US20130193040A1 - Systems for automated capture and recovery of oil from oil-contaminated water and solids - Google Patents

Systems for automated capture and recovery of oil from oil-contaminated water and solids Download PDF

Info

Publication number
US20130193040A1
US20130193040A1 US13/569,073 US201213569073A US2013193040A1 US 20130193040 A1 US20130193040 A1 US 20130193040A1 US 201213569073 A US201213569073 A US 201213569073A US 2013193040 A1 US2013193040 A1 US 2013193040A1
Authority
US
United States
Prior art keywords
oil
solids
carbon dioxide
units
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/569,073
Inventor
Ah-Hyung Alissa Park
Dolly Shin
Laura Bendernagel
Justin Chow
Stephen Yang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US13/569,073 priority Critical patent/US20130193040A1/en
Publication of US20130193040A1 publication Critical patent/US20130193040A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/048Oil collectors moved over the water skimming the water surface
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/007Reclamation of contaminated soil by removing contaminants floating on the water table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C2101/00In situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/32Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for collecting pollution from open water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/008Mobile apparatus and plants, e.g. mounted on a vehicle

Definitions

  • marine oil spills can involve many types of fuels, ranging from refined liquid petroleum from ships and recreational vessels to crude oil from tankers and offshore rigs. Of these fuels, crude oil poses the largest threat to the environment, as crude oil poisons and damages the flora and fauna of the marine ecosystem. It can become embedded in the sand and mud of shorelines, lasting for years after the spill occurred.
  • NOAA National Oceanic and Atmospheric Administration's
  • Crude oil spills Apart from the long lasting environmental impacts, crude oil spills must be dealt with swiftly and effectively because crude oil spills result in political tension between environmental groups, the government, and crude oil companies. Crude oil spills also introduce major economic losses and public image damage to both crude oil companies and coastal communities.
  • NOAA's website gives descriptions of the current off shore crude oil spill cleanup technologies designed to meet the following primary objectives: (a) Prevent the spill from moving onto shore; (b) Reduce the impact of crude oil on marine life; and (c) Speed the degradation of any unrecovered crude oil.
  • booms are used to temporarily contain crude oil between the surface and up to a few feet below the surface with special nets that do not allow crude oil to pass through.
  • wave action renders booms highly ineffective.
  • Skimmers outfitted with pumps on board emergency boats are often used to clean up oil contained in booms. These skimmers usually employ suction pumps to intake surface crude oil. The crude oil is then stored in underwater tanks. Skimmers are only effective in calm waters, though, and are limited by the power-draining pumps and heavy tanks.
  • An alternative to the pump is a skimmer that contains an oil-absorbing cloth. The cloth is dragged along the surface and oil is squeezed out of it when the cloth is saturated. Therefore, oil can be recovered. Nonetheless, the process of squeezing out the oil is very energy intensive. While the cloths can be reused, their capacity to collect oil is greatly reduced with each use. Furthermore, the used, oily cloth must be land filled after use, presenting an environmental concern.
  • Chemical dispersants sprayed from aircraft or emergency ships onto the area of containment is a method used to break up crude oil surface slicks.
  • the breakup of crude oil helps microbes to digest the crude oil faster and prevents crude oil slicks from poisoning and coating marine wildlife which inhabit or breathe at the ocean surface.
  • the chemical properties and environmental effects of dispersants however, are not fully understood, and may be as detrimental to the marine environment as the crude oil itself.
  • dispersants often exacerbate the spreading of crude oil over a large area and depth, especially when stronger currents are present. None of the crude oil can be recovered.
  • Embodiments of the disclosed subject matter include oil spill cleanup systems that include self-powered automated oil recovery robotic units and a soil cleaning system that uses carbon dioxide as a leaching media.
  • the self-powered automated oil recovery robotic units are kept on board a tanker ship, similar to life boats. They are designed with solar panels so that they can store solar energy for the emergency situations. During non-emergency times, the generated excess energy is used for the operation of the tanker ships. If there is an oil spill, the self-powered automated oil recovery robotic units are deployed to collect and capture oil using special membranes until they can be recovered. Therefore, the crew can focus on the repair of the tanker ship or other emergency related activities. The collected oil is then pumped into a new tanker once it arrives to the spill site. Components of the robotic units, i.e., the membranes, are easily cleaned and recycled.
  • Oil spill cleaning technology is designed to clean the contaminated soil using high pressure carbon dioxide. Since liquid or supercritical carbon dioxide is miscible with oil, carbon dioxide will separate oil from the particle surface. Once oil is leached out, the soil/sand can be separated via gravity separation. The separation of oil and carbon dioxide is easy since carbon dioxide can be vaporized by lowering the pressure. In fact, a smaller pressure swing can also be used to keep carbon dioxide in liquid phase and recycle it through the cleaning system. With both the robotic units and the cleaning system, oil can be recovered in a useable form instead of being landfilled.
  • FIG. 1 is a schematic diagram of systems according to some embodiments of the disclosed subject matter
  • FIG. 2 is a side section view of an automated robotic oil recovery units according to some embodiments of the disclosed subject matter
  • FIG. 3 is a back section view of an automated robotic oil recovery units according to some embodiments of the disclosed subject matter.
  • FIG. 4 is a side section view of an automated robotic oil recovery unit according to some embodiments of the disclosed subject matter.
  • aspects of the disclosed subject matter include a system 100 for cleaning oil spills, which includes a plurality of automated robotic oil recovery units 102 and a solids cleaning module 104 .
  • each of automated robotic oil recovery units 102 includes deployable membranes 106 for collecting oil 108 and each of the units is configured for deployment from a ship 110 for automated capture and recovery of oil from oil-contaminated water 112 and solids 114 .
  • system 100 will include units 102 of varying sizes.
  • deployable membranes 106 include an upper half 116 including a material 118 impermeable to both water 120 and crude oil 108 , e.g., HDPE or similar, and a lower half 124 including a semi-permeable hydrophilic membrane 126 that is permeable to water 120 but impermeable to crude oil 108 , e.g., as disclosed in published U.S. Patent Application US2011/0303620, by Dr. Di Gao, which is incorporated by reference as if disclosed herein in its entirety.
  • each of units 102 include an outer shell 128 having a shock-absorbing lining 130 for protecting inner components of the units from forces generated by impact on water when deploying the units from ship 110 and from corrosion from seawater 132 .
  • Outer shell 128 includes a plurality of channels 134 formed on an inner surface 136 of the outer shell. Channels 134 are configured to allow oil-contaminated water 112 to flow through units 102 and keep membranes 106 open when stored in outer shell 128 .
  • Each of units 102 includes a membrane deployment track 138 for deploying membranes 106 one by one and holding one end of a membrane in place while collecting oil 108 .
  • each of units 102 includes inflatable membrane supports 140 for keeping membranes 106 floating on the surfaces 142 of water 132 and visible to collection vessels.
  • Each of units 102 also include deployable inflatable body supports 144 and air tanks 146 for inflating the inflatable body supports and inflatable membrane supports 140 .
  • each of units 102 include a power unit 148 including a motor 150 , one or more batteries 152 , a propeller unit 154 , and a gas tank 156 .
  • Power unit 148 is contained in a substantially waterproof storage compartment 158 formed within shell 128 .
  • Each of units 102 also includes solar panels 160 for charging batteries 152 .
  • Each of units 102 includes a protective mesh 162 for preventing seaweed and other debris from entering the units and damaging propeller unit 154 .
  • system 100 includes a plurality of booms 164 connected to automated robotic oil recovery units 102 thereby allowing the units to form a ring of booms for containing an oil spill.
  • a hollow boom which includes pumps embedded along its circumference, can be used.
  • each of units 102 includes a GPS control unit 166 for coordinating positions of each of the plurality of automated robotic oil recovery units of the system around an oil spill and identifying its position when it needs to be recovered.
  • GPS control unit 166 includes an antenna 168 .
  • solids cleaning module 104 which is used for separating and recovering oil from oil-contaminated solids that are captured by automated robotic oil recovery units 102 , include the following: a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture; a solids separation unit for the separating substantially oil-free solids from the oil and carbon dioxide mixture via gravity separation; and an oil separation unit for separating oil from the oil and carbon dioxide mixture using a pressure swing.
  • Self-powered on-board robotic system offers the following advantages over known systems: 1. Cleanup can keep up with the rate of the oil spill leading to limited area of contamination; 2. Require minimum amount of time and manpower; and 3. Can recover most of the collected oil (no landfill needed).
  • High pressure carbon dioxide soil/sand cleaning systems offer the following advantages over known systems: 1. Can recover most of the collected oil (no landfill needed); 2. Mobile unit (can be installed at the back of a truck)—can clean up spills at various locations; and 3. Save environment. Systems using carbon dioxide as a leaching medium are also used for any other environmental contaminations associated with soil, sand, or particles.

Abstract

Systems for automated capture and recovery of oil from oil-contaminated water and solids are disclosed. In some embodiments, the systems include the following: a plurality of automated robotic oil recovery units; a plurality of deployable oil collection membranes positioned within each of the units, each of the membranes including an upper half including a material impermeable to both water and crude oil and a lower half including a semi-permeable hydrophilic membrane that is permeable to water but impermeable to crude oil; and a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture; a solids separation unit for the separating substantially oil-free solids from the oil and carbon dioxide mixture via gravity separation; and an oil separation unit for separating oil from the oil and carbon dioxide mixture using a pressure swing.

Description

    CROSS REFERENCE TO RELATED APPLICATION(S)
  • This application claims the benefit of U.S. Provisional Application No. 61/521,300, filed Aug. 8, 2011, which is incorporated by reference as if disclosed herein in its entirety.
  • BACKGROUND
  • While the number of major oil tanker spills has decreased significantly in the last decade due to safer shipping lanes and better engineered double hulls, crude oil spills in the marine environment continue to be a major environmental, political, and economic issue. Other large-scale oil spills such as the BP oil accident in 2010 can also be considered under the same category. Traditional methods of oil spill cleanup include in situ burning, containment using booms and skimmers, and dilution with chemical dispersants. Not only are these methods inefficient in that they require significant amounts of time and manpower, they themselves often lead to significant environmental damage either through the release of significant greenhouse gases or toxic chemicals.
  • Current oil spill cleanup technologies have the following shortcomings: 1. Cleanup cannot keep up with the rate of the oil spill leading to large area of contamination; 2. Require large amount of time and manpower; 3. Cannot recover most of the collected oil (absorbents are landfilled—another environmental problem).
  • However, even in recent years where little crude oil was spilled, such as in 2004, over 25,000 tonnes of crude oil were spilled and damaged the marine environment. The majority of crude oil spilled in a year typically derives from a major crude oil spill in which more than 1000 barrels are spilt.
  • According to the National Oceanic and Atmospheric Administration's (NOAA) Emergency Crude Oil Spill Response website, marine oil spills can involve many types of fuels, ranging from refined liquid petroleum from ships and recreational vessels to crude oil from tankers and offshore rigs. Of these fuels, crude oil poses the largest threat to the environment, as crude oil poisons and damages the flora and fauna of the marine ecosystem. It can become embedded in the sand and mud of shorelines, lasting for years after the spill occurred.
  • Apart from the long lasting environmental impacts, crude oil spills must be dealt with swiftly and effectively because crude oil spills result in political tension between environmental groups, the government, and crude oil companies. Crude oil spills also introduce major economic losses and public image damage to both crude oil companies and coastal communities.
  • NOAA's website gives descriptions of the current off shore crude oil spill cleanup technologies designed to meet the following primary objectives: (a) Prevent the spill from moving onto shore; (b) Reduce the impact of crude oil on marine life; and (c) Speed the degradation of any unrecovered crude oil.
  • For open-water crude oil spills, if weather permits, booms are used to temporarily contain crude oil between the surface and up to a few feet below the surface with special nets that do not allow crude oil to pass through. However, wave action renders booms highly ineffective.
  • Skimmers outfitted with pumps on board emergency boats are often used to clean up oil contained in booms. These skimmers usually employ suction pumps to intake surface crude oil. The crude oil is then stored in underwater tanks. Skimmers are only effective in calm waters, though, and are limited by the power-draining pumps and heavy tanks. An alternative to the pump is a skimmer that contains an oil-absorbing cloth. The cloth is dragged along the surface and oil is squeezed out of it when the cloth is saturated. Therefore, oil can be recovered. Nonetheless, the process of squeezing out the oil is very energy intensive. While the cloths can be reused, their capacity to collect oil is greatly reduced with each use. Furthermore, the used, oily cloth must be land filled after use, presenting an environmental concern.
  • Controlled burns of the oil slick within booms are also very common. They are relatively effective, however this process releases massive amounts of carbon dioxide and none of the crude oil can be recovered.
  • Chemical dispersants sprayed from aircraft or emergency ships onto the area of containment is a method used to break up crude oil surface slicks. The breakup of crude oil helps microbes to digest the crude oil faster and prevents crude oil slicks from poisoning and coating marine wildlife which inhabit or breathe at the ocean surface. The chemical properties and environmental effects of dispersants however, are not fully understood, and may be as detrimental to the marine environment as the crude oil itself. Furthermore, dispersants often exacerbate the spreading of crude oil over a large area and depth, especially when stronger currents are present. None of the crude oil can be recovered.
  • All of these cleanup methods are problematic in that they are highly labor intensive since they require manual deployment/coordination and may require specially trained technicians. In addition, their implementation and transport to the spill site often takes a significant amount of time since they arrive via emergency ships, which may not be near the spill. This time lag allows the oil to spread great distances, increasing the likelihood of shoreline oiling and contact with the marine environment. The spreading also makes cleanup more difficult since a greater area must be treated.
  • SUMMARY
  • Embodiments of the disclosed subject matter include oil spill cleanup systems that include self-powered automated oil recovery robotic units and a soil cleaning system that uses carbon dioxide as a leaching media.
  • In systems according to the disclosed subject matter, the self-powered automated oil recovery robotic units are kept on board a tanker ship, similar to life boats. They are designed with solar panels so that they can store solar energy for the emergency situations. During non-emergency times, the generated excess energy is used for the operation of the tanker ships. If there is an oil spill, the self-powered automated oil recovery robotic units are deployed to collect and capture oil using special membranes until they can be recovered. Therefore, the crew can focus on the repair of the tanker ship or other emergency related activities. The collected oil is then pumped into a new tanker once it arrives to the spill site. Components of the robotic units, i.e., the membranes, are easily cleaned and recycled.
  • Oil spill cleaning technology according to the disclosed subject matter is designed to clean the contaminated soil using high pressure carbon dioxide. Since liquid or supercritical carbon dioxide is miscible with oil, carbon dioxide will separate oil from the particle surface. Once oil is leached out, the soil/sand can be separated via gravity separation. The separation of oil and carbon dioxide is easy since carbon dioxide can be vaporized by lowering the pressure. In fact, a smaller pressure swing can also be used to keep carbon dioxide in liquid phase and recycle it through the cleaning system. With both the robotic units and the cleaning system, oil can be recovered in a useable form instead of being landfilled.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The drawings show embodiments of the disclosed subject matter for the purpose of illustrating the invention. However, it should be understood that the present application is not limited to the precise arrangements and instrumentalities shown in the drawings, wherein:
  • FIG. 1 is a schematic diagram of systems according to some embodiments of the disclosed subject matter;
  • FIG. 2 is a side section view of an automated robotic oil recovery units according to some embodiments of the disclosed subject matter;
  • FIG. 3 is a back section view of an automated robotic oil recovery units according to some embodiments of the disclosed subject matter; and
  • FIG. 4 is a side section view of an automated robotic oil recovery unit according to some embodiments of the disclosed subject matter.
  • DETAILED DESCRIPTION
  • Referring now to FIGS. 1-4, aspects of the disclosed subject matter include a system 100 for cleaning oil spills, which includes a plurality of automated robotic oil recovery units 102 and a solids cleaning module 104.
  • Referring now to FIGS. 1 and 2, each of automated robotic oil recovery units 102 includes deployable membranes 106 for collecting oil 108 and each of the units is configured for deployment from a ship 110 for automated capture and recovery of oil from oil-contaminated water 112 and solids 114. In some embodiments, system 100 will include units 102 of varying sizes.
  • Referring now to FIGS. 3 and 4, in some embodiments, deployable membranes 106 include an upper half 116 including a material 118 impermeable to both water 120 and crude oil 108, e.g., HDPE or similar, and a lower half 124 including a semi-permeable hydrophilic membrane 126 that is permeable to water 120 but impermeable to crude oil 108, e.g., as disclosed in published U.S. Patent Application US2011/0303620, by Dr. Di Gao, which is incorporated by reference as if disclosed herein in its entirety.
  • Referring now to FIGS. 1-4, each of units 102 include an outer shell 128 having a shock-absorbing lining 130 for protecting inner components of the units from forces generated by impact on water when deploying the units from ship 110 and from corrosion from seawater 132. Outer shell 128 includes a plurality of channels 134 formed on an inner surface 136 of the outer shell. Channels 134 are configured to allow oil-contaminated water 112 to flow through units 102 and keep membranes 106 open when stored in outer shell 128. Each of units 102 includes a membrane deployment track 138 for deploying membranes 106 one by one and holding one end of a membrane in place while collecting oil 108.
  • Referring now to FIG. 4, each of units 102 includes inflatable membrane supports 140 for keeping membranes 106 floating on the surfaces 142 of water 132 and visible to collection vessels. Each of units 102 also include deployable inflatable body supports 144 and air tanks 146 for inflating the inflatable body supports and inflatable membrane supports 140.
  • Referring now to FIGS. 2-4, each of units 102 include a power unit 148 including a motor 150, one or more batteries 152, a propeller unit 154, and a gas tank 156. Power unit 148 is contained in a substantially waterproof storage compartment 158 formed within shell 128. Each of units 102 also includes solar panels 160 for charging batteries 152. Each of units 102 includes a protective mesh 162 for preventing seaweed and other debris from entering the units and damaging propeller unit 154.
  • Referring now to FIG. 1, in some embodiments, system 100 includes a plurality of booms 164 connected to automated robotic oil recovery units 102 thereby allowing the units to form a ring of booms for containing an oil spill. In some embodiments, a hollow boom, which includes pumps embedded along its circumference, can be used.
  • Referring now to FIG. 2, each of units 102 includes a GPS control unit 166 for coordinating positions of each of the plurality of automated robotic oil recovery units of the system around an oil spill and identifying its position when it needs to be recovered. In some embodiments, GPS control unit 166 includes an antenna 168.
  • Referring again to FIG. 1, although not illustrated in detail, solids cleaning module 104, which is used for separating and recovering oil from oil-contaminated solids that are captured by automated robotic oil recovery units 102, include the following: a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture; a solids separation unit for the separating substantially oil-free solids from the oil and carbon dioxide mixture via gravity separation; and an oil separation unit for separating oil from the oil and carbon dioxide mixture using a pressure swing.
  • Systems according to the disclosed subject matter offer advantages and benefits over known technology. A large scale oil spill causes great economic damage to companies. Thus, there is a significant commercial need for a technology that minimizes environmental issues related to potential spills. Thus, like a having an airbag in your car, the installation of oil spill cleanup devices according to the disclosed subject matter will lower the insurance for the tankers and provide better environmental measures for the companies.
  • Self-powered on-board robotic system according to the disclosed subject matter offer the following advantages over known systems: 1. Cleanup can keep up with the rate of the oil spill leading to limited area of contamination; 2. Require minimum amount of time and manpower; and 3. Can recover most of the collected oil (no landfill needed).
  • High pressure carbon dioxide soil/sand cleaning systems according to the disclosed subject matter offer the following advantages over known systems: 1. Can recover most of the collected oil (no landfill needed); 2. Mobile unit (can be installed at the back of a truck)—can clean up spills at various locations; and 3. Save environment. Systems using carbon dioxide as a leaching medium are also used for any other environmental contaminations associated with soil, sand, or particles.
  • Although the disclosed subject matter has been described and illustrated with respect to embodiments thereof, it should be understood by those skilled in the art that features of the disclosed embodiments can be combined, rearranged, etc., to produce additional embodiments within the scope of the invention, and that various other changes, omissions, and additions may be made therein and thereto, without parting from the spirit and scope of the present invention.

Claims (20)

What is claimed is:
1. A system for cleaning oil spills, comprising:
a plurality of automated robotic oil recovery units, each of said units including deployable membranes for collecting oil and each of said units configured for deployment from a ship and for automated capture and recovery of oil from oil-contaminated water and solids; and
a solids cleaning module for separating and recovering oil from oil-contaminated solids.
2. The system according to claim 1, wherein each of said deployable membranes comprise:
an upper half including a material impermeable to both water and crude oil; and
a lower half including a semi-permeable hydrophilic membrane that is permeable to water but impermeable to crude oil.
3. The system according to claim 1, wherein each of said plurality of automated robotic oil recovery units comprise:
an outer shell including a shock-absorbing lining for protecting inner components of said system from forces generated by impact on water when deploying said system from a ship and from corrosion from seawater;
a plurality of channels formed on an inner surface of said outer shell, said channels configured to allow oily water to flow through said system and keep said membranes open when stored in said shell;
4. The system according to claim 1, further comprising:
a plurality of inflatable membrane supports for keeping said membranes floating on the surfaces of the water and visible to collection vessels;
a plurality of deployable inflatable body supports; and
air tanks for inflating said inflatable body supports and said inflatable membrane supports.
5. The system according to claim 3, further comprising:
a power unit including a motor, a battery, a propeller unit, and a gas tank; and
a substantially waterproof storage compartment formed within said shell that includes said power unit.
6. The system according to claim 5, further comprising solar panels for charging said batteries.
7. The system according to claim 1, further comprising a membrane deployment track for deploying said membranes one by one and holding one end of a membrane in place while collecting oil.
8. The system according to claim 5, further comprising a protective mesh for preventing seaweed and other debris from entering said system and damaging said propeller unit.
9. The system according to claim 1, further comprising a GPS control unit for coordinating positions of each of said plurality of automated robotic oil recovery units of said system around an oil spill and identifying its position when it needs to be recovered.
10. The system according to claim 1, said solids cleaning module further comprising:
a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture;
a solids separation unit for said separating substantially oil-free solids from said oil and carbon dioxide mixture via gravity separation; and
an oil separation unit for separating oil from said oil and carbon dioxide mixture using a pressure swing.
11. The system according to claim 1, further comprising:
a plurality of booms configured to connect to said plurality of automated robotic oil recovery units thereby allowing said units to form a ring of booms for containing an oil spill.
12. A system for automated capture and recovery of oil from oil-contaminated water and solids, comprising:
a plurality of automated robotic oil recovery units;
a plurality of deployable oil collection membranes positioned within each of said units, each of said membranes including an upper half including a material impermeable to both water and crude oil and a lower half including a semi-permeable hydrophilic membrane that is permeable to water but impermeable to crude oil; and
a solids cleaning module for separating and recovering oil from oil-contaminated solids.
13. The system according to claim 12, further comprising:
a plurality of inflatable membrane supports for keeping said membranes floating on the surfaces of the water and visible to collection vessels.
14. The system according to claim 12, further comprising a GPS control unit for coordinating positions of each of said plurality of automated robotic oil recovery units of said system around an oil spill and identifying its position when it needs to be recovered.
15. The system according to claim 12, said solids cleaning module further comprising:
a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture;
a solids separation unit for said separating substantially oil-free solids from said oil and carbon dioxide mixture via gravity separation; and
an oil separation unit for separating oil from said oil and carbon dioxide mixture using a pressure swing.
16. The system according to claim 12, further comprising:
a plurality of booms configured to connect to said plurality of automated robotic oil recovery units thereby allowing said units to form a ring of booms for containing an oil spill.
17. A system for automated capture and recovery of oil from oil-contaminated water and solids, comprising:
a plurality of automated robotic oil recovery units;
a plurality of deployable oil collection membranes positioned within each of said units, each of said membranes including an upper half including a material impermeable to both water and crude oil and a lower half including a semi-permeable hydrophilic membrane that is permeable to water but impermeable to crude oil; and
a high pressure carbon dioxide oil solids separation unit for separating oil from oil-contaminated solids thereby producing substantially oil-free solids and an oil and carbon dioxide mixture;
a solids separation unit for said separating substantially oil-free solids from said oil and carbon dioxide mixture via gravity separation; and
an oil separation unit for separating oil from said oil and carbon dioxide mixture using a pressure swing.
18. The system according to claim 17, further comprising:
a plurality of inflatable membrane supports for keeping said membranes floating on the surfaces of the water and visible to collection vessels.
19. The system according to claim 17, further comprising a GPS control unit for coordinating positions of each of said plurality of automated robotic oil recovery units of said system around an oil spill and identifying its position when it needs to be recovered.
20. The system according to claim 17, further comprising:
a plurality of booms configured to connect to said plurality of automated robotic oil recovery units thereby allowing said units to form a ring of booms for containing an oil spill.
US13/569,073 2011-08-08 2012-08-07 Systems for automated capture and recovery of oil from oil-contaminated water and solids Abandoned US20130193040A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/569,073 US20130193040A1 (en) 2011-08-08 2012-08-07 Systems for automated capture and recovery of oil from oil-contaminated water and solids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161521300P 2011-08-08 2011-08-08
US13/569,073 US20130193040A1 (en) 2011-08-08 2012-08-07 Systems for automated capture and recovery of oil from oil-contaminated water and solids

Publications (1)

Publication Number Publication Date
US20130193040A1 true US20130193040A1 (en) 2013-08-01

Family

ID=48869345

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/569,073 Abandoned US20130193040A1 (en) 2011-08-08 2012-08-07 Systems for automated capture and recovery of oil from oil-contaminated water and solids

Country Status (1)

Country Link
US (1) US20130193040A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105040651A (en) * 2015-07-31 2015-11-11 郑景文 Marine oil pollution cleaning dry ice ball
WO2015199536A1 (en) 2014-06-25 2015-12-30 Ihc Holland Ie B.V. Harvester

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812805A (en) * 1972-10-12 1974-05-28 Vector Co Inflatable pontoon boat
US4038182A (en) * 1974-02-04 1977-07-26 Richard Stuart Jenkins Oil spill recovery method and apparatus
US4718871A (en) * 1986-03-24 1988-01-12 Eli Mendelevitch Aquatic growth cutter
US4810373A (en) * 1985-05-08 1989-03-07 Vitamins, Inc. Apparatus for separating solids from fluids
US5104516A (en) * 1990-03-13 1992-04-14 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Upgrading oil emulsions with carbon monoxide or synthesis gas
US5160432A (en) * 1991-05-03 1992-11-03 Peter Gattuso Oil containment boom and skimmer
US5753108A (en) * 1995-10-24 1998-05-19 Haynes; William Fredrick Integrated oil response and recovery system and method and skimmer for use therein
US6273015B1 (en) * 1998-02-26 2001-08-14 Maruta Electric Boatworks Llc Stabilized electric watercraft for high speed cruising, diving and sailing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3812805A (en) * 1972-10-12 1974-05-28 Vector Co Inflatable pontoon boat
US4038182A (en) * 1974-02-04 1977-07-26 Richard Stuart Jenkins Oil spill recovery method and apparatus
US4810373A (en) * 1985-05-08 1989-03-07 Vitamins, Inc. Apparatus for separating solids from fluids
US4718871A (en) * 1986-03-24 1988-01-12 Eli Mendelevitch Aquatic growth cutter
US5104516A (en) * 1990-03-13 1992-04-14 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Energy, Mines And Resources Upgrading oil emulsions with carbon monoxide or synthesis gas
US5160432A (en) * 1991-05-03 1992-11-03 Peter Gattuso Oil containment boom and skimmer
US5753108A (en) * 1995-10-24 1998-05-19 Haynes; William Fredrick Integrated oil response and recovery system and method and skimmer for use therein
US6273015B1 (en) * 1998-02-26 2001-08-14 Maruta Electric Boatworks Llc Stabilized electric watercraft for high speed cruising, diving and sailing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015199536A1 (en) 2014-06-25 2015-12-30 Ihc Holland Ie B.V. Harvester
NL2013064B1 (en) * 2014-06-25 2016-07-07 Ihc Holland Ie Bv Harvester.
CN105040651A (en) * 2015-07-31 2015-11-11 郑景文 Marine oil pollution cleaning dry ice ball

Similar Documents

Publication Publication Date Title
KR101114746B1 (en) Surface oil and suspended solids removal device
US5753108A (en) Integrated oil response and recovery system and method and skimmer for use therein
US8080164B2 (en) Environmentally-neutral processing with condensed phase cryogenic fluids
US20130193040A1 (en) Systems for automated capture and recovery of oil from oil-contaminated water and solids
US10138612B2 (en) Stationary boom support system
US20130146546A1 (en) Emergency Filtering and Oil Containment, Especially in Deepwater
Pavlov Arctic marine oil spill response methods: Environmental challenges and technological limitations
GB2480858A (en) An oil spill recovery system
US7658856B2 (en) Environmentally-neutral processing with condensed phase cryogenic fluids
Mamaca et al. Review of chemical spills at sea and lessons learnt
Anh The breakthrough technology solutions for control and treatment oil spill on the sea: A short review
Čović et al. Methods of Pollution Removal after Tanker “Erika” Accident
US7674373B2 (en) Environmentally-neutral processing with condensed phase cryogenic fluids
US7601257B2 (en) Environmentally-neutral processing with condensed phase cryogenic fluids
Muizis Evaluation of the methods for the oil spill response in the offshore arctic region
DE10323556B4 (en) Method and arrangement for catching submerged media
Tsocalis et al. A survey of classical and new response methods for marine oil spill cleanup
CN103158840A (en) Method of cleaning greasy dirt
US8658045B1 (en) Oil spill recovery vessel and method therefore
Martin Annex J2: Major international crude oil spills involving pipeline/storage tank/onshore wells
CN103240255A (en) Underwater spilled oil collection and temporary storage device
Singsaas et al. Behaviour of oil and other hazardous and noxious substances (HNS) spilled in Arctic waters (BoHaSA)
US20090044841A1 (en) Environmentally-Neutral Processing With Condensed Phase Cryogenic Fluids
Cabioc'h et al. Offshore operations following the Erika oil spill
O’Brien SEA DIAMOND 3 Years on... Dealing with continual leakage from sunken wrecks

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION