US20130223333A1 - Method to optimize call establishment in mobile satellite communication systems - Google Patents

Method to optimize call establishment in mobile satellite communication systems Download PDF

Info

Publication number
US20130223333A1
US20130223333A1 US13/888,666 US201313888666A US2013223333A1 US 20130223333 A1 US20130223333 A1 US 20130223333A1 US 201313888666 A US201313888666 A US 201313888666A US 2013223333 A1 US2013223333 A1 US 2013223333A1
Authority
US
United States
Prior art keywords
hpa
ims
node
context activation
offer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/888,666
Inventor
Serdar Sahin
Steven Nguyen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telefonaktiebolaget LM Ericsson AB
Original Assignee
Telefonaktiebolaget LM Ericsson AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telefonaktiebolaget LM Ericsson AB filed Critical Telefonaktiebolaget LM Ericsson AB
Priority to US13/888,666 priority Critical patent/US20130223333A1/en
Assigned to TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) reassignment TELEFONAKTIEBOLAGET LM ERICSSON (PUBL) ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAHIN, SERDAR, NGUYEN, STEVEN
Publication of US20130223333A1 publication Critical patent/US20130223333A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • H04W76/02
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1069Session establishment or de-establishment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/80Responding to QoS

Definitions

  • the present invention relates generally to telecommunication systems, and in particular to a satellite RAN and IMS network operative to establish certain calls with reduced latency and selectively using HPA pages to reach satellite UE.
  • the IP Multimedia Subsystem (IMS), as defined by the 3 rd Generation Partnership Project (3GPP) standards body, merges telephony and Internet technology by providing an all-IP based architecture for the telecommunications industry.
  • the IMS is based on the Session Initiation Protocol (SIP) and makes heavy use of the protocols defined within the IETF.
  • SIP Session Initiation Protocol
  • IMS offers a network of servers and databases that assist a user agent with the task of establishing and managing sessions. IMS uses the term sessions because the connections between users are no longer limited to voice services (a phone call). Sessions may be voice, video, text, or other services connecting two or more user agents together.
  • a representative IMS network is depicted in FIG. 1 .
  • SIP Session Initiation Protocol
  • SIP is a signaling protocol for Internet conferencing, telephony, presence, events notification, instant messaging, and the like.
  • SIP signaling uses a long-term stable identifier, the SIP Universal Resource Indicator (URI).
  • URI SIP Universal Resource Indicator
  • UE User equipment
  • WCDMA Wideband Code Division Multiple Access
  • SIP signaling packets in an IMS network are processed by SIP servers or proxies collectively called Call Session Control Function (CSCF).
  • CSCF Call Session Control Function
  • Different types of CSCFs perform specific functions.
  • a Proxy-CSCF is a SIP proxy that is the first point of contact for an IMS terminal (UE).
  • the P-CSCF may reside in the terminal's H-PLMN or a V-PLMN. In either case, a P-CSCE is assigned to a UE during registration, which does not change for the duration of the registration. All SIP messages to and from the UE pass through the P-CSCE, which can inspect them.
  • the P-CSCF performs authentication and security functions for the UE, and maintains records of communications for billing.
  • a Serving-CSCF is the central SIP proxy in a UE's H-PLMN that performs SIP services and session control, Based on information from a Home Subscriber Server (HSS) database, the S-CSCF handles SIP registrations, in which it binds the UE IP address to a SIP address.
  • the S-CSCF also can intercept and inspect all SIP messages to and from the UE.
  • the S-CSCF decides to which AS SIP messages will be forwarded, to obtain their services.
  • the S-CSCF also provides routing services, typically using Electronic Numbering (ENUM) lookups, and it enforces network operator policies.
  • ENUM Electronic Numbering
  • I-CSCF Interrogating-CSCF
  • DNS Domain Name System
  • An IMS network includes a Home Subscriber Server (HSS) that stores the relevant user data including authentication information and service data.
  • HSS Home Subscriber Server
  • iFC initial Filter Criteria
  • An IMS network also includes one or more Application Servers (AS) providing various services, such as audio and video broadcast or streaming, push-to-talk, videoconferencing, games, file sharing, e-mail, and the like.
  • AS Application Servers
  • Application Servers are invoked based on the iFCs that are stored in the user profile.
  • the S-CSCF will pass signaling onto an AS if the criteria defined in the iFC are met.
  • the AS can take part in the session and provide additional capabilities.
  • FIG. 1 is a simplified functional block diagram of an IMS network 10 .
  • a UE 12 has associated with it one or more CSCFs (e.g., a P-CSCF, S-CSCF, and/or I-CSCF) 14 .
  • the CSCF 14 is connected to various AS 16 , 18 providing services.
  • a HSS 20 provides information for Authentication, Authorization and Accounting (MA) functions.
  • MA Authentication, Authorization and Accounting
  • Diameter protocol is an advanced, extensible AAA protocol, derived fro the industry standard RADIUS (Remote Authentication Dial-In User Service) protocol.
  • Diameter includes numerous enhancements to RADIUS, such as error handling and message delivery reliability, It extracts the essence of the AAA protocol from RADIUS and defines a set of messages that are general enough to form the core of a Diameter base protocol.
  • the various applications that require AAA functions can define their own extensions on top of the Diameter base protocol, and can benefit from the general capabilities provided by the Diameter base protocol.
  • FIG. 2 depicts a representative prior art call flow for a UE to UE call, in which preconditions are used to avoid a problem known as “ghost ringing.” This is accomplished by ensuring that radio resources are reserved on the calling party's side (UE #1) before alerting the called party (UE #2)
  • the call flow with preconditions of FIG. 2 is extracted from section 5.1.2.3 of 3GPP TR 24.930 V.7.5.0, the disclosure of which is incorporated herein by reference in its entirety.
  • the call flow of FIG. 2 presents several problems.
  • the SIP INVITE message at step 207 will never reach the UE unless the satellite initiates a High Penetration Alert (HPA) page.
  • HPA High Penetration Alert
  • a HPA page is a paging message transmitted at much higher power than a normal page.
  • the HPA page directs the UE to display a message asking the called party to exit the building (or otherwise move into an area of satellite coverage) to receive the call.
  • One solution is for the satellite Radio Access Network (RAN) to send a HPA page on every SIP INVITE, regardless of session establishment type (voice calls, messaging). However, this approach severely impacts radio resources.
  • NRSCPA Network Requested Secondary POP Context Activation
  • NRSCPA on Answer has some advantages in terrestrial networks, such as ensuring that network resources are available and reserved prior to connecting the call, it entails extensive SIP messaging between the two UEs.
  • the voluminous exchange of SIP messages not only consumes satellite link bandwidth, it also increases the call setup time.
  • call placement to or from satellite UEs is optimized by reducing IMS message exchanges, the originating party has control over QoS parameters, a HPA subscription service is made available, and calls to a terminating satellite UE that is shielded from satellite coverage are completed by selectively employing HPA pages.
  • an IMS node associated with an originating UE uses the NRSCPA on Offer instead of using the standard NRSCPA on Answer,
  • An IMS node associated with a terminating UE checks for HPA subscription by the user. If subscribed, the terminating INVITE request is for a “Conversational” or “Interactive” service, and the terminating UE is in PMM_IDLE state, the satellite RAN pages the terminating UE using HPA.
  • One embodiment relates to a method of establishing a telecommunication session with a mobile satellite terminal having an IMS client.
  • An IMS POP context activation is established by a P-CSCF associated with the calling UE prior to exchanging any SIP signaling with a proxy associated with the called UE.
  • a HPA is directed to the called UE only if the called UE subscribes to a HPA service, and only for calls having a conversational or interactive traffic class.
  • Another embodiment relates to an IMS network node operative to receive a SIP INVITE message from an originating UE and, in response to the contents of the SIP INVITE message, establish an IMS POP context activation prior o exchanging any SIP signaling with a proxy associated with a terminating UE
  • Yet another embodiment relates to an IMS network node operative to receive a SIP INVITE message from another IMS node and, in response to the contents of the SIP INVITE message and further in response to a called party identified in the SIP INVITE message subscribing to a HPA paging service, page a UE associated with the called party using a HPA page.
  • FIG. 1 is a functional block diagram of a conventional IMS network.
  • FIG. 2 is a call flow diagram of conventional call setup in an IMS network.
  • FIG. 3 is a functional block diagram of a satellite RAN integrated with an IMS network.
  • FIGS. 4A-4F depict a call flow diagram of a satellite call setup according to one embodiment of the present invention.
  • FIG. 5 is a table of call setup latencies in prior art call setup techniques.
  • FIG. 3 depicts an integrated satellite/IMS network 22 .
  • the network 22 connects satellite mobile terminals 24 with each other, with application servers 26 or other resources in an IMS network, or with communication terminals in other networks, such as the Public Switched Telephone Network (PSTN) 30 .
  • Traffic to and from the mobile terminals 24 is transmitted by one or more satellites 32 , with access controlled by a satellite Radio Access Network (RAN) 34 .
  • the satellite RAN 34 is communicatively coupled to a terrestrial wireless IP Connectivity Access Network (IP-CAN) 36 , In the embodiment depicted in FIG.
  • IP-CAN IP Connectivity Access Network
  • the wireless IP-CAN 36 is a Wideband Code Division Multiple Access (WCDMA) network with General Packet Radio Service (GPRS) comprising at least a Gateway GPRS Service Node (GGSN) 38 and a Serving GPRS Support Node (SGSN) 40 .
  • WCDMA IP-CAN 36 is connected to an IMS core network comprising a Policy and Charging Rule Function (PCRF) 42 , a P-CSCF 44 , a S-CSCF 46 , and application servers 26 .
  • PCRF Policy and Charging Rule Function
  • the IMS network additionally comprises a Home Location Register (HLR) 48 and HSS 50 , a Media Resource Function 52 comprising a Media Resource Function Controller (MRFC) and a Media Resource Function Processor (MRFP), and a server 54 performing address lookup and translation functions such as DNS, Electronic Numbering (ENUM), and Dynamic Host Configuration. Protocol (DHCP).
  • the IMS network further includes a Media Gateway Controller Function (MGCF) and Signaling Gateway (SGW) 56 connected to a Media Gateway (MGW) 58 across a H.248 interface.
  • MGCF Media Gateway Controller Function
  • SGW Signaling Gateway
  • the structure and operation of the IMS network is well defined, and is not further explained herein. Those of skill in the art will further recognize the existence of a packet core, comprising switches and routers (not shown), that carries bearer traffic between the GGSN 38 and MGW 58 .
  • FIG. 3 depicts a voice or interactive call directed to a satellite mobile UE located in a building 60 .
  • a High Penetration Alert (HPA) page is selectively employed to reach the called UE 24 .
  • the HPA displays a message, such as that depicted, that the user has an incoming call, and requesting the user to exit the building 60 to receive the call from the satellite 32 .
  • the HPA is selectively employed based on the type of call, the state of the called UE 24 , and whether the called user subscribes to a HPA service.
  • inventions of the present invention are described in the context of a voice call from one satellite UE 24 (identified as user “A”) to another satellite UE 24 (identified as user “B”), when user B is in a building.
  • Both the originating mobile satellite UE 24 and the terminating mobile satellite UE 24 typically include a special codec to optimize the transmission of voice packet over the satellite link,
  • the standard IMS call flow with preconditions can be enhanced to: give the originating mobile satellite UE 24 full control in providing Quality of Service (QoS) for various end user services; increase successful call establishment rate without wasting satellite radio resources by using HPA paging only for selected bearer services (e.g., only voice and interactive calls); and charge mobile satellite subscribers for subscribing to HPA as a service.
  • QoS Quality of Service
  • the originating mobile satellite UE 24 uses the Network Requested Secondary PDP Context Activation (NRSCPA) on Offer instead of using the standard terminating-UE 24 initiated Secondary PDP Context Activation procedure (NRSCPA on Answer).
  • NRSCPA Network Requested Secondary PDP Context Activation
  • This method eliminates preconditions and reduces the number of messaging exchanges between the originating mobile UE 24 and the terminating mobile UE 24 in half (i.e., no PRACK, UPDATE, and corresponding 200 OKs).
  • NRSCPA on Offer gives the operator full control in providing QoS for various end user services as the network instructs the UE 24 which QoS parameter values to use, thus avoiding pre-provisioning of terminals.
  • the terminating PCRF 42 checks for HPA subscription before initiating NRSPCA which triggers HPA., thus allowing mobile satellite operators to charge subscribers for using HPA.
  • the satellite RAN 34 sends HPA to the terminating UE 24 only when the terminating INVITE request is for a “Conversational” or “Interactive” (e.g., a voice call or a push-to-talk request), thus optimizing page channel resource usage.
  • a “Conversational” or “Interactive” e.g., a voice call or a push-to-talk request
  • both the originating mobile UE 24 (user “A”) and terminating mobile UE 24 “B” (user “B”) are considered as mobile satellite subscribers as the most general case. However, in general, either of them could be a PSTN or PLMN subscriber and the logic for the other subscriber remains unchanged.
  • Mobile satellite subscriber A is making a voice call to mobile satellite subscriber B.
  • subscriber A's P-CSCF 44 executes the following logic, If the Require header field and the Supported header field in the INVITE message do not contain preconditions, the SDP portion of the INVITE message does not contain “desired QoS” and “current QoS,” and a configurable system parameter, such as NRSPCA_ON_OFFER is set to “Y” in A's P-CSCF 44 , then the following steps occur:
  • A's P-CSCF 44 requests that A's PCRF 42 perform preliminary QoS authorization for an incoming voice call by sending a Diameter AAR (Authorize and Authenticate Request) message (SERVICE_INFO_STATUS: PRELIMINARY_SERVICE_INFORMATION, Media-Component-Description: Code-Data: “uplink” “offer” . . . ) to PCRF 42 ( FIG. 4 , step 3 ),
  • the AAR can include a new Attribute-Value Pair (AVP) such as NRSPCA_ON_OFFER to indicate to PCRF 42 that this is a call which requires NRSPCA on Offer. Therefore, PCRF 42 will delay sending AAA back to P-CSCF 44 ( FIG. 4 , step 19 ) until PCRF 42 receives an indication of successful secondary POP context activation from GGSN 38 ( FIG. 4 , step 18 ).
  • AVP Attribute-Value Pair
  • A's PCRF 42 requests that A's GGSN 38 perform NRSPCA for a voice call by sending a Diameter RAR (Re-Auth-Request) message to GGSN 38 ( FIG. 4 , step 4 ).
  • Diameter RAR Re-Auth-Request
  • A's GGSN 38 requests that A's SGSN 40 create a secondary POP context for a voice call ( FIG. 4 , step 7 ).
  • A's SGSN 40 sends Request POP Context Activation message to A ( FIG. 4 , step 7 ).
  • A's GGSN 38 , A's SGSN 40 , and UE A 24 together complete the NRSPCA procedure, as depicted in FIG. 4 , steps 9 - 17 .
  • A's GGSN 38 then notifies A's PCRF 42 of the successful secondary POP context activation ( FIG. 4 , step 18 ), which sends an AAA to A's P-CSCF 44 ( FIG. 4 , step 19 ).
  • A's PCRF 42 could send the AAA immediately upon receipt of AAR at step 3 .
  • A's PCRF 42 would send RAR to A's GGSN 38 , and receive a RAA in response, as depicted at FIG. 4 , steps 4 - 5 .
  • A's GGSN 38 would send a CCR (Update) to A's PCRF 42 , which would respond with CCA.
  • A's PCRF 42 would then send RAR to A's P-CSCF 44 , to notify the P-CSCF 44 that the resource reservation procedure is complete.
  • A's P-CSCF 44 sends an INVITE to B's I-CSCF ( FIG. 4 , steps 20 - 27 ), which interacts with HSS and B's S-CSCF to route the call to B's P-CSCF ( FIG. 4 , steps 28 - 37 ).
  • the conventional originating P-CSCF 44 service logic applies, as depicted in FIG. 2 . That is, A's P-CSCF 44 sends a SIP INVITE message to the terminating P-CSCF 44 via the IMS core ( FIG. 2 , steps 203 - 206 ) and initiates the QoS authorization procedure ( FIG. 2 , step 214 ) upon receiving a 183 Session Progress from the called UE 24 ( FIG. 2 , steps 212 - 213 ).
  • B's P-CSCF 44 executes the following service logic, If the Require header and the Supported header in the SIP INVITE message do not contain preconditions, the SDP portion of the INVITE does not contain “desired QoS” and “current QoS”, and a configurable system parameter such as NRSPCA_ON_OFFER is set to “Y” in B's P-CSCF 44 , then the following steps occur:
  • B's P-CSCF 44 requests that B's PCRF 42 perform preliminary QoS authorization for an incoming voice call by sending a Diameter AAR message to B's PCRF 42 , the AAR message including a new AVP named NRSPCA_ON_OFFER ( FIG. 4 , step 38 ).
  • B's PCRF 42 checks for B's HPA subscription.
  • B's PCRF 42 requests that B's GGSN 38 perform NRSPCA with HPA for an incoming voice call by sending a Diameter RAR message (Traffic Class: Conversational, Allocation. Retention Priority (ARP): 1) to GGSN 38 ( FIG. 4 , step 39 ),
  • ARP value selections are arbitrary for HPA and non-HPA calls, The requirement is that the chosen ARP for HPA must be unique.
  • B's PCRF 42 requests that B's GGSN 38 perform NRSPCA for an incoming voice call without HPA by sending a Diameter RAR message (Traffic Class: Conversational, Allocation Retention Priority: 2 or 3) to GGSN 38 ( FIG. 4 , step 39 ), B will receive the INVITE message if B is not inside a building.
  • Diameter RAR message Traffic Class: Conversational, Allocation Retention Priority: 2 or 3
  • B's GGSN 38 requests that B's SGSN 40 create a secondary POP context for a terminating voice call by sending an initiate POP Context.
  • Activation Request message to B's SGSN 40 ( FIG. 4 , step 42 ).
  • B's UE 24 Packet Mobility Management (PMM) state should be PMM_IDLE. Therefore, B's SGSN 38 sends a Page message (Cause IE: “Terminating High Priority Signaling”) to the satellite RAN 34 ( FIG. 4 , step 43 ).
  • PMM Packet Mobility Management
  • the RAN 34 In response to the Paging Cause Information Element (IE) being set to “Terminating High Priority Signaling,” the RAN 34 sends an HPA page to B's UE 24 ( FIG. 4 , step 44 ).
  • IE Paging Cause Information Element
  • B's UE 24 displays a message to the effect that “There is an incoming voice call for you. If you are inside a building, please step outside the building to answer it.”
  • B's GGSN 38 , B's SGSN 40 , and B's UE 24 together complete the NRSPCA procedure ( FIG. 4 , steps 47 - 58 ).
  • B's PCRF 42 could send the AAA immediately upon receipt of AAR at step 38 . Then, after successful secondary POP context establishment, B's PCRF 42 would send RAR to B's P-CSCE 44 (e.g., at FIG. 4 , step 57 ) to notify B's P-CSCF 44 of the event.
  • B's P-CSCF 44 sends INVITE to B's UE 24 ( FIG. 4 , step 59 ).
  • B's UE 24 sends 100 Trying ( FIG. 4 , step 60 ), and will then send a 183 Session Progress response all the back to UE A via IMS (indicated generally at FIG. 4 , step 61 ). B's UE 24 then sends 180 Ringing ( FIG. 4 , step 62 ), and 200 OK (INVITE) with SDP ( FIG. 4 , step 71 ).
  • B's PCRF 42 performs final QoS authorization ( FIG. 4 , steps 72 - 75 ).
  • B's P-CSCF 44 relays the 200 OK (INVITE) to A's P-CSCF 44 ( FIG. 4 , steps 76 - 82 ), which requests that A's PCRF 42 perform final QoS authorization ( FIG. 4 , steps 83 - 87 ).
  • the call is then established bet seen As UE 24 and B's UE 24 , as depicted in the remaining steps of FIG. 4 .
  • B's P-CSCF 44 sends a SIP INVITE message to the terminating UE 24 ( FIG. 2 , steps 207 ) and initiates the QoS authorization procedure ( FIG. 2 , step 211 ) upon receiving a 183 Session Progress from the called UE 24 ( FIG. 2 , step 183 ).
  • the following table shows an example of the mapping between Traffic Class and Allocation Retention Priority (ARP) to Paging Cause Information Element (IE) in the SGSN 40 .
  • NRSPCA/ Traffic Class is ARP is 1 Terminating HPA Downlink Conversational High Priority Payload Signaling ARP is 2 Terminating Normal Conversational Page Call ARP is 3 Terminating Normal Conversational Page Call Traffic Class is N/A Terminating Normal page Streaming Streaming Call Traffic Class is ARP is 1 Terminating HPA Interactive High Priority Signaling Traffic Class is ARP is 2 Terminating Normal Interactive Interactive Call Page Traffic Class is ARP is 3 Terminating Normal Interactive Interactive Call Page Traffic Class is N/A Terminating Normal Background Background Page Call Downlink HLR or SGSN N/A Terminating Normal Signaling Initiated Low Priority Page Detach Signaling GGSN or N/A Terminating Normal SGSN Initiated Low Priority Page PDP Context Signaling Deactivation GGSN N/A Terminating Normal Initiated PDP Low Priority Page Context Signaling Modification MT-SMS N/A Terminating Normal Low Priority Page Signaling Note that in this example HPA is only activated when the ARP is 1, and the Traffic Class
  • satellite radio resources usage is optimized and successful call establishment rate is increased by using Network Request Secondary PDP Context Activation on Offer and HPA to set up mobile satellite UE 24 to mobile satellite UE 24 or PSTN/PLMN to mobile satellite UE 24 call.
  • the number of SIP message exchanges required to set up a mobile satellite UE 24 to mobile satellite UE 24 calls over IMS is significantly reduced, resulting in both decreased traffic over the satellite RAN 34 , and decreased latency in call establishment.
  • FIG. 5 depicts the processing time for a standard Mobile to PSTN call without NRSPCA on Offer, requiring 5 seconds delay.
  • the call setup time can be reduced by a minimum of 2 seconds, For a mobile UE 24 to mobile UE 24 call, the setup time saving will be even greater due to elimination of PRACK/200OK and UPDATE/200OK SIP message exchanges over the radio link to the terminating mobile UE 24 .
  • embodiments of the present invention give the operator full control in providing QoS for various end user services, thus avoiding QoS configuration in a variety of terminals from different vendors. Additionally, a method is provided for mobile satellite service providers to charge subscribers for subscribing to HPA.

Abstract

Call placement to or from satellite UEs is optimized by reducing IMS message exchanges, the originating party has control over QoS parameters, a HPA subscription service is made available, and calls to a terminating satellite UE that is shielded from satellite coverage are completed by selectively employing HPA pages. For a call request without preconditions, an IMS node associated with an originating UE uses the NRSCPA on Offer instead of using the standard terminating node initiated NRSCPA on Answer. An IMS node associated with a terminating UE checks for HPA subscription by the user. If subscribed, the terminating INVITE request is for a “Conversational” or “Interactive” service, and the terminating UE is in PMM_IDLE state, the satellite RAN pages the terminating UE using HPA.

Description

  • This application is a continuation of U.S. application Ser. No. 12/872,474, filed Aug. 31, 2010, now pending, which claims priority to U.S. Provisional Patent Application No. 61/246,212, filed Sep. 28, 2009 and U.S. Provisional Patent Application No. 61/250,631, filed Oct. 12, 2009., the disclosure of which is incorporated herein by reference application
  • TECHNICAL FIELD
  • The present invention relates generally to telecommunication systems, and in particular to a satellite RAN and IMS network operative to establish certain calls with reduced latency and selectively using HPA pages to reach satellite UE.
  • BACKGROUND
  • The IP Multimedia Subsystem (IMS), as defined by the 3rd Generation Partnership Project (3GPP) standards body, merges telephony and Internet technology by providing an all-IP based architecture for the telecommunications industry. The IMS is based on the Session Initiation Protocol (SIP) and makes heavy use of the protocols defined within the IETF. IMS offers a network of servers and databases that assist a user agent with the task of establishing and managing sessions. IMS uses the term sessions because the connections between users are no longer limited to voice services (a phone call). Sessions may be voice, video, text, or other services connecting two or more user agents together. A representative IMS network is depicted in FIG. 1.
  • Communications between nodes within an IMS network utilize the Session Initiation Protocol (SIP). SIP is a signaling protocol for Internet conferencing, telephony, presence, events notification, instant messaging, and the like. SIP signaling uses a long-term stable identifier, the SIP Universal Resource Indicator (URI). User equipment (UE) in an IMS refers to a device that contains the SIP User Agent that will initiate or terminate SIP sessions. In particular, one form of UE is a mobile terminal operative to send and receive data across a defined air interface, such as Wideband Code Division Multiple Access (WCDMA).
  • SIP signaling packets in an IMS network are processed by SIP servers or proxies collectively called Call Session Control Function (CSCF). Different types of CSCFs perform specific functions.
  • A Proxy-CSCF (P-CSCE) is a SIP proxy that is the first point of contact for an IMS terminal (UE). The P-CSCF may reside in the terminal's H-PLMN or a V-PLMN. In either case, a P-CSCE is assigned to a UE during registration, which does not change for the duration of the registration. All SIP messages to and from the UE pass through the P-CSCE, which can inspect them. The P-CSCF performs authentication and security functions for the UE, and maintains records of communications for billing.
  • A Serving-CSCF (S-CSCF) is the central SIP proxy in a UE's H-PLMN that performs SIP services and session control, Based on information from a Home Subscriber Server (HSS) database, the S-CSCF handles SIP registrations, in which it binds the UE IP address to a SIP address. The S-CSCF also can intercept and inspect all SIP messages to and from the UE. The S-CSCF decides to which AS SIP messages will be forwarded, to obtain their services. The S-CSCF also provides routing services, typically using Electronic Numbering (ENUM) lookups, and it enforces network operator policies.
  • An Interrogating-CSCF (I-CSCF) is a SIP proxy located at the edge of an administrative domain. The IP address of the I-CSCF is published in the Domain Name System (DNS) of the domain, so that remote servers can find it, and use it as a forwarding point for SIP packets into the I-CSCF's domain. The I-CSCF retrieves the subscriber location from the HSS and then routes SIP requests to its assigned S-CSCF.
  • An IMS network includes a Home Subscriber Server (HSS) that stores the relevant user data including authentication information and service data. As part of the user profile, initial Filter Criteria (iFC) are defined to indicate which application servers are to be invoked based on information in the signaling plane.
  • An IMS network also includes one or more Application Servers (AS) providing various services, such as audio and video broadcast or streaming, push-to-talk, videoconferencing, games, file sharing, e-mail, and the like. Application Servers are invoked based on the iFCs that are stored in the user profile. The S-CSCF will pass signaling onto an AS if the criteria defined in the iFC are met. Once invoked, the AS can take part in the session and provide additional capabilities.
  • FIG. 1 is a simplified functional block diagram of an IMS network 10. A UE 12 has associated with it one or more CSCFs (e.g., a P-CSCF, S-CSCF, and/or I-CSCF) 14. The CSCF 14 is connected to various AS 16, 18 providing services. A HSS 20 provides information for Authentication, Authorization and Accounting (MA) functions.
  • The Diameter protocol is an advanced, extensible AAA protocol, derived fro the industry standard RADIUS (Remote Authentication Dial-In User Service) protocol. Diameter includes numerous enhancements to RADIUS, such as error handling and message delivery reliability, It extracts the essence of the AAA protocol from RADIUS and defines a set of messages that are general enough to form the core of a Diameter base protocol. The various applications that require AAA functions can define their own extensions on top of the Diameter base protocol, and can benefit from the general capabilities provided by the Diameter base protocol.
  • FIG. 2 depicts a representative prior art call flow for a UE to UE call, in which preconditions are used to avoid a problem known as “ghost ringing.” This is accomplished by ensuring that radio resources are reserved on the calling party's side (UE #1) before alerting the called party (UE #2) The call flow with preconditions of FIG. 2 is extracted from section 5.1.2.3 of 3GPP TR 24.930 V.7.5.0, the disclosure of which is incorporated herein by reference in its entirety.
  • When the called and calling UEs are mobile satellite terminals, the call flow of FIG. 2 presents several problems. First, if the called UE is located where there is no satellite coverage, such as inside a building, the SIP INVITE message at step 207 will never reach the UE unless the satellite initiates a High Penetration Alert (HPA) page. A HPA page is a paging message transmitted at much higher power than a normal page. The HPA page directs the UE to display a message asking the called party to exit the building (or otherwise move into an area of satellite coverage) to receive the call. One solution is for the satellite Radio Access Network (RAN) to send a HPA page on every SIP INVITE, regardless of session establishment type (voice calls, messaging). However, this approach severely impacts radio resources.
  • Additionally, the codec negotiation of steps 217 to 232 result from Network Requested Secondary POP Context Activation (NRSCPA) on Answer—that is, no POP context is established until the called party is reached via initial SIP signaling. While NRSCPA on Answer has some advantages in terrestrial networks, such as ensuring that network resources are available and reserved prior to connecting the call, it entails extensive SIP messaging between the two UEs. When a call is established over a satellite, the voluminous exchange of SIP messages not only consumes satellite link bandwidth, it also increases the call setup time.
  • SUMMARY
  • According to one or more embodiments of the present invention described and claimed herein, call placement to or from satellite UEs is optimized by reducing IMS message exchanges, the originating party has control over QoS parameters, a HPA subscription service is made available, and calls to a terminating satellite UE that is shielded from satellite coverage are completed by selectively employing HPA pages. For a call request without preconditions, an IMS node associated with an originating UE uses the NRSCPA on Offer instead of using the standard NRSCPA on Answer, An IMS node associated with a terminating UE checks for HPA subscription by the user. If subscribed, the terminating INVITE request is for a “Conversational” or “Interactive” service, and the terminating UE is in PMM_IDLE state, the satellite RAN pages the terminating UE using HPA.
  • One embodiment relates to a method of establishing a telecommunication session with a mobile satellite terminal having an IMS client. An IMS POP context activation is established by a P-CSCF associated with the calling UE prior to exchanging any SIP signaling with a proxy associated with the called UE. A HPA is directed to the called UE only if the called UE subscribes to a HPA service, and only for calls having a conversational or interactive traffic class.
  • Another embodiment relates to an IMS network node operative to receive a SIP INVITE message from an originating UE and, in response to the contents of the SIP INVITE message, establish an IMS POP context activation prior o exchanging any SIP signaling with a proxy associated with a terminating UE
  • Yet another embodiment relates to an IMS network node operative to receive a SIP INVITE message from another IMS node and, in response to the contents of the SIP INVITE message and further in response to a called party identified in the SIP INVITE message subscribing to a HPA paging service, page a UE associated with the called party using a HPA page.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a functional block diagram of a conventional IMS network.
  • FIG. 2 is a call flow diagram of conventional call setup in an IMS network.
  • FIG. 3 is a functional block diagram of a satellite RAN integrated with an IMS network.
  • FIGS. 4A-4F depict a call flow diagram of a satellite call setup according to one embodiment of the present invention.
  • FIG. 5 is a table of call setup latencies in prior art call setup techniques.
  • DETAILED DESCRIPTION
  • FIG. 3 depicts an integrated satellite/IMS network 22. The network 22 connects satellite mobile terminals 24 with each other, with application servers 26 or other resources in an IMS network, or with communication terminals in other networks, such as the Public Switched Telephone Network (PSTN) 30. Traffic to and from the mobile terminals 24 is transmitted by one or more satellites 32, with access controlled by a satellite Radio Access Network (RAN) 34. The satellite RAN 34 is communicatively coupled to a terrestrial wireless IP Connectivity Access Network (IP-CAN) 36, In the embodiment depicted in FIG. 3, the wireless IP-CAN 36 is a Wideband Code Division Multiple Access (WCDMA) network with General Packet Radio Service (GPRS) comprising at least a Gateway GPRS Service Node (GGSN) 38 and a Serving GPRS Support Node (SGSN) 40. The WCDMA IP-CAN 36 is connected to an IMS core network comprising a Policy and Charging Rule Function (PCRF) 42, a P-CSCF 44, a S-CSCF 46, and application servers 26.
  • The IMS network additionally comprises a Home Location Register (HLR) 48 and HSS 50, a Media Resource Function 52 comprising a Media Resource Function Controller (MRFC) and a Media Resource Function Processor (MRFP), and a server 54 performing address lookup and translation functions such as DNS, Electronic Numbering (ENUM), and Dynamic Host Configuration. Protocol (DHCP). The IMS network further includes a Media Gateway Controller Function (MGCF) and Signaling Gateway (SGW) 56 connected to a Media Gateway (MGW) 58 across a H.248 interface. The structure and operation of the IMS network is well defined, and is not further explained herein. Those of skill in the art will further recognize the existence of a packet core, comprising switches and routers (not shown), that carries bearer traffic between the GGSN 38 and MGW 58.
  • FIG. 3 depicts a voice or interactive call directed to a satellite mobile UE located in a building 60. A High Penetration Alert (HPA) page is selectively employed to reach the called UE 24. The HPA displays a message, such as that depicted, that the user has an incoming call, and requesting the user to exit the building 60 to receive the call from the satellite 32. According to embodiments described and claimed herein, the HPA is selectively employed based on the type of call, the state of the called UE 24, and whether the called user subscribes to a HPA service.
  • The operation of embodiments of the present invention is described in the context of a voice call from one satellite UE 24 (identified as user “A”) to another satellite UE 24 (identified as user “B”), when user B is in a building. Both the originating mobile satellite UE 24 and the terminating mobile satellite UE 24 typically include a special codec to optimize the transmission of voice packet over the satellite link, In this case, the standard IMS call flow with preconditions can be enhanced to: give the originating mobile satellite UE 24 full control in providing Quality of Service (QoS) for various end user services; increase successful call establishment rate without wasting satellite radio resources by using HPA paging only for selected bearer services (e.g., only voice and interactive calls); and charge mobile satellite subscribers for subscribing to HPA as a service.
  • First, the originating mobile satellite UE 24 uses the Network Requested Secondary PDP Context Activation (NRSCPA) on Offer instead of using the standard terminating-UE 24 initiated Secondary PDP Context Activation procedure (NRSCPA on Answer). This method eliminates preconditions and reduces the number of messaging exchanges between the originating mobile UE 24 and the terminating mobile UE 24 in half (i.e., no PRACK, UPDATE, and corresponding 200 OKs). In addition, NRSCPA on Offer gives the operator full control in providing QoS for various end user services as the network instructs the UE 24 which QoS parameter values to use, thus avoiding pre-provisioning of terminals.
  • Second, the terminating PCRF 42 checks for HPA subscription before initiating NRSPCA which triggers HPA., thus allowing mobile satellite operators to charge subscribers for using HPA.
  • Third, the satellite RAN 34 sends HPA to the terminating UE 24 only when the terminating INVITE request is for a “Conversational” or “Interactive” (e.g., a voice call or a push-to-talk request), thus optimizing page channel resource usage.
  • The service logic in the IMS nodes P-CSCE 44, PCRF 42, GGSN 38, SGSN 40, and the satellite RAN 34 required to support NRSPCA on Offer is described below, for both the originating and terminating sides. For the purpose of explanation, both the originating mobile UE 24 (user “A”) and terminating mobile UE 24 “B” (user “B”) are considered as mobile satellite subscribers as the most general case. However, in general, either of them could be a PSTN or PLMN subscriber and the logic for the other subscriber remains unchanged.
  • Originating Side Service Logic
  • Mobile satellite subscriber A is making a voice call to mobile satellite subscriber B. Upon receiving the originating SIP INVITE message (FIG. 4, step 1), subscriber A's P-CSCF 44 executes the following logic, If the Require header field and the Supported header field in the INVITE message do not contain preconditions, the SDP portion of the INVITE message does not contain “desired QoS” and “current QoS,” and a configurable system parameter, such as NRSPCA_ON_OFFER is set to “Y” in A's P-CSCF 44, then the following steps occur:
  • A's P-CSCF 44 requests that A's PCRF 42 perform preliminary QoS authorization for an incoming voice call by sending a Diameter AAR (Authorize and Authenticate Request) message (SERVICE_INFO_STATUS: PRELIMINARY_SERVICE_INFORMATION, Media-Component-Description: Code-Data: “uplink” “offer” . . . ) to PCRF 42 (FIG. 4, step 3), Alternatively, the AAR can include a new Attribute-Value Pair (AVP) such as NRSPCA_ON_OFFER to indicate to PCRF 42 that this is a call which requires NRSPCA on Offer. Therefore, PCRF 42 will delay sending AAA back to P-CSCF 44 (FIG. 4, step 19) until PCRF 42 receives an indication of successful secondary POP context activation from GGSN 38 (FIG. 4, step 18).
  • A's PCRF 42 requests that A's GGSN 38 perform NRSPCA for a voice call by sending a Diameter RAR (Re-Auth-Request) message to GGSN 38 (FIG. 4, step 4).
  • A's GGSN 38 requests that A's SGSN 40 create a secondary POP context for a voice call (FIG. 4, step 7).
  • A's SGSN 40 sends Request POP Context Activation message to A (FIG. 4, step 7).
  • A's GGSN 38, A's SGSN 40, and UE A 24 together complete the NRSPCA procedure, as depicted in FIG. 4, steps 9-17. A's GGSN 38 then notifies A's PCRF 42 of the successful secondary POP context activation (FIG. 4, step 18), which sends an AAA to A's P-CSCF 44 (FIG. 4, step 19).
  • Note that, as an alternative to A's PCRF 42 sending a AAA to A's P-CSCF 44 at step 19—that is, at the completion of secondary POP context activation—A's PCRF 42 could send the AAA immediately upon receipt of AAR at step 3. A's PCRF 42 would send RAR to A's GGSN 38, and receive a RAA in response, as depicted at FIG. 4, steps 4-5. Then, after successful secondary POP context establishment, following FIG. 4, step 17, A's GGSN 38 would send a CCR (Update) to A's PCRF 42, which would respond with CCA. A's PCRF 42 would then send RAR to A's P-CSCF 44, to notify the P-CSCF 44 that the resource reservation procedure is complete.
  • In any event, following the completion of the NRSPCA procedure and notifications thereof, A's P-CSCF 44 sends an INVITE to B's I-CSCF (FIG. 4, steps 20-27), which interacts with HSS and B's S-CSCF to route the call to B's P-CSCF (FIG. 4, steps 28-37).
  • If the NRSPCA_ON_OFFER parameter is not set, or if the INVITE message includes preconditions, then the conventional originating P-CSCF 44 service logic applies, as depicted in FIG. 2. That is, A's P-CSCF 44 sends a SIP INVITE message to the terminating P-CSCF 44 via the IMS core (FIG. 2, steps 203-206) and initiates the QoS authorization procedure (FIG. 2, step 214) upon receiving a 183 Session Progress from the called UE 24 (FIG. 2, steps 212-213).
  • Terminating Side Service Logic
  • When B's P-CSCF 44 receives the terminating INVITE message (FIG. 4, step 36), B's P-CSCF 44 executes the following service logic, If the Require header and the Supported header in the SIP INVITE message do not contain preconditions, the SDP portion of the INVITE does not contain “desired QoS” and “current QoS”, and a configurable system parameter such as NRSPCA_ON_OFFER is set to “Y” in B's P-CSCF 44, then the following steps occur:
  • B's P-CSCF 44 requests that B's PCRF 42 perform preliminary QoS authorization for an incoming voice call by sending a Diameter AAR message to B's PCRF 42, the AAR message including a new AVP named NRSPCA_ON_OFFER (FIG. 4, step 38).
  • B's PCRF 42 checks for B's HPA subscription.
  • If B has an HPA subscription, B's PCRF 42 requests that B's GGSN 38 perform NRSPCA with HPA for an incoming voice call by sending a Diameter RAR message (Traffic Class: Conversational, Allocation. Retention Priority (ARP): 1) to GGSN 38 (FIG. 4, step 39), Note that ARP value selections are arbitrary for HPA and non-HPA calls, The requirement is that the chosen ARP for HPA must be unique.
  • If, on the other hand, B does not have an HPA subscription, B's PCRF 42 requests that B's GGSN 38 perform NRSPCA for an incoming voice call without HPA by sending a Diameter RAR message (Traffic Class: Conversational, Allocation Retention Priority: 2 or 3) to GGSN 38 (FIG. 4, step 39), B will receive the INVITE message if B is not inside a building.
  • B's GGSN 38 requests that B's SGSN 40 create a secondary POP context for a terminating voice call by sending an initiate POP Context. Activation Request message to B's SGSN 40 (FIG. 4, step 42).
  • If B is inside a building or otherwise out of satellite coverage), B's UE 24 Packet Mobility Management (PMM) state should be PMM_IDLE. Therefore, B's SGSN 38 sends a Page message (Cause IE: “Terminating High Priority Signaling”) to the satellite RAN 34 (FIG. 4, step 43).
  • In response to the Paging Cause Information Element (IE) being set to “Terminating High Priority Signaling,” the RAN 34 sends an HPA page to B's UE 24 (FIG. 4, step 44).
  • B's UE 24 displays a message to the effect that “There is an incoming voice call for you. If you are inside a building, please step outside the building to answer it.”
  • User B steps outside the building to receive the SIP INVITE message, and send Page Response (FIG. 4, steps 45-46).
  • B's GGSN 38, B's SGSN 40, and B's UE 24 together complete the NRSPCA procedure (FIG. 4, steps 47-58).
  • Note that, as an alternative to B's PCRF 42 sending a AAA to B's P-CSCF 44 at step 58—that is, at the completion of secondary POP context activation, B's PCRF 42 could send the AAA immediately upon receipt of AAR at step 38. Then, after successful secondary POP context establishment, B's PCRF 42 would send RAR to B's P-CSCE 44 (e.g., at FIG. 4, step 57) to notify B's P-CSCF 44 of the event.
  • B's P-CSCF 44 sends INVITE to B's UE 24 (FIG. 4, step 59).
  • B's UE 24 sends 100 Trying (FIG. 4, step 60), and will then send a 183 Session Progress response all the back to UE A via IMS (indicated generally at FIG. 4, step 61). B's UE 24 then sends 180 Ringing (FIG. 4, step 62), and 200 OK (INVITE) with SDP (FIG. 4, step 71).
  • B's PCRF 42 performs final QoS authorization (FIG. 4, steps 72-75).
  • B's P-CSCF 44 relays the 200 OK (INVITE) to A's P-CSCF 44 (FIG. 4, steps 76-82), which requests that A's PCRF 42 perform final QoS authorization (FIG. 4, steps 83-87).
  • The call is then established bet seen As UE 24 and B's UE 24, as depicted in the remaining steps of FIG. 4.
  • if the NRSPCA_ON_OFFER parameter is riot set in B's P-CSCF 44, or if the received SIP INVITE message includes preconditions, then the conventional terminating P-CSCF 44 service logic applies, as depicted in FIG. 2. That is, B's P-CSCF 44 sends a SIP INVITE message to the terminating UE 24 (FIG. 2, steps 207) and initiates the QoS authorization procedure (FIG. 2, step 211) upon receiving a 183 Session Progress from the called UE 24 (FIG. 2, step 183).
  • The following table shows an example of the mapping between Traffic Class and Allocation Retention Priority (ARP) to Paging Cause Information Element (IE) in the SGSN 40.
  • Paging Cause
    Case IE RAN Action
    NRSPCA/ Traffic Class is ARP is 1 Terminating HPA
    Downlink Conversational High Priority
    Payload Signaling
    ARP is 2 Terminating Normal
    Conversational Page
    Call
    ARP is 3 Terminating Normal
    Conversational Page
    Call
    Traffic Class is N/A Terminating Normal page
    Streaming Streaming Call
    Traffic Class is ARP is 1 Terminating HPA
    Interactive High Priority
    Signaling
    Traffic Class is ARP is 2 Terminating Normal
    Interactive Interactive Call Page
    Traffic Class is ARP is 3 Terminating Normal
    Interactive Interactive Call Page
    Traffic Class is N/A Terminating Normal
    Background Background Page
    Call
    Downlink HLR or SGSN N/A Terminating Normal
    Signaling Initiated Low Priority Page
    Detach Signaling
    GGSN or N/A Terminating Normal
    SGSN Initiated Low Priority Page
    PDP Context Signaling
    Deactivation
    GGSN N/A Terminating Normal
    Initiated PDP Low Priority Page
    Context Signaling
    Modification
    MT-SMS N/A Terminating Normal
    Low Priority Page
    Signaling
    Note that in this example HPA is only activated when the ARP is 1, and the Traffic Class is Conversational or Interactive.
  • According to embodiments of the present invention, satellite radio resources usage is optimized and successful call establishment rate is increased by using Network Request Secondary PDP Context Activation on Offer and HPA to set up mobile satellite UE 24 to mobile satellite UE 24 or PSTN/PLMN to mobile satellite UE 24 call. Furthermore, the number of SIP message exchanges required to set up a mobile satellite UE 24 to mobile satellite UE 24 calls over IMS is significantly reduced, resulting in both decreased traffic over the satellite RAN 34, and decreased latency in call establishment. FIG. 5 depicts the processing time for a standard Mobile to PSTN call without NRSPCA on Offer, requiring 5 seconds delay. By using NRSCPA on Offer, the call setup time can be reduced by a minimum of 2 seconds, For a mobile UE 24 to mobile UE 24 call, the setup time saving will be even greater due to elimination of PRACK/200OK and UPDATE/200OK SIP message exchanges over the radio link to the terminating mobile UE 24.
  • Additionally, embodiments of the present invention give the operator full control in providing QoS for various end user services, thus avoiding QoS configuration in a variety of terminals from different vendors. Additionally, a method is provided for mobile satellite service providers to charge subscribers for subscribing to HPA.
  • The present invention may, of course, be carried out in other ways than those specifically set forth herein without departing from essential characteristics of the invention. The present embodiments are to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims (19)

What is claimed is:
1. A method of establishing a telecommunication session with a motile satellite terminal having an IP Multimedia System (IMS) client, comprising:
establishing an IMS Packet Data Protocol (PDP) context activation by a Proxy Call Session Control Function (P-CSCF) associated with the calling User Equipment (UE) prior to exchanging any Session Initiation Protocol (SIP) signaling with a proxy associated with the called UE; and
using a High Penetration Alert (HPA) directed to the called UE only if the called UE subscribes to a HPA service, and only for calls having a conversational or interactive traffic class.
2. The method of claim 1 wherein establishing an IMS PDP context activation comprises initiating a Network Requested Secondary POP Context Activation (NRSPCA) on Offer.
3. The method of claim 2 wherein initiating a NRSPCA on Offer comprises the P-CSCE associated with the calling UE requesting a NRSPCA on Offer from a Policy and Charging Rule Function (PCRF) associated with the calling UE.
4. The method of claim 3 wherein requesting a NRSPCA on Offer from the PCRF comprises the P-CSCF sending the PCRF an Authorize and Authenticate Request (AAR).
5. The method of claim 3 wherein requesting a NRSPCA on Offer from the PCRF comprises the P-CSCE sending the PCRF an Attribute-Value Pair (AVP) indicating NRSPCA on Offer.
6. The method of claim 2 wherein initiating NRSPCA on Offer further comprises the PCRF
sending a Packet Data Protocol (POP) context activation request to a Gateway GPRS Service Node (GGSN) associated with the calling UE; and
withholding an acknowledgement to the P-CSCF until receiving an indication of successful POP context activation from the GGSN.
7. The method of claim 6 wherein the PCRF sending a PDP context activation request to the GGSN comprises sending a Diameter Re-Auth-Request (RAR) message to the GGSN.
8. The method of claim 6 wherein initiating a NRSCPA on Offer further comprises the GGSN sending a POP context activation request to a Serving GPRS Support Node (SGSN) associated with the calling UE.
9. The method of claim 8 wherein initiating a NRSPCA on Offer further comprises
the GGSN sending a PDP context activation request to the calling UE; and
the GGSN, SGSN, and calling UE cooperatively creating the PDP context activation.
10. The method of claim 1 wherein using a HPA only for calls having a conversational or interactive traffic class comprises a Serving GPRS Support Node (SGSN) mapping an Allocation Retention Policy (ARP) to a paging cause and sending a HPA to a UE based on a value of the paging cause.
11. The method of claim 1 wherein using a HPA directed to the called UE comprises
receiving an SIP INVITE message by a P-SCSF associated with the called UE;
the P-SCSF associated with the called UE requesting a preliminary Quality of Service (QoS) authorization from a Policy and Charging Rule Function (PCRF) associated with the called UE; and
if the called UE has a HPA subscription, the PCRF associated with the called UE requesting a Gateway GPRS Service Node (GGSN) associated with the calling UE to perform a Network Requested Secondary POP Context Activation (NRSPCA) with HPA.
12. An IP Multimedia System (IMS) network node operative to receive a Session Initiation Protocol (SIP) INVITE message from an originating User Equipment (UE) and, in response to the contents of the SIP INVITE message, establish an IMS Packet Data Protocol (PDP) context activation prior to exchanging any SIP signaling with a proxy associated with a terminating UE.
13. The IMS node of claim 12 wherein the node establishes a PDP context by initiating a Network Requested Secondary POP Context Activation (NRSCPA) on Offer procedure.
14. The IMS node of claim 12 wherein the node is operative to establish a POP context activation prior to exchanging any SIP signaling with a proxy associated with a terminating UE if a configurable system parameter is set to indicate POP context activation on Offer.
15. The IMS node of claim 14 wherein the node is operative to establish a PDP context activation prior to exchanging any SIP signaling with a proxy associated with a terminating UE if a Require header field and a Supported header field in the received SIP INVITE message do not contain preconditions and the SDP portion of the INVITE message does not contain “desired QoS” and “current QoS.”
16. An IP Multimedia System (IMS) network node operative to receive a Session Initiation Protocol (SIP) INVITE message from another IMS node and, in response to the contents of the SIP INVITE message and further in response to a called party identified in the SIP INVITE message subscribing to a High Penetration Alert (HPA) paging service, page User Equipment (UE) associated with the called party using a HPA page.
17. The IMS node of claim 15 wherein, if the called party does not subscribe to a HPA service, sending a SIP INVITE message to the called party's UE.
18. The IMS node of claim 15 wherein the node pages the called party's UE using a HPA page only if the received SIP INVITE message identifies a Traffic Class as Conversational or Interactive.
19. The IMS node of claim 17 wherein the node further pages the called party's UE using a HPA page only if the called party's UE is in a Packet Mobility Management (PMM) state of PMM_IDLE.
US13/888,666 2009-09-28 2013-05-07 Method to optimize call establishment in mobile satellite communication systems Abandoned US20130223333A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/888,666 US20130223333A1 (en) 2009-09-28 2013-05-07 Method to optimize call establishment in mobile satellite communication systems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US24621209P 2009-09-28 2009-09-28
US25063109P 2009-10-12 2009-10-12
US12/872,474 US8457114B2 (en) 2009-09-28 2010-08-31 Method to optimize call establishment in mobile satellite communication systems
US13/888,666 US20130223333A1 (en) 2009-09-28 2013-05-07 Method to optimize call establishment in mobile satellite communication systems

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/872,474 Continuation US8457114B2 (en) 2009-09-28 2010-08-31 Method to optimize call establishment in mobile satellite communication systems

Publications (1)

Publication Number Publication Date
US20130223333A1 true US20130223333A1 (en) 2013-08-29

Family

ID=43780332

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/872,474 Active 2031-03-07 US8457114B2 (en) 2009-09-28 2010-08-31 Method to optimize call establishment in mobile satellite communication systems
US13/888,666 Abandoned US20130223333A1 (en) 2009-09-28 2013-05-07 Method to optimize call establishment in mobile satellite communication systems

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/872,474 Active 2031-03-07 US8457114B2 (en) 2009-09-28 2010-08-31 Method to optimize call establishment in mobile satellite communication systems

Country Status (4)

Country Link
US (2) US8457114B2 (en)
EP (1) EP2484088B1 (en)
CN (1) CN102577311B (en)
WO (1) WO2011036649A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301521A1 (en) * 2012-05-08 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Call establishment optimization for ims based mobile satellite system
WO2023040567A1 (en) * 2021-09-18 2023-03-23 华为技术有限公司 Communication method and apparatus

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8527653B2 (en) * 2010-11-08 2013-09-03 At&T Mobility Ii Llc GGSN front end processor (GFEP) system for SCADA inter-domain communications
CN102263786B (en) * 2011-07-04 2017-04-05 中兴通讯股份有限公司 A kind of method and system for realizing bearing resource control function
US8908531B2 (en) 2011-08-25 2014-12-09 At&T Mobility Ii Llc Communication gateway for facilitating communications with a supervisory control and data aquisition system
US20130217422A1 (en) * 2012-02-16 2013-08-22 Gaguk Zakaria System and method for enhanced paging and quality of service establishment in mobile satellite systems
CN103813296B (en) * 2012-11-14 2018-07-24 南京中兴新软件有限责任公司 The method and device of internet protocol multimedia subsystem accessing terminal to network
CN103825897A (en) * 2014-02-27 2014-05-28 深圳市邦彦信息技术有限公司 Calling method and access device based on IMS satellite system
US10212692B2 (en) 2017-02-10 2019-02-19 Hughes Network Systems, Llc Enhanced paging in 4G LTE mobile satellite systems
US10524159B2 (en) * 2017-09-07 2019-12-31 Iridium Satellite Llc Managing congestion in a satellite communications network
CN111130616B (en) * 2018-11-01 2022-09-09 中兴通讯股份有限公司 Session control method and satellite ground station
US11477632B2 (en) * 2021-02-17 2022-10-18 Qualcomm Incorporated Systems and techniques to support cell identification for satellite wireless access
CN113225123B (en) * 2021-04-25 2022-07-01 中国电子科技集团公司第五十四研究所 Method for converting circuit voice to VOIP voice in satellite mobile communication system

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088589A (en) * 1997-12-11 2000-07-11 Ericsson Inc. System, method and apparatus for handling high-power notification messages
US20020161834A1 (en) * 2001-03-29 2002-10-31 Eric Rescorla Method and apparatus for clustered SSL accelerator
US6763240B1 (en) * 1996-11-20 2004-07-13 Inmarsat Ltd. High margin notification method and apparatus
US20050107087A1 (en) * 2003-11-19 2005-05-19 Nokia Corporation Method for service management in communications system
US20060045071A1 (en) * 2004-06-15 2006-03-02 Nokia Corporation Session set-up for time-critical services
US20070097967A1 (en) * 2001-04-27 2007-05-03 Nokia Corporation Method and system for handling a network-identified emergency session
US20070223450A1 (en) * 2005-09-20 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Minimized setup time for IMS multimedia telephony using PRE provisioned resources reserve at answer
US20070259661A1 (en) * 2003-08-26 2007-11-08 Nokia Corporation Method and system for establishing a connection between network elements
US7672669B2 (en) * 2006-07-18 2010-03-02 Veriwave, Inc. Method and apparatus for controllable simulation of mobility
US20100115071A1 (en) * 2006-11-06 2010-05-06 Guadalupe Sanchez Santiso Devices and method for guaranteeing service requirements per user equipment basis into a bearer
US7802001B1 (en) * 2002-10-18 2010-09-21 Astute Networks, Inc. System and method for flow control within a stateful protocol processing system
US20110022722A1 (en) * 2008-03-25 2011-01-27 David Castellanos Zamora Policy and charging control architecture
US20110053590A1 (en) * 2006-08-11 2011-03-03 Nokia Siemens Networks Gmbh & Co. Kg Defining the initiator for a configuration or a set of of an access network connection
US20110134888A1 (en) * 2009-05-22 2011-06-09 Qualcomm Incorporated Paging of a user equipment (ue) within a wireless communications system
US20120059943A1 (en) * 2009-05-19 2012-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Establishing a Communication Session

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8729109D0 (en) 1987-12-14 1988-01-27 Greig Smith P W Improvements in/relating to avian control
US8699472B2 (en) * 2000-05-24 2014-04-15 Nokia Corporation Common charging identifier for communication networks
US8488462B2 (en) * 2002-12-31 2013-07-16 Nokia Corporation Handling traffic flows in a mobile communications network
US20070217363A1 (en) * 2004-02-25 2007-09-20 Matsushita Electric Industrial Co., Ltd. Communication handover method, communication message processing method, program for causing computer to execute these methods, and communication system
US20070201430A1 (en) * 2005-12-29 2007-08-30 Telefonaktiebolaget Lm Ericsson (Publ) Implicit secondary PDP context activation method
US7680478B2 (en) * 2006-05-04 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Inactivity monitoring for different traffic or service classifications
US8843992B2 (en) * 2007-05-22 2014-09-23 Telefonaktiebolaget L M Ericsson (Publ) Method, apparatuses and computer program for dynamically configuring a proxy call session control function of the IP multimedia subsystem from a policy control rules server

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6763240B1 (en) * 1996-11-20 2004-07-13 Inmarsat Ltd. High margin notification method and apparatus
US6088589A (en) * 1997-12-11 2000-07-11 Ericsson Inc. System, method and apparatus for handling high-power notification messages
US20020161834A1 (en) * 2001-03-29 2002-10-31 Eric Rescorla Method and apparatus for clustered SSL accelerator
US20070097967A1 (en) * 2001-04-27 2007-05-03 Nokia Corporation Method and system for handling a network-identified emergency session
US7802001B1 (en) * 2002-10-18 2010-09-21 Astute Networks, Inc. System and method for flow control within a stateful protocol processing system
US20100135239A1 (en) * 2003-08-26 2010-06-03 Tuija Hurtta Method and system for establishing a connection between network elements
US20070259661A1 (en) * 2003-08-26 2007-11-08 Nokia Corporation Method and system for establishing a connection between network elements
US20050107087A1 (en) * 2003-11-19 2005-05-19 Nokia Corporation Method for service management in communications system
US20060045071A1 (en) * 2004-06-15 2006-03-02 Nokia Corporation Session set-up for time-critical services
US20070223450A1 (en) * 2005-09-20 2007-09-27 Telefonaktiebolaget Lm Ericsson (Publ) Minimized setup time for IMS multimedia telephony using PRE provisioned resources reserve at answer
US7672669B2 (en) * 2006-07-18 2010-03-02 Veriwave, Inc. Method and apparatus for controllable simulation of mobility
US20110053590A1 (en) * 2006-08-11 2011-03-03 Nokia Siemens Networks Gmbh & Co. Kg Defining the initiator for a configuration or a set of of an access network connection
US20100115071A1 (en) * 2006-11-06 2010-05-06 Guadalupe Sanchez Santiso Devices and method for guaranteeing service requirements per user equipment basis into a bearer
US20110022722A1 (en) * 2008-03-25 2011-01-27 David Castellanos Zamora Policy and charging control architecture
US20120059943A1 (en) * 2009-05-19 2012-03-08 Telefonaktiebolaget Lm Ericsson (Publ) Establishing a Communication Session
US20110134888A1 (en) * 2009-05-22 2011-06-09 Qualcomm Incorporated Paging of a user equipment (ue) within a wireless communications system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130301521A1 (en) * 2012-05-08 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Call establishment optimization for ims based mobile satellite system
US9337917B2 (en) * 2012-05-08 2016-05-10 Telefonaktiebolaget Lm Ericsson (Publ) Call establishment optimization for IMS based mobile satellite system
WO2023040567A1 (en) * 2021-09-18 2023-03-23 华为技术有限公司 Communication method and apparatus

Also Published As

Publication number Publication date
WO2011036649A1 (en) 2011-03-31
EP2484088A1 (en) 2012-08-08
CN102577311B (en) 2015-11-25
CN102577311A (en) 2012-07-11
US8457114B2 (en) 2013-06-04
EP2484088B1 (en) 2018-02-28
US20110075655A1 (en) 2011-03-31

Similar Documents

Publication Publication Date Title
US8457114B2 (en) Method to optimize call establishment in mobile satellite communication systems
US9337917B2 (en) Call establishment optimization for IMS based mobile satellite system
USRE45738E1 (en) Charging in communication networks
US7876743B2 (en) Conversational bearer negotiation
US10044553B2 (en) Media resource reservation request failure handling for voice over mobile wireless network
US9203504B2 (en) System and method for enhanced paging and quality of service establishment in mobile satellite systems
US8572258B2 (en) Control of quality-of-service preconditions in an IP multimedia subsystem
US20060034195A1 (en) SIP message extension for push to watch service
US20040109459A1 (en) Packet filter provisioning to a packet data access node
US20040137873A1 (en) Method and system for handling a network-identified emergency session
US20060153352A1 (en) Communication system
AU2001258380A1 (en) Method and system for handling a network-identified emergency session
ZA200602207B (en) Activation of communication sessions in a communication system
EP2053824A1 (en) User plane control in IMS
EP2184945A1 (en) Redirection during call set-up in a communication network
US20200186574A1 (en) Dynamic session initiation protocol peering configuration
EP2034688A1 (en) Method and device for transmitting request message in multimedia system
US20100054177A1 (en) Method and system of using ip multimedia system for call setup in mobile satellite systems
Perez VoLTE and ViLTE: Voice and Conversational Video Services Over the 4G Mobile Network

Legal Events

Date Code Title Description
AS Assignment

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAHIN, SERDAR;NGUYEN, STEVEN;SIGNING DATES FROM 20100830 TO 20100831;REEL/FRAME:030475/0510

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION