US20130137992A1 - Pain-relief device - Google Patents

Pain-relief device Download PDF

Info

Publication number
US20130137992A1
US20130137992A1 US13/750,477 US201313750477A US2013137992A1 US 20130137992 A1 US20130137992 A1 US 20130137992A1 US 201313750477 A US201313750477 A US 201313750477A US 2013137992 A1 US2013137992 A1 US 2013137992A1
Authority
US
United States
Prior art keywords
laser light
pain
relief device
light source
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/750,477
Inventor
Akitsugu Yamazaki
Iwao Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ya Man Ltd
Original Assignee
Ya Man Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ya Man Ltd filed Critical Ya Man Ltd
Assigned to YA-MAN LTD. reassignment YA-MAN LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YAMAZAKI, AKITSUGU, YAMAZAKI, IWAO
Assigned to YA-MAN LTD. reassignment YA-MAN LTD. CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 029696 FRAME 0314. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT ADDRESS OF THE ASSIGNEE IS 4-4, FURUISHIBA 1-CHOME, KOTO-KU TOKYO, JAPAN 1350045. Assignors: YAMAZAKI, AKITSUGU, YAMAZAKI, IWAO
Publication of US20130137992A1 publication Critical patent/US20130137992A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0619Acupuncture
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/06Devices for heating or cooling such points within cell-life limits
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/01Constructive details
    • A61H2201/0119Support for the device
    • A61H2201/0153Support for the device hand-held
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/10Characteristics of apparatus not provided for in the preceding codes with further special therapeutic means, e.g. electrotherapy, magneto therapy or radiation therapy, chromo therapy, infrared or ultraviolet therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5025Activation means
    • A61H2201/5028Contact activation, i.e. activated at contact with a surface of the user to be treated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5043Displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0635Radiation therapy using light characterised by the body area to be irradiated
    • A61N2005/0643Applicators, probes irradiating specific body areas in close proximity
    • A61N2005/0644Handheld applicators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N2005/0658Radiation therapy using light characterised by the wavelength of light used
    • A61N2005/0659Radiation therapy using light characterised by the wavelength of light used infrared
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light

Definitions

  • the present invention relates to a pain-relief device which applies a laser light to relieve pain in painful areas.
  • FIG. 9 is a block diagram of a conventional pain-relief device which is disclosed in Patent Document 1.
  • a driving circuit is denoted by 200
  • a power supply unit is denoted by 201
  • a consecution/pulse drive selecting switch are denoted by 210 and 220
  • a function generator is denoted by 230
  • amplifiers are denoted by 231 and 233
  • constant current supply units are denoted by 240 and 250
  • a red semiconductor laser is denoted by 260
  • a green semiconductor laser is denoted by 270
  • light fiber acupunctures are denoted by 280 a and 280 b
  • a painful area or a meridian is denoted by 290 .
  • the light fiber acupunctures 280 a and 280 b have been developed to produce both a metal acupuncture function of Eastern acupuncture and a laser light irradiation.
  • a thin metallurgical coating is applied to a clad of the light fiber whose jacket or trunking has been removed and a surface fabrication is applied at a predetermined angle to its end.
  • the consecution mode or the pulse mode is selected at the consecution/pulse drive selecting switches 210 and 220 by way of control signals 212 and 222 .
  • the red semiconductor laser 260 or the green semiconductor laser 270 produces the consecutive oscillation or the pulse oscillation to emit laser light by the functions of the function generator 230 , the amplifiers 231 and 233 , and the constant current supply units 240 and 250 .
  • the laser light emitted by the red semiconductor laser 260 or the green semiconductor laser 270 irradiates the painful area or the meridian 290 through the light fiber acupunctures 280 a and 280 b.
  • An existing pain-relief device requires expert knowledge of Eastern acupuncture of a user, such as meridians and acupuncture points. Accordingly, there has been a problem that it is difficult for ordinary people to use it to relieve pain in painful areas.
  • Non-invasive pain-relief device such as the one disclosed in Japanese Patent Application Laid-Open No. 2004-329474 (Patent Document 2) as well as the invasive pain-relief device.
  • Laser acupuncture which contributes to effective treatment by collecting laser light into acupuncture points to apply a stimulus by means of a light collecting mechanism or the like also requires expert knowledge of acupuncture of a user, making it difficult for ordinary people to use it.
  • the present invention allows one to use the pain-relief device without expert knowledge of acupuncture so that ordinary people (i.e. an acupuncture inexpert) can use it to relieve pain in painful areas without difficulty.
  • Patent Document 1
  • Patent Document 2
  • the pain-relief device includes some mechanisms as follows: the device comprising a body and a head extending from the body; a laser light source mechanism located on the head which emits heat-producing laser light; an irradiation opening which irradiates the laser light emitted from the laser light source mechanism to a predetermined part; an image-taking mechanism located on the head which takes a picture of the area being irradiated with the laser light irradiated from the irradiation opening; an image display mechanism which displays the image of the area taken by said image-taking mechanism; and a planoconcave lens attached to the head and extending over said irradiation opening.
  • the area which has been imaged by said image-taking mechanism is irradiated with said laser light diffused by said planoconcave lens.
  • the pain-relief device may further include a control mechanism which controls the laser light source mechanism based on control-relevant information of the laser light source mechanism, and a control information presenting mechanism which presents the control-relevant information to the user.
  • the pain-relief device may further include an emission request mechanism which is utilized for the laser light emission from the laser light source mechanism.
  • the laser light source mechanism emits the laser light when the emission request mechanism is used.
  • the image-taking mechanism may be further provided with an illuminating mechanism which illuminates the target areas of the laser light irradiation.
  • the pain-relief device further includes a touch sensor mechanism located between the irradiation opening and the edge of the head in a protruding manner to sense a contact with the target area of the laser light irradiation and a control mechanism which controls the laser light source mechanism to emit the laser light only while the touch sensor mechanism is contacting the target area of the laser light irradiation.
  • the pain-relief device further includes a light diffusion mechanism which has a negative refracting power and irradiates the painful areas with the laser light emitted from the laser light source mechanism.
  • the laser light source mechanism may be a semiconductor laser.
  • the light source mechanism may emit the laser light to the painful area within a range of 0.4 W/cm 2 or less in power.
  • the light source mechanism may emit the laser light to the painful area within a range from 600 nm to 1000 nm in wavelength.
  • the present invention is provided with the laser light source mechanism, it becomes possible to relieve the pain of a bruise, sprain, shoulder stiffness, backache or the like by irradiating the painful area with the heat-producing laser light so as to warm the painful area and to promote blood circulation.
  • the target area of the laser light irradiation imaged by the image-taking mechanism is to be irradiated with the laser light, making it possible to roughly narrow the area being laser-irradiated by checking anomalies within the painful area such as reddening, roughness, and/or dryness of skin or the like. Accordingly, it becomes possible for ordinary people without expert knowledge of acupuncture to provide a treatment to relieve pain without difficulty.
  • planoconcave lens attached to the head and extending over the irradiation opening, it becomes possible to diffuse the laser light widely to irradiate the painful area and the surrounding area, resulting in the improvement in efficiency of the irradiation. It also becomes possible to irradiate the painful area with the uniform laser light, producing the reduction of the unevenness of the irradiation. Moreover, it also becomes possible to irradiate the painful area with the laser light having a mild laser light power.
  • the present invention may further include a control mechanism which controls the laser light source mechanism based on control-relevant information of the laser light source mechanism and a control information presenting mechanism which presents the control-relevant information to the user, the user can get a handle on the operation i.e. the improvement of the operability of the pain-relief device can be achieved, in addition to the efficacy achieved without the control mechanism.
  • the present invention may further include an emission request mechanism which is utilized for the laser light emission from the laser light source mechanism and the laser light source mechanism emits the laser light when the emission request mechanism is used, it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device. Since the laser light is not emitted unless the emission request mechanism is used, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • the image-taking mechanism of the present invention may further include an illuminating mechanism which illuminates the target area of the laser light irradiation, it becomes possible to reliably take a picture in bright light even when there is insufficient light volume, resulting in the capability of checking anomalies within the target area of the laser light irradiation.
  • the present invention may further include a touch sensor mechanism installed between irradiation opening and the edge of the head in a protruding manner to sense a contact with the target area of the laser light irradiation and the control mechanism which controls the laser light source mechanism to emit the laser light only while the touch sensor mechanism is contacting the target area of the laser light irradiation. Accordingly, since the laser light is not emitted from the laser light source mechanism when the irradiation opening is not near the target of the area of the laser light irradiation i.e.
  • the laser light source mechanism of the present invention may include a semiconductor laser which is compact, lightweight, longer lasting and low priced, the longer lasting pain-relief device which is reduced in size, weight and cost as a whole can be achieved.
  • the laser light source mechanism of the present invention may be characterized in that the laser light emitted to the painful area has a power within a range of 0.4 W/cm 2 or less, the painful area is irradiated with the laser light within said range of power, making it possible to warm the painful area and to promote blood circulation so as to relieve pain.
  • the laser light source mechanism of the present invention may be characterized in that the laser light emitted to the painful area is ranged from 600 nm to 1000 nm in wavelength, the painful area is irradiated with the laser light within said range of wavelength, making it possible to warm the painful area and to promote blood circulation so as to relieve pain.
  • FIG. 1 is an appearance diagram of the pain-relief device of the present invention.
  • FIG. 2 is a configuration block diagram of the pain-relief device according to a first embodiment of the invention.
  • FIG. 3 is a flow chart which illustrates the operation of the pain-relief device according to the first embodiment of the invention.
  • FIG. 4 is a configuration block diagram of the pain-relief device according to a second embodiment of the invention.
  • FIG. 5 is a flow chart which illustrates the operation of the pain-relief device according to the second embodiment of the invention.
  • FIG. 6 is a configuration block diagram of the pain-relief device according to a third embodiment of the invention.
  • FIG. 7 is a flow chart which illustrates the operation of the pain-relief device according to the third embodiment of the invention.
  • FIG. 8 is a configuration block diagram of the pain-relief device according to the first embodiment of the invention.
  • FIG. 9 is a configuration diagram of the conventional pain-relief device in the prior art.
  • FIG. 1 is an appearance diagram of the pain-relief device of the present invention.
  • FIGS. 1( a ), ( b ) and ( c ) are a front view, a lateral view and a back view respectively.
  • FIG. 2 is a configuration block diagram of the pain-relief device according to the first reference example.
  • a body of the device is denoted as 18 and a head is denoted as 20 .
  • a painful area is denoted by S
  • a semiconductor laser which emits relatively low-powered heat-producing laser light
  • a laser-driving circuit which drives the semiconductor laser 1
  • a small camera which takes a picture of the painful area S by mechanism of image sensors such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) is denoted by 3
  • a camera-signal processing circuit which processes the image taken by the small camera 3 is denoted by 4 .
  • the laser light source mechanism is included of the semiconductor laser 1 and the laser-driving circuit 2
  • the image-taking mechanism is included of the small camera 3 and the camera-signal processing circuit 4 , respectively.
  • an emission button as an emission request mechanism which is switched ON when the laser light is emitted from the semiconductor laser 1 is denoted by 5 ;
  • a CPU as a control mechanism which controls the pain-relief device is denoted by 6 ;
  • a user-input unit by which information is input to the pain-relief device is denoted by 7 ;
  • a memory such as ROM or RAM is denoted by 8 ;
  • LCD Liquid Crystal Display
  • a control information presenting mechanism which presents information to a user is denoted by 9 ;
  • a portable probe is denoted by 10 ;
  • an irradiation part of the probe where the laser light irradiated to the painful area S transits therein is denoted by 10 A;
  • a display unit as an external image display mechanism is denoted by 11 .
  • FIG. 3 is a flow chart which illustrates the operation of the pain-relief device according to the first reference example.
  • the CPU 6 loads the program from the memory 8 so that the pain-relief device is activated.
  • the CPU 6 sequentially displays the control information of the semiconductor laser 1 such as the power of the laser light or the irradiation time per irradiation on the LCD 9 so that the user can perceive the control information and set the intended control information by mechanism of the user-input unit 7 (Step ST 1 ). Since the control information is displayed on LCD 9 , the user can perceive the control information of the semiconductor laser 1 without difficulty, that the operability of the pain-relief device can be improved.
  • the control information is not necessarily displayed on LCD 9 . Instead it is possible to be displayed on other display mechanism, or it is possible to employ a loudspeaker or the like to present the control information to the user by way of artificial voice.
  • Step ST 2 the CPU 6 stands by for user input to provide directions for whether or not to check the painful area S.
  • Step ST 2 the CPU 6 stands by for user input to provide directions for whether or not to check the painful area S.
  • Step ST 5 the CPU 6 controls the small camera 3 to take a picture of the painful area S so that the camera signal is output.
  • said camera signal is processed by the camera-signal processing circuit 4 so that the image of the painful area S is displayed on the display unit 11 (Step ST 4 ).
  • a conventional pain-relief device requires the user to have expert knowledge of Eastern acupuncture, making it difficult for ordinary people to use it.
  • the pain-relief device according to the present invention utilizes the so-called hyper thermic effect of the low-powered laser light so that the heat-producing laser light can be diffused over a certain range to irradiate the painful area without being condensed. Accordingly, as the painful area S is warmed and the blood circulation is improved, it becomes possible to relieve pain of bruise, sprain, shoulder stiffness, backache or the like.
  • the irradiated area is wider so that the pain-relief effect can be achieved by only irradiating around the painful area.
  • the user can visually realize anomalies within the painful area S such as roughness, reddish area or dryness of skin.
  • an enlarged display makes it easier to determine the anomalies.
  • the pain-relief device according to the first reference example is included of the small camera 3 and the camera-signal processing circuit 4 so as to take a picture of the painful area S and to display the enlarged image of the taken picture on the display unit 11 . Therefore, the anomalies within the painful area S such as redness, roughness, or dryness of skin can be checked through the steps ST 2 to ST 4 .
  • the anomalies within the painful area S can be checked on the visual display unit 11 so that the area being laser-irradiated can be roughly narrowed, it becomes possible for ordinary people who have no expert knowledge of acupuncture to provide a treatment to relieve pain without difficulty.
  • the treatment can be applied to not only a human being but also an animal which does not communicate with human languages and whose body is covered with fur so that the painful area S cannot be checked practically.
  • the CPU 6 stands by for a user input to switch ON the emission button 5 (step ST 5 ).
  • the emission button 5 placed on the grip of the pain-relief device is not switched ON by the user (“No” in step ST 5 )
  • the CPU 6 does not activate the laser-driving circuit 2 i.e. the laser light is not emitted from the semiconductor laser 1 (step ST 6 ).
  • step ST 5 when the irradiation part 10 A approaches the painful area S and the emission button 5 is switched ON by the user (“Yes” in step ST 5 ), the CPU 6 activates the laser-driving circuit 2 so that the semiconductor laser 1 is controlled to emit the laser light based on the control information set at the step ST 1 (step ST 7 ).
  • the laser light is diffused over the certain range to irradiate the painful area S with the hyper thermic effect so that the painful area S can be warmed and the pain in the painful area S can be relieved.
  • step ST 6 or the step ST 7 will follow corresponding to ON/OFF of the emission button 5 (step ST 5 ).
  • the probe 10 of the pain-relief device shown in FIG. 1 and FIG. 2 is provided with the laser light emission button 5 , it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device.
  • the laser light is not emitted from the semiconductor laser 1 unless the emission button 5 is switched ON by the user, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • the laser light emission is controlled by the CPU 6 when the emission button 5 is switched ON.
  • the emission request mechanism is not limited to the button-typed one.
  • a slide-type, a lever-type, or a voice-input-type is also possible.
  • the method is not limited to controlling the emission with the CPU 6 . It is also possible to control the supply current to the semiconductor laser 1 or to control the attenuation of the laser light emitted from the semiconductor laser 1 .
  • the processing that occurs when the CPU 6 activates the small camera 3 when input “Yes” at the step ST 2 in FIG. 3 can be replaced with the following: That is, for example when the control information is set at the step ST 1 , it is possible that the CPU 6 activates the small camera 3 immediately and keeps taking pictures of the painful area S while the pain-relief device is running so that the display unit 11 keeps displaying the taken images thereon.
  • the small camera 3 which takes a picture of the painful area S and outputs the camera signal and the camera-signal processing circuit 4 which processes the camera signal output from the small camera 3 are provided at the step ST 3 ;
  • the display unit 11 which displays the taken image of the painful area S obtained by processing the camera signal with the camera-signal processing circuit 4 is provided at the step ST 4 ;
  • the semiconductor laser 1 which is activated by the laser-driving circuit 2 and emits the heat-producing laser light to irradiate the painful area S is provided at the step ST 7 .
  • the anomalies within the painful area S such as redness, roughness, or dryness of skin can be checked and the area being laser-irradiated can be roughly narrowed so that the ordinary people who have no expert knowledge of acupuncture are enabled to provide a treatment to relieve pain without difficulty.
  • the CPU 6 which controls the semiconductor laser 1 based on the control information thereof is by mechanism of the laser-driving circuit 2 ; and the LCD 9 which displays the control information thereon for the user is further provided at the step ST 1 . Accordingly, it becomes possible for the user to perceive the control regulation of the laser light irradiating the painful area S, resulting in the improvement of the operability of the pain-relief device.
  • the emission button 5 by which the semiconductor laser 1 is made to emit the laser light to irradiate the painful area S when it is switched ON is further provided at the step ST 5 . Accordingly, it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device. Moreover, since the laser light is not emitted from the semiconductor laser 1 unless the emission button 5 is switched ON, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • the semiconductor laser 1 which emits the heat-producing laser light is further provided. Since the semiconductor laser 1 is compact, lightweight, longer lasting and low priced, the longer lasting pain-relief device which is reduced in size, weight and cost as a whole can be achieved.
  • FIG. 4 is a configuration block diagram of the pain-relief device according to the second reference example of the present invention.
  • a light source for shooting which illuminates the painful area S is denoted by 12
  • the light-source-driving circuit for shooting which activates the light source for shooting 12 is denoted by 13 .
  • An illuminating mechanism is included of the light source for shooting 12 and the light-source-driving circuit for shooting 13 .
  • FIG. 5 is a flow chart which illustrates the operation of the pain-relief device according to the second reference example.
  • the user checks the image of the painful area S displayed on the display unit 11 .
  • the user inputs “No” in the user-input unit 7 (“No” at step ST 8 ), and the CPU 6 proceeds to the step ST 5 to function the same way as in the first reference example.
  • the user inputs “Yes” in the user-input unit 7 (“Yes” at step ST 8 ), and the CPU 6 activates the light-source-driving circuit for shooting 13 to activate the light source for shooting 12 so that the painful area S is illuminated (step ST 9 ).
  • the pain-relief device shown in FIG. 4 is provided with the light source for shooting 12 and the light-source-driving circuit for shooting 13 , and the light supplement is provided when the picture is taken at the step ST 9 . Therefore, it becomes possible to reliably take a picture of the painful area S in bright light by supplementing light thereto even when the light volume of the shooting location is deficient, resulting in the capability of checking anomalies within the painful area S.
  • the CPU 6 proceeds to the step ST 5 to function the same way as in the first reference example.
  • the light source for shooting 12 and the light-source-driving circuit for shooting 13 which illuminate the painful area S at the step ST 9 are further provided so as to accommodate the case wherein the brightness level of the image of the painful area S displayed on the display unit 11 is deficient at the step ST 4 i.e. when “No” at the step ST 8 . Accordingly, it becomes possible to reliably take a picture of the painful area S in bright light even when a light volume for shooting the painful area S with the small camera 3 is deficient, resulting in the capability of checking anomalies within the painful area S.
  • the pain relieving device does not necessarily have to utilize the small camera 3 which requires the light source for shooting 12 and the light-source-driving circuit for shooting 13 . It is possible to utilize an infrared camera which does not require the light source for shooting 12 and the light-source-driving circuit for shooting 13 . In addition, it is also possible to keep lighting the light source for shooting 12 and to keep taking pictures of the painful area S while the pain-relief device is running.
  • the following embodiment allows one to enhance the safety of the pain-relief device.
  • FIG. 6 is a configuration block diagram of the pain-relief device according to the third reference example.
  • 14 denotes one or more touch sensors placed around the irradiation part 10 A, which outputs the sensor signal when it contacts the painful area S.
  • 15 denotes a sensor-signal processing circuit which senses a contact between the touch sensor 14 and the painful area S by processing the sensor signal output from the touch sensor 14 .
  • a touch sensor mechanism is included of the touch sensor 14 and the sensor-signal processing circuit 15 .
  • three touch sensors 14 are provided surrounding the irradiation part 10 A, projecting outward from the irradiation part 10 A to the side of painful area S for about several millimeters in length. That is to say, when the irradiation part 10 A approaches the painful area S to irradiate the painful area S with the laser light, the touch sensor 14 contacts the painful area S.
  • the number of the touch sensors 14 is not limited to three. Any given number is possible corresponding to layouts.
  • FIG. 7 is a flow chart which illustrates the operation of the pain-relief device according to the third reference example.
  • step ST 10 the CPU 6 determines the contact between the touch sensor 14 and the painful area S by mechanism of the sensor-signal processing circuit 15 (step ST 10 ).
  • the CPU 6 determines that the irradiation part 10 A is not approaching the painful area S so as not to activate the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 , and goes into standby mode to prevent erroneous irradiation (“No” at the step ST 10 ⁇ step ST 6 ).
  • the CPU 6 determines that the irradiation part 10 A is approaching the painful area S and determines whether or not the emission button 5 is switched ON in the same way as in the first embodiment (step ST 5 ).
  • the emission button 5 is not switched ON (“No” at the step ST 5 )
  • the CPU 6 does not activate the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 , and goes into standby mode (“Yes” at the step ST 10 ⁇ “No” at the step ST 5 ⁇ step ST 6 ).
  • the CPU 6 activates the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 (step ST 7 ).
  • the laser light irradiates the painful area S passing through the irradiation part 10 A.
  • the CPU 6 determines the contact/noncontact between the touch sensor 14 and the painful area S.
  • the laser light is not emitted as the irradiation part 10 A does not come close to the painful area S.
  • the contact is detected, the laser light is emitted as the irradiation part 10 A comes close to the painful area S under the condition that the emission button 5 is switched ON. Accordingly, it becomes possible to prevent erroneous irradiation so as to avoid accidents causing blindness or the like from occurring.
  • the touch sensor 14 placed around the irradiation part 10 A which outputs the sensor signal when it contacts the painful area S at the step ST 10 ; the sensor-signal processing circuit 15 which detects the contact between the touch sensor 14 and the painful area S by processing the sensor signal output from the touch sensor 14 ; and the CPU 6 which activates the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 under the condition that the emission button 5 is switched ON at the step ST 7 only while the sensor-signal processing circuit 15 is sensing the contact with the painful area S.
  • the laser light is not emitted from the semiconductor laser 1 as the touch sensor 14 does not contact the painful area S. Therefore, it becomes possible to prevent erroneous irradiation of the laser light so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • the following embodiment is possible when the painful area S is irradiated with the laser light emitted from the semiconductor laser 1 .
  • FIG. 8 is a configuration block diagram of the pain-relief device according to the first embodiment of the present invention.
  • a light diffusion lens as a light diffusion mechanism which has a negative refracting power is denoted by 16 .
  • a planoconcave lens which is cut on a given flat surface including a light axis is illustrated as a light diffusion lens 16 .
  • the light diffusion lens 16 has a negative refracting power
  • the laser light emitted from the semiconductor laser 1 at the step ST 7 in FIG. 3 , FIG. 5 or FIG. 7 is diffused by the light diffusion lens 16 so that the painful area S can be irradiated within a wider range thereof. Therefore, it becomes possible to improve the efficiency of the irradiation and the uniformity of the laser light so that the unevenness of the irradiation can be reduced, resulting in the capability of irradiating the painful area S with the laser light having a milder laser light power.
  • the light diffusion lens 16 which has a negative refracting power is further provided and the painful area S is irradiated with the laser light emitted from the semiconductor laser 1 through the light diffusion lens 16 at the step ST 7 , it becomes possible to diffuse the laser light widely to irradiate the painful area S, resulting in the improvement in efficiency of the irradiation. It also becomes possible to irradiate the painful area S with the uniform laser light, producing the reduction of the unevenness of the irradiation. Furthermore, it also becomes possible to irradiate the painful area S with the laser light having a milder laser light power.
  • the possible range of the power P of the low-powered heat-producing laser light to irradiate the painful area S is about P ⁇ 0.4 W/cm 2 and the wavelength of the low-powered heat-producing laser light is about 600 nm ⁇ 1000 nm.

Abstract

Existing pain-relief devices have the problem that the use thereof requires specialized knowledge of Eastern acupuncture, e.g. meridians and acupuncture points, making it difficult for ordinary people to use said devices to relieve pain in painful areas. The disclosed pain-relief device is provided with: a small camera that, in step ST3, takes a picture of a painful area and outputs a camera signal; a camera-signal processing circuit that processes the camera signal from the small camera; a display unit that, in step ST4, displays an image of the painful area, obtained via the processing of the camera signal in the camera-signal processing circuit; and a semiconductor laser that, in step ST7, is driven by a laser-driving circuit and irradiates the painful area with heat-producing laser light.

Description

    TECHNICAL FIELD
  • The present invention relates to a pain-relief device which applies a laser light to relieve pain in painful areas.
  • BACKGROUND
  • FIG. 9 is a block diagram of a conventional pain-relief device which is disclosed in Patent Document 1.
  • In FIG.9, a driving circuit is denoted by 200, a power supply unit is denoted by 201, a consecution/pulse drive selecting switch are denoted by 210 and 220, a function generator is denoted by 230, amplifiers are denoted by 231 and 233, constant current supply units are denoted by 240 and 250, a red semiconductor laser is denoted by 260, a green semiconductor laser is denoted by 270, light fiber acupunctures are denoted by 280 a and 280 b, and a painful area or a meridian is denoted by 290.
  • The light fiber acupunctures 280 a and 280 b have been developed to produce both a metal acupuncture function of Eastern acupuncture and a laser light irradiation. A thin metallurgical coating is applied to a clad of the light fiber whose jacket or trunking has been removed and a surface fabrication is applied at a predetermined angle to its end.
  • Next, the operation will be explained.
  • First the consecution mode or the pulse mode is selected at the consecution/pulse drive selecting switches 210 and 220 by way of control signals 212 and 222. Subsequently the red semiconductor laser 260 or the green semiconductor laser 270 produces the consecutive oscillation or the pulse oscillation to emit laser light by the functions of the function generator 230, the amplifiers 231 and 233, and the constant current supply units 240 and 250. The laser light emitted by the red semiconductor laser 260 or the green semiconductor laser 270 irradiates the painful area or the meridian 290 through the light fiber acupunctures 280 a and 280 b.
  • An existing pain-relief device requires expert knowledge of Eastern acupuncture of a user, such as meridians and acupuncture points. Accordingly, there has been a problem that it is difficult for ordinary people to use it to relieve pain in painful areas.
  • Such is the case with the non-invasive pain-relief device such as the one disclosed in Japanese Patent Application Laid-Open No. 2004-329474 (Patent Document 2) as well as the invasive pain-relief device. Laser acupuncture which contributes to effective treatment by collecting laser light into acupuncture points to apply a stimulus by means of a light collecting mechanism or the like also requires expert knowledge of acupuncture of a user, making it difficult for ordinary people to use it.
  • In order to solve the problems described above, the present invention allows one to use the pain-relief device without expert knowledge of acupuncture so that ordinary people (i.e. an acupuncture inexpert) can use it to relieve pain in painful areas without difficulty.
  • Patent Document 1:
    • Japanese Patent Application Laid-Open No. 2010-12268
    Patent Document 2:
    • Japanese Patent Application Laid-Open No. 2004-329474
    SOLUTION TO PROBLEM
  • The pain-relief device according to one embodiment of the present invention includes some mechanisms as follows: the device comprising a body and a head extending from the body; a laser light source mechanism located on the head which emits heat-producing laser light; an irradiation opening which irradiates the laser light emitted from the laser light source mechanism to a predetermined part; an image-taking mechanism located on the head which takes a picture of the area being irradiated with the laser light irradiated from the irradiation opening; an image display mechanism which displays the image of the area taken by said image-taking mechanism; and a planoconcave lens attached to the head and extending over said irradiation opening. The area which has been imaged by said image-taking mechanism is irradiated with said laser light diffused by said planoconcave lens.
  • In addition, the pain-relief device may further include a control mechanism which controls the laser light source mechanism based on control-relevant information of the laser light source mechanism, and a control information presenting mechanism which presents the control-relevant information to the user.
  • Moreover, the pain-relief device may further include an emission request mechanism which is utilized for the laser light emission from the laser light source mechanism. The laser light source mechanism emits the laser light when the emission request mechanism is used.
  • The image-taking mechanism may be further provided with an illuminating mechanism which illuminates the target areas of the laser light irradiation.
  • In addition, the pain-relief device further includes a touch sensor mechanism located between the irradiation opening and the edge of the head in a protruding manner to sense a contact with the target area of the laser light irradiation and a control mechanism which controls the laser light source mechanism to emit the laser light only while the touch sensor mechanism is contacting the target area of the laser light irradiation.
  • Furthermore, the pain-relief device further includes a light diffusion mechanism which has a negative refracting power and irradiates the painful areas with the laser light emitted from the laser light source mechanism.
  • The laser light source mechanism may be a semiconductor laser.
  • The light source mechanism may emit the laser light to the painful area within a range of 0.4 W/cm2 or less in power.
  • The light source mechanism may emit the laser light to the painful area within a range from 600 nm to 1000 nm in wavelength.
  • ADVANTAGEOUS EFFECTS OF INVENTION
  • As described above, since the present invention is provided with the laser light source mechanism, it becomes possible to relieve the pain of a bruise, sprain, shoulder stiffness, backache or the like by irradiating the painful area with the heat-producing laser light so as to warm the painful area and to promote blood circulation. Moreover, due to the image-taking mechanism which takes a picture of the target area of the laser light irradiation and the image display mechanism which displays the image of the target area of the laser light irradiation taken by said image-taking mechanism, the target area of the laser light irradiation imaged by the image-taking mechanism is to be irradiated with the laser light, making it possible to roughly narrow the area being laser-irradiated by checking anomalies within the painful area such as reddening, roughness, and/or dryness of skin or the like. Accordingly, it becomes possible for ordinary people without expert knowledge of acupuncture to provide a treatment to relieve pain without difficulty. Furthermore, due to the planoconcave lens attached to the head and extending over the irradiation opening, it becomes possible to diffuse the laser light widely to irradiate the painful area and the surrounding area, resulting in the improvement in efficiency of the irradiation. It also becomes possible to irradiate the painful area with the uniform laser light, producing the reduction of the unevenness of the irradiation. Moreover, it also becomes possible to irradiate the painful area with the laser light having a mild laser light power.
  • As the present invention may further include a control mechanism which controls the laser light source mechanism based on control-relevant information of the laser light source mechanism and a control information presenting mechanism which presents the control-relevant information to the user, the user can get a handle on the operation i.e. the improvement of the operability of the pain-relief device can be achieved, in addition to the efficacy achieved without the control mechanism.
  • As the present invention may further include an emission request mechanism which is utilized for the laser light emission from the laser light source mechanism and the laser light source mechanism emits the laser light when the emission request mechanism is used, it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device. Since the laser light is not emitted unless the emission request mechanism is used, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • Since the image-taking mechanism of the present invention may further include an illuminating mechanism which illuminates the target area of the laser light irradiation, it becomes possible to reliably take a picture in bright light even when there is insufficient light volume, resulting in the capability of checking anomalies within the target area of the laser light irradiation.
  • The present invention may further include a touch sensor mechanism installed between irradiation opening and the edge of the head in a protruding manner to sense a contact with the target area of the laser light irradiation and the control mechanism which controls the laser light source mechanism to emit the laser light only while the touch sensor mechanism is contacting the target area of the laser light irradiation. Accordingly, since the laser light is not emitted from the laser light source mechanism when the irradiation opening is not near the target of the area of the laser light irradiation i.e. because there is no contact between the touch sensor mechanism and the target area of the laser light irradiation, it becomes possible to avoid erroneous irradiation of the laser light or accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • Since the laser light source mechanism of the present invention may include a semiconductor laser which is compact, lightweight, longer lasting and low priced, the longer lasting pain-relief device which is reduced in size, weight and cost as a whole can be achieved.
  • As the laser light source mechanism of the present invention may be characterized in that the laser light emitted to the painful area has a power within a range of 0.4 W/cm2 or less, the painful area is irradiated with the laser light within said range of power, making it possible to warm the painful area and to promote blood circulation so as to relieve pain.
  • As the laser light source mechanism of the present invention may be characterized in that the laser light emitted to the painful area is ranged from 600 nm to 1000 nm in wavelength, the painful area is irradiated with the laser light within said range of wavelength, making it possible to warm the painful area and to promote blood circulation so as to relieve pain.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an appearance diagram of the pain-relief device of the present invention.
  • FIG. 2 is a configuration block diagram of the pain-relief device according to a first embodiment of the invention.
  • FIG. 3 is a flow chart which illustrates the operation of the pain-relief device according to the first embodiment of the invention.
  • FIG. 4 is a configuration block diagram of the pain-relief device according to a second embodiment of the invention.
  • FIG. 5 is a flow chart which illustrates the operation of the pain-relief device according to the second embodiment of the invention.
  • FIG. 6 is a configuration block diagram of the pain-relief device according to a third embodiment of the invention.
  • FIG. 7 is a flow chart which illustrates the operation of the pain-relief device according to the third embodiment of the invention.
  • FIG. 8 is a configuration block diagram of the pain-relief device according to the first embodiment of the invention.
  • FIG. 9 is a configuration diagram of the conventional pain-relief device in the prior art.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Hereinafter, embodiments and the like of this invention will be concretely described with reference to the drawings. In each of the drawings, same numerical symbols are used to the same constitutions or corresponding constitutions.
  • REFERENCE EXAMPLE 1
  • FIG. 1 is an appearance diagram of the pain-relief device of the present invention. FIGS. 1( a), (b) and (c) are a front view, a lateral view and a back view respectively. FIG. 2 is a configuration block diagram of the pain-relief device according to the first reference example.
  • In FIG. 1 and FIG. 2, a body of the device is denoted as 18 and a head is denoted as 20. A painful area is denoted by S, a semiconductor laser which emits relatively low-powered heat-producing laser light is denoted by 1, a laser-driving circuit which drives the semiconductor laser 1 is denoted by 2, a small camera which takes a picture of the painful area S by mechanism of image sensors such as CCD (Charge Coupled Device) or CMOS (Complementary Metal Oxide Semiconductor) is denoted by 3, and a camera-signal processing circuit which processes the image taken by the small camera 3 is denoted by 4. The laser light source mechanism is included of the semiconductor laser 1 and the laser-driving circuit 2, and the image-taking mechanism is included of the small camera 3 and the camera-signal processing circuit 4, respectively.
  • Further, in FIG. 1 and FIG. 2, an emission button as an emission request mechanism which is switched ON when the laser light is emitted from the semiconductor laser 1 is denoted by 5; a CPU as a control mechanism which controls the pain-relief device is denoted by 6; a user-input unit by which information is input to the pain-relief device is denoted by 7; a memory such as ROM or RAM is denoted by 8; LCD (Liquid Crystal Display) as a control information presenting mechanism which presents information to a user is denoted by 9; a portable probe is denoted by 10; an irradiation part of the probe where the laser light irradiated to the painful area S transits therein is denoted by 10A; and a display unit as an external image display mechanism is denoted by 11.
  • Next, the operation will be explained.
  • FIG. 3 is a flow chart which illustrates the operation of the pain-relief device according to the first reference example.
  • In reference to FIGS. 2 and 3, when the power button on the user-input unit 7 is switched ON for power activation, the CPU 6 loads the program from the memory 8 so that the pain-relief device is activated.
  • First the CPU 6 sequentially displays the control information of the semiconductor laser 1 such as the power of the laser light or the irradiation time per irradiation on the LCD 9 so that the user can perceive the control information and set the intended control information by mechanism of the user-input unit 7 (Step ST1). Since the control information is displayed on LCD 9, the user can perceive the control information of the semiconductor laser 1 without difficulty, that the operability of the pain-relief device can be improved. Herein, the control information is not necessarily displayed on LCD 9. Instead it is possible to be displayed on other display mechanism, or it is possible to employ a loudspeaker or the like to present the control information to the user by way of artificial voice.
  • After the control information is set, the CPU 6 stands by for user input to provide directions for whether or not to check the painful area S (Step ST2). When the painful area S does not need to be checked and the user operates the user-input unit 7 to input “No” (“No” in Step ST2), it is followed by Step ST 5. On the other hand, when the painful area S need to be checked and the user operates the user-input unit 7 to input “Yes” (“Yes” in Step ST2), the CPU 6 controls the small camera 3 to take a picture of the painful area S so that the camera signal is output (Step ST 3). Then, said camera signal is processed by the camera-signal processing circuit 4 so that the image of the painful area S is displayed on the display unit 11 (Step ST4).
  • As previously indicated, irrespective of the type i.e. invasive or non-invasive, a conventional pain-relief device requires the user to have expert knowledge of Eastern acupuncture, making it difficult for ordinary people to use it. In contrast to this, the pain-relief device according to the present invention utilizes the so-called hyper thermic effect of the low-powered laser light so that the heat-producing laser light can be diffused over a certain range to irradiate the painful area without being condensed. Accordingly, as the painful area S is warmed and the blood circulation is improved, it becomes possible to relieve pain of bruise, sprain, shoulder stiffness, backache or the like. Compared to the conventional pain-relief device, the irradiated area is wider so that the pain-relief effect can be achieved by only irradiating around the painful area.
  • In general, the user can visually realize anomalies within the painful area S such as roughness, reddish area or dryness of skin. Particularly an enlarged display makes it easier to determine the anomalies. Thus, the pain-relief device according to the first reference example is included of the small camera 3 and the camera-signal processing circuit 4 so as to take a picture of the painful area S and to display the enlarged image of the taken picture on the display unit 11. Therefore, the anomalies within the painful area S such as redness, roughness, or dryness of skin can be checked through the steps ST2 to ST4.
  • As described above, since the anomalies within the painful area S can be checked on the visual display unit 11 so that the area being laser-irradiated can be roughly narrowed, it becomes possible for ordinary people who have no expert knowledge of acupuncture to provide a treatment to relieve pain without difficulty. In addition, the treatment can be applied to not only a human being but also an animal which does not communicate with human languages and whose body is covered with fur so that the painful area S cannot be checked practically.
  • Referring again to FIG. 3, after the image of the painful area S is displayed on the display unit 11 at step ST4, the CPU 6 stands by for a user input to switch ON the emission button 5 (step ST5). When the emission button 5 placed on the grip of the pain-relief device is not switched ON by the user (“No” in step ST5), the CPU 6 does not activate the laser-driving circuit 2 i.e. the laser light is not emitted from the semiconductor laser 1 (step ST6).
  • On the other hand, when the irradiation part 10A approaches the painful area S and the emission button 5 is switched ON by the user (“Yes” in step ST5), the CPU 6 activates the laser-driving circuit 2 so that the semiconductor laser 1 is controlled to emit the laser light based on the control information set at the step ST1 (step ST7). As previously indicated, the laser light is diffused over the certain range to irradiate the painful area S with the hyper thermic effect so that the painful area S can be warmed and the pain in the painful area S can be relieved. Thereafter, the step ST6 or the step ST7 will follow corresponding to ON/OFF of the emission button 5 (step ST5).
  • In this way, as the probe 10 of the pain-relief device shown in FIG. 1 and FIG. 2 is provided with the laser light emission button 5, it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device.
  • In addition, since the laser light is not emitted from the semiconductor laser 1 unless the emission button 5 is switched ON by the user, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • With this first embodiment, the laser light emission is controlled by the CPU 6 when the emission button 5 is switched ON. However, the emission request mechanism is not limited to the button-typed one. A slide-type, a lever-type, or a voice-input-type is also possible. In addition, the method is not limited to controlling the emission with the CPU 6. It is also possible to control the supply current to the semiconductor laser 1 or to control the attenuation of the laser light emitted from the semiconductor laser 1.
  • The processing that occurs when the CPU 6 activates the small camera 3 when input “Yes” at the step ST2 in FIG. 3 can be replaced with the following: That is, for example when the control information is set at the step ST1, it is possible that the CPU 6 activates the small camera 3 immediately and keeps taking pictures of the painful area S while the pain-relief device is running so that the display unit 11 keeps displaying the taken images thereon.
  • As described above, the small camera 3 which takes a picture of the painful area S and outputs the camera signal and the camera-signal processing circuit 4 which processes the camera signal output from the small camera 3 are provided at the step ST3; the display unit 11 which displays the taken image of the painful area S obtained by processing the camera signal with the camera-signal processing circuit 4 is provided at the step ST4; and the semiconductor laser 1 which is activated by the laser-driving circuit 2 and emits the heat-producing laser light to irradiate the painful area S is provided at the step ST7. Accordingly, the anomalies within the painful area S such as redness, roughness, or dryness of skin can be checked and the area being laser-irradiated can be roughly narrowed so that the ordinary people who have no expert knowledge of acupuncture are enabled to provide a treatment to relieve pain without difficulty.
  • In addition, according to the first embodiment of the present invention, the CPU 6 which controls the semiconductor laser 1 based on the control information thereof is by mechanism of the laser-driving circuit 2; and the LCD 9 which displays the control information thereon for the user is further provided at the step ST1. Accordingly, it becomes possible for the user to perceive the control regulation of the laser light irradiating the painful area S, resulting in the improvement of the operability of the pain-relief device.
  • In addition, according to the first embodiment of the invention, the emission button 5 by which the semiconductor laser 1 is made to emit the laser light to irradiate the painful area S when it is switched ON is further provided at the step ST5. Accordingly, it becomes possible to control emission/non-emission of the laser light without difficulty, resulting in the improvement of the operability of the pain-relief device. Moreover, since the laser light is not emitted from the semiconductor laser 1 unless the emission button 5 is switched ON, an erroneous irradiation of the laser light can be prevented so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • In addition, according to the first embodiment of the present invention, the semiconductor laser 1 which emits the heat-producing laser light is further provided. Since the semiconductor laser 1 is compact, lightweight, longer lasting and low priced, the longer lasting pain-relief device which is reduced in size, weight and cost as a whole can be achieved.
  • REFERENCE EXAMPLE 2
  • When the image of the painful area S is taken, there is a possibility of causing a shadow or being dark around the shooting location i.e. there is a possibility of causing a deficiency of light volume. The following processing is possible to overcome such situations.
  • FIG. 4 is a configuration block diagram of the pain-relief device according to the second reference example of the present invention.
  • In FIG. 1 and FIG. 4, a light source for shooting which illuminates the painful area S is denoted by 12, and the light-source-driving circuit for shooting which activates the light source for shooting 12 is denoted by 13. An illuminating mechanism is included of the light source for shooting 12 and the light-source-driving circuit for shooting 13.
  • Next, the operation will be explained.
  • FIG. 5 is a flow chart which illustrates the operation of the pain-relief device according to the second reference example.
  • In FIGS., as well as the embodiment shown in FIG. 3, after the steps 1 to 4 the CPU 6 stands by for a user input with regard to the use of the light source for shooting 12 (step ST8).
  • The user checks the image of the painful area S displayed on the display unit 11. When the illumination of the image is sufficient, the user inputs “No” in the user-input unit 7 (“No” at step ST8), and the CPU 6 proceeds to the step ST5 to function the same way as in the first reference example. On the other hand, when the illumination of the image displayed on the display unit 11 is insufficient, the user inputs “Yes” in the user-input unit 7 (“Yes” at step ST8), and the CPU 6 activates the light-source-driving circuit for shooting 13 to activate the light source for shooting 12 so that the painful area S is illuminated (step ST9).
  • As described above, the pain-relief device shown in FIG. 4 is provided with the light source for shooting 12 and the light-source-driving circuit for shooting 13, and the light supplement is provided when the picture is taken at the step ST9. Therefore, it becomes possible to reliably take a picture of the painful area S in bright light by supplementing light thereto even when the light volume of the shooting location is deficient, resulting in the capability of checking anomalies within the painful area S.
  • In this way, the image of the painful area S in bright light can be obtained. And when the user inputs “Yes” in the user-input unit 7 at the step ST8, the CPU 6 proceeds to the step ST5 to function the same way as in the first reference example.
  • As above, according to the second reference example, the light source for shooting 12 and the light-source-driving circuit for shooting 13 which illuminate the painful area S at the step ST9 are further provided so as to accommodate the case wherein the brightness level of the image of the painful area S displayed on the display unit 11 is deficient at the step ST4 i.e. when “No” at the step ST8. Accordingly, it becomes possible to reliably take a picture of the painful area S in bright light even when a light volume for shooting the painful area S with the small camera 3 is deficient, resulting in the capability of checking anomalies within the painful area S.
  • Herein, the pain relieving device does not necessarily have to utilize the small camera 3 which requires the light source for shooting 12 and the light-source-driving circuit for shooting 13. It is possible to utilize an infrared camera which does not require the light source for shooting 12 and the light-source-driving circuit for shooting 13. In addition, it is also possible to keep lighting the light source for shooting 12 and to keep taking pictures of the painful area S while the pain-relief device is running.
  • REFERENCE EXAMPLE 3
  • In order to avoid erroneous irradiation of the laser light which may cause blindness or the like, the following embodiment allows one to enhance the safety of the pain-relief device.
  • FIG. 6 is a configuration block diagram of the pain-relief device according to the third reference example.
  • In FIG. 1 and FIG. 6, 14 denotes one or more touch sensors placed around the irradiation part 10A, which outputs the sensor signal when it contacts the painful area S. 15 denotes a sensor-signal processing circuit which senses a contact between the touch sensor 14 and the painful area S by processing the sensor signal output from the touch sensor 14.
  • A touch sensor mechanism is included of the touch sensor 14 and the sensor-signal processing circuit 15.
  • In FIG. 1, three touch sensors 14 are provided surrounding the irradiation part 10A, projecting outward from the irradiation part 10A to the side of painful area S for about several millimeters in length. That is to say, when the irradiation part 10A approaches the painful area S to irradiate the painful area S with the laser light, the touch sensor 14 contacts the painful area S. Herein, the number of the touch sensors 14 is not limited to three. Any given number is possible corresponding to layouts.
  • Next, the operation will be explained.
  • FIG. 7 is a flow chart which illustrates the operation of the pain-relief device according to the third reference example.
  • In FIG. 7, in the same way as in FIG. 5, after the steps ST1 to ST4, ST8 and ST9, the CPU 6 determines the contact between the touch sensor 14 and the painful area S by mechanism of the sensor-signal processing circuit 15 (step ST10). When no contact has been sensed by the sensor-signal processing circuit 15 (when “No” at the step ST10), the CPU 6 determines that the irradiation part 10A is not approaching the painful area S so as not to activate the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1, and goes into standby mode to prevent erroneous irradiation (“No” at the step ST10˜step ST6).
  • While in the standby mode, when the touch sensor 14 contacts the painful area S to output the sensor signal so that the contact is sensed by the sensor-signal processing circuit 15 (“Yes” at the step ST10), the CPU 6 determines that the irradiation part 10A is approaching the painful area S and determines whether or not the emission button 5 is switched ON in the same way as in the first embodiment (step ST5). When the emission button 5 is not switched ON (“No” at the step ST5), the CPU 6 does not activate the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1, and goes into standby mode (“Yes” at the step ST10˜“No” at the step ST5˜step ST6).
  • On the other hand, when the touch sensor 14 contacts the painful area S (“Yes” at the step ST10) and the emission button 5 is determined to be switched ON (“Yes” at the step ST5), the CPU 6 activates the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 (step ST7). The laser light irradiates the painful area S passing through the irradiation part 10A.
  • In this way, the CPU 6 determines the contact/noncontact between the touch sensor 14 and the painful area S. When the noncontact is detected, the laser light is not emitted as the irradiation part 10A does not come close to the painful area S. On the other hand, when the contact is detected, the laser light is emitted as the irradiation part 10A comes close to the painful area S under the condition that the emission button 5 is switched ON. Accordingly, it becomes possible to prevent erroneous irradiation so as to avoid accidents causing blindness or the like from occurring.
  • As described above, the followings are provided according to the third reference example: the touch sensor 14 placed around the irradiation part 10A which outputs the sensor signal when it contacts the painful area S at the step ST10; the sensor-signal processing circuit 15 which detects the contact between the touch sensor 14 and the painful area S by processing the sensor signal output from the touch sensor 14; and the CPU 6 which activates the laser-driving circuit 2 to emit the laser light from the semiconductor laser 1 under the condition that the emission button 5 is switched ON at the step ST7 only while the sensor-signal processing circuit 15 is sensing the contact with the painful area S. Accordingly, when the irradiation part 10A does not come close to the painful area S, the laser light is not emitted from the semiconductor laser 1 as the touch sensor 14 does not contact the painful area S. Therefore, it becomes possible to prevent erroneous irradiation of the laser light so as to avoid accidents causing blindness or the like, resulting in the safety enhancement of the pain-relief device.
  • Embodiment 1
  • The following embodiment is possible when the painful area S is irradiated with the laser light emitted from the semiconductor laser 1.
  • FIG. 8 is a configuration block diagram of the pain-relief device according to the first embodiment of the present invention. In FIG. 1 and FIG. 8, a light diffusion lens as a light diffusion mechanism which has a negative refracting power is denoted by 16. In FIG. 8, a planoconcave lens which is cut on a given flat surface including a light axis is illustrated as a light diffusion lens 16.
  • As the light diffusion lens 16 has a negative refracting power, the laser light emitted from the semiconductor laser 1 at the step ST7 in FIG. 3, FIG. 5 or FIG. 7 is diffused by the light diffusion lens 16 so that the painful area S can be irradiated within a wider range thereof. Therefore, it becomes possible to improve the efficiency of the irradiation and the uniformity of the laser light so that the unevenness of the irradiation can be reduced, resulting in the capability of irradiating the painful area S with the laser light having a milder laser light power.
  • As described above, as the light diffusion lens 16 which has a negative refracting power is further provided and the painful area S is irradiated with the laser light emitted from the semiconductor laser 1 through the light diffusion lens 16 at the step ST7, it becomes possible to diffuse the laser light widely to irradiate the painful area S, resulting in the improvement in efficiency of the irradiation. It also becomes possible to irradiate the painful area S with the uniform laser light, producing the reduction of the unevenness of the irradiation. Furthermore, it also becomes possible to irradiate the painful area S with the laser light having a milder laser light power.
  • Calculated in terms of a planar dimension, the possible range of the power P of the low-powered heat-producing laser light to irradiate the painful area S is about P≦0.4 W/cm2 and the wavelength of the low-powered heat-producing laser light is about 600 nm≦λ≦1000 nm. By irradiating the painful area S with the low-powered laser light by mechanism of the semiconductor laser 1 and the light diffusion lens 16 under the condition of described above, it becomes possible to warm the painful area S and to promote blood circulation, resulting in the relief of pain.
  • EXPLANATION OF SYMBOLS
    • 1 Semiconductor laser
    • 2 Laser-driving circuit
    • 3 Small camera
    • 4 Camera-signal processing circuit
    • 5 Emission button
    • 6 CPU
    • 7 User-input unit
    • 8 Memory
    • 9 LCD
    • 10 Probe
    • 10A Irradiation part
    • 11 Display unit
    • 12 Light source for shooting
    • 13 Light-source-driving circuit for shooting
    • 14 Touch sensor
    • 15 Sensor-signal processing circuit
    • 16 Light diffusion lens
    • 18 Body
    • 20 Head

Claims (9)

1. A pain-relief device, comprising:
A body and a head extending from the body;
a laser light source means for emitting heat-producing laser light located on the head,
an irradiation opening through which the laser light is emitted from said laser light source means to a target area being irradiated,
an image-taking means for taking a picture of the target area being irradiated with the laser light irradiated from said irradiation opening,
an image display means for displaying an image of the target area taken by said image-taking means, and
a planoconcave lens attached to the head and extending over said irradiation opening,
wherein the planoconcave lens diffuses the heat producing laser light when it is irradiated onto said target area whose image is taken by the image-taking means.
2. The pain-relief device according to claim 1, further comprising:
control means for controlling the laser light source means based on control-relevant information of the laser light source means, and
control information presenting means for presenting said control-relevant information to the user.
3. The pain-relief device according to claim 1 further comprised of an emission request means for utilizing the laser light emission from the laser light source means, and said laser light source means emits the laser light when said emission request means is used.
4. The pain-relief device according to claim 1, wherein the image-taking means further comprises an illuminating means which illuminates the target areas of the laser light irradiation.
5. The pain-relief device according to claim 1, further comprising:
touch sensor means installed around the irradiation opening in a protruding manner for sensing a contact with the target areas of the laser light irradiation; and
control means for controlling the laser light source means to emit the laser light only while said touch sensor means is contacting said target areas of the laser light irradiation.
6. The pain-relief device according to claim 1 further comprised of a light diffusion means which has a negative refracting power and irradiates the painful areas with the laser light emitted from the laser light source means.
7. The pain-relief device according to claim 1, wherein the laser light source means is a semiconductor laser.
8. The pain-relief device according to claim 1, wherein the laser light source means emits the laser light to the target areas of the laser light irradiation within a range of 0.4 W/cm2 or less in power.
9. The pain-relief device according to claim 1, wherein the light source means emits the laser light to the target areas of the laser light irradiation within a range from 600 nm to 1000 nm in wavelength.
US13/750,477 2010-07-28 2013-01-25 Pain-relief device Abandoned US20130137992A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010-168751 2010-07-28
JP2010168751 2010-07-28
PCT/JP2011/066679 WO2012014799A1 (en) 2010-07-28 2011-07-22 Pain-relief device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/066679 Continuation WO2012014799A1 (en) 2010-07-28 2011-07-22 Pain-relief device

Publications (1)

Publication Number Publication Date
US20130137992A1 true US20130137992A1 (en) 2013-05-30

Family

ID=45530007

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/750,477 Abandoned US20130137992A1 (en) 2010-07-28 2013-01-25 Pain-relief device

Country Status (7)

Country Link
US (1) US20130137992A1 (en)
EP (1) EP2599469A4 (en)
JP (1) JP5739888B2 (en)
AU (1) AU2011283822A1 (en)
CA (1) CA2806686A1 (en)
MX (1) MX2013001146A (en)
WO (1) WO2012014799A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130041396A1 (en) * 2011-07-18 2013-02-14 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US10420673B2 (en) 2011-07-18 2019-09-24 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US10426971B2 (en) 2014-06-11 2019-10-01 Koninklijke Philips N.V. Phototherapy device with pain location input
CN110662580A (en) * 2017-05-31 2020-01-07 帝人制药株式会社 Light therapy device
CN112312965A (en) * 2018-06-29 2021-02-02 帝人制药株式会社 Chair-type phototherapy apparatus
US11173273B2 (en) 2016-03-23 2021-11-16 Kenji Ryotokuji Stimulation application apparatus
US11766351B2 (en) 2011-07-18 2023-09-26 Kenji Ryotokuji Stimulus method for promoting secretion of growth hormone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102238015B1 (en) * 2019-02-27 2021-04-12 이동채 Skin and pain treatment apparatus

Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170997A (en) * 1977-08-26 1979-10-16 Hughes Aircraft Company Medical laser instrument for transmitting infrared laser energy to a selected part of the body
US4838246A (en) * 1986-08-13 1989-06-13 Messerschmitt-Bolkow-Blohm Gmbh Application part for an endoscope
US4916534A (en) * 1987-04-28 1990-04-10 Olympus Optical Co., Ltd. Endoscope
US4987884A (en) * 1984-12-28 1991-01-29 Olympus Optical Co., Ltd. Electronic endoscope
US5172685A (en) * 1988-05-27 1992-12-22 The University Of Connecticut Endoscope and video laser camera system therefor
US5954633A (en) * 1995-08-18 1999-09-21 Olympus Optical Co., Ltd. Endoscope optical system
US6106514A (en) * 1996-08-12 2000-08-22 O'donnell, Jr.; Francis E. Laser method for subsurface cutaneous treatment
US6157854A (en) * 1999-01-13 2000-12-05 Bales Scientific Inc. Photon irradiation human pain treatment monitored by thermal imaging
US6251068B1 (en) * 1998-05-18 2001-06-26 Fuji Photo Optical Co., Ltd. Endoscopic observation system
US20010007068A1 (en) * 1999-05-31 2001-07-05 Yasuo Ota Laser treatment apparatus
US6585725B1 (en) * 1999-04-20 2003-07-01 Nidek Co., Ltd. Laser irradiation method for laser treatment and laser treatment apparatus
US6652512B2 (en) * 2000-06-16 2003-11-25 Nidek Co., Ltd. Laser treatment apparatus
US20040010300A1 (en) * 1996-02-13 2004-01-15 Leonardo Masotti Device and method for biological tissue stimulation by high intensity laser therapy
US20040193234A1 (en) * 2002-07-03 2004-09-30 Glenn Butler Methods and apparatus for light therapy
US6852079B2 (en) * 2000-12-20 2005-02-08 Fuji Photo Optical Co., Ltd. Light guide and endoscope
US20050154381A1 (en) * 2003-12-31 2005-07-14 Altshuler Gregory B. Dermatological treatment with visualization
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms
US20060020260A1 (en) * 2004-07-22 2006-01-26 Dover Jeffrey S Method and apparatus of treating tissue
US20060212100A1 (en) * 2005-03-15 2006-09-21 Eins Oe-Tech Co., Ltd. Non-intrusive laser irradiation device
US20060217787A1 (en) * 2005-03-23 2006-09-28 Eastman Kodak Company Light therapy device
US20070239142A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US20070263226A1 (en) * 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
US20080033513A1 (en) * 2004-07-15 2008-02-07 Meddynamics Ltd. Directed Energy for Point Oriented Medical Treatment
US20100004645A1 (en) * 2008-07-01 2010-01-07 Gwangju Institute Of Science And Technology Invasive dual-wavelength laser acupuncture
US7713294B2 (en) * 2002-08-28 2010-05-11 Nomir Medical Technologies, Inc. Near infrared microbial elimination laser systems (NIMEL)
US20100130969A1 (en) * 2008-11-25 2010-05-27 Apogen Technologies, Inc. System and method for dermatological treatment
US20120296322A1 (en) * 2010-03-15 2012-11-22 Ya-Man Ltd. Laser treatment device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01145080A (en) * 1987-11-30 1989-06-07 Akinori Nagasawa Apparatus for imaging irradiation intensity distribution of near infrared laser beam
JP3517271B2 (en) * 1994-03-29 2004-04-12 株式会社バイオ・レーザージャパン Low power semiconductor laser treatment device
JP2002078772A (en) * 2000-09-06 2002-03-19 Sukeyuki Kawaguchi Remote computer diagnostic image method and laser acupuncture therapeutic instrument using muscle tonus or muscle potential sensor
JP2004298208A (en) * 2003-03-28 2004-10-28 Matsushita Electric Ind Co Ltd Pulse laser therapeutic apparatus and pulse irradiation light therapeutic apparatus
JP2004329474A (en) * 2003-05-06 2004-11-25 Terumo Corp Optical illumination device for easing ache
US20050279354A1 (en) * 2004-06-21 2005-12-22 Harvey Deutsch Structures and Methods for the Joint Delivery of Fluids and Light
US20100152645A1 (en) * 2007-01-09 2010-06-17 Masahiro Ogasawara Facial Hair-Growth Device and Facial Hair-Growth System
JP2010063541A (en) * 2008-09-09 2010-03-25 Meguro Kk Method of displaying image of complexion slightly different part, device of specifying complexion slightly different part, and device of treating complexion slightly different part
EP2166304A1 (en) * 2008-09-23 2010-03-24 Sick Ag Lighting unit and method for creating a pattern dissimilar to itself

Patent Citations (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4170997A (en) * 1977-08-26 1979-10-16 Hughes Aircraft Company Medical laser instrument for transmitting infrared laser energy to a selected part of the body
US4987884A (en) * 1984-12-28 1991-01-29 Olympus Optical Co., Ltd. Electronic endoscope
US4838246A (en) * 1986-08-13 1989-06-13 Messerschmitt-Bolkow-Blohm Gmbh Application part for an endoscope
US4916534A (en) * 1987-04-28 1990-04-10 Olympus Optical Co., Ltd. Endoscope
US5172685A (en) * 1988-05-27 1992-12-22 The University Of Connecticut Endoscope and video laser camera system therefor
US5954633A (en) * 1995-08-18 1999-09-21 Olympus Optical Co., Ltd. Endoscope optical system
US20040010300A1 (en) * 1996-02-13 2004-01-15 Leonardo Masotti Device and method for biological tissue stimulation by high intensity laser therapy
US6106514A (en) * 1996-08-12 2000-08-22 O'donnell, Jr.; Francis E. Laser method for subsurface cutaneous treatment
US6251068B1 (en) * 1998-05-18 2001-06-26 Fuji Photo Optical Co., Ltd. Endoscopic observation system
US6157854A (en) * 1999-01-13 2000-12-05 Bales Scientific Inc. Photon irradiation human pain treatment monitored by thermal imaging
US6585725B1 (en) * 1999-04-20 2003-07-01 Nidek Co., Ltd. Laser irradiation method for laser treatment and laser treatment apparatus
US20010007068A1 (en) * 1999-05-31 2001-07-05 Yasuo Ota Laser treatment apparatus
US6652512B2 (en) * 2000-06-16 2003-11-25 Nidek Co., Ltd. Laser treatment apparatus
US6852079B2 (en) * 2000-12-20 2005-02-08 Fuji Photo Optical Co., Ltd. Light guide and endoscope
US20050203578A1 (en) * 2001-08-15 2005-09-15 Weiner Michael L. Process and apparatus for treating biological organisms
US20040193234A1 (en) * 2002-07-03 2004-09-30 Glenn Butler Methods and apparatus for light therapy
US7713294B2 (en) * 2002-08-28 2010-05-11 Nomir Medical Technologies, Inc. Near infrared microbial elimination laser systems (NIMEL)
US20050154381A1 (en) * 2003-12-31 2005-07-14 Altshuler Gregory B. Dermatological treatment with visualization
US20080033513A1 (en) * 2004-07-15 2008-02-07 Meddynamics Ltd. Directed Energy for Point Oriented Medical Treatment
US20060020260A1 (en) * 2004-07-22 2006-01-26 Dover Jeffrey S Method and apparatus of treating tissue
US20060212100A1 (en) * 2005-03-15 2006-09-21 Eins Oe-Tech Co., Ltd. Non-intrusive laser irradiation device
US20060217787A1 (en) * 2005-03-23 2006-09-28 Eastman Kodak Company Light therapy device
US20070239142A1 (en) * 2006-03-10 2007-10-11 Palomar Medical Technologies, Inc. Photocosmetic device
US20070263226A1 (en) * 2006-05-15 2007-11-15 Eastman Kodak Company Tissue imaging system
US20100004645A1 (en) * 2008-07-01 2010-01-07 Gwangju Institute Of Science And Technology Invasive dual-wavelength laser acupuncture
US20100130969A1 (en) * 2008-11-25 2010-05-27 Apogen Technologies, Inc. System and method for dermatological treatment
US20120296322A1 (en) * 2010-03-15 2012-11-22 Ya-Man Ltd. Laser treatment device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130041396A1 (en) * 2011-07-18 2013-02-14 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US9358180B2 (en) * 2011-07-18 2016-06-07 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US10420673B2 (en) 2011-07-18 2019-09-24 Kenji Ryotokuji Stimulus method for releasing stress, and stress-free medical treatment method by the stimulus method
US11766351B2 (en) 2011-07-18 2023-09-26 Kenji Ryotokuji Stimulus method for promoting secretion of growth hormone
US10426971B2 (en) 2014-06-11 2019-10-01 Koninklijke Philips N.V. Phototherapy device with pain location input
US11173273B2 (en) 2016-03-23 2021-11-16 Kenji Ryotokuji Stimulation application apparatus
CN110662580A (en) * 2017-05-31 2020-01-07 帝人制药株式会社 Light therapy device
US11235170B2 (en) * 2017-05-31 2022-02-01 Teijin Pharma Limited Phototherapeutic apparatus
CN112312965A (en) * 2018-06-29 2021-02-02 帝人制药株式会社 Chair-type phototherapy apparatus
KR20210018492A (en) * 2018-06-29 2021-02-17 데이진 화-마 가부시키가이샤 Chair type phototherapy device
US11571588B2 (en) * 2018-06-29 2023-02-07 Teijin Pharma Limited Chair-type phototherapy device
KR102597733B1 (en) * 2018-06-29 2023-11-02 데이진 화-마 가부시키가이샤 Chair-type light irradiation device

Also Published As

Publication number Publication date
CA2806686A1 (en) 2012-02-02
WO2012014799A1 (en) 2012-02-02
JPWO2012014799A1 (en) 2013-09-12
JP5739888B2 (en) 2015-06-24
MX2013001146A (en) 2013-04-29
EP2599469A4 (en) 2013-12-25
EP2599469A1 (en) 2013-06-05
AU2011283822A1 (en) 2013-03-07

Similar Documents

Publication Publication Date Title
US20130137992A1 (en) Pain-relief device
US7792334B2 (en) Locating blood vessels
US20230256260A1 (en) Skin Care Implement and System
EP3632507A1 (en) System and method for providing light therapy to a user body
WO2018177311A1 (en) Line-of-sight tracking device and head-mounted display device
US9364684B2 (en) Aesthetic treatment device and method
JP2002011106A (en) Laser therapeutic apparatus
CN104721968B (en) Cosmetic treatments apparatus and method
KR20120087896A (en) Handheld low-level laser therapy apparatus
US9480529B2 (en) Aesthetic treatment device and method
US20110037844A1 (en) Energy emitting device
KR101611231B1 (en) laser irradiation device for medical
WO2006049192A1 (en) Skin treatment apparatus
KR101479576B1 (en) Color light therapy drive built-in smart communication device
KR20180107428A (en) Portable apparatus, system and method for diagnosing and treating of skin conditions
CN115591131A (en) Myopia prevention and control device and control method thereof
US20130070073A1 (en) Biological imaging device and biological imaging method
CN112155724A (en) Laser scanning device and beauty equipment
KR20210025571A (en) Light emitting device for promoting hair growth and controlling method thereof
CN112996439A (en) System and method for determining oxygenated blood content of biological tissue
CN212308034U (en) Laser scanning device and beauty equipment
KR200418193Y1 (en) A light control device of the skin care device
KR102221416B1 (en) Near infrared device, and system for monitoring skin condition through the same and method thereof
KR20050080051A (en) A light control device of the skin care device
TW201935034A (en) Multi-function blood vessel-positioning device and method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: YA-MAN LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAMAZAKI, AKITSUGU;YAMAZAKI, IWAO;REEL/FRAME:029696/0314

Effective date: 20130124

AS Assignment

Owner name: YA-MAN LTD., JAPAN

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ADDRESS OF THE ASSIGNEE PREVIOUSLY RECORDED ON REEL 029696 FRAME 0314. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECT ADDRESS OF THE ASSIGNEE IS 4-4, FURUISHIBA 1-CHOME, KOTO-KU TOKYO, JAPAN 1350045;ASSIGNORS:YAMAZAKI, AKITSUGU;YAMAZAKI, IWAO;REEL/FRAME:029724/0283

Effective date: 20130124

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION