US20130138153A1 - Dynamic stabilization assembly having pre-compressed spacers with differential displacements - Google Patents

Dynamic stabilization assembly having pre-compressed spacers with differential displacements Download PDF

Info

Publication number
US20130138153A1
US20130138153A1 US13/694,982 US201313694982A US2013138153A1 US 20130138153 A1 US20130138153 A1 US 20130138153A1 US 201313694982 A US201313694982 A US 201313694982A US 2013138153 A1 US2013138153 A1 US 2013138153A1
Authority
US
United States
Prior art keywords
sleeve
core
assembly
spacers
anchor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/694,982
Inventor
Roger P. Jackson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/148,465 external-priority patent/US10258382B2/en
Priority claimed from US12/156,260 external-priority patent/US7951170B2/en
Application filed by Individual filed Critical Individual
Priority to US13/694,982 priority Critical patent/US20130138153A1/en
Publication of US20130138153A1 publication Critical patent/US20130138153A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/7026Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other with a part that is flexible due to its form
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/702Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other having a core or insert, and a sleeve, whereby a screw or hook can move along the core or in the sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7035Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other
    • A61B17/7037Screws or hooks, wherein a rod-clamping part and a bone-anchoring part can pivot relative to each other wherein pivoting is blocked when the rod is clamped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7049Connectors, not bearing on the vertebrae, for linking longitudinal elements together
    • A61B17/705Connectors, not bearing on the vertebrae, for linking longitudinal elements together for linking adjacent ends of longitudinal elements

Definitions

  • longitudinal connecting members have been designed that are of a material, size and shape to largely resist bending (flexion, extension and lateral), torsion, shear, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused.
  • longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially inelastic rigid support in all planes.
  • Such a cord or strand may be threaded through cannulated spacers that are disposed between adjacent bone anchors when such a cord or strand is implanted, tensioned and attached to the bone anchors.
  • the spacers typically span the distance between bone anchors, providing limits on the bending, movement of the cord or strand and thus strengthening and supporting the overall system. Shear forces are not well resisted by the typical cord and spacer stabilization systems.
  • tensioned cord and spacer systems may also cause facet joint compression during spinal movement, especially flexion.
  • the complex dynamic conditions associated with spinal movement create challenges for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and that allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member.
  • a further challenge are situations in which a portion or length of the spine requires a more rigid stabilization, possibly including fusion, while another portion or length may be better supported by a more dynamic system that allows for protective movement.
  • a longitudinal connecting member assembly has an inner elongate core of circular or non-circular cross-section that is integral or otherwise fixed to a first bone anchor attachment portion.
  • a first elastic spacer surrounds the core and is slidable along the core at a location between a pair of adjacent bone anchors.
  • At least one outer inelastic sleeve or tube-like trolley member also surrounds the core and is in sliding relationship with the core. The outer sleeve also engages at least one bone anchor.
  • a second elastic spacer of durometer or geometry differing from the first elastic spacer also surrounds the core and is located at a side of the at least one sleeve member opposite the first elastic spacer.
  • the inner core, elastic spacers and inelastic sleeve or sleeves cooperate dynamically, with the spacers being at least somewhat pre-compressed resulting in little-to-no or more substantial deformation of the spacers prior to insertion, and controlling movement of the sleeve allowing greater travel of the sleeve along the core in a single direction; for example, advantageously allowing greater operative travel of the sleeve in a cephalad or cranial direction and more limited movement in a caudal or caudad direction after insertion.
  • the sleeve or tube trolley members feature inner surfaces having non-linear relief for improved core member function with respect to bending stress, wear and fatigue life concerns.
  • an improved longitudinal connecting member adapted for cooperating with a plurality of bone anchors that are implanted in a patient's spine
  • the longitudinal connecting member includes a substantially rigid anchor portion that extends along a longitudinal axis of the connecting member and is joined with a core portion that also extends along the longitudinal axis.
  • the anchor portion formed of a first material and the core portion is formed of a second material.
  • the core portion includes a reduced diameter relative to the anchor portion, such that the second material and the reduced diameter cooperate so as to enable at least some flexing of the core portion.
  • the anchor portion is directly engaged by first and second bone anchors while the core portion is indirectly engaged by a third bone anchor.
  • the longitudinal connection member provides for greater movement in the cephalad direction than in the caudad direction.
  • the anchor portion includes has a first end plate and the elastic over-mold is molded about the first end plate.
  • the elastic over-mold is made from a composite material comprising elongate reinforcement strands imbedded in a polymer.
  • the core is made from a polymer.
  • the polymer is polyetheretherketone.
  • the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve. Additionally, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion.
  • the longitudinal connecting member also includes a second inelastic sleeve slidingly received over the core portion so as to be located between a fourth bone anchor and the core portion; a third elastic spacer received over the core portion so as to be located between the second inelastic sleeve and the crip ring; and a second elastic over-mold surrounding a second end of the first sleeve, the third spacer and an adjacent end of the second sleeve.
  • the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve; and the second sleeve substantially blocks flexing of the portion of the core that is surrounded by the second sleeve. Accordingly, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion; and between the first sleeve and the second sleeve.
  • An object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include a flexible, pre-tensioned portion that can allow for controlled bending, torsion, compression and distraction of the assembly. Another object of the invention is to provide such an assembly including elastic pre-compressed spacers of various durometers and/or geometries. A further object of the invention is to provide dynamic medical implant longitudinal connecting members that may be utilized with a variety of bone screws, hooks and other bone anchors. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone anchors and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
  • FIG. 3 is an enlarged and partial exploded perspective view of the assembly of FIG. 1 including a solid core anchor, a first differential compression spacer, a first pressure washer, a first sleeve, a second pressure washer, a second differential compression spacer, a third pressure washer, a second sleeve, an elastic bumper and a crimping ring.
  • FIG. 4 is an enlarged and partial cross-sectional view taken along the line 4 - 4 of FIG. 1 and with two optional over-molded coverings shown in phantom.
  • FIG. 5 is an enlarged side elevational view of the solid core anchor of FIG. 3 .
  • FIG. 6 is an enlarged top plan view of the first differential compression spacer of FIG. 3 .
  • FIG. 7 is an enlarged bottom plan view of the first spacer of FIG. 3 .
  • FIG. 8 is an enlarged side elevational view of the first spacer of FIG. 3 .
  • FIG. 9 is an enlarged cross-sectional view taken along the line 9 - 9 of FIG. 6 .
  • FIG. 10 is an enlarged top plan view of the first pressure washer of FIG. 3 .
  • FIG. 11 is an enlarged side elevational view of the first pressure washer of FIG. 3 .
  • FIG. 12 is an enlarged cross-sectional view taken along the line 12 - 12 of FIG. 10 .
  • FIG. 13 is an enlarged side elevational view of the first sleeve of FIG. 3 .
  • FIG. 14 is an enlarged top plan view of the first sleeve of FIG. 3 .
  • FIG. 15 is an enlarged cross-sectional view taken along the line 15 - 15 of FIG. 14 .
  • FIG. 16 is an enlarged top plan view of the second spacer of FIG. 3 .
  • FIG. 17 is an enlarged side elevational view of the second spacer of FIG. 3 .
  • FIG. 18 is an enlarged cross-sectional view taken along the line 18 - 18 of FIG. 16 .
  • FIG. 19 is, an enlarged top plan view of the second sleeve of FIG. 3 .
  • FIG. 20 is an enlarged bottom plan view of the second sleeve of FIG. 3 .
  • FIG. 21 is an enlarged side elevational view of the second sleeve of FIG. 3 .
  • FIG. 22 is an enlarged cross-sectional view taken along the line 22 - 22 of FIG. 19 .
  • FIG. 23 is an enlarged top plan view of the bumper of FIG. 3 .
  • FIG. 24 is an enlarged side elevational view of the bumper of FIG. 3 .
  • FIG. 25 is an enlarged cross-sectional view taken along the line 25 - 25 of FIG. 23 .
  • FIG. 26 is an enlarged top plan view of the crimping ring of FIG. 3 .
  • FIG. 27 is an enlarged side elevational view of the crimping ring of FIG. 3 .
  • FIG. 28 is an enlarged cross-sectional view taken along the line 28 - 28 of FIG. 26 .
  • FIG. 29 is an enlarged exploded perspective view of a portion of one of the bone screws shown in FIG. 2 .
  • FIG. 30 is an enlarged perspective view of the connecting member of FIG. 1 shown with one of the bone screws of FIG. 2 in exploded perspective view.
  • FIG. 31 is an enlarged and partial side elevational view of the assembly of FIG. 1 , shown with a bone screw of FIG. 2 , with portions broken away to show the detail thereof.
  • FIG. 32 is a partial side elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and with differential displacement in a caudal direction.
  • FIG. 33 is a partial side elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and with differential displacement in a cephalad direction.
  • FIG. 35 is an enlarged and partial side elevational view, similar to FIG. 34 with portions broken away to show the detail thereof.
  • FIG. 36 is a rear elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and shown operatively responding to spinal scoliosis.
  • FIG. 37 is an enlarged and partial rear elevational view, similar to FIG. 36 with portions broken away to show the detail thereof.
  • FIG. 39 is an enlarged and exploded side elevational view of the assembly of FIG. 38 .
  • FIG. 40 is an enlarged side elevational view of the assembly of FIG. 38 with the optional over-mold in phantom.
  • FIG. 41 is an enlarged and partial side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and the spacer shown under operative compression.
  • FIG. 42 is a partial side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and differential displacement in a cephalad direction in response to spinal distraction or tension.
  • FIG. 43 is a side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and shown in compression and operatively responding to spinal extension or lordosis.
  • FIG. 44 is an enlarged side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and shown operatively responding to spinal distraction as well as flexion.
  • FIG. 45 is an enlarged side elevational view of a third embodiment of a dynamic connecting member assembly according to the invention.
  • FIG. 46 is a reduced and partial exploded perspective view of the assembly of FIG. 45 .
  • FIG. 47 is an enlarged and partial cross sectional view taken along the line 47 - 47 of FIG. 45 with an optional over-mold shown in phantom.
  • the reference numeral 1 generally designates a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention.
  • the connecting member assembly 1 includes an inelastic anchor member, generally 4 , having an inelastic elongate inner core 6 extending from a bone anchor attachment portion 8 ; a first elastic differential compression spacer 10 ; a first hard or inelastic contoured pressure washer 11 ; a first inelastic sleeve or sleeve trolley 12 ; a second inelastic contoured pressure washer 13 ; a second elastic differential compression spacer 14 ; a third inelastic contoured pressure washer 15 ; a second inelastic sleeve 16 ; a third elastic differential compression spacer or elastic bumper 18 ; and an inelastic crimping ring 20 ; all substantially symmetrically aligned with respect to a central axis A of the anchor member 4 .
  • the elongate core 6 of the anchor member 4 is receivable within the spacers, sleeves, pressure washers, bumper and crimping ring.
  • the axis A of the anchor member 4 is also the axis of the fully assembled assembly 1 .
  • An optional over-molded sleeve or casing 22 can surround a portion of the anchor member 4 extending to the bone anchor attaching portion 8 , the spacer 10 , the washer 11 and a portion of the sleeve 12 .
  • a second over-molded sleeve or casing 23 surrounds a portion of the sleeve 12 , the washer 13 , the spacer 14 , the washer 15 and a portion of the sleeve 16 .
  • FIGS. 1 , 2 and 4 when fully assembled and all components fixed in position, as shown in FIGS. 1 , 2 and 4 , for example, the spacers 10 and 14 and the bumper 18 are in compression, with the more elastic bumper 18 shown being slightly deformed and bulging outwardly due to the compressive force placed thereupon.
  • the pre-compressed spacers and bumpers in turn place axial forces upon the sleeves 12 and 16 , the sleeves thus being in a dynamic relationship with the spacers and movable with respect to the core.
  • FIG. 1 , 2 and 4 when fully assembled and all components fixed in position, as shown in FIGS. 1 , 2 and 4 , for example, the spacers 10 and 14 and the bumper 18 are in compression, with the more elastic bumper 18 shown being slightly deformed and bulging outwardly due to the compressive force placed thereupon.
  • the pre-compressed spacers and bumpers in turn place axial forces upon the sleeves 12 and 16 , the sleeves thus being in a dynamic relationship with the spacers and mov
  • the dynamic connecting member assembly 1 cooperates with at least three bone anchors and is illustrated with four bone anchors in the form of polyaxial bone screws, generally 25 , the assembly 1 being captured and fixed in place at the anchor portion 8 , the inelastic sleeve 12 and the inelastic sleeve 16 by the bone screws 25 .
  • the bone screws 25 are equipped with upper and lower pressure inserts to closely hold the sleeves and yet not crush the sleeves against the inner core 6 .
  • the illustrated polyaxial screws 25 each include a shank 27 , a receiver or head 28 , a lower pressure insert 29 , an upper pressure insert 30 and a closure structure, generally 32 that further includes and outer fastener 33 and an inner set screw 34 .
  • the illustrated shank 27 for insertion into a vertebra (not shown) is pivotally attached to the open receiver or head 28 .
  • the shank 27 includes a threaded outer surface and optionally includes a central cannula or through-bore disposed along an axis of rotation of the shank 27 .
  • the through bore provides a passage through the shank interior for a length of wire or pin inserted into the vertebra prior to the insertion of the shank 27 , the wire or pin providing a guide for insertion of the shank 27 into the vertebra.
  • the receiver 28 includes a pair of spaced and generally parallel arms that form an open generally U-shaped channel therebetween that is open at distal ends of such arms.
  • the receiver arms each include radially inward or interior surfaces that have a discontinuous guide and advancement structure mateable with cooperating structure on the outer fastener 33 .
  • the guide and advancement structure may be a partial helically wound flangeform configured to mate under rotation with a similar structure on the outer fastener 33 or a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the fastener 33 downward between the receiver arms and having such a nature as to resist splaying of the receiver arms when the fastener 33 is advanced between the receiver arms.
  • the closure structure 32 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the interior surface of the upstanding arms of the receiver 28 .
  • the illustrated closure structure 27 is in two pieces with the outer fastener 33 rotatable between the spaced arms and the inner set screw 34 rotatable within the outer fastener 33 .
  • single piece closures may be used and other structures, such as slide-in closure structures may be used as an alternative to helically wound closures.
  • the illustrated outer fastener 33 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form that may take a variety of forms, including those described in Applicant's U.S. Pat. No.
  • the assembly 1 is elongate, with the inner core 6 being a substantially solid, smooth and in the form of a uniform cylinder or rod having an outer cylindrical surface 36 and a substantially circular cross-section.
  • the core 6 and integral anchor attachment portion 8 may be made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber and layers of different materials.
  • PEEK polyetheretherketone
  • UHMWP ultra-high-molecular weight-polyethylene
  • the anchor member 4 is substantially cylindrical along an entire length thereof along the axis A and includes at least two or more circular cross-sections along the length thereof.
  • the illustrated member 4 includes the slender and thus more flexible core 6 of a first circular cross-section and the bone anchor attachment portion 8 that has a second circular cross-section that is larger than the core 6 cross-section and thus is more rigid than the core 6 .
  • the core 6 terminates at an end 38 .
  • the illustrated anchor member 4 is substantially cylindrical, it is foreseen that the core 6 , the portion 8 and the plate 40 may have other forms, including but not limited to oval, square and rectangular cross-sections as well as other curved or polygonal shapes.
  • the bone anchor attachment portion 8 is of a length along the axis A for cooperating with at least one and up to a plurality of bone attachment members, such as the bone screws 25 , hooks or other types of bone anchors.
  • the portion 8 is substantially solid and rigid, with an outer cylindrical surface 39 that terminates at an end 41 .
  • the plate 40 includes a first substantially flat and annular face 42 facing away from the core 6 and an opposed face 44 facing toward the core 6 .
  • the faces 42 and 44 extend radially from the axis A.
  • An outer cylindrical surface 46 extends between the faces 42 and 44 .
  • a gently sloping transition surface or flange 48 bridges between and connects the outer cylindrical surface 36 of the core 6 with the substantially flat facing face 44 of the buttress plate 40
  • the sleeves 12 and 16 are each sized and shaped to be slidingly received over the core 6 along the axis A and each have a length measured along the axis A that is sufficient for the attachment of at least one bone screw 25 thereon.
  • the inelastic sleeves 12 and 16 may be made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber.
  • the sleeves 12 and 16 may be made of the same material as the cooperating core 6 , for example, the anchor member 4 and the sleeves 12 and 16 may all be made from PEEK; or, for example, the core 6 may be made from one material, such as PEEK, while the sleeves 12 and 16 may be made from another material, such as a metal (e.g. stainless steel or titanium).
  • the sleeve 12 and 16 inner surfaces and/or cooperating core 6 outer surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
  • the elastic spacers 10 and 14 and the elastic bumper 18 are sized and shaped to be slidingly received over the core 6 and may be made from a variety of elastic materials of different durometers and materials, including, but not limited to natural or synthetic elastomers such as polyisoprene (natural rubber), and synthetic polymers, copolymers, and thermoplastic elastomers, for example, polyurethane elastomers such as polycarbonate-urethane elastomers.
  • the spacers 10 and 14 and bumper 18 inner and side surfaces may also be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
  • the illustrated spacers 10 and 14 advantageously cooperate with the core 6 of the anchor member 4 , providing directed axial movement, limitation and protection of movement by the sleeves 12 and 16 along the core 6 located between bone screws 25 .
  • the illustrated spacers 10 and 14 are substantially similar in geometry, differing only with regard to inner surfaces that define through bores for receiving the anchor member core 6 and number of optional outer grooves.
  • Each of the spacers 10 and 14 have an external substantially cylindrical outer surface 78 and 80 , respectively, and internal surfaces 82 and 84 , respectively, each defining through bores.
  • the internal surface 82 is further defined by a flared or conical outwardly extending surface 86 sized and shaped for cooperating with the transition surface 48 of the anchor member 4 .
  • the spacer 10 includes opposed substantially planar and annular end surfaces 88 and 89 and the spacer 14 includes opposed substantially planar and annular end surfaces 90 and 91 .
  • the end surfaces 88 and 89 and 90 and 91 are substantially perpendicular to the axis A. It is foreseen that in some embodiments, the spacers 10 and 14 may be of circular, square, rectangular or other cross-section including curved or polygonal shapes.
  • both the spacers 10 and 14 further include optional compression grooves, the spacer 10 having a single groove 93 and the spacer 14 having a pair of grooves 94 and 95 .
  • Spacers according to the invention may include one, none or any desired number of grooves that allow for some additional compression of the spacers 10 and 14 when pressed upon in an axial direction between the bone anchor attachment portion 8 and the cooperating sleeves 12 and 16 .
  • the illustrated groove 93 and groove pair 94 and 95 are substantially uniform and circular in cross-section, being formed in the respective external surfaces 78 and 80 and extending radially toward respective internal surfaces 82 and 84 .
  • the pressure washer 11 has an external substantially cylindrical outer surface 98 and internal substantially cylindrical surface 100 , defining a through bore sized and shaped to receive the core 6 .
  • the washer 11 further includes a substantially planar end surface 102 and an opposed, curved, convex surface 104 sized and shaped for cooperation with a substantially concave surface of a cooperating sleeve, such as the surface 70 , surface 72 or the surface 74 .
  • the illustrated convex surface 104 is at least partially spherical.
  • the end surface 102 is substantially perpendicular to the axis A.
  • the size of the internal surface 100 allows for some axially directed sliding movement of the washer 11 with respect to the core surface 36 .
  • the washer 11 is preferably made from a firm material, such as metal and metal alloys with titanium being particularly preferred; or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber.
  • PEEK polyetheretherketone
  • UHMWP ultra-high-molecular weight-polyethylene
  • polyurethanes and composites, including composites containing carbon fiber.
  • the washers 11 , 13 and 15 are preferably made from a material different than the cooperating sleeves 12 and 16 .
  • the sleeves 12 and 16 may be made of a titanium alloy while the washers 11 , 13 and 15 may be made from a high molecular weight polyethylene.
  • the pressure washer 11 advantageously allows for tilt, slide and rotation of the washers along the core 6 and with respect to the sleeve 12 , maintaining substantially full contact between the washer 11 and the sleeve 12 , resulting in better load distribution along the assembly 1 , keeping stresses on the inside of the tubular sleeve 12 , rather than on an outer surface or end, and thus allowing for better angulation, translation and compression of the entire assembly 1 , as each of the pressure washers 11 , 13 and 15 have curved, convex surfaces fully contacting and cooperating with substantially similarly curved concave inner surfaces of the sleeves 12 and 16 .
  • the core 6 , cooperating compressible spacers 10 and 14 have curved, convex surfaces fully contacting and cooperating with substantially similarly curved concave inner surfaces of the sleeves 12 and 16 .
  • the over-molded coverings 22 and 23 are preferably thin, soft and elastic, primarily provide protection to the body by keeping wear debris within the assembly 1 and keeping scar tissue out of the assembly 1 at the juncture between the spacers, washers and sleeves. Particularly when the assembly 1 is placed in tension as shown in FIG. 33 , the over-molded sections 22 and 23 provide a covering over the components that may separate, for example, the pressure washer 11 and the sleeve 12 , guarding against gaps that might otherwise irritate scar and surrounding body tissue.
  • the over-molded sections 22 and 23 may be made of a variety of materials including natural and synthetic plastics and composites.
  • the illustrated over-molds 22 and 23 are a molded thermoplastic elastomer, for example, polyurethane or a polyurethane blend; however, any suitable polymer material may be used.
  • the illustrated dynamic connecting member assembly 1 having pre-compressed spacers is shown cooperating with four polyaxial bone screws 25 as shown in FIG. 2 .
  • the bone screws 25 are implanted into vertebrae (not shown).
  • Each vertebra may be pre-drilled to minimize stressing the bone.
  • each vertebra will have a guide wire or pin inserted therein that is shaped for the bone screw cannula of the bone screw shank 27 and provides a guide for the placement and angle of the shank 27 with respect to the cooperating vertebra.
  • the longitudinal connecting member assembly 1 is assembled to provide pre-compressed spacers 10 and 14 and bumper 18 prior to implanting the assembly 1 in a patient.
  • FIGS. 1 , 2 and 4 illustrated the pre-compressed, ready to use assembly 1
  • FIG. 32 illustrates the assembly 1 during spinal movement that results in further compression of the spacers 10 and 14
  • FIG. 33 illustrates the assembly 1 during spinal movement that results in further compression of the bumper 18 and extension of the assembly 1 at the spacers 10 and 14
  • the assembly 1 is assembled by first providing the anchor member 4 that has a core 6 that is longer in the axial direction A than the core 6 illustrated in the drawing figures.
  • the spacer 10 is first loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 82 with the face 89 directed toward the buttress plate 40 .
  • the spacer 10 is moved along the core 6 until the surface 86 contacts the surface 48 .
  • the pressure washer 11 is then threaded on the core 6 with the face 102 facing the end surface 88 of the spacer 10 .
  • the sleeve 12 is then threaded onto the core 6 with the concave face 72 of the plate 60 facing the convex surface 104 of the pressure washer 11 .
  • the core 6 is then received in the bore of the pressure washer 13 , with the convex face of the washer 13 facing the concave face 70 of the sleeve 12 .
  • the spacer 14 is thereafter loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 84 with the face 91 facing the toward the pressure washer 13 .
  • the spacer 14 is moved along the core 6 until the spacer 14 contacts the pressure washer 13 .
  • the pressure washer 15 is then threaded on the core with a planar face thereof facing the planar face 90 of the spacer 14 .
  • the sleeve 16 is then threaded onto the core 6 with the concave face 74 facing the convex end surface of the pressure washer 15 .
  • the core 6 is received in the bore defined by the inner cylindrical surface 56 and the sleeve 16 is moved along the core 6 until the sleeve 16 abuts the pressure washer 15 .
  • manipulation tools (not shown) are used to grasp the core 6 near the end 38 and at the bone anchor attachment portion 8 , placing some tension on the core 6 .
  • the spacer 10 , the sleeve 12 , the spacer 14 , the sleeve 16 , the bumper 18 and the crimping ring 20 are moved toward the buttress plate 40 and into contact with one another.
  • a desired amount of axial compressive force is placed on the components loaded on the core 6 , followed by deforming the crimping ring at the crimp grooves 120 and against the core 6 .
  • the crimping ring 20 When the manipulation tools are released, the crimping ring 20 , now firmly and fixedly attached to the core 6 holds the spacers 10 and 14 and the bumper 18 in compression and the spacers and bumper place axial tension forces on the core 6 , resulting in a dynamic relationship between the core 6 and the spacers 10 , 14 and the bumper 18 .
  • the spacers 10 and 16 are slidable with respect to the core 6 , but also are limited by the buttress plate of the anchor member 4 and end plates of the sleeves 12 and 16 .
  • the bumper 18 that is compressed between the sleeve surface 76 and the crimping ring surface 116 is also slidable with respect to the core 6 .
  • the spacers 10 and 14 and the bumper 18 place a distractive force on the core 6 along the axis A and between the buttress plate 40 and the crimping ring 20 , but also are movable with respect to the core 6 , thus being able to respond to jolting and other body movements and thereafter spring back into an originally set location.
  • the sleeves 12 and 16 that may compress slightly, but are more rigid than the spacers 10 and 14 , keep the spacers 10 and 14 in an approximate desired axially spaced relation.
  • the spacers 10 and 14 also advantageously slide along the core 6 in response to outside forces.
  • the core 6 is then trimmed to be approximately flush with the end surface 114 of the crimping ring 20 .
  • the over-molds 22 and 23 are fabricated by first placing the anchor portion 8 and/or the sleeves 12 or 16 in a jig or other holding mechanism such that the jig frictionally engages such portion 8 and/or sleeves 12 and 16 , followed by fabricating the over-mold 22 about and between the plate 40 , the spacer 10 , the pressure washer 11 and an end portion of the sleeve 12 and the over-mold 23 about and between an opposite end portion of the sleeve 12 , the washer 13 , the spacer 14 , the washer 15 and an end portion of the sleeve 16 as best shown in phantom in FIG. 4 .
  • an elastic, polymeric material flows about the desired components of the assembly 1 at room temperature, followed by a vacuum cure.
  • the over-molds 22 and 23 may be fabricated about the desired assembly 1 components prior to compression of the spacers 10 and 14 and the bumper 18 .
  • the over-molds 22 and 23 may be fabricated about the spacers 10 and 14 after an initial compression of the spacers, followed by a final compression step after cure of the over-molds.
  • the assembly 1 is eventually positioned in an open or percutaneous manner in cooperation with the bone screws 25 with the over-molds 22 and 23 disposed between bone screws 25 , with a bone screw attached to each of the sleeves 12 and 16 and, as illustrated, two bone screws 25 attached to the anchor portion 8 .
  • a closure structure 32 is used to attach each screw 25 to the assembly 1 with the sleeves 12 and 16 and the anchor portion 8 each being cradled between a lower pressure insert 29 and an upper pressure insert 30 .
  • FIGS. 2 , 32 - 33 a desired placement of the assembly 1 is shown wherein an arrow C indicates movement of the bone screws 25 attached to the sleeves 12 and 15 generally in a cephalad or cranial direction.
  • FIG. 2 illustrated a pre-compressed assembly 1 in a neutral position
  • FIG. 32 illustrates compression of the spacers 10 , 14
  • FIG. 33 shows extension or tension of the assembly at spacers 10 , 14 and movement of the sleeves 12 and 16 in a cephalad direction (arrow c).
  • the assembly 1 allows greater movement of the sleeves and thus the bone screws 25 and attached spinal segments in the cephalad direction than in the caudad direction, the elastic bumper 18 being the most compressible component of the assembly 1 and the spacer 14 being more elastic and thus more compressible than the spacer 10 due to the geometry thereof (e.g., an extra groove in the spacer 14 ).
  • the spacer 14 may be made from a material of different durometer than the spacer 10 , to allow for a desirable increased upward or cephalad movement of a portion of the assembly 10 .
  • supported spinal extension as well as movement in the cephalad direction C is also possible with the assembly 1 .
  • the washers 11 , 13 and 15 are slidable and rotatable with respect to the cooperating sleeves 12 and 16 , advantageously providing steady, balanced and controlled load distribution during angulation, both spinal extension and flexion as well as during compression and tension.
  • the washers 11 , 13 , and 15 and sleeves 12 and 16 cooperate with the spacers 10 and 14 to aid in bending and tilting of the assembly 1 , supporting and controlling the spine in response to lordosis and kyphosis, for example, and also providing for rotation and tilting of the assembly in both coronal and sagittal planes, supporting and controlling the spine in the case of scoliosis as shown in FIGS. 36 and 37 .
  • the assembly 1 is substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to not pnly flexion and extension, but also to distractive, compressive, torsional and shear forces placed on assembly 1 and bone screws 25 .
  • relief e.g., shock absorption
  • disassembly is accomplished by using a driving tool (not shown) with a driving formation cooperating with the closure structure 32 to rotate and remove the closure structure from the receiver 28 . Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.
  • the connecting member assembly 1 may be removed and replaced with another longitudinal connecting member, such as a solid rod, having the same diameter as the rod portions 8 , utilizing the same bone screw 25 components.
  • another longitudinal connecting member such as a solid rod, having the same diameter as the rod portions 8 , utilizing the same bone screw 25 components.
  • a less rigid, more flexible assembly for example, an assembly 1 made with elastic spacers and bumper of different durometer or geometry may replace the assembly 1 , also utilizing the same bone screws 25 .
  • an alternative embodiment of a dynamic longitudinal connecting member, generally 201 is substantially similar to the assembly 1 with the exception that it is shorter than the assembly 1 , cooperating with fewer bone screws along an elastic and more flexible portion thereof. Similar to the assembly 1 , the assembly 201 provides for greater movement in the cephalad direction as indicated by the arrow marked CC.
  • the axis AA of the anchor member 204 is also the axis of the fully assembled assembly 201 .
  • the spacer 210 and the bumper 218 are placed in compression as shown in FIG. 40 and an elastic over-mold or covering 222 is applied about a buttress plate 240 of the anchor 204 , the spacer 210 , the washer 211 and a portion of the sleeve 212 (the covering 222 shown in phantom in FIG. 40 ) prior to attachment to three bone screws 25 as shown in FIG. 38 .
  • the anchor member 204 is substantially similar to the anchor member 4 previously described herein with respect to the assembly 1 . Therefore, the member 204 includes the core 206 , the bone anchor attachment portion 208 and the integral buttress plate 240 identical or substantially similar in size and shape to the respective core 6 , attachment portion 8 and buttress plate 40 of the anchor member 4 previously described herein.
  • the member 204 differs from the member 4 only in that the length of the core 206 is shorter than the core 6 as the core 206 holds only one sleeve 216 , one cooperating spacer 210 and one washer 211 as compared to the core 6 that holds two sleeves, two spacers and three cooperating washers.
  • the spacer 210 is identical or substantially similar to the spacer 10 previously described herein.
  • the sleeve 216 is identical or substantially similar to the sleeve 16 , having a concave end surface 274 identical or substantially similar to the concave end surface 74 of the sleeve 16 previously described herein.
  • the washer 211 is identical or substantially similar to the washer 11 previously described herein, having a substantially convex end surface 304 identical or substantially similar to the end surface 104 os the washer 11 .
  • the surface 304 is slidably engageable with the concave surface 274 of the sleeve 216 such that a full and even surface contact occurs between the sleeve 216 and the washer 211 , providing better load distribution along the assembly 201 , keeping stresses on the inside of the sleeve 216 rather than on an outer surface during angulation, translation and compression.
  • the bumper 218 and the crimping ring 220 are identical or substantially similar to the respective bumper 18 and the crimping ring 20 previously described herein with respect to the assembly 1 .
  • an alternative embodiment of a dynamic longitudinal connecting member, generally 301 is substantially similar to the assembly 1 with the exception of some aspects of the geometry of the sleeve or tube trolley members, one of the spacers and two of the pressure washers located on either side of such spacer. Similar to the assembly 1 , the assembly 301 provides for greater movement in the cephalad direction as indicated by the arrow marked CCC.
  • the axis AAA of the anchor member 304 is also the axis of the fully assembled assembly 301 .
  • the spacers 310 and 314 and the bumper 318 are placed in compression as shown in FIG. 45 and an optional elastic over-mold or covering 322 is applied about a buttress plate 340 of the anchor 304 , the spacer 310 , the washer 311 and a portion of the sleeve 312 and an optional elastic over-mold or covering 323 is applied about a portion of the sleeve 312 , the washer 313 , the spacer 314 , the washer 315 and a portion of the sleeve 316 , both over-molds 322 and 323 molded over such component parts prior to attachment of the assembly 310 to three bone anchors such as the bone screws 25 , in the same positions shown for the assembly 1 in FIG. 32 , for example.
  • the anchor member 304 , the spacer 310 , the pressure washer 311 , the sleeve 312 , the bumper 318 and the crimping ring 320 are identical or substantially similar to the respective anchor member 4 , spacer 10 , pressure washer 11 , sleeve 12 , bumper 18 and crimping ring 20 of the assembly 1 and therefore shall not be discussed in great detail herein.
  • the sleeve 312 has a curved inner surface 354 substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12 .
  • the sleeve 316 has a curved inner surface 355 that is also substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12 .
  • the assembly 301 is now in dynamic relationship with the spacers 310 and 314 , washers 311 , 313 and 315 , sleeves 312 and 316 and bumper 318 being slidable with respect to the core 306 , both sleeves 312 and 316 being more readily movable in a direction toward the bumper 318 due to the greater elasticity of the bumper 318 as compared to the spacers 310 and 314 .
  • the assembly 301 may then be implanted, cooperating with three bone screws 25 as previously illustrated with respect to the assembly 1 .
  • the assembly 301 provides for a dynamic and flexible connection between three bone anchors.
  • the double domed articulating wear washers 313 and 315 cooperating with the cupped spacer 314 allow for increased flexion and extension over the assembly 1 having the spacer 14 with planar surfaces. While the assembly 1 spacer 14 , for example, elastically compresses when the assembly bends during spinal flexion or extension, the pressure washers 313 and 315 may slidingly articulate along the surfaces 390 and 391 of the spacer 314 during spinal flexion or extension. If compression accompanies the bending movement, the spacer 314 may also compress slightly in response to the spinal movement.

Abstract

A dynamic longitudinal connecting member assembly includes an anchor member having an integral or otherwise fixed elongate core extending through at least two elastic spacers and at least one outer sleeve or trolley. The anchor member and the outer sleeve each attach to at least one bone anchor. The spacers have differing durometers and/or geometries, resulting in greater axial movement of the sleeve in one direction than in an opposite direction. The spacers are compressed prior to attachment to the bone anchors.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 12/459,492, filed Jul. 1, 2009 which claimed the benefit of U.S. Provisional Patent Application Ser. No. 61/134,480, filed Jul. 10, 2008 and claimed the benefit of U.S. Provisional Patent Application Ser. No. 61/137,743, filed Aug. 1, 2008, all of which are incorporated by reference herein. U.S. application Ser. No. 12/459,492 is also a continuation-in-part of U.S. patent application Ser. No. 12/148,465, filed Apr. 18, 2008, that claims the benefit of U.S. Provisional Patent Application Ser. No. 60/927,111, filed May 1, 2007, all of which are incorporated by reference herein. Application Ser. No. 12/459,492 is also a continuation-in-part of U.S. patent application Ser. No. 12/156,260, filed May 30, 2008, now U.S. Pat. No. 7,951,170, issued May 31, 2011, that claimed the benefit of U.S. Provisional Patent Application Ser. No. 60/932,567, filed May 31, 2007, and the benefit of U.S. Provisional Patent Application Ser. No. 60/994,068, filed Sep. 17, 2007, all of which are incorporated by reference herein.
  • BACKGROUND OF THE INVENTION
  • The present invention is directed to dynamic fixation assemblies for use in bone surgery, particularly spinal surgery, and in particular to longitudinal connecting members and cooperating bone anchors or fasteners for such assemblies, the connecting members being attached to at least two bone anchors.
  • Historically, it has been common to fuse adjacent vertebrae that are placed in fixed relation by the installation therealong of bone screws or other bone anchors and cooperating longitudinal connecting members or other elongate members. Fusion results in the permanent immobilization of one or more of the intervertebral joints. Because the anchoring of bone screws, hooks and other types of anchors directly to a vertebra can result in significant forces being placed on the vertebra, and such forces may ultimately result in the loosening of the bone screw or other anchor from the vertebra, fusion allows for the growth and development of a bone counterpart to the longitudinal connecting member that can maintain the spine in the desired position even if the implants ultimately fail or are removed. Because fusion has been a desired component of spinal stabilization procedures, longitudinal connecting members have been designed that are of a material, size and shape to largely resist bending (flexion, extension and lateral), torsion, shear, distraction and compression, and thus substantially immobilize the portion of the spine that is to be fused. Thus, longitudinal connecting members are typically uniform along an entire length thereof, and usually made from a single or integral piece of material having a uniform diameter or width of a size to provide substantially inelastic rigid support in all planes.
  • An alternative to fusion, which immobilizes at least a portion of the spine, and the use of more rigid longitudinal connecting members or other rigid structure has been a “soft” or “dynamic” stabilization approach in which a flexible loop-, S-, C- or U-shaped member or a coil-like and/or a spring-like member is utilized as an elastic longitudinal connecting member fixed between a pair of pedicle screws in an attempt to create, as much as possible, a normal loading pattern between the vertebrae in flexion, extension, side bending, distraction, compression and torsion. Another type of soft or dynamic system known in the art includes bone anchors connected by flexible cords or strands, typically made from a plastic material. Such a cord or strand may be threaded through cannulated spacers that are disposed between adjacent bone anchors when such a cord or strand is implanted, tensioned and attached to the bone anchors. The spacers typically span the distance between bone anchors, providing limits on the bending, movement of the cord or strand and thus strengthening and supporting the overall system. Shear forces are not well resisted by the typical cord and spacer stabilization systems. Such tensioned cord and spacer systems may also cause facet joint compression during spinal movement, especially flexion.
  • The complex dynamic conditions associated with spinal movement create challenges for the design of elongate elastic longitudinal connecting members that exhibit an adequate fatigue strength to provide stabilization and protected motion of the spine, without fusion, and that allow for some natural movement of the portion of the spine being reinforced and supported by the elongate elastic or flexible connecting member. A further challenge are situations in which a portion or length of the spine requires a more rigid stabilization, possibly including fusion, while another portion or length may be better supported by a more dynamic system that allows for protective movement.
  • SUMMARY OF THE INVENTION
  • A longitudinal connecting member assembly according to the invention has an inner elongate core of circular or non-circular cross-section that is integral or otherwise fixed to a first bone anchor attachment portion. A first elastic spacer surrounds the core and is slidable along the core at a location between a pair of adjacent bone anchors. At least one outer inelastic sleeve or tube-like trolley member also surrounds the core and is in sliding relationship with the core. The outer sleeve also engages at least one bone anchor. A second elastic spacer of durometer or geometry differing from the first elastic spacer also surrounds the core and is located at a side of the at least one sleeve member opposite the first elastic spacer. The inner core, elastic spacers and inelastic sleeve or sleeves cooperate dynamically, with the spacers being at least somewhat pre-compressed resulting in little-to-no or more substantial deformation of the spacers prior to insertion, and controlling movement of the sleeve allowing greater travel of the sleeve along the core in a single direction; for example, advantageously allowing greater operative travel of the sleeve in a cephalad or cranial direction and more limited movement in a caudal or caudad direction after insertion. In addition, in certain embodiments, the sleeve or tube trolley members feature inner surfaces having non-linear relief for improved core member function with respect to bending stress, wear and fatigue life concerns.
  • In another embodiment, an improved longitudinal connecting member adapted for cooperating with a plurality of bone anchors that are implanted in a patient's spine is provided, wherein the longitudinal connecting member includes a substantially rigid anchor portion that extends along a longitudinal axis of the connecting member and is joined with a core portion that also extends along the longitudinal axis. The anchor portion formed of a first material and the core portion is formed of a second material. The core portion includes a reduced diameter relative to the anchor portion, such that the second material and the reduced diameter cooperate so as to enable at least some flexing of the core portion. The anchor portion is directly engaged by first and second bone anchors while the core portion is indirectly engaged by a third bone anchor. Furthermore, the longitudinal connection member provides for greater movement in the cephalad direction than in the caudad direction.
  • A first inelastic sleeve is slidingly received over the core portion so as to be located between the third bone anchor and the core portion. A pair of elastic spacers is received over the core portion such that each of the spacers is adjacent to an end of the first sleeve. A crimp ring engages the core portion and is located so as to bias the spacers. Additionally, an elastic over-mold surrounds at least one of the spacers and a respective adjacent end of the first sleeve.
  • In a further embodiment, the elastic over-mold grips both the anchor portion and the first sleeve.
  • In another further embodiment, the anchor portion includes has a first end plate and the elastic over-mold is molded about the first end plate.
  • In some further embodiments, the elastic over-mold is made from a composite material comprising elongate reinforcement strands imbedded in a polymer.
  • In some further embodiments, the core is made from a polymer. Furthermore, in some embodiments, the polymer is polyetheretherketone.
  • In another further embodiment, the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve. Additionally, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion.
  • In yet another further embodiment, the longitudinal connecting member also includes a second inelastic sleeve slidingly received over the core portion so as to be located between a fourth bone anchor and the core portion; a third elastic spacer received over the core portion so as to be located between the second inelastic sleeve and the crip ring; and a second elastic over-mold surrounding a second end of the first sleeve, the third spacer and an adjacent end of the second sleeve. In some embodiments, the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve; and the second sleeve substantially blocks flexing of the portion of the core that is surrounded by the second sleeve. Accordingly, in some embodiments, the core flexes primarily between the first sleeve and the anchor portion; and between the first sleeve and the second sleeve.
  • Objects and Advantages of the Invention
  • An object of the invention is to provide dynamic medical implant stabilization assemblies having longitudinal connecting members that include a flexible, pre-tensioned portion that can allow for controlled bending, torsion, compression and distraction of the assembly. Another object of the invention is to provide such an assembly including elastic pre-compressed spacers of various durometers and/or geometries. A further object of the invention is to provide dynamic medical implant longitudinal connecting members that may be utilized with a variety of bone screws, hooks and other bone anchors. Additionally, it is an object of the invention to provide a lightweight, reduced volume, low profile assembly including at least two bone anchors and a longitudinal connecting member therebetween. Furthermore, it is an object of the invention to provide apparatus and methods that are easy to use and especially adapted for the intended use thereof and wherein the apparatus are comparatively inexpensive to make and suitable for use.
  • Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention.
  • The drawings constitute a part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an enlarged side elevational view of a dynamic fixation connecting member assembly according to the invention.
  • FIG. 2 is a reduced side elevational view of the assembly of FIG. 1 shown with four bone screws and in an operative position with respect to a human spine.
  • FIG. 3 is an enlarged and partial exploded perspective view of the assembly of FIG. 1 including a solid core anchor, a first differential compression spacer, a first pressure washer, a first sleeve, a second pressure washer, a second differential compression spacer, a third pressure washer, a second sleeve, an elastic bumper and a crimping ring.
  • FIG. 4 is an enlarged and partial cross-sectional view taken along the line 4-4 of FIG. 1 and with two optional over-molded coverings shown in phantom.
  • FIG. 5 is an enlarged side elevational view of the solid core anchor of FIG. 3.
  • FIG. 6 is an enlarged top plan view of the first differential compression spacer of FIG. 3.
  • FIG. 7 is an enlarged bottom plan view of the first spacer of FIG. 3.
  • FIG. 8 is an enlarged side elevational view of the first spacer of FIG. 3.
  • FIG. 9 is an enlarged cross-sectional view taken along the line 9-9 of FIG. 6.
  • FIG. 10 is an enlarged top plan view of the first pressure washer of FIG. 3.
  • FIG. 11 is an enlarged side elevational view of the first pressure washer of FIG. 3.
  • FIG. 12 is an enlarged cross-sectional view taken along the line 12-12 of FIG. 10.
  • FIG. 13 is an enlarged side elevational view of the first sleeve of FIG. 3.
  • FIG. 14 is an enlarged top plan view of the first sleeve of FIG. 3.
  • FIG. 15 is an enlarged cross-sectional view taken along the line 15-15 of FIG. 14.
  • FIG. 16 is an enlarged top plan view of the second spacer of FIG. 3.
  • FIG. 17 is an enlarged side elevational view of the second spacer of FIG. 3.
  • FIG. 18 is an enlarged cross-sectional view taken along the line 18-18 of FIG. 16.
  • FIG. 19 is, an enlarged top plan view of the second sleeve of FIG. 3.
  • FIG. 20 is an enlarged bottom plan view of the second sleeve of FIG. 3.
  • FIG. 21 is an enlarged side elevational view of the second sleeve of FIG. 3.
  • FIG. 22 is an enlarged cross-sectional view taken along the line 22-22 of FIG. 19.
  • FIG. 23 is an enlarged top plan view of the bumper of FIG. 3.
  • FIG. 24 is an enlarged side elevational view of the bumper of FIG. 3.
  • FIG. 25 is an enlarged cross-sectional view taken along the line 25-25 of FIG. 23.
  • FIG. 26 is an enlarged top plan view of the crimping ring of FIG. 3.
  • FIG. 27 is an enlarged side elevational view of the crimping ring of FIG. 3.
  • FIG. 28 is an enlarged cross-sectional view taken along the line 28-28 of FIG. 26.
  • FIG. 29 is an enlarged exploded perspective view of a portion of one of the bone screws shown in FIG. 2.
  • FIG. 30 is an enlarged perspective view of the connecting member of FIG. 1 shown with one of the bone screws of FIG. 2 in exploded perspective view.
  • FIG. 31 is an enlarged and partial side elevational view of the assembly of FIG. 1, shown with a bone screw of FIG. 2, with portions broken away to show the detail thereof.
  • FIG. 32 is a partial side elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and with differential displacement in a caudal direction.
  • FIG. 33 is a partial side elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and with differential displacement in a cephalad direction.
  • FIG. 34 is a side elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and shown operatively responding to spinal extension or lordosis.
  • FIG. 35 is an enlarged and partial side elevational view, similar to FIG. 34 with portions broken away to show the detail thereof.
  • FIG. 36 is a rear elevational view of the assembly of FIGS. 1 and 2 with optional over-molds shown in phantom and shown operatively responding to spinal scoliosis.
  • FIG. 37 is an enlarged and partial rear elevational view, similar to FIG. 36 with portions broken away to show the detail thereof.
  • FIG. 38 is an enlarged side elevational view of a second embodiment of a dynamic connecting member assembly according to the invention shown with three bone screws.
  • FIG. 39 is an enlarged and exploded side elevational view of the assembly of FIG. 38.
  • FIG. 40 is an enlarged side elevational view of the assembly of FIG. 38 with the optional over-mold in phantom.
  • FIG. 41 is an enlarged and partial side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and the spacer shown under operative compression.
  • FIG. 42 is a partial side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and differential displacement in a cephalad direction in response to spinal distraction or tension.
  • FIG. 43 is a side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and shown in compression and operatively responding to spinal extension or lordosis.
  • FIG. 44 is an enlarged side elevational view of the assembly of FIG. 38 with the optional over-mold shown in phantom and shown operatively responding to spinal distraction as well as flexion.
  • FIG. 45 is an enlarged side elevational view of a third embodiment of a dynamic connecting member assembly according to the invention.
  • FIG. 46 is a reduced and partial exploded perspective view of the assembly of FIG. 45.
  • FIG. 47 is an enlarged and partial cross sectional view taken along the line 47-47 of FIG. 45 with an optional over-mold shown in phantom.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present invention in virtually any appropriately detailed structure. It is also noted that any reference to the words top, bottom, up and down, and the like, in this application refers to the alignment shown in the various drawings, as well as the normal connotations applied to such devices, and is not intended to restrict positioning of the connecting member assemblies of the application and cooperating bone anchors in actual use.
  • With reference to FIGS. 1-37, the reference numeral 1 generally designates a non-fusion dynamic stabilization longitudinal connecting member assembly according to the present invention. The connecting member assembly 1 includes an inelastic anchor member, generally 4, having an inelastic elongate inner core 6 extending from a bone anchor attachment portion 8; a first elastic differential compression spacer 10; a first hard or inelastic contoured pressure washer 11; a first inelastic sleeve or sleeve trolley 12; a second inelastic contoured pressure washer 13; a second elastic differential compression spacer 14; a third inelastic contoured pressure washer 15; a second inelastic sleeve 16; a third elastic differential compression spacer or elastic bumper 18; and an inelastic crimping ring 20; all substantially symmetrically aligned with respect to a central axis A of the anchor member 4. The elongate core 6 of the anchor member 4 is receivable within the spacers, sleeves, pressure washers, bumper and crimping ring. Thus, the axis A of the anchor member 4 is also the axis of the fully assembled assembly 1. An optional over-molded sleeve or casing 22 can surround a portion of the anchor member 4 extending to the bone anchor attaching portion 8, the spacer 10, the washer 11 and a portion of the sleeve 12. A second over-molded sleeve or casing 23 surrounds a portion of the sleeve 12, the washer 13, the spacer 14, the washer 15 and a portion of the sleeve 16. As will be described in greater detail below, when fully assembled and all components fixed in position, as shown in FIGS. 1, 2 and 4, for example, the spacers 10 and 14 and the bumper 18 are in compression, with the more elastic bumper 18 shown being slightly deformed and bulging outwardly due to the compressive force placed thereupon. The pre-compressed spacers and bumpers in turn place axial forces upon the sleeves 12 and 16, the sleeves thus being in a dynamic relationship with the spacers and movable with respect to the core. In particular, FIG. 2 illustrates placement of the assembly 1 and cooperating bone screws as positioned along a human spine with the elastic bumper 18 being at a top or upper position, the bumper 18 and spacers 10 and 14 having varying elasticities to allow for more movement of the assembly 1 in a cephalad or cranial direction and more limited movement in a caudad direction.
  • As illustrated in FIG. 2, the dynamic connecting member assembly 1 cooperates with at least three bone anchors and is illustrated with four bone anchors in the form of polyaxial bone screws, generally 25, the assembly 1 being captured and fixed in place at the anchor portion 8, the inelastic sleeve 12 and the inelastic sleeve 16 by the bone screws 25. Because the anchor portion 8 and the sleeves 12 and 16 have substantially solid, substantially hard, inelastic cylindrical surfaces, the connecting member assembly 1 may be used with a wide variety of bone screws and other bone anchors already available for cooperation with more rigid rods including fixed, monoaxial bone screws, hinged bone screws, polyaxial bone screws, and bone hooks and the like, with or without compression inserts, that may in turn cooperate with a variety of closure structures having threads, flanges, or other structure for fixing the closure structure to the bone anchor, and may include other features, for example, external or internal drives, break-off tops and inner set screws. The bone anchors, closure structures and the connecting member assembly 1 are then operably incorporated in an overall spinal implant system for correcting degenerative conditions, deformities, injuries, or defects to the spinal column of a patient.
  • In the particular embodiment of the assembly 1 being illustrated herein, wherein the sleeves 12 and 16 are advantageously relatively thin so as to result in an assembly having a low profile, the bone screws 25 are equipped with upper and lower pressure inserts to closely hold the sleeves and yet not crush the sleeves against the inner core 6. In particular, with reference to FIGS. 29, 30 and 31, the illustrated polyaxial screws 25 each include a shank 27, a receiver or head 28, a lower pressure insert 29, an upper pressure insert 30 and a closure structure, generally 32 that further includes and outer fastener 33 and an inner set screw 34. The illustrated shank 27 for insertion into a vertebra (not shown) is pivotally attached to the open receiver or head 28. The shank 27 includes a threaded outer surface and optionally includes a central cannula or through-bore disposed along an axis of rotation of the shank 27. The through bore provides a passage through the shank interior for a length of wire or pin inserted into the vertebra prior to the insertion of the shank 27, the wire or pin providing a guide for insertion of the shank 27 into the vertebra. The receiver 28 includes a pair of spaced and generally parallel arms that form an open generally U-shaped channel therebetween that is open at distal ends of such arms. The receiver arms each include radially inward or interior surfaces that have a discontinuous guide and advancement structure mateable with cooperating structure on the outer fastener 33. The guide and advancement structure may be a partial helically wound flangeform configured to mate under rotation with a similar structure on the outer fastener 33 or a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structures for operably guiding under rotation and advancing the fastener 33 downward between the receiver arms and having such a nature as to resist splaying of the receiver arms when the fastener 33 is advanced between the receiver arms.
  • The illustrated shank 27 is top loaded into the receiver 28 and has a curved head for sliding, pivotal engagement with an inner surface of the receiver 28. However, a variety of polyaxial connections may be possible. For example, a spline capture connection as described in U.S. Pat. No. 6,716,214, and incorporated by reference herein, may be used wherein the bone screw shank includes a capture structure mateable with a retaining structure disposed within the receiver. The retaining structure includes a partially spherical surface that is slidingly mateable with a cooperating inner surface of the receiver, allowing for a wide range of pivotal movement between the shank 27 and the receiver 28. Polyaxial bone screws with other types of capture connections may also be used according to the invention, including but not limited to, threaded connections, frictional connections utilizing frusto-conical or polyhedral capture structures, integral top or downloadable shanks, and the like. Also, as indicated above, polyaxial and other bone screws for use with connecting members of the invention may have bone screw shanks that attach directly to the connecting member or may include compression members or inserts, such as the members 29 and 30 that engage the bone screw shank and cooperate with the shank, the receiver and the closure structure to secure the connecting member assembly to the bone screw and/or fix the bone screw shank at a desired angle with respect to the bone screw receiver that holds the longitudinal connecting member assembly. Furthermore, although the closure structure 32 of the present invention is illustrated with the polyaxial bone screw 25 having an open receiver or head 28, it foreseen that a variety of closure structures may be used in conjunction with any type of medical implant having an open or closed head or receiver, including monoaxial bone screws, hinged bone screws, hooks and the like used in spinal surgery.
  • To provide a biologically active interface with the bone, the threaded shank 27 may be coated, perforated, made porous or otherwise treated. The treatment may include, but is not limited to a plasma spray coating or other type of coating of a metal or, for example, a calcium phosphate; or a roughening, perforation or indentation in the shank surface, such as by sputtering, sand blasting or acid etching, that allows for bony ingrowth or ongrowth. Certain metal coatings act as a scaffold for bone ingrowth. Bio-ceramic calcium phosphate coatings include, but are not limited to: alpha-tri-calcium phosphate and beta-tri-calcium phosphate (Ca3(PO4)2, tetra-calcium phosphate (Ca4P2O9), amorphous calcium phosphate and hydroxyapatite (Ca10(PO4)6(OH)2). Coating with hydroxyapatite, for example, is desirable as hydroxyapatite is chemically similar to bone with respect to mineral content and has been identified as being bioactive and thus not only supportive of bone ingrowth, but actively taking part in bone bonding. It is also foreseen that combinations of the above can be used, such as a composite of titanium plasma spray and hydroxyapatite.
  • The closure structure 32 can be any of a variety of different types of closure structures for use in conjunction with the present invention with suitable mating structure on the interior surface of the upstanding arms of the receiver 28. The illustrated closure structure 27 is in two pieces with the outer fastener 33 rotatable between the spaced arms and the inner set screw 34 rotatable within the outer fastener 33. However, single piece closures may be used and other structures, such as slide-in closure structures may be used as an alternative to helically wound closures. The illustrated outer fastener 33 is substantially cylindrical and includes an outer helically wound guide and advancement structure in the form of a flange form that may take a variety of forms, including those described in Applicant's U.S. Pat. No. 6,726,689, which is incorporated herein by reference. It is also foreseen that according to the invention the closure structure guide and advancement structure could alternatively be a buttress thread, a square thread, a reverse angle thread or other thread like or non-thread like helically wound advancement structure for operably guiding under rotation and advancing the closure structure downward between the receiver arms and having such a nature as to resist splaying of the arms when the closure structure is advanced into the U-shaped channel formed by the arms. The illustrated closure 32 further includes the inner set screw 34 with an internal drive in the form of an aperture utilized for assembly of the set screw and removal of the entire closure 32. It is foreseen that the closure structure may alternatively include an external drive, such as a break-off head designed to allow such a head to break from a base of the closure at a preselected torque, for example, 60 to 120 inch pounds. Such a closure structure would also include a base having an internal drive to be used for closure removal.
  • Returning to the longitudinal connecting member assembly 1 illustrated in FIGS. 1-37, the assembly 1 is elongate, with the inner core 6 being a substantially solid, smooth and in the form of a uniform cylinder or rod having an outer cylindrical surface 36 and a substantially circular cross-section. The core 6 and integral anchor attachment portion 8 may be made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber and layers of different materials. It is noted that although an anchor member 4 is illustrated in which the components 6 and 8 are integral, the core 6 and the anchor attachment portion 8 may be made from different materials, for example, the core 6 may be made out of PEEK and inserted into and fixed and/or adhered to a bone anchor attachment portion 8 made out of titanium. The core 6 and attachment portion 8 may include a small central lumen or through-bore (not shown) extending along the central axis A. Such a lumen may be used as a passage through the entire assembly 1 interior for a length of a guide wire for aiding insertion of the assembly 1 between implanted bone screws 25 in a percutaneous or less invasive procedure.
  • With particular reference to FIGS. 3 and 5, the anchor member 4 is substantially cylindrical along an entire length thereof along the axis A and includes at least two or more circular cross-sections along the length thereof. The illustrated member 4 includes the slender and thus more flexible core 6 of a first circular cross-section and the bone anchor attachment portion 8 that has a second circular cross-section that is larger than the core 6 cross-section and thus is more rigid than the core 6. The core 6 terminates at an end 38. Prior to final assembly by the vendor or manufacturer, the core 6 is typically of a length greater than that shown in the drawing figures so that the core 6 may be grasped by a tool (not shown) near the end 38 and pulled along the axis A in a direction away from the anchor attachment portion 8, in certain embodiments, tensioning the core 6 and putting compressive forces on the spacers and bumper, as will be described in greater detail below. Between the core 6 and the portion 8 is a buttress plate or annular enlargement 40 that has a third circular cross-section that is larger than the attachment portion 8 cross-section. The buttress plate 40 is integral with and disposed between the core 6 and the portion 8. Although the illustrated anchor member 4 is substantially cylindrical, it is foreseen that the core 6, the portion 8 and the plate 40 may have other forms, including but not limited to oval, square and rectangular cross-sections as well as other curved or polygonal shapes. The bone anchor attachment portion 8 is of a length along the axis A for cooperating with at least one and up to a plurality of bone attachment members, such as the bone screws 25, hooks or other types of bone anchors. The portion 8 is substantially solid and rigid, with an outer cylindrical surface 39 that terminates at an end 41. The plate 40 includes a first substantially flat and annular face 42 facing away from the core 6 and an opposed face 44 facing toward the core 6. The faces 42 and 44 extend radially from the axis A. An outer cylindrical surface 46 extends between the faces 42 and 44. A gently sloping transition surface or flange 48 bridges between and connects the outer cylindrical surface 36 of the core 6 with the substantially flat facing face 44 of the buttress plate 40.
  • With particular reference to FIGS. 13-15 and 19-22, the sleeves 12 and 16 are each sized and shaped to be slidingly received over the core 6 along the axis A and each have a length measured along the axis A that is sufficient for the attachment of at least one bone screw 25 thereon. Similar to the inelastic anchor member 4, the inelastic sleeves 12 and 16 may be made from metal, metal alloys or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber. The sleeves 12 and 16 may be made of the same material as the cooperating core 6, for example, the anchor member 4 and the sleeves 12 and 16 may all be made from PEEK; or, for example, the core 6 may be made from one material, such as PEEK, while the sleeves 12 and 16 may be made from another material, such as a metal (e.g. stainless steel or titanium). In order to have low or no wear debris, the sleeve 12 and 16 inner surfaces and/or cooperating core 6 outer surfaces may be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
  • The illustrated sleeves 12 and 16 each are substantially cylindrical, having outer cylindrical bone anchor attachment surfaces 50 and 52, respectively, that are each of substantially the same diameter as the outer surface 39 of the bone anchor attachment portion 8. Each of the sleeves 12 and 16 further include a substantially cylindrical inner surface 54 and 56, respectively, that define a through-bore for the passage of the core 6 therethrough. While the surface 56 is shown as being cylindrical, the illustrated surface 54 of the sleeve 12 is preferably curved and shown as slightly hour-glass or hyperboloid-like in configuration running along the axis A, and/or at least has non-linear relief at one or both ends. The slightly curved surface 54 results in at least a partially non-linear inner lumen that decreases both bending stresses along the core 6 and wear debris between the parts. For example, if the core 6 is flexed, the inner surface 54 allows deformation of the core over a longer area or length resulting in reduced stresses and a longer fatigue life. Furthermore, if the core 6 is made from a material such as PEEK, the curved surface 54 and/or end surface non-linear relief reduces contact wear and bending stresses along the core 6 surface that is received in the sleeve 12. The sleeve 12 includes a pair of opposed end plates 58 and 60 and the sleeve 16 includes a pair of opposed end plates 62 and 63. The illustrated plates 58, 60, 62 and 63 have outer cylindrical surfaces 64, 66, 68 and 69, respectively, that are of substantially the same diameter as the buttress plate outer cylindrical surface 46. The sleeve 12 includes opposed curved and slightly concave flanged end surfaces 70 and 72, each running from the inner surface 54 radially outwardly toward respective cylindrical surfaces 64 and 66. The illustrated concave surfaces 70 and 72 are partially spherical. The sleeve 16 includes one concave end surface 74 and an opposed planar end surface 76. The illustrated surface 74 is partially spherical.
  • With reference to FIGS. 6-9, 16-18 and 23-25, the elastic spacers 10 and 14 and the elastic bumper 18 are sized and shaped to be slidingly received over the core 6 and may be made from a variety of elastic materials of different durometers and materials, including, but not limited to natural or synthetic elastomers such as polyisoprene (natural rubber), and synthetic polymers, copolymers, and thermoplastic elastomers, for example, polyurethane elastomers such as polycarbonate-urethane elastomers. In order to have low or no wear debris, the spacers 10 and 14 and bumper 18 inner and side surfaces may also be coated with an ultra thin, ultra hard, ultra slick and ultra smooth coating, such as may be obtained from ion bonding techniques and/or other gas or chemical treatments.
  • The illustrated spacers 10 and 14 advantageously cooperate with the core 6 of the anchor member 4, providing directed axial movement, limitation and protection of movement by the sleeves 12 and 16 along the core 6 located between bone screws 25. With particular reference to FIGS. 6-9 and 16-18, the illustrated spacers 10 and 14 are substantially similar in geometry, differing only with regard to inner surfaces that define through bores for receiving the anchor member core 6 and number of optional outer grooves. Each of the spacers 10 and 14 have an external substantially cylindrical outer surface 78 and 80, respectively, and internal surfaces 82 and 84, respectively, each defining through bores. The internal surface 82 is further defined by a flared or conical outwardly extending surface 86 sized and shaped for cooperating with the transition surface 48 of the anchor member 4. The spacer 10 includes opposed substantially planar and annular end surfaces 88 and 89 and the spacer 14 includes opposed substantially planar and annular end surfaces 90 and 91. When cooperating with the core 6, the end surfaces 88 and 89 and 90 and 91 are substantially perpendicular to the axis A. It is foreseen that in some embodiments, the spacers 10 and 14 may be of circular, square, rectangular or other cross-section including curved or polygonal shapes. In the illustrated embodiment, both the spacers 10 and 14 further include optional compression grooves, the spacer 10 having a single groove 93 and the spacer 14 having a pair of grooves 94 and 95. Spacers according to the invention may include one, none or any desired number of grooves that allow for some additional compression of the spacers 10 and 14 when pressed upon in an axial direction between the bone anchor attachment portion 8 and the cooperating sleeves 12 and 16. The illustrated groove 93 and groove pair 94 and 95 are substantially uniform and circular in cross-section, being formed in the respective external surfaces 78 and 80 and extending radially toward respective internal surfaces 82 and 84. The size of the internal surfaces 82 and 84 allow for some axially directed sliding movement of the respective spacers 10 and 14 with respect to the core surface 36. The illustrated spacer 14 is more elastic than the spacer 10, both with respect to geometry, by having more grooves than the spacer 10 and also may be made from a material with greater elasticity (lower durometer) than the spacer 14, resulting in an assembly that advantageously provides for greater travel of the assembly in a cephalad direction, if desired.
  • With particular reference to FIGS. 10-12, the domed articulating wear or pressure washer 11 is shown. With reference to FIG. 3, for example, it is noted that the pressure washers 13 and 15 are identical to the illustrated pressure washer 11, thus the discussion herein of the pressure washer 11 also applies to the washers 13 and 15. The pressure washer 11 has an external substantially cylindrical outer surface 98 and internal substantially cylindrical surface 100, defining a through bore sized and shaped to receive the core 6. The washer 11 further includes a substantially planar end surface 102 and an opposed, curved, convex surface 104 sized and shaped for cooperation with a substantially concave surface of a cooperating sleeve, such as the surface 70, surface 72 or the surface 74. The illustrated convex surface 104 is at least partially spherical. When cooperating with the core 6, the end surface 102 is substantially perpendicular to the axis A. The size of the internal surface 100 allows for some axially directed sliding movement of the washer 11 with respect to the core surface 36. The washer 11 is preferably made from a firm material, such as metal and metal alloys with titanium being particularly preferred; or other suitable materials, including plastic polymers such as polyetheretherketone (PEEK), ultra-high-molecular weight-polyethylene (UHMWP), polyurethanes and composites, including composites containing carbon fiber. In order to reduce wear debris, the washers 11, 13 and 15 are preferably made from a material different than the cooperating sleeves 12 and 16. For example, the sleeves 12 and 16 may be made of a titanium alloy while the washers 11, 13 and 15 may be made from a high molecular weight polyethylene. With particular reference to the washer 11 and as shown in FIG. 4, with the convex surface 104 slidingly engaging the concave surface 72 of the sleeve 12, the pressure washer 11 advantageously allows for tilt, slide and rotation of the washers along the core 6 and with respect to the sleeve 12, maintaining substantially full contact between the washer 11 and the sleeve 12, resulting in better load distribution along the assembly 1, keeping stresses on the inside of the tubular sleeve 12, rather than on an outer surface or end, and thus allowing for better angulation, translation and compression of the entire assembly 1, as each of the pressure washers 11, 13 and 15 have curved, convex surfaces fully contacting and cooperating with substantially similarly curved concave inner surfaces of the sleeves 12 and 16. Thus, the core 6, cooperating compressible spacers 10 and 14, sleeves 12 and 16 and washers 11, 13 and 15 allow for some twist or turn, providing some relief for torsional stresses.
  • The over-molded coverings 22 and 23 are preferably thin, soft and elastic, primarily provide protection to the body by keeping wear debris within the assembly 1 and keeping scar tissue out of the assembly 1 at the juncture between the spacers, washers and sleeves. Particularly when the assembly 1 is placed in tension as shown in FIG. 33, the over-molded sections 22 and 23 provide a covering over the components that may separate, for example, the pressure washer 11 and the sleeve 12, guarding against gaps that might otherwise irritate scar and surrounding body tissue. The over-molded sections 22 and 23 may be made of a variety of materials including natural and synthetic plastics and composites. The illustrated over-molds 22 and 23 are a molded thermoplastic elastomer, for example, polyurethane or a polyurethane blend; however, any suitable polymer material may be used.
  • The illustrated over-mold 22 is fabricated around and about the surfaces 42 and 46 of the anchor plate 40, the entire spacer 10, the entire washer 11 and the entire end plate 60 of the sleeve 12. The illustrated over-mold 23 is fabricated around and about the surfaces of the end plate 58 of the sleeve 12, the entire washer 13, the entire spacer 14, the entire washer 15 and the entire end plate 63 of the sleeve 16. The over-molds 22 and 23 are fabricated from an initially flowing elastomer, as will be described more fully below, with the elastomer engaging and possibly adhering to the surfaces of the sleeves, washers and spacers being covered thereby. Each formed elastomer is substantially cylindrical, but thin so as to also be flexible and deformable when the assembly 1 is bent, compressed or stretched as shown in the drawing figures. In both spinal flexion and extension, the over-molds 22 and 23 completely surround or cover the assembly 1 components as also illustrated in the drawing figures. It is foreseen that the material for the over-molds 22 and 23 may be sized and made from such materials so as to provide for relatively more or less bendability, as well as compressibility and stretchability.
  • With particular reference to FIGS. 23-25, the elastic bumper 18 is substantially cylindrical, including an outer surface 108 and an inner surface 109 forming a substantially cylindrical through bore that opens at planar end surfaces 110 and 111 and operatively extends along the axis A. The bumper 18 may further include a compression groove or grooves similar in form and function to the compression grooves 93, 94 and 95 described above with respect to the spacers 10 and 14. The bumper 18 is sized and shaped to slidingly receive the core 6 through the inner surface 109. The bumper 18 is preferably made from an elastomeric material such as polyurethane, but may be made from any suitable elastomeric material. The bumper 18 is typically more elastic than either of the spacers 10 and 14, providing greater movement of the sleeve 16 in a direction toward the bumper 18 than toward the spacer 14.
  • With particular reference to FIGS. 26-28, the crimping ring 20 is substantially cylindrical and includes an outer surface 120 and an inner surface 122 forming a substantially cylindrical through bore that opens at planar end surfaces 124 and 126 and operatively extends along the axis A. The crimping ring 20 is sized and shaped to receive the elongate core 6 through the inner surface 122. The crimping ring 20 further includes a pair of opposed crimp or compression grooves 130 that are pressable and deformable inwardly toward the axis A upon pre-compression of the spacers 10 and 14 and the bumper 18 during assembly of the assembly 1. The crimping ring 20 is preferably made from a stiff, but deformable material, including metals and metal alloys. As an alternative to the grooves 130, in certain embodiments of the invention, the crimp ring 20 may include an inner helical thread (not shown) with the core 6 having a mating helical outer thread (not shown), for fixing the ring 20 on the core 6 and compressing the spacers 10 and 14 and bumper 18 to a desired degree.
  • The illustrated dynamic connecting member assembly 1 having pre-compressed spacers is shown cooperating with four polyaxial bone screws 25 as shown in FIG. 2. In use, the bone screws 25 are implanted into vertebrae (not shown). Each vertebra may be pre-drilled to minimize stressing the bone. Furthermore, when a cannulated bone screw shank is utilized, each vertebra will have a guide wire or pin inserted therein that is shaped for the bone screw cannula of the bone screw shank 27 and provides a guide for the placement and angle of the shank 27 with respect to the cooperating vertebra. A further tap hole may be made and the shank 27 is then driven into the vertebra by rotation of a driving tool (not shown) that engages a driving feature on or near a top portion of the shank 27. It is foreseen that both the screws 25 and the longitudinal connecting member assembly 1 may be inserted in a conventional, percutaneous or other minimally invasive surgical manner.
  • With particular reference to FIGS. 1-4, the longitudinal connecting member assembly 1 is assembled to provide pre-compressed spacers 10 and 14 and bumper 18 prior to implanting the assembly 1 in a patient. FIGS. 1, 2 and 4 illustrated the pre-compressed, ready to use assembly 1, while FIG. 32 illustrates the assembly 1 during spinal movement that results in further compression of the spacers 10 and 14, while FIG. 33 illustrates the assembly 1 during spinal movement that results in further compression of the bumper 18 and extension of the assembly 1 at the spacers 10 and 14. With particular reference to FIG. 3, the assembly 1 is assembled by first providing the anchor member 4 that has a core 6 that is longer in the axial direction A than the core 6 illustrated in the drawing figures. The spacer 10 is first loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 82 with the face 89 directed toward the buttress plate 40. The spacer 10 is moved along the core 6 until the surface 86 contacts the surface 48. The pressure washer 11 is then threaded on the core 6 with the face 102 facing the end surface 88 of the spacer 10. The sleeve 12 is then threaded onto the core 6 with the concave face 72 of the plate 60 facing the convex surface 104 of the pressure washer 11. The core 6 is then received in the bore of the pressure washer 13, with the convex face of the washer 13 facing the concave face 70 of the sleeve 12. The spacer 14 is thereafter loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 84 with the face 91 facing the toward the pressure washer 13. The spacer 14 is moved along the core 6 until the spacer 14 contacts the pressure washer 13. The pressure washer 15 is then threaded on the core with a planar face thereof facing the planar face 90 of the spacer 14. The sleeve 16 is then threaded onto the core 6 with the concave face 74 facing the convex end surface of the pressure washer 15. The core 6 is received in the bore defined by the inner cylindrical surface 56 and the sleeve 16 is moved along the core 6 until the sleeve 16 abuts the pressure washer 15. The bumper 18 is thereafter loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 109 with the face 111 facing the toward the planar end surface 76 of the sleeve 16. The bumper 18 is moved along the core 6 until the surface 111 contacts the surface 76. The crimping ring 20 is thereafter loaded onto the core 6 by inserting the core 6 end 38 into the bore defined by the inner surface 122 with the face 126 facing the toward the surface 110 of the bumper 18. The crimping ring 20 is moved along the core 6 until the surface 126 contacts the surface 110. It is noted that due to the symmetrical nature of the sleeve 12, the spacer 14, the bumper 18 and the crimping ring 20, these components may be loaded onto the core 6 from either side thereof.
  • After the crimping ring 20 is loaded onto the core 6, manipulation tools (not shown) are used to grasp the core 6 near the end 38 and at the bone anchor attachment portion 8, placing some tension on the core 6. The spacer 10, the sleeve 12, the spacer 14, the sleeve 16, the bumper 18 and the crimping ring 20 are moved toward the buttress plate 40 and into contact with one another. A desired amount of axial compressive force is placed on the components loaded on the core 6, followed by deforming the crimping ring at the crimp grooves 120 and against the core 6. When the manipulation tools are released, the crimping ring 20, now firmly and fixedly attached to the core 6 holds the spacers 10 and 14 and the bumper 18 in compression and the spacers and bumper place axial tension forces on the core 6, resulting in a dynamic relationship between the core 6 and the spacers 10, 14 and the bumper 18. The spacers 10 and 16 are slidable with respect to the core 6, but also are limited by the buttress plate of the anchor member 4 and end plates of the sleeves 12 and 16. Furthermore, the bumper 18 that is compressed between the sleeve surface 76 and the crimping ring surface 116 is also slidable with respect to the core 6. The spacers 10 and 14 and the bumper 18 place a distractive force on the core 6 along the axis A and between the buttress plate 40 and the crimping ring 20, but also are movable with respect to the core 6, thus being able to respond to jolting and other body movements and thereafter spring back into an originally set location. The sleeves 12 and 16 that may compress slightly, but are more rigid than the spacers 10 and 14, keep the spacers 10 and 14 in an approximate desired axially spaced relation. However, the spacers 10 and 14 also advantageously slide along the core 6 in response to outside forces. The core 6 is then trimmed to be approximately flush with the end surface 114 of the crimping ring 20.
  • It is noted that mechanical characteristics of the assembly components, such as creep, may require the spacers 10 and 14 and the bumper 18 to be compressed at a higher load and then allowed to reach a steady state before placement and molding of the over-mold coverings 22 and 23 and eventual operative use with the bone screws 25. The over-molds 22 and 23 are fabricated by first placing the anchor portion 8 and/or the sleeves 12 or 16 in a jig or other holding mechanism such that the jig frictionally engages such portion 8 and/or sleeves 12 and 16, followed by fabricating the over-mold 22 about and between the plate 40, the spacer 10, the pressure washer 11 and an end portion of the sleeve 12 and the over-mold 23 about and between an opposite end portion of the sleeve 12, the washer 13, the spacer 14, the washer 15 and an end portion of the sleeve 16 as best shown in phantom in FIG. 4. In a preferred method of fabrication of the over-molds 22 and 23, an elastic, polymeric material flows about the desired components of the assembly 1 at room temperature, followed by a vacuum cure. It is noted that in some embodiments of the invention, the over-molds 22 and 23 may be fabricated about the desired assembly 1 components prior to compression of the spacers 10 and 14 and the bumper 18. In other embodiments, the over-molds 22 and 23 may be fabricated about the spacers 10 and 14 after an initial compression of the spacers, followed by a final compression step after cure of the over-molds.
  • With reference to FIGS. 2 and 29-37, the assembly 1 is eventually positioned in an open or percutaneous manner in cooperation with the bone screws 25 with the over-molds 22 and 23 disposed between bone screws 25, with a bone screw attached to each of the sleeves 12 and 16 and, as illustrated, two bone screws 25 attached to the anchor portion 8. A closure structure 32 is used to attach each screw 25 to the assembly 1 with the sleeves 12 and 16 and the anchor portion 8 each being cradled between a lower pressure insert 29 and an upper pressure insert 30.
  • With particular reference to FIGS. 2, 32-33, a desired placement of the assembly 1 is shown wherein an arrow C indicates movement of the bone screws 25 attached to the sleeves 12 and 15 generally in a cephalad or cranial direction. Specifically, FIG. 2 illustrated a pre-compressed assembly 1 in a neutral position, FIG. 32 illustrates compression of the spacers 10,14 and FIG. 33 shows extension or tension of the assembly at spacers 10,14 and movement of the sleeves 12 and 16 in a cephalad direction (arrow c). FIGS. 32-33 illustrate how the assembly 1 allows greater movement of the sleeves and thus the bone screws 25 and attached spinal segments in the cephalad direction than in the caudad direction, the elastic bumper 18 being the most compressible component of the assembly 1 and the spacer 14 being more elastic and thus more compressible than the spacer 10 due to the geometry thereof (e.g., an extra groove in the spacer 14). In other embodiments of the invention, the spacer 14 may be made from a material of different durometer than the spacer 10, to allow for a desirable increased upward or cephalad movement of a portion of the assembly 10.
  • With reference to FIGS. 34 and 35, supported spinal extension as well as movement in the cephalad direction C is also possible with the assembly 1. The washers 11, 13 and 15 are slidable and rotatable with respect to the cooperating sleeves 12 and 16, advantageously providing steady, balanced and controlled load distribution during angulation, both spinal extension and flexion as well as during compression and tension. Furthermore, the washers 11, 13, and 15 and sleeves 12 and 16 cooperate with the spacers 10 and 14 to aid in bending and tilting of the assembly 1, supporting and controlling the spine in response to lordosis and kyphosis, for example, and also providing for rotation and tilting of the assembly in both coronal and sagittal planes, supporting and controlling the spine in the case of scoliosis as shown in FIGS. 36 and 37. Thus, once attached to the bone screws 25, the assembly 1 is substantially dynamically loaded and oriented relative to the cooperating vertebra, providing relief (e.g., shock absorption) and protected movement with respect to not pnly flexion and extension, but also to distractive, compressive, torsional and shear forces placed on assembly 1 and bone screws 25.
  • If removal of the assembly 1 from any of the bone screw assemblies 25 is necessary, or if it is desired to release the assembly 1 at a particular location, disassembly is accomplished by using a driving tool (not shown) with a driving formation cooperating with the closure structure 32 to rotate and remove the closure structure from the receiver 28. Disassembly is then accomplished in reverse order to the procedure described previously herein for assembly.
  • Eventually, if the spine requires more rigid support, the connecting member assembly 1 according to the invention may be removed and replaced with another longitudinal connecting member, such as a solid rod, having the same diameter as the rod portions 8, utilizing the same bone screw 25 components. Alternatively, if less support is eventually required, a less rigid, more flexible assembly, for example, an assembly 1 made with elastic spacers and bumper of different durometer or geometry may replace the assembly 1, also utilizing the same bone screws 25.
  • With reference to FIGS. 38-44, an alternative embodiment of a dynamic longitudinal connecting member, generally 201 is substantially similar to the assembly 1 with the exception that it is shorter than the assembly 1, cooperating with fewer bone screws along an elastic and more flexible portion thereof. Similar to the assembly 1, the assembly 201 provides for greater movement in the cephalad direction as indicated by the arrow marked CC. The assembly 201 includes an anchor member, generally 204, having an elongate segment or inner core 206 and a bone anchor attachment portion 208; an elastic spacer 210; a pressure washer 211; a sleeve 216; an elastic bumper 218; and a crimping ring 220; all substantially symmetrically aligned with respect to a central axis AA of the anchor member 204. The elongate core 206 of the anchor member 204 is receivable within the spacer 210, the washer 211, the sleeve 216, the bumper 218 and the crimping ring 220. Thus, the axis AA of the anchor member 204 is also the axis of the fully assembled assembly 201. When fully assembled and fixed with all components fixed in position, the spacer 210 and the bumper 218 are placed in compression as shown in FIG. 40 and an elastic over-mold or covering 222 is applied about a buttress plate 240 of the anchor 204, the spacer 210, the washer 211 and a portion of the sleeve 212 (the covering 222 shown in phantom in FIG. 40) prior to attachment to three bone screws 25 as shown in FIG. 38.
  • In the illustrated embodiment, the anchor member 204 is substantially similar to the anchor member 4 previously described herein with respect to the assembly 1. Therefore, the member 204 includes the core 206, the bone anchor attachment portion 208 and the integral buttress plate 240 identical or substantially similar in size and shape to the respective core 6, attachment portion 8 and buttress plate 40 of the anchor member 4 previously described herein. The member 204 differs from the member 4 only in that the length of the core 206 is shorter than the core 6 as the core 206 holds only one sleeve 216, one cooperating spacer 210 and one washer 211 as compared to the core 6 that holds two sleeves, two spacers and three cooperating washers. The spacer 210 is identical or substantially similar to the spacer 10 previously described herein. The sleeve 216 is identical or substantially similar to the sleeve 16, having a concave end surface 274 identical or substantially similar to the concave end surface 74 of the sleeve 16 previously described herein. The washer 211 is identical or substantially similar to the washer 11 previously described herein, having a substantially convex end surface 304 identical or substantially similar to the end surface 104 os the washer 11. The surface 304 is slidably engageable with the concave surface 274 of the sleeve 216 such that a full and even surface contact occurs between the sleeve 216 and the washer 211, providing better load distribution along the assembly 201, keeping stresses on the inside of the sleeve 216 rather than on an outer surface during angulation, translation and compression. The bumper 218 and the crimping ring 220 are identical or substantially similar to the respective bumper 18 and the crimping ring 20 previously described herein with respect to the assembly 1.
  • The assembly 201 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 1, the assembly 201 however, does not include a second spacer or second sleeve. Therefore, the core 206 is first received within a through bore of the spacer 210, followed by the washer 211, then within an inner surface of the sleeve 216, followed by an inner through bore of the bumper 218 and then an inner through bore of the crimping ring 220. Similar to what has been described previously with respect to the assembly 1, the core 206 may initially be of a longer length measured along the axis AA than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 206 near an end thereof that extends through the crimping ring bore. The spacer 210 and bumper 220 are compressed, followed by deformation of the crimping ring 220 against the core 206. Then, the covering 222 is fabricated about the plate 240, the spacer 210, the washer 211 and an end portion of the sleeve 216. The assembly is now in dynamic relationship with the spacer 210, washer 211, sleeve 216 and bumper 218 being slidable with respect to the core 206, the sleeve 216 being more readily movable in a direction toward the bumper 218 due to the greater elasticity of the bumper 218 as compared to the spacer 210.
  • The assembly 201 may then be implanted, cooperating with three bone screws 25 as illustrated in FIG. 38 and as previously described herein with respect to the assembly 1. Unlike the assembly 1 that provides for a more dynamic and flexible connection between three illustrated bone screws 25, the assembly 201 provides for dynamic stabilization between first and second bone screws 25 and a more rigid connection between the second bone screw 25 and a third bone screw 25 as both the second and third bone screws are attached to the rigid attachment portion 208.
  • FIGS. 41 and 42 illustrate a range of axial or spinal movement of the assembly in a cephalad direction as noted by the arrow CC. FIG. 41 shows the spacer 210 being compressed and thus the sleeve 216 and attached bone screw 25 moving in a caudal direction. FIG. 42 shows the bumper 218 in a fully compressed state with the sleeve 216 and attached bone screw 25 moving in a cephalad direction. As illustrated in FIG. 42, the optional over-mold 222 covers the portion of the assembly 201 that is being stretched and tensioned, covering a gap formed between the sleeve 216 and the pressure washer 211, protecting spinal tissue and retaining any wear debris within the assembly 201.
  • With reference to FIG. 43, the assembly 201 is shown in an angulated or bent position as it would be in response to spinal extension, for example. The load on the assembly 201 being stabilized by movement of the pressure washer 211 with respect to the sleeve 216 and also by partial compression of the spacer 210 along a groove thereof.
  • With reference to FIG. 44, the assembly 201 is shown in an angulated or bent position as it would be in response to spinal flexion, for example. The load on the assembly 201 is also distractive, causing a gap between the sleeve 216 and the pressure washer 211. The over-mold 222 advantageously stretches and prevents tissue from entering into the gap between the sleeve 216 and the washer 211.
  • With reference to FIGS. 45-47, an alternative embodiment of a dynamic longitudinal connecting member, generally 301 is substantially similar to the assembly 1 with the exception of some aspects of the geometry of the sleeve or tube trolley members, one of the spacers and two of the pressure washers located on either side of such spacer. Similar to the assembly 1, the assembly 301 provides for greater movement in the cephalad direction as indicated by the arrow marked CCC. The assembly 301 includes an anchor member, generally 304, having an elongate segment or inner core 306 and a bone anchor attachment portion 308; elastic spacers 310 and 314; pressure washers 311, 313 and 314; sleeves or tube trolleys 312 and 316; an elastic bumper 318; and a crimping ring 320, all substantially symmetrically aligned with respect to a central axis AAA of the anchor member 304. The elongate core 306 of the anchor member 304 is receivable within the spacers 310 and 314, the washers 311, 313 and 315, the sleeves 312 and 316, the bumper 318 and the crimping ring 320. Thus, the axis AAA of the anchor member 304 is also the axis of the fully assembled assembly 301. When fully assembled and fixed with all components fixed in position, the spacers 310 and 314 and the bumper 318 are placed in compression as shown in FIG. 45 and an optional elastic over-mold or covering 322 is applied about a buttress plate 340 of the anchor 304, the spacer 310, the washer 311 and a portion of the sleeve 312 and an optional elastic over-mold or covering 323 is applied about a portion of the sleeve 312, the washer 313, the spacer 314, the washer 315 and a portion of the sleeve 316, both over-molds 322 and 323 molded over such component parts prior to attachment of the assembly 310 to three bone anchors such as the bone screws 25, in the same positions shown for the assembly 1 in FIG. 32, for example.
  • The anchor member 304, the spacer 310, the pressure washer 311, the sleeve 312, the bumper 318 and the crimping ring 320 are identical or substantially similar to the respective anchor member 4, spacer 10, pressure washer 11, sleeve 12, bumper 18 and crimping ring 20 of the assembly 1 and therefore shall not be discussed in great detail herein. The sleeve 312 has a curved inner surface 354 substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12. The sleeve 316 has a curved inner surface 355 that is also substantially similar to the curved inner surface 54 previously described herein with respect to the sleeve 12. In substantially all other aspects of form and function, the sleeve 316 is substantially similar to the sleeve 16 previously described herein with respect to the assembly 1. The sleeve 312 includes a pair of opposed end plates 358 and 360 and the sleeve 316 includes a pair of opposed end plates 362 and 363. The illustrated plates 358, 360, 362 and 363 have outer cylindrical surfaces 364, 366, 368 and 369, respectively, that are substantially smaller in diameter than an outer diameter of the spacer 314 and the washers 313 and 315, allowing gaps for greater relative tilting or articulation of the sleeves 312 and 316 with respective adjacent washers 313 and 315, as will be described in greater detail below.
  • Thus, the assembly 301 primarily differs from the assembly 1 in the geometry of the washers 313 and 315 and the spacer 314. The elastic spacer 314 is substantially similar to the spacer 14 in form, function and materials with the exception that rather than having opposed planar side surfaces 90 and 91, the spacer 314 has opposed side surfaces 390 and 391 that are curved and concave. In particular, the illustrated surfaces 390 and 391 are cupped shaped, sized and shaped to closely slidingly mate with the dome shaped washers 313 and 315, as will be described in greater detail below, allowing for articulating movement between the spacer 314 and the washers 313 and 315, in addition to compression of the spacer 314.
  • The pressure washers 313 and 315 are identical to one another and also are substantially similar to the pressure washer 11 previously described above with the exception that the washers 313 and 315 have opposed, curved, convex side surfaces sized and shaped for cooperation with a substantially concave surface of a cooperating sleeve 312 or the concave surfaces 390 or 391 of the spacer 314. The illustrated washer 313 has opposed curved surfaces 402 and 404 and the washer 315 has opposed curved surfaces 402′ and 404′.
  • The assembly 301 is assembled in a manner substantially similar to the manner of assembly previously described herein with respect to the assembly 1. Also, similar to what has been described previously with respect to the assembly 1, the core 306 may initially be of a longer length measured along the axis AAA than is shown in the drawing figures, allowing for a manipulation tool to grasp the core 306 near an end thereof that extends through the crimping ring bore. The spacers 310 and 314 and the bumper 318 are compressed, followed by deformation of the crimping ring 320 against the core 306. Then, the coverings 322 and 323 are fabricated on the assembly 301 at the locations shown in the figures and as described above. The assembly 301 is now in dynamic relationship with the spacers 310 and 314, washers 311, 313 and 315, sleeves 312 and 316 and bumper 318 being slidable with respect to the core 306, both sleeves 312 and 316 being more readily movable in a direction toward the bumper 318 due to the greater elasticity of the bumper 318 as compared to the spacers 310 and 314.
  • The assembly 301 may then be implanted, cooperating with three bone screws 25 as previously illustrated with respect to the assembly 1. Like the assembly 1, the assembly 301 provides for a dynamic and flexible connection between three bone anchors. Furthermore, the double domed articulating wear washers 313 and 315 cooperating with the cupped spacer 314 allow for increased flexion and extension over the assembly 1 having the spacer 14 with planar surfaces. While the assembly 1 spacer 14, for example, elastically compresses when the assembly bends during spinal flexion or extension, the pressure washers 313 and 315 may slidingly articulate along the surfaces 390 and 391 of the spacer 314 during spinal flexion or extension. If compression accompanies the bending movement, the spacer 314 may also compress slightly in response to the spinal movement. As illustrated in FIG. 47, the end plates 358 and 360 of the sleeve 312 and the end plates 362 and 363 of the sleeve 316 are sized and shaped to have a smaller outer diameter than the pressure washers and spacers of the assembly 301 as well as provide a gap between such plates and adjacent components of the assembly 301, providing clearance for articulated movement between the components.
  • It is to be understood that while certain forms of the present invention have been illustrated and described herein, it is not to be limited to the specific forms or arrangement of parts described and shown.

Claims (11)

What is claimed and desired to be secured by Letters Patent is as follows:
1. A longitudinal connecting member adapted for cooperation with a plurality of bone anchors implanted in a spine, the improvement wherein the longitudinal connecting member comprises:
a) a substantially rigid anchor portion extending along a longitudinal axis of the connecting member, the anchor portion being formed of a first material and being directly engaged by first and second bone anchors;
b) a core portion joined with an end of the anchor portion, extending along the longitudinal axis and indirectly engaged by a third bone anchor, the core portion being formed of a second material and having a reduced diameter relative to the anchor portion, wherein the second material and the reduced diameter cooperate so as to enable at least some flexing of the core portion;
c) a first inelastic sleeve slidingly received over the core portion so as to be located between the third bone anchor and the core portion;
c) a pair of elastic spacers received over the core portion such that each of the spacers is adjacent to an end of the first sleeve;
d) a crimp ring engaging the core portion and being located so as to bias the spacers; and
e) an elastic over-mold surrounding the at least one of the spacers and a respective adjacent end of the first sleeve; wherein
f) the longitudinal connection member provides for greater movement in the cephalad direction than in the caudad direction.
2. The improvement of claim 1, wherein
a) the elastic over-mold grips both the anchor portion and the first sleeve.
3. The improvement of claim 1, wherein
a) the anchor portion includes has a first end plate and the elastic over-mold is molded about the first end plate.
4. The improvement of claim 1, wherein
a) the elastic over-mold is made from a composite material comprising elongate reinforcement strands imbedded in a polymer.
5. The improvement of claim 1, wherein
a) the core is made from a polymer.
6. The improvement of claim 5, wherein
a) the polymer is polyetheretherketone.
7. The improvement of claim 1, wherein
a) the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve.
8. The improvement of claim 7, wherein
a) the core flexes primarily between the first sleeve and the anchor portion.
9. The improvement of claim 1, wherein the longitudinal connecting member further comprises:
a) a second inelastic sleeve slidingly received over the core portion so as to be located between a fourth bone anchor and the core portion;
b) a third elastic spacer received over the core portion so as to be located between the second inelastic sleeve and the crip ring; and
c) a second elastic over-mold surrounding a second end of the first sleeve, the third spacer and an adjacent end of the second sleeve.
10. The improvement of claim 9, wherein:
a) the first sleeve substantially blocks flexing of the portion of the core that is surrounded by the first sleeve; and
b) the second sleeve substantially blocks flexing of the portion of the core that is surrounded by the second sleeve.
11. The improvement of claim 10, wherein
a) the core flexes primarily:
i) between the first sleeve and the anchor portion; and
ii) between the first sleeve and the second sleeve.
US13/694,982 2007-05-01 2013-01-23 Dynamic stabilization assembly having pre-compressed spacers with differential displacements Abandoned US20130138153A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/694,982 US20130138153A1 (en) 2007-05-01 2013-01-23 Dynamic stabilization assembly having pre-compressed spacers with differential displacements

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US92711107P 2007-05-01 2007-05-01
US93256707P 2007-05-31 2007-05-31
US99406807P 2007-09-17 2007-09-17
US12/148,465 US10258382B2 (en) 2007-01-18 2008-04-18 Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US12/156,260 US7951170B2 (en) 2007-05-31 2008-05-30 Dynamic stabilization connecting member with pre-tensioned solid core
US13448008P 2008-07-10 2008-07-10
US13774308P 2008-08-01 2008-08-01
US12/459,492 US8366745B2 (en) 2007-05-01 2009-07-01 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US13/694,982 US20130138153A1 (en) 2007-05-01 2013-01-23 Dynamic stabilization assembly having pre-compressed spacers with differential displacements

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/459,492 Continuation US8366745B2 (en) 2007-01-18 2009-07-01 Dynamic stabilization assembly having pre-compressed spacers with differential displacements

Publications (1)

Publication Number Publication Date
US20130138153A1 true US20130138153A1 (en) 2013-05-30

Family

ID=41507359

Family Applications (4)

Application Number Title Priority Date Filing Date
US12/459,492 Expired - Fee Related US8366745B2 (en) 2007-01-18 2009-07-01 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US13/317,158 Abandoned US20120035660A1 (en) 2007-01-18 2011-10-11 Dynamic stabilization connecting member with pre-tensioned solid core
US13/694,982 Abandoned US20130138153A1 (en) 2007-05-01 2013-01-23 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US15/197,247 Active US9931139B2 (en) 2007-01-18 2016-06-29 Dynamic stabilization connecting member with pre-tensioned solid core

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/459,492 Expired - Fee Related US8366745B2 (en) 2007-01-18 2009-07-01 Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US13/317,158 Abandoned US20120035660A1 (en) 2007-01-18 2011-10-11 Dynamic stabilization connecting member with pre-tensioned solid core

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/197,247 Active US9931139B2 (en) 2007-01-18 2016-06-29 Dynamic stabilization connecting member with pre-tensioned solid core

Country Status (2)

Country Link
US (4) US8366745B2 (en)
WO (1) WO2010005582A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029568A1 (en) * 2006-01-09 2012-02-02 Jackson Roger P Spinal connecting members with radiused rigid sleeves and tensioned cords
US20150112341A1 (en) * 2013-10-23 2015-04-23 Extremity Medical Llc Devices for bone fixation using an intramedullary fixation implant

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US20160242816A9 (en) 2001-05-09 2016-08-25 Roger P. Jackson Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US11224463B2 (en) 2007-01-18 2022-01-18 Roger P. Jackson Dynamic stabilization connecting member with pre-tensioned flexible core member
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
FR2926976B1 (en) * 2008-02-04 2011-01-14 Spinevision DYNAMIC STABILIZATION ELEMENT FOR VERTEBRATES.
US8043340B1 (en) * 2008-06-09 2011-10-25 Melvin Law Dynamic spinal stabilization system
US8784453B1 (en) 2008-06-09 2014-07-22 Melvin Law Dynamic spinal stabilization system
CA2739997C (en) 2008-08-01 2013-08-13 Roger P. Jackson Longitudinal connecting member with sleeved tensioned cords
US20100049252A1 (en) * 2008-08-21 2010-02-25 Southern Spine, Llc Transverse Connector Device for Extending an Existing Spinal Fixation System
ES2392362T3 (en) * 2008-10-08 2012-12-10 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device and stabilization device for bone parts or vertebrae
CN103917181A (en) 2009-06-15 2014-07-09 罗杰.P.杰克逊 Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US10327818B2 (en) 2012-06-18 2019-06-25 Bruce Francis Hodgson Method and apparatus for the treatment of scoliosis
AU2013278984B2 (en) * 2012-06-18 2016-05-26 Bruce Francis HODGSON Method and apparatus for the treatment of scoliosis
US20150201970A1 (en) * 2012-07-11 2015-07-23 Joshua Aferzon Dynamic spinal stabilization rod
WO2014016824A1 (en) * 2012-07-24 2014-01-30 Reuven Gepstein Spine system and kit
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
EP3100692A1 (en) * 2015-06-04 2016-12-07 Zimmer Spine Spinal dynamic stabilization system
US10103466B1 (en) 2017-05-17 2018-10-16 General Electric Company Double-threaded connector
AU2019403451A1 (en) 2018-12-21 2021-06-10 Paradigm Spine, Llc Modular spine stabilization system and associated instruments

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050131407A1 (en) * 2003-12-16 2005-06-16 Sicvol Christopher W. Flexible spinal fixation elements
US20060264937A1 (en) * 2005-05-04 2006-11-23 White Patrick M Mobile spine stabilization device
US20070123864A1 (en) * 2000-09-18 2007-05-31 Reto Walder Pedicle screw for intervertebral support elements
US20070129729A1 (en) * 2004-03-02 2007-06-07 Spinevision, A Corporation Of France Dynamic linking element for a spinal attachment system, and spinal attachment system including said linking element
US20070276380A1 (en) * 2003-09-24 2007-11-29 Tae-Ahn Jahng Spinal stabilization device
US20070288011A1 (en) * 2006-04-18 2007-12-13 Joseph Nicholas Logan Spinal Rod System
US20080183212A1 (en) * 2007-01-30 2008-07-31 Warsaw Orthopedic, Inc. Dynamic Spinal Stabilization Assembly with Sliding Collars
US20080234691A1 (en) * 2007-02-21 2008-09-25 Helmut Schwab Flex-Rod, Curvature-Adaptable
US20080234737A1 (en) * 2007-03-16 2008-09-25 Zimmer Spine, Inc. Dynamic spinal stabilization system and method of using the same
US20090005817A1 (en) * 2007-04-30 2009-01-01 Adam Friedrich Flexible Spine Stabilization System
US7842072B2 (en) * 2006-03-16 2010-11-30 Zimmer Spine, Inc. Spinal fixation device with variable stiffness

Family Cites Families (921)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US854956A (en) 1906-11-16 1907-05-28 Charles F Martin Veterinary surgical instrument.
US2243717A (en) 1938-09-20 1941-05-27 Moreira Franciseo Elias Godoy Surgical device
US2346346A (en) 1941-01-21 1944-04-11 Anderson Roger Fracture immobilization splint
US2362999A (en) 1943-06-28 1944-11-21 Hewitt Elmer Spencer Screwhead
US2531892A (en) 1947-01-27 1950-11-28 Richard T Reese Bolt and nut fixture
US2813450A (en) 1954-05-03 1957-11-19 Dzus William Rotatable fastener having circular toothed tool receiving groove
US3013244A (en) 1957-05-01 1961-12-12 Verdugo Products Company Clamp connection and spacer for electrical transmission lines
US3236275A (en) 1962-10-24 1966-02-22 Robert D Smith Screw driver with an h-shaped drawing bit
US3604487A (en) 1969-03-10 1971-09-14 Richard S Gilbert Orthopedic screw driving means
US3640416A (en) 1970-10-16 1972-02-08 John J Temple Reverse angle thread system for containers
US4033139A (en) 1974-02-08 1977-07-05 Frederick Leonard L Pile driving hammer, apparatus and method
GB1519139A (en) 1974-06-18 1978-07-26 Crock H V And Pericic L L securing elongate members to structurs more especially in surgical procedures
GB1551706A (en) 1975-04-28 1979-08-30 Downs Surgical Ltd Surgical implant
US4373754A (en) 1978-08-09 1983-02-15 Hydril Company Threaded connector
US4190091A (en) * 1978-09-26 1980-02-26 Sebastian Zuppichin Screw, screwdriver and screw-holding attachment therefor
CH648197A5 (en) 1980-05-28 1985-03-15 Synthes Ag IMPLANT AND SCREW FASTENING ON ITS BONE.
US4448191A (en) 1981-07-07 1984-05-15 Rodnyansky Lazar I Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
US4600224A (en) 1983-12-23 1986-07-15 Interlock Technologies Corporation Tubular connection having a chevron wedge thread
US4653486A (en) 1984-04-12 1987-03-31 Coker Tom P Fastener, particularly suited for orthopedic use
US4877020A (en) 1984-11-30 1989-10-31 Vich Jose M O Apparatus for bone graft
US4743260A (en) 1985-06-10 1988-05-10 Burton Charles V Method for a flexible stabilization system for a vertebral column
US4703954A (en) 1985-11-08 1987-11-03 Hydril Company Threaded pipe connection having wedge threads
DE3614101C1 (en) 1986-04-25 1987-10-22 Juergen Prof Dr Med Harms Pedicle screw
US4707001A (en) 1986-06-20 1987-11-17 Seal-Tech, Inc. Liner connection
US5427418A (en) 1986-07-18 1995-06-27 Watts; John D. High strength, low torque threaded tubular connection
US4748260A (en) 1986-12-22 1988-05-31 Ethyl Corporation Preparation of amine alanes
US4759672A (en) 1987-05-08 1988-07-26 Illinois Tool Works Inc. Fastener head with stabilizing ring
US4790297A (en) 1987-07-24 1988-12-13 Biotechnology, Inc. Spinal fixation method and system
US4836196A (en) 1988-01-11 1989-06-06 Acromed Corporation Surgically implantable spinal correction system
US5468241A (en) 1988-02-18 1995-11-21 Howmedica Gmbh Support device for the human vertebral column
US4887596A (en) 1988-03-02 1989-12-19 Synthes (U.S.A.) Open backed pedicle screw
US6770074B2 (en) 1988-06-13 2004-08-03 Gary Karlin Michelson Apparatus for use in inserting spinal implants
US4950269A (en) 1988-06-13 1990-08-21 Acromed Corporation Spinal column fixation device
US5484437A (en) * 1988-06-13 1996-01-16 Michelson; Gary K. Apparatus and method of inserting spinal implants
US5772661A (en) 1988-06-13 1998-06-30 Michelson; Gary Karlin Methods and instrumentation for the surgical correction of human thoracic and lumbar spinal disease from the antero-lateral aspect of the spine
FR2633177B1 (en) 1988-06-24 1991-03-08 Fabrication Materiel Orthopedi IMPLANT FOR A SPINAL OSTEOSYNTHESIS DEVICE, ESPECIALLY IN TRAUMATOLOGY
FR2642645B1 (en) * 1989-02-03 1992-08-14 Breard Francis FLEXIBLE INTERVERTEBRAL STABILIZER AND METHOD AND APPARATUS FOR CONTROLLING ITS VOLTAGE BEFORE PLACEMENT ON THE RACHIS
USRE36221E (en) 1989-02-03 1999-06-01 Breard; Francis Henri Flexible inter-vertebral stabilizer as well as process and apparatus for determining or verifying its tension before installation on the spinal column
NO900391L (en) 1989-02-06 1990-08-07 Weidmann H Ag PROCEDURE, ANCHORING ELEMENT AND TENSION FOR TENSIONING OF A BAR.
FR2642643B1 (en) 1989-02-09 1991-05-10 Vignaud Jean Louis SPINAL INSTRUMENTATION FOR UNIVERSAL PEDICULAR FIXATION WITH MICROMETRIC ADJUSTMENT DIAPASON SCREW
FR2645732B1 (en) 1989-04-13 1997-01-03 Cotrel Yves VERTEBRAL IMPLANT FOR OSTEOSYNTHESIS DEVICE
CH678803A5 (en) * 1989-07-12 1991-11-15 Sulzer Ag
DE3923996A1 (en) 1989-07-20 1991-01-31 Lutz Biedermann RECORDING PART FOR JOINTLY CONNECTING TO A SCREW FOR MAKING A PEDICLE SCREW
DE3942326A1 (en) 1989-12-21 1991-06-27 Haerle Anton SCREW AS AN OSTEOSYNTHESIS TOOL
CA2035348C (en) 1990-02-08 2000-05-16 Jean-Louis Vignaud Adjustable fastening device with spinal osteosynthesis rods
US5019080A (en) 1990-02-13 1991-05-28 Trextron Inc. Drive system for prosthetic fasteners
FR2658414B1 (en) 1990-02-19 1992-07-31 Sofamor IMPLANT FOR OSTEOSYNTHESIS DEVICE IN PARTICULAR OF THE RACHIS.
FR2659225B1 (en) 1990-03-08 1995-09-08 Sofamor TRANSVERSE FIXING DEVICE FOR PROVIDING A RIGID CROSS-LINK BETWEEN TWO RODS OF A SPINAL OSTEOSYNTHESIS SYSTEM.
GB9007519D0 (en) 1990-04-03 1990-05-30 Trisport Ltd Studded footwear
US5360431A (en) 1990-04-26 1994-11-01 Cross Medical Products Transpedicular screw system and method of use
US5092635A (en) 1990-04-27 1992-03-03 Baker Hughes Incorporated Buttress thread form
DE9006646U1 (en) 1990-06-13 1990-08-23 Howmedica Gmbh, 2314 Schoenkirchen, De
US5102412A (en) 1990-06-19 1992-04-07 Chaim Rogozinski System for instrumentation of the spine in the treatment of spinal deformities
GB9014817D0 (en) 1990-07-04 1990-08-22 Mehdian Seyed M H Improvements in or relating to apparatus for use in the treatment of spinal disorders
US5129900B1 (en) 1990-07-24 1998-12-29 Acromed Corp Spinal column retaining method and apparatus
US5034011A (en) 1990-08-09 1991-07-23 Advanced Spine Fixation Systems Incorporated Segmental instrumentation of the posterior spine
CH681853A5 (en) 1990-08-21 1993-06-15 Synthes Ag
FR2666981B1 (en) 1990-09-21 1993-06-25 Commarmond Jacques SYNTHETIC LIGAMENT VERTEBRAL.
US5020519A (en) 1990-12-07 1991-06-04 Zimmer, Inc. Sagittal approximator
US5176483A (en) 1991-01-21 1993-01-05 Inq. Walter Hengst Gmbh & Co. Detachment lock for a bolt connection
US5176678A (en) 1991-03-14 1993-01-05 Tsou Paul M Orthopaedic device with angularly adjustable anchor attachments to the vertebrae
FR2676354B1 (en) 1991-05-17 1997-11-07 Vignaud Jean Louis LOCKABLE CONNECTION DEVICE OF SPINAL OSTEOSYNTHESIS ANCHORING ELEMENTS.
FR2676911B1 (en) 1991-05-30 1998-03-06 Psi Ste Civile Particuliere INTERVERTEBRAL STABILIZATION DEVICE WITH SHOCK ABSORBERS.
PT100685A (en) 1991-07-15 1994-05-31 Danek Group Inc SPINAL FIXING SYSTEM
FR2680461B1 (en) 1991-08-19 1993-11-26 Fabrication Mat Orthopedique IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS, AND CORRESPONDING DEVICE FOR ITS PLACEMENT.
US5275601A (en) 1991-09-03 1994-01-04 Synthes (U.S.A) Self-locking resorbable screws and plates for internal fixation of bone fractures and tendon-to-bone attachment
US5257993A (en) 1991-10-04 1993-11-02 Acromed Corporation Top-entry rod retainer
US5282862A (en) * 1991-12-03 1994-02-01 Artifex Ltd. Spinal implant system and a method for installing the implant onto a vertebral column
DE9202745U1 (en) 1992-03-02 1992-04-30 Howmedica Gmbh, 2314 Schoenkirchen, De
US5358289A (en) 1992-03-13 1994-10-25 Nkk Corporation Buttress-threaded tubular connection
FR2692952B1 (en) 1992-06-25 1996-04-05 Psi IMPROVED SHOCK ABSORBER WITH MOVEMENT LIMIT.
US5281222A (en) 1992-06-30 1994-01-25 Zimmer, Inc. Spinal implant system
USD346217S (en) 1992-07-13 1994-04-19 Acromed Corporation Combined hook holder and rod mover for spinal surgery
US5545165A (en) 1992-10-09 1996-08-13 Biedermann Motech Gmbh Anchoring member
US5484440A (en) * 1992-11-03 1996-01-16 Zimmer, Inc. Bone screw and screwdriver
FR2697992B1 (en) 1992-11-18 1994-12-30 Eurosurgical Device for attaching to a rod of an organ, in particular for spinal orthopedic instrumentation.
DE4239716C1 (en) 1992-11-26 1994-08-04 Kernforschungsz Karlsruhe Elastic implant for stabilising degenerated spinal column segments
US5306275A (en) 1992-12-31 1994-04-26 Bryan Donald W Lumbar spine fixation apparatus and method
DE4303770C1 (en) 1993-02-09 1994-05-26 Plus Endoprothetik Ag Rotkreuz Stiffening and correction system for spinal vertebrae - comprises screw-ended holders with connecting rod supporting clamped distance pieces.
CA2155422C (en) 1993-02-10 2005-07-12 Stephen D. Kuslich Spinal stabilization surgical method
FR2701650B1 (en) 1993-02-17 1995-05-24 Psi Double shock absorber for intervertebral stabilization.
US5549607A (en) 1993-02-19 1996-08-27 Alphatec Manufacturing, Inc, Apparatus for spinal fixation system
DE9302700U1 (en) 1993-02-25 1993-04-08 Howmedica Gmbh, 2314 Schoenkirchen, De
DE4307576C1 (en) 1993-03-10 1994-04-21 Biedermann Motech Gmbh Bone screw esp. for spinal column correction - has U=shaped holder section for receiving straight or bent rod
US5415661A (en) 1993-03-24 1995-05-16 University Of Miami Implantable spinal assist device
FR2704133B1 (en) 1993-04-19 1995-07-13 Stryker Corp Implant for osteosynthesis device in particular of the spine.
FR2705226B1 (en) 1993-05-17 1995-07-07 Tornier Sa Spine fixator to maintain a spine.
HU9503288D0 (en) 1993-05-18 1996-01-29 Schaefer Micomed Gmbh Holding device for use in bone surgery
DE4316542C1 (en) 1993-05-18 1994-07-21 Schaefer Micomed Gmbh Osteosynthesis device
US6077262A (en) 1993-06-04 2000-06-20 Synthes (U.S.A.) Posterior spinal implant
US5379505A (en) 1993-06-16 1995-01-10 Lock-N-Stitch International Method for repairing cracks
EP0708619A4 (en) 1993-07-16 1997-04-23 Artifex Ltd Implant device and method of installing
US5423816A (en) 1993-07-29 1995-06-13 Lin; Chih I. Intervertebral locking device
FR2709246B1 (en) 1993-08-27 1995-09-29 Martin Jean Raymond Dynamic implanted spinal orthosis.
FR2709412B1 (en) 1993-09-01 1995-11-24 Tornier Sa Screw for lumbo-sacral fixator.
WO1995010238A1 (en) 1993-10-08 1995-04-20 Chaim Rogozinski Spinal treatment apparatus and method including multi-directional attachment member
US5466237A (en) 1993-11-19 1995-11-14 Cross Medical Products, Inc. Variable locking stabilizer anchor seat and screw
AU693498B2 (en) 1993-11-19 1998-07-02 Cross Medical Products, Inc. Rod anchor seat having sliding closure member
US5628740A (en) 1993-12-23 1997-05-13 Mullane; Thomas S. Articulating toggle bolt bone screw
NL9400210A (en) 1994-02-10 1995-09-01 Acromed Bv Implantation device for limiting movements between two vertebrae.
US5611800A (en) 1994-02-15 1997-03-18 Alphatec Manufacturing, Inc. Spinal fixation system
US5507745A (en) 1994-02-18 1996-04-16 Sofamor, S.N.C. Occipito-cervical osteosynthesis instrumentation
DE9402839U1 (en) 1994-02-22 1994-04-14 Howmedica Gmbh Device for setting up a spine with damaged vertebrae
DE59408313D1 (en) 1994-02-28 1999-07-01 Sulzer Orthopaedie Ag Stabilization of neighboring vertebrae
DE59507758D1 (en) 1994-03-10 2000-03-16 Schaefer Micomed Gmbh Osteosynthesis device
EP0677277A3 (en) 1994-03-18 1996-02-28 Patrice Moreau Spinal prosthetic assembly.
FR2717370A1 (en) 1994-03-18 1995-09-22 Moreau Patrice Intervertebral stabilising prosthesis for spinal reinforcement inserted during spinal surgery
FR2718944B1 (en) 1994-04-20 1996-08-30 Pierre Roussouly Orthopedic anchoring stabilization device.
FR2718946B1 (en) 1994-04-25 1996-09-27 Soprane Sa Flexible rod for lumbosacral osteosynthesis fixator.
DE4425392C2 (en) 1994-04-28 1996-04-25 Schaefer Micomed Gmbh Bone surgery holding device
US5662652A (en) 1994-04-28 1997-09-02 Schafer Micomed Gmbh Bone surgery holding apparatus
US5490750A (en) 1994-06-09 1996-02-13 Gundy; William P. Anchoring device for a threaded member
US5641256A (en) 1994-06-09 1997-06-24 Npc, Inc. Anchoring device for a threaded member
DE4425357C2 (en) 1994-07-18 1996-07-04 Harms Juergen Anchoring element
US5961517A (en) 1994-07-18 1999-10-05 Biedermann; Lutz Anchoring member and adjustment tool therefor
DE9413471U1 (en) 1994-08-20 1995-12-21 Schaefer Micomed Gmbh Ventral intervertebral implant
US5601553A (en) 1994-10-03 1997-02-11 Synthes (U.S.A.) Locking plate and bone screw
US5474551A (en) 1994-11-18 1995-12-12 Smith & Nephew Richards, Inc. Universal coupler for spinal fixation
US6652765B1 (en) 1994-11-30 2003-11-25 Implant Innovations, Inc. Implant surface preparation
FR2729291B1 (en) 1995-01-12 1997-09-19 Euros Sa RACHIDIAN IMPLANT
US5620443A (en) 1995-01-25 1997-04-15 Danek Medical, Inc. Anterior screw-rod connector
FR2730158B1 (en) 1995-02-06 1999-11-26 Jbs Sa DEVICE FOR MAINTAINING A NORMAL SPACING BETWEEN VERTEBRES AND FOR THE REPLACEMENT OF MISSING VERTEBRES
US5643260A (en) 1995-02-14 1997-07-01 Smith & Nephew, Inc. Orthopedic fixation system
DE19507141B4 (en) 1995-03-01 2004-12-23 Harms, Jürgen, Prof. Dr.med. Locking
FR2731344B1 (en) 1995-03-06 1997-08-22 Dimso Sa SPINAL INSTRUMENTATION ESPECIALLY FOR A ROD
DE19509331C2 (en) 1995-03-15 1998-01-15 Juergen Harms Element for stabilizing the cervical vertebrae
DE19509332C1 (en) 1995-03-15 1996-08-14 Harms Juergen Anchoring element
US5569247A (en) 1995-03-27 1996-10-29 Smith & Nephew Richards, Inc. Enhanced variable angle bone bolt
US5782919A (en) 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US6206922B1 (en) 1995-03-27 2001-03-27 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US5591166A (en) 1995-03-27 1997-01-07 Smith & Nephew Richards, Inc. Multi angle bone bolt
US6780186B2 (en) 1995-04-13 2004-08-24 Third Millennium Engineering Llc Anterior cervical plate having polyaxial locking screws and sliding coupling elements
US5882350A (en) 1995-04-13 1999-03-16 Fastenetix, Llc Polyaxial pedicle screw having a threaded and tapered compression locking mechanism
US5669911A (en) 1995-04-13 1997-09-23 Fastenetix, L.L.C. Polyaxial pedicle screw
US5520690A (en) 1995-04-13 1996-05-28 Errico; Joseph P. Anterior spinal polyaxial locking screw plate assembly
US5607304A (en) 1995-04-17 1997-03-04 Crystal Medical Technology, A Division Of Folsom Metal Products, Inc. Implant connector
US5607428A (en) 1995-05-01 1997-03-04 Lin; Kwan C. Orthopedic fixation device having a double-threaded screw
US5683391A (en) 1995-06-07 1997-11-04 Danek Medical, Inc. Anterior spinal instrumentation and method for implantation and revision
US5562663A (en) 1995-06-07 1996-10-08 Danek Medical, Inc. Implant interconnection mechanism
US5584834A (en) 1995-07-13 1996-12-17 Fastenetix, L.L.C. Polyaxial locking screw and coupling element assembly for use with side loading rod fixation apparatus
US5554157A (en) 1995-07-13 1996-09-10 Fastenetix, L.L.C. Rod securing polyaxial locking screw and coupling element assembly
US5586984A (en) 1995-07-13 1996-12-24 Fastenetix, L.L.C. Polyaxial locking screw and coupling element assembly for use with rod fixation apparatus
US5697929A (en) 1995-10-18 1997-12-16 Cross Medical Products, Inc. Self-limiting set screw for use with spinal implant systems
US5662653A (en) 1996-02-22 1997-09-02 Pioneer Laboratories, Inc. Surgical rod-to-bone attachment
US5711709A (en) 1996-03-07 1998-01-27 Douville-Johnston Corporation Self-aligning rod end coupler
US6679833B2 (en) 1996-03-22 2004-01-20 Sdgi Holdings, Inc. Devices and methods for percutaneous surgery
US5792044A (en) 1996-03-22 1998-08-11 Danek Medical, Inc. Devices and methods for percutaneous surgery
DE29606468U1 (en) 1996-04-09 1997-08-07 Link Waldemar Gmbh Co Spinal fixator
DE69724457T2 (en) 1996-04-18 2004-06-24 Tresona Instrument Ab DEVICE FOR CORRECTING AND STABILIZING THE DIFFERENT CURVATION OF A SPINE
DE19617362C2 (en) * 1996-04-30 1999-06-10 Harms Juergen Anchoring element
FR2748387B1 (en) 1996-05-13 1998-10-30 Stryker France Sa BONE FIXATION DEVICE, IN PARTICULAR TO THE SACRUM, IN OSTEOSYNTHESIS OF THE SPINE
US6019759A (en) 1996-07-29 2000-02-01 Rogozinski; Chaim Multi-Directional fasteners or attachment devices for spinal implant elements
US5797911A (en) 1996-09-24 1998-08-25 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5879350A (en) 1996-09-24 1999-03-09 Sdgi Holdings, Inc. Multi-axial bone screw assembly
US5885286A (en) 1996-09-24 1999-03-23 Sdgi Holdings, Inc. Multi-axial bone screw assembly
KR100531146B1 (en) 1996-10-09 2005-11-25 케이2 메디칼 엘.엘.시. A modular polyaxial locking pedicle screw
US5800435A (en) 1996-10-09 1998-09-01 Techsys, Llc Modular spinal plate for use with modular polyaxial locking pedicle screws
US5725528A (en) 1997-02-12 1998-03-10 Third Millennium Engineering, Llc Modular polyaxial locking pedicle screw
US5863293A (en) * 1996-10-18 1999-01-26 Spinal Innovations Spinal implant fixation assembly
US5964760A (en) 1996-10-18 1999-10-12 Spinal Innovations Spinal implant fixation assembly
US6416515B1 (en) 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
EP0934026B1 (en) 1996-10-24 2009-07-15 Zimmer Spine Austin, Inc Apparatus for spinal fixation
US5728098A (en) 1996-11-07 1998-03-17 Sdgi Holdings, Inc. Multi-angle bone screw assembly using shape-memory technology
FR2755844B1 (en) 1996-11-15 1999-01-29 Stryker France Sa OSTEOSYNTHESIS SYSTEM WITH ELASTIC DEFORMATION FOR SPINE
KR100417222B1 (en) 1996-12-12 2004-02-05 신테스 아게 츄어 Device for connecting a longitudinal support to a pedicle screw
US6485494B1 (en) 1996-12-20 2002-11-26 Thomas T. Haider Pedicle screw system for osteosynthesis
US6004349A (en) 1997-01-06 1999-12-21 Jackson; Roger P. Set screw for use with osteosynthesis apparatus
US6224596B1 (en) 1997-01-06 2001-05-01 Roger P. Jackson Set screw for use with osteosynthesis apparatus
US6001098A (en) 1997-01-17 1999-12-14 Howmedica Gmbh Connecting element for spinal stabilizing system
WO1998032386A1 (en) 1997-01-22 1998-07-30 Synthes Ag Chur Device for connecting a longitudinal bar to a pedicle screw
ES2268267T3 (en) 1997-02-11 2007-03-16 Warsaw Orthopedic, Inc. PREVIOUS CERVICAL PLATE FOR UNIQUE TYPE LOCK DEVICE.
US5910141A (en) 1997-02-12 1999-06-08 Sdgi Holdings, Inc. Rod introduction apparatus
US5733286A (en) 1997-02-12 1998-03-31 Third Millennium Engineering, Llc Rod securing polyaxial locking screw and coupling element assembly
US5752957A (en) 1997-02-12 1998-05-19 Third Millennium Engineering, Llc Polyaxial mechanism for use with orthopaedic implant devices
DE19712783C2 (en) 1997-03-26 2000-11-09 Sfs Ind Holding Ag Heerbrugg Screwdriver element
FR2762986B1 (en) 1997-05-07 1999-09-24 Aesculap Jbs OSTEOSYNTHESIS SYSTEM FOR VERTEBRAL ARTHRODESIS
US6413257B1 (en) 1997-05-15 2002-07-02 Surgical Dynamics, Inc. Clamping connector for spinal fixation systems
US6248105B1 (en) 1997-05-17 2001-06-19 Synthes (U.S.A.) Device for connecting a longitudinal support with a pedicle screw
FR2763832B1 (en) 1997-05-29 1999-10-01 Materiel Orthopedique En Abreg VERTEBRAL ROD FOR INSTRUMENTATION OF RACHIDIAN OSTEOSYNTHESIS, AND OSTEOSYNTHESIS INSTRUMENTATION COMPRISING SUCH ROD
IES77331B2 (en) 1997-06-03 1997-12-03 Tecos Holdings Inc Pluridirectional and modulable vertebral osteosynthesis device of small overall size
DE29710484U1 (en) 1997-06-16 1998-10-15 Howmedica Gmbh Receiving part for a holding component of a spinal implant
US5951553A (en) 1997-07-14 1999-09-14 Sdgi Holdings, Inc. Methods and apparatus for fusionless treatment of spinal deformities
US5891145A (en) 1997-07-14 1999-04-06 Sdgi Holdings, Inc. Multi-axial screw
US6287308B1 (en) 1997-07-14 2001-09-11 Sdgi Holdings, Inc. Methods and apparatus for fusionless treatment of spinal deformities
EP0999795A1 (en) 1997-07-31 2000-05-17 Plus Endoprothetik Ag Device for stiffening and/or correcting a vertebral column or such like
US5944465A (en) 1997-08-04 1999-08-31 Janitzki; Bernhard M. Low tolerance threaded fastener
US6226548B1 (en) * 1997-09-24 2001-05-01 Surgical Navigation Technologies, Inc. Percutaneous registration apparatus and method for use in computer-assisted surgical navigation
US6399334B1 (en) 1997-09-24 2002-06-04 Invitrogen Corporation Normalized nucleic acid libraries and methods of production thereof
AU753521B2 (en) 1997-10-24 2002-10-17 Robert S. Bray Jr. Bone plate and bone screw guide mechanism
DE29720022U1 (en) 1997-11-12 1998-01-15 Schaefer Micomed Gmbh Intervertebral implant
FR2771280B1 (en) 1997-11-26 2001-01-26 Albert P Alby RESILIENT VERTEBRAL CONNECTION DEVICE
EP0933065A1 (en) 1998-02-02 1999-08-04 Sulzer Orthopädie AG Pivotable attachment system for a bone screw
US6010503A (en) 1998-04-03 2000-01-04 Spinal Innovations, Llc Locking mechanism
FR2776915B1 (en) 1998-04-03 2000-06-30 Eurosurgical SPINAL OSTEOSYNTHESIS DEVICE ADAPTABLE TO DIFFERENCES IN ALIGNMENT, ANGULATION AND DRIVING OF PEDICULAR SCREWS
DE19818765A1 (en) 1998-04-07 1999-10-14 Schaefer Micomed Gmbh Synthetic bone device for fixing bone fractures
DE29806563U1 (en) 1998-04-09 1998-06-18 Howmedica Gmbh Pedicle screw and assembly aid for it
US6533786B1 (en) 1999-10-13 2003-03-18 Sdgi Holdings, Inc. Anterior cervical plating system
PT1079753E (en) 1998-05-19 2004-05-31 Synthes Ag OSTEOSINTETIC IMPLANT WITH A BOILED ROTATION BOARD
US6258089B1 (en) 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
US6113601A (en) 1998-06-12 2000-09-05 Bones Consulting, Llc Polyaxial pedicle screw having a loosely coupled locking cap
DE29810798U1 (en) 1998-06-17 1999-10-28 Schaefer Micomed Gmbh Osteosynthesis device
US6090111A (en) 1998-06-17 2000-07-18 Surgical Dynamics, Inc. Device for securing spinal rods
US6565565B1 (en) 1998-06-17 2003-05-20 Howmedica Osteonics Corp. Device for securing spinal rods
US6186718B1 (en) * 1998-06-18 2001-02-13 Northrop Grumman Corporation Threaded fastener having a head with a triangle centerpost within a triangle recess
US6110172A (en) 1998-07-31 2000-08-29 Jackson; Roger P. Closure system for open ended osteosynthesis apparatus
DE19835816C2 (en) 1998-08-08 2002-02-07 Schaefer Micomed Gmbh osteosynthesis
WO2000010474A1 (en) 1998-08-21 2000-03-02 Synthes Ag Chur Bone-anchoring element with snap-in spherical head
DE69930391T2 (en) * 1998-09-11 2006-12-07 Synthes Ag Chur, Chur ANGLE ADJUSTABLE FIXING SYSTEM FOR THE SPINE
EP1117336B1 (en) 1998-09-29 2004-05-19 SYNTHES AG Chur Device for joining a longitudinal support and bone fixation means
US6102913A (en) 1998-10-22 2000-08-15 Jackson; Roger P. Removeable set screw for medical implant
US6296642B1 (en) 1998-11-09 2001-10-02 Sdgi Holdings, Inc. Reverse angle thread for preventing splaying in medical devices
FR2785787B1 (en) 1998-11-12 2001-04-13 Materiel Orthopedique En Abreg OSTEOSYNTHESIS DEVICE OF AN ANTERIORALLY SPACHED SEGMENT
US6214012B1 (en) 1998-11-13 2001-04-10 Harrington Arthritis Research Center Method and apparatus for delivering material to a desired location
CA2352185C (en) 1998-11-26 2008-04-15 Synthes (U.S.A.) Bone screw having a constant diameter thread
US6193720B1 (en) * 1998-11-30 2001-02-27 Depuy Orthopaedics, Inc. Cervical spine stabilization method and system
FR2787016B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISK PROSTHESIS
FR2787014B1 (en) 1998-12-11 2001-03-02 Dimso Sa INTERVERTEBRAL DISC PROSTHESIS WITH REDUCED FRICTION
US6136002A (en) 1999-02-05 2000-10-24 Industrial Technology Research Institute Anterior spinal fixation system
US6402757B1 (en) 1999-03-12 2002-06-11 Biomet, Inc. Cannulated fastener system for repair of bone fracture
US6383176B1 (en) * 1999-03-15 2002-05-07 Altus Medical, Inc. Hair removal device and method
US6302888B1 (en) 1999-03-19 2001-10-16 Interpore Cross International Locking dovetail and self-limiting set screw assembly for a spinal stabilization member
US6315779B1 (en) 1999-04-16 2001-11-13 Sdgi Holdings, Inc. Multi-axial bone anchor system
US6280445B1 (en) 1999-04-16 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone anchor system
US6471703B1 (en) 1999-04-21 2002-10-29 Sdgi Holdings, Inc. Variable angle connection assembly for a spinal implant system
US6254146B1 (en) 1999-04-23 2001-07-03 John Gandy Corporation Thread form with multifacited flanks
US6296643B1 (en) 1999-04-23 2001-10-02 Sdgi Holdings, Inc. Device for the correction of spinal deformities through vertebral body tethering without fusion
US6299613B1 (en) 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
WO2000069351A1 (en) 1999-05-14 2000-11-23 Synthes Ag Chur Bone fixation device with a rotation joint
JP3025265B1 (en) 1999-05-17 2000-03-27 株式会社ロバート・リード商会 Wire rod fixing device
US6273888B1 (en) 1999-05-28 2001-08-14 Sdgi Holdings, Inc. Device and method for selectively preventing the locking of a shape-memory alloy coupling system
US6254602B1 (en) 1999-05-28 2001-07-03 Sdgi Holdings, Inc. Advanced coupling device using shape-memory technology
FR2794637B1 (en) 1999-06-14 2001-12-28 Scient X IMPLANT FOR OSTEOSYNTHESIS DEVICE, ESPECIALLY OF THE RACHIS
DE19928449C1 (en) 1999-06-23 2001-03-08 Geot Ges Fuer Elektro Oseto Th Bone screw with device for electrical stimulation
CA2376030C (en) 1999-07-07 2007-11-06 Synthes (U.S.A.) Bone screw with axially two-part screw head
FR2796545B1 (en) * 1999-07-22 2002-03-15 Dimso Sa POLY-AXIAL LINK FOR OSTEOSYNTHESIS SYSTEM, ESPECIALLY FOR THE RACHIS
FR2796546B1 (en) 1999-07-23 2001-11-30 Eurosurgical POLYAXIAL CONNECTOR FOR SPINAL IMPLANT
DE19936286C2 (en) 1999-08-02 2002-01-17 Lutz Biedermann bone screw
ES2203173T5 (en) 1999-08-14 2007-05-01 AESCULAP AG & CO. KG BONE SCREW.
US6280442B1 (en) 1999-09-01 2001-08-28 Sdgi Holdings, Inc. Multi-axial bone screw assembly
AU1493301A (en) 1999-09-27 2001-04-30 Blackstone Medical, Inc. A surgical screw system and related methods
US6554834B1 (en) 1999-10-07 2003-04-29 Stryker Spine Slotted head pedicle screw assembly
US6277122B1 (en) 1999-10-15 2001-08-21 Sdgi Holdings, Inc. Distraction instrument with fins for maintaining insertion location
DE19950252C2 (en) 1999-10-18 2002-01-17 Schaefer Micomed Gmbh bone plate
US6530929B1 (en) 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
FR2799949B1 (en) 1999-10-22 2002-06-28 Abder Benazza SPINAL OSTETHOSYNTHESIS DEVICE
EP1854433B1 (en) 1999-10-22 2010-05-12 FSI Acquisition Sub, LLC Facet arthroplasty devices
DE19951145C2 (en) 1999-10-23 2003-11-13 Schaefer Micomed Gmbh osteosynthesis
DE50007759D1 (en) 1999-11-25 2004-10-21 Sulzer Orthopedics Ltd Surgical instrument for tensioning a cable-like tensioning element
DE19957332B4 (en) 1999-11-29 2004-11-11 Bernd Schäfer cross-connector
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6767351B2 (en) 2000-02-01 2004-07-27 Hand Innovations, Inc. Fixation system with multidirectional stabilization pegs
US6716247B2 (en) 2000-02-04 2004-04-06 Gary K. Michelson Expandable push-in interbody spinal fusion implant
DE10005385A1 (en) 2000-02-07 2001-08-09 Ulrich Gmbh & Co Kg Pedicle screw
US6235028B1 (en) 2000-02-14 2001-05-22 Sdgi Holdings, Inc. Surgical guide rod
US7601171B2 (en) 2003-10-23 2009-10-13 Trans1 Inc. Spinal motion preservation assemblies
US6224598B1 (en) 2000-02-16 2001-05-01 Roger P. Jackson Bone screw threaded plug closure with central set screw
US6293949B1 (en) 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US6375657B1 (en) 2000-03-14 2002-04-23 Hammill Manufacturing Co. Bonescrew
US6248107B1 (en) 2000-03-15 2001-06-19 Sdgi Holdings, Inc. System for reducing the displacement of a vertebra
US6309391B1 (en) 2000-03-15 2001-10-30 Sdgi Holding, Inc. Multidirectional pivoting bone screw and fixation system
US7322979B2 (en) * 2000-03-15 2008-01-29 Warsaw Orthopedic, Inc. Multidirectional pivoting bone screw and fixation system
US6572618B1 (en) 2000-03-15 2003-06-03 Sdgi Holdings, Inc. Spinal implant connection assembly
KR200200582Y1 (en) 2000-03-15 2000-10-16 최길운 Prosthesis for connecting bone
AR019513A1 (en) 2000-03-21 2002-02-27 Levisman Ricardo IMPLANT OF FIXATION.
JP3936118B2 (en) 2000-03-28 2007-06-27 昭和医科工業株式会社 Rod gripper
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6440137B1 (en) 2000-04-18 2002-08-27 Andres A. Horvath Medical fastener cap system
US6251112B1 (en) 2000-04-18 2001-06-26 Roger P. Jackson Thin profile closure cap for open ended medical implant
DE50013532D1 (en) 2000-04-19 2006-11-09 Synthes Ag DEVICE FOR THE JOINT CONNECTION OF TWO BODIES
JP2001309923A (en) 2000-04-28 2001-11-06 Robert Reed Shokai Co Ltd System supporting spinal rod and connection parts to be used therefor
US6645207B2 (en) 2000-05-08 2003-11-11 Robert A. Dixon Method and apparatus for dynamized spinal stabilization
JP2002000611A (en) 2000-05-12 2002-01-08 Sulzer Orthopedics Ltd Bone screw to be joined with the bone plate
US20060241602A1 (en) 2000-06-06 2006-10-26 Jackson Roger P Hooked transverse connector for spinal implant system
US6749614B2 (en) 2000-06-23 2004-06-15 Vertelink Corporation Formable orthopedic fixation system with cross linking
US6964667B2 (en) 2000-06-23 2005-11-15 Sdgi Holdings, Inc. Formed in place fixation system with thermal acceleration
CA2692387C (en) 2000-06-23 2011-02-22 University Of Southern California Percutaneous vertebral fusion system
JP2004516040A (en) 2000-06-30 2004-06-03 リトラン、スティーブン Multi-shaft coupling device and method
US6641582B1 (en) 2000-07-06 2003-11-04 Sulzer Spine-Tech Inc. Bone preparation instruments and methods
AU2001273356A1 (en) 2000-07-10 2002-01-21 Gary K. Michelson Flanged interbody spinal fusion implants
GB2365345B (en) 2000-07-22 2002-07-31 Corin Spinal Systems Ltd A pedicle attachment assembly
EP1174092A3 (en) 2000-07-22 2003-03-26 Corin Spinal Systems Limited A pedicle attachment assembly
FR2812186B1 (en) * 2000-07-25 2003-02-28 Spine Next Sa FLEXIBLE CONNECTION PIECE FOR SPINAL STABILIZATION
FR2812185B1 (en) 2000-07-25 2003-02-28 Spine Next Sa SEMI-RIGID CONNECTION PIECE FOR RACHIS STABILIZATION
ATE438347T1 (en) 2000-07-28 2009-08-15 Synthes Gmbh SPINAL FASTENING SYSTEM
US6533787B1 (en) 2000-07-31 2003-03-18 Sdgi Holdings, Inc. Contourable spinal staple with centralized and unilateral prongs
US7056321B2 (en) 2000-08-01 2006-06-06 Endius, Incorporated Method of securing vertebrae
US6524315B1 (en) 2000-08-08 2003-02-25 Depuy Acromed, Inc. Orthopaedic rod/plate locking mechanism
CN1247162C (en) 2000-08-24 2006-03-29 库尔斯恩蒂斯股份公司 Device for connecting a bone fixation element to a longitudinal rod
US6554831B1 (en) 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
US6485491B1 (en) 2000-09-15 2002-11-26 Sdgi Holdings, Inc. Posterior fixation system
US6443956B1 (en) 2000-09-22 2002-09-03 Mekanika, Inc. Vertebral drill bit and inserter
US6620164B2 (en) 2000-09-22 2003-09-16 Showa Ika Kohgyo Co., Ltd. Rod for cervical vertebra and connecting system thereof
US6755829B1 (en) 2000-09-22 2004-06-29 Depuy Acromed, Inc. Lock cap anchor assembly for orthopaedic fixation
US6743231B1 (en) 2000-10-02 2004-06-01 Sulzer Spine-Tech Inc. Temporary spinal fixation apparatuses and methods
US6953462B2 (en) 2000-10-05 2005-10-11 The Cleveland Clinic Foundation Apparatus for implantation into bone
US6872208B1 (en) 2000-10-06 2005-03-29 Spinal Concepts, Inc. Adjustable transverse connector
FR2814936B1 (en) 2000-10-11 2003-02-07 Frederic Fortin MULTIDIRECTIONALLY OPERATING FLEXIBLE VERTEBRAL CONNECTION DEVICE
US6626906B1 (en) 2000-10-23 2003-09-30 Sdgi Holdings, Inc. Multi-planar adjustable connector
US6520962B1 (en) 2000-10-23 2003-02-18 Sdgi Holdings, Inc. Taper-locked adjustable connector
US6551320B2 (en) 2000-11-08 2003-04-22 The Cleveland Clinic Foundation Method and apparatus for correcting spinal deformity
DE10055888C1 (en) 2000-11-10 2002-04-25 Biedermann Motech Gmbh Bone screw, has connector rod receiving part with unsymmetrically arranged end bores
US6656181B2 (en) 2000-11-22 2003-12-02 Robert A Dixon Method and device utilizing tapered screw shanks for spinal stabilization
US6368321B1 (en) 2000-12-04 2002-04-09 Roger P. Jackson Lockable swivel head bone screw
FR2817929B1 (en) * 2000-12-07 2003-03-21 Spine Next Sa DEVICE FOR FIXING A ROD AND A SPHERICAL SYMMETRY SCREW HEAD
US6752831B2 (en) 2000-12-08 2004-06-22 Osteotech, Inc. Biocompatible osteogenic band for repair of spinal disorders
US6997927B2 (en) 2000-12-08 2006-02-14 Jackson Roger P closure for rod receiving orthopedic implant having a pair of spaced apertures for removal
US8377100B2 (en) 2000-12-08 2013-02-19 Roger P. Jackson Closure for open-headed medical implant
US6726687B2 (en) 2000-12-08 2004-04-27 Jackson Roger P Closure plug for open-headed medical implant
AU2002246690B2 (en) 2000-12-15 2006-02-02 Spineology, Inc. Annulus- reinforcing band
DE10064571C2 (en) 2000-12-22 2003-07-10 Juergen Harms fixing
DE50100793D1 (en) 2000-12-27 2003-11-20 Biedermann Motech Gmbh Screw for connecting to a rod
AU2002248223A1 (en) 2000-12-29 2002-07-24 James Thomas Vertebral alignment system
US6635059B2 (en) 2001-01-03 2003-10-21 Bernard L. Randall Cannulated locking screw system especially for transiliac implant
US6488681B2 (en) 2001-01-05 2002-12-03 Stryker Spine S.A. Pedicle screw assembly
US6869433B2 (en) 2001-01-12 2005-03-22 Depuy Acromed, Inc. Polyaxial screw with improved locking
DE10101478C2 (en) 2001-01-12 2003-03-27 Biedermann Motech Gmbh connecting element
AU2002235351A1 (en) 2001-01-26 2002-08-06 Osteotech, Inc. Implant insertion tool
US6558387B2 (en) 2001-01-30 2003-05-06 Fastemetix, Llc Porous interbody fusion device having integrated polyaxial locking interference screws
US8858564B2 (en) 2001-02-15 2014-10-14 Spinecore, Inc. Wedge plate inserter/impactor and related methods for use in implanting an artificial intervertebral disc
US6666867B2 (en) 2001-02-15 2003-12-23 Fast Enetix, Llc Longitudinal plate assembly having an adjustable length
US6451021B1 (en) 2001-02-15 2002-09-17 Third Millennium Engineering, Llc Polyaxial pedicle screw having a rotating locking element
DE10108965B4 (en) 2001-02-17 2006-02-23 DePuy Spine Sàrl bone screw
US6652585B2 (en) 2001-02-28 2003-11-25 Sdgi Holdings, Inc. Flexible spine stabilization system
US7229441B2 (en) 2001-02-28 2007-06-12 Warsaw Orthopedic, Inc. Flexible systems for spinal stabilization and fixation
CA2434688A1 (en) 2001-03-01 2002-09-12 Gary Karlin Michelson Dynamic lordotic guard with movable extensions for creating an implantation space posteriorly in the lumbar spine and method for use thereof
FR2822052B1 (en) 2001-03-15 2003-09-19 Stryker Spine Sa ANCHOR WITH LOCK FOR RACHIDIAN OSTEOSYNTHESIS SYSTEM
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
DE10115014A1 (en) 2001-03-27 2002-10-24 Biedermann Motech Gmbh anchoring element
US6554832B2 (en) 2001-04-02 2003-04-29 Endius Incorporated Polyaxial transverse connector
US6599290B2 (en) 2001-04-17 2003-07-29 Ebi, L.P. Anterior cervical plating system and associated method
US8292926B2 (en) 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US20160242816A9 (en) 2001-05-09 2016-08-25 Roger P. Jackson Dynamic spinal stabilization assembly with elastic bumpers and locking limited travel closure mechanisms
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US7314467B2 (en) * 2002-04-24 2008-01-01 Medical Device Advisory Development Group, Llc. Multi selective axis spinal fixation system
US20060064092A1 (en) 2001-05-17 2006-03-23 Howland Robert S Selective axis serrated rod low profile spinal fixation system
US6770075B2 (en) 2001-05-17 2004-08-03 Robert S. Howland Spinal fixation apparatus with enhanced axial support and methods for use
US6478798B1 (en) 2001-05-17 2002-11-12 Robert S. Howland Spinal fixation apparatus and methods for use
EP1404243A4 (en) 2001-06-04 2010-05-19 Warsaw Orthopedic Inc Dynamic anterior cervical plate system having moveable segments, instrumentation, and method for installation thereof
GB0114783D0 (en) 2001-06-16 2001-08-08 Sengupta Dilip K A assembly for the stabilisation of vertebral bodies of the spine
US6511484B2 (en) * 2001-06-29 2003-01-28 Depuy Acromed, Inc. Tool and system for aligning and applying fastener to implanted anchor
US6440133B1 (en) 2001-07-03 2002-08-27 Sdgi Holdings, Inc. Rod reducer instruments and methods
US6478801B1 (en) 2001-07-16 2002-11-12 Third Millennium Engineering, Llc Insertion tool for use with tapered trial intervertebral distraction spacers
FR2827498B1 (en) 2001-07-18 2004-05-14 Frederic Fortin FLEXIBLE VERTEBRAL CONNECTION DEVICE CONSISTING OF PALLIANT ELEMENTS OF THE RACHIS
DE10136129A1 (en) 2001-07-27 2003-02-20 Biedermann Motech Gmbh Bone screw and fastening tool for this
US6616659B1 (en) 2001-07-27 2003-09-09 Starion Instruments Corporation Polypectomy device and method
JP4755781B2 (en) 2001-08-01 2011-08-24 昭和医科工業株式会社 Jointing member for osteosynthesis
US6746449B2 (en) 2001-09-12 2004-06-08 Spinal Concepts, Inc. Spinal rod translation instrument
US6974460B2 (en) 2001-09-14 2005-12-13 Stryker Spine Biased angulation bone fixation assembly
WO2003026523A1 (en) 2001-09-28 2003-04-03 Stephen Ritland Connection rod for screw or hook polyaxial system and method of use
US20090177283A9 (en) 2001-10-01 2009-07-09 Ralph James D Intervertebral spacer device utilizing a spirally slotted belleville washer and a rotational mounting
US6899714B2 (en) 2001-10-03 2005-05-31 Vaughan Medical Technologies, Inc. Vertebral stabilization assembly and method
FR2830433B1 (en) 2001-10-04 2005-07-01 Stryker Spine ASSEMBLY FOR OSTEOSYNTHESIS OF THE SPINACH COMPRISING AN ANCHORING MEMBER HEAD AND A TOOL FOR HEAD FIXING
US6652526B1 (en) 2001-10-05 2003-11-25 Ruben P. Arafiles Spinal stabilization rod fastener
GB2382304A (en) 2001-10-10 2003-05-28 Dilip Kumar Sengupta An assembly for soft stabilisation of vertebral bodies of the spine
US6623485B2 (en) 2001-10-17 2003-09-23 Hammill Manufacturing Company Split ring bone screw for a spinal fixation system
WO2003034930A1 (en) 2001-10-23 2003-05-01 Biedermann Motech Gmbh Bone fixation device and screw therefor
US6783527B2 (en) 2001-10-30 2004-08-31 Sdgi Holdings, Inc. Flexible spinal stabilization system and method
US7094242B2 (en) 2001-10-31 2006-08-22 K2M, Inc. Polyaxial drill guide
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
DE10157969C1 (en) 2001-11-27 2003-02-06 Biedermann Motech Gmbh Element used in spinal and accident surgery comprises a shaft joined to a holding element having a U-shaped recess with two free arms having an internal thread with flanks lying at right angles to the central axis of the holding element
DE10157814B4 (en) 2001-11-27 2004-12-02 Biedermann Motech Gmbh Closure device for securing a rod-shaped element in a holding element connected to a shaft
US7329258B2 (en) 2001-12-07 2008-02-12 Synthes (U.S.A.) Damping element
FR2833151B1 (en) 2001-12-12 2004-09-17 Ldr Medical BONE ANCHORING IMPLANT WITH POLYAXIAL HEAD
DE10164323C1 (en) 2001-12-28 2003-06-18 Biedermann Motech Gmbh Bone screw has holder element joined to shaft and possessing two free arms , with inner screw, slot, external nut, cavity and shoulder cooperating with attachment
CA2479233C (en) 2001-12-31 2009-11-03 Synthes (U.S.A.) Device for a ball-and-socket type connection of two parts
US6932820B2 (en) 2002-01-08 2005-08-23 Said G. Osman Uni-directional dynamic spinal fixation device
US6682530B2 (en) 2002-01-14 2004-01-27 Robert A Dixon Dynamized vertebral stabilizer using an outrigger implant
US6761723B2 (en) 2002-01-14 2004-07-13 Dynamic Spine, Inc. Apparatus and method for performing spinal surgery
US6648887B2 (en) 2002-01-23 2003-11-18 Richard B. Ashman Variable angle spinal implant connection assembly
US6932817B2 (en) 2002-02-01 2005-08-23 Innovative Spinal Design Polyaxial modular skeletal hook
US7335201B2 (en) * 2003-09-26 2008-02-26 Zimmer Spine, Inc. Polyaxial bone screw with torqueless fastening
US7678136B2 (en) 2002-02-04 2010-03-16 Spinal, Llc Spinal fixation assembly
US6626347B2 (en) 2002-02-11 2003-09-30 Kim Kwee Ng Fastener retaining device for fastener driver
US20040006342A1 (en) 2002-02-13 2004-01-08 Moti Altarac Posterior polyaxial plate system for the spine
EP1474053A1 (en) 2002-02-13 2004-11-10 Cross Medical Products, Inc. Posterior polyaxial system for the spine
US7163538B2 (en) * 2002-02-13 2007-01-16 Cross Medical Products, Inc. Posterior rod system
US6837889B2 (en) 2002-03-01 2005-01-04 Endius Incorporated Apparatus for connecting a longitudinal member to a bone portion
US7879075B2 (en) 2002-02-13 2011-02-01 Zimmer Spine, Inc. Methods for connecting a longitudinal member to a bone portion
US7066937B2 (en) 2002-02-13 2006-06-27 Endius Incorporated Apparatus for connecting a longitudinal member to a bone portion
FR2836368B1 (en) 2002-02-25 2005-01-14 Spine Next Sa SEQUENTIAL LINK DEVICE
US7294127B2 (en) 2002-03-05 2007-11-13 Baylis Medical Company Inc. Electrosurgical tissue treatment method
US6966910B2 (en) 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
US7294128B2 (en) 2002-04-09 2007-11-13 Nas Medical Technologies, Inc. Bone fixation apparatus
US6660006B2 (en) 2002-04-17 2003-12-09 Stryker Spine Rod persuader
US6740086B2 (en) * 2002-04-18 2004-05-25 Spinal Innovations, Llc Screw and rod fixation assembly and device
US7842073B2 (en) 2002-04-18 2010-11-30 Aesculap Ii, Inc. Screw and rod fixation assembly and device
US7572276B2 (en) 2002-05-06 2009-08-11 Warsaw Orthopedic, Inc. Minimally invasive instruments and methods for inserting implants
AU2003228960B2 (en) 2002-05-08 2009-06-11 Stephen Ritland Dynamic fixation device and method of use
US6699248B2 (en) 2002-05-09 2004-03-02 Roger P. Jackson Multiple diameter tangential set screw
US6733502B2 (en) 2002-05-15 2004-05-11 Cross Medical Products, Inc. Variable locking spinal screw having a knurled collar
US7118576B2 (en) 2002-05-15 2006-10-10 Nevmet Corporation Multiportal device with linked cannulae and method for percutaneous surgery
ATE299671T1 (en) 2002-05-21 2005-08-15 Spinelab Gmbh ELASTIC STABILIZATION SYSTEM FOR SPINES
AU2003233587B2 (en) * 2002-05-21 2008-12-18 Warsaw Orthopedic, Inc. Vertebrae bone anchor and cable for coupling it to a rod
DE20207851U1 (en) 2002-05-21 2002-10-10 Metz Stavenhagen Peter Anchoring element for fastening a rod of a device for setting up a human or animal spine to a vertebral bone
US20030220643A1 (en) 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US7278995B2 (en) 2002-06-04 2007-10-09 Howmedica Osteonics Corp. Apparatus for securing a spinal rod system
US6682529B2 (en) 2002-06-11 2004-01-27 Stahurski Consulting, Inc. Connector assembly with multidimensional accommodation and associated method
US7175623B2 (en) 2002-06-24 2007-02-13 Lanx, Llc Cervical plate with backout protection
DE10236691B4 (en) 2002-08-09 2005-12-01 Biedermann Motech Gmbh Dynamic stabilization device for bones, in particular for vertebrae
US7052497B2 (en) 2002-08-14 2006-05-30 Sdgi Holdings, Inc. Techniques for spinal surgery and attaching constructs to vertebral elements
US7306603B2 (en) * 2002-08-21 2007-12-11 Innovative Spinal Technologies Device and method for percutaneous placement of lumbar pedicle screws and connecting rods
EP1551320B1 (en) 2002-09-04 2005-12-07 Aesculap AG & Co. KG Orthopedic fixation device
EP1562499B1 (en) 2002-09-04 2006-04-26 Aesculap AG & Co. KG Orthopedic fixation device
US6648888B1 (en) 2002-09-06 2003-11-18 Endius Incorporated Surgical instrument for moving a vertebra
US8282673B2 (en) 2002-09-06 2012-10-09 Jackson Roger P Anti-splay medical implant closure with multi-surface removal aperture
FR2844180B1 (en) 2002-09-11 2005-08-05 Spinevision CONNECTING ELEMENT FOR THE DYNAMIC STABILIZATION OF A SPINAL FIXING SYSTEM AND SPINAL FASTENING SYSTEM COMPRISING SUCH A MEMBER
DE10246177A1 (en) 2002-10-02 2004-04-22 Biedermann Motech Gmbh Anchor element consists of screw with head, bone-thread section on shank and holder joining rod-shaped part to screw. with cavities in wall, and thread-free end of shank
FR2845269B1 (en) 2002-10-07 2005-06-24 Spine Next Sa PLATE FASTENING SYSTEM
US7476228B2 (en) 2002-10-11 2009-01-13 Abdou M Samy Distraction screw for skeletal surgery and method of use
FR2845587B1 (en) 2002-10-14 2005-01-21 Scient X DYNAMIC DEVICE FOR INTERVERTEBRAL CONNECTION WITH MULTIDIRECTIONALLY CONTROLLED DEBATMENT
US6955677B2 (en) 2002-10-15 2005-10-18 The University Of North Carolina At Chapel Hill Multi-angular fastening apparatus and method for surgical bone screw/plate systems
US20080221692A1 (en) 2002-10-29 2008-09-11 Zucherman James F Interspinous process implants and methods of use
US20040147928A1 (en) 2002-10-30 2004-07-29 Landry Michael E. Spinal stabilization system using flexible members
EP2366350B1 (en) * 2002-10-30 2017-04-05 Zimmer Spine, Inc. Spinal stabilization system insertion
US20060095035A1 (en) * 2004-11-03 2006-05-04 Jones Robert J Instruments and methods for reduction of vertebral bodies
US9539012B2 (en) * 2002-10-30 2017-01-10 Zimmer Spine, Inc. Spinal stabilization systems with quick-connect sleeve assemblies for use in surgical procedures
US7306602B2 (en) 2002-10-31 2007-12-11 Depuy Actomed, Inc. Snap-in washers and assemblies thereof
US20040087952A1 (en) 2002-10-31 2004-05-06 Amie Borgstrom Universal polyaxial washer assemblies
US8162989B2 (en) 2002-11-04 2012-04-24 Altus Partners, Llc Orthopedic rod system
FR2846869B1 (en) 2002-11-08 2005-02-18 Scient X TIGHTENING NUT FOR OSTEOSYNTHESIS DEVICE
FR2847152B1 (en) 2002-11-19 2005-02-18 Eurosurgical VERTEBRAL ANCHORING DEVICE AND ITS LOCKING DEVICE ON A POLY AXIAL SCREW
DE10256095B4 (en) * 2002-12-02 2004-11-18 Biedermann Motech Gmbh Element with a shaft and an associated holding element for connecting to a rod
EP1567073B1 (en) 2002-12-06 2014-04-02 Synthes GmbH Device for stabilising bones
US6755836B1 (en) 2002-12-20 2004-06-29 High Plains Technology Group, Llc Bone screw fastener and apparatus for inserting and removing same
DE10260222B4 (en) 2002-12-20 2008-01-03 Biedermann Motech Gmbh Tubular element for an implant and implant to be used in spine or bone surgery with such an element
US6843791B2 (en) 2003-01-10 2005-01-18 Depuy Acromed, Inc. Locking cap assembly for spinal fixation instrumentation
US7141051B2 (en) * 2003-02-05 2006-11-28 Pioneer Laboratories, Inc. Low profile spinal fixation system
US20040158247A1 (en) 2003-02-07 2004-08-12 Arthit Sitiso Polyaxial pedicle screw system
US7282064B2 (en) 2003-02-11 2007-10-16 Spinefrontier Lls Apparatus and method for connecting spinal vertebrae
US20040158254A1 (en) 2003-02-12 2004-08-12 Sdgi Holdings, Inc. Instrument and method for milling a path into bone
US7090680B2 (en) 2003-02-12 2006-08-15 Bonati Alfred O Method for removing orthopaedic hardware
US20040162560A1 (en) 2003-02-19 2004-08-19 Raynor Donald E. Implant device including threaded locking mechanism
CA2516791C (en) 2003-02-25 2011-12-13 Stephen Ritland Adjustable rod and connector device and method of use
US6908484B2 (en) 2003-03-06 2005-06-21 Spinecore, Inc. Cervical disc replacement
US7588589B2 (en) 2003-03-20 2009-09-15 Medical Designs Llc Posterior spinal reconstruction system
US20040186473A1 (en) 2003-03-21 2004-09-23 Cournoyer John R. Spinal fixation devices of improved strength and rigidity
WO2004089245A2 (en) 2003-04-04 2004-10-21 Theken Surgical, Llc Bone anchor
US6716214B1 (en) 2003-06-18 2004-04-06 Roger P. Jackson Polyaxial bone screw with spline capture connection
ATE407633T1 (en) 2003-04-15 2008-09-15 Synthes Gmbh DEVICE FOR BONE FIXATION
US20040210216A1 (en) 2003-04-17 2004-10-21 Farris Robert A Spinal fixation system and method
ATE322219T1 (en) 2003-04-24 2006-04-15 Zimmer Gmbh INSTRUMENT SYSTEM FOR PEDICLE SCREWS
US7473267B2 (en) * 2003-04-25 2009-01-06 Warsaw Orthopedic, Inc. System and method for minimally invasive posterior fixation
WO2004096066A2 (en) 2003-04-25 2004-11-11 Kitchen Michael S Spinal curvature correction device
US20050182401A1 (en) 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
US7615068B2 (en) 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
US20050171543A1 (en) 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
US7713287B2 (en) 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
EP1622526B1 (en) 2003-05-02 2011-03-02 Yale University Dynamic spine stabilizer
DE10320417A1 (en) 2003-05-07 2004-12-02 Biedermann Motech Gmbh Dynamic anchoring device and dynamic stabilization device for bones, in particular for vertebrae, with such an anchoring device
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
EP1628563B1 (en) 2003-05-23 2009-09-23 Globus Medical, Inc. Spine stabilization system
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
FR2855392B1 (en) * 2003-05-28 2005-08-05 Spinevision CONNECTION DEVICE FOR SPINAL OSTESYNTHESIS
US7270665B2 (en) 2003-06-11 2007-09-18 Sdgi Holdings, Inc. Variable offset spinal fixation system
DE10326517A1 (en) 2003-06-12 2005-01-05 Stratec Medical Device for the dynamic stabilization of bones or bone fragments, in particular vertebrae
DE10327358A1 (en) * 2003-06-16 2005-01-05 Ulrich Gmbh & Co. Kg Implant for correction and stabilization of the spine
US7766915B2 (en) * 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US20040260283A1 (en) 2003-06-19 2004-12-23 Shing-Cheng Wu Multi-axis spinal fixation device
US20050131413A1 (en) 2003-06-20 2005-06-16 O'driscoll Shawn W. Bone plate with interference fit screw
US7731734B2 (en) 2003-06-27 2010-06-08 Medicrea Technologies Vertebral osteosynthesis equipment
FR2856580B1 (en) 2003-06-27 2006-03-17 Medicrea MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
FR2856578B1 (en) 2003-06-27 2006-03-17 Medicrea MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US7087057B2 (en) 2003-06-27 2006-08-08 Depuy Acromed, Inc. Polyaxial bone screw
FR2857850B1 (en) 2003-06-27 2005-08-19 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
FR2865377B1 (en) 2004-01-27 2006-10-20 Medicrea MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
FR2856579B1 (en) 2003-06-27 2006-03-17 Medicrea VERTEBRAL OSTEOSYNTHESIS EQUIPMENT AND METHOD FOR MANUFACTURING BONE ANCHORING MEMBER INCLUDING THESE MATERIALS
AU2004257643A1 (en) 2003-07-03 2005-01-27 Synthes Gmbh Top loading spinal fixation device and instruments for loading and handling the same
US6945975B2 (en) 2003-07-07 2005-09-20 Aesculap, Inc. Bone fixation assembly and method of securement
AU2003304415A1 (en) 2003-07-25 2005-03-07 Traiber, S.A. Vertebral fixation device for the treatment of spondylolisthesis
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US7799082B2 (en) 2003-08-05 2010-09-21 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US6981973B2 (en) 2003-08-11 2006-01-03 Mckinley Laurence M Low profile vertebral alignment and fixation assembly
FR2859095B1 (en) 2003-09-01 2006-05-12 Ldr Medical BONE ANCHORING IMPLANT WITH A POLYAXIAL HEAD AND METHOD OF PLACING THE IMPLANT
FR2859376B1 (en) 2003-09-04 2006-05-19 Spine Next Sa SPINAL IMPLANT
US7938858B2 (en) 2003-09-15 2011-05-10 Warsaw Orthopedic, Inc. Spinal implant system
US7955355B2 (en) * 2003-09-24 2011-06-07 Stryker Spine Methods and devices for improving percutaneous access in minimally invasive surgeries
US7763052B2 (en) 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US7815665B2 (en) 2003-09-24 2010-10-19 N Spine, Inc. Adjustable spinal stabilization system
US20050203513A1 (en) 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US8002798B2 (en) 2003-09-24 2011-08-23 Stryker Spine System and method for spinal implant placement
US7137985B2 (en) 2003-09-24 2006-11-21 N Spine, Inc. Marking and guidance method and system for flexible fixation of a spine
US7875060B2 (en) 2003-09-24 2011-01-25 Spinefrontier, LLS Multi-axial screw with a spherical landing
BR0318519A (en) 2003-09-29 2006-09-12 Synthes Gmbh damping element
CA2540594A1 (en) 2003-09-29 2005-04-07 Synthes Gmbh Dynamic damping element for two bones
US6857343B1 (en) * 2003-09-30 2005-02-22 Codman & Shurtleff, Inc. Spring-loaded threaded fastener holder
US20050080415A1 (en) 2003-10-14 2005-04-14 Keyer Thomas R. Polyaxial bone anchor and method of spinal fixation
WO2005037150A1 (en) 2003-10-16 2005-04-28 Osteotech, Inc. System and method for flexible correction of bony motion segment
DE102004021861A1 (en) 2004-05-04 2005-11-24 Biedermann Motech Gmbh Implant for temporary or permanent replacement of vertebra or intervertebral disk, comprising solid central element and outer elements with openings
DE10348329B3 (en) * 2003-10-17 2005-02-17 Biedermann Motech Gmbh Rod-shaped element used in spinal column and accident surgery for connecting two bone-anchoring elements comprises a rigid section and an elastic section that are made in one piece
US7967826B2 (en) 2003-10-21 2011-06-28 Theken Spine, Llc Connector transfer tool for internal structure stabilization systems
US7588575B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies Extension for use with stabilization systems for internal structures
US7699879B2 (en) 2003-10-21 2010-04-20 Warsaw Orthopedic, Inc. Apparatus and method for providing dynamizable translations to orthopedic implants
US7588588B2 (en) 2003-10-21 2009-09-15 Innovative Spinal Technologies System and method for stabilizing of internal structures
WO2005042985A2 (en) 2003-10-24 2005-05-12 Flesher Robert W Tamper-resistant fastener and method and tool for use with same
US20050096652A1 (en) 2003-10-31 2005-05-05 Burton Charles V. Integral flexible spine stabilization device and method
US7090674B2 (en) 2003-11-03 2006-08-15 Spinal, Llc Bone fixation system with low profile fastener
TWI243047B (en) 2003-11-03 2005-11-11 A Spine Holding Group Corp Spigot vertebra fixing and reposition device
JP4749336B2 (en) 2003-11-07 2011-08-17 ディーエスエム アイピー アセッツ ビー.ブイ. Method for preparing 2,3,5-trimethylhydroquinone diacylate
US8632570B2 (en) 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
CA2449883A1 (en) 2003-11-18 2005-05-18 Terray Corporation Taper-lock bone screw fixation system
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US7553320B2 (en) 2003-12-10 2009-06-30 Warsaw Orthopedic, Inc. Method and apparatus for replacing the function of facet joints
TW200518711A (en) 2003-12-11 2005-06-16 A Spine Holding Group Corp Rotation buckling ball-head spine restoring equipment
WO2005058134A2 (en) 2003-12-12 2005-06-30 Kinetikos Medical Incorporated Apparatuses, systems and methods for bone fixation
US7179261B2 (en) * 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US20050137713A1 (en) 2003-12-17 2005-06-23 Bertram Morton Iii Anti-backout arthroscopic uni-compartmental prosthesis
US7670360B2 (en) 2003-12-19 2010-03-02 Orthopaedic International, Inc. Low profile anterior thoracic and thoracolumbar plate
US8182518B2 (en) 2003-12-22 2012-05-22 Life Spine, Inc. Static and dynamic cervical plates and cervical plate constructs
EP1699370A4 (en) 2003-12-30 2008-08-06 Depuy Spine Sarl Bone anchor assemblies and methods of manufacturing bone anchor assemblies
AU2004311447A1 (en) 2003-12-30 2005-07-21 Depuy Spine Sarl Bone anchor assemblies
US20050143737A1 (en) 2003-12-31 2005-06-30 John Pafford Dynamic spinal stabilization system
US7806914B2 (en) 2003-12-31 2010-10-05 Spine Wave, Inc. Dynamic spinal stabilization system
US7678137B2 (en) * 2004-01-13 2010-03-16 Life Spine, Inc. Pedicle screw constructs for spine fixation systems
US7637928B2 (en) 2004-01-26 2009-12-29 Synthes Usa, Llc Variable angle locked bone fixation system
FR2865373B1 (en) 2004-01-27 2006-03-03 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
FR2865375B1 (en) 2004-01-27 2006-12-15 Medicrea International MATERIAL OF VERTEBRAL OSTEOSYNTHESIS
US7815664B2 (en) 2005-01-04 2010-10-19 Warsaw Orthopedic, Inc. Systems and methods for spinal stabilization with flexible elements
US8029548B2 (en) 2008-05-05 2011-10-04 Warsaw Orthopedic, Inc. Flexible spinal stabilization element and system
US7597694B2 (en) 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US7846183B2 (en) 2004-02-06 2010-12-07 Spinal Elements, Inc. Vertebral facet joint prosthesis and method of fixation
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US7993373B2 (en) 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
DE102004009429A1 (en) 2004-02-24 2005-09-22 Biedermann Motech Gmbh Bone anchoring element
US7311712B2 (en) 2004-02-26 2007-12-25 Aesculap Implant Systems, Inc. Polyaxial locking screw plate assembly
US11241261B2 (en) 2005-09-30 2022-02-08 Roger P Jackson Apparatus and method for soft spinal stabilization using a tensionable cord and releasable end structure
US7163539B2 (en) 2004-02-27 2007-01-16 Custom Spine, Inc. Biased angle polyaxial pedicle screw assembly
US7862594B2 (en) 2004-02-27 2011-01-04 Custom Spine, Inc. Polyaxial pedicle screw assembly
US20050203511A1 (en) 2004-03-02 2005-09-15 Wilson-Macdonald James Orthopaedics device and system
DE102004010380A1 (en) 2004-03-03 2005-09-22 Biedermann Motech Gmbh Anchoring element and stabilizing device for the dynamic stabilization of vertebrae or bones with such an anchoring element
DE102004010382B4 (en) 2004-03-03 2006-04-20 Biedermann Motech Gmbh Bone anchoring element for anchoring in a bone or in a vertebra and its use in a stabilizing device
DE102004010844A1 (en) 2004-03-05 2005-10-06 Biedermann Motech Gmbh Stabilizing device for the dynamic stabilization of vertebrae or bones and rod-shaped element for such a stabilization device
DE102004011685A1 (en) 2004-03-09 2005-09-29 Biedermann Motech Gmbh Spine supporting element, comprising spiraled grooves at outer surface and three plain areas
US7214227B2 (en) 2004-03-22 2007-05-08 Innovative Spinal Technologies Closure member for a medical implant device
US7491221B2 (en) 2004-03-23 2009-02-17 Stryker Spine Modular polyaxial bone screw and plate
US7645294B2 (en) * 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7503924B2 (en) 2004-04-08 2009-03-17 Globus Medical, Inc. Polyaxial screw
US8475495B2 (en) 2004-04-08 2013-07-02 Globus Medical Polyaxial screw
US7377922B2 (en) 2004-04-15 2008-05-27 Warsaw Orthopedic, Inc. Transfer ring for offset tapered 3D connector
US7833256B2 (en) 2004-04-16 2010-11-16 Biedermann Motech Gmbh Elastic element for the use in a stabilization device for bones and vertebrae and method for the manufacture of such elastic element
US7618418B2 (en) 2004-04-16 2009-11-17 Kyphon Sarl Plate system for minimally invasive support of the spine
US7648520B2 (en) 2004-04-16 2010-01-19 Kyphon Sarl Pedicle screw assembly
US7524323B2 (en) 2004-04-16 2009-04-28 Kyphon Sarl Subcutaneous support
WO2005102195A1 (en) 2004-04-20 2005-11-03 Allez Spine, Llc Pedicle screw assembly
US7051451B2 (en) 2004-04-22 2006-05-30 Archus Orthopedics, Inc. Facet joint prosthesis measurement and implant tools
US20050240181A1 (en) 2004-04-23 2005-10-27 Boomer Mark C Spinal implant connectors
AU2004318974B2 (en) 2004-04-28 2010-04-08 Synthes Gmbh Device for dynamic bone stabilization
US20070093833A1 (en) 2004-05-03 2007-04-26 Kuiper Mark K Crossbar spinal prosthesis having a modular design and related implantation methods
US7494489B2 (en) 2004-05-07 2009-02-24 Jeffrey S. Roh Systems and methods that facilitate minimally invasive spine surgery
US20050267470A1 (en) 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
US20050260058A1 (en) 2004-05-18 2005-11-24 Cassagne Alphonse G Iii Hex fastener
US7942912B2 (en) 2004-05-25 2011-05-17 University Of Utah Research Foundation Occipitocervical plate
US7901435B2 (en) 2004-05-28 2011-03-08 Depuy Spine, Inc. Anchoring systems and methods for correcting spinal deformities
US8034085B2 (en) 2004-05-28 2011-10-11 Depuy Spine, Inc. Non-fusion spinal correction systems and methods
DE102004027881B4 (en) 2004-05-28 2006-06-01 Aesculap Ag & Co. Kg Bone screw and osteosynthesis device
US7935135B2 (en) 2004-06-09 2011-05-03 Zimmer Spine, Inc. Spinal fixation device
US8858599B2 (en) 2004-06-09 2014-10-14 Warsaw Orthopedic, Inc. Systems and methods for flexible spinal stabilization
US7559943B2 (en) 2004-06-09 2009-07-14 Zimmer Spine, Inc. Spinal fixation device with internal drive structure
US7744635B2 (en) 2004-06-09 2010-06-29 Spinal Generations, Llc Spinal fixation system
US7938848B2 (en) 2004-06-09 2011-05-10 Life Spine, Inc. Spinal fixation system
US8021398B2 (en) * 2004-06-09 2011-09-20 Life Spine, Inc. Spinal fixation system
US20050277934A1 (en) 2004-06-10 2005-12-15 Vardiman Arnold B Rod delivery device and method
US7857834B2 (en) 2004-06-14 2010-12-28 Zimmer Spine, Inc. Spinal implant fixation assembly
BRPI0512056A (en) 2004-06-14 2008-02-06 M S Abdou Occipital fixation system and method of use
US7731736B2 (en) 2004-06-14 2010-06-08 Zimmer Spine, Inc. Fastening system for spinal stabilization system
US7744634B2 (en) 2004-06-15 2010-06-29 Warsaw Orthopedic, Inc. Spinal rod system
US7727266B2 (en) 2004-06-17 2010-06-01 Warsaw Orthopedic, Inc. Method and apparatus for retaining screws in a plate
US7264621B2 (en) 2004-06-17 2007-09-04 Sdgi Holdings, Inc. Multi-axial bone attachment assembly
WO2006002359A2 (en) 2004-06-23 2006-01-05 Applied Spine Technologies, Inc. Spinal stabilization devices and systems
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
AU2004326327A1 (en) * 2004-07-06 2007-03-08 Synthes Gmbh Spinal rod insertion instrument
WO2006005198A1 (en) 2004-07-12 2006-01-19 Synthes Gmbh Device for the dynamic fixation of bones
US7485133B2 (en) 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
US7651496B2 (en) * 2004-07-23 2010-01-26 Zimmer Spine, Inc. Methods and apparatuses for percutaneous implant delivery
US7658753B2 (en) 2004-08-03 2010-02-09 K Spine, Inc. Device and method for correcting a spinal deformity
WO2006017641A2 (en) 2004-08-03 2006-02-16 Vertech Innovations, L.L.C. Spinous process reinforcement device and method
US20060036259A1 (en) 2004-08-03 2006-02-16 Carl Allen L Spine treatment devices and methods
US20060036323A1 (en) 2004-08-03 2006-02-16 Carl Alan L Facet device and method
US7572281B2 (en) * 2004-08-06 2009-08-11 Depuy Spine, Inc. Instrument for guiding a rod into an implant in a spinal fixation system
CA2574277A1 (en) 2004-08-09 2006-02-23 Innovative Spinal Technologies, Inc. System and method for dynamic skeletal stabilization
US7854752B2 (en) 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
US7766945B2 (en) 2004-08-10 2010-08-03 Lanx, Inc. Screw and rod fixation system
US7462182B2 (en) * 2004-08-10 2008-12-09 Warsaw Orthopedic, Inc. Reducing instrument for spinal surgery
US7186255B2 (en) * 2004-08-12 2007-03-06 Atlas Spine, Inc. Polyaxial screw
US20060052786A1 (en) 2004-08-17 2006-03-09 Zimmer Spine, Inc. Polyaxial device for spine stabilization during osteosynthesis
US20060052783A1 (en) 2004-08-17 2006-03-09 Dant Jack A Polyaxial device for spine stabilization during osteosynthesis
US20060052784A1 (en) 2004-08-17 2006-03-09 Zimmer Spine, Inc. Polyaxial device for spine stabilization during osteosynthesis
US20060058788A1 (en) 2004-08-27 2006-03-16 Hammer Michael A Multi-axial connection system
JP4499789B2 (en) 2004-09-22 2010-07-07 パク、キュン−ウ Bioflexible spinal fixation device using shape memory alloy
US7396360B2 (en) 2004-09-29 2008-07-08 The Cleveland Clinic Foundation Minimally invasive method and apparatus for fusing adjacent vertebrae
US8092496B2 (en) 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US20060079895A1 (en) 2004-09-30 2006-04-13 Mcleer Thomas J Methods and devices for improved bonding of devices to bone
US20060084976A1 (en) 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
US7896906B2 (en) 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US7722654B2 (en) 2004-10-05 2010-05-25 Warsaw Orthopedic, Inc. Spinal implants with multi-axial anchor assembly and methods
US7572280B2 (en) 2004-10-05 2009-08-11 Warsaw Orthopedic, Inc. Multi-axial anchor assemblies for spinal implants and methods
DE102004048938B4 (en) 2004-10-07 2015-04-02 Synthes Gmbh Device for the dynamic stabilization of vertebral bodies
US20090030465A1 (en) 2004-10-20 2009-01-29 Moti Altarac Dynamic rod
US8167944B2 (en) 2004-10-20 2012-05-01 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US20090228045A1 (en) 2004-10-20 2009-09-10 Stanley Kyle Hayes Dynamic rod
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US7935134B2 (en) * 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US8152837B2 (en) 2004-10-20 2012-04-10 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8425559B2 (en) 2004-10-20 2013-04-23 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8317864B2 (en) 2004-10-20 2012-11-27 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US8025680B2 (en) 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8366747B2 (en) * 2004-10-20 2013-02-05 Zimmer Spine, Inc. Apparatus for connecting a longitudinal member to a bone portion
US8123807B2 (en) 2004-10-20 2012-02-28 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8012207B2 (en) 2004-10-20 2011-09-06 Vertiflex, Inc. Systems and methods for posterior dynamic stabilization of the spine
US8226690B2 (en) * 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
JP2008517733A (en) 2004-10-25 2008-05-29 アルファスパイン インコーポレイテッド Pedicle screw system and assembly / installation method of the system
WO2006047555A2 (en) 2004-10-25 2006-05-04 Alphaspine, Inc. Bone fixation systems and methods
US7604655B2 (en) 2004-10-25 2009-10-20 X-Spine Systems, Inc. Bone fixation system and method for using the same
US7691129B2 (en) 2004-10-27 2010-04-06 Felix Brent A Spinal stabilizing system
US20060095037A1 (en) 2004-10-29 2006-05-04 Jones Bryan S Connector assemblies for connecting a bone anchor to a fixation element
CN101039647A (en) 2004-11-02 2007-09-19 镜和男 Chiropractic machine
US8075591B2 (en) 2004-11-09 2011-12-13 Depuy Spine, Inc. Minimally invasive spinal fixation guide systems and methods
DE102004055454A1 (en) 2004-11-17 2006-05-24 Biedermann Motech Gmbh Flexible element for setting of bones e.g. spinal cord has loop-shaped staff which runs along the connecting axle from one end to another end on two opposite sides of axle
US20060106381A1 (en) 2004-11-18 2006-05-18 Ferree Bret A Methods and apparatus for treating spinal stenosis
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US7691133B2 (en) 2004-11-30 2010-04-06 Integra Lifesciences Corporation Systems and methods for bone fixation
US7674277B2 (en) 2004-12-01 2010-03-09 Warsaw Orthopedic, Inc. Side-loading bone anchor
US7811288B2 (en) 2004-12-02 2010-10-12 Zimmer Spine, Inc. Instruments and methods for adjusting separation distance of vertebral bodies with a minimally invasive spinal stabilization procedure
US7655044B2 (en) 2004-12-13 2010-02-02 Depuy Spine, Inc. Artificial facet joint device having a compression spring
US20060247633A1 (en) 2004-12-13 2006-11-02 St. Francis Medical Technologies, Inc. Inter-cervical facet implant with surface enhancements
US7306606B2 (en) 2004-12-15 2007-12-11 Orthopaedic Innovations, Inc. Multi-axial bone screw mechanism
EP1858425A1 (en) 2004-12-15 2007-11-28 Stryker Spine SA Spinal rods having segments of different elastic properties and methods of using them
EP1719468A1 (en) 2004-12-17 2006-11-08 Zimmer GmbH Intervertebral stabilization system
US20060229613A1 (en) 2004-12-31 2006-10-12 Timm Jens P Sheath assembly for spinal stabilization device
JP2008528147A (en) 2005-01-26 2008-07-31 アエスキュラップ アーゲー Self-adjusting spinal rod
US7445627B2 (en) 2005-01-31 2008-11-04 Alpinespine, Llc Polyaxial pedicle screw assembly
US20070088359A1 (en) 2005-02-07 2007-04-19 Woods Richard W Universal dynamic spine stabilization device and method of use
US20060189985A1 (en) 2005-02-09 2006-08-24 Lewis David W Device for providing a combination of flexibility and variable force to the spinal column for the treatment of scoliosis
US20060195090A1 (en) 2005-02-10 2006-08-31 Loubert Suddaby Apparatus for and method of aligning a spine
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US7862588B2 (en) 2005-02-18 2011-01-04 Samy Abdou Devices and methods for dynamic fixation of skeletal structure
US7294129B2 (en) 2005-02-18 2007-11-13 Ebi, L.P. Spinal fixation device and associated method
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US7361196B2 (en) 2005-02-22 2008-04-22 Stryker Spine Apparatus and method for dynamic vertebral stabilization
DE102005009282A1 (en) 2005-02-22 2006-08-24 Aesculap Ag & Co. Kg Fixing element for a bone implant system comprises a fixing part with a fixing section on the distal side and a receiving part connected to the fixing part
WO2006096351A1 (en) 2005-03-03 2006-09-14 Accelerated Innovation, Llc Spinal stabilization using bone anchor and anchor seat with tangential locking feature
US7556639B2 (en) 2005-03-03 2009-07-07 Accelerated Innovation, Llc Methods and apparatus for vertebral stabilization using sleeved springs
US20060212033A1 (en) 2005-03-03 2006-09-21 Accin Corporation Vertebral stabilization using flexible rods
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US8491936B2 (en) 2005-03-16 2013-07-23 North Carolina State University Functionally graded biocompatible coating and coated implant
US20060229608A1 (en) 2005-03-17 2006-10-12 Foster Thomas A Apparatus and methods for spinal implant with dynamic stabilization system
US20060229609A1 (en) 2005-03-18 2006-10-12 Chao-Jan Wang Microadjustment spinal joint fixture
US7338491B2 (en) * 2005-03-22 2008-03-04 Spinefrontier Inc Spinal fixation locking mechanism
US20060241600A1 (en) 2005-03-23 2006-10-26 Ensign Michael D Percutaneous pedicle screw assembly
WO2006102268A2 (en) 2005-03-24 2006-09-28 Accelerated Innovation, Llc Method and apparatus for bone stabilization
US7909826B2 (en) 2005-03-24 2011-03-22 Depuy Spine, Inc. Low profile spinal tethering methods
BRPI0608131A2 (en) 2005-03-25 2011-05-24 Blackstone Medical Inc multi-axial connection system
US20060241593A1 (en) 2005-04-08 2006-10-26 Sdgi Holdings, Inc. Multi-piece vertebral attachment device
WO2006116119A2 (en) 2005-04-21 2006-11-02 Spine Wave, Inc. Dynamic stabilization system for the spine
US7794481B2 (en) 2005-04-22 2010-09-14 Warsaw Orthopedic, Inc. Force limiting coupling assemblies for spinal implants
US20060247631A1 (en) 2005-04-27 2006-11-02 Ahn Sae Y Spinal pedicle screw assembly
US7758617B2 (en) 2005-04-27 2010-07-20 Globus Medical, Inc. Percutaneous vertebral stabilization system
US7491208B2 (en) * 2005-04-28 2009-02-17 Warsaw Orthopedic, Inc. Instrument and method for guiding surgical implants and instruments during surgery
US7850715B2 (en) 2005-04-29 2010-12-14 Warsaw Orthopedic Inc. Orthopedic implant apparatus
US7811310B2 (en) 2005-05-04 2010-10-12 Spinefrontier, Inc Multistage spinal fixation locking mechanism
US20060264935A1 (en) 2005-05-04 2006-11-23 White Patrick M Orthopedic stabilization device
US7828830B2 (en) 2005-05-12 2010-11-09 Lanx, Inc. Dynamic spinal stabilization
US8177817B2 (en) 2005-05-18 2012-05-15 Stryker Spine System and method for orthopedic implant configuration
US8100947B2 (en) 2005-05-25 2012-01-24 K2M, Inc. Low profile pedicle screw and rod assembly
US20060276787A1 (en) 2005-05-26 2006-12-07 Accin Corporation Pedicle screw, cervical screw and rod
EP2085040B1 (en) 2005-05-27 2012-05-23 Biedermann Technologies GmbH & Co. KG Tool for holding or guiding a receiving part for connecting a shank of a bone anchoring element to a rod
US20060282080A1 (en) 2005-06-08 2006-12-14 Accin Corporation Vertebral facet stabilizer
US7967844B2 (en) 2005-06-10 2011-06-28 Depuy Spine, Inc. Multi-level posterior dynamic stabilization systems and methods
US20070043364A1 (en) * 2005-06-17 2007-02-22 Cawley Trace R Spinal correction system with multi-stage locking mechanism
US7799060B2 (en) 2005-06-20 2010-09-21 Warsaw Orthopedic, Inc. Multi-directional spinal stabilization systems and methods
US7828825B2 (en) 2005-06-20 2010-11-09 Warsaw Orthopedic, Inc. Multi-level multi-functional spinal stabilization systems and methods
US7563283B2 (en) 2005-06-30 2009-07-21 Depuy Spine, Inc. Non-linear artificial ligament system
ES2333728T3 (en) * 2005-07-08 2010-02-26 Biedermann Motech Gmbh OSEO ANCHORAGE DEVICE.
EP1769761B1 (en) * 2005-07-12 2008-09-10 BIEDERMANN MOTECH GmbH Bone anchoring device
US20070016190A1 (en) 2005-07-14 2007-01-18 Medical Device Concepts Llc Dynamic spinal stabilization system
AU2006270487A1 (en) 2005-07-18 2007-01-25 Dong Myung Jeon Bi-polar bone screw assembly
US7811309B2 (en) 2005-07-26 2010-10-12 Applied Spine Technologies, Inc. Dynamic spine stabilization device with travel-limiting functionality
US7766946B2 (en) * 2005-07-27 2010-08-03 Frank Emile Bailly Device for securing spinal rods
US7717943B2 (en) 2005-07-29 2010-05-18 X-Spine Systems, Inc. Capless multiaxial screw and spinal fixation assembly and method
US7713288B2 (en) 2005-08-03 2010-05-11 Applied Spine Technologies, Inc. Spring junction and assembly methods for spinal device
JP5084195B2 (en) 2005-08-03 2012-11-28 ビーダーマン・モテーク・ゲゼルシャフト・ミット・ベシュレンクタ・ハフツング Bone anchoring device
US7625394B2 (en) * 2005-08-05 2009-12-01 Warsaw Orthopedic, Inc. Coupling assemblies for spinal implants
US7909830B2 (en) 2005-08-25 2011-03-22 Synthes Usa, Llc Methods of spinal fixation and instrumentation
US7695475B2 (en) * 2005-08-26 2010-04-13 Warsaw Orthopedic, Inc. Instruments for minimally invasive stabilization of bony structures
AU2006282786A1 (en) 2005-08-26 2007-03-01 Innovative Spinal Technologies Alignment instrument for dynamic spinal stabilization systems
KR100741293B1 (en) * 2005-08-30 2007-07-23 주식회사 솔고 바이오메디칼 Spinal Pedicle Screw
US7799057B2 (en) 2005-09-02 2010-09-21 Zimmer Spine, Inc. Translaminar facet augmentation and flexible spinal stabilization
US7695497B2 (en) * 2005-09-12 2010-04-13 Seaspine, Inc. Implant system for osteosynthesis
US20070073290A1 (en) * 2005-09-13 2007-03-29 Boehm Frank H Jr Insertion of artificial/prosthetic facet joints with ballotable/compressible joint space component
US8500812B2 (en) 2005-09-13 2013-08-06 Corporate Venture Services Inc. Device and method for implantation that restores physiologic range of motion by establishing an adjustable constrained motion of the spine without intrusion of associated facet joints
US7955358B2 (en) 2005-09-19 2011-06-07 Albert Todd J Bone screw apparatus, system and method
EP1767161A1 (en) 2005-09-22 2007-03-28 Zimmer Spine, Inc. Spinal fixation rod contouring system
WO2007040553A1 (en) 2005-09-26 2007-04-12 Dong Jeon Hybrid jointed bone screw system
US7879074B2 (en) 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
US7658739B2 (en) * 2005-09-27 2010-02-09 Zimmer Spine, Inc. Methods and apparatuses for stabilizing the spine through an access device
US7993376B2 (en) * 2005-09-29 2011-08-09 Depuy Spine, Inc. Methods of implanting a motion segment repair system
US7988694B2 (en) 2005-09-29 2011-08-02 K2M, Inc. Spinal fixation system having locking and unlocking devices for use with a multi-planar, taper lock screw
US20080140076A1 (en) 2005-09-30 2008-06-12 Jackson Roger P Dynamic stabilization connecting member with slitted segment and surrounding external elastomer
TW200722034A (en) 2005-09-30 2007-06-16 Paradigm Spine Llc Hinged polyaxial screw and methods of use
WO2007041698A1 (en) 2005-10-04 2007-04-12 Alphaspine, Inc. Modular pedicle screw systems and methods of intra-operatively assembling the same
US7686835B2 (en) 2005-10-04 2010-03-30 X-Spine Systems, Inc. Pedicle screw system with provisional locking aspects
US7927359B2 (en) 2005-10-06 2011-04-19 Paradigm Spine, Llc Polyaxial screw
WO2007044705A2 (en) 2005-10-07 2007-04-19 Abdou Samy M Devices and methods for inter-verterbral orthopedic device placement
US20070093813A1 (en) 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
US20070093814A1 (en) 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilization systems
US20070093815A1 (en) 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
EP1774919B1 (en) 2005-10-12 2008-08-20 BIEDERMANN MOTECH GmbH Poly-axial screw pivotable in a single plane
US8075599B2 (en) 2005-10-18 2011-12-13 Warsaw Orthopedic, Inc. Adjustable bone anchor assembly
US20070118117A1 (en) 2005-10-20 2007-05-24 Ebi, L.P. Bone fixation assembly
US7722651B2 (en) 2005-10-21 2010-05-25 Depuy Spine, Inc. Adjustable bone screw assembly
US8109973B2 (en) 2005-10-31 2012-02-07 Stryker Spine Method for dynamic vertebral stabilization
EP1795134B1 (en) 2005-11-17 2008-08-06 BIEDERMANN MOTECH GmbH Polyaxial screw for flexible rod
EP1951135A4 (en) 2005-11-18 2010-01-20 Life Spine Inc Dynamic spinal stabilization devices and systems
US20070118119A1 (en) 2005-11-18 2007-05-24 Zimmer Spine, Inc. Methods and device for dynamic stabilization
US8100946B2 (en) 2005-11-21 2012-01-24 Synthes Usa, Llc Polyaxial bone anchors with increased angulation
EP1954205B1 (en) 2005-11-24 2019-03-06 Giuseppe Calvosa Modular vertebral stabilizer
US20070124249A1 (en) 2005-11-30 2007-05-31 Naveen Aerrabotu Methods and devices for image and digital rights management
US8034078B2 (en) 2008-05-30 2011-10-11 Globus Medical, Inc. System and method for replacement of spinal motion segment
US20070161986A1 (en) 2005-12-13 2007-07-12 Levy Mark M Polyaxial fastener assembly
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
ES2371701T3 (en) 2005-12-23 2012-01-09 Biedermann Motech Gmbh BONE ANCHORAGE ELEMENT.
EP1800613B1 (en) 2005-12-23 2008-07-16 BIEDERMANN MOTECH GmbH Flexible stabilization device for dynamic stabilization of bones or vertebrae
US7695514B2 (en) 2005-12-29 2010-04-13 Depuy Spine, Inc. Facet joint and spinal ligament replacement
US20080294198A1 (en) 2006-01-09 2008-11-27 Jackson Roger P Dynamic spinal stabilization assembly with torsion and shear control
US7922745B2 (en) 2006-01-09 2011-04-12 Zimmer Spine, Inc. Posterior dynamic stabilization of the spine
US20070173819A1 (en) 2006-01-11 2007-07-26 Robin Sandlin Spinal implant fixation assembly
ES2377671T3 (en) 2006-01-11 2012-03-29 Biedermann Motech Gmbh Bone anchor set
US20070173822A1 (en) 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Use of a posterior dynamic stabilization system with an intradiscal device
US20070173820A1 (en) 2006-01-13 2007-07-26 Sdgi Holdings, Inc. Materials, devices, and methods for treating multiple spinal regions including the anterior region
US20070173828A1 (en) 2006-01-20 2007-07-26 Depuy Spine, Inc. Spondylolistheses correction system and method of correcting spondylolistheses
US7833252B2 (en) 2006-01-27 2010-11-16 Warsaw Orthopedic, Inc. Pivoting joints for spinal implants including designed resistance to motion and methods of use
US20070191839A1 (en) 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Non-locking multi-axial joints in a vertebral implant and methods of use
US20070191841A1 (en) 2006-01-27 2007-08-16 Sdgi Holdings, Inc. Spinal rods having different flexural rigidities about different axes and methods of use
US7655026B2 (en) * 2006-01-31 2010-02-02 Warsaw Orthopedic, Inc. Expandable spinal rods and methods of use
US7776075B2 (en) 2006-01-31 2010-08-17 Warsaw Orthopedic, Inc. Expandable spinal rods and methods of use
EP1815812B1 (en) 2006-02-03 2009-07-29 Spinelab AG Spinal implant
US8029545B2 (en) 2006-02-07 2011-10-04 Warsaw Orthopedic Inc. Articulating connecting member and anchor systems for spinal stabilization
US20080269804A1 (en) 2006-02-17 2008-10-30 Holt Development L.L.C. Apparatus and method for flexible spinal fixation
US20070233064A1 (en) 2006-02-17 2007-10-04 Holt Development L.L.C. Apparatus and method for flexible spinal fixation
US8088148B2 (en) 2006-02-24 2012-01-03 Medical Design, LLC Dynamic/static facet fixation device and method
US7641674B2 (en) 2006-03-01 2010-01-05 Warsaw Orthopedic, Inc. Devices for securing elongated spinal connecting elements in bone anchors
US20070233073A1 (en) 2006-03-02 2007-10-04 Sdgi Holdings, Inc. Spinal rod characterized by a time-varying stiffness
US8118869B2 (en) 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US7867257B2 (en) 2006-03-20 2011-01-11 Synthes Usa, Llc Poly-axial bone screw mating seat
US7871426B2 (en) 2006-03-21 2011-01-18 Spinefrontier, LLS Spinous process fixation device
US20070225707A1 (en) 2006-03-22 2007-09-27 Sdgi Holdings, Inc. Orthopedic spinal devices fabricated from two or more materials
CA2647026A1 (en) 2006-03-22 2008-08-28 Pioneer Surgical Technology, Inc. Low top bone fixation system and method for using the same
US8025681B2 (en) 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
WO2007114834A1 (en) 2006-04-05 2007-10-11 Dong Myung Jeon Multi-axial, double locking bone screw assembly
US20070270806A1 (en) 2006-04-07 2007-11-22 Foley Kevin T Devices and methods for receiving elongated connecting elements in spinal surgical procedures
US20070270807A1 (en) 2006-04-10 2007-11-22 Sdgi Holdings, Inc. Multi-piece circumferential retaining ring
US7789897B2 (en) 2006-04-11 2010-09-07 Warsaw Orthopedic, Inc. Pedicle screw spinal rod connector arrangement
US20070270813A1 (en) 2006-04-12 2007-11-22 Laszlo Garamszegi Pedicle screw assembly
US20070270815A1 (en) 2006-04-20 2007-11-22 Chris Johnson Bone anchors with end-loading receivers for elongated connecting elements in spinal surgical procedures
US7942905B2 (en) 2006-04-20 2011-05-17 Warsaw Orthopedic, Inc. Vertebral stabilizer
ATE485779T1 (en) 2006-04-21 2010-11-15 Greatbatch Medical Sa DYNAMIC INTERVERTEBRAL STABILIZATION SYSTEM
US20070288012A1 (en) 2006-04-21 2007-12-13 Dennis Colleran Dynamic motion spinal stabilization system and device
US8435267B2 (en) 2006-04-24 2013-05-07 Spinefrontier Inc Spine fixation method and apparatus
US7563274B2 (en) 2006-04-25 2009-07-21 Warsaw Orthopedic, Inc. Surgical instruments and techniques for controlling spinal motion segments with positioning of spinal stabilization elements
US7731735B2 (en) 2006-04-28 2010-06-08 Warsaw Orthopedic, Inc. Open axle surgical implant
US20070270821A1 (en) 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Vertebral stabilizer
US8133262B2 (en) * 2006-04-28 2012-03-13 Depuy Spine, Inc. Large diameter bone anchor assembly
US8361129B2 (en) * 2006-04-28 2013-01-29 Depuy Spine, Inc. Large diameter bone anchor assembly
US20070270832A1 (en) 2006-05-01 2007-11-22 Sdgi Holdings, Inc. Locking device and method, for use in a bone stabilization system, employing a set screw member and deformable saddle member
US20070270831A1 (en) 2006-05-01 2007-11-22 Sdgi Holdings, Inc. Bone anchor system utilizing a molded coupling member for coupling a bone anchor to a stabilization member and method therefor
US20070270835A1 (en) 2006-05-05 2007-11-22 Sdgi Holdings, Inc. Bone attachment devices with a threaded interconnection including a solid lubricious material
US20070270838A1 (en) 2006-05-08 2007-11-22 Sdgi Holdings, Inc. Dynamic spinal stabilization device with dampener
US7785350B2 (en) 2006-05-08 2010-08-31 Warsaw Orthopedic, Inc. Load bearing flexible spinal connecting element
EP1857065B1 (en) 2006-05-16 2010-08-25 BIEDERMANN MOTECH GmbH Longitudinal member for use in spinal or trauma surgery
GB0610630D0 (en) 2006-05-26 2006-07-05 Ness Malcolm G A bone fixation device
BRPI0621728A2 (en) 2006-06-05 2012-10-16 Traiber S L vertebral fixation device and tool for mounting the same
EP2050408B1 (en) * 2006-06-07 2011-04-13 Disc Motion Technologies Inc. Pedicle screw system
US20070288009A1 (en) 2006-06-08 2007-12-13 Steven Brown Dynamic spinal stabilization device
US7922748B2 (en) * 2006-06-16 2011-04-12 Zimmer Spine, Inc. Removable polyaxial housing for a pedicle screw
WO2008003047A2 (en) 2006-06-28 2008-01-03 Synthes (U.S.A.) Dynamic fixation system
US7799055B2 (en) 2006-07-07 2010-09-21 Warsaw Orthopedic, Inc. Minimal spacing spinal stabilization device and method
US7927356B2 (en) 2006-07-07 2011-04-19 Warsaw Orthopedic, Inc. Dynamic constructs for spinal stabilization
US20080015578A1 (en) * 2006-07-12 2008-01-17 Dave Erickson Orthopedic implants comprising bioabsorbable metal
US20080021464A1 (en) 2006-07-19 2008-01-24 Joshua Morin System and method for a spinal implant locking assembly
US20080021466A1 (en) 2006-07-20 2008-01-24 Shadduck John H Spine treatment devices and methods
US20080021465A1 (en) 2006-07-20 2008-01-24 Shadduck John H Spine treatment devices and methods
US20080021454A1 (en) * 2006-07-21 2008-01-24 Depuy Spine, Inc. Sacral or iliac connector
US20080021455A1 (en) * 2006-07-21 2008-01-24 Depuy Spine, Inc. Articulating Sacral or Iliac Connector
AU2007277124A1 (en) 2006-07-24 2008-01-31 Nuvasive, Inc. Systems and methods for dynamic spinal stabilization
US20080021462A1 (en) 2006-07-24 2008-01-24 Warsaw Orthopedic Inc. Spinal stabilization implants
US8162991B2 (en) * 2006-07-27 2012-04-24 K2M, Inc. Multi-planar, taper lock screw
US20080051780A1 (en) * 2006-08-04 2008-02-28 Zimmer Spine, Inc. Spinal rod connector
US20080039843A1 (en) 2006-08-11 2008-02-14 Abdou M S Spinal motion preservation devices and methods of use
US7806913B2 (en) 2006-08-16 2010-10-05 Depuy Spine, Inc. Modular multi-level spine stabilization system and method
US8062340B2 (en) * 2006-08-16 2011-11-22 Pioneer Surgical Technology, Inc. Spinal rod anchor device and method
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
ES2453196T3 (en) 2006-08-24 2014-04-04 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device
US8317830B2 (en) 2006-08-29 2012-11-27 Warsaw Orthopedic, Inc. Orthopaedic screw system with linear motion
KR100817788B1 (en) 2006-09-07 2008-03-31 박경우 A flexible rod manufacturing apparatus and method for a spinal fixation and the flexible rod manufactured through the same
US20080065073A1 (en) 2006-09-08 2008-03-13 Michael Perriello Offset dynamic motion spinal stabilization system
US8425601B2 (en) 2006-09-11 2013-04-23 Warsaw Orthopedic, Inc. Spinal stabilization devices and methods of use
WO2008034130A2 (en) 2006-09-15 2008-03-20 Alpinespine Llc Dynamic pedicle screw system
WO2008034143A2 (en) 2006-09-15 2008-03-20 Alpinespine Llc Percutaneous screw assembly and placement method
US20080097431A1 (en) 2006-09-22 2008-04-24 Paul Peter Vessa Flexible spinal stabilization
US8308770B2 (en) 2006-09-22 2012-11-13 Depuy Spine, Inc. Dynamic stabilization system
US8361130B2 (en) 2006-10-06 2013-01-29 Depuy Spine, Inc. Bone screw fixation
US20080086130A1 (en) 2006-10-06 2008-04-10 Depuy Spine, Inc. Torsionally stable fixation
US7947045B2 (en) 2006-10-06 2011-05-24 Zimmer Spine, Inc. Spinal stabilization system with flexible guides
US20080147122A1 (en) 2006-10-12 2008-06-19 Jackson Roger P Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer
US8167910B2 (en) 2006-10-16 2012-05-01 Innovative Delta Technology Llc Bone screw and associated assembly and methods of use thereof
US7867258B2 (en) 2006-10-17 2011-01-11 Warsaw Orthopedic, Inc. Multi-axial bone attachment member
US20080177327A1 (en) 2006-10-17 2008-07-24 Hugues Malandain Central rod connector and T-rod
US7699876B2 (en) 2006-11-08 2010-04-20 Ebi, Llc Multi-axial bone fixation apparatus
US8162990B2 (en) 2006-11-16 2012-04-24 Spine Wave, Inc. Multi-axial spinal fixation system
US20080125777A1 (en) 2006-11-27 2008-05-29 Warsaw Orthopedic, Inc. Vertebral Stabilizer Having Adjustable Rigidity
US20080125787A1 (en) 2006-11-27 2008-05-29 Doubler Robert L Dynamic rod
US20080177316A1 (en) 2006-11-30 2008-07-24 Bergeron Brian J Apparatus and methods for spinal implant
US7993375B2 (en) 2006-12-05 2011-08-09 Spine Wave, Inc. Dynamic stabilization devices and methods
US9867640B2 (en) 2006-12-07 2018-01-16 Nexus Spine, LLC Press-on pedicle screw assembly
KR100829338B1 (en) 2006-12-07 2008-05-13 김수경 Spinal stabilization apparatus
US7824430B2 (en) 2006-12-08 2010-11-02 Warsaw Orthopedic, Inc. Methods and devices for treating a multi-level spinal deformity
US20080177319A1 (en) 2006-12-09 2008-07-24 Helmut Schwab Expansion Rod, Self-Adjusting
DE102007055745A1 (en) 2006-12-10 2008-07-31 Paradigm Spine, Llc Spinal stabilization unit for treating spinal pathologies in patient, has anchoring system with anchors to cooperate with arms of coupler to attach coupler to bone, where one arm is connected to body of coupler at connection
CN102525623B (en) 2006-12-10 2015-04-29 帕拉迪格脊骨有限责任公司 Posterior functionally dynamic stabilization system
FR2910267B1 (en) 2006-12-21 2009-01-23 Ldr Medical Soc Par Actions Si VERTEBRAL SUPPORT DEVICE
US20080161853A1 (en) 2006-12-28 2008-07-03 Depuy Spine, Inc. Spine stabilization system with dynamic screw
US7896904B2 (en) 2006-12-28 2011-03-01 Mi4Spine, Llc Vertebral disc tensioning device
EP2117451A1 (en) 2006-12-29 2009-11-18 Zimmer Spine Austin, Inc. Spinal stabilization systems and methods
US8029544B2 (en) 2007-01-02 2011-10-04 Zimmer Spine, Inc. Spine stiffening device
US20080167687A1 (en) 2007-01-03 2008-07-10 Dennis Colleran Dynamic linking member for spine stabilization system
US20080172091A1 (en) 2007-01-12 2008-07-17 Warsaw Orthopedic, Inc. Spinal Stabilization System
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US8109975B2 (en) 2007-01-30 2012-02-07 Warsaw Orthopedic, Inc. Collar bore configuration for dynamic spinal stabilization assembly
US8372121B2 (en) 2007-02-08 2013-02-12 Warsaw Orthopedic, Inc. Adjustable coupling systems for spinal stabilization members
US20080195153A1 (en) 2007-02-08 2008-08-14 Matthew Thompson Dynamic spinal deformity correction
WO2008100590A1 (en) 2007-02-14 2008-08-21 Flex Technology Inc Flexible spine components
EP2301456B1 (en) 2007-02-23 2013-04-17 Biedermann Technologies GmbH & Co. KG Rod connector for stabilizing vertebrae
US8740944B2 (en) 2007-02-28 2014-06-03 Warsaw Orthopedic, Inc. Vertebral stabilizer
US8007519B2 (en) 2007-03-13 2011-08-30 Zimmer Spine, Inc. Dynamic spinal stabilization system and method of using the same
US8057516B2 (en) 2007-03-21 2011-11-15 Zimmer Spine, Inc. Spinal stabilization system with rigid and flexible elements
EP1972289B1 (en) 2007-03-23 2018-10-17 coLigne AG Elongated stabilization member and bone anchor useful in bone and especially spinal repair processes
EP2142120A4 (en) 2007-03-30 2012-07-25 Exactech Inc Multi-level minimally invasive spinal stabilization system
US8202302B2 (en) 2007-04-19 2012-06-19 Mi4Spine, Llc Pedicle screw and rod system
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US20080275504A1 (en) 2007-05-02 2008-11-06 Bonin Henry K Constructs for dynamic spinal stabilization
WO2008153747A2 (en) 2007-05-25 2008-12-18 Vertiflex, Inc. Dynamic rod
AU2008263148C1 (en) 2007-05-31 2012-05-24 Roger P. Jackson Dynamic stabilization connecting member with pre-tensioned solid core
NL1033910C1 (en) 2007-05-31 2008-12-02 Baat Holding B V Medical device for positioning bone parts, in particular spine, relative to each other, as well as a tool for fitting such a medical device component by component.
WO2008151096A1 (en) 2007-06-05 2008-12-11 Spartek Medical, Inc. A deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
US7963978B2 (en) 2007-06-05 2011-06-21 Spartek Medical, Inc. Method for implanting a deflection rod system and customizing the deflection rod system for a particular patient need for dynamic stabilization and motion preservation spinal implantation system
US8048122B2 (en) * 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a dual deflection rod system including a deflection limiting sheild associated with a bone screw and method
US8002800B2 (en) 2007-06-05 2011-08-23 Spartek Medical, Inc. Horizontal rod with a mounting platform for a dynamic stabilization and motion preservation spinal implantation system and method
US8043333B2 (en) 2007-06-08 2011-10-25 Synthes Usa, Llc Dynamic stabilization system
US20080312694A1 (en) 2007-06-15 2008-12-18 Peterman Marc M Dynamic stabilization rod for spinal implants and methods for manufacturing the same
US8292925B2 (en) 2007-06-19 2012-10-23 Zimmer Spine, Inc. Flexible member with variable flexibility for providing dynamic stability to a spine
US20100036424A1 (en) * 2007-06-22 2010-02-11 Simpirica Spine, Inc. Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US20090018583A1 (en) 2007-07-12 2009-01-15 Vermillion Technologies, Llc Dynamic spinal stabilization system incorporating a wire rope
EP2803327A1 (en) 2007-07-13 2014-11-19 George Frey Systems for spinal stabilization
US8177810B2 (en) 2007-07-17 2012-05-15 Anova Corporation Methods of annulus and ligament reconstruction using flexible devices
EP2016916B1 (en) 2007-07-20 2010-06-30 BIEDERMANN MOTECH GmbH Bone anchoring device
US8080038B2 (en) 2007-08-17 2011-12-20 Jmea Corporation Dynamic stabilization device for spine
US8172879B2 (en) 2007-08-23 2012-05-08 Life Spine, Inc. Resilient spinal rod system with controllable angulation
US20090069849A1 (en) 2007-09-10 2009-03-12 Oh Younghoon Dynamic screw system
US20090082815A1 (en) 2007-09-20 2009-03-26 Zimmer Gmbh Spinal stabilization system with transition member
US20090088782A1 (en) 2007-09-28 2009-04-02 Missoum Moumene Flexible Spinal Rod With Elastomeric Jacket
US20090088803A1 (en) 2007-10-01 2009-04-02 Warsaw Orthopedic, Inc. Flexible members for correcting spinal deformities
US20090088799A1 (en) 2007-10-01 2009-04-02 Chung-Chun Yeh Spinal fixation device having a flexible cable and jointed components received thereon
US20090093846A1 (en) 2007-10-04 2009-04-09 Zimmer Spine Inc. Pre-Curved Flexible Member For Providing Dynamic Stability To A Spine
US20090093843A1 (en) 2007-10-05 2009-04-09 Lemoine Jeremy J Dynamic spine stabilization system
US20090093820A1 (en) 2007-10-09 2009-04-09 Warsaw Orthopedic, Inc. Adjustable spinal stabilization systems
EP2047810B1 (en) 2007-10-11 2011-09-28 BIEDERMANN MOTECH GmbH Modular rod system for spinal stabilization
US20090099608A1 (en) 2007-10-12 2009-04-16 Aesculap Implant Systems, Inc. Rod assembly for dynamic posterior stabilization
US20090099606A1 (en) 2007-10-16 2009-04-16 Zimmer Spine Inc. Flexible member with variable flexibility for providing dynamic stability to a spine
US8043339B2 (en) 2007-10-24 2011-10-25 Zimmer Spine, Inc. Flexible member for use in a spinal column and method for making
US20090112266A1 (en) 2007-10-25 2009-04-30 Industrial Technology Research Institute Spinal dynamic stabilization device
US8202300B2 (en) 2007-12-10 2012-06-19 Custom Spine, Inc. Spinal flexion and extension motion damper
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US8252028B2 (en) 2007-12-19 2012-08-28 Depuy Spine, Inc. Posterior dynamic stabilization device
US20090171395A1 (en) 2007-12-28 2009-07-02 Jeon Dong M Dynamic spinal rod system
US8425564B2 (en) 2008-01-03 2013-04-23 P. Douglas Kiester Spine reconstruction rod extender
US20090192548A1 (en) 2008-01-25 2009-07-30 Jeon Dong M Pedicle-laminar dynamic spinal stabilization device
US9277940B2 (en) 2008-02-05 2016-03-08 Zimmer Spine, Inc. System and method for insertion of flexible spinal stabilization element
US8057517B2 (en) * 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing component having a deflectable post and centering spring and method for dynamic stabilization of the spine
US20090248083A1 (en) 2008-03-26 2009-10-01 Warsaw Orthopedic, Inc. Elongated connecting element with varying modulus of elasticity
US7909857B2 (en) 2008-03-26 2011-03-22 Warsaw Orthopedic, Inc. Devices and methods for correcting spinal deformities
ES2353033T5 (en) 2008-03-28 2014-01-20 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device
US20090248077A1 (en) 2008-03-31 2009-10-01 Derrick William Johns Hybrid dynamic stabilization
US20090248081A1 (en) 2008-03-31 2009-10-01 Warsaw Orthopedic, Inc. Spinal Stabilization Devices and Methods
US20090326582A1 (en) 2008-04-10 2009-12-31 Marcus Songer Dynamic Rod
US20090259257A1 (en) 2008-04-15 2009-10-15 Warsaw Orthopedic, Inc. Pedicule-Based Motion- Preserving Device
EP2111810B1 (en) 2008-04-24 2011-07-06 Zimmer Spine System for stabilizing at least a portion of the spine
EP2113216B1 (en) 2008-04-28 2012-05-30 Biedermann Technologies GmbH & Co. KG Rod-shaped element for spinal stabilization and method for producing the same
US8034083B2 (en) 2008-05-01 2011-10-11 Custom Spine, Inc. Artificial ligament assembly
US20100063547A1 (en) 2008-05-02 2010-03-11 Joshua Morin Dynamic motion spinal stabilization system and device
US8430912B2 (en) 2008-05-05 2013-04-30 Warsaw Orthopedic, Inc. Dynamic stabilization rod
EP2298199B1 (en) 2008-05-06 2012-05-23 Biedermann Technologies GmbH & Co. KG Rod-shaped implant, in particular for the dynamic stabilization of the spine
US9017384B2 (en) 2008-05-13 2015-04-28 Stryker Spine Composite spinal rod
US8617215B2 (en) 2008-05-14 2013-12-31 Warsaw Orthopedic, Inc. Connecting element and system for flexible spinal stabilization
EP2303164A4 (en) 2008-06-20 2013-04-03 Neil Duggal Systems and methods for posterior dynamic stabilization
US20090326583A1 (en) 2008-06-25 2009-12-31 Missoum Moumene Posterior Dynamic Stabilization System With Flexible Ligament
WO2010003139A1 (en) 2008-07-03 2010-01-07 Krause William R Flexible spine components having a concentric slot
CA2739997C (en) 2008-08-01 2013-08-13 Roger P. Jackson Longitudinal connecting member with sleeved tensioned cords
US20100036425A1 (en) * 2008-08-06 2010-02-11 K2M, Inc. Anti-torsion spine fixation device
US8287571B2 (en) 2008-08-12 2012-10-16 Blackstone Medical, Inc. Apparatus for stabilizing vertebral bodies
ES2376135T3 (en) * 2008-08-12 2012-03-09 Biedermann Motech Gmbh MODULAR SYSTEM FOR THE STABILIZATION OF THE VERTEBRAL COLUMN.
WO2010019791A2 (en) * 2008-08-14 2010-02-18 Vertiflex, Inc. Dynamic rod
FR2934950B1 (en) 2008-08-14 2010-09-03 Henry Graf DYNAMIC PROSTHESIS FOR EXTRADISCAL STABILIZATION OF INTERVERTEBRAL JOINT
FR2935600B1 (en) 2008-08-14 2011-12-09 Henry Graf EXTRA-DISCAL INTERVERTEBRAL STABILIZATION ASSEMBLY FOR ARTHRODESIS
US8252025B2 (en) * 2008-09-03 2012-08-28 Zimmer Spine, Inc. Vertebral fixation system
US8870924B2 (en) * 2008-09-04 2014-10-28 Zimmer Spine, Inc. Dynamic vertebral fastener
EP2160988B1 (en) 2008-09-04 2012-12-26 Biedermann Technologies GmbH & Co. KG Rod-shaped implant in particular for stabilizing the spinal column and stabilization device including such a rod-shaped implant
EP2484300B1 (en) 2008-09-05 2015-05-20 Biedermann Technologies GmbH & Co. KG Stabilization device for bones, in particular for the spinal column
US9603629B2 (en) 2008-09-09 2017-03-28 Intelligent Implant Systems Llc Polyaxial screw assembly
WO2010030772A1 (en) * 2008-09-10 2010-03-18 Life Spine, Inc. Spinal rod
US20100087858A1 (en) 2008-09-18 2010-04-08 Abdou M Samy Dynamic connector for spinal stabilization and method of use
ES2392362T3 (en) 2008-10-08 2012-12-10 Biedermann Technologies Gmbh & Co. Kg Bone anchoring device and stabilization device for bone parts or vertebrae
EP2174610B1 (en) 2008-10-08 2012-09-05 Biedermann Technologies GmbH & Co. KG Elongated implant device and vertebral stabilization device
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
BR112013005465A2 (en) 2010-09-08 2019-09-24 P Jackson Roger connecting element in a medical implant assembly having at least two bone attachment structures cooperating with a dynamic longitudinal connecting element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070123864A1 (en) * 2000-09-18 2007-05-31 Reto Walder Pedicle screw for intervertebral support elements
US20070276380A1 (en) * 2003-09-24 2007-11-29 Tae-Ahn Jahng Spinal stabilization device
US20050131407A1 (en) * 2003-12-16 2005-06-16 Sicvol Christopher W. Flexible spinal fixation elements
US20070129729A1 (en) * 2004-03-02 2007-06-07 Spinevision, A Corporation Of France Dynamic linking element for a spinal attachment system, and spinal attachment system including said linking element
US20060264937A1 (en) * 2005-05-04 2006-11-23 White Patrick M Mobile spine stabilization device
US7842072B2 (en) * 2006-03-16 2010-11-30 Zimmer Spine, Inc. Spinal fixation device with variable stiffness
US20070288011A1 (en) * 2006-04-18 2007-12-13 Joseph Nicholas Logan Spinal Rod System
US20080183212A1 (en) * 2007-01-30 2008-07-31 Warsaw Orthopedic, Inc. Dynamic Spinal Stabilization Assembly with Sliding Collars
US8029547B2 (en) * 2007-01-30 2011-10-04 Warsaw Orthopedic, Inc. Dynamic spinal stabilization assembly with sliding collars
US20080234691A1 (en) * 2007-02-21 2008-09-25 Helmut Schwab Flex-Rod, Curvature-Adaptable
US20080234737A1 (en) * 2007-03-16 2008-09-25 Zimmer Spine, Inc. Dynamic spinal stabilization system and method of using the same
US20090005817A1 (en) * 2007-04-30 2009-01-01 Adam Friedrich Flexible Spine Stabilization System
US20090240285A1 (en) * 2007-04-30 2009-09-24 Adam Friedrich Flexible Element for Spine Stabilization System

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120029568A1 (en) * 2006-01-09 2012-02-02 Jackson Roger P Spinal connecting members with radiused rigid sleeves and tensioned cords
US20150112341A1 (en) * 2013-10-23 2015-04-23 Extremity Medical Llc Devices for bone fixation using an intramedullary fixation implant

Also Published As

Publication number Publication date
US20090275985A1 (en) 2009-11-05
US9931139B2 (en) 2018-04-03
US20160310171A1 (en) 2016-10-27
US8366745B2 (en) 2013-02-05
US20120035660A1 (en) 2012-02-09
WO2010005582A1 (en) 2010-01-14

Similar Documents

Publication Publication Date Title
US8366745B2 (en) Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US8092500B2 (en) Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US11213322B2 (en) Dynamic spinal stabilization with rod-cord longitudinal connecting members
US10617447B2 (en) Dynamic stabilization member with molded connection
US8506599B2 (en) Dynamic stabilization assembly with frusto-conical connection
US7951170B2 (en) Dynamic stabilization connecting member with pre-tensioned solid core
US8591560B2 (en) Dynamic stabilization connecting member with elastic core and outer sleeve
US8911477B2 (en) Dynamic stabilization member with end plate support and cable core extension
US20080147122A1 (en) Dynamic stabilization connecting member with molded inner segment and surrounding external elastomer
US20220133359A1 (en) Dynamic stabilization connecting member with pre-tensioned solid core member
AU2012200187B2 (en) Dynamic stabilization connecting member with pre-tensioned solid core

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION