US20130085415A1 - Method for producing a membrane ring or test strip ring and ring magazine - Google Patents

Method for producing a membrane ring or test strip ring and ring magazine Download PDF

Info

Publication number
US20130085415A1
US20130085415A1 US13/647,781 US201213647781A US2013085415A1 US 20130085415 A1 US20130085415 A1 US 20130085415A1 US 201213647781 A US201213647781 A US 201213647781A US 2013085415 A1 US2013085415 A1 US 2013085415A1
Authority
US
United States
Prior art keywords
ring
strip
segments
cuts
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/647,781
Inventor
Herbert Harttig
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Roche Diabetes Care Inc
Original Assignee
Roche Diagnostics Operations Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Operations Inc filed Critical Roche Diagnostics Operations Inc
Assigned to ROCHE DIAGNOSTICS GMBH reassignment ROCHE DIAGNOSTICS GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HARTTIG, HERBERT
Assigned to ROCHE DIAGNOSTICS OPERATIONS, INC. reassignment ROCHE DIAGNOSTICS OPERATIONS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROCHE DIAGNOSTICS GMBH
Publication of US20130085415A1 publication Critical patent/US20130085415A1/en
Priority to US14/596,915 priority Critical patent/US9872646B2/en
Assigned to ROCHE DIABETES CARE, INC. reassignment ROCHE DIABETES CARE, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ROCHE DIAGNOSTICS OPERATIONS, INC.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150274Manufacture or production processes or steps for blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15149Arrangement of piercing elements relative to each other
    • A61B5/15151Each piercing element being stocked in a separate isolated compartment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15157Geometry of stocking means or arrangement of piercing elements therein
    • A61B5/15159Piercing elements stocked in or on a disc
    • A61B5/15161Characterized by propelling the piercing element in a radial direction relative to the disc
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5023Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures with a sample being transported to, and subsequently stored in an absorbent for analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15146Devices loaded with multiple lancets simultaneously, e.g. for serial firing without reloading, for example by use of stocking means.
    • A61B5/15148Constructional features of stocking means, e.g. strip, roll, disc, cartridge, belt or tube
    • A61B5/15176Stocking means comprising cap, cover, sheath or protection for aseptic stocking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/04Exchange or ejection of cartridges, containers or reservoirs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0663Whole sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0803Disc shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0809Geometry, shape and general structure rectangular shaped
    • B01L2300/0825Test strips
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the invention concerns a method for producing a membrane ring or test strip ring for a diagnostic test device for examining body fluids.
  • the invention additionally concerns a ring magazine for a diagnostic test device.
  • microfiltration membranes in the form of strips or discs is well known in the field of medical diagnostics.
  • disc-shaped magazines in hand-held devices for blood sugar measurements is, for example, known from WO2009/037192.
  • a disadvantage of directly cutting flat rings of material is the loss of material, which is very pronounced especially in the case of narrow rings.
  • a ring of 49 mm outer diameter and 39 mm inner diameter one only uses 28.8% of a quadratic initial area from which the ring is cut. If rings are cut out of an initial area in the densest possible arrangement, then theoretically 33.2% can be utilized at most, but in practice less.
  • the yield of utilizable area plays an important economic role above all for mass-produced products.
  • the handling of individual membrane areas is time consuming and mechanically demanding and prone to errors.
  • an elongate strip is provided by cutting a flat or tape-shaped starting material is divided into segments by cuts running transversely (i.e. at right angles or diagonally) to the longitudinal direction of the strip.
  • the cuts are made only as far as a residual width that may vary of the strip so that a material bridge remains intact between the segments adjacent to the cuts.
  • the strip is closed by bringing its ends together to form a ring, where the cut edges of each of the cuts running towards the material bridges enclose an acute angle.
  • the ring is inserted into a support structure as a membrane ring or test strip ring for the test device.
  • automation can be simplified by a linear pre-production, for example, from roll to roll.
  • segmentation particularly simplifies a division into single tests.
  • the strip should be cut to a residual width of 0.1 to 1.0 mm that remains as a material bridge in order to ensure sufficient flexibility.
  • a uniform residual width can be selected.
  • the strip is uniformly cut into from one of its longitudinal edges so that the material bridges remain at the other longitudinal edge. If the material bridges lie at the outer edge of the ring that is subsequently formed, the overlap of the segments is at a maximum, whereas in the case of material bridges at the inner edge no overlap occurs.
  • the strip is cut two-sided in each case on one line from both of its longitudinal edges while retaining a material bridge.
  • the cuts can be made with a cutting or punching tool or by laser cutting.
  • the cut with a laser compresses the cut edge and thus stabilizes the material bridge. Hence, a laser cut is preferred but not required.
  • the cut strip when it is twisted lengthwise before ring formation so that the segments are tilted at a continuously increasing angle relative to a tilt axis running through the material bridges. This enables a subsequent ring formation without the cut edges getting caught up in one another.
  • the segments are successively put down on a flat ring surface during the ring formation and in doing so are brought from a tilted position into a mutually overlapping position.
  • the ring can be formed in such a manner that the material bridges span a circle, wherein the ends of the strip make contact on the circle.
  • Another embodiment can be achieved in that the segments are put down overlapping in pairs during ring formation, wherein the overlaps bounded by the cut edges of the cuts run from the inner side of the ring to the respective material bridge.
  • neighbouring segments can be joined to one another in an overlapping manner under the action of heat and/or pressure and in particular welded or glued.
  • the ring is at the same time attached to the support structure, such as a magazine.
  • Another embodiment envisages a starting material that is formed by a foil coated with a reactive test chemistry or by a membrane that is at least partially permeable to the body fluid.
  • a membrane ring can be mounted on a test strip ring with pairwise contact of the double-sided segments. It is also conceivable that individual test fields are applied to the segments of one membrane ring or vice versa.
  • the segments can be provided or arranged as disposables in a ring magazine, and can be separated in chambers each for a single test.
  • Such chambers can be each furnished with one lancing or needle element for collecting body fluid.
  • the closed ring can be inserted into a disc-shaped housing as a support structure so that each of the segments are allocated to one chamber of the housing.
  • a further embodiment provides that a cut is made in the strip at right angles from a longitudinal edge, wherein the cut edges of the cuts formed in this manner in each case run in pairs parallel to a common cut line.
  • a foil coated with a reactive test chemistry for an analyte in the body fluid is used as a starting material.
  • a filter membrane can be used as a starting material for a membrane ring for the selective separation of components of the body fluid.
  • a ring magazine for a diagnostic test device, in particular for examining body fluids, comprising a support structure and a membrane ring or test strip ring inserted therein that has been produced according to the method discussed above, wherein the ring that is inserted as a closed circumferential structure is formed from a strip material segmented by cuts and the segments joined by material bridges form a filter or a detection element for a single test in each case.
  • such a membrane ring or test strip ring has a strip which is subdivided into segments by edge cuts transverse to the longitudinal direction, wherein the cuts run only as far as an optionally varying residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts and wherein the strip is closed to form a ring so that the cut edges of the cuts running towards the material bridges each enclose an acute angle.
  • the support structure of such a ring magazine can have openings or windows to transfer body fluid, wherein the openings are each covered by a segment of the membrane ring or test strip ring.
  • the support structure can have test chambers arranged in a ring shape in a disc-shaped housing, and in one embodiment each test chamber contains a lancing element and each of which is allocated to a segment of the membrane ring or test strip ring for carrying out a single test.
  • the segments can each have a free application site for taking up body fluid.
  • Another aspect concerns a diagnostic test device which is configured for the successive segment by segment processing of a ring magazine as discussed above.
  • the replaceable ring magazine can be mounted so that it can be rotated in such an instrument or can be rotated by a rotary drive in order to provide the individual segments at a defined application site.
  • the invention is further elucidated in the following on the basis of an embodiment example shown schematically in the drawing.
  • FIG. 1 shows a ring magazine for a diagnostic test device with a test strip ring only half of which is shown in a perspective view.
  • FIG. 2 shows a diagrammatic representation of a device for prefabricating a cut test strip.
  • FIGS. 3-5 show various stages of a material-saving formation of the test strip ring from the prefabricated test strip in a broken top-view.
  • the ring magazine 10 shown in FIG. 1 can be inserted as a consumable into a mobile analyzer for blood sugar analytes (not shown).
  • a mobile analyzer for blood sugar analytes (not shown).
  • it comprises a disc-shaped housing 12 as a support structure which contains a plurality of chambers 14 arranged in a circle for receiving lancing elements 16 that can be pushed out radially, wherein an opening 18 is provided on the housing cover over each of the chambers 12 through which blood obtained from a body puncture can be transferred for a photometric glucose detection on a segment 20 of a test strip ring 22 .
  • the test strip ring can be provided with a dry chemistry reagent layer which takes up the applied body fluid and reacts with an analyte contained therein such as glucose.
  • a membrane ring is mounted as a filter for transferring blood between the lancing elements 16 and a test ring.
  • a ring manufactured from a strip material segmented by cuts 24 is provided as further elucidated in the following. This avoids having to directly punch out a flat material ring and the amount of material that has to be discarded during the production process is minimized.
  • FIG. 2 illustrates the pre-production of a cut tape strip 26 .
  • a tape 28 as the starting material is pulled from a supply spool 30 and guided over transport rollers 32 .
  • a laser 34 as a cutting device enables the strip 26 to be cut to length at the strip ends by means of a laser beam 35 and the introduction of the cuts 24 to form the segments 20 in the tape material.
  • the strip 26 in the embodiment example shown is cut into on both sides in each case on a transverse line at right angles to the longitudinal edges so that a central material bridge 38 remains intact between adjacent segments 20 . It is also possible that the strip is cut uniformly at right angles from a longitudinal or side edge so that the material bridges are then located at the opposite ends of the other longitudinal edge.
  • the cuts 24 are advantageously at the same distance from one another when viewed in the longitudinal direction of the strip 26 in order to obtain congruent segments 20 .
  • a tape material of 90 ⁇ m thickness can be cut into a strip having a length of 140 mm and a width of 5 mm, while the cuts are at a longitudinal distance of 2.8 mm from one another and run transversely by 2.4 mm in each case from both longitudinal edges so that a material bridge of 0.2 mm remains.
  • the cut strip 26 is twisted in its longitudinal direction before ring formation so that the segments 20 are tilted and rotated at a continuously increasing angle relative to a longitudinal axis running through the material bridges 38 and correspondingly appear to be of different widths in the top-view. This measure enables a collision-free ring formation with mutual overlap of the segments 20 .
  • FIG. 5 illustrates the formation of the ring 22 from the prefabricated strip 26 according to FIGS. 3 and 4 .
  • the segments 20 are successively placed down on a flat ring surface and expediently directly on the housing cover.
  • the tilted position of the segments 20 is returned into a mutual overlap position.
  • the overlapping areas 42 bordered by the opposing cut edges 40 of the cuts 24 then run from the inner side of the ring 44 to the respective material bridge 38 while the radial outer cut edges 40 also diverge starting from the respective material bridge 38 under an acute angle ⁇ .
  • the material bridges span a circle 46 where the two ends 36 of the strip 26 make contact on the line of the circle.
  • the segments 20 are expediently welded together in the overlapping areas 42 by the action of heat and pressure for example by means of an appropriately structured heated stamp or by means of a transparent stamp and laser light. In this process it is possible at the same time to achieve an integral attachment on the housing cover.

Abstract

A method for producing a membrane ring or test strip ring for a diagnostic test device includes an elongate strip that is divided into segments by cuts running transversely to the longitudinal direction of the strip, where the cuts are made only as far as a residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts (24). The strip is closed by bringing its ends together to form a ring where the cut edges of the cuts running towards the material bridges each enclose an acute angle (α). The ring is inserted into a support structure as a membrane ring or test strip ring for the test device.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application is a continuation of International Patent Application No. PCT/EP2011/057193 filed on May 5, 2011, which claims priority to European Application No. 10162064.9 filed on May 5, 2010.
  • FIELD OF THE INVENTION
  • The invention concerns a method for producing a membrane ring or test strip ring for a diagnostic test device for examining body fluids. The invention additionally concerns a ring magazine for a diagnostic test device.
  • BACKGROUND
  • The use of microfiltration membranes in the form of strips or discs is well known in the field of medical diagnostics. Also, the use of disc-shaped magazines in hand-held devices for blood sugar measurements is, for example, known from WO2009/037192. A disadvantage of directly cutting flat rings of material is the loss of material, which is very pronounced especially in the case of narrow rings. Hence, in the case of a ring of 49 mm outer diameter and 39 mm inner diameter, one only uses 28.8% of a quadratic initial area from which the ring is cut. If rings are cut out of an initial area in the densest possible arrangement, then theoretically 33.2% can be utilized at most, but in practice less. With the high costs of membranes, the yield of utilizable area plays an important economic role above all for mass-produced products. Moreover, the handling of individual membrane areas is time consuming and mechanically demanding and prone to errors.
  • Therefore further advancements are required in this technological area to further improve the processes and devices known in the prior art and to optimize the use of material and handling of consumables in the field of diagnostic applications.
  • SUMMARY
  • There is disclosed herein providing an analytical material segment in each case for a plurality of single tests in a circular arrangement especially as a magazine. Accordingly it is proposed that an elongate strip is provided by cutting a flat or tape-shaped starting material is divided into segments by cuts running transversely (i.e. at right angles or diagonally) to the longitudinal direction of the strip. The cuts are made only as far as a residual width that may vary of the strip so that a material bridge remains intact between the segments adjacent to the cuts. The strip is closed by bringing its ends together to form a ring, where the cut edges of each of the cuts running towards the material bridges enclose an acute angle. The ring is inserted into a support structure as a membrane ring or test strip ring for the test device. In this manner it is possible to avoid directly punching out a material ring and to minimize the amount of material that has to be discarded during the production process. In addition, automation can be simplified by a linear pre-production, for example, from roll to roll. At the same time, the segmentation particularly simplifies a division into single tests.
  • According to one embodiment the strip should be cut to a residual width of 0.1 to 1.0 mm that remains as a material bridge in order to ensure sufficient flexibility. A uniform residual width can be selected.
  • Another embodiment provides that the strip is uniformly cut into from one of its longitudinal edges so that the material bridges remain at the other longitudinal edge. If the material bridges lie at the outer edge of the ring that is subsequently formed, the overlap of the segments is at a maximum, whereas in the case of material bridges at the inner edge no overlap occurs.
  • According to a further embodiment, the strip is cut two-sided in each case on one line from both of its longitudinal edges while retaining a material bridge.
  • The cuts can be made with a cutting or punching tool or by laser cutting. The cut with a laser compresses the cut edge and thus stabilizes the material bridge. Hence, a laser cut is preferred but not required.
  • As far as the manufacturing process is concerned, in one embodiment, when the cut strip, it is twisted lengthwise before ring formation so that the segments are tilted at a continuously increasing angle relative to a tilt axis running through the material bridges. This enables a subsequent ring formation without the cut edges getting caught up in one another.
  • In another embodiment, the segments are successively put down on a flat ring surface during the ring formation and in doing so are brought from a tilted position into a mutually overlapping position. In the aforementioned step, the ring can be formed in such a manner that the material bridges span a circle, wherein the ends of the strip make contact on the circle.
  • Another embodiment can be achieved in that the segments are put down overlapping in pairs during ring formation, wherein the overlaps bounded by the cut edges of the cuts run from the inner side of the ring to the respective material bridge.
  • In order to stabilize the ring that has formed, neighbouring segments can be joined to one another in an overlapping manner under the action of heat and/or pressure and in particular welded or glued. In one embodiment, when mutually joining the segments, the ring is at the same time attached to the support structure, such as a magazine.
  • Another embodiment envisages a starting material that is formed by a foil coated with a reactive test chemistry or by a membrane that is at least partially permeable to the body fluid. A membrane ring can be mounted on a test strip ring with pairwise contact of the double-sided segments. It is also conceivable that individual test fields are applied to the segments of one membrane ring or vice versa.
  • In the context of diagnostic applications, the segments can be provided or arranged as disposables in a ring magazine, and can be separated in chambers each for a single test. Such chambers can be each furnished with one lancing or needle element for collecting body fluid.
  • The closed ring can be inserted into a disc-shaped housing as a support structure so that each of the segments are allocated to one chamber of the housing.
  • A further embodiment provides that a cut is made in the strip at right angles from a longitudinal edge, wherein the cut edges of the cuts formed in this manner in each case run in pairs parallel to a common cut line.
  • In order to realize a test strip ring, a foil coated with a reactive test chemistry for an analyte in the body fluid is used as a starting material. A filter membrane can be used as a starting material for a membrane ring for the selective separation of components of the body fluid.
  • According to another aspect, a ring magazine is disclosed for a diagnostic test device, in particular for examining body fluids, comprising a support structure and a membrane ring or test strip ring inserted therein that has been produced according to the method discussed above, wherein the ring that is inserted as a closed circumferential structure is formed from a strip material segmented by cuts and the segments joined by material bridges form a filter or a detection element for a single test in each case. Thus, such a membrane ring or test strip ring has a strip which is subdivided into segments by edge cuts transverse to the longitudinal direction, wherein the cuts run only as far as an optionally varying residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts and wherein the strip is closed to form a ring so that the cut edges of the cuts running towards the material bridges each enclose an acute angle.
  • The support structure of such a ring magazine can have openings or windows to transfer body fluid, wherein the openings are each covered by a segment of the membrane ring or test strip ring. The support structure can have test chambers arranged in a ring shape in a disc-shaped housing, and in one embodiment each test chamber contains a lancing element and each of which is allocated to a segment of the membrane ring or test strip ring for carrying out a single test. In this connection the segments can each have a free application site for taking up body fluid.
  • Another aspect concerns a diagnostic test device which is configured for the successive segment by segment processing of a ring magazine as discussed above. In particular the replaceable ring magazine can be mounted so that it can be rotated in such an instrument or can be rotated by a rotary drive in order to provide the individual segments at a defined application site.
  • BRIEF DESCRIPTION OF THE FIGURES
  • The invention is further elucidated in the following on the basis of an embodiment example shown schematically in the drawing.
  • FIG. 1 shows a ring magazine for a diagnostic test device with a test strip ring only half of which is shown in a perspective view.
  • FIG. 2 shows a diagrammatic representation of a device for prefabricating a cut test strip.
  • FIGS. 3-5 show various stages of a material-saving formation of the test strip ring from the prefabricated test strip in a broken top-view.
  • DETAILED DESCRIPTION
  • For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended, any alterations and further modifications in the illustrated embodiments, and any further applications of the principles of the invention as illustrated therein as would normally occur to one skilled in the art to which the invention relates are contemplated herein.
  • The ring magazine 10 shown in FIG. 1 can be inserted as a consumable into a mobile analyzer for blood sugar analytes (not shown). For this purpose it comprises a disc-shaped housing 12 as a support structure which contains a plurality of chambers 14 arranged in a circle for receiving lancing elements 16 that can be pushed out radially, wherein an opening 18 is provided on the housing cover over each of the chambers 12 through which blood obtained from a body puncture can be transferred for a photometric glucose detection on a segment 20 of a test strip ring 22. The test strip ring can be provided with a dry chemistry reagent layer which takes up the applied body fluid and reacts with an analyte contained therein such as glucose. It is also conceivable that a membrane ring is mounted as a filter for transferring blood between the lancing elements 16 and a test ring.
  • In order to produce such a test strip or membrane ring 22 in a manner that saves as much material as possible, a ring manufactured from a strip material segmented by cuts 24 is provided as further elucidated in the following. This avoids having to directly punch out a flat material ring and the amount of material that has to be discarded during the production process is minimized.
  • FIG. 2 illustrates the pre-production of a cut tape strip 26. In this process a tape 28 as the starting material is pulled from a supply spool 30 and guided over transport rollers 32. A laser 34 as a cutting device enables the strip 26 to be cut to length at the strip ends by means of a laser beam 35 and the introduction of the cuts 24 to form the segments 20 in the tape material. Alternatively it is also conceivable to firstly cut strips from a starting material having a large area and to then provide them with transverse cuts.
  • As shown in FIG. 3 the strip 26 in the embodiment example shown is cut into on both sides in each case on a transverse line at right angles to the longitudinal edges so that a central material bridge 38 remains intact between adjacent segments 20. It is also possible that the strip is cut uniformly at right angles from a longitudinal or side edge so that the material bridges are then located at the opposite ends of the other longitudinal edge. The cuts 24 are advantageously at the same distance from one another when viewed in the longitudinal direction of the strip 26 in order to obtain congruent segments 20.
  • For example, a tape material of 90 μm thickness can be cut into a strip having a length of 140 mm and a width of 5 mm, while the cuts are at a longitudinal distance of 2.8 mm from one another and run transversely by 2.4 mm in each case from both longitudinal edges so that a material bridge of 0.2 mm remains.
  • As shown in FIG. 4 the cut strip 26 is twisted in its longitudinal direction before ring formation so that the segments 20 are tilted and rotated at a continuously increasing angle relative to a longitudinal axis running through the material bridges 38 and correspondingly appear to be of different widths in the top-view. This measure enables a collision-free ring formation with mutual overlap of the segments 20.
  • FIG. 5 illustrates the formation of the ring 22 from the prefabricated strip 26 according to FIGS. 3 and 4. In this process the segments 20 are successively placed down on a flat ring surface and expediently directly on the housing cover. As they are placed down, the tilted position of the segments 20 is returned into a mutual overlap position. The overlapping areas 42 bordered by the opposing cut edges 40 of the cuts 24 then run from the inner side of the ring 44 to the respective material bridge 38 while the radial outer cut edges 40 also diverge starting from the respective material bridge 38 under an acute angle α. In the ring 26 formed in this manner the material bridges span a circle 46 where the two ends 36 of the strip 26 make contact on the line of the circle.
  • The segments 20 are expediently welded together in the overlapping areas 42 by the action of heat and pressure for example by means of an appropriately structured heated stamp or by means of a transparent stamp and laser light. In this process it is possible at the same time to achieve an integral attachment on the housing cover.
  • While the invention has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain exemplary embodiments have been shown and described and that all changes and modifications that come within the spirit of the inventions are desired to be protected. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.

Claims (27)

What is claimed is:
1. A method for producing a membrane ring or test strip ring for a diagnostic test device for examining body fluids, comprising:
a) cutting an elongate strip of into segments, such that the segments are divided by cuts running transversely to a longitudinal direction of the strip, wherein the cuts are made only as far as a residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts;
b) closing the strip by bringing its ends together to form a ring, wherein cut edges of each of the cuts running towards the material bridges enclose an acute angle; and
c) inserting the ring into a support structure as the membrane ring or test strip ring for the test device, wherein the ring is inserted into a disc-shaped housing of the support structure that includes a plurality of chambers so that each of the segments is allocated to one of the chambers of the housing.
2. The method according to claim 1, wherein the strip is cut to a residual width of 0.1 to 1.0 mm that remains as the material bridge.
3. The method according to claim 1, wherein the strip is uniformly cut into from one of a longitudinal edge of the strip such that the material bridges remain at an opposite longitudinal edge of the strip.
4. The method according to claim 1, wherein the strip is cut two-sided in each case on one line from both longitudinal edges of the strip while retaining the material bridge.
5. The method according to claim 1, wherein the cuts are made using a cutting or punching tool or by laser cutting.
6. The method according to claim 1, further comprising twisting the cut strip lengthwise before ring formation so that the segments are tilted at a continuously increasing angle relative to a tilt axis running through the material bridges.
7. The method according to claim 6, further comprising successively placing the segments down on a flat ring surface to bring the segments from a tilted position into a mutually overlapping position.
8. The method according to claim 1, wherein the ring is configured so that the material bridges span a circle wherein the ends of the strip make contact on the circle.
9. The method according to claim 1, wherein adjacent ones of the segments are placed in an overlap during ring formation, wherein the overlaps bounded by the cut edges of the cuts run from the inner side of the ring to the respective material bridge.
10. The method according to claim 9, wherein adjacent segments are joined to one another at the overlap.
11. The method according to claim 10, wherein the adjacent segments are joined at the overlap under the action of heat.
12. The method according to claim 11, wherein the adjacent segments are welded at the overlap.
13. The method according to claim 10, wherein the adjacent segments are joined at the overlap under the action of pressure.
14. The method according to claim 13, wherein the adjacent segments are glued at the overlap.
15. The method according to claim 10, wherein the segments are mutually joined while the ring is at the same time attached to the support structure.
16. The method according to claim 1, wherein the starting material is formed by one of a foil coated with a reactive test chemistry and a membrane that is at least partially permeable to the body fluid.
17. The method according to claim 1, wherein the segments are arranged as disposables in a ring magazine and each segment is configured to provide a single test for examining the body fluid.
18. The method according to claim 1, wherein the cuts are made in the strip at right angles from a longitudinal edge of the elongate strip, wherein the cut edges of the cuts run in pairs parallel to a common cut line.
19. The method according to claim 1, wherein the starting material of the elongate strip is one of a membrane designed to filter body fluid and a foil coated with a reactive test chemistry for an analyte in the body fluid.
20. The method according to claim 1, wherein the elongate strip is provided from a flat starting material.
21. The method according to claim 1, wherein the elongate strip is provided from a tape-shaped starting material.
22. A ring magazine for a diagnostic test device for examining body fluids, comprising: a support structure and a membrane ring or test strip ring inserted therein, wherein the membrane ring or test strip ring includes an elongate strip of starting material cut into segments divided by cuts running transversely to a longitudinal direction of the strip, wherein the cuts are made only as far as a residual width of the strip so that a material bridge remains intact between the segments adjacent to the cuts and the strip is closed by bringing opposite ends of the strip together to form a ring, wherein cut edges of each of the cuts running towards the material bridges enclose an acute angle, and wherein the support structure includes a plurality of test chambers and each of the segments is allocated to one of the chambers of the support structure to provide a filter or a detection element configured for a single test for examining the body fluid.
23. The ring magazine according to claim 22, wherein the support structure has a plurality of openings for the transfer of body fluid and the openings are each covered by a respective one of the segments of the membrane ring or test strip ring.
24. The ring magazine according to claim 22, wherein the support structure has a disc-shaped housing including the test chambers arranged in a ring shape.
25. The ring magazine according to claim 22, wherein the segments each have an application site for taking up body fluid.
26. The ring magazine according to claim 22, wherein the membrane ring is placed as a filter in front of a ring-shaped detection element.
27. The ring magazine according to claim 22, wherein the support structure is configured for insertion into a housing of a diagnostic test device.
US13/647,781 2010-05-05 2012-10-09 Method for producing a membrane ring or test strip ring and ring magazine Abandoned US20130085415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/596,915 US9872646B2 (en) 2010-05-05 2015-01-14 Method for producing a membrane ring or test strip ring and ring magazine

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10162064A EP2384694A1 (en) 2010-05-05 2010-05-05 Method for producing a membrane ring or test strip ring
EP10162064.9 2010-05-05
PCT/EP2011/057193 WO2011138388A1 (en) 2010-05-05 2011-05-05 Method for producing a membrane ring or test strip ring and ring magazine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/057193 Continuation WO2011138388A1 (en) 2010-05-05 2011-05-05 Method for producing a membrane ring or test strip ring and ring magazine

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/596,915 Continuation US9872646B2 (en) 2010-05-05 2015-01-14 Method for producing a membrane ring or test strip ring and ring magazine

Publications (1)

Publication Number Publication Date
US20130085415A1 true US20130085415A1 (en) 2013-04-04

Family

ID=43511267

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/647,781 Abandoned US20130085415A1 (en) 2010-05-05 2012-10-09 Method for producing a membrane ring or test strip ring and ring magazine
US14/596,915 Active US9872646B2 (en) 2010-05-05 2015-01-14 Method for producing a membrane ring or test strip ring and ring magazine

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/596,915 Active US9872646B2 (en) 2010-05-05 2015-01-14 Method for producing a membrane ring or test strip ring and ring magazine

Country Status (9)

Country Link
US (2) US20130085415A1 (en)
EP (2) EP2384694A1 (en)
JP (1) JP5937575B2 (en)
CN (1) CN103619236B (en)
CA (1) CA2797737C (en)
ES (1) ES2601245T3 (en)
HK (1) HK1190595A1 (en)
PL (1) PL2566382T3 (en)
WO (1) WO2011138388A1 (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2046988A (en) * 1935-07-18 1936-07-07 Gen Electric Nonmetallic gear and method of making the same
SU776630A2 (en) * 1978-06-02 1980-11-07 Предприятие П/Я А-1097 Heat-mass-exchanger packing
US4260047A (en) * 1979-12-03 1981-04-07 General Motors Corporation Friction disc and method of making same
US4726455A (en) * 1985-01-11 1988-02-23 Ferodo Limited Clutch facings
US4878282A (en) * 1987-09-04 1989-11-07 Borg-Warner Automotive Gmbh Method for the production of friction plates, synchronizing blocker rings or similar structures
US5120296A (en) * 1986-07-18 1992-06-09 Nippondenso Co., Ltd. Method and apparatus for forming filter element
US5800779A (en) * 1995-11-20 1998-09-01 Johnson; Theodore D. Diagnostic sampling device and system for analyzing body fluids
US5897737A (en) * 1997-05-07 1999-04-27 Borg-Warner Automotive, Inc. Method for making a core plate having multiple friction material segments
US20040092995A1 (en) * 2002-04-19 2004-05-13 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling with improved sensing
US20040230216A1 (en) * 2002-02-21 2004-11-18 Levaughn Richard W. Blood sampling device
US20050072649A1 (en) * 2003-10-02 2005-04-07 Euroflamm Select Inc. Friction facing material for use in a friction environment
US20050071979A1 (en) * 2003-10-02 2005-04-07 Euroflamm Select Inc. Friction facing method for use in a friction environment
US20070199794A1 (en) * 2005-12-20 2007-08-30 Tomoyuki Miyazaki Friction plate and wet-type multi-plate clutch having such friction plate
US20090264720A1 (en) * 2008-04-17 2009-10-22 The Cooper Health System Wearable Automated Blood Sampling and Monitoring System
US20100092338A1 (en) * 2007-05-29 2010-04-15 Hans List Test element magazine
US7771367B2 (en) * 2006-07-18 2010-08-10 Roche Diagnostics Operations, Inc. Lancet wheel
US7883494B2 (en) * 2004-10-29 2011-02-08 Smith & Nephew Plc Simultaneous aspirate and irrigate and scaffold
US8196500B2 (en) * 2007-07-28 2012-06-12 Mansfield Board Machinery Limited Stitch flap cutting block

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2022847B3 (en) 1987-09-04 1991-12-16 Borg-Warner Automotive Gmbh FRICTION SHEET
AT401806B (en) * 1995-07-25 1996-12-27 Miba Frictec Gmbh METHOD FOR PRODUCING A PLANE FRICTION RING
US7226461B2 (en) * 2002-04-19 2007-06-05 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with sterility barrier release
CN100361623C (en) * 2002-11-01 2008-01-16 佩利坎技术公司 Method and apparatus for body fluid sampling
US7909776B2 (en) * 2004-04-30 2011-03-22 Roche Diagnostics Operations, Inc. Lancets for bodily fluid sampling supplied on a tape
US8934955B2 (en) * 2005-01-18 2015-01-13 Stat Medical Devices, Inc. Cartridge with lancets and test strips and testing device using the cartridge
US7479118B2 (en) * 2005-02-07 2009-01-20 Roche Diagnostics Operations, Inc. Lancet protective cap
ATE534329T1 (en) * 2007-09-17 2011-12-15 Hoffmann La Roche DISPOSABLE DEVICE FOR ANALYZING BODY FLUID
EP2103934B1 (en) * 2008-03-20 2019-04-17 F. Hoffmann-La Roche AG Method for production of a diagnostic tape
JP2009225936A (en) * 2008-03-21 2009-10-08 Nitto Denko Corp Bodily fluid collecting circuit board, method of manufacturing the same, method of using the same, and biosensor

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2046988A (en) * 1935-07-18 1936-07-07 Gen Electric Nonmetallic gear and method of making the same
SU776630A2 (en) * 1978-06-02 1980-11-07 Предприятие П/Я А-1097 Heat-mass-exchanger packing
US4260047A (en) * 1979-12-03 1981-04-07 General Motors Corporation Friction disc and method of making same
US4726455A (en) * 1985-01-11 1988-02-23 Ferodo Limited Clutch facings
US5120296A (en) * 1986-07-18 1992-06-09 Nippondenso Co., Ltd. Method and apparatus for forming filter element
US4878282A (en) * 1987-09-04 1989-11-07 Borg-Warner Automotive Gmbh Method for the production of friction plates, synchronizing blocker rings or similar structures
US5800779A (en) * 1995-11-20 1998-09-01 Johnson; Theodore D. Diagnostic sampling device and system for analyzing body fluids
US5897737A (en) * 1997-05-07 1999-04-27 Borg-Warner Automotive, Inc. Method for making a core plate having multiple friction material segments
US20070088377A1 (en) * 2002-02-21 2007-04-19 Facet Technologies, Llc Blood sampling device
US20040230216A1 (en) * 2002-02-21 2004-11-18 Levaughn Richard W. Blood sampling device
US20040092995A1 (en) * 2002-04-19 2004-05-13 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling with improved sensing
US20050072649A1 (en) * 2003-10-02 2005-04-07 Euroflamm Select Inc. Friction facing material for use in a friction environment
US20050071979A1 (en) * 2003-10-02 2005-04-07 Euroflamm Select Inc. Friction facing method for use in a friction environment
US7883494B2 (en) * 2004-10-29 2011-02-08 Smith & Nephew Plc Simultaneous aspirate and irrigate and scaffold
US20070199794A1 (en) * 2005-12-20 2007-08-30 Tomoyuki Miyazaki Friction plate and wet-type multi-plate clutch having such friction plate
US7771367B2 (en) * 2006-07-18 2010-08-10 Roche Diagnostics Operations, Inc. Lancet wheel
US20100092338A1 (en) * 2007-05-29 2010-04-15 Hans List Test element magazine
US8196500B2 (en) * 2007-07-28 2012-06-12 Mansfield Board Machinery Limited Stitch flap cutting block
US20090264720A1 (en) * 2008-04-17 2009-10-22 The Cooper Health System Wearable Automated Blood Sampling and Monitoring System

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Machine Translation of Abstract of SU 776630 B *

Also Published As

Publication number Publication date
ES2601245T3 (en) 2017-02-14
JP5937575B2 (en) 2016-06-22
CN103619236B (en) 2016-05-04
HK1190595A1 (en) 2014-07-11
CA2797737A1 (en) 2011-11-10
EP2384694A1 (en) 2011-11-09
EP2566382B1 (en) 2016-09-14
CA2797737C (en) 2017-04-18
US20150141870A1 (en) 2015-05-21
EP2566382A1 (en) 2013-03-13
CN103619236A (en) 2014-03-05
JP2013528421A (en) 2013-07-11
WO2011138388A1 (en) 2011-11-10
PL2566382T3 (en) 2017-03-31
US9872646B2 (en) 2018-01-23

Similar Documents

Publication Publication Date Title
US7638023B2 (en) Capillary biosensor analysis system
AU553772B2 (en) Cuvette system for automated chemical analyzer
JP4713521B2 (en) Multi-layer analytical element manufacturing method
JP5223022B2 (en) Biosensor with laser sealed capillary space and manufacturing method
US10073091B2 (en) Lateral flow assay device
US20100023045A1 (en) Lancet, Lancet Supply Ribbon, and Puncturing Device for Generating a Puncturing Wound
US20080003141A1 (en) Sample Analyzing Tool
JP4728072B2 (en) Electrophoresis device and apparatus component
CN101014851A (en) Electrochemical cell and method of making an electrochemical cell
CA2955804A1 (en) Point of care analytical processing system
KR20130023287A (en) Methods for manufacturing a dual biosensor test strip
CN102325497A (en) Test element magazine having covered test fields
US20150027639A1 (en) Devices for producing a tape product having diagnostic aids
US9872646B2 (en) Method for producing a membrane ring or test strip ring and ring magazine
FI123297B (en) Lateral flow test strip and its manufacturing method
KR101750608B1 (en) Process and production device for the production of at least one analytical device
US20220273209A1 (en) Devices and methods for sample collection
JP2009072083A (en) Cell separator
WO2024058786A1 (en) Method of manufacturing a stacked material for a point-of-care testing system
EP4153997A1 (en) Binding assay with no wash steps or moving parts using magnetic beads
JPH0266455A (en) Production of means for inspecting information on living body
JPS5822978B2 (en) Easy-to-use tape

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROCHE DIAGNOSTICS OPERATIONS, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS GMBH;REEL/FRAME:029353/0430

Effective date: 20121024

Owner name: ROCHE DIAGNOSTICS GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HARTTIG, HERBERT;REEL/FRAME:029353/0387

Effective date: 20121018

AS Assignment

Owner name: ROCHE DIABETES CARE, INC., INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ROCHE DIAGNOSTICS OPERATIONS, INC.;REEL/FRAME:036008/0670

Effective date: 20150302

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION