US20130192755A1 - Multilayer assembly - Google Patents

Multilayer assembly Download PDF

Info

Publication number
US20130192755A1
US20130192755A1 US13/877,792 US201113877792A US2013192755A1 US 20130192755 A1 US20130192755 A1 US 20130192755A1 US 201113877792 A US201113877792 A US 201113877792A US 2013192755 A1 US2013192755 A1 US 2013192755A1
Authority
US
United States
Prior art keywords
composition
multilayer assembly
moles
polymer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/877,792
Inventor
Serena Carella
Mattia Bassi
Stefano Mortara
Paolo Toniolo
Julio A. Abusleme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Solvay Specialty Polymers Italy SpA
Original Assignee
Solvay Specialty Polymers Italy SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Solvay Specialty Polymers Italy SpA filed Critical Solvay Specialty Polymers Italy SpA
Assigned to SOLVAY SOLEXIS S.P.A. reassignment SOLVAY SOLEXIS S.P.A. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ABUSLEME, JULIO A., BASSI, MATTIA, CARELLA, SERENA, MORTARA, STEFANO, TONIOLO, PAOLO
Assigned to SOLVAY SPECIALTY POLYMERS ITALY S.P.A. reassignment SOLVAY SPECIALTY POLYMERS ITALY S.P.A. MERGER (SEE DOCUMENT FOR DETAILS). Assignors: SOLVAY SOLEXIS S.P.A.
Publication of US20130192755A1 publication Critical patent/US20130192755A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/0481Encapsulation of modules characterised by the composition of the encapsulation material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/246All polymers belonging to those covered by groups B32B27/32 and B32B27/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1021Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1022Titania
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • B32B2264/1023Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/704Crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/71Resistive to light or to UV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/712Weather resistant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2323/00Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2327/00Polyvinylhalogenides
    • B32B2327/12Polyvinylhalogenides containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2367/00Polyesters, e.g. PET, i.e. polyethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/12Photovoltaic modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/15Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state
    • B32B37/153Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with at least one layer being manufactured and immediately laminated before reaching its stable state, e.g. in which a layer is extruded and laminated while in semi-molten state at least one layer is extruded and immediately laminated while in semi-molten state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/24Trifluorochloroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/186Monomers containing fluorine with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/24Trifluorochloroethene
    • C08F214/245Trifluorochloroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/014Stabilisers against oxidation, heat, light or ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0892Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms containing monomers with other atoms than carbon, hydrogen or oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1341Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/1379Contains vapor or gas barrier, polymer derived from vinyl chloride or vinylidene chloride, or polymer containing a vinyl alcohol unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31786Of polyester [e.g., alkyd, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31855Of addition polymer from unsaturated monomers
    • Y10T428/31935Ester, halide or nitrile of addition polymer

Abstract

A multilayer assembly comprising a first inner layer (L1) made from a first composition (C1), said first composition (C1) comprising at least one polymer comprising recurring units derived from ethylene (E) and from chlorotrifluoroethylene (CTFE), and at least one Ti compound; and a second outer layer (L2) made from a second composition, said second composition (C2) being free from TiO2-containing additives, said second composition (C2) comprising at least one semi-crystalline polymer (A) comprising recurring units derived from ethylene and from at least one fluoromonomer selected from chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and mixtures thereof, said semi-crystalline polymer (A) having a heat of fusion of at least 35 J/g.

Description

  • This application claims priority to European applications No. EP 10187732.2 filed on 15 Oct. 2010 and EP 11162130.6 filed on 12 Apr. 2011, the whole content of these applications being incorporated herein by reference for all purposes.
  • TECHNICAL FIELD
  • The invention pertains to multilayer assemblies comprising an ethylene/chlorotrifluoroethylene layer, more particularly to multilayer assemblies having UV blocking properties, suitable for being exposed to UV radiations.
  • BACKGROUND ART
  • Ethylene/chlorotrifluoroethylene polymers have been widely used for manufacturing protective and packaging films and coatings, due to their outstanding transparency, weatherability and mechanical properties.
  • It also often happens that pigments or additives or, more broadly, compounds comprising Titanium are embedded in ethylene/chlorotrifluoroethylene polymers used for fabricating said films or coatings; TiO2 compounds, for instance, have been found particularly useful as UV-blockers and are thus the material of choice when opacity to UV rays is required.
  • Now, photocatalytic activity of Ti compounds is a well recognized phenomenon which might impair stability of the polymer matrix and thus depriving films or coatings from acceptable long term properties, including optical properties, mechanical properties.
  • While titanium oxide additives are thus widely incorporated in said polymer matrix once coated/modified on their surface by means of inert layers, these coatings are nevertheless not completely effective for totally depressing degradation catalysis and acid chloride generation from ethylene/chlorotrifluoroethylene polymers, so that films and coatings generally undergo yellowing phenomena, transparency and haze quickly being affected, as well as mechanical properties. This problem particularly appears when the ethylene/chlorotrifluoroethylene polymer films are intended for prolonged exposure to sun light and environment conditions, e.g. when these films are used as protective front films in PV cell modules.
  • There is thus a current shortfall in the art for ethylene/chlorotrifluoroethylene polymer structures comprising titanium compounds, which could withstand exposure to UV and VIS light and to weather wet and dry conditions, without undergoing significant degradation, and thus while maintain their original properties, including optical and mechanical properties.
  • Examples of multilayer structures comprising a ECTFE layer containing a Ti compound are known.
  • Thus, document EP 1281730 A (AUSIMONT SPA) 05.02.2003 discloses a multilayer coating for metal substrates, wherein a first layer comprising a ECTFE resin, possibly comprising a filler (mica, metal oxide, inorganic pigments) is further overcoated with a further layer of another ECTFE polymer generally comprising a modifier comonomer, thus reducing its crystallinity. Example 3 of this application thus discloses a multilayer structure wherein a layer comprising an ECTFE polymer containing 3% wt of a mica pigment additive coated with TiO2 is adhered to a metal substrate and is overcoated with a terpolymer of ethylene (E), chlorotrifluoroethylene (CTFE), perfluoropropylvinylether (PFPVE) having a melting point of 221° C.; test carried out by the Applicant have confirmed that this material possesses a low crystallinity.
  • BRIEF DESCRIPTION OF DRAWINGS
  • FIG. 1 shows UV-Visible transmittance (in %) as a function of the wavelength (in nm), measured by Perkin Elmer Lambda 6 spectrophotometer, recorded on the multilayer assembly ECTFE-1//(ECTFE-2+UV blocker)//ECTFE-1 of example 1, said ECTFE-1 having a heat of fusion of at least 35 J/g.
  • FIG. 2 thus depicts the TT (in %) as a function of wavelength (in nm) recorded for the assembly of example 1, as above detailed, before exposure to QUV-B conditions, and after 500 hours and after 2000 h of exposure to said conditions.
  • SUMMARY OF INVENTION
  • The invention thus pertains to a multilayer assembly comprising:
  • (L1) a first inner layer [layer (L1)] made from a first composition [composition (C1)], said composition (C1) comprising:
      • at least one polymer comprising recurring units derived from ethylene (E) and from chlorotrifluoroethylene (CTFE), and
      • at least one Ti compound; and
  • (L2) a second outer layer [layer (L2)] made from a second composition [composition (C2)], said composition (C2) being substantially free from TiO2-containing additives, said second composition comprising at least one semi-crystalline polymer comprising recurring units derived from ethylene and from at least one fluoromonomer selected from chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and mixtures thereof, said semi-crystalline polymer having a heat of fusion of at least 35 J/g [polymer (A)].
  • The Applicant has surprisingly found that when an ECTFE polymer first layer comprising a Ti compound is assembled with a second layer made from a high crystalline fluoropolymer, as above detailed, the weather-induced degradation of the first layer is substantially inhibited.
  • The Applicant thinks, without being bound by this theory, that the presence of a high crystalline layer significantly reduce permeation and penetration of environmental moisture and/or oxygen through said layer into the ECTFE layer comprising the Ti compound, this penetrated and permeated water and/or oxygen being major responsible for generation of radicals upon exposure to UV rays, and thus attacks to the ECTFE polymer matrix, in particular to the C—Cl bonds.
  • The heat of fusion of polymer (A) is determined by Differential Scanning Calorimetry (DSC) at a heating rate of 10° C./min, according to ASTM D 3418.
  • Polymer (A) possesses a heat of fusion of at least 35 J/g, preferably of at least 37 J/g, more preferably of at least 40 J/g.
  • Without upper limit for heat of fusion being critical, it is nevertheless understood that polymer (A) will generally possess a heat of fusion of at most 55 J/g, preferably of at most 53 J/g, more preferably of at most 50 J/g.
  • It is well known in the art that 50/50 mol/mol ECTFE or ETFE copolymers show a maximum of crystallinity, i.e. of both melting point and heat of fusion. The requirement for a heat of fusion of at least 35 J/g can thus be achieved in the compositional range around 50/50 molar ratios in both ECTFE and ETFE copolymers, or by very slightly increasing or by very slightly decreasing the amount of ethylene with respect to this 50/50 molar ratio.
  • Polymer (A) of the composition (C2) of the invention typically comprise:
  • (a) from 45 to 55%, preferably from 47 to 53% by moles of ethylene (E);
  • (b) from 55 to 45%, preferably from 53 to 47% by moles of chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) or mixture thereof; and
  • (c) from 0 to 5%, preferably from 0 to 2.5% by moles, based on the total amount of monomers (a) and (b), of one or more fluorinated and/or hydrogenated comonomer(s).
  • Preferably the comonomer (c) is a hydrogenated comonomer selected from the group of the acrylic monomers as above defined. More preferably the hydrogenated comonomer is selected from the group of the hydroxyalkylacrylate comonomers, such as hydroxyethylacrylate, hydroxypropylacrylate and (hydroxy)ethylhexylacrylate.
  • Nevertheless, polymers (A), as above detailed, free from comonomers (c) will be preferred.
  • Among polymers (A), ECTFE copolymers, i.e. copolymers of ethylene and CTFE (and optionally a third monomer, as above detailed) are preferred.
  • ECTFE polymers suitable in the composition of the invention typically possess a melting temperature exceeding 220° C., preferably exceeding 225° C., even exceeding 230° C., preferably exceeding 235° C. The melting temperature is determined by Differential Scanning calorimetry (DSC) at a heating rate of 10° C./min, according to ASTM D 3418.
  • ECTFE polymers which have been found to give particularly good results in the composition (C2) of the assembly of the invention are those consisting essentially of recurring units derived from:
  • (a) from 48 to 52% by moles of ethylene (E);
  • (b) from 52 to 48% by moles of chlorotrifluoroethylene (CTFE).
  • End chains, defects or minor amounts of monomer impurities leading to recurring units different from those above mentioned can be still comprised in the preferred ECTFE, without this affecting properties of the material.
  • The melt flow rate of the ECTFE polymer, measured following the procedure of ASTM 3275-81 at 230° C. and 2.16 Kg, ranges generally from 0.01 to 75 g/10 min, preferably from 0.1 to 50 g/10 min, more preferably from 0.5 to 30 g/10 min.
  • Composition (C2) is substantially free from TiO2-containing additives; this expression is intended to mean that no TiO2-containing additive is present in an effective amount to provoke UV-catalyzed degradation phenomena. This typically correspond to an amount of TiO2-containing additive of less than 0.1% wt, preferably less than 0.05% wt, more preferably of less than 0.01% wt, with respect to the weight of polymer (A).
  • Composition (C2) can possibly comprise another thermoplastic polymer in addition to polymer (A). The choice of this additional thermoplastic polymer is not particularly limited; fluoropolymers and hydrogenated polymers can be used. Generally, these additional components will be used in minor amounts with respect to polymer (A).
  • According to certain embodiments, composition (C2) will comprise polymer (A), as above described, in admixture with at least one other semi-crystalline polymer comprising recurring units derived from ethylene and from at least one fluoromonomer selected from chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and mixtures thereof, said semi-crystalline polymer having a heat of fusion of less than 35 J/g [polymer (B)].
  • According to this embodiment, composition (C2) will generally comprise polymer (A) as major component, while polymer (B) will be comprised in minor amount, so as not to detrimentally affect the barrier properties of layer (L2); typical amounts will range among 5 to 25% wt, with respect to the weight of polymer (A).
  • Preferred embodiments are nevertheless those wherein polymer (A) is the sole polymer component of composition (C2).
  • Composition (C2) optionally can further comprise filling materials, electrically conductive particles, lubricating agents, heat stabilizer, anti-static agents, extenders, reinforcing agents, organic and/or inorganic pigments, acid scavengers, such as MgO, flame-retardants, smoke-suppressing agents and the like.
  • By way of non-limiting examples of filling material, mention may be made of mica, alumina, talc, carbon black, glass fibers, carbon fibers, graphite in the form of fibers or of powder, carbonates such as calcium carbonate.
  • It is generally preferred for layer (L2) to be transparent, that is to say to possess a total transmittance of more than 80%, preferably more than 85%, even more preferably more than 92% when determined on layer (L2) having a thickness of about 50 μm, when measured according to ASTM D 1003 standard in air.
  • It is understood that total trasmittance of layer (L2) can be determined according to ASTM D1003 both in air and in water. In this latter case, the specimen to be measured is typically placed in a quartz vial filled with deionized water.
  • Thus, when measured in water, total transmittance of layer (L2) is generally of at least 85%, more preferably of at least 90%, even more preferably of at least 94%.
  • To this aim, composition (C2) is advantageously substantially free from filling materials having average particle size of 100 nm or more. Typically, composition (C2) will be totally free from filling materials of whichever size, as above detailed.
  • Thickness of layer (L2) is not particularly limited; it is nevertheless understood that layer (L2) will possess a thickness of at least 5 μm, preferably of at least 10 μm, more preferably of at least 12.5 μm. Layers (L2) having thickness of less than 5 μm, while still suitable for the multilayer assembly of the invention, will not be used when adequate mechanical resistance is required.
  • As per the upper limit of thickness of layer (L2), this is not particularly limited, provided that said layer (L2) still can provide the flexibility and transparency required for the particular field of use targeted.
  • For use of the multilayer assembly for protection of PV cell modules, layers (L2) having a thickness of at most 150 μm, preferably of at most 100 μm, even more preferably 50 μm will be advantageously used.
  • Layer (L1) of the multilayer assembly of the invention is made from composition (C1) comprising:
      • at least one polymer comprising recurring units derived from ethylene (E) and from chlorotrifluoroethylene (CTFE), and
      • at least one Ti compound.
  • The ECTFE polymer of composition (C1) typically comprise:
  • (a) from 10 to 90%, preferably from 30 to 70 by moles of ethylene (E);
  • (b) from 90 to 10%, preferably from 70 to 30%, by moles of chlorotrifluoroethylene (CTFE); and
  • (c) from 0 to 30%, preferably from 0.1 to 15% by moles, based on the total amount of monomers (a) and (b), of one or more fluorinated and/or hydrogenated comonomer(s).
  • Non limiting examples of fluorinated comonomers are for instance perfluoroalkylvinylethers, perfluoroalkylethylenes (such as perfluorobutylethylene), perfluorodioxoles, vinylidenefluoride. Among them, the preferred comonomer is perfluoropropylvinylether of formula CF2═CFO—C3F7.
  • Non limiting examples of hydrogenated comonomers, are those having the general formula: CH2═CH—(CH2)nR1 wherein R1═OR2, or —(O)tCO(O)pR2 wherein t and p are integers equal to 0 or 1 and R2 is H or a hydrogenated linear or branched alkyl or cycloalkyl radical having from 1 to 20 carbon atoms, optionally containing heteroatoms and/or chlorine atoms, the heteroatoms preferably being O or N; R2 optionally contains one or more functional groups, preferably selected from OH, COOH, epoxide, ester and ether, R2 may optionally contain double bonds; n is an integer in the range 0-10. Preferably R2 is an alkyl radical having from 1 to 10 carbon atoms containing hydroxyl functional groups and n is an integer in the range 0-5.
  • Preferred hydrogenated comonomers are selected from the following classes:
      • acrylic monomers having the general formula: CH2═CH—CO—O—R2, wherein R2 is selected from ethylacrylate, n-butylacrylate, acrylic acid, hydroxyalkylacrylates, such as hydroxyethylacrylate, hydroxypropylacrylate, (hydroxy)ethylhexylacrylate;
      • vinylether monomers having the general formula: CH2═CH—O—R2, wherein R2 is selected from propylvinylether, cyclohexylvinylether, vinyl-4-hydroxybutylether;
      • vinyl monomers of the carboxylic acid having the general formula: CH2═CH—O—CO—R2, wherein R2 is selected from vinyl acetate, vinyl propionate, vinyl-2-ethylhexanoate;
      • unsaturated carboxylic acid monomers having the general formula: CH2═CH—(CH2)n—COON, wherein n has the above mentioned meaning, for instance vinylacetic acid.
  • The ECTFE polymer of composition (C1) can possess a heat of fusion, as determined by Differential Scanning Calorimetry (DSC) at a heating rate of 10° C./min, according to ASTM D 3418, above, equal or below 35 J/g. In other words, crystalline fraction of ECTFE polymer of composition (C1) is nota particularly critical.
  • Nevertheless, ECTFE polymers having low crystallinity, i.e. having heat of fusion of less than 35 J/g, preferably of less than 30 J/g, more preferably of less than 25 J/g will be preferred when aiming at maximizing dispersion ability of nanosized fillers therein.
  • It is thus understood that ECTFE polymers which are preferred for composition (C1) are indeed those comprising an amount of recurring units derived from ethylene of less than 50% moles, preferably of less than 48% moles, more preferably of less than 45% moles, as they enable achieving improved properties due to the fluoromonomer components.
  • Composition (C1) thus preferably comprises an ECTFE polymer containing:
  • (a) from 30 to 48%, preferably from 35 to 45% by moles of ethylene (E);
  • (b) from 52 to 70%, preferably from 55 to 65% by moles of chlorotrifluoroethylene (CTFE); and
  • (c) from 0 to 5%, preferably from 0 to 2.5% by moles, based on the total amount of monomers (a) and (b), of one or more fluorinated and/or hydrogenated comonomer(s), as above detailed.
  • ECTFE polymers which have been found to give particularly good results in composition (C1) are those consisting essentially of recurring units derived from:
  • (a) from 35 to 47% by moles of ethylene (E);
  • (b) from 53 to 65% by moles of chlorotrifluoroethylene (CTFE).
  • End chains, defects or minor amounts of monomer impurities leading to recurring units different from those above mentioned can be still comprised in the preferred ECTFE, without this affecting properties of the material.
  • As per the Ti compound is concerned, its selection will depend upon the particular functionality required to be ensured by this additive.
  • When the Ti compound is intended to behave as a UV blocker, inorganic compounds comprising TiO2 will be typically preferred.
  • According to a first embodiment of the invention, the Ti compound is an inorganic UV blocker compound comprising TiO2, and possibly comprising at least one other inorganic oxide compound.
  • Among preferred inorganic UV blocker compound comprising TiO2 of this embodiment, mention can be made of particles comprising:
      • a core consisting essentially of TiO2; and
      • a shell consisting essentially of at least one oxide of Si, Al or mixture thereof
  • While the crystalline form of TiO2 is not particularly limited, it is generally understood that rutile form of TiO2 will be preferred over anatase form, to the aim of depressing photocatalytic activity and decomposition phenomena deriving therefrom.
  • Particles of this embodiment, as above detailed, may further comprises at least one other layer of a third material which can be the same of different from the materials of the core and of the shell. The particles may additionally comprise a further coating, either completely surrounding (e.g., encapsulating) or partially covering the particle, of a suitable coating additive, such as a dispersing agent, a stabilizer, an antistatic agent and the like. Coatings of organic dispersing agents have been found particularly useful, in particular those wherein stearates (esters and salts) are used.
  • Particles of this embodiment generally possess an average particle size of less than 150 nm, preferably less than 120 nm, more preferably less than 100 nm. Selection of particles having an average particle size of less than 150 nm is generally recommended for achieving transparency of layer (L1). Actually, provided that particles are used having sizes significantly smaller than the wavelength of visible light (typically from about 380 nm to about 850 nm), scattering is substantially reduced, so that visible light can penetrate and be transmitted ensuring thus transparency.
  • Layers (L1) made from composition (C1) containing an inorganic UV blocker compound comprising TiO2 are particularly suitable for manufacturing multilayer assemblies intended as protective front sheet for PV cell modules.
  • Layers (L1) according to this embodiment typically possess a total transmittance of more than 85%, preferably more than 90%, even more preferably more than 92% when determined on layer (L2) having a thickness of about 50 μm, when measured according to ASTM D 1003 standard in air.
  • According to a second embodiment of the invention, the Ti compound is a pigment comprising TiO2, possibly in combination with another inorganic oxide compound.
  • Pigmented composition (C1) will be selected for those fields of use wherein transparency is not required; nevertheless, colour stability and avoidance of degradation phenomena, yielding e.g. failures or loss in mechanical properties, still remain highly valuable also in these domains.
  • More generally, thickness of layer (L1) is not particularly limited; it is nevertheless understood that layer (L1) will possess a thickness of at least 15 μm, preferably of at least 20 μm, more preferably of at least 25 μm. Layers (L1) having thickness of less than 15 μm, while still suitable for the multilayer assembly of the invention, will not be used when adequate mechanical resistance is required.
  • As per the upper limit of thickness of layer (L1), this is not particularly limited, provided that said layer (L1) still can provide the flexibility and transparency required for the particular field of use targeted.
  • For use of the multilayer assembly for protection of PV cell modules, layers (L1) having a thickness of at most 125 μm, preferably of at most 100 μm, even more preferably 75 μm will be advantageously used.
  • Layer (L1) and layer (L2) are generally made to adhere to each other with no need of additional adhesive layer. It may nevertheless well be for an additional layer to be present among layer (L1) and layer (L2), without this falling outside the scope of the present invention.
  • Nevertheless, multilayer assemblies wherein layers (L1) and (L2) are joined directly are typically preferred.
  • The multilayer assembly may additionally comprise a third layer (L3), said layer adhering to layer (L1) on the opposite side of layer (L2).
  • Layout of the multilayer assembly of this embodiment will thus provide for a layer (L1), as above detailed, comprised between layer (L2), as above detailed, and layer (L3), equal to or different from layer (L2), made from a composition (C3).
  • While choice of layer (L3) is not particularly limited, embodiments which are particularly suitable to the purpose of the invention are those wherein layer (L3) is made from a composition (C3) possessing same features as composition (C2) as above detailed; preferably, composition (C3) of layer (L3) is identical to composition (C2) of layer (L2).
  • All features detailed above for layer (L2) can be provided for layer (L3) of this embodiment.
  • The invention also pertains to a method for manufacturing the multilayer assembly, as above detailed.
  • Use may be made of any usual techniques for assembling polymer layers to prepare the multilayer assemblies according to the invention.
  • An example of such techniques that may be mentioned includes those in which the compositions (C1), (C2) and optionally (C3) are used at a temperature at least equal to their softening point, typically at a temperature exceeding melting point of its polymer components. Preferably, the preparation of the multilayer assemblies according to the invention is performed by colaminating, coextrusion, for example coextrusion-laminating, coextrusion-blow moulding and coextrusion-moulding, extrusion-coating, coating, overinjection-moulding or coinjection-moulding.
  • The method for manufacturing the multilayer assemblies according to the invention is performed in a particularly preferred manner by colaminating, coextrusion or overinjection-moulding.
  • The choice of one or other of these assembly techniques is made on the basis of the use for which the multilayer assemblies are intended, as well as the thicknesses of each layers.
  • For example, multilayer assemblies intended for being used as pipes, tubes, films, sheets and plaques are preferably manufactured by coextrusion.
  • Thus, the method for manufacturing the multilayer assembly of the invention is preferably performed by coextrusion of a layer (L1), of a layer (L2) and optionally, of a layer (L3) as above detailed.
  • The thickness of multilayer assemblies according to the invention is not critical and obviously depends on the use for which said assemblies are intended.
  • The invention also relates to the use of the multilayer assemblies according to the invention for the manufacture of tubes, pipes, cladding, films, sheets, profiles, plaques and hollow bodies.
  • Multilayer assemblies comprising transparent layers, as above detailed, are particularly useful as architectural membranes, capstock, and for food and pharmaceutical packaging.
  • Further, in addition, according to a further embodiment of the present invention, a field of use which has been found particularly interesting for the multilayer assemblies of the present invention is the domain of protection of PV modules.
  • Thus, a method for protecting a PV module including covering said module with at least one multilayer assembly as above defined is still another aspect of the present invention.
  • According to this method, the multilayer assembly can be used for front or back protection of the PV cell module, front side being the side exposed to incident light. Multilayer assemblies comprising transparent layers, as above detailed, are particularly useful as front sheets in PV modules.
  • Also, multilayer assemblies of the invention have been successfully incorporated as protective layers for composite films having high water and oxygen barrier properties. Within this approach, the multilayer assemblies of the invention are generally further assembled onto polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) films, wherein PET or PEN are preferably further coated with a thin layer of a high barrier material. Generally, this high barrier material is an inorganic material, preferably selected among silicon oxides, aluminium oxides or other mixed oxides which, advantageously, when coated e.g. via techniques like MOCVD, can provide coatings of 10 to 50 nm, preferably of 10 to 20 nm still ensuring transparency to visible radiation. Multilayer composite films can thus be obtained by adhering the multilayer assembly of the invention to the high barrier material layer coated onto the PET or PEN film through the use of an adhesive selected from epoxy or urethane glues. Assemblies comprising, from the outer layer to the inner layer, in the following order, a layer (L2), a layer (L1), optionally a layer (L3), an adhesive layer, a high barrier layer, and a PET or PEN layers are thus the preferred embodiments of this embodiment, enabling achievement of excellent oxygen and water vapour barrier [both generally of less than 10−2 g/(m2×day), when determined at 38° C. and 90% RH], combined with outstanding weatherability and transparency. Assemblies of this embodiment are particularly useful as protective layers for several organic/inorganic electronics devices, including, but not limited to, PV cells.
  • Assemblies of this embodiment are particularly suitable for the protection of active layers of PV cells which are particularly sensitive to oxygen and/or moisture. Among the PV cells of this type which are advantageously protected with the assemblies of this embodiment, mention can be made of active layers based on Copper Indium Gallium (di)Selenide (CIGS), Cadmium Telluride (CdTe) and organic photoactive compounds.
  • Should the disclosure of any patents, patent applications, and publications which are incorporated herein by reference conflict with the description of the present application to the extent that it may render a term unclear, the present description shall take precedence.
  • The invention will be now described in more detail with reference to the following examples, whose purpose is merely illustrative and not intended to limit the scope of the invention.
  • Raw materials Polymers
  • ECTFE-1 is a 50/50 mole % ethylene/chlorotrifluoroethylene (E/CTFE) copolymer commercially available under trade name HALAR® 500 having a melting point (Tm2) of 242° C. and a heat of fusion (ΔH2f) of 42 J/g and a MFI of 18 g/10min (275° C./2.16 kg).
  • ECTFE-2: is a 41/59 mole % E/CTFE copolymer having a melting point (Tm2) of 180° C., a heat of fusion (ΔH2f) of 18 J/g and a MFI of 1.4 g/10 min (230° C./2.16 kg).
  • Ti-Containing Compound
  • TiO2-1 is a UV-blocker made of core-shell type particles having a core of TiO2 coated with a shell of mixed Al2O3—SiO2 oxide, these particles being surface treated with stearic acid, commercially available under trade name HOMBITEC® RM130F from Sachtleben Chemie GmbH, having an average particle size of 15 nm, available under the form of powder.
  • Manufacture of Polymer Compositions and Pelletization
  • The ECTFE-2 polymer, under the form of powder and the UV-blocker particles as above detailed were pre-mixed in a rapid mixer equipped with a three stages paddles mixer so as to obtain a homogeneous powder mixture having required weight ratio between mentioned ingredients. No additive was included in ECTFE-1, which was also available as a powder.
  • Powder mixture of ECTFE-2 and UV-blocker and/or powder of ECTFE-1 was then processed by extrusion in a double screw 30-34 extruder (LEISTRITZ), equipped with 6 temperature zones and a 4 mm2 holes die.
  • Processing set points for ECTFE-1 and ECTFE-2-based composition, respectively, are summarized in Table 1 and Table 2.
  • ECTFE-1
  • TABLE 1
    Feed zone T1 T2 T3 T4 T5
    210 225 240 250 260 270
  • Screws speed was set at 300 rpm, with a torque of 49%, so as to yield a throughput rate of about 6 kg/h, and a melt extrudate temperature of 265° C.
  • ECTFE-2-Based Composition
  • TABLE 2
    Feed zone T1 T2 T3 T4 T5
    180 200 200 210 220 220
  • Screws speed was set at 300 rpm, with a torque of 59%, so as to yield a throughput rate of about 6.6 kg/h, and a melt temperature of 219° C.
  • Extruded strands were cooled in a water bath, dried, calibrated and cut in a pelletizer.
  • EXAMPLE 1 Manufacture of Multilayer Assembly by Coextrusion
  • For manufacturing the multilayer assembly, pellets were processed in a coextrusion cast film line equipped with a 2.5″ single stage extruder (A) and a with 2″ satellite co-ex (B). Extruders are connected to the die via a feedblock equipped with a selector plug able to give the following layers' sequence: B/NB (L2/L1/L3). The die was a 915 mm wide auto-gauge die. Upon exit from the die, molten tape was casted on three subsequent chill rolls, whose speed was adapted so as to obtain a film thickness of about 100 μm. Total thickness and thickness variation along the width are controlled by a Beta-ray gauge control system with retrofit to the die. The following processing conditions were used for a 100 μm thick film (25/50/25 μm as partial thickness sequence).
  • Extruder A was fed with pellets of composition of ECTFE-2 and UV-blocker, prepared as above detailed (for layer L1), while coextruder B was fed with pellets of ECTFE-1 (for layers L2 and L3). Both extruders were equipped with screen pack filters. To obtain the desired thicknesses and ratio, extruders' and line speeds were set as follow:
      • Extruder A=>65 rpm
      • Extruder B=>70 rpm
      • Line speed=>12 m/min.
  • Extruder A temperatures' profile used in the example are summarized in Table 3:
  • TABLE 3
    Zone Temperature (° C.)
    Main Barrel Zone 1 255
    Main Barrel Zone 2 260
    Main Barrel Zone 3 260
    Main Barrel Zone 4 260
    Main Barrel Zone 5 260
    Clamp 260
    Adapter 1 260
    Adapter 2 260
  • Extruder B temperatures' profile used in the examples are summarized in table 4:
  • TABLE 4
    Zone Temperature (° C.)
    Main Barrel Zone 1 275
    Main Barrel Zone 2 280
    Main Barrel Zone 3 280
    Main Barrel Zone 4 280
    Clamp 280
    Adapter 1 280
    Adapter 2 280
  • Feedblock, die and calendering rolls temperatures are further detailed in Table 5:
  • TABLE 5
    Zone Temperature (° C.)
    Feedblock 280
    Die Zone 1 285
    Die Zone 2 285
    Die Zone 3 285
    Die Zone 4 285
    Die Zone 5 285
    Top Roll 90
    Center Roll 170
    Bottom Roll 170
  • Final width of the film, after edge cutting, was about 710 mm.
  • Characterization of the Multilayer Assembly
  • Multilayer assembly of example 1 was characterized for its optical properties according to ASTM D 1003 using a Gardner Haze-Gard Plus instrument. For evaluating spurious contributions possibly related to surface roughness or defects, specimens were analyzed in water, i.e. by immersing film samples in a quartz cell filled with water. A total transmittance of 94.7% and a haze value of 4.8 were determined, well demonstrating transparency and clearness of the multilayer assembly of the invention. FIG. 1 shows UV-Visible transmittance (in %) as a function of the wavelength (in nm), measured by Perkin Elmer Lambda 6 spectrophotometer, recorded on the multilayer assembly ECTFE-1//(ECTFE-2+UV blocker)//ECTFE-1 of example 1.
  • QUV-B Test—General Procedure
  • The QUV-B test method is a cyclic ultraviolet weathering procedure, in which layered articles are fixed in racks that face banks of fluorescent lamps, emitting UV radiation (namely UV-B 313 nm). This wavelength is known for being particularly aggressive in decomposing/degradating polymers; even if not abundant in natural sunlight, enables accelerated assessment of weatherability and UV-resistance.
  • During the tests, water is applied to the test samples by condensation, rather than by spray. To control the cyclic tests, the QUV is equipped with a variable interval timer that alternates the UV and the condensation at 50° C. followed by 8 hours UV radiation at 70° C. and high humidity. The QUV test as above mentioned was used for monitoring resistance to UV exposure and weather conditions of the multilayer assembly of the invention; total transmittance and haze were determined in water after various time exposures to QUV-B conditions and compared with initial values.
  • To the sake of comparison, a monolayer film made from composition ECTFE-2+UV blocker as above detailed, as well as a multilayer assembly ECTFE-2//(ECTFE-2+UV blocker)//ECTFE-2 were submitted to same test. All results are summarized in table herein below.
  • TABLE 6
    run
    500 h 1 000 h 2 000 h
    T = 0 QUV-B QUV-B QUV-B
    ECTFE-2 + UV TT 94.7 94.2 88.5 n.d.
    blocker bare film haze 3.4 7.7 19.1 n.d.
    (comparative)
    Ex. 1 TT 94.7 95.2 94.4 94.1
    haze 4.8 4.5 5.8 7.2
    ECTFE-2// TT 94.7 94.5 93.4 92.9
    (ECTFE-2 + UV haze 4.6 5.8 8.8 16.9
    blocker)//ECTFE-2
    (comparative)
  • Data provided in Table 6 well demonstrate that in the absence of the outer layer (L2), a film of an ECTFE polymer comprising a Ti compound is submitted to a quick degradation, yielding unacceptable values of haze (>10) and of TT (<90%) already after 500 hours exposure to QUV-B conditions.
  • On the other side, the inclusion of a protective layer of a polymer (A) having a heat of fusion of at least 35 J/g can provide adequate protection to said inner film, so as both haze and TT remain at acceptable levels even after prolonged exposure to QUV-B conditions. In other words, the assembly remains transparent and clear and no significant change is detected in the absorption spectrum; FIG. 2 thus depicts the TT (in %) as a function of wavelength (in nm) recorded for the assembly of example 1 before exposure to QUV-B conditions, after 500 hours and after 2000 h: no appreciable difference in the optical behaviour can be discerned. Last example of comparison shows criticality of selection as protective layer of a polymer (A) having a heat of fusion of at least 35 J/g: in this case, wherein the protective layer is made from a polymer not complying with this requirement, optical properties of the assembly, in particular haze, undergo substantive degradation after 2000 hours of exposure to QUV-B.

Claims (17)

1. A multilayer assembly comprising:
a first inner layer (L1) made from a first composition (C1), said first composition (C1) comprising:
at least one polymer comprising recurring units derived from-ethylene (E) and from chlorotrifluoroethylene (CTFE), and
at least one Ti compound; and
a second outer layer (L2) made from a second composition, said second composition (C2) being free from TiO2-containing additives, said second composition (C2) comprising at least one semi-crystalline polymer (A) comprising recurring units derived from ethylene and from at least one fluoromonomer selected from chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) and mixtures thereof, said semi-crystalline polymer (A) having a heat of fusion of at least 35 J/g.
2. The multilayer assembly of claim 1, wherein said semi-crystalline polymer (A) of said second composition (C2) comprises:
(a) from 45 to 55% by moles of ethylene (E);
(b) from 55 to 45% by moles of chlorotrifluoroethylene (CTFE), tetrafluoroethylene (TFE) or their mixture; and
(c) from 0 to 5% by moles, based on the total amount of monomers (a) and (b) of one or more fluorinated and/or hydrogenated comonomer(s).
3. The multilayer assembly of claim 1, wherein said semi-crystalline polymer (A) of said second composition (C2) is an ECTFE polymer possessing a melting temperature exceeding 220° C.
4. The multilayer assembly of claim 3, wherein said semi-crystalline polymer (A) of said second composition (C2) consists essentially of:
(a) from 48 to 52% by moles of ethylene (E);
(b) from 52 to 48% by moles of chlorotrifluoroethylene (CTFE).
5. The multilayer assembly of claim 1, wherein said second composition (C2) comprises said semi-crystalline polymer (A) as sole polymer component.
6. The multilayer assembly of claim 1, wherein said second outer layer (L2) has a thickness of at least 5 μm.
7. The multilayer assembly of claim 1, wherein the ECTFE polymer of said first composition (C1) comprises:
(a) from 10 to 90%, by moles of E;
(b) from 90 to 10%, by moles of CTFE; and
(c) from 0 to 30%, by moles, based on the total amounts of monomers (a) and (b), of one or more fluorinated and/or hydrogenated comonomer(s).
8. The multilayer assembly of claim 7, wherein the ECTFE polymer of said first composition (C1) consists essentially of:
(a) from 35 to 47% by moles of E;
(b) from 53 to 65% by moles of CTFE.
9. The multilayer assembly of claim 1, wherein the Ti compound is an inorganic compound comprising TiO2.
10. The multilayer assembly of claim 9, wherein the Ti compound is an inorganic UV blocker compound made of particles comprising:
a core consisting essentially of TiO2, and
a shell consisting essentially of at least one oxide of Si, Al or mixture thereof.
11. The multilayer assembly of claim 1, further comprising a third layer (L3) adhering to said first inner layer (L1) on the opposite side of said second outer layer (L2).
12. The multilayer assembly of claim 11, wherein said third layer (L3) is made from a said third composition (C3) identical to said second composition (C2).
13. A method for manufacturing the multilayer assembly of claim 1, said method comprising at least one techniques selected from the group consisting of colaminating, coextrusion, extrusion-coating, coating, overinjection-moulding and coinjection moulding.
14. (canceled)
15. A method for manufacturing tubes, pipes, cladding, films, sheets, profiles, plaques or hollow bodies, comprising using the multilayer assembly according to claim 1.
16. A method for protecting a PV module including covering said module with at least one multilayer assembly according to claim 1.
17. A method for producing high barrier composite films, comprising adhering the multilayer assembly according to claim 1 onto a polyethylene terephthalate (PET) or polyethylene naphthalate (PEN) film through the use of an adhesive selected from epoxy or urethane glues.
US13/877,792 2010-10-15 2011-10-12 Multilayer assembly Abandoned US20130192755A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
EP10187732.2 2010-10-15
EP10187732 2010-10-15
EP11162130.6 2011-04-12
EP11162130 2011-04-12
PCT/EP2011/067763 WO2012049193A1 (en) 2010-10-15 2011-10-12 Multilayer assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/067763 A-371-Of-International WO2012049193A1 (en) 2010-10-15 2011-10-12 Multilayer assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/525,178 Continuation US11338558B2 (en) 2010-10-15 2019-07-29 Multilayer assembly

Publications (1)

Publication Number Publication Date
US20130192755A1 true US20130192755A1 (en) 2013-08-01

Family

ID=45937924

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/877,792 Abandoned US20130192755A1 (en) 2010-10-15 2011-10-12 Multilayer assembly
US16/525,178 Active 2032-03-03 US11338558B2 (en) 2010-10-15 2019-07-29 Multilayer assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/525,178 Active 2032-03-03 US11338558B2 (en) 2010-10-15 2019-07-29 Multilayer assembly

Country Status (6)

Country Link
US (2) US20130192755A1 (en)
EP (1) EP2627510B1 (en)
JP (1) JP6328423B2 (en)
KR (1) KR101960978B1 (en)
CN (1) CN103153615B (en)
WO (1) WO2012049193A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130202878A1 (en) * 2010-10-15 2013-08-08 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US20140234630A1 (en) * 2013-02-18 2014-08-21 Honeywell International Inc. Fluoropolymers containing a copolymerized fluoromonomer and a functional hydrocarbon comonomer and articles made from such fluoropolymers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150136110A (en) * 2013-03-29 2015-12-04 솔베이 스페셜티 폴리머스 이태리 에스.피.에이. Multilayer mirror assembly
US11764321B2 (en) * 2016-11-11 2023-09-19 Endurance Solar Solutions B.V. Backsheet comprising a polyolefine based functional layer facing the back encapsulant
US20220165897A1 (en) * 2019-04-26 2022-05-26 Dai Nippon Printing Co., Ltd. Backside protective sheet for solar cell modules and solar cell module
TW202311022A (en) * 2021-08-31 2023-03-16 美商聖高拜塑膠製品公司 Tube and method for making same

Citations (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624250A (en) * 1970-01-20 1971-11-30 Du Pont Copolymers of ethylene/tetrafluoroethylene and of ethylene/chlorotrifluoroethylene
US3947525A (en) * 1973-01-30 1976-03-30 Allied Chemical Corporation Melt-processable, radiation cross-linkable E-CTFE copolymer compositions
US4020253A (en) * 1975-04-02 1977-04-26 Allied Chemical Corporation Stress-crack resistant ethylene-perhaloethylene copolymers
US4033939A (en) * 1975-04-02 1977-07-05 Allied Chemical Corporation Stress-crack resistant ethylene-perhaloethylene terpolymers
US4510301A (en) * 1982-06-01 1985-04-09 E. I. Du Pont De Nemours And Company Fluorocarbon copolymer films
US4539354A (en) * 1981-07-06 1985-09-03 Allied Corporation Stabilized ethylene/chlorotrifluoroethylene copolymer composition
US4539364A (en) * 1984-05-29 1985-09-03 Owens-Corning Fiberglas Corporation Hot melt sizes
US4544721A (en) * 1983-10-06 1985-10-01 E. I. Du Pont De Nemours And Company Chlorotriflouroethylene polymer oriented films
US5310775A (en) * 1992-07-20 1994-05-10 Alliedsignal Inc. Nucleating system for poly(chlorofluoroethylene) and articles formed therefrom
US5582653A (en) * 1994-04-28 1996-12-10 Canon Kabushiki Kaisha Solar cell module having a surface protective member composed of a fluororesin containing an ultraviolet absorber dispersed therein
US5614319A (en) * 1995-05-04 1997-03-25 Commscope, Inc. Insulating composition, insulated plenum cable and methods for making same
US6107393A (en) * 1997-03-21 2000-08-22 Ausimont S.P.A. Thermoprocessable fluorinated polymers
US6340403B1 (en) * 1994-04-20 2002-01-22 The Regents Of The University Of California Solar cell module lamination process
US20030027884A1 (en) * 2001-05-18 2003-02-06 Seong-Kil Kim Binder composition for photocatalytic coating and photocatalytic coating film manufactured using the same
US6572964B2 (en) * 2000-02-04 2003-06-03 Showa Denko K.K. Ultrafine mixed-crystal oxide, production process and use thereof
US6706351B2 (en) * 2000-09-18 2004-03-16 Ausimont S.P.A. Multilayer composition comprising fluoropolymers and hydrogenated polymers
US20050175788A1 (en) * 2002-06-05 2005-08-11 Nat Insttitute Of Advanced Indust Science & Tech Method for producing composite ceramic material
US20050268961A1 (en) * 2004-06-04 2005-12-08 Saint-Gobain Performance Plastics Coporation Photovoltaic device and method for manufacturing same
US20060116279A1 (en) * 2003-01-09 2006-06-01 Hisao Kogoi Composite particles and method for production thereof and use thereof
US20060182812A1 (en) * 2003-01-20 2006-08-17 Yasuharu Ono Antibacterial compositions and antibacterial products
US20070219333A1 (en) * 2004-04-13 2007-09-20 Takeshi Shimono Chlorotrifluoroethylene Copolymer
US7381463B2 (en) * 2001-08-02 2008-06-03 Ausimont S.P.A. Metal substrates coated with fluoropolymers
US20080187732A1 (en) * 2004-03-12 2008-08-07 Dai Nippon Printing Co., Ltd. Coating Composition, Its Coating Film, Antireflection Film, and Image Display Device
US20090105420A1 (en) * 2006-04-25 2009-04-23 Solvay Solexis S.P.A. Thermoplastic Fluoropolymer Composition
US20090162652A1 (en) * 2007-12-21 2009-06-25 Ranade Aditya P Co-extruded fluoropolymer multilayer laminates
US20090171004A1 (en) * 2005-07-13 2009-07-02 Solvay Solexis S.P.A Thermoplastic Halopolymer Composition
US20090203830A1 (en) * 2005-07-13 2009-08-13 Solvay Solexis S.P.A. Thermoplastic Fluoropolymer Composition
US20090263650A1 (en) * 2006-12-22 2009-10-22 Asahi Glass Company, Limited Fluororesin film and process for its production
US20090326154A1 (en) * 2006-11-30 2009-12-31 Solvay Solexis S.P.A. Additives for Halopolymers
US20100015436A1 (en) * 2006-12-22 2010-01-21 Asahi Glass Company Limited Composite particles and application thereof
US20100092759A1 (en) * 2008-10-13 2010-04-15 Hua Fan Fluoropolymer/particulate filled protective sheet
US7901779B2 (en) * 2003-04-11 2011-03-08 Madico, Inc. Bright white protective laminates
US20110232735A1 (en) * 2008-02-06 2011-09-29 Arkema France Three-layer film for a photovoltaic cell
US20130202878A1 (en) * 2010-10-15 2013-08-08 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2392378A (en) * 1943-10-25 1946-01-08 Du Pont Copolymers of chlorotrifluoroethylene and olefin hydrocarbons
JPS62121032A (en) * 1985-11-20 1987-06-02 Unitika Ltd Biaxially oriented fluorine stretched film and its manufacture
JPH0690627A (en) * 1992-09-14 1994-04-05 Nippon Carbide Ind Co Inc Agricultural covering material
IT1269518B (en) * 1994-05-19 1997-04-01 Ausimont Usa COMPOSITION BASED ON ETHYLENE / CHLOROTRIFLUOROETHYLENE COPOLYMERS WITH HIGH THERMAL STABILITY
JP3623008B2 (en) * 1995-03-20 2005-02-23 旭硝子グリーンテック株式会社 Film for outdoor construction
JPH09288914A (en) 1996-04-24 1997-11-04 Hitachi Cable Ltd Insulated wire for heating apparatus
IT1284112B1 (en) * 1996-07-05 1998-05-08 Ausimont Spa FLUORINATED COPOLYMERS OF ETHYLENE
JP2000208797A (en) 1999-01-13 2000-07-28 Dainippon Printing Co Ltd Surface protecting sheet therefor solar battery module and solar battery module using it
ITMI20021202A1 (en) 2002-06-04 2003-12-04 Ausimont Spa COMPOSITIONS OF FLUOROPOLYMERS AND INORGANIC NANOMETRIC PARTICLES
JP2004283699A (en) 2003-03-20 2004-10-14 Osaka Gas Co Ltd Member for gas using facility applied with high durable coating
US7267865B2 (en) 2004-02-20 2007-09-11 Saint-Gobain Performance Plastics Corporation Draw resonant resistant multilayer films
US20050239921A1 (en) * 2004-04-27 2005-10-27 Birmingham John N Preparation of organic additive-treated, pyrogenic silica-encapsulated titanium dioxide particles
ITMI20050474A1 (en) * 2005-03-22 2006-09-23 Solvay Solexis Spa POWDERS OR MANUFACTURED PRODUCTS WITH A SUPERFICIAL HYDROPHILICITY
US8344238B2 (en) 2005-07-19 2013-01-01 Solyndra Llc Self-cleaning protective coatings for use with photovoltaic cells
US20100151180A1 (en) 2008-10-13 2010-06-17 Bravet David J Multi-layer fluoropolymer film
WO2016188592A1 (en) * 2015-05-22 2016-12-01 Solvay Specialty Polymers Italy S.P.A. Multilayer assembly
EP3445820B1 (en) * 2016-04-19 2020-08-05 Solvay Specialty Polymers Italy S.p.A. Fluoropolymer composition

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3624250A (en) * 1970-01-20 1971-11-30 Du Pont Copolymers of ethylene/tetrafluoroethylene and of ethylene/chlorotrifluoroethylene
US3947525A (en) * 1973-01-30 1976-03-30 Allied Chemical Corporation Melt-processable, radiation cross-linkable E-CTFE copolymer compositions
US4020253A (en) * 1975-04-02 1977-04-26 Allied Chemical Corporation Stress-crack resistant ethylene-perhaloethylene copolymers
US4033939A (en) * 1975-04-02 1977-07-05 Allied Chemical Corporation Stress-crack resistant ethylene-perhaloethylene terpolymers
US4539354A (en) * 1981-07-06 1985-09-03 Allied Corporation Stabilized ethylene/chlorotrifluoroethylene copolymer composition
US4510301A (en) * 1982-06-01 1985-04-09 E. I. Du Pont De Nemours And Company Fluorocarbon copolymer films
US4544721A (en) * 1983-10-06 1985-10-01 E. I. Du Pont De Nemours And Company Chlorotriflouroethylene polymer oriented films
US4539364A (en) * 1984-05-29 1985-09-03 Owens-Corning Fiberglas Corporation Hot melt sizes
US5310775A (en) * 1992-07-20 1994-05-10 Alliedsignal Inc. Nucleating system for poly(chlorofluoroethylene) and articles formed therefrom
US6340403B1 (en) * 1994-04-20 2002-01-22 The Regents Of The University Of California Solar cell module lamination process
US5582653A (en) * 1994-04-28 1996-12-10 Canon Kabushiki Kaisha Solar cell module having a surface protective member composed of a fluororesin containing an ultraviolet absorber dispersed therein
US5614319A (en) * 1995-05-04 1997-03-25 Commscope, Inc. Insulating composition, insulated plenum cable and methods for making same
US6107393A (en) * 1997-03-21 2000-08-22 Ausimont S.P.A. Thermoprocessable fluorinated polymers
US6572964B2 (en) * 2000-02-04 2003-06-03 Showa Denko K.K. Ultrafine mixed-crystal oxide, production process and use thereof
US6706351B2 (en) * 2000-09-18 2004-03-16 Ausimont S.P.A. Multilayer composition comprising fluoropolymers and hydrogenated polymers
US20030027884A1 (en) * 2001-05-18 2003-02-06 Seong-Kil Kim Binder composition for photocatalytic coating and photocatalytic coating film manufactured using the same
US7381463B2 (en) * 2001-08-02 2008-06-03 Ausimont S.P.A. Metal substrates coated with fluoropolymers
US20050175788A1 (en) * 2002-06-05 2005-08-11 Nat Insttitute Of Advanced Indust Science & Tech Method for producing composite ceramic material
US20060116279A1 (en) * 2003-01-09 2006-06-01 Hisao Kogoi Composite particles and method for production thereof and use thereof
US20060182812A1 (en) * 2003-01-20 2006-08-17 Yasuharu Ono Antibacterial compositions and antibacterial products
US7901779B2 (en) * 2003-04-11 2011-03-08 Madico, Inc. Bright white protective laminates
US20080187732A1 (en) * 2004-03-12 2008-08-07 Dai Nippon Printing Co., Ltd. Coating Composition, Its Coating Film, Antireflection Film, and Image Display Device
US20070219333A1 (en) * 2004-04-13 2007-09-20 Takeshi Shimono Chlorotrifluoroethylene Copolymer
US20050268961A1 (en) * 2004-06-04 2005-12-08 Saint-Gobain Performance Plastics Coporation Photovoltaic device and method for manufacturing same
US20090203830A1 (en) * 2005-07-13 2009-08-13 Solvay Solexis S.P.A. Thermoplastic Fluoropolymer Composition
US20090171004A1 (en) * 2005-07-13 2009-07-02 Solvay Solexis S.P.A Thermoplastic Halopolymer Composition
US20090105420A1 (en) * 2006-04-25 2009-04-23 Solvay Solexis S.P.A. Thermoplastic Fluoropolymer Composition
US20090326154A1 (en) * 2006-11-30 2009-12-31 Solvay Solexis S.P.A. Additives for Halopolymers
US8217119B2 (en) * 2006-11-30 2012-07-10 Solvay Solexis S.P.A. Additives for halopolymers
US20090263650A1 (en) * 2006-12-22 2009-10-22 Asahi Glass Company, Limited Fluororesin film and process for its production
US20100015436A1 (en) * 2006-12-22 2010-01-21 Asahi Glass Company Limited Composite particles and application thereof
US20090162652A1 (en) * 2007-12-21 2009-06-25 Ranade Aditya P Co-extruded fluoropolymer multilayer laminates
US20110232735A1 (en) * 2008-02-06 2011-09-29 Arkema France Three-layer film for a photovoltaic cell
US20100092759A1 (en) * 2008-10-13 2010-04-15 Hua Fan Fluoropolymer/particulate filled protective sheet
US20130202878A1 (en) * 2010-10-15 2013-08-08 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US9441087B2 (en) * 2010-10-15 2016-09-13 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HALAR ECTFE - Ethylene-Chlorotrifluoroethylene - Typical Properties (Solvay Solexis), 2006. *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130202878A1 (en) * 2010-10-15 2013-08-08 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US9441087B2 (en) * 2010-10-15 2016-09-13 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US20170226312A1 (en) * 2010-10-15 2017-08-10 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US10155857B2 (en) * 2010-10-15 2018-12-18 Solvay Specialty Polymers Italy S.P.A. Fluoropolymer composition
US20140234630A1 (en) * 2013-02-18 2014-08-21 Honeywell International Inc. Fluoropolymers containing a copolymerized fluoromonomer and a functional hydrocarbon comonomer and articles made from such fluoropolymers
US9969899B2 (en) * 2013-02-18 2018-05-15 Honeywell International Inc. Fluoropolymers containing a copolymerized fluoromonomer and a functional hydrocarbon comonomer and articles made from such fluoropolymers

Also Published As

Publication number Publication date
JP6328423B2 (en) 2018-05-23
EP2627510B1 (en) 2015-01-28
JP2013544672A (en) 2013-12-19
CN103153615B (en) 2016-08-31
CN103153615A (en) 2013-06-12
WO2012049193A1 (en) 2012-04-19
KR101960978B1 (en) 2019-03-21
KR20140004079A (en) 2014-01-10
US11338558B2 (en) 2022-05-24
EP2627510A1 (en) 2013-08-21
US20190351658A1 (en) 2019-11-21

Similar Documents

Publication Publication Date Title
US11338558B2 (en) Multilayer assembly
US10155857B2 (en) Fluoropolymer composition
EP2337817B1 (en) Opaque fluoropolymer composition comprising white pigments for photovoltaic elements of solar cells
KR101659280B1 (en) Vinylidene fluoride-based resin film
US20120298195A1 (en) Moisture-resistant film, made of fluorinated polymer and inorganic oxide, for photovoltaic use
US20130053498A1 (en) Fluorinated polymer and zinc oxide film free of any acrylic odor for photovoltaic use
US20130319510A1 (en) Fluoropolymer-based film for photovoltaic application
TW201821512A (en) Resin composition and membrane structure using same
US11441007B2 (en) Fluoropolymer composition for multilayer assemblies
JP5864541B2 (en) VDF polymer composition
TWI837335B (en) Resin compositions, molded articles using the resin compositions, and film structures, buildings and adhesive molded articles using the same
US20230272135A1 (en) Fluoropolymer composition
WO2020203528A1 (en) Resin composition, molded body using said resin composition, and film structure, building structure and adhesive molded body each using said resin composition or said molded body

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOLVAY SPECIALTY POLYMERS ITALY S.P.A., ITALY

Free format text: MERGER;ASSIGNOR:SOLVAY SOLEXIS S.P.A.;REEL/FRAME:030153/0200

Effective date: 20111219

Owner name: SOLVAY SOLEXIS S.P.A., ITALY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CARELLA, SERENA;BASSI, MATTIA;MORTARA, STEFANO;AND OTHERS;SIGNING DATES FROM 20111021 TO 20111024;REEL/FRAME:030152/0948

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION