, and/or position.
  • In various embodiment, ultrasound probe 105 is configured with the ability to controllably produce conformal distribution of elevated temperature in soft tissue within ROI 115 through precise spatial and temporal control of acoustic energy deposition, i.e., control of ultrasound probe 105 is confined within selected time and space parameters, with such control being independent of the tissue. The ultrasound energy 120 can be controlled using spatial parameters. The ultrasound energy 120 can be controlled using temporal parameters. The ultrasound energy 120 can be controlled using a combination of temporal parameters and spatial parameters.
  • In accordance with various embodiments, control system and ultrasound probe 105 can be configured for spatial control of ultrasound energy 120 by controlling the manner of distribution of the ultrasound energy 120. For example, spatial control may be realized through selection of the type of one or more transducer configurations insonifying ROI 115, selection of the placement and location of ultrasound probe 105 for delivery of ultrasound energy 120 relative to ROI 115 e.g., ultrasound probe 105 being configured for scanning over part or whole of ROI 115 to produce contiguous thermal injury having a particular orientation or otherwise change in distance from ROI 115, and/or control of other environment parameters, e.g., the temperature at the acoustic coupling interface can be controlled, and/or the coupling of ultrasound probe 105 to tissue. Other spatial control can include but are not limited to geometry configuration of ultrasound probe 105 or transducer assembly, lens, variable focusing devices, variable focusing lens, stand-offs, movement of ultrasound probe, in any of six degrees of motion, transducer backing, matching layers, number of transduction elements in transducer, number of electrodes, or combinations thereof.
  • In various embodiments, control system and ultrasound probe 105 can also be configured for temporal control, such as through adjustment and optimization of drive amplitude levels, frequency, waveform selections, e.g., the types of pulses, bursts or continuous waveforms, and timing sequences and other energy drive characteristics to control thermal ablation of tissue. Other temporal control can include but are not limited to full power burst of energy, shape of burst, timing of energy bursts, such as, pulse rate duration, continuous, delays, etc., change of frequency of burst, burst amplitude, phase, apodization, energy level, or combinations thereof.
  • The spatial and/or temporal control can also be facilitated through open-loop and closed-loop feedback arrangements, such as through the monitoring of various spatial and temporal characteristics. As a result, control of acoustical energy within six degrees of freedom, e.g., spatially within the X, Y and Z domain, as well as the axis of rotation within the XY, YZ and XZ domains, can be suitably achieved to generate conformal distribution of elevated temperature of variable shape, size and orientation. For example, through such spatial and/or temporal control, ultrasound probe 105 can enable the regions of elevated temperature possess arbitrary shape and size and allow the tissue to be heated in a controlled manner.
  • The subcutaneous tissue 127 layers illustrated are targeted skin surface 104, epidermal layer 102, dermis layer 106, fat layer 108, SMAS layer 110, and muscle and connective tissue layer 112. Ultrasound probe 105 emits ultrasound energy 120 in ROI 115. In various embodiments, ultrasound probe 105 is capable of emitting ultrasound energy 120 at variable depths in ROI 115, such as, for example, the depths described herein. Ultrasound probe 105 is capable of emitting ultrasound energy as a single frequency, variable frequencies, or a plurality of frequencies, such as, for example, the frequency ranges described herein. Ultrasound probe 105 is capable of emitting ultrasound energy that is weakly focused. Ultrasound probe 105 is capable of emitting ultrasound energy 120 for variable time periods or to pulse the emission over time, such as, for example, those time intervals described herein. Ultrasound probe 105 is capable of providing various energy levels of ultrasound energy, such as, for example, the energy levels described herein.
  • Ultrasound probe 105 may be individual hand-held device, or may be part of a treatment system. The ultrasound probe 105 can provide both ultrasound energy and imaging ultrasound energy. However, ultrasound probe 105 may provide only ultrasound energy. Ultrasound probe 105 may comprise a therapeutic transducer and a separate imaging transducer. Ultrasound probe 105 may comprise a transducer or a transducer array capable of both cosmetic rejuvenation and imaging applications. According an alternative embodiment, ultrasound probe 105 is coupled directly to one of the tissue layers, as opposed to targeted skin surface 104 to treat the tissue layer.
  • In various embodiments, ultrasound probe 105 may be used for method 100 or method 150. In various embodiments, method 100 or method 150 can be implemented using any or all of the elements illustrated in FIG. 3. As will be appreciated by those skilled in the art, at least a portion of method 100 or a variation of method 100 can be implemented using any or all of the elements illustrated in FIG. 3. Furthermore, at least a portion of method 150 or a variation of method 150 can be implemented using any or all of the elements illustrated in FIG. 3.
  • With reference to FIG. 4, an embodiment of transduction element 125 is illustrated. Transduction element 125B comprises first transduction element 121 and second transduction element 122. In some embodiments, first transduction element 121 and second transduction element 122 can have the same focus, which can be mechanical focus, electronic focus, or combinations thereof. In some embodiments, first transduction element 121 and second transduction element 122 can have different focal points. In some embodiments, first transduction element 121 and second transduction element 122 can be multiple elements of the same therapy transducer, sectioned for different f-numbers.
  • In some embodiments, first transduction element 121 is operable to focus ultrasound energy 148 to target zone 142 and second transduction element 122 is operable to focus ultrasound energy 108 to second target zone 142A. Alternatively, first transduction element 121 and second transduction element 122 may be controlled in a combination of different frequencies, different time periods, and different power levels to focus ultrasound energy 148 to at least one of target zone 142 and second target zone 142A.
  • Now with reference to FIGS. 5 and 6, an embodiment of a probe 105 comprising an annular array 131 of transduction elements is illustrated. Annular array 131 can be controlled to weakly focused ultrasound energy 133 into subcutaneous layer 127. The weakly focused ultrasound energy 133 is controlled to create a conformal region 133 of elevated temperature in the subcutaneous layer 127. The conformal region 133 of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127.
  • For example, the conformal region 133 of elevated temperature may be directed to span from skin surface 104 to the epidermal layer 102. For example, the conformal region 133 of elevated temperature may be directed to span from skin surface 104, through the epidermal layer 102, to at least a portion of the dermal layer 106. For example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, and fat layer 108. For example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, fat layer 108, and SMAS layer 110. For example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, fat layer 108, and SMAS layer 110. For example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, fat layer 108, SMAS layer 110 and muscle layer 112.
  • Alternately, the conformal region 133 of elevated temperature may include epidermal layer 102, dermis layer 106, fat layer 108, SMAS layer 110 and muscle layer 112. The conformal region 133 of elevated temperature may include dermis layer 106, fat layer 108, SMAS layer 110 and muscle layer 112. The conformal region 133 of elevated temperature may include SMAS layer 110 and muscle layer 112. The conformal region 133 of elevated temperature may include the muscle layer 112.
  • In another example, the conformal region 133 of elevated temperature may include epidermal layer 102, dermis layer 106, fat layer 108, and SMAS layer 110. The conformal region 133 of elevated temperature may include dermis layer 106, fat layer 108, and SMAS layer 110. The conformal region 133 of elevated temperature may include fat layer 108, and SMAS layer 110. The conformal region 133 of elevated temperature may include SMAS layer 110.
  • In still another example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, and fat layer 108. The conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, dermis layer 106, and fat layer 108. The conformal region 133 of elevated temperature may include dermis layer 106, and fat layer 108. The conformal region 133 of elevated temperature may include dermis the fat layer 108. For example, the conformal region 133 of elevated temperature may include targeted skin surface 104, epidermal layer 102, and dermis layer 106. The conformal region 133 of elevated temperature may include epidermal layer 102, and dermis layer 106. The conformal region 133 of elevated temperature may include the dermis layer 106. In another example, the conformal region 133 of elevated temperature may include targeted skin surface 104 and the epidermal layer 102. The conformal region 133 of elevated temperature may include the epidermal layer 102. The conformal region 133 of elevated temperature may include targeted skin surface 104. In still another example, the conformal region 133 of elevated temperature may include a junction between the dermis layer 106 and the SMAS layer 110.
  • In FIGS. 7-11, transducer 125 is configured to create conformal region 133 of elevated temperature and second conformal region 133A, in accordance to various embodiments. In various embodiments, ultrasound probe 105 comprises enclosure 78 containing transducer 125 and optionally position sensor 107. Ultrasound probe 105 can be coupled to targeted skin surface 104. Ultrasound energy 131 and 131A can be emitted by transducer 125 to create conformal region 133 of elevated temperature and second conformal region 133A of elevated temperature in subcutaneous tissue 127. In various embodiments, weakly focused ultrasound energy 131 and second weakly focused ultrasound energy 131A can create conformal region 133 of elevated temperature and second conformal region 133A. In some embodiments, conformal region 133 of elevated temperature and second conformal region 133A intersect. As illustrated in FIG. 7, transducer 125 is elongated and may comprise a plurality of transduction elements. In this configuration, transducer 125 can create conformal region 133 of elevated temperature and second conformal region 133A along dimension 129. In this configuration, probe 105 can provide a cosmetic effect to a larger area of targeted skin surface 104.
  • As discussed herein, conformal region 133 of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127. Accordingly, second conformal region 133A of elevated temperature can be directed to one or more layers of skin or one or more layers of subcutaneous tissue 127, as described herein in regards to conformal region 133 of elevated temperature. In some embodiments, at least a portion both conformal region 133 of elevated temperature and second conformal region 133A of elevated temperature are directed to the same layer of combination of layers in the subcutaneous tissue 127.
  • Now with reference to FIG. 12, ultrasound probe 105 is illustrated. In various embodiments, ultrasound probe 105 comprises enclosure 78 containing transducer 125 and optionally position sensor 107. Ultrasound probe 105 can be coupled to targeted skin surface 104. Ultrasound energy 131 and 131A can be emitted by transducer 125 to create conformal region 133 of elevated temperature and second conformal region 133A of elevated temperature in subcutaneous tissue 127. In various embodiments, weakly focused ultrasound energy 131 and second weakly focused ultrasound energy 131A can create conformal region 133 of elevated temperature and second conformal region 133A
  • In various embodiments, position sensor 107 may determine a distance 117 between pulses of therapeutic ultrasound energy 108 to create a plurality of conformal region 133 of elevated temperature which are evenly spaced or disposed in any spatial configuration in one-, two-, or three-dimensions. As ultrasound probe 105 is moved in direction 130, position sensor 107 determines distance 117, regardless of a speed that ultrasound probe 105 is move, at which a pulse of ultrasound energy 131 or 131A is to be emitted in to ROI. In various embodiments ultrasound probe 105 is triggered automatically via a timer and in combination with a position sensor 107 to assure motion.
  • However, in various embodiments, ultrasound probe 105 comprises position sensor 107. Position sensor 107 can be integrated into ultrasound probe 105 or attached to ultrasound probe 105. In an exemplary embodiment, position sensor 107 is a motion sensor measuring position of ultrasound probe 105. Such a motion sensor can calculate distance traveled along skin surface 104. Such a motion sensor may determine a speed of movement of ultrasound probe 105 along skin surface 104 and determine if the speed is accurate for the cosmetic procedure that is elected. For example if the speed is too fast, motion sensor can signal an indicator to slow the speed and/or can signal transducer 125 to stop emitting ultrasound energy 131 and 131A.
  • In various embodiments, position sensor 107 can include a laser position sensor. For example, position sensor 107 can track position like a computer mouse that uses a laser sensor as opposed to an older version of a mouse with a roller ball. Position sensor 107 can communicate position data versus time to a display to track a position of ultrasound probe 105, such as, for example, overlaid on an image of ROI, overlaid on an image of skin surface 104, as referenced to geotagged features, as reference to targeted location, as referenced to a prior procedures, and combinations thereof. In an exemplary a treatment plan can include a movement pattern of ultrasound probe 105. Such a movement pattern can be displayed and the position sensor 107 can track a position of ultrasound probe 105 during a cosmetic procedure as compared to the movement pattern. Tracking ultrasound probe 105 with position sensor and comparing the tracked movement to a predetermined movement may be useful as a training tool. In an exemplary embodiment, laser position sensor can geotag a feature on skin surface 104.
  • In various embodiments, position sensor 107 may determine a distance 117 between pulses of therapeutic ultrasound energy 108 to create a plurality of lesions 25 which are evenly spaced or disposed in any spatial configuration in one-, two-, or three-dimensions. As ultrasound probe 105 is moved in direction 130, position sensor 107 determines distance 117, regardless of a speed that ultrasound probe 105 is move, at which a pulse of therapeutic ultrasound energy 108 is to be emitted in to ROI. In various embodiments ultrasound probe 105 is triggered automatically via a timer and in combination with a position sensor 107 to assure motion.
  • Position sensor 107 may be located behind a transducer, in front of a transducer array, or integrated into a transducer array. Ultrasound probe 105 may comprise more than one position sensor 107, such as, for example, a laser position sensor and a motion sensor, or a laser position sensor and a visual device, or a motion sensor and a visual device, or a laser position sensor, a motion sensor, and a visual device. Additional embodiments of position sensor 107 may be found in U.S. Pat. No. 7,142,905, entitled “Visual Imaging System for Ultrasonic Probe” issued Nov. 28, 2006, and U.S. Pat. No. 6,540,679, entitled “Visual Imaging System for Ultrasonic Probe” issued Apr. 1, 2003, both of which are incorporated by reference.
  • Position sensor 107 can be integrated into ultrasound probe 105 or attached to ultrasound probe 105. In an exemplary embodiment, position sensor 107 is an optical sensor measuring 1-D, 2-D, or 3-D movement 130 of ultrasound probe 105 versus time while probe travels along skin surface 104. Such a position sensor may control conformal region 133 of elevated temperature sequence directly, by using position information in the treatment system to trigger emission of ultrasound energy 131 and 131A. In various embodiments, cosmetic enhancement can be triggered when the ultrasound probe 105 reaches a fixed or pre-determined range away from the last ablation zone 112. Speed of motion can be used to control therapeutic ultrasound energy 108. For example, if the motion is too fast information can be provided to the user to slow down and/or energy can be dynamically adjusted within limits. Position information may also be used to suppress energy if crossing over the same spatial position, if desired. Such a position sensor 107 may also determine if ultrasound probe 105 is coupled to skin surface 104, to safely control energy delivery and provide information to users.
  • With reference to FIG. 13, a hand held ultrasound probe, according to various embodiments of the present invention, is illustrated. In various embodiments, ultrasound probe 105 comprises transducer 125, as described herein, and may be controlled and operated by a hand-held format control system. An external battery charger can be used with rechargeable-type batteries 84 or the batteries 84 can be single-use disposable types, such as M-sized cells. Power converters produce voltages for powering a driver/feedback circuit with tuning network driving transducer array 100.
  • Ultrasound probe 105 is coupled to targeted skin surface 104 via one or more tips 88, which can be composed of at least one of a solid media, semi-solid, such as, for example, a gelatinous media, and liquid media equivalent to an acoustic coupling agent contained within a housing in tip. Tip 88 is coupled to targeted skin surface 104 with an acoustic coupling agent. In some embodiments, ultrasound probe 105 comprises position sensor 107, as described herein. In some embodiments, tip 88 may comprise transducer 125. In such embodiments, the tip 88 and transducer 125 can be disposable and replaceable.
  • In addition, a microcontroller and timing circuits with associated software and algorithms provide control and user interfacing via a display or LED-type indicators 83, and other input/output controls 82, such as switches and audio devices. A storage element, such as an Electrically Erasable Programmable Read-Only Memory (“EEPROM”), secure EEPROM, tamper-proof EEPROM, or similar device can hold calibration and usage data. A motion mechanism with feedback can be controlled to scan the transducer 125 in a linear pattern or a two-dimensional pattern or over a varied depth. Other feedback controls comprise capacitive, acoustic, or other coupling detection means, limiting controls, and thermal sensor. EEPROM can be coupled with at least one of tip 88, transducer array 100, thermal sensor, coupling detector, and tuning network. Data from EEPROM can be collected in controller 144 and connected to treatment data.
  • In an exemplary embodiment, data from EEPROM can be downloaded to a user's computer via any interface type, such as, for example, a USB interface, a RS 232 interface, a IEEE interface, a fire-wire interface, a blue tooth interface, an infrared interface, a 802.1 interface, via the web, and the like. Downloadable data can include hours of use, frequency during use, power levels, depths, codes from tips used, error codes, user ID, and other such data. The data can be parsed by user ID so more than one user can track user data. Similarly, EEPROM can be interfaced, using any of the methods or devices described herein, to a computer or the web to receive software updates. Still further, EEPROM can be interfaced, using any of the methods or devices described herein, to a computer or the web for at least one of diagnosis, trouble shooting, service, repair, and combinations thereof.
  • As illustrated in FIG. 13, ultrasound probe 105 can be in communication with wireless device 200 via wireless interface 204. Typically, wireless device 200 has display 206 and a user interface such as, for example, a keyboard. Examples of wireless device 200 can include but are not limited to: personal data assistants (“PDA”), cell phone, iPhone, iPad, computer, laptop, netbook, or any other such device now known or developed in the future. Examples of wireless interface 204 include but are not limited to any wireless interface described herein and any such wireless interface now known or developed in the future. Accordingly, ultrasound probe 105 comprises any hardware, such as, for example, electronics, antenna, and the like, as well as, any software that may be used to communicate via wireless interface 204.
  • In various embodiments, device 200 can display an image generated by handheld probe 105. In various embodiments, device 200 can control handheld ultrasound probe 105. In various embodiments, device 200 can store data generated by handheld ultrasound probe 105.
  • In various embodiments, transducer 125, optionally and imaging transducer array 110, and optionally, position sensor 107 can held within enclosure 78. In an exemplary embodiment, enclosure 78 is designed for comfort and control while used in an operator's hand. Enclosure 78 may also contain various electronics, such as, for example, EEPROM, interface connection, motion mechanisms, and/or ram for holding programs, and combinations thereof.
  • Ultrasound energy 131 and 131A from transducer 125 may be spatially and/or temporally controlled at least in part by changing the spatial parameters of transducer 125, such as the placement, distance, treatment depth and transducer 125 structure, as well as by changing the temporal parameters of transducer 125, such as the frequency, drive amplitude, and timing, with such control handled via controller in hand-held assembly of ultrasound probe 105. In various embodiments, ultrasound probe 105 comprises a transducer 125 capable of emitting ultrasound energy 131 and 131A into ROI. This may heat ROI at a specific depth to target tissue as described herein
  • Ultrasound energy 131 creates create conformal region 133 of elevated temperature in a tissue layer, at which a temperature of tissue is raised by 10° C. to 15° C., or is raised to a temperature in the range form about 4° C. to about 55° C., or from about 43° C. to about 48° C., or below a threshold of ablation of the tissue.
  • In various embodiments, the ultrasound energy level is in a range of about 0.1 joules to about 500 joules in order to create an ablative lesion. However, the ultrasound energy 108 level can be in a range of from about 0.1 joules to about 100 joules, or from about 1 joules to about 50 joules, or from about 0.1 joules to about 10 joules, or from about 50 joules to about 100 joules, or from about 100 joules to about 500 joules, or from about 50 joules to about 250 joules.
  • Further, the amount of time ultrasound energy is applied at these levels to create a lesion varies in the range from approximately 1 millisecond to several minutes. However, a range can be from about 1 millisecond to about 5 minutes, or from about 1 millisecond to about 1 minute, or from about 1 millisecond to about 30 seconds, or from about 1 millisecond to about 10 seconds, or from about 1 millisecond to about 1 second, or from about 1 millisecond to about 0.1 seconds, or about 0.1 seconds to about 10 seconds, or about 0.1 seconds to about 1 second, or from about 1 millisecond to about 200 milliseconds, or from about 1 millisecond to about 0.5 seconds.
  • The frequency of the ultrasound energy can be in a range from about 0.1 MHz to about 100 MHz, or from about 0.1 MHz to about 50 MHz, or from about 1 MHz to about 50 MHz or about 0.1 MHz to about 30 MHz, or from about 10 MHz to about 30 MHz, or from about 0.1 MHz to about 20 MHz, or from about 11 MHz to about 20 MHz, or from about 20 MHz to about 30 MHz.
  • The frequency of the ultrasound energy can be in a range from about 1 MHz to about 12 MHz, or from about 5 MHz to about 15 MHz, or from about 2 MHz to about 12 MHz or from about 3 MHz to about 7 MHz.
  • In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 0 mm to about 150 mm, or from about 0 mm to about 100 mm, or from about 0 mm to about 50 mm, or from about 0 mm to about 30 mm, or from about 0 mm to about 20 mm, or from about 0 mm to about 10 mm, or from about 0 mm to about 5 mm. In some embodiments, the ultrasound energy can be emitted to depths below a skin surface in a range from about 5 mm to about 150 mm, or from about 5 mm to about 100 mm, or from about 5 mm to about 50 mm, or from about 5 mm to about 30 mm, or from about 5 mm to about 20 mm, or from about 5 mm to about 10 nm. In some embodiments, the ultrasound energy can be emitted to depths below a skin surface in a range from about 10 mm to about 150 mm, or from about 10 mm to about 100 mm, or from about 10 mm to about 50 mm, or from about 10 mm to about 30 mm, or from about 10 mm to about 20 mm, or from about 0 mm to about 10 mm.
  • In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in the range from about 20 mm to about 150 mm, or from about 20 mm to about 100 mm, or from about 20 mm to about 50 mm, or from about 20 mm to about 30 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 30 mm to about 150 mm, or from about 30 mm to about 100 mm, or from about 30 mm to about 50 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 50 mm to about 150 mm, or from about 50 mm to about 100 mm. In some embodiments, the ultrasound energy can be emitted to depths at or below a skin surface in a range from about 20 mm to about 60 mm, or from about 40 mm to about 80 mm, or from about 10 mm to about 40 mm, or from about 5 mm to about 40 mm, or from about 0 mm to about 40 mm, or from about 10 mm to about 30 mm, or from about 5 mm to about 30 mm, or from about 0 mm to about 30 mm.
  • In various embodiments, the probe 105 comprises a transducer 125 operating frequency range of 2-12 MHz or 4-8 MHz or 6 MHz. In various embodiments, the probe 105 comprises a transducer 125 with an operating power of about 1 watt. In various embodiments, the probe 105 comprises a transducer 125 having an operating intensity range: 10-500 W/cm2 or 20-100 W/cm2. In various embodiments, the probe 105 comprises a transducer 125 that is a consumable transducer.
  • Further, medicant and/or cosmeceutical, as described above, can include a drug, a medicine, or a protein, and combinations thereof. Medicant and/or cosmeceutical can also include a vaccine, blood or blood component, allergenic, somatic cell, gene therapy, tissue, recombinant therapeutic protein, or living cells that are used as therapeutics to treat diseases or as actives to produce a cosmetic effect. Medicant and/or cosmeceutical can also include a biologic, such as for example a recombinant DNA therapy, synthetic growth hormone, monoclonal antibodies, or receptor constructs.
  • Medicant and/or cosmeceutical can also include adsorbent chemicals, such as zeolites, and other hemostatic agents are used in sealing severe injuries quickly. Thrombin and fibrin glue are used surgically to treat bleeding and to thrombose aneurysms. Medicant and/or cosmeceutical can include Desmopressin is used to improve platelet function by activating arginine vasopressin receptor 1A. Medicant and/or cosmeceutical can include coagulation factor concentrates are used to treat hemophilia, to reverse the effects of anticoagulants, and to treat bleeding in patients with impaired coagulation factor synthesis or increased consumption. Prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma are commonly-used coagulation factor products. Recombinant activated human factor VII can be used in the treatment of major bleeding. Medicant and/or cosmeceutical can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate. In addition, medicant and/or cosmeceutical can include steroids like the glucocorticoid cortisol. A medicant and/or cosmeceutical can include can include compounds as alpha lipoic Acid, DMAE, vitamin C ester, tocotrienols, and phospholipids.
  • Medicant 202 can be a pharmaceutical compound such as for example, cortisone, Etanercept, Abatacept, Adalimumrab, or Infliximab. Medicant 202 can include platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue. Medicant 202 can be a prothrombin complex concentrate, cryoprecipitate and fresh frozen plasma, which are commonly-used coagulation factor products. Medicant 202 can be a recombinant activated human factor VII, which can be used in the treatment of major bleeding. Medicant 202 can include tranexamic acid and aminocaproic acid, can inhibit fibrinolysis, and lead to a de facto reduced bleeding rate. In some embodiments, medicant can be Botox.
  • A medicant and/or cosmeceutical can include platelet-rich plasma (PRP), mesenchymal stem cells, or growth factors. For example, PRP is typically a fraction of blood that has been centrifuged. The PRP is then used for stimulating healing of the injury. The PRP typically contains thrombocytes (platelets) and cytokines (growth factors). The PRP may also contain thrombin and may contain fibenogen, which when combined can form fibrin glue.
  • The following patents and patent applications are incorporated by reference: US Patent Application Publication No. 20050256406, entitled “Method and System for Controlled Scanning, Imaging, and/or Therapy” published Nov. 17, 2005; US Patent Application Publication No. 20060058664, entitled “System and Method for Variable Depth Ultrasound Treatment” published Mar. 16, 2006; US Patent Application Publication No. 20060084891, entitled Method and System for Ultra-High Frequency Ultrasound Treatment” published Apr. 20, 2006; U.S. Pat. No. 7,530,958, entitled “Method and System for Combined Ultrasound Treatment” issued May 12, 2009; US Patent Application Publication No. 2008071255, entitled “Method and System for Treating Muscle, Tendon, Ligament, and Cartilage Tissue” published Mar. 20, 2008; U.S. Pat. No. 6,623,430, entitled “Method and Apparatus for Safely Delivering Medicants to a Region of Tissue Using Imaging, Therapy, and Temperature Monitoring Ultrasonice System, issued Sep. 23, 2003; U.S. Pat. No. 7,571,336, entitled “Method and System for Enhancing Safety with Medical Peripheral Device by Monitoring if Host Computer is AC Powered” issued Aug. 4, 2009; US Patent Application Publication No. 20080281255, entitled “Methods and Systems for Modulating Medicants Using Acoustic Energy” published Nov. 13, 2008; US Patent Application Publication No. 20060116671, entitled “Method and System for Controlled Thermal Injury of Human Superficial Tissue,” published Jun. 1, 2006; US Patent Application Publication No. 20060111744, entitled “Method and System for Treatment of Sweat Glands,” published May 25, 2006; US Patent Application Publication No. 20080294073, entitled “Method and System for Non-Ablative Acne Treatment and Prevention,” published Oct. 8, 2009; U.S. Pat. No. 8,133,180, entitled “Method and System for Treating Cellulite,” issued Mar. 13, 2012; U.S. Pat. No. 8,066,641, entitled “Method and System for Photoaged Tissue,” issued Nov. 29, 2011; U.S. Pat. No. 7,491,171, entitled “Method and System for Treating Acne and Sebaceous Glands,” issued Feb. 17, 2009; U.S. Pat. No. 7,615,016, entitled “Method and System for Treating Stretch Marks,” issued Nov. 10, 2009; and U.S. Pat. No. 7,530,356, entitled “Method and System for Noninvasive Mastopexy,” issued May 12, 2009.
  • It is believed that the disclosure set forth above encompasses at least one distinct invention with independent utility. While the invention has been disclosed in the exemplary forms, the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense as numerous variations are possible. The subject matter of the inventions includes all novel and non-obvious combinations and sub combinations of the various elements, features, functions and/or properties disclosed herein.
  • Various embodiments and the examples described herein are exemplary and not intended to be limiting in describing the full scope of compositions and methods of this invention. Equivalent changes, modifications and variations of various embodiments, materials, compositions and methods may be made within the scope of the present invention, with substantially similar results.

Claims (27)

1. A method for treating a surface of skin, the method comprising:
creating a conformal region of elevated temperature;
treating a surface and subsurface of skin simultaneously;
creating a transitional biological effect on the surface of the skin without causing cell death, a scar, or permanent damage to the surface of the skin;
creating a thermal effect to the subsurface of the skin; and
initiating a permanent biological effect to the subsurface of the skin.
2. The method according to claim 1, further comprising creating an optically visible effect on the surface of the skin.
3. The method according to claim 1 wherein the transitional biological effect can be one of erythema, edema, and a transitional coagulative point.
4. The method according to claim 2, wherein the optically visible effect on the surface of the skin can be at least one of at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
5. The method according to claim 1, wherein the permanent biological effect can be at least one of is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of tissue, accelerating ta wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth, increasing the liberation of cytokines, peaking inflammation, partially shrinking collagen, denaturing of proteins in the subcutaneous tissue, and combinations thereof.
6. The method according to claim 1 wherein the permanent biological effect is at least one of creating immediate or delayed cell death, collagen remodeling, disrupting or modifying of biochemical cascades, producing new collagen, stimulating cell growth, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to tissue, and combinations thereof.
7. The method according to claim 1, further comprising administering a medicant to the surface and the subsurface of the skin.
8. The method according to claim 7, further comprising activating the medicant in at least one of the surface and the subsurface of the skin with the ultrasound energy at the same frequency or a different frequency.
9. The method according to claim 1, further comprising delivering a secondary energy to the surface and the subsurface of the skin.
10. The method according to claim 9, wherein the secondary energy is a photon-based energy.
11. The method according to claim 1, wherein the optically visible effect to the surface of the skin is a cosmetic effect.
12. A method for improving an appearance of a skin surface, the method comprising:
locating a targeted portion of skin surface;
delivering ultrasound energy to subcutaneous tissue below the skin surface;
producing a biological effect in at least one of the skin surface and the subcutaneous tissue; and
improving the appearance of the targeted portion of the skin surface.
13. The method according to claim 12, further comprising driving a medicant to the subcutaneous tissue below the skin surface.
14. The method according to claim 13, further comprising activating the medicant in the region of interest with the ultrasound energy at the same frequency or a different frequency.
15. The method according to claim 12, further comprising driving a cosmeceutical to the subcutaneous tissue below the skin surface.
16. The method according to claim 12, further comprising delivering a secondary energy to the subcutaneous tissue below the skin surface.
17. The method according to claim 16, wherein the secondary energy is a photon-based energy.
18. The method according to claim 16, wherein the secondary energy is radio frequency based energy.
19. The method according to claim 12, wherein the biological effect is at least one of stimulating or increase an amount of heat shock proteins, cause white blood cells to promote healing of a portion of the subcutaneous tissue, accelerating a wound healing cascade in the subcutaneous tissue, increasing the blood perfusion in the subcutaneous tissue, encouraging collagen growth in the subcutaneous tissue, increasing the liberation of cytokines within the subcutaneous layer, peaking inflammation in the subcutaneous tissue, partially shrinking collagen in a portion of the subcutaneous tissue, denaturing of proteins in the subcutaneous tissue, and combinations thereof
20. The method according to claim 12, wherein the biological effect is at least one of creating immediate or delayed cell death in the subcutaneous tissue, collagen remodeling in the subcutaneous tissue, disrupting or modifying of biochemical cascades in at least one of the skin surface and the subcutaneous tissue, producing new collagen in the subcutaneous tissue, stimulating cell growth in the subcutaneous tissue, stimulating angiogenesis, stimulating a cell permeability response, enhancing delivery of medicants to in the subcutaneous tissue, and combinations thereof.
21. The method according to claim 12, wherein the improving the appearance of the targeted portion of the skin surface comprises at least one of increasing skin elasticity, reducing skin oiliness, reducing skin pore size, smoothing skin texture, reducing hyperpigmentation, treating and/or preventing acne, reducing a blemish, reducing an appearance of spider veins and/or rosacea, reducing an appearance of scars, reducing an appearance of stretch marks, rejuvenating skin, increasing collagen in the subcutaneous tissue, tightening of sagging sink, rejuvenating photoaged skin, increasing a thickness of a dermal layer, reducing a wrinkle on the skin surface, generating new tissue in the subcutaneous layer, and combinations thereof.
22. A system for improving the appearance of a skin surface, the system comprising:
a hand-held probe comprising:
an ultrasound transducer;
an indicator display;
at least one input/output control;
a position sensor; and
a rechargeable battery configured to power the hand-held probe;
a controller configured to control the hand-held probe; and
a wireless interface configured to couple communication between the controller and the hand-held probe.
23. The system according to claim 22, wherein the controller is at least one of a personal data assistant, a cell phone, an iPhone, an iPad, a computer, a laptop, and a netbook.
24. The system according to claim 22, wherein the transducer is configured as a 2 dimensional linear array.
25. The system according to claim 22, wherein the ultrasound transducer is configured to simultaneously create a first conformal region of elevated temperature and second conformal region of elevated temperature in subcutaneous tissue.
26. The system according to claim 24, wherein the first conformal region of elevated temperature and second conformal region of elevated temperature intersect in the subcutaneous tissue.
27. The system according to claim 24, wherein the first conformal region of elevated temperature and second conformal region of elevated temperature are positioned perpendicular to each other in the subcutaneous tissue.
US13/545,954 2004-09-24 2012-07-10 Systems and methods for improving an outside appearance of skin using ultrasound as an energy source Abandoned US20130046209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/545,954 US20130046209A1 (en) 2011-07-10 2012-07-10 Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
US14/868,947 US20160016015A1 (en) 2004-09-24 2015-09-29 Systems and methods for improving an outside appearance of skin using ultrasound as an energy source

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US201161506163P 2011-07-10 2011-07-10
US201161506125P 2011-07-10 2011-07-10
US201161506126P 2011-07-10 2011-07-10
US201161506127P 2011-07-10 2011-07-10
US201161506160P 2011-07-10 2011-07-10
US201161506609P 2011-07-11 2011-07-11
US201161506610P 2011-07-11 2011-07-11
US13/545,954 US20130046209A1 (en) 2011-07-10 2012-07-10 Systems and methods for improving an outside appearance of skin using ultrasound as an energy source

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/950,112 Continuation-In-Part US7530958B2 (en) 2004-09-24 2004-09-24 Method and system for combined ultrasound treatment

Publications (1)

Publication Number Publication Date
US20130046209A1 true US20130046209A1 (en) 2013-02-21

Family

ID=47439059

Family Applications (8)

Application Number Title Priority Date Filing Date
US13/545,954 Abandoned US20130046209A1 (en) 2004-09-24 2012-07-10 Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
US13/545,929 Expired - Fee Related US8858471B2 (en) 2011-07-10 2012-07-10 Methods and systems for ultrasound treatment
US13/545,931 Abandoned US20130012816A1 (en) 2011-07-10 2012-07-10 Methods and systems for controlling acoustic energy deposition into a medium
US13/545,953 Active 2034-02-01 US9452302B2 (en) 2011-07-10 2012-07-10 Systems and methods for accelerating healing of implanted material and/or native tissue
US14/513,251 Active US10226645B2 (en) 2011-07-10 2014-10-14 Methods and systems for ultrasound treatment
US15/246,199 Active US10166411B2 (en) 2011-07-10 2016-08-24 Systems and methods for accelerating healing of implanted material and/or native tissue
US16/231,438 Active US10898735B2 (en) 2011-07-10 2018-12-22 Systems and methods for accelerating healing of implanted material and/or native tissue
US17/104,197 Abandoned US20210322792A1 (en) 2011-07-10 2020-11-25 Methods and Systems for Controlling Acoustic Energy Deposition Into A Medium

Family Applications After (7)

Application Number Title Priority Date Filing Date
US13/545,929 Expired - Fee Related US8858471B2 (en) 2011-07-10 2012-07-10 Methods and systems for ultrasound treatment
US13/545,931 Abandoned US20130012816A1 (en) 2011-07-10 2012-07-10 Methods and systems for controlling acoustic energy deposition into a medium
US13/545,953 Active 2034-02-01 US9452302B2 (en) 2011-07-10 2012-07-10 Systems and methods for accelerating healing of implanted material and/or native tissue
US14/513,251 Active US10226645B2 (en) 2011-07-10 2014-10-14 Methods and systems for ultrasound treatment
US15/246,199 Active US10166411B2 (en) 2011-07-10 2016-08-24 Systems and methods for accelerating healing of implanted material and/or native tissue
US16/231,438 Active US10898735B2 (en) 2011-07-10 2018-12-22 Systems and methods for accelerating healing of implanted material and/or native tissue
US17/104,197 Abandoned US20210322792A1 (en) 2011-07-10 2020-11-25 Methods and Systems for Controlling Acoustic Energy Deposition Into A Medium

Country Status (4)

Country Link
US (8) US20130046209A1 (en)
EP (2) EP2739357B1 (en)
KR (2) KR102068724B1 (en)
WO (3) WO2013009787A2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080214966A1 (en) * 2004-10-06 2008-09-04 Slayton Michael H Method and system for noninvasive face lifts and deep tissue tightening
US20090182231A1 (en) * 2004-10-06 2009-07-16 Guided Therapy Systems, L.L.C. Method and system for treating acne and sebaceous glands
US20100022922A1 (en) * 2004-10-06 2010-01-28 Guided Therapy Systems, L.L.C. Method and system for treating stretch marks
US20120165668A1 (en) * 2010-08-02 2012-06-28 Guided Therapy Systems, Llc Systems and methods for treating acute and/or chronic injuries in soft tissue
US20130310715A1 (en) * 2010-11-30 2013-11-21 Afschin Fatemi Apparatus for the treatment of hyperhidrosis
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US20140290368A1 (en) * 2013-03-28 2014-10-02 Siemens Energy, Inc. Method and apparatus for remote position tracking of an industrial ultrasound imaging probe
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US8868958B2 (en) 2005-04-25 2014-10-21 Ardent Sound, Inc Method and system for enhancing computer peripheral safety
US8915853B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Methods for face and neck lifts
US8932224B2 (en) 2004-10-06 2015-01-13 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9272162B2 (en) 1997-10-14 2016-03-01 Guided Therapy Systems, Llc Imaging, therapy, and temperature monitoring ultrasonic method
US20160067526A1 (en) * 2014-09-04 2016-03-10 National Yang-Ming University Method for treating and/or preventing neurodegenerative diseases by using low-intensity pulsed ultrasound (LIPUS)
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US20170001043A1 (en) * 2013-12-23 2017-01-05 Theraclion Sa Device for treatment of a tissue and method of preparation of an image of an image-guided device for treatment of a tissue
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9700340B2 (en) 2004-10-06 2017-07-11 Guided Therapy Systems, Llc System and method for ultra-high frequency ultrasound treatment
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9907535B2 (en) 2000-12-28 2018-03-06 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US10039938B2 (en) 2004-09-16 2018-08-07 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US10112119B2 (en) * 2015-11-09 2018-10-30 Disney Enterprises, Inc. Method for modifying local properties of materials
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US10537304B2 (en) 2008-06-06 2020-01-21 Ulthera, Inc. Hand wand for ultrasonic cosmetic treatment and imaging
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US10603521B2 (en) 2014-04-18 2020-03-31 Ulthera, Inc. Band transducer ultrasound therapy
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11224895B2 (en) 2016-01-18 2022-01-18 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US11241218B2 (en) 2016-08-16 2022-02-08 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
US11484724B2 (en) 2015-09-30 2022-11-01 Btl Medical Solutions A.S. Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field
WO2023063494A1 (en) * 2021-10-15 2023-04-20 Lutronic Corporation Skin treatment apparatus using high-intensity focused ultrasound, control method thereof, and skin treatment method using the same
US11717661B2 (en) 2007-05-07 2023-08-08 Guided Therapy Systems, Llc Methods and systems for ultrasound assisted delivery of a medicant to tissue
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
US11969609B2 (en) 2022-12-05 2024-04-30 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8750983B2 (en) 2004-09-20 2014-06-10 P Tech, Llc Therapeutic system
US20130096471A1 (en) * 2010-08-02 2013-04-18 Guided Therapy Systems, Llc Systems and methods for treating injuries to joints and connective tissue
CN104987416A (en) 2008-05-23 2015-10-21 Siwa有限公司 Methods, compositions and apparatus for facilitating regeneration
US8673003B1 (en) * 2010-07-20 2014-03-18 Abdullah Khalid Al Rasheed Method for improving the early detection of breast cancer and device therefor
EP3511017A1 (en) 2010-09-27 2019-07-17 Siwa Corporation Selective removal of age-modified cells for treatment of atherosclerosis
US8721571B2 (en) 2010-11-22 2014-05-13 Siwa Corporation Selective removal of cells having accumulated agents
US11077318B2 (en) 2012-05-25 2021-08-03 Ojai Retinal Technology, Llc System and process of utilizing energy for treating biological tissue
US10874873B2 (en) 2012-05-25 2020-12-29 Ojai Retinal Technology, Llc Process utilizing pulsed energy to heat treat biological tissue
US10278863B2 (en) 2016-03-21 2019-05-07 Ojai Retinal Technology, Llc System and process for treatment of myopia
US10596389B2 (en) 2012-05-25 2020-03-24 Ojai Retinal Technology, Llc Process and system for utilizing energy to treat biological tissue
DE102012013534B3 (en) 2012-07-05 2013-09-19 Tobias Sokolowski Apparatus for repetitive nerve stimulation for the degradation of adipose tissue by means of inductive magnetic fields
WO2015031532A1 (en) * 2013-08-27 2015-03-05 University Of Washington Through Its Center For Commercialization Systems and methods for treating abscesses and infected fluid collections
KR101563500B1 (en) * 2014-02-28 2015-10-27 삼성메디슨 주식회사 Gel patch for probe and Ultrasonic diagnostic apparatus comprising the same
JP6976847B2 (en) 2014-09-19 2021-12-08 シワ コーポレイション Anti-AGE antibody for treating inflammation and autoimmune disorders
KR101752286B1 (en) * 2014-10-31 2017-06-30 (주)프로스테믹스 Apparatus for skin care and uses thereof
US10358502B2 (en) 2014-12-18 2019-07-23 Siwa Corporation Product and method for treating sarcopenia
US9993535B2 (en) 2014-12-18 2018-06-12 Siwa Corporation Method and composition for treating sarcopenia
WO2016164829A1 (en) * 2015-04-08 2016-10-13 Guided Therapy Systems, Llc System and method for increased control of ultrasound treatment
US11491342B2 (en) 2015-07-01 2022-11-08 Btl Medical Solutions A.S. Magnetic stimulation methods and devices for therapeutic treatments
KR101643746B1 (en) 2015-06-12 2016-07-29 예림엔지니어링 주식회사 Raser pulse control method for skin treatment
US20180001107A1 (en) 2016-07-01 2018-01-04 Btl Holdings Limited Aesthetic method of biological structure treatment by magnetic field
US11266850B2 (en) 2015-07-01 2022-03-08 Btl Healthcare Technologies A.S. High power time varying magnetic field therapy
US10695575B1 (en) 2016-05-10 2020-06-30 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US20170007853A1 (en) * 2015-07-10 2017-01-12 Medtronic, Inc. Physiological monitoring for ultrasound therapy
KR101770253B1 (en) 2015-09-15 2017-08-22 이일권 An Apparatus for Caring a Skin Using a Ultrasonic Wave Having a Structure of Multi Frequencies Emitting and a Method for Controlling the Same
KR101616925B1 (en) * 2015-10-17 2016-04-29 고재석 Bio Activation Control Equipment
US11253717B2 (en) 2015-10-29 2022-02-22 Btl Healthcare Technologies A.S. Aesthetic method of biological structure treatment by magnetic field
HUE058854T2 (en) 2016-02-19 2022-09-28 Siwa Corp Method and composition for treating cancer, killing metastatic cancer cells and preventing cancer metastasis using antibody to advanced glycation end products (age)
US10709608B2 (en) 2016-03-21 2020-07-14 Ojai Retinal Technology, Llc System and process for prevention of myopia
CA3057829A1 (en) 2016-04-15 2017-10-19 Siwa Corporation Anti-age antibodies for treating neurodegenerative disorders
US11511138B2 (en) 2016-05-02 2022-11-29 University Of Kansas Method and apparatus for removing microvessels
US11464993B2 (en) 2016-05-03 2022-10-11 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US11247039B2 (en) 2016-05-03 2022-02-15 Btl Healthcare Technologies A.S. Device including RF source of energy and vacuum system
US9861410B2 (en) 2016-05-06 2018-01-09 Medos International Sarl Methods, devices, and systems for blood flow
US11534619B2 (en) 2016-05-10 2022-12-27 Btl Medical Solutions A.S. Aesthetic method of biological structure treatment by magnetic field
US10583287B2 (en) 2016-05-23 2020-03-10 Btl Medical Technologies S.R.O. Systems and methods for tissue treatment
WO2017212489A2 (en) * 2016-06-06 2017-12-14 Archimedus Medical Ltd. Ultrasound transducer and system
WO2017222535A1 (en) 2016-06-23 2017-12-28 Siwa Corporation Vaccines for use in treating various diseases and disorders
US10556122B1 (en) 2016-07-01 2020-02-11 Btl Medical Technologies S.R.O. Aesthetic method of biological structure treatment by magnetic field
US10995151B1 (en) 2017-01-06 2021-05-04 Siwa Corporation Methods and compositions for treating disease-related cachexia
US10961321B1 (en) 2017-01-06 2021-03-30 Siwa Corporation Methods and compositions for treating pain associated with inflammation
US10858449B1 (en) 2017-01-06 2020-12-08 Siwa Corporation Methods and compositions for treating osteoarthritis
US10925937B1 (en) 2017-01-06 2021-02-23 Siwa Corporation Vaccines for use in treating juvenile disorders associated with inflammation
CN110691628A (en) * 2017-03-30 2020-01-14 国立大学法人东北大学 Device for treating dementia, method for operating the device, and program
EP3609923A1 (en) 2017-04-13 2020-02-19 Siwa Corporation Humanized monoclonal advanced glycation end-product antibody
WO2019099068A1 (en) * 2017-11-15 2019-05-23 Ojai Retinal Technology, Llc Process and system for utilizing energy to treat biological tissue
JP7116944B2 (en) 2017-12-20 2022-08-12 国立研究開発法人量子科学技術研究開発機構 MEDICAL DEVICE, METHOD OF CONTROLLING MEDICAL DEVICE, AND PROGRAM
US11518801B1 (en) 2017-12-22 2022-12-06 Siwa Corporation Methods and compositions for treating diabetes and diabetic complications
WO2019177654A1 (en) * 2018-03-12 2019-09-19 Ojai Retinal Technology, Llc System and process of utilizing energy for treating biological tissue
US11260249B2 (en) * 2018-07-19 2022-03-01 Sonablate Corp. System, apparatus and method for high intensity focused ultrasound and tissue healing activation
PL4066887T3 (en) 2019-04-11 2024-03-04 Btl Medical Solutions A.S. Devices for aesthetic treatment of biological structures by radiofrequency and magnetic energy
KR20220007884A (en) 2019-05-09 2022-01-19 자이러스 에이씨엠아이, 인코포레이티드 디.비.에이. 올림푸스 써지컬 테크놀러지스 아메리카 Electrosurgical systems and methods
US20220313547A1 (en) * 2019-08-14 2022-10-06 Taket Llc Vibration-generating device
CN111150424A (en) * 2020-01-16 2020-05-15 黄晶 Imaging and intervention integrated acoustic resonance system
KR102378699B1 (en) * 2020-01-30 2022-03-29 공주대학교 산학협력단 Variable applicator
KR20210101481A (en) 2020-02-10 2021-08-19 한국과학기술연구원 A device for removing senescent cells comprising an ultrasound output unit
KR20230000081U (en) 2020-05-04 2023-01-10 비티엘 헬쓰케어 테크놀로지스 에이.에스. Device and method for unattended treatment of patients
US11878167B2 (en) 2020-05-04 2024-01-23 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient
CA3176245A1 (en) * 2020-09-14 2022-03-17 Ginkgo Bioworks, Inc. Use of bone morphogenetic proteins and their receptors for aesthetics and cosmetics
US11896816B2 (en) 2021-11-03 2024-02-13 Btl Healthcare Technologies A.S. Device and method for unattended treatment of a patient

Family Cites Families (724)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2427348A (en) 1941-08-19 1947-09-16 Bell Telephone Labor Inc Piezoelectric vibrator
FR2190364B1 (en) 1972-07-04 1975-06-13 Patru Marcel
FR2214378A5 (en) 1973-01-16 1974-08-09 Commissariat Energie Atomique
FR2254030B1 (en) 1973-12-10 1977-08-19 Philips Massiot Mat Medic
US3965455A (en) 1974-04-25 1976-06-22 The United States Of America As Represented By The Secretary Of The Navy Focused arc beam transducer-reflector
US4059098A (en) 1975-07-21 1977-11-22 Stanford Research Institute Flexible ultrasound coupling system
AT353506B (en) 1976-10-19 1979-11-26 List Hans PIEZOELECTRIC RESONATOR
JPS5353393A (en) 1976-10-25 1978-05-15 Matsushita Electric Ind Co Ltd Ultrasonic probe
US4213344A (en) 1978-10-16 1980-07-22 Krautkramer-Branson, Incorporated Method and apparatus for providing dynamic focussing and beam steering in an ultrasonic apparatus
US4211949A (en) 1978-11-08 1980-07-08 General Electric Company Wear plate for piezoelectric ultrasonic transducer arrays
US4211948A (en) 1978-11-08 1980-07-08 General Electric Company Front surface matched piezoelectric ultrasonic transducer array with wide field of view
US4276491A (en) 1979-10-02 1981-06-30 Ausonics Pty. Limited Focusing piezoelectric ultrasonic medical diagnostic system
US4343301A (en) 1979-10-04 1982-08-10 Robert Indech Subcutaneous neural stimulation or local tissue destruction
US4325381A (en) 1979-11-21 1982-04-20 New York Institute Of Technology Ultrasonic scanning head with reduced geometrical distortion
JPS5686121A (en) 1979-12-14 1981-07-13 Teijin Ltd Antitumor proten complex and its preparation
US4315514A (en) 1980-05-08 1982-02-16 William Drewes Method and apparatus for selective cell destruction
US4381787A (en) 1980-08-15 1983-05-03 Technicare Corporation Ultrasound imaging system combining static B-scan and real-time sector scanning capability
US4372296A (en) 1980-11-26 1983-02-08 Fahim Mostafa S Treatment of acne and skin disorders and compositions therefor
JPS6336171Y2 (en) 1981-03-12 1988-09-26
US4484569A (en) 1981-03-13 1984-11-27 Riverside Research Institute Ultrasonic diagnostic and therapeutic transducer assembly and method for using
US4381007A (en) 1981-04-30 1983-04-26 The United States Of America As Represented By The United States Department Of Energy Multipolar corneal-shaping electrode with flexible removable skirt
EP0068961A3 (en) 1981-06-26 1983-02-02 Thomson-Csf Apparatus for the local heating of biological tissue
US4409839A (en) 1981-07-01 1983-10-18 Siemens Ag Ultrasound camera
US4397314A (en) 1981-08-03 1983-08-09 Clini-Therm Corporation Method and apparatus for controlling and optimizing the heating pattern for a hyperthermia system
US4441486A (en) 1981-10-27 1984-04-10 Board Of Trustees Of Leland Stanford Jr. University Hyperthermia system
DE3300121A1 (en) 1982-01-07 1983-07-14 Technicare Corp., 80112 Englewood, Col. METHOD AND DEVICE FOR IMAGING AND THERMALLY TREATING TISSUE BY MEANS OF ULTRASOUND
US4528979A (en) 1982-03-18 1985-07-16 Kievsky Nauchno-Issledovatelsky Institut Otolaringologii Imeni Professora A.S. Kolomiiobenka Cryo-ultrasonic surgical instrument
US4431008A (en) 1982-06-24 1984-02-14 Wanner James F Ultrasonic measurement system using a perturbing field, multiple sense beams and receivers
US4534221A (en) 1982-09-27 1985-08-13 Technicare Corporation Ultrasonic diagnostic imaging systems for varying depths of field
US4507582A (en) 1982-09-29 1985-03-26 New York Institute Of Technology Matching region for damped piezoelectric ultrasonic apparatus
US4452084A (en) 1982-10-25 1984-06-05 Sri International Inherent delay line ultrasonic transducer and systems
DE3374522D1 (en) 1982-10-26 1987-12-23 University Of Aberdeen
US4513749A (en) 1982-11-18 1985-04-30 Board Of Trustees Of Leland Stanford University Three-dimensional temperature probe
US4527550A (en) 1983-01-28 1985-07-09 The United States Of America As Represented By The Department Of Health And Human Services Helical coil for diathermy apparatus
JPH064074B2 (en) 1983-02-14 1994-01-19 株式会社日立製作所 Ultrasonic diagnostic device and sound velocity measuring method using the same
FR2543437B1 (en) 1983-03-30 1987-07-10 Duraffourd Alain COMPOSITION FOR REGENERATING COLLAGEN OF CONNECTIVE TISSUE OF THE SKIN AND METHOD FOR PREPARING SAME
US4900540A (en) 1983-06-20 1990-02-13 Trustees Of The University Of Massachusetts Lipisomes containing gas for ultrasound detection
EP0129878B1 (en) 1983-06-23 1989-01-11 Matsushita Electric Industrial Co., Ltd. Ultrasonic probe having dual-motion transducer
FR2551611B1 (en) 1983-08-31 1986-10-24 Labo Electronique Physique NOVEL ULTRASONIC TRANSDUCER STRUCTURE AND ULTRASONIC ECHOGRAPHY MEDIA EXAMINATION APPARATUS COMPRISING SUCH A STRUCTURE
US4601296A (en) 1983-10-07 1986-07-22 Yeda Research And Development Co., Ltd. Hyperthermia apparatus
US5143074A (en) 1983-12-14 1992-09-01 Edap International Ultrasonic treatment device using a focussing and oscillating piezoelectric element
US5150711A (en) 1983-12-14 1992-09-29 Edap International, S.A. Ultra-high-speed extracorporeal ultrasound hyperthermia treatment device
US4513750A (en) 1984-02-22 1985-04-30 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method for thermal monitoring subcutaneous tissue
US4567895A (en) 1984-04-02 1986-02-04 Advanced Technology Laboratories, Inc. Fully wetted mechanical ultrasound scanhead
US4620546A (en) 1984-06-30 1986-11-04 Kabushiki Kaisha Toshiba Ultrasound hyperthermia apparatus
DE3447440A1 (en) 1984-12-27 1986-07-03 Siemens AG, 1000 Berlin und 8000 München SHOCK SHAFT PIPE FOR THE CRUSHING OF CONCRETE
DE3501808A1 (en) 1985-01-21 1986-07-24 Siemens AG, 1000 Berlin und 8000 München ULTRASONIC CONVERTER
JPS61209643A (en) 1985-03-15 1986-09-17 株式会社東芝 Ultrasonic diagnostic and medical treatment apparatus
DE3611669A1 (en) 1985-04-10 1986-10-16 Hitachi Medical Corp., Tokio/Tokyo ULTRASONIC CONVERTER
JPH0678460B2 (en) 1985-05-01 1994-10-05 株式会社バイオマテリアル・ユニバース Porous transparent polyvinyl alcohol gel
DE3650004T2 (en) 1985-05-20 1995-02-23 Matsushita Electric Ind Co Ltd Ultrasound probe.
US4865042A (en) 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
US5054310A (en) 1985-09-13 1991-10-08 The California Province Of The Society Of Jesus Test object and method of measurement of an ultrasonic beam
US5304169A (en) 1985-09-27 1994-04-19 Laser Biotech, Inc. Method for collagen shrinkage
US4976709A (en) 1988-12-15 1990-12-11 Sand Bruce J Method for collagen treatment
DE3688702T2 (en) 1985-12-13 1993-12-09 Matsushita Electric Ind Co Ltd Ultrasound diagnostic device based on changes in an acoustic property.
JPS6323126A (en) 1986-02-13 1988-01-30 Bio Material Yunibaasu:Kk Soft contact lens and its production
JPS62249644A (en) 1986-04-22 1987-10-30 日石三菱株式会社 Dummy living body structure
US4875487A (en) 1986-05-02 1989-10-24 Varian Associates, Inc. Compressional wave hyperthermia treating method and apparatus
US4807633A (en) 1986-05-21 1989-02-28 Indianapolis Center For Advanced Research Non-invasive tissue thermometry system and method
US4803625A (en) 1986-06-30 1989-02-07 Buddy Systems, Inc. Personal health monitor
US4867169A (en) 1986-07-29 1989-09-19 Kaoru Machida Attachment attached to ultrasound probe for clinical application
US4801459A (en) 1986-08-05 1989-01-31 Liburdy Robert P Technique for drug and chemical delivery
JPS6336171U (en) 1986-08-26 1988-03-08
JPS63122923A (en) 1986-11-13 1988-05-26 Agency Of Ind Science & Technol Ultrasonic thermometric apparatus
US4865041A (en) 1987-02-04 1989-09-12 Siemens Aktiengesellschaft Lithotripter having an ultrasound locating system integrated therewith
JPS63220847A (en) 1987-03-10 1988-09-14 松下電器産業株式会社 Ultrasonic probe
US5178135A (en) 1987-04-16 1993-01-12 Olympus Optical Co., Ltd. Therapeutical apparatus of extracorporeal type
BG46024A1 (en) 1987-05-19 1989-10-16 Min Na Narodnata Otbrana Method and device for treatment of bone patology
US4891043A (en) 1987-05-28 1990-01-02 Board Of Trustees Of The University Of Illinois System for selective release of liposome encapsulated material via laser radiation
JPH0348299Y2 (en) 1987-05-29 1991-10-15
US4932414A (en) 1987-11-02 1990-06-12 Cornell Research Foundation, Inc. System of therapeutic ultrasound and real-time ultrasonic scanning
US5040537A (en) 1987-11-24 1991-08-20 Hitachi, Ltd. Method and apparatus for the measurement and medical treatment using an ultrasonic wave
US4860732A (en) 1987-11-25 1989-08-29 Olympus Optical Co., Ltd. Endoscope apparatus provided with endoscope insertion aid
US4917096A (en) 1987-11-25 1990-04-17 Laboratory Equipment, Corp. Portable ultrasonic probe
US5163421A (en) 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US5143063A (en) 1988-02-09 1992-09-01 Fellner Donald G Method of removing adipose tissue from the body
US4858613A (en) 1988-03-02 1989-08-22 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US4951653A (en) 1988-03-02 1990-08-28 Laboratory Equipment, Corp. Ultrasound brain lesioning system
US4955365A (en) 1988-03-02 1990-09-11 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US5054470A (en) 1988-03-02 1991-10-08 Laboratory Equipment, Corp. Ultrasonic treatment transducer with pressurized acoustic coupling
US5036855A (en) 1988-03-02 1991-08-06 Laboratory Equipment, Corp. Localization and therapy system for treatment of spatially oriented focal disease
US5665141A (en) * 1988-03-30 1997-09-09 Arjo Hospital Equipment Ab Ultrasonic treatment process
JP2615132B2 (en) 1988-05-19 1997-05-28 富士通株式会社 Ultrasonic probe
US4947046A (en) 1988-05-27 1990-08-07 Konica Corporation Method for preparation of radiographic image conversion panel and radiographic image conversion panel thereby
US4966953A (en) 1988-06-02 1990-10-30 Takiron Co., Ltd. Liquid segment polyurethane gel and couplers for ultrasonic diagnostic probe comprising the same
US5018508A (en) 1988-06-03 1991-05-28 Fry Francis J System and method using chemicals and ultrasound or ultrasound alone to replace more conventional surgery
US4938217A (en) 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Electronically-controlled variable focus ultrasound hyperthermia system
US4893624A (en) 1988-06-21 1990-01-16 Massachusetts Institute Of Technology Diffuse focus ultrasound hyperthermia system
US4938216A (en) 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Mechanically scanned line-focus ultrasound hyperthermia system
US4896673A (en) 1988-07-15 1990-01-30 Medstone International, Inc. Method and apparatus for stone localization using ultrasound imaging
EP0413028B1 (en) 1988-08-30 1995-07-12 Fujitsu Limited Acoustic coupler
US5159931A (en) 1988-11-25 1992-11-03 Riccardo Pini Apparatus for obtaining a three-dimensional reconstruction of anatomic structures through the acquisition of echographic images
FR2643770B1 (en) 1989-02-28 1991-06-21 Centre Nat Rech Scient MICROECHOGRAPHIC ULTRASONIC COLLIMATION PROBE THROUGH A DEFORMABLE SURFACE
US5088495A (en) 1989-03-27 1992-02-18 Kabushiki Kaisha Toshiba Mechanical ultrasonic scanner
DE3914619A1 (en) 1989-05-03 1990-11-08 Kontron Elektronik DEVICE FOR TRANSOESOPHAGEAL ECHOCARDIOGRAPHY
US6016255A (en) 1990-11-19 2000-01-18 Dallas Semiconductor Corp. Portable data carrier mounting system
US5057104A (en) 1989-05-30 1991-10-15 Cyrus Chess Method and apparatus for treating cutaneous vascular lesions
US5212671A (en) 1989-06-22 1993-05-18 Terumo Kabushiki Kaisha Ultrasonic probe having backing material layer of uneven thickness
US5435311A (en) 1989-06-27 1995-07-25 Hitachi, Ltd. Ultrasound therapeutic system
US5115814A (en) 1989-08-18 1992-05-26 Intertherapy, Inc. Intravascular ultrasonic imaging probe and methods of using same
US4973096A (en) 1989-08-21 1990-11-27 Joyce Patrick H Shoe transporting device
EP0491685A4 (en) 1989-08-28 1993-10-13 K. Michael Sekins Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids
US5240003A (en) 1989-10-16 1993-08-31 Du-Med B.V. Ultrasonic instrument with a micro motor having stator coils on a flexible circuit board
US5156144A (en) 1989-10-20 1992-10-20 Olympus Optical Co., Ltd. Ultrasonic wave therapeutic device
JPH03136642A (en) 1989-10-20 1991-06-11 Olympus Optical Co Ltd Ultrasonic treatment device
EP0424685B1 (en) 1989-10-27 1995-05-10 Storz Instrument Company Method for driving an ultrasonic transducer
ES2085885T3 (en) 1989-11-08 1996-06-16 George S Allen MECHANICAL ARM FOR INTERACTIVE SURGERY SYSTEM DIRECTED BY IMAGES.
US5070879A (en) 1989-11-30 1991-12-10 Acoustic Imaging Technologies Corp. Ultrasound imaging method and apparatus
CA2032204C (en) 1989-12-14 1995-03-14 Takashi Mochizuki Three-dimensional ultrasonic scanner
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5209720A (en) 1989-12-22 1993-05-11 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids using gas filled liposomes
US5149319A (en) 1990-09-11 1992-09-22 Unger Evan C Methods for providing localized therapeutic heat to biological tissues and fluids
US5305757A (en) 1989-12-22 1994-04-26 Unger Evan C Gas filled liposomes and their use as ultrasonic contrast agents
US5469854A (en) 1989-12-22 1995-11-28 Imarx Pharmaceutical Corp. Methods of preparing gas-filled liposomes
US5012797A (en) 1990-01-08 1991-05-07 Montefiore Hospital Association Of Western Pennsylvania Method for removing skin wrinkles
JP3015481B2 (en) 1990-03-28 2000-03-06 株式会社東芝 Ultrasonic probe system
IN172208B (en) 1990-04-02 1993-05-01 Sint Sa
JPH03297475A (en) 1990-04-16 1991-12-27 Ken Ishihara Controlling method for emission of medicine by means of resonance sound wave
US5205287A (en) 1990-04-26 1993-04-27 Hoechst Aktiengesellschaft Ultrasonic contrast agents, processes for their preparation and the use thereof as diagnostic and therapeutic agents
DE4117638A1 (en) 1990-05-30 1991-12-05 Toshiba Kawasaki Kk SHOCK WAVE GENERATOR WITH A PIEZOELECTRIC ELEMENT
US5215680A (en) 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
US5191880A (en) 1990-07-31 1993-03-09 Mcleod Kenneth J Method for the promotion of growth, ingrowth and healing of bone tissue and the prevention of osteopenia by mechanical loading of the bone tissue
US5174929A (en) 1990-08-31 1992-12-29 Ciba-Geigy Corporation Preparation of stable polyvinyl alcohol hydrogel contact lens
DE4029175C2 (en) 1990-09-13 1993-10-28 Lauerer Friedrich Electrical protection device
SE501045C2 (en) 1990-09-17 1994-10-24 Roofer Int Ab Method of laying roofing board and device for carrying out the procedure
US5117832A (en) 1990-09-21 1992-06-02 Diasonics, Inc. Curved rectangular/elliptical transducer
JPH04150847A (en) 1990-10-12 1992-05-25 Katsuya Takasu Armpit smell surgical apparatus and chip for operation
US5685820A (en) 1990-11-06 1997-11-11 Partomed Medizintechnik Gmbh Instrument for the penetration of body tissue
GB9025431D0 (en) 1990-11-22 1991-01-09 Advanced Tech Lab Three dimensional ultrasonic imaging
US5997497A (en) 1991-01-11 1999-12-07 Advanced Cardiovascular Systems Ultrasound catheter having integrated drug delivery system and methods of using same
US5957882A (en) 1991-01-11 1999-09-28 Advanced Cardiovascular Systems, Inc. Ultrasound devices for ablating and removing obstructive matter from anatomical passageways and blood vessels
US5255681A (en) 1991-03-20 1993-10-26 Olympus Optical Co., Ltd. Ultrasonic wave diagnosing apparatus having an ultrasonic wave transmitting and receiving part transmitting and receiving ultrasonic waves
US5150714A (en) 1991-05-10 1992-09-29 Sri International Ultrasonic inspection method and apparatus with audible output
US5429582A (en) 1991-06-14 1995-07-04 Williams; Jeffery A. Tumor treatment
US5383917A (en) 1991-07-05 1995-01-24 Jawahar M. Desai Device and method for multi-phase radio-frequency ablation
US5327895A (en) 1991-07-10 1994-07-12 Kabushiki Kaisha Toshiba Ultrasonic probe and ultrasonic diagnosing system using ultrasonic probe
JP3095835B2 (en) 1991-10-30 2000-10-10 株式会社町田製作所 Gravity direction indicator for endoscopes
US5704361A (en) 1991-11-08 1998-01-06 Mayo Foundation For Medical Education And Research Volumetric image ultrasound transducer underfluid catheter system
US5524620A (en) 1991-11-12 1996-06-11 November Technologies Ltd. Ablation of blood thrombi by means of acoustic energy
ATE144124T1 (en) 1991-12-20 1996-11-15 Technomed Medical Systems DEVICE FOR ULTRASONIC THERAPY EMITTING SOUND WAVES, THERMAL EFFECTS AND CAVITATION EFFECTS
US5230334A (en) 1992-01-22 1993-07-27 Summit Technology, Inc. Method and apparatus for generating localized hyperthermia
AU3727993A (en) 1992-02-21 1993-09-13 Diasonics Inc. Ultrasound intracavity system for imaging therapy planning and treatment of focal disease
US5269297A (en) 1992-02-27 1993-12-14 Angiosonics Inc. Ultrasonic transmission apparatus
JP3386488B2 (en) 1992-03-10 2003-03-17 株式会社東芝 Ultrasound therapy equipment
WO1993019705A1 (en) 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
US5690608A (en) 1992-04-08 1997-11-25 Asec Co., Ltd. Ultrasonic apparatus for health and beauty
US5257970A (en) 1992-04-09 1993-11-02 Health Research, Inc. In situ photodynamic therapy
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
JPH0773576B2 (en) 1992-05-27 1995-08-09 アロカ株式会社 Ultrasonic probe for 3D data acquisition
JP3257640B2 (en) 1992-06-09 2002-02-18 オリンパス光学工業株式会社 Stereoscopic endoscope device
US5321520A (en) 1992-07-20 1994-06-14 Automated Medical Access Corporation Automated high definition/resolution image storage, retrieval and transmission system
DE4229817C2 (en) 1992-09-07 1996-09-12 Siemens Ag Method for the non-destructive and / or non-invasive measurement of a temperature change in the interior of a living object in particular
WO1994006380A1 (en) 1992-09-16 1994-03-31 Hitachi, Ltd. Ultrasonic irradiation apparatus and processor using the same
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
JP3224286B2 (en) 1992-11-02 2001-10-29 株式会社日本自動車部品総合研究所 Temperature measurement device using ultrasonic waves
US5391197A (en) 1992-11-13 1995-02-21 Dornier Medical Systems, Inc. Ultrasound thermotherapy probe
US6537306B1 (en) * 1992-11-13 2003-03-25 The Regents Of The University Of California Method of manufacture of a transurethral ultrasound applicator for prostate gland thermal therapy
US5620479A (en) 1992-11-13 1997-04-15 The Regents Of The University Of California Method and apparatus for thermal therapy of tumors
DE4241161C2 (en) 1992-12-07 1995-04-13 Siemens Ag Acoustic therapy facility
JP3272792B2 (en) 1992-12-15 2002-04-08 フクダ電子株式会社 Ultrasonic coupler manufacturing method
US5573497A (en) 1994-11-30 1996-11-12 Technomed Medical Systems And Institut National High-intensity ultrasound therapy method and apparatus with controlled cavitation effect and reduced side lobes
DE4302538C1 (en) 1993-01-29 1994-04-07 Siemens Ag Ultrasonic therapy device for tumour treatment lithotripsy or osteorestoration - with ultrasonic imaging and ultrasonic treatment modes using respective acoustic wave frequencies
DE4302537C1 (en) 1993-01-29 1994-04-28 Siemens Ag Ultrasound imaging and therapy device - generates imaging waves and focussed treatment waves having two differing frequencies for location and treatment of e.g tumours
US5423220A (en) 1993-01-29 1995-06-13 Parallel Design Ultrasonic transducer array and manufacturing method thereof
US5453575A (en) 1993-02-01 1995-09-26 Endosonics Corporation Apparatus and method for detecting blood flow in intravascular ultrasonic imaging
US5267985A (en) 1993-02-11 1993-12-07 Trancell, Inc. Drug delivery by multiple frequency phonophoresis
DE69431741T2 (en) 1993-03-12 2003-09-11 Toshiba Kawasaki Kk Device for medical treatment with ultrasound
US5307812A (en) 1993-03-26 1994-05-03 General Electric Company Heat surgery system monitored by real-time magnetic resonance profiling
US5305756A (en) 1993-04-05 1994-04-26 Advanced Technology Laboratories, Inc. Volumetric ultrasonic imaging with diverging elevational ultrasound beams
EP0693954B1 (en) 1993-04-15 1999-07-07 Siemens Aktiengesellschaft Therapeutic appliance for the treatment of conditions of the heart and of blood vessels in the vicinity of the heart
AU6818694A (en) 1993-04-26 1994-11-21 St. Louis University Indicating the position of a surgical probe
DE4318237A1 (en) 1993-06-01 1994-12-08 Storz Medical Ag Device for the treatment of biological tissue and body concretions
US5460595A (en) 1993-06-01 1995-10-24 Dynatronics Laser Corporation Multi-frequency ultrasound therapy systems and methods
US5392259A (en) 1993-06-15 1995-02-21 Bolorforosh; Mir S. S. Micro-grooves for the design of wideband clinical ultrasonic transducers
US5398689A (en) 1993-06-16 1995-03-21 Hewlett-Packard Company Ultrasonic probe assembly and cable therefor
US5526812A (en) 1993-06-21 1996-06-18 General Electric Company Display system for enhancing visualization of body structures during medical procedures
ATE172370T1 (en) 1993-07-26 1998-11-15 Technomed Medical Systems ENDOSCOPIC IMAGING AND THERAPY PROBE AND ITS TREATMENT SYSTEM
JP2998505B2 (en) 1993-07-29 2000-01-11 富士写真光機株式会社 Radial ultrasonic scanner
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
US5438998A (en) 1993-09-07 1995-08-08 Acuson Corporation Broadband phased array transducer design with frequency controlled two dimension capability and methods for manufacture thereof
US5792058A (en) 1993-09-07 1998-08-11 Acuson Corporation Broadband phased array transducer with wide bandwidth, high sensitivity and reduced cross-talk and method for manufacture thereof
US5379773A (en) 1993-09-17 1995-01-10 Hornsby; James J. Echographic suction cannula and electronics therefor
US5661235A (en) 1993-10-01 1997-08-26 Hysitron Incorporated Multi-dimensional capacitive transducer
US20050288748A1 (en) 1993-10-04 2005-12-29 Huan-Chen Li Medical device for treating skin problems
IL107523A (en) 1993-11-07 2000-01-31 Ultraguide Ltd Articulated needle guide for ultrasound imaging and method of using same
US5526814A (en) 1993-11-09 1996-06-18 General Electric Company Automatically positioned focussed energy system guided by medical imaging
US5380280A (en) 1993-11-12 1995-01-10 Peterson; Erik W. Aspiration system having pressure-controlled and flow-controlled modes
US5814599A (en) 1995-08-04 1998-09-29 Massachusetts Insitiute Of Technology Transdermal delivery of encapsulated drugs
US20020169394A1 (en) 1993-11-15 2002-11-14 Eppstein Jonathan A. Integrated tissue poration, fluid harvesting and analysis device, and method therefor
US5609562A (en) 1993-11-16 1997-03-11 Worldwide Optical Trocar Licensing Corporation Visually directed trocar and method
JPH07136162A (en) 1993-11-17 1995-05-30 Fujitsu Ltd Ultrasonic coupler
US5371483A (en) 1993-12-20 1994-12-06 Bhardwaj; Mahesh C. High intensity guided ultrasound source
US5471988A (en) 1993-12-24 1995-12-05 Olympus Optical Co., Ltd. Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range
JPH07184907A (en) 1993-12-28 1995-07-25 Toshiba Corp Ultrasonic treating device
DE4443947B4 (en) 1994-01-14 2005-09-22 Siemens Ag endoscope
US5507790A (en) 1994-03-21 1996-04-16 Weiss; William V. Method of non-invasive reduction of human site-specific subcutaneous fat tissue deposits by accelerated lipolysis metabolism
US5492126A (en) 1994-05-02 1996-02-20 Focal Surgery Probe for medical imaging and therapy using ultrasound
AU2373695A (en) 1994-05-03 1995-11-29 Board Of Regents, The University Of Texas System Apparatus and method for noninvasive doppler ultrasound-guided real-time control of tissue damage in thermal therapy
US5524624A (en) 1994-05-05 1996-06-11 Amei Technologies Inc. Apparatus and method for stimulating tissue growth with ultrasound
US5458596A (en) 1994-05-06 1995-10-17 Dorsal Orthopedic Corporation Method and apparatus for controlled contraction of soft tissue
US5549638A (en) 1994-05-17 1996-08-27 Burdette; Everette C. Ultrasound device for use in a thermotherapy apparatus
US5396143A (en) 1994-05-20 1995-03-07 Hewlett-Packard Company Elevation aperture control of an ultrasonic transducer
US5496256A (en) 1994-06-09 1996-03-05 Sonex International Corporation Ultrasonic bone healing device for dental application
US5575807A (en) 1994-06-10 1996-11-19 Zmd Corporation Medical device power supply with AC disconnect alarm and method of supplying power to a medical device
US5560362A (en) 1994-06-13 1996-10-01 Acuson Corporation Active thermal control of ultrasound transducers
US5540235A (en) 1994-06-30 1996-07-30 Wilson; John R. Adaptor for neurophysiological monitoring with a personal computer
FR2722358B1 (en) 1994-07-08 1996-08-14 Thomson Csf BROADBAND MULTI-FREQUENCY ACOUSTIC TRANSDUCER
NO300407B1 (en) 1994-08-30 1997-05-26 Vingmed Sound As Apparatus for endoscope or gastroscope examination of patients
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
US5694936A (en) 1994-09-17 1997-12-09 Kabushiki Kaisha Toshiba Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation
US5810009A (en) 1994-09-27 1998-09-22 Kabushiki Kaisha Toshiba Ultrasonic probe, ultrasonic probe device having the ultrasonic probe, and method of manufacturing the ultrasonic probe
US5503152A (en) 1994-09-28 1996-04-02 Tetrad Corporation Ultrasonic transducer assembly and method for three-dimensional imaging
US5487388A (en) 1994-11-01 1996-01-30 Interspec. Inc. Three dimensional ultrasonic scanning devices and techniques
US5520188A (en) 1994-11-02 1996-05-28 Focus Surgery Inc. Annular array transducer
US5577507A (en) 1994-11-21 1996-11-26 General Electric Company Compound lens for ultrasound transducer probe
DE4446429C1 (en) 1994-12-23 1996-08-22 Siemens Ag Device for treating an object with focused ultrasound waves
US5999843A (en) 1995-01-03 1999-12-07 Omnicorder Technologies, Inc. Detection of cancerous lesions by their effect on the spatial homogeneity of skin temperature
US5626554A (en) 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
DE59600577D1 (en) 1995-03-10 1998-10-22 Karlsruhe Forschzent DEVICE FOR GUIDING SURGICAL INSTRUMENTS FOR ENDOSCOPIC SURGERY
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5658328A (en) 1995-03-30 1997-08-19 Johnson; Gerald W. Endoscopic assisted mastopexy
US5655535A (en) 1996-03-29 1997-08-12 Siemens Medical Systems, Inc. 3-Dimensional compound ultrasound field of view
US5873902A (en) 1995-03-31 1999-02-23 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
US5899861A (en) 1995-03-31 1999-05-04 Siemens Medical Systems, Inc. 3-dimensional volume by aggregating ultrasound fields of view
DE69634714T2 (en) 1995-03-31 2006-01-19 Kabushiki Kaisha Toshiba, Kawasaki Therapeutic ultrasound device
US5924989A (en) 1995-04-03 1999-07-20 Polz; Hans Method and device for capturing diagnostically acceptable three-dimensional ultrasound image data records
US5644085A (en) 1995-04-03 1997-07-01 General Electric Company High density integrated ultrasonic phased array transducer and a method for making
US5577502A (en) 1995-04-03 1996-11-26 General Electric Company Imaging of interventional devices during medical procedures
US5701900A (en) 1995-05-01 1997-12-30 Cedars-Sinai Medical Center Ultrasonic transducer orientation sensing and display apparatus and method
US5735280A (en) 1995-05-02 1998-04-07 Heart Rhythm Technologies, Inc. Ultrasound energy delivery system and method
US5755753A (en) 1995-05-05 1998-05-26 Thermage, Inc. Method for controlled contraction of collagen tissue
US5660836A (en) 1995-05-05 1997-08-26 Knowlton; Edward W. Method and apparatus for controlled contraction of collagen tissue
US6241753B1 (en) 1995-05-05 2001-06-05 Thermage, Inc. Method for scar collagen formation and contraction
US6430446B1 (en) 1995-05-05 2002-08-06 Thermage, Inc. Apparatus for tissue remodeling
US6425912B1 (en) 1995-05-05 2002-07-30 Thermage, Inc. Method and apparatus for modifying skin surface and soft tissue structure
US5558092A (en) 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US5755228A (en) 1995-06-07 1998-05-26 Hologic, Inc. Equipment and method for calibration and quality assurance of an ultrasonic bone anaylsis apparatus
AU6276696A (en) 1995-06-15 1997-01-15 Regents Of The University Of Michigan, The Method and apparatus for composition and display of three-dimensional image from two-dimensional ultrasound
US5655538A (en) 1995-06-19 1997-08-12 General Electric Company Ultrasonic phased array transducer with an ultralow impedance backfill and a method for making
US6248073B1 (en) 1995-06-29 2001-06-19 Teratech Corporation Ultrasound scan conversion with spatial dithering
AU722539B2 (en) 1995-07-16 2000-08-03 Ultra-Guide Ltd. Free-hand aiming of a needle guide
US5706564A (en) 1995-07-27 1998-01-13 General Electric Company Method for designing ultrasonic transducers using constraints on feasibility and transitional Butterworth-Thompson spectrum
JPH0947458A (en) 1995-08-09 1997-02-18 Toshiba Corp Ultrasonic therapeupic device and applicator
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
US5662116A (en) 1995-09-12 1997-09-02 Fuji Photo Optical Co., Ltd. Multi-plane electronic scan ultrasound probe
US5622175A (en) 1995-09-29 1997-04-22 Hewlett-Packard Company Miniaturization of a rotatable sensor
US5615091A (en) 1995-10-11 1997-03-25 Biochem International, Inc. Isolation transformer for medical equipment
US5618275A (en) 1995-10-27 1997-04-08 Sonex International Corporation Ultrasonic method and apparatus for cosmetic and dermatological applications
WO1997017018A1 (en) 1995-11-09 1997-05-15 Brigham & Women's Hospital Aperiodic ultrasound phased array
US7189230B2 (en) 1996-01-05 2007-03-13 Thermage, Inc. Method for treating skin and underlying tissue
US7006874B2 (en) 1996-01-05 2006-02-28 Thermage, Inc. Treatment apparatus with electromagnetic energy delivery device and non-volatile memory
US6350276B1 (en) 1996-01-05 2002-02-26 Thermage, Inc. Tissue remodeling apparatus containing cooling fluid
US20040000316A1 (en) 1996-01-05 2004-01-01 Knowlton Edward W. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
US7473251B2 (en) 1996-01-05 2009-01-06 Thermage, Inc. Methods for creating tissue effect utilizing electromagnetic energy and a reverse thermal gradient
US20030212393A1 (en) 1996-01-05 2003-11-13 Knowlton Edward W. Handpiece with RF electrode and non-volatile memory
US5655539A (en) * 1996-02-26 1997-08-12 Abbott Laboratories Method for conducting an ultrasound procedure using an ultrasound transmissive pad
US5603323A (en) 1996-02-27 1997-02-18 Advanced Technology Laboratories, Inc. Medical ultrasonic diagnostic system with upgradeable transducer probes and other features
US5715823A (en) 1996-02-27 1998-02-10 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with universal access to diagnostic information and images
US6190323B1 (en) 1996-03-13 2001-02-20 Agielnt Technologies Direct contact scanner and related method
US5817013A (en) 1996-03-19 1998-10-06 Enable Medical Corporation Method and apparatus for the minimally invasive harvesting of a saphenous vein and the like
US5676692A (en) 1996-03-28 1997-10-14 Indianapolis Center For Advanced Research, Inc. Focussed ultrasound tissue treatment method
US5673699A (en) 1996-05-31 1997-10-07 Duke University Method and apparatus for abberation correction in the presence of a distributed aberrator
US5749364A (en) 1996-06-21 1998-05-12 Acuson Corporation Method and apparatus for mapping pressure and tissue properties
US5746762A (en) 1996-06-24 1998-05-05 Bass; Lawrence S. Device and method for surgical flap dissection
JP2002515786A (en) 1996-06-28 2002-05-28 ソントラ メディカル,エル.ピー. Ultrasound enhancement of transdermal delivery
US5671746A (en) 1996-07-29 1997-09-30 Acuson Corporation Elevation steerable ultrasound transducer array
US5763886A (en) 1996-08-07 1998-06-09 Northrop Grumman Corporation Two-dimensional imaging backscatter probe
US5971949A (en) 1996-08-19 1999-10-26 Angiosonics Inc. Ultrasound transmission apparatus and method of using same
US5984882A (en) 1996-08-19 1999-11-16 Angiosonics Inc. Methods for prevention and treatment of cancer and other proliferative diseases with ultrasonic energy
US6605041B2 (en) 1996-08-22 2003-08-12 Synthes (U.S.A.) 3-D ultrasound recording device
US20020002345A1 (en) 1996-08-22 2002-01-03 Marlinghaus Ernest H. Device and therapeutic method for treatment of the heart or pancreas
US5844140A (en) 1996-08-27 1998-12-01 Seale; Joseph B. Ultrasound beam alignment servo
DE19635593C1 (en) 1996-09-02 1998-04-23 Siemens Ag Ultrasound transducer for diagnostic and therapeutic use
US5795297A (en) 1996-09-12 1998-08-18 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with personal computer architecture
US5727554A (en) 1996-09-19 1998-03-17 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus responsive to movement of a patient during treatment/diagnosis
US6283919B1 (en) 1996-11-26 2001-09-04 Atl Ultrasound Ultrasonic diagnostic imaging with blended tissue harmonic signals
US5665053A (en) 1996-09-27 1997-09-09 Jacobs; Robert A. Apparatus for performing endermology with ultrasound
US5879303A (en) 1996-09-27 1999-03-09 Atl Ultrasound Ultrasonic diagnostic imaging of response frequency differing from transmit frequency
US5957941A (en) 1996-09-27 1999-09-28 Boston Scientific Corporation Catheter system and drive assembly thereof
US5932539A (en) * 1996-10-15 1999-08-03 The Board Of Trustees Of The University Of Illinois Biodegradable polymer matrix for tissue repair
US5746005A (en) 1996-10-22 1998-05-05 Powerhorse Corporation Angular position sensor
US6719755B2 (en) 1996-10-22 2004-04-13 Epicor Medical, Inc. Methods and devices for ablation
US5769790A (en) 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
DE69732511T2 (en) 1996-10-29 2006-01-12 Koninklijke Philips Electronics N.V. Processing method for signals of objects with moving parts and echography apparatus therefor
US6216704B1 (en) 1997-08-13 2001-04-17 Surx, Inc. Noninvasive devices, methods, and systems for shrinking of tissues
US5827204A (en) 1996-11-26 1998-10-27 Grandia; Willem Medical noninvasive operations using focused modulated high power ultrasound
US5810008A (en) 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
FR2756741B1 (en) 1996-12-05 1999-01-08 Cird Galderma USE OF A CHROMOPHORE IN A COMPOSITION INTENDED TO BE APPLIED TO THE SKIN BEFORE LASER TREATMENT
US5820564A (en) 1996-12-16 1998-10-13 Albatross Technologies, Inc. Method and apparatus for surface ultrasound imaging
IL120079A (en) 1997-01-27 2001-03-19 Technion Res & Dev Foundation Ultrasound system and cosmetic methods utilizing same
US7789841B2 (en) 1997-02-06 2010-09-07 Exogen, Inc. Method and apparatus for connective tissue treatment
US7108663B2 (en) 1997-02-06 2006-09-19 Exogen, Inc. Method and apparatus for cartilage growth stimulation
US5904659A (en) 1997-02-14 1999-05-18 Exogen, Inc. Ultrasonic treatment for wounds
US5853367A (en) 1997-03-17 1998-12-29 General Electric Company Task-interface and communications system and method for ultrasound imager control
US5938612A (en) * 1997-05-05 1999-08-17 Creare Inc. Multilayer ultrasonic transducer array including very thin layer of transducer elements
US5840032A (en) 1997-05-07 1998-11-24 General Electric Company Method and apparatus for three-dimensional ultrasound imaging using transducer array having uniform elevation beamwidth
WO1998051255A1 (en) 1997-05-15 1998-11-19 Matsushita Electric Works, Ltd. Ultrasonic device
US5931805A (en) 1997-06-02 1999-08-03 Pharmasonics, Inc. Catheters comprising bending transducers and methods for their use
JP3783339B2 (en) 1997-06-13 2006-06-07 松下電工株式会社 Ultrasonic beauty device
US5968034A (en) 1997-06-24 1999-10-19 Laser Aesthetics, Inc. Pulsed filament lamp for dermatological treatment
US5810888A (en) 1997-06-26 1998-09-22 Massachusetts Institute Of Technology Thermodynamic adaptive phased array system for activating thermosensitive liposomes in targeted drug delivery
US6093883A (en) 1997-07-15 2000-07-25 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
US5876431A (en) 1997-07-30 1999-03-02 Sulzer Intermedics Inc. Small cable endocardial lead with exposed guide tube
TW370458B (en) 1997-08-11 1999-09-21 Matsushita Electric Works Ltd Ultrasonic facial apparatus
US20020169442A1 (en) 1997-08-12 2002-11-14 Joseph Neev Device and a method for treating skin conditions
US6413253B1 (en) 1997-08-16 2002-07-02 Cooltouch Corporation Subsurface heating of material
US6126619A (en) 1997-09-02 2000-10-03 Transon Llc Multiple transducer assembly and method for coupling ultrasound energy to a body
US5990598A (en) 1997-09-23 1999-11-23 Hewlett-Packard Company Segment connections for multiple elevation transducers
US6113558A (en) 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US5923099A (en) 1997-09-30 1999-07-13 Lam Research Corporation Intelligent backup power controller
US6049159A (en) 1997-10-06 2000-04-11 Albatros Technologies, Inc. Wideband acoustic transducer
US6500121B1 (en) 1997-10-14 2002-12-31 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6050943A (en) 1997-10-14 2000-04-18 Guided Therapy Systems, Inc. Imaging, therapy, and temperature monitoring ultrasonic system
US6623430B1 (en) 1997-10-14 2003-09-23 Guided Therapy Systems, Inc. Method and apparatus for safety delivering medicants to a region of tissue using imaging, therapy and temperature monitoring ultrasonic system
US6325758B1 (en) 1997-10-27 2001-12-04 Nomos Corporation Method and apparatus for target position verification
US6071239A (en) 1997-10-27 2000-06-06 Cribbs; Robert W. Method and apparatus for lipolytic therapy using ultrasound energy
US6007499A (en) 1997-10-31 1999-12-28 University Of Washington Method and apparatus for medical procedures using high-intensity focused ultrasound
US20060184071A1 (en) 1997-12-29 2006-08-17 Julia Therapeutics, Llc Treatment of skin with acoustic energy
US6113559A (en) 1997-12-29 2000-09-05 Klopotek; Peter J. Method and apparatus for therapeutic treatment of skin with ultrasound
US6325769B1 (en) 1998-12-29 2001-12-04 Collapeutics, Llc Method and apparatus for therapeutic treatment of skin
US20020040199A1 (en) 1997-12-29 2002-04-04 Klopotek Peter J. Method and apparatus for therapeutic treatment of skin
US20080027328A1 (en) 1997-12-29 2008-01-31 Julia Therapeutics, Llc Multi-focal treatment of skin with acoustic energy
US6575956B1 (en) * 1997-12-31 2003-06-10 Pharmasonics, Inc. Methods and apparatus for uniform transcutaneous therapeutic ultrasound
US6171244B1 (en) 1997-12-31 2001-01-09 Acuson Corporation Ultrasonic system and method for storing data
JPH11244386A (en) 1998-01-01 1999-09-14 Ge Yokogawa Medical Systems Ltd Method for stopping blood circulation and heater
DE19800416C2 (en) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound
CN1058905C (en) 1998-01-25 2000-11-29 重庆海扶(Hifu)技术有限公司 High-intensity focus supersonic tumor scanning therapy system
US20020055702A1 (en) 1998-02-10 2002-05-09 Anthony Atala Ultrasound-mediated drug delivery
DE69836907T2 (en) 1998-02-10 2007-11-08 Biosense Webster, Inc., Diamond Bar Probe arrangement for improved catheter calibration
US6101407A (en) 1998-02-13 2000-08-08 Eastman Kodak Company Method and system for remotely viewing and configuring output from a medical imaging device
US6325798B1 (en) 1998-02-19 2001-12-04 Curon Medical, Inc. Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions
US6039689A (en) 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
US6013032A (en) * 1998-03-13 2000-01-11 Hewlett-Packard Company Beamforming methods and apparatus for three-dimensional ultrasound imaging using two-dimensional transducer array
US6685640B1 (en) 1998-03-30 2004-02-03 Focus Surgery, Inc. Ablation system
WO1999049788A1 (en) 1998-03-30 1999-10-07 Focus Surgery, Inc. Ablation system
US6432057B1 (en) 1998-03-31 2002-08-13 Lunar Corporation Stabilizing acoustic coupler for limb densitometry
US6039048A (en) 1998-04-08 2000-03-21 Silberg; Barry External ultrasound treatment of connective tissue
US6022327A (en) 1998-05-04 2000-02-08 Chang; Henry Ping Facial steamer machine with detachable function units
US6004262A (en) 1998-05-04 1999-12-21 Ad-Tech Medical Instrument Corp. Visually-positioned electrical monitoring apparatus
US5977538A (en) 1998-05-11 1999-11-02 Imarx Pharmaceutical Corp. Optoacoustic imaging system
US6186951B1 (en) 1998-05-26 2001-02-13 Riverside Research Institute Ultrasonic systems and methods for fluid perfusion and flow rate measurement
US6440121B1 (en) 1998-05-28 2002-08-27 Pearl Technology Holdings, Llc. Surgical device for performing face-lifting surgery using radiofrequency energy
US7494488B2 (en) 1998-05-28 2009-02-24 Pearl Technology Holdings, Llc Facial tissue strengthening and tightening device and methods
US6432101B1 (en) 1998-05-28 2002-08-13 Pearl Technology Holdings, Llc Surgical device for performing face-lifting using electromagnetic radiation
US6077294A (en) 1998-06-11 2000-06-20 Cynosure, Inc. Method for non-invasive wrinkle removal and skin treatment
US6425865B1 (en) 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
US6086533A (en) 1998-06-12 2000-07-11 Children's Medical Center Corporation Non-invasive in vivo pressure measurement
US6322532B1 (en) 1998-06-24 2001-11-27 3M Innovative Properties Company Sonophoresis method and apparatus
US6036646A (en) 1998-07-10 2000-03-14 Guided Therapy Systems, Inc. Method and apparatus for three dimensional ultrasound imaging
US6889089B2 (en) 1998-07-28 2005-05-03 Scimed Life Systems, Inc. Apparatus and method for treating tumors near the surface of an organ
AU754022B2 (en) 1998-07-29 2002-10-31 Pharmasonics, Inc. Ultrasonic enhancement of drug injection
US20030009153A1 (en) 1998-07-29 2003-01-09 Pharmasonics, Inc. Ultrasonic enhancement of drug injection
US6443914B1 (en) 1998-08-10 2002-09-03 Lysonix, Inc. Apparatus and method for preventing and treating cellulite
US6042556A (en) 1998-09-04 2000-03-28 University Of Washington Method for determining phase advancement of transducer elements in high intensity focused ultrasound
CN101044990B (en) 1998-09-11 2011-11-23 Gr智力储备股份有限公司 Methods for using resonant acoustic and/or resonant acousto-em energy to detect and/or effect structures
IL126236A0 (en) 1998-09-16 1999-05-09 Ultra Cure Ltd A method device and system for skin peeling
US6425867B1 (en) 1998-09-18 2002-07-30 University Of Washington Noise-free real time ultrasonic imaging of a treatment site undergoing high intensity focused ultrasound therapy
US7686763B2 (en) 1998-09-18 2010-03-30 University Of Washington Use of contrast agents to increase the effectiveness of high intensity focused ultrasound therapy
JP4460691B2 (en) 1998-09-30 2010-05-12 株式会社東芝 Ultrasonic therapy device
JP3330092B2 (en) 1998-09-30 2002-09-30 松下電器産業株式会社 Ultrasound diagnostic equipment
US6302848B1 (en) 1999-07-01 2001-10-16 Sonotech, Inc. In vivo biocompatible acoustic coupling media
IL126505A0 (en) 1998-10-09 1999-08-17 Ultra Cure Ltd A method and device for hair removal
US6540700B1 (en) 1998-10-26 2003-04-01 Kabushiki Kaisha Toshiba Ultrasound treatment apparatus
JP4095729B2 (en) 1998-10-26 2008-06-04 株式会社日立製作所 Therapeutic ultrasound system
US6948843B2 (en) 1998-10-28 2005-09-27 Covaris, Inc. Method and apparatus for acoustically controlling liquid solutions in microfluidic devices
AU1600000A (en) 1998-10-28 2000-05-15 Covaris, Inc. Apparatus and methods for controlling sonic treatment
US6080108A (en) 1998-11-17 2000-06-27 Atl Ultrasound, Inc. Scanning aid for quantified three dimensional ultrasonic diagnostic imaging
US6159150A (en) 1998-11-20 2000-12-12 Acuson Corporation Medical diagnostic ultrasonic imaging system with auxiliary processor
AU1128600A (en) 1998-11-20 2000-06-13 Joie P. Jones Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound
US6142946A (en) 1998-11-20 2000-11-07 Atl Ultrasound, Inc. Ultrasonic diagnostic imaging system with cordless scanheads
US6676655B2 (en) 1998-11-30 2004-01-13 Light Bioscience L.L.C. Low intensity light therapy for the manipulation of fibroblast, and fibroblast-derived mammalian cells and collagen
US6936044B2 (en) 1998-11-30 2005-08-30 Light Bioscience, Llc Method and apparatus for the stimulation of hair growth
US6887260B1 (en) 1998-11-30 2005-05-03 Light Bioscience, Llc Method and apparatus for acne treatment
JP4089058B2 (en) 1998-12-10 2008-05-21 ソニー株式会社 Cleaning device and cleaning method for printing screen
US6309355B1 (en) 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6296619B1 (en) 1998-12-30 2001-10-02 Pharmasonics, Inc. Therapeutic ultrasonic catheter for delivering a uniform energy dose
US6428532B1 (en) 1998-12-30 2002-08-06 The General Hospital Corporation Selective tissue targeting by difference frequency of two wavelengths
US6183773B1 (en) 1999-01-04 2001-02-06 The General Hospital Corporation Targeting of sebaceous follicles as a treatment of sebaceous gland disorders
JP2000214966A (en) 1999-01-20 2000-08-04 Ricoh Co Ltd Portable information processor
US6200308B1 (en) 1999-01-29 2001-03-13 Candela Corporation Dynamic cooling of tissue for radiation treatment
US6139499A (en) 1999-02-22 2000-10-31 Wilk; Peter J. Ultrasonic medical system and associated method
US6508774B1 (en) 1999-03-09 2003-01-21 Transurgical, Inc. Hifu applications with feedback control
ATE298536T1 (en) 1999-03-09 2005-07-15 Thermage Inc DEVICE FOR TREATING TISSUE
US6775404B1 (en) 1999-03-18 2004-08-10 University Of Washington Apparatus and method for interactive 3D registration of ultrasound and magnetic resonance images based on a magnetic position sensor
US6375672B1 (en) 1999-03-22 2002-04-23 Board Of Trustees Of Michigan State University Method for controlling the chemical and heat induced responses of collagenous materials
US6488626B1 (en) 1999-04-07 2002-12-03 Riverside Research Institute Ultrasonic sensing by induced tissue motion
US6408212B1 (en) 1999-04-13 2002-06-18 Joseph Neev Method for treating acne
US6210327B1 (en) 1999-04-28 2001-04-03 General Electric Company Method and apparatus for sending ultrasound image data to remotely located device
US6268405B1 (en) 1999-05-04 2001-07-31 Porex Surgical, Inc. Hydrogels and methods of making and using same
US6251088B1 (en) 1999-05-12 2001-06-26 Jonathan J. Kaufman Ultrasonic plantar fasciitis therapy: apparatus and method
US20030060736A1 (en) 1999-05-14 2003-03-27 Martin Roy W. Lens-focused ultrasonic applicator for medical applications
US6217530B1 (en) 1999-05-14 2001-04-17 University Of Washington Ultrasonic applicator for medical applications
US6666835B2 (en) 1999-05-14 2003-12-23 University Of Washington Self-cooled ultrasonic applicator for medical applications
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7399279B2 (en) 1999-05-28 2008-07-15 Physiosonics, Inc Transmitter patterns for multi beam reception
US6193658B1 (en) 1999-06-24 2001-02-27 Martin E Wendelken Method and kit for wound evaluation
US6287257B1 (en) 1999-06-29 2001-09-11 Acuson Corporation Method and system for configuring a medical diagnostic ultrasound imaging system
AU2002359840A1 (en) 1999-06-30 2003-07-09 Thermage, Inc. Liquid cooled RF handpiece
GB9915707D0 (en) 1999-07-05 1999-09-08 Young Michael J R Method and apparatus for focused treatment of subcutaneous blood vessels
US20030216795A1 (en) * 1999-07-07 2003-11-20 Yoram Harth Apparatus and method for high energy photodynamic therapy of acne vulgaris, seborrhea and other skin disorders
US6390982B1 (en) 1999-07-23 2002-05-21 Univ Florida Ultrasonic guidance of target structures for medical procedures
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US6533726B1 (en) 1999-08-09 2003-03-18 Riverside Research Institute System and method for ultrasonic harmonic imaging for therapy guidance and monitoring
US20020173721A1 (en) 1999-08-20 2002-11-21 Novasonics, Inc. User interface for handheld imaging devices
JP3848572B2 (en) 1999-09-10 2006-11-22 プロリズム,インコーポレイテッド Device for occluding anatomic tissue
US7510536B2 (en) * 1999-09-17 2009-03-31 University Of Washington Ultrasound guided high intensity focused ultrasound treatment of nerves
US6123081A (en) 1999-09-22 2000-09-26 Durette; Jean-Francois Ocular surgical protective shield
US6301989B1 (en) 1999-09-30 2001-10-16 Civco Medical Instruments, Inc. Medical imaging instrument positioning device
US20040158150A1 (en) 1999-10-05 2004-08-12 Omnisonics Medical Technologies, Inc. Apparatus and method for an ultrasonic medical device for tissue remodeling
US6440071B1 (en) 1999-10-18 2002-08-27 Guided Therapy Systems, Inc. Peripheral ultrasound imaging system
JP2003512103A (en) 1999-10-18 2003-04-02 フォーカス サージェリー,インコーポレイテッド Split beam converter
US20050240170A1 (en) 1999-10-25 2005-10-27 Therus Corporation Insertable ultrasound probes, systems, and methods for thermal therapy
US20030229331A1 (en) 1999-11-05 2003-12-11 Pharmasonics, Inc. Methods and apparatus for uniform transcutaneous therapeutic ultrasound
US6338716B1 (en) 1999-11-24 2002-01-15 Acuson Corporation Medical diagnostic ultrasonic transducer probe and imaging system for use with a position and orientation sensor
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
US6325540B1 (en) 1999-11-29 2001-12-04 General Electric Company Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system
US6356780B1 (en) 1999-12-22 2002-03-12 General Electric Company Method and apparatus for managing peripheral devices in a medical imaging system
CA2394892A1 (en) 1999-12-23 2001-06-28 Therus Corporation Ultrasound transducers for imaging and therapy
US6436061B1 (en) 1999-12-29 2002-08-20 Peter D. Costantino Ultrasound treatment of varicose veins
US6699237B2 (en) 1999-12-30 2004-03-02 Pearl Technology Holdings, Llc Tissue-lifting device
US6409720B1 (en) 2000-01-19 2002-06-25 Medtronic Xomed, Inc. Methods of tongue reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US6595934B1 (en) 2000-01-19 2003-07-22 Medtronic Xomed, Inc. Methods of skin rejuvenation using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions
US7706882B2 (en) 2000-01-19 2010-04-27 Medtronic, Inc. Methods of using high intensity focused ultrasound to form an ablated tissue area
US6692450B1 (en) 2000-01-19 2004-02-17 Medtronic Xomed, Inc. Focused ultrasound ablation devices having selectively actuatable ultrasound emitting elements and methods of using the same
US6413254B1 (en) 2000-01-19 2002-07-02 Medtronic Xomed, Inc. Method of tongue reduction by thermal ablation using high intensity focused ultrasound
US6361531B1 (en) 2000-01-21 2002-03-26 Medtronic Xomed, Inc. Focused ultrasound ablation devices having malleable handle shafts and methods of using the same
US6517484B1 (en) 2000-02-28 2003-02-11 Wilk Patent Development Corporation Ultrasonic imaging system and associated method
US6511427B1 (en) 2000-03-10 2003-01-28 Acuson Corporation System and method for assessing body-tissue properties using a medical ultrasound transducer probe with a body-tissue parameter measurement mechanism
US6428477B1 (en) 2000-03-10 2002-08-06 Koninklijke Philips Electronics, N.V. Delivery of theraputic ultrasound by two dimensional ultrasound array
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
AU2001257328A1 (en) 2000-04-28 2001-11-12 Focus Surgery, Inc. Ablation system with visualization
AU2001255724A1 (en) 2000-04-29 2001-11-12 Focus Surgery, Inc. Non-invasive tissue characterization
US6312385B1 (en) 2000-05-01 2001-11-06 Ge Medical Systems Global Technology Company, Llc Method and apparatus for automatic detection and sizing of cystic objects
WO2002003873A2 (en) 2000-07-10 2002-01-17 THE GOVERNMENT OF THE UNITED STATES OF AMERICA, represented by THE SECRETARY, DEPARTMENT OF HEALTH & HUMAN SERVICES, THE NATIONAL INSTITUTES OF HEALTH Radiofrequency probes for tissue treatment and methods of use
AU2000264703A1 (en) 2000-07-31 2002-02-13 El. En. S.P.A. Method and device for epilation by ultrasound
JP3556582B2 (en) 2000-08-02 2004-08-18 松下電器産業株式会社 Ultrasound diagnostic equipment
CA2422865C (en) 2000-08-16 2012-10-16 The General Hospital Corporation D/B/A Massachusetts General Hospital Aminolevulinic acid photodynamic therapy for treating sebaceous gland disorders
US20020072691A1 (en) 2000-08-24 2002-06-13 Timi 3 Systems, Inc. Systems and methods for applying ultrasonic energy to the thoracic cavity
US20040073115A1 (en) 2000-08-24 2004-04-15 Timi 3 Systems, Inc. Systems and methods for applying ultrasound energy to increase tissue perfusion and/or vasodilation without substantial deep heating of tissue
US7335169B2 (en) 2000-08-24 2008-02-26 Timi 3 Systems, Inc. Systems and methods for delivering ultrasound energy at an output power level that remains essentially constant despite variations in transducer impedance
US6790187B2 (en) 2000-08-24 2004-09-14 Timi 3 Systems, Inc. Systems and methods for applying ultrasonic energy
US20020082529A1 (en) 2000-08-24 2002-06-27 Timi 3 Systems, Inc. Systems and methods for applying pulsed ultrasonic energy
JP2002078764A (en) 2000-09-06 2002-03-19 Purotec Fuji:Kk Portable cosmetic massage machine
JP2004508867A (en) 2000-09-19 2004-03-25 フォーカス サージェリー,インコーポレイテッド Tissue therapy and devices
US6524250B1 (en) 2000-09-19 2003-02-25 Pearl Technology Holdings, Llc Fat layer thickness mapping system to guide liposuction surgery
US6910139B2 (en) 2000-10-02 2005-06-21 Fujitsu Limited Software processing apparatus with a switching processing unit for displaying animation images in an environment operating base on type of power supply
KR100400870B1 (en) * 2000-10-10 2003-10-08 김영애 remote dermal diagnosing and curing device
US6882884B1 (en) 2000-10-13 2005-04-19 Soundskin, L.L.C. Process for the stimulation of production of extracellular dermal proteins in human tissue
JP2001170068A (en) 2000-10-16 2001-06-26 Toshiba Corp Ultrasonic treatment instrument
AU2002212639A1 (en) 2000-10-18 2002-05-15 Paieon Inc. Method and system for positioning a device in a tubular organ
US6540685B1 (en) 2000-11-09 2003-04-01 Koninklijke Philips Electronics N.V. Ultrasound diagnostic device
US6821274B2 (en) 2001-03-07 2004-11-23 Gendel Ltd. Ultrasound therapy for selective cell ablation
US6875176B2 (en) 2000-11-28 2005-04-05 Aller Physionix Limited Systems and methods for making noninvasive physiological assessments
US6618620B1 (en) 2000-11-28 2003-09-09 Txsonics Ltd. Apparatus for controlling thermal dosing in an thermal treatment system
GB0030449D0 (en) 2000-12-13 2001-01-24 Deltex Guernsey Ltd Improvements in or relating to doppler haemodynamic monitors
US6746444B2 (en) 2000-12-18 2004-06-08 Douglas J. Key Method of amplifying a beneficial selective skin response to light energy
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
JP2005502385A (en) 2000-12-28 2005-01-27 パロマー・メディカル・テクノロジーズ・インコーポレーテッド Method and apparatus for performing skin therapy EMR treatment
US7914453B2 (en) 2000-12-28 2011-03-29 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US6540679B2 (en) 2000-12-28 2003-04-01 Guided Therapy Systems, Inc. Visual imaging system for ultrasonic probe
US7347855B2 (en) 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
US6607498B2 (en) 2001-01-03 2003-08-19 Uitra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US6569099B1 (en) 2001-01-12 2003-05-27 Eilaz Babaev Ultrasonic method and device for wound treatment
JP2002209905A (en) 2001-01-22 2002-07-30 Hitachi Medical Corp Ultrasonic therapy probe and ultrasonic therapy apparatus
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
JP2002238919A (en) 2001-02-20 2002-08-27 Olympus Optical Co Ltd Control apparatus for medical care system and medical care system
JP2002248153A (en) 2001-02-23 2002-09-03 Matsushita Electric Works Ltd Ultrasonic cosmetic device
US6569108B2 (en) 2001-03-28 2003-05-27 Profile, Llc Real time mechanical imaging of the prostate
US6804327B2 (en) 2001-04-03 2004-10-12 Lambda Physik Ag Method and apparatus for generating high output power gas discharge based source of extreme ultraviolet radiation and/or soft x-rays
US20020165529A1 (en) 2001-04-05 2002-11-07 Danek Christopher James Method and apparatus for non-invasive energy delivery
US6478754B1 (en) 2001-04-23 2002-11-12 Advanced Medical Applications, Inc. Ultrasonic method and device for wound treatment
US6663627B2 (en) 2001-04-26 2003-12-16 Medtronic, Inc. Ablation system and method of use
WO2002087692A1 (en) 2001-04-26 2002-11-07 The Procter & Gamble Company A method and apparatus for the treatment of cosmetic skin conditioins
JP3937755B2 (en) 2001-05-28 2007-06-27 松下電工株式会社 Ultrasonic beauty device
US7846096B2 (en) 2001-05-29 2010-12-07 Ethicon Endo-Surgery, Inc. Method for monitoring of medical treatment using pulse-echo ultrasound
US20030032898A1 (en) 2001-05-29 2003-02-13 Inder Raj. S. Makin Method for aiming ultrasound for medical treatment
US7058440B2 (en) 2001-06-28 2006-06-06 Koninklijke Philips Electronics N.V. Dynamic computed tomography imaging using positional state modeling
US7056331B2 (en) 2001-06-29 2006-06-06 Quill Medical, Inc. Suture method
US6659956B2 (en) 2001-06-29 2003-12-09 Barzell-Whitmore Maroon Bells, Inc. Medical instrument positioner
US6932771B2 (en) 2001-07-09 2005-08-23 Civco Medical Instruments Co., Inc. Tissue warming device and method
FR2827149B1 (en) 2001-07-13 2003-10-10 Technomed Medical Systems FOCUSED ULTRASOUND TREATMENT PROBE
JP2003050298A (en) 2001-08-06 2003-02-21 Fuji Photo Film Co Ltd Radiographic image conversion panel and its manufacturing method
US7018396B2 (en) 2001-08-07 2006-03-28 New England Medical Center Hospitals, Inc. Method of treating acne
US20030032900A1 (en) 2001-08-08 2003-02-13 Engii (2001) Ltd. System and method for facial treatment
DE10140064A1 (en) 2001-08-16 2003-03-13 Rainer Weismueller Cosmetic or medical treatment of the skin using ultrasound waves, e.g. permanent hair removal using a simple device comprising a mechanical oscillator and focussing lenses with a spacer for varying the distance to the skin
US7094252B2 (en) 2001-08-21 2006-08-22 Cooltouch Incorporated Enhanced noninvasive collagen remodeling
US6773409B2 (en) * 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
US6638226B2 (en) 2001-09-28 2003-10-28 Teratech Corporation Ultrasound imaging system
US6974417B2 (en) 2001-10-05 2005-12-13 Queen's University At Kingston Ultrasound transducer array
US6920883B2 (en) 2001-11-08 2005-07-26 Arthrocare Corporation Methods and apparatus for skin treatment
US7115093B2 (en) 2001-11-21 2006-10-03 Ge Medical Systems Global Technology Company, Llc Method and system for PDA-based ultrasound system
US7317818B2 (en) 2001-11-26 2008-01-08 L'ORéAL S.A. Method of enabling an analysis of an external body portion
ATE404120T1 (en) 2001-11-30 2008-08-15 Petro Moilanen METHOD FOR THE NON-INVASIVE EXAMINATION OF BONE
US6554771B1 (en) 2001-12-18 2003-04-29 Koninklijke Philips Electronics N.V. Position sensor in ultrasound transducer probe
US6746402B2 (en) 2002-01-02 2004-06-08 E. Tuncay Ustuner Ultrasound system and method
JP2003204982A (en) 2002-01-09 2003-07-22 Byeong Gon Kim Abdomen warming and vibrating belt
SE520857C2 (en) 2002-01-15 2003-09-02 Ultrazonix Dnt Ab Device with both therapeutic and diagnostic sensors for mini-invasive ultrasound treatment of an object, where the therapeutic sensor is thermally insulated
TWI220386B (en) 2002-01-21 2004-08-21 Matsushita Electric Works Ltd Ultrasonic transdermal permeation device
EP1470546B1 (en) 2002-01-29 2013-11-27 SRA Developments Limited Method and apparatus for focussing ultrasonic energy
DK1474690T3 (en) 2002-02-07 2011-01-10 Boehringer Ingelheim Ca Ltd E2 shear assay for identification of inhibitors of HPV
JP4265139B2 (en) 2002-02-18 2009-05-20 コニカミノルタホールディングス株式会社 Radiation image conversion panel and radiation image reading apparatus
US7258674B2 (en) 2002-02-20 2007-08-21 Liposonix, Inc. Ultrasonic treatment and imaging of adipose tissue
JP2003248097A (en) 2002-02-25 2003-09-05 Konica Corp Radiation image conversion panel and its production method
US6648839B2 (en) 2002-02-28 2003-11-18 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
US20030171701A1 (en) 2002-03-06 2003-09-11 Eilaz Babaev Ultrasonic method and device for lypolytic therapy
US6824516B2 (en) 2002-03-11 2004-11-30 Medsci Technologies, Inc. System for examining, mapping, diagnosing, and treating diseases of the prostate
US8840608B2 (en) 2002-03-15 2014-09-23 The General Hospital Corporation Methods and devices for selective disruption of fatty tissue by controlled cooling
IL148791A0 (en) 2002-03-20 2002-09-12 Yoni Iger Method and apparatus for altering activity of tissue layers
US6662054B2 (en) 2002-03-26 2003-12-09 Syneron Medical Ltd. Method and system for treating skin
US7534211B2 (en) 2002-03-29 2009-05-19 Sonosite, Inc. Modular apparatus for diagnostic ultrasound
US6887239B2 (en) 2002-04-17 2005-05-03 Sontra Medical Inc. Preparation for transmission and reception of electrical signals
US7000126B2 (en) 2002-04-18 2006-02-14 Intel Corporation Method for media content presentation in consideration of system power
DE10219297A1 (en) 2002-04-25 2003-11-06 Laser & Med Tech Gmbh Medical instrument for generation of scar tissue to stiffen soft tissue, combines an ultrasound generator with a laser so that electromagnetic and or ultrasound energy can be coupled into the tissue via an opto-acoustic coupler
DE10219217B3 (en) 2002-04-29 2004-02-12 Creative-Line Gmbh Object with picture built up from lines, e.g. for decoration, has line pattern eroded into main surface
US20030236487A1 (en) 2002-04-29 2003-12-25 Knowlton Edward W. Method for treatment of tissue with feedback
US6992305B2 (en) 2002-05-08 2006-01-31 Konica Corporation Radiation image converting panel and production method of the same
US20030212129A1 (en) 2002-05-13 2003-11-13 Liu Kay Miyakawa System and method for revitalizing human skin
US6846290B2 (en) 2002-05-14 2005-01-25 Riverside Research Institute Ultrasound method and system
US7359745B2 (en) 2002-05-15 2008-04-15 Case Western Reserve University Method to correct magnetic field/phase variations in proton resonance frequency shift thermometry in magnetic resonance imaging
EP1551303A4 (en) 2002-05-16 2009-03-18 Karmanos B A Cancer Inst Method and system for combined diagnostic and therapeutic ultrasound system incorporating noninvasive thermometry, ablation control and automation
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US6958043B2 (en) 2002-05-21 2005-10-25 Medtronic Xomed, Inc. Apparatus and method for displacing the partition between the middle ear and the inner ear using a manually powered device
US7179238B2 (en) 2002-05-21 2007-02-20 Medtronic Xomed, Inc. Apparatus and methods for directly displacing the partition between the middle ear and inner ear at an infrasonic frequency
US20070038206A1 (en) 2004-12-09 2007-02-15 Palomar Medical Technologies, Inc. Photocosmetic device
US7070565B2 (en) 2002-05-30 2006-07-04 University Of Washington Solid hydrogel coupling for ultrasound imaging and therapy
US20030233085A1 (en) 2002-06-18 2003-12-18 Pedro Giammarusti Optimization of transcutaneous active permeation of compounds through the synergistic use of ultrasonically generated mechanical abrasion of the skin, chemical enhancers and simultaneous application of sonophoresis, iontophoresis, electroporation, mechanical vibrations and magnetophoresis through single application devices
BR0312430A (en) 2002-06-19 2005-04-26 Palomar Medical Tech Inc Method and apparatus for treating skin and subcutaneous conditions
BR0215785A (en) 2002-06-25 2006-06-06 Ultrashape Inc Useful devices and methodologies for body aesthetics
US20040001809A1 (en) * 2002-06-26 2004-01-01 Pharmasonics, Inc. Methods and apparatus for enhancing a response to nucleic acid vaccines
US20040082859A1 (en) 2002-07-01 2004-04-29 Alan Schaer Method and apparatus employing ultrasound energy to treat body sphincters
US20040049134A1 (en) 2002-07-02 2004-03-11 Tosaya Carol A. System and methods for treatment of alzheimer's and other deposition-related disorders of the brain
KR100872242B1 (en) 2002-08-29 2008-12-05 엘지전자 주식회사 Computor of Portable composition type
WO2004023235A2 (en) * 2002-09-03 2004-03-18 Healthpia Co., Ltd. Integrated beauty care apparatus
US20040122493A1 (en) 2002-09-09 2004-06-24 Kabushiki Kaisha Toshiba Ultrasonic irradiation apparatus
JP2004147719A (en) 2002-10-29 2004-05-27 Toshiba Corp Ultrasonic wave irradiation apparatus
US7234106B2 (en) 2002-09-10 2007-06-19 Simske Steven J System for and method of generating image annotation information
US20070219605A1 (en) 2006-03-20 2007-09-20 Palomar Medical Technologies, Inc. Treatment of tissue volume with radiant energy
US6709392B1 (en) 2002-10-10 2004-03-23 Koninklijke Philips Electronics N.V. Imaging ultrasound transducer temperature control system and method using feedback
US6669638B1 (en) 2002-10-10 2003-12-30 Koninklijke Philips Electronics N.V. Imaging ultrasound transducer temperature control system and method
US7004940B2 (en) 2002-10-10 2006-02-28 Ethicon, Inc. Devices for performing thermal ablation having movable ultrasound transducers
US6921371B2 (en) 2002-10-14 2005-07-26 Ekos Corporation Ultrasound radiating members for catheter
US6860852B2 (en) 2002-10-25 2005-03-01 Compex Medical S.A. Ultrasound therapeutic device
JP2006505321A (en) 2002-11-06 2006-02-16 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Phased array acoustic system for 3D imaging of moving parts
US6629929B1 (en) * 2002-11-08 2003-10-07 Koninklijke Philips Electronics N.V. Method and apparatus for automatically setting the transmit aperture and apodization of an ultrasound transducer array
US7156816B2 (en) 2002-11-26 2007-01-02 Biosense, Inc. Ultrasound pulmonary vein isolation
US7676047B2 (en) 2002-12-03 2010-03-09 Bose Corporation Electroacoustical transducing with low frequency augmenting devices
US8088067B2 (en) 2002-12-23 2012-01-03 Insightec Ltd. Tissue aberration corrections in ultrasound therapy
US20040143297A1 (en) 2003-01-21 2004-07-22 Maynard Ramsey Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment
US7150716B2 (en) 2003-02-20 2006-12-19 Siemens Medical Solutions Usa, Inc. Measuring transducer movement methods and systems for multi-dimensional ultrasound imaging
US20030191396A1 (en) 2003-03-10 2003-10-09 Sanghvi Narendra T Tissue treatment method and apparatus
AU2004218906B2 (en) 2003-03-13 2009-11-05 Real Aesthetics Ltd. Cellulite ultrasound treatment
US6918907B2 (en) 2003-03-13 2005-07-19 Boston Scientific Scimed, Inc. Surface electrode multiple mode operation
US6733449B1 (en) 2003-03-20 2004-05-11 Siemens Medical Solutions Usa, Inc. System and method for real-time streaming of ultrasound data to a diagnostic medical ultrasound streaming application
JP2004297951A (en) 2003-03-27 2004-10-21 Olympus Corp Ultrasonic vibrator and ultrasonic motor
US20040206365A1 (en) 2003-03-31 2004-10-21 Knowlton Edward Wells Method for treatment of tissue
US9149322B2 (en) 2003-03-31 2015-10-06 Edward Wells Knowlton Method for treatment of tissue
US7273459B2 (en) 2003-03-31 2007-09-25 Liposonix, Inc. Vortex transducer
ATE411836T1 (en) 2003-05-19 2008-11-15 Ust Inc GEOMETRIC SHAPED HYDROGEL COUPLING BODY FOR HIGH-INTENSITY FOCUSED ULTRASOUND TREATMENT
EP1628577A2 (en) 2003-05-21 2006-03-01 Dietrich, René Ultrasound coupling medium for use in medical diagnostics
ITSV20030023A1 (en) 2003-05-22 2004-11-23 Esaote Spa METHOD FOR THE OPTIMIZATION OF ULTRASONIC IMPULSES IN
US6896657B2 (en) 2003-05-23 2005-05-24 Scimed Life Systems, Inc. Method and system for registering ultrasound image in three-dimensional coordinate system
JP4041014B2 (en) 2003-06-06 2008-01-30 オリンパス株式会社 Ultrasonic surgical device
EP1635709B1 (en) 2003-06-12 2013-10-30 Bracco Suisse SA Blood flow estimates through replenishment curve fitting in ultrasound contrast imaging
JP4165562B2 (en) 2003-06-13 2008-10-15 松下電工株式会社 Ultrasonic imparting skin care device
US7074218B2 (en) 2003-06-30 2006-07-11 Ethicon, Inc. Multi-modality ablation device
US7303555B2 (en) 2003-06-30 2007-12-04 Depuy Products, Inc. Imaging and therapeutic procedure for carpal tunnel syndrome
US20050033316A1 (en) 2003-07-14 2005-02-10 M. Glen Kertz Ultrasonic skin cleaner
US20050070961A1 (en) 2003-07-15 2005-03-31 Terumo Kabushiki Kaisha Energy treatment apparatus
JP4472395B2 (en) 2003-08-07 2010-06-02 オリンパス株式会社 Ultrasonic surgery system
JP4638819B2 (en) 2003-08-08 2011-02-23 パナソニック株式会社 Ultrasonic diagnostic equipment
US7398116B2 (en) 2003-08-11 2008-07-08 Veran Medical Technologies, Inc. Methods, apparatuses, and systems useful in conducting image guided interventions
US7294125B2 (en) * 2003-08-22 2007-11-13 Scimed Life Systems, Inc. Methods of delivering energy to body portions to produce a therapeutic response
US20050080469A1 (en) 2003-09-04 2005-04-14 Larson Eugene A. Treatment of cardiac arrhythmia utilizing ultrasound
AU2004272023B2 (en) 2003-09-08 2008-06-26 Board Of Trustees Of The University Of Arkansas Ultrasound apparatus and method for augmented clot lysis
DE20314479U1 (en) 2003-09-13 2004-02-12 Peter Krauth Gmbh Low frequency ultrasound treatment unit for wet use has electronic unit with detachable connection to sealed titanium or stainless steel membrane ultrasound head
FR2859983B1 (en) 2003-09-22 2006-03-10 Valois Sas FIXING DEVICE AND MOUNTING METHOD FOR FIXING A DISTRIBUTION MEMBER ON A TANK OPENING
US20050074407A1 (en) 2003-10-01 2005-04-07 Sonotech, Inc. PVP and PVA as in vivo biocompatible acoustic coupling medium
US7358831B2 (en) 2003-10-30 2008-04-15 Avago Technologies Wireless Ip (Singapore) Pte. Ltd. Film bulk acoustic resonator (FBAR) devices with simplified packaging
CA2542393C (en) 2003-11-04 2009-10-13 University Of Washington Toothbrush employing an acoustic waveguide
US20050113689A1 (en) 2003-11-21 2005-05-26 Arthur Gritzky Method and apparatus for performing multi-mode imaging
US8206299B2 (en) 2003-12-16 2012-06-26 University Of Washington Image guided high intensity focused ultrasound treatment of nerves
US7173453B2 (en) 2003-12-18 2007-02-06 Cypress Semiconductor Corp. Method and circuit for translating a differential signal to complementary CMOS levels
US20050137656A1 (en) 2003-12-23 2005-06-23 American Environmental Systems, Inc. Acoustic-optical therapeutical devices and methods
US20050154308A1 (en) 2003-12-30 2005-07-14 Liposonix, Inc. Disposable transducer seal
US20050193451A1 (en) 2003-12-30 2005-09-01 Liposonix, Inc. Articulating arm for medical procedures
KR20060113930A (en) 2003-12-30 2006-11-03 리포소닉스 인코포레이티드 Systems and methods for the destruction of adipose tissue
EP1699407A4 (en) 2003-12-30 2010-12-01 Medicis Technologies Corp Ultrasound therapy head with movement control
US7857773B2 (en) 2003-12-30 2010-12-28 Medicis Technologies Corporation Apparatus and methods for the destruction of adipose tissue
JP2007516809A (en) 2003-12-30 2007-06-28 ライポソニックス, インコーポレイテッド Ultrasonic transducer components
US20050154332A1 (en) 2004-01-12 2005-07-14 Onda Methods and systems for removing hair using focused acoustic energy
JP2007520307A (en) 2004-02-06 2007-07-26 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Microbubble local formation method, cavitation effect control and heating effect control by using enhanced ultrasound
EP1718366A4 (en) * 2004-02-06 2007-11-21 Daniel Barolet Method and device for the treatment of mammalian tissues
JP2005245521A (en) 2004-03-01 2005-09-15 Japan Natural Laboratory Co Ltd Skin care or beauty system using ion introducer, ultrasonic wave facial treatment device, and cosmetic additives
WO2005083881A1 (en) 2004-03-02 2005-09-09 Murata Manufacturing Co., Ltd. Surface acoustic wave device
WO2005090978A1 (en) 2004-03-12 2005-09-29 University Of Virginia Patent Foundation Electron transfer dissociation for biopolymer sequence analysis
US20050228281A1 (en) 2004-03-31 2005-10-13 Nefos Thomas P Handheld diagnostic ultrasound system with head mounted display
WO2005099369A2 (en) 2004-04-09 2005-10-27 Palomar Medical Technologies, Inc. Emr treated islets
JP4100372B2 (en) 2004-05-10 2008-06-11 松下電工株式会社 Ultrasonic beauty equipment
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US7951095B2 (en) 2004-05-20 2011-05-31 Ethicon Endo-Surgery, Inc. Ultrasound medical system
US7837675B2 (en) 2004-07-22 2010-11-23 Shaser, Inc. Method and device for skin treatment with replaceable photosensitive window
US7699780B2 (en) 2004-08-11 2010-04-20 Insightec—Image-Guided Treatment Ltd. Focused ultrasound system with adaptive anatomical aperture shaping
US7310928B2 (en) 2004-08-24 2007-12-25 Curry Janine V Retractable spurs
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US7824348B2 (en) 2004-09-16 2010-11-02 Guided Therapy Systems, L.L.C. System and method for variable depth ultrasound treatment
US7393325B2 (en) 2004-09-16 2008-07-01 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment with a multi-directional transducer
US7530958B2 (en) 2004-09-24 2009-05-12 Guided Therapy Systems, Inc. Method and system for combined ultrasound treatment
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US20130096471A1 (en) 2010-08-02 2013-04-18 Guided Therapy Systems, Llc Systems and methods for treating injuries to joints and connective tissue
US20130046209A1 (en) 2011-07-10 2013-02-21 Guided Therapy Systems, Llc Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US7530356B2 (en) 2004-10-06 2009-05-12 Guided Therapy Systems, Inc. Method and system for noninvasive mastopexy
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
EP2409730A1 (en) 2004-10-06 2012-01-25 Guided Therapy Systems, L.L.C. Method and system for ultrasound tissue treatment
US7758524B2 (en) 2004-10-06 2010-07-20 Guided Therapy Systems, L.L.C. Method and system for ultra-high frequency ultrasound treatment
US8133180B2 (en) 2004-10-06 2012-03-13 Guided Therapy Systems, L.L.C. Method and system for treating cellulite
US20120046547A1 (en) 2004-10-06 2012-02-23 Guided Therapy Systems, Llc System and method for cosmetic treatment
KR101328103B1 (en) 2004-10-06 2013-11-13 가이디드 테라피 시스템스, 엘.엘.씨. Method and system for noninvasive cosmetic enhancement
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
PT2409731T (en) 2004-10-06 2017-10-23 Guided Therapy Systems Llc System for controlled thermal treatment of human superficial tissue
US20060079868A1 (en) 2004-10-07 2006-04-13 Guided Therapy Systems, L.L.C. Method and system for treatment of blood vessel disorders
US7235592B2 (en) 2004-10-12 2007-06-26 Zimmer Gmbh PVA hydrogel
US20060089688A1 (en) 2004-10-25 2006-04-27 Dorin Panescu Method and apparatus to reduce wrinkles through application of radio frequency energy to nerves
US20060094988A1 (en) 2004-10-28 2006-05-04 Tosaya Carol A Ultrasonic apparatus and method for treating obesity or fat-deposits or for delivering cosmetic or other bodily therapy
US20060122509A1 (en) 2004-11-24 2006-06-08 Liposonix, Inc. System and methods for destroying adipose tissue
US20060116583A1 (en) 2004-11-26 2006-06-01 Yoichi Ogasawara Ultrasonic diagnostic apparatus and control method thereof
US8162858B2 (en) 2004-12-13 2012-04-24 Us Hifu, Llc Ultrasonic medical treatment device with variable focal zone
CN100542635C (en) 2005-01-10 2009-09-23 重庆海扶(Hifu)技术有限公司 High intensity focused ultrasound therapy device and method
US7918795B2 (en) 2005-02-02 2011-04-05 Gynesonics, Inc. Method and device for uterine fibroid treatment
US7553284B2 (en) 2005-02-02 2009-06-30 Vaitekunas Jeffrey J Focused ultrasound for pain reduction
CN101146574A (en) 2005-02-06 2008-03-19 超形态公司 Non-thermal acoustic tissue modification
US20060241440A1 (en) 2005-02-07 2006-10-26 Yoram Eshel Non-thermal acoustic tissue modification
US7771418B2 (en) 2005-03-09 2010-08-10 Sunnybrook Health Sciences Centre Treatment of diseased tissue using controlled ultrasonic heating
US7931611B2 (en) * 2005-03-23 2011-04-26 Misonix, Incorporated Ultrasonic wound debrider probe and method of use
US7335997B2 (en) 2005-03-31 2008-02-26 Ethicon Endo-Surgery, Inc. System for controlling ultrasonic clamping and cutting instruments
US7357815B2 (en) * 2005-04-21 2008-04-15 Micardia Corporation Dynamically adjustable implants and methods for reshaping tissue
JP4695188B2 (en) 2005-04-25 2011-06-08 アーデント サウンド, インコーポレイテッド Method and apparatus for improving the safety of computer peripherals
US8454511B2 (en) 2005-05-27 2013-06-04 Board Of Regents, The University Of Texas System Magneto-motive ultrasound detection of magnetic nanoparticles
US7330578B2 (en) 2005-06-23 2008-02-12 Accuray Inc. DRR generation and enhancement using a dedicated graphics device
US7785277B2 (en) 2005-06-23 2010-08-31 Celleration, Inc. Removable applicator nozzle for ultrasound wound therapy device
US8128618B2 (en) 2005-08-03 2012-03-06 Massachusetts Eye & Ear Infirmary Targeted muscle ablation for reducing signs of aging
US7621873B2 (en) 2005-08-17 2009-11-24 University Of Washington Method and system to synchronize acoustic therapy with ultrasound imaging
US20070065420A1 (en) 2005-08-23 2007-03-22 Johnson Lanny L Ultrasound Therapy Resulting in Bone Marrow Rejuvenation
US20090093737A1 (en) 2007-10-09 2009-04-09 Cabochon Aesthetics, Inc. Ultrasound apparatus with treatment lens
US20070083120A1 (en) 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US8016757B2 (en) * 2005-09-30 2011-09-13 University Of Washington Non-invasive temperature estimation technique for HIFU therapy monitoring using backscattered ultrasound
US20070078290A1 (en) * 2005-09-30 2007-04-05 Esenaliev Rinat O Ultrasound-based treatment methods for therapeutic treatment of skin and subcutaneous tissues
US20070088346A1 (en) 2005-10-14 2007-04-19 Mirizzi Michael S Method and apparatus for varicose vein treatment using acoustic hemostasis
WO2007047726A2 (en) 2005-10-20 2007-04-26 The General Hospital Corporation Non-invasive treatment of fascia
JP2009514569A (en) 2005-11-07 2009-04-09 シグノスティックス ピーティーワイ エルティーディー Ultrasonic measurement system and method
US20080146970A1 (en) 2005-12-06 2008-06-19 Julia Therapeutics, Llc Gel dispensers for treatment of skin with acoustic energy
US9017717B2 (en) 2006-01-16 2015-04-28 Peach Technologies Llc Bandage for facilitating transdermal respiration and healing
US8133191B2 (en) 2006-02-16 2012-03-13 Syneron Medical Ltd. Method and apparatus for treatment of adipose tissue
US8920320B2 (en) * 2006-03-10 2014-12-30 Liposonix, Inc. Methods and apparatus for coupling a HIFU transducer to a skin surface
ITBO20060221A1 (en) 2006-03-30 2006-06-29 Massimo Santangelo METHOD AND EQUIPMENT TO INDUCE OSTEOGENESIS IN A BONE REGION OF THE PATIENT.
WO2007118229A2 (en) 2006-04-07 2007-10-18 The General Hospital Corporation Method and apparatus for selective treatment of biological tissue using ultrasound energy
JP3123559U (en) 2006-05-10 2006-07-20 ニチハ株式会社 Makeup corner material
US20070264625A1 (en) 2006-05-11 2007-11-15 Reliant Technologies, Inc. Apparatus and Method for Ablation-Related Dermatological Treatment of Selected Targets
US20080039724A1 (en) 2006-08-10 2008-02-14 Ralf Seip Ultrasound transducer with improved imaging
CN101522263A (en) 2006-08-25 2009-09-02 艾拉兹·巴巴耶夫 Portable ultrasound device for the treatment of wounds
FR2905277B1 (en) * 2006-08-29 2009-04-17 Centre Nat Rech Scient DEVICE FOR THE VOLUMIC TREATMENT OF BIOLOGICAL TISSUES
US20080195000A1 (en) 2006-09-06 2008-08-14 Spooner Gregory J R System and Method for Dermatological Treatment Using Ultrasound
US8262591B2 (en) 2006-09-07 2012-09-11 Nivasonix, Llc External ultrasound lipoplasty
US7955281B2 (en) 2006-09-07 2011-06-07 Nivasonix, Llc External ultrasound lipoplasty
US9566454B2 (en) * 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
ES2579765T3 (en) 2006-09-19 2016-08-16 Guided Therapy Systems, L.L.C. System for the treatment of muscle, tendon, ligamentous and cartilaginous tissue
US9241683B2 (en) 2006-10-04 2016-01-26 Ardent Sound Inc. Ultrasound system and method for imaging and/or measuring displacement of moving tissue and fluid
US20080183077A1 (en) 2006-10-19 2008-07-31 Siemens Corporate Research, Inc. High intensity focused ultrasound path determination
US9492686B2 (en) 2006-12-04 2016-11-15 Koninklijke Philips N.V. Devices and methods for treatment of skin conditions
US8382689B2 (en) 2007-02-08 2013-02-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Device and method for high intensity focused ultrasound ablation with acoustic lens
US8231533B2 (en) * 2007-02-16 2012-07-31 Buchalter Neal Ultrasound coupling device
DK1970059T3 (en) 2007-03-12 2009-12-21 Dobavet Gmbh Calcium dobesilate drug for the treatment and prophylaxis of tendon disorders
WO2008114255A1 (en) 2007-03-19 2008-09-25 Syneron Medical Ltd. Method and device for soft tissue destruction
US20080243035A1 (en) 2007-03-26 2008-10-02 Liposonix, Inc. Interchangeable high intensity focused ultrasound transducer
EP2142129A4 (en) 2007-04-19 2011-04-20 Miramar Labs Inc Methods and apparatus for reducing sweat production
US8038619B2 (en) 2007-04-30 2011-10-18 General Electric Company Motor driver for ultrasound system
ES2685745T3 (en) 2007-05-07 2018-10-11 Guided Therapy Systems, L.L.C. System for a combined energy therapy profile
JP2010526589A (en) 2007-05-07 2010-08-05 ガイデッド セラピー システムズ, エル.エル.シー. Method and system for modulating a mediant using acoustic energy
DK2152167T3 (en) 2007-05-07 2018-12-10 Guided Therapy Systems Llc Methods and systems for coupling and focusing acoustic energy using a coupling element
RU2502470C2 (en) 2007-06-01 2013-12-27 Конинклейке Филипс Электроникс, Н.В. Light-weight wireless ultrasonic sensor
ES2688610T3 (en) 2007-07-26 2018-11-05 Syneron Medical Ltd. Equipment for the treatment of tissue with ultrasound
CA2695780A1 (en) 2007-08-10 2009-02-19 Eleme Medical Inc. Multi-module skin or body treatment device and the method of using
US8235902B2 (en) 2007-09-11 2012-08-07 Focus Surgery, Inc. System and method for tissue change monitoring during HIFU treatment
US20090177123A1 (en) 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory disorders
US20090177122A1 (en) 2007-12-28 2009-07-09 Celleration, Inc. Methods for treating inflammatory skin disorders
US20090254008A1 (en) * 2008-01-29 2009-10-08 Shields Jr Donald J Systems, devices, and methods to concurrently deliver ultrasound waves having thermal and non-thermal effects
EP2254665B1 (en) 2008-02-01 2014-07-23 LipoSonix, Inc. Therapy head for use with an ultrasound system
WO2009111793A2 (en) 2008-03-07 2009-09-11 Myoscience, Inc. Subdermal tissue remodeling using myostatin, methods and related systems
US8352015B2 (en) 2008-05-27 2013-01-08 Kyma Medical Technologies, Ltd. Location tracking of a metallic object in a living body using a radar detector and guiding an ultrasound probe to direct ultrasound waves at the location
CN104545998B (en) * 2008-06-06 2020-07-14 奥赛拉公司 System and method for cosmetic treatment and imaging
US20100022919A1 (en) 2008-07-22 2010-01-28 Celleration, Inc. Methods of Skin Grafting Using Ultrasound
US20100042020A1 (en) 2008-08-13 2010-02-18 Shmuel Ben-Ezra Focused energy delivery apparatus method and system
US20100063422A1 (en) 2008-09-08 2010-03-11 Sunnybrook Health Sciences Center Ultrasound therapy transducer head and ultrasound therapy system incorporating the same
EP2341839B1 (en) * 2008-09-22 2015-10-21 Vessix Vascular, Inc. System for vascular ultrasound treatments
EP2331207B1 (en) * 2008-10-03 2013-12-11 Mirabilis Medica Inc. Apparatus for treating tissues with hifu
US20100130891A1 (en) 2008-11-21 2010-05-27 Taggart Rebecca M Wearable Therapeutic Ultrasound Article
US8585618B2 (en) * 2008-12-22 2013-11-19 Cutera, Inc. Broad-area irradiation of small near-field targets using ultrasound
JP2012513837A (en) * 2008-12-24 2012-06-21 ガイデッド セラピー システムズ, エルエルシー Method and system for fat loss and / or cellulite treatment
US20100191120A1 (en) 2009-01-28 2010-07-29 General Electric Company Apparatus and method for controlling an ultrasound system based on contact with an ultrasound probe
US20100211055A1 (en) * 2009-02-18 2010-08-19 Shimon Eckhouse Method for body toning and an integrated data management system for the same
US8486001B2 (en) * 2009-03-12 2013-07-16 Tim Weyant Method of treating capsular contracture
US20100286518A1 (en) 2009-05-11 2010-11-11 General Electric Company Ultrasound system and method to deliver therapy based on user defined treatment spaces
US8348966B2 (en) 2009-08-07 2013-01-08 Thayer Intellectual Property, Inc. Systems and methods for treatment of compressed nerves
JP5749265B2 (en) * 2009-08-14 2015-07-15 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Ultrasonic surgical apparatus, silicon waveguide, and method of use thereof
JP5850837B2 (en) 2009-08-17 2016-02-03 ヒストソニックス,インコーポレーテッド Disposable acoustic coupling media container
US20110264012A1 (en) 2009-10-23 2011-10-27 Frans Lautzenhiser Compliant couplant with liquid reservoir for transducer
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US20110190745A1 (en) 2009-12-04 2011-08-04 Uebelhoer Nathan S Treatment of sweat glands
EP2600937B8 (en) 2010-08-02 2024-03-06 Guided Therapy Systems, L.L.C. Systems for treating acute and/or chronic injuries in soft tissue
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US8900145B2 (en) * 2011-03-10 2014-12-02 University Of Washington Through Its Center For Commercialization Ultrasound systems and methods for real-time noninvasive spatial temperature estimation
US20120296240A1 (en) 2011-05-20 2012-11-22 Slender Medical Ltd. Ultrasound eye bag treatment
US8726781B2 (en) 2011-06-30 2014-05-20 Elwha Llc Wearable air blast protection device
WO2013012641A1 (en) 2011-07-11 2013-01-24 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US20130066237A1 (en) 2011-09-09 2013-03-14 Palomar Medical Technologies, Inc. Methods and devices for inflammation treatment
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
WO2014055708A1 (en) 2012-10-02 2014-04-10 Ardent Sound, Inc. Motion mechanisms for ultrasound transducer modules

Cited By (117)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272162B2 (en) 1997-10-14 2016-03-01 Guided Therapy Systems, Llc Imaging, therapy, and temperature monitoring ultrasonic method
US9907535B2 (en) 2000-12-28 2018-03-06 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US10039938B2 (en) 2004-09-16 2018-08-07 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US11590370B2 (en) 2004-09-24 2023-02-28 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US10864385B2 (en) 2004-09-24 2020-12-15 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US10328289B2 (en) 2004-09-24 2019-06-25 Guided Therapy Systems, Llc Rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US9895560B2 (en) 2004-09-24 2018-02-20 Guided Therapy Systems, Llc Methods for rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US9095697B2 (en) 2004-09-24 2015-08-04 Guided Therapy Systems, Llc Methods for preheating tissue for cosmetic treatment of the face and body
US10888717B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, Llc Probe for ultrasound tissue treatment
US20090182231A1 (en) * 2004-10-06 2009-07-16 Guided Therapy Systems, L.L.C. Method and system for treating acne and sebaceous glands
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US10010725B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, Llc Ultrasound probe for fat and cellulite reduction
US11883688B2 (en) 2004-10-06 2024-01-30 Guided Therapy Systems, Llc Energy based fat reduction
US11717707B2 (en) 2004-10-06 2023-08-08 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US11697033B2 (en) 2004-10-06 2023-07-11 Guided Therapy Systems, Llc Methods for lifting skin tissue
US10010721B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, L.L.C. Energy based fat reduction
US8915854B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method for fat and cellulite reduction
US8915853B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Methods for face and neck lifts
US8915870B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method and system for treating stretch marks
US8920324B2 (en) 2004-10-06 2014-12-30 Guided Therapy Systems, Llc Energy based fat reduction
US8932224B2 (en) 2004-10-06 2015-01-13 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US8672848B2 (en) 2004-10-06 2014-03-18 Guided Therapy Systems, Llc Method and system for treating cellulite
US11400319B2 (en) 2004-10-06 2022-08-02 Guided Therapy Systems, Llc Methods for lifting skin tissue
US9039619B2 (en) 2004-10-06 2015-05-26 Guided Therapy Systems, L.L.C. Methods for treating skin laxity
US11338156B2 (en) 2004-10-06 2022-05-24 Guided Therapy Systems, Llc Noninvasive tissue tightening system
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8641622B2 (en) 2004-10-06 2014-02-04 Guided Therapy Systems, Llc Method and system for treating photoaged tissue
US11235179B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc Energy based skin gland treatment
US11235180B2 (en) 2004-10-06 2022-02-01 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US10010724B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US11207547B2 (en) 2004-10-06 2021-12-28 Guided Therapy Systems, Llc Probe for ultrasound tissue treatment
US9283410B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US9283409B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, Llc Energy based fat reduction
US9320537B2 (en) 2004-10-06 2016-04-26 Guided Therapy Systems, Llc Methods for noninvasive skin tightening
US11179580B2 (en) 2004-10-06 2021-11-23 Guided Therapy Systems, Llc Energy based fat reduction
US9421029B2 (en) 2004-10-06 2016-08-23 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US9427600B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9427601B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, Llc Methods for face and neck lifts
US9440096B2 (en) 2004-10-06 2016-09-13 Guided Therapy Systems, Llc Method and system for treating stretch marks
US11167155B2 (en) 2004-10-06 2021-11-09 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US10960236B2 (en) 2004-10-06 2021-03-30 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US10888716B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, Llc Energy based fat reduction
US9522290B2 (en) 2004-10-06 2016-12-20 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US9533175B2 (en) 2004-10-06 2017-01-03 Guided Therapy Systems, Llc Energy based fat reduction
US10888718B2 (en) 2004-10-06 2021-01-12 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US20080214966A1 (en) * 2004-10-06 2008-09-04 Slayton Michael H Method and system for noninvasive face lifts and deep tissue tightening
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9694211B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9700340B2 (en) 2004-10-06 2017-07-11 Guided Therapy Systems, Llc System and method for ultra-high frequency ultrasound treatment
US9707412B2 (en) 2004-10-06 2017-07-18 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US9713731B2 (en) 2004-10-06 2017-07-25 Guided Therapy Systems, Llc Energy based fat reduction
US20100022922A1 (en) * 2004-10-06 2010-01-28 Guided Therapy Systems, L.L.C. Method and system for treating stretch marks
US9827450B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9833640B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment of skin
US9833639B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Energy based fat reduction
US10610705B2 (en) 2004-10-06 2020-04-07 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US9974982B2 (en) 2004-10-06 2018-05-22 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US8690780B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive tissue tightening for cosmetic effects
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US10610706B2 (en) 2004-10-06 2020-04-07 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US10010726B2 (en) 2004-10-06 2018-07-03 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US8506486B2 (en) 2004-10-06 2013-08-13 Guided Therapy Systems, Llc Ultrasound treatment of sub-dermal tissue for cosmetic effects
US10046181B2 (en) 2004-10-06 2018-08-14 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US10046182B2 (en) 2004-10-06 2018-08-14 Guided Therapy Systems, Llc Methods for face and neck lifts
US10603523B2 (en) 2004-10-06 2020-03-31 Guided Therapy Systems, Llc Ultrasound probe for tissue treatment
US10603519B2 (en) 2004-10-06 2020-03-31 Guided Therapy Systems, Llc Energy based fat reduction
US10238894B2 (en) 2004-10-06 2019-03-26 Guided Therapy Systems, L.L.C. Energy based fat reduction
US10245450B2 (en) 2004-10-06 2019-04-02 Guided Therapy Systems, Llc Ultrasound probe for fat and cellulite reduction
US10252086B2 (en) 2004-10-06 2019-04-09 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US10265550B2 (en) 2004-10-06 2019-04-23 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US10532230B2 (en) 2004-10-06 2020-01-14 Guided Therapy Systems, Llc Methods for face and neck lifts
US10525288B2 (en) 2004-10-06 2020-01-07 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US11207548B2 (en) 2004-10-07 2021-12-28 Guided Therapy Systems, L.L.C. Ultrasound probe for treating skin laxity
US11724133B2 (en) 2004-10-07 2023-08-15 Guided Therapy Systems, Llc Ultrasound probe for treatment of skin
US8868958B2 (en) 2005-04-25 2014-10-21 Ardent Sound, Inc Method and system for enhancing computer peripheral safety
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US11717661B2 (en) 2007-05-07 2023-08-08 Guided Therapy Systems, Llc Methods and systems for ultrasound assisted delivery of a medicant to tissue
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US11723622B2 (en) 2008-06-06 2023-08-15 Ulthera, Inc. Systems for ultrasound treatment
US11123039B2 (en) 2008-06-06 2021-09-21 Ulthera, Inc. System and method for ultrasound treatment
US10537304B2 (en) 2008-06-06 2020-01-21 Ulthera, Inc. Hand wand for ultrasonic cosmetic treatment and imaging
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9345910B2 (en) 2009-11-24 2016-05-24 Guided Therapy Systems Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US20120165668A1 (en) * 2010-08-02 2012-06-28 Guided Therapy Systems, Llc Systems and methods for treating acute and/or chronic injuries in soft tissue
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US10183182B2 (en) 2010-08-02 2019-01-22 Guided Therapy Systems, Llc Methods and systems for treating plantar fascia
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
US20130310715A1 (en) * 2010-11-30 2013-11-21 Afschin Fatemi Apparatus for the treatment of hyperhidrosis
US9452302B2 (en) 2011-07-10 2016-09-27 Guided Therapy Systems, Llc Systems and methods for accelerating healing of implanted material and/or native tissue
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9802063B2 (en) 2012-09-21 2017-10-31 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US10420960B2 (en) 2013-03-08 2019-09-24 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US11517772B2 (en) 2013-03-08 2022-12-06 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy
US10561862B2 (en) 2013-03-15 2020-02-18 Guided Therapy Systems, Llc Ultrasound treatment device and methods of use
US20140290368A1 (en) * 2013-03-28 2014-10-02 Siemens Energy, Inc. Method and apparatus for remote position tracking of an industrial ultrasound imaging probe
US11123576B2 (en) * 2013-12-23 2021-09-21 Theraclion Sa Device for treatment of a tissue and method of preparation of an image of an image-guided device for treatment of a tissue
US20220001213A1 (en) * 2013-12-23 2022-01-06 Theraclion Sa Device for treatment of a tissue and method of preparation of an image of an image-guided device for treatment of a tissue
US20170001043A1 (en) * 2013-12-23 2017-01-05 Theraclion Sa Device for treatment of a tissue and method of preparation of an image of an image-guided device for treatment of a tissue
US11351401B2 (en) 2014-04-18 2022-06-07 Ulthera, Inc. Band transducer ultrasound therapy
US10603521B2 (en) 2014-04-18 2020-03-31 Ulthera, Inc. Band transducer ultrasound therapy
US20160067526A1 (en) * 2014-09-04 2016-03-10 National Yang-Ming University Method for treating and/or preventing neurodegenerative diseases by using low-intensity pulsed ultrasound (LIPUS)
US11484724B2 (en) 2015-09-30 2022-11-01 Btl Medical Solutions A.S. Methods and devices for tissue treatment using mechanical stimulation and electromagnetic field
US10112119B2 (en) * 2015-11-09 2018-10-30 Disney Enterprises, Inc. Method for modifying local properties of materials
US11224895B2 (en) 2016-01-18 2022-01-18 Ulthera, Inc. Compact ultrasound device having annular ultrasound array peripherally electrically connected to flexible printed circuit board and method of assembly thereof
US11241218B2 (en) 2016-08-16 2022-02-08 Ulthera, Inc. Systems and methods for cosmetic ultrasound treatment of skin
US11944849B2 (en) 2018-02-20 2024-04-02 Ulthera, Inc. Systems and methods for combined cosmetic treatment of cellulite with ultrasound
WO2023063494A1 (en) * 2021-10-15 2023-04-20 Lutronic Corporation Skin treatment apparatus using high-intensity focused ultrasound, control method thereof, and skin treatment method using the same
US11969609B2 (en) 2022-12-05 2024-04-30 Ulthera, Inc. Devices and methods for multi-focus ultrasound therapy

Also Published As

Publication number Publication date
WO2013009785A3 (en) 2013-04-18
US20130012755A1 (en) 2013-01-10
WO2013009785A2 (en) 2013-01-17
US10166411B2 (en) 2019-01-01
KR20140068016A (en) 2014-06-05
US20210322792A1 (en) 2021-10-21
EP2739357B1 (en) 2023-09-06
US9452302B2 (en) 2016-09-27
EP2729215A2 (en) 2014-05-14
US20150080771A1 (en) 2015-03-19
US10226645B2 (en) 2019-03-12
US20160361572A1 (en) 2016-12-15
US10898735B2 (en) 2021-01-26
WO2013009784A2 (en) 2013-01-17
EP2739357A2 (en) 2014-06-11
WO2013009787A2 (en) 2013-01-17
KR102068724B1 (en) 2020-01-21
US8858471B2 (en) 2014-10-14
US20130012842A1 (en) 2013-01-10
KR102068728B1 (en) 2020-01-21
KR20140047705A (en) 2014-04-22
EP2729215A4 (en) 2015-04-15
US20190143148A1 (en) 2019-05-16
EP2739357A4 (en) 2015-04-15
US20130012816A1 (en) 2013-01-10
WO2013009787A3 (en) 2013-04-18
WO2013009784A9 (en) 2013-04-04

Similar Documents

Publication Publication Date Title
EP2739357B1 (en) Systems for improving an outside appearance of skin using ultrasound as an energy source
US20160016015A1 (en) Systems and methods for improving an outside appearance of skin using ultrasound as an energy source
US20190105518A1 (en) Methods and Systems for Treating Plantar Fascia
US20150165243A1 (en) System and Method for Treating Cartilage and Injuries to Joints and Connective Tissue
US11097133B2 (en) Method and system for combined energy therapy profile
US20130096471A1 (en) Systems and methods for treating injuries to joints and connective tissue
US9345910B2 (en) Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US20150174388A1 (en) Methods and Systems for Ultrasound Assisted Delivery of a Medicant to Tissue
DK2152367T3 (en) SYSTEM FOR COMBINED ENERGY THERAPY PROFILE

Legal Events

Date Code Title Description
AS Assignment

Owner name: GUIDED THERAPY SYSTEMS, LLC, ARIZONA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SLAYTON, MICHAEL H.;BARTHE, PETER G.;REEL/FRAME:029221/0868

Effective date: 20121030

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION