US20130228465A1 - Composites of carbon black and metal - Google Patents

Composites of carbon black and metal Download PDF

Info

Publication number
US20130228465A1
US20130228465A1 US13/784,009 US201313784009A US2013228465A1 US 20130228465 A1 US20130228465 A1 US 20130228465A1 US 201313784009 A US201313784009 A US 201313784009A US 2013228465 A1 US2013228465 A1 US 2013228465A1
Authority
US
United States
Prior art keywords
carbon black
particles
silver
metal
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/784,009
Inventor
Wan Zhang-Beglinger
Linda STAPPERS
Jan Fransaer
Michael P. Toben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm and Haas Electronic Materials LLC
Original Assignee
Rohm and Haas Electronic Materials LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm and Haas Electronic Materials LLC filed Critical Rohm and Haas Electronic Materials LLC
Priority to US13/784,009 priority Critical patent/US20130228465A1/en
Publication of US20130228465A1 publication Critical patent/US20130228465A1/en
Priority to US14/748,599 priority patent/US20150292105A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/46Electroplating: Baths therefor from solutions of silver
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/48Electroplating: Baths therefor from solutions of gold
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/50Electroplating: Baths therefor from solutions of platinum group metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/54Electroplating: Baths therefor from solutions of metals not provided for in groups C25D3/04 - C25D3/50
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/04Electroplating with moving electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/20Electroplating using ultrasonics, vibrations

Definitions

  • the present invention is directed to composites of carbon black particles and metal. More specifically, the present invention is directed to composites of carbon black particles and metal where the carbon black particles are in the nanometer range.
  • Composite plating is a technology well documented and widely practiced in both electrolytic and electroless plating.
  • Composite plating refers to the inclusion of particulate matter within a metal plated layer.
  • the development and acceptance of composite plating stems from the discovery that the inclusion of particles within a metal plated layer can enhance various properties of the metal plated layer and in many situations actually provide entirely new properties to the metal layer.
  • Particles of various materials can provide characteristics to the metal layer including wear resistance, lubricity, corrosion resistance, phosphorescence, friction altered appearances and other properties.
  • JP09-007445 discloses a sliding contact electric component which has an electroplated coating film of graphite particles dispersed in a silver metal matrix.
  • particles of SiC, WC, ZrB, Al 2 O 3 , ZrO 2 and Cr 2 O 3 may also be incorporated into the composite.
  • particles of TiO 2 , ThO 2 , MoO 3 , W 2 C, TiC, B 4 C and CrB 2 may be included to increase the hardness of the deposited coating.
  • U.S. Pat. No. 6,635,166 discloses an electrolytic composite plating method.
  • the patent discloses particles of SiC, glass, kaolin, corundum, Si 3 N 4 , various metal oxides, graphite, graphite fluoride, various colorants and other metal compounds such as compounds of W, Mo and Ti.
  • Metals which may be electroplated with such particles include, for example, silver, gold, nickel, copper, zinc, tin, lead, chromium and alloys thereof.
  • azo-surfactants are included in the composite plating formulations to enable an increase in the content of the particles in the electroplating bath.
  • U.S. Pat. No. 7,514,022 discloses a composite of silver and graphite particles used to electroplate a coating on switches and connectors.
  • the graphite particles range in size from 0.1 ⁇ m to 1.0 ⁇ m.
  • Additives such as dispersing agents are excluded from the formulation. Although including dispersing agents or surfactants in composite plating baths may increase the content of fine particles to some extent, the dispersing agent effect is known to be limited. It is believed that the dispersing agent or surfactant remains as it is on the fine particles which have been deposited by electroplating in the adsorbed state. This is believed to inhibit other fine particles from being deposited. Instead the graphite particles are oxidized to achieve the desired dispersion of particles in the silver electroplating baths.
  • Such oxidizing agents include nitric acid, hydrogen peroxide, potassium permanganate, potassium persulfate, sodium persulfate and sodium perchlorate.
  • compositions include one or more sources of metal ions and carbon black nano-particles.
  • methods include providing a composition including one or more sources of metal ions and carbon black nano-particles; contacting a substrate with the composition; and electroplating a composite of one or more metals and carbon black nano-particles onto the substrate.
  • articles include a composite including one or more metals and carbon black nano-particles dispersed within the one or more metals.
  • compositions are substantially stable dispersions of carbon black nano-particles and metal ions which can be electroplated on various substrates to form coatings of composites of metal or metal alloy having substantially uniform dispersions of the carbon black nano-particles throughout a metal or metal alloy matrix.
  • the composites are electrically conductive and provide good wear resistance with improved durability in comparison to many conventional metal and metal alloy coatings.
  • the composite coatings may be used to replace hard gold coatings of gold/cobalt and gold/nickel which are often used to coat articles which are exposed to rigorous wear cycles or are prone to oxidation due to heat in sliding processes, such as is typical in switches and connectors.
  • FIG. 1 is a SEM at 3500 ⁇ of a cross-section of a composite of silver and graphite particles.
  • FIG. 2 is a SEM at 5000 ⁇ of a cross-section of a composite of silver and carbon black nano-particles.
  • FIG. 3 is a graph of contact resistance in mOhm versus contact forces in cN of a silver and silver and carbon black nanoparticles.
  • FIG. 4 is a SEM at 10,000 ⁇ of a cross section of a composite of silver and carbon black nano-particles.
  • Compositions are aqueous dispersions of carbon black nano-particles and one or more sources of metal ions.
  • Carbon black is an amorphous form of carbon with a high surface area to volume ratio and is electrically conductive.
  • diamond and graphite are crystalline in structure. Diamond has a tetrahedral configuration.
  • Graphite has a layered, planar crystal structure where each carbon atom is bonded to three other carbons forming a hexagonal structure.
  • Graphite is much softer than diamond and the layered, planar type structure facilitates easy cleavage along the planes which makes it desirable as a solid lubricant but is not very durable in coatings which are exposed to rigorous wear cycles. In general, it has a relatively low coefficient of friction.
  • Carbon black nano-particles have an average diameter range from 5 nm to 500 nm, preferably from 10 nm to 250 nm, more preferably from 15 nm to 100 nm and most preferably from 15 nm to 30 nm
  • the carbon black nano-particles are spherical or elliptical in shape, not fibers or nano-tubes.
  • Carbon black may be obtained from various commercial sources or prepared by one or more conventional methods known in the art. Carbon black may be produced industrially, for example, by the incomplete combustion of heavy petroleum products such as coal tar and ethylene cracking tar.
  • a commercially available source of carbon black is Degussa® Carbon Black (available from Orion Engineered Carbons, Germany).
  • the commercially available carbon black is agglomerated and is not within the desired particle size range. Accordingly, to achieve the desired particle size range the agglomerated carbon black particles may be de-agglomerated using ultrasonic methods and apparatus well known in the art.
  • the carbon black nano-particles may be added to an aqueous solution of one or more water-soluble metal salts which may include one or more surfactants and conventional additives found in metal plating baths.
  • the surfactants are added to the water first then the carbon black nano-particles are added and this mixture is added to the plating bath.
  • the carbon black nano-particles may also be mixed in commercially available metal electroplating baths. The components of the bath are typically mixed using high power ultrasonic laboratory mixing apparatus to achieve a substantially uniform dispersion of carbon black nano-particles and plating bath components.
  • Carbon black nano-particles are included in the metal electroplating baths in amounts of at least 1 g/L, preferably at least 10 g/L, more preferably from 20 g/1 to 200 g/l, most preferably from 50 g/L to 150 g/L.
  • Metals which may be co-deposited with the carbon black nano-particles are provided by one or more sources of water-soluble metal salts. Although silver is the most preferred metal for forming the composite with the carbon black nano-particles, it is envisioned that other metals and metal alloys may be used to form the composites.
  • Water-soluble metal salts which provide metal ions for the deposition of metals include, but are not limited to, silver, gold, palladium, tin, indium, copper and nickel. Such water-soluble metal salts are generally commercially available from a variety of suppliers or may be prepared by methods well known in the art. It is envisioned that alloys of such metals may also be co-deposited with the carbon black nano-particles.
  • Such alloys may include, but are not limited to, tin/silver, tin/copper, palladium/nickel and tin/silver/copper.
  • the metal co-deposited with the carbon black nano-particles is silver, gold, palladium, tin or palladium/nickel alloy. More preferably the metal co-deposited with the carbon black nano-particles is silver or tin. Most preferably the metal co-deposited with the carbon black nano-particles is silver.
  • one or more sources of metal ions are included in the electroplating baths in amounts of 0.1 g/L to 200 g/L.
  • Sources of silver ions include, but are not limited to, silver oxide, silver nitrate, silver sodium thiosulfate, silver cyanide, silver gluconate; silver-amino acid complexes such as silver-cysteine complexes; silver alkyl sulfonates, such as silver methane sulfonate and silver hydantoin and silver succinimide compound complexes.
  • silver cyanide may be a source of silver ions, preferably silver and silver alloy electroplating baths are cyanide-free.
  • the sources of silver ions are included in the aqueous baths in amounts of 1 g/L to 150 g/L.
  • Sources of gold ions include, but are not limited to, gold salts which provide gold (I) ions.
  • Such sources of gold (I) ions include, but are not limited to, alkali gold cyanide compounds such as potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide, alkali gold thiosulfate compounds such as trisodium gold thiosulfate and tripotassium gold thiosulfate, alkali gold sulfite compounds such as sodium gold sulfite and potassium gold sulfite, ammonium gold sulfite, and gold (I) and gold (III) halides such as gold (I) chloride and gold (III) trichloride.
  • the alkali gold cyanide compounds are used such as potassium gold cyanide.
  • the amount of gold salts ranges from 1 g/L to 50 g/L.
  • palladium compounds may be used as a source of palladium ions.
  • Such palladium compounds include, but are not limited to, palladium complex ion compounds with ammonia as the complexing agent.
  • Such compounds include, but are not limited to, dichlorodiammine palladium (II), dinitrodiammine palladium (II), tetrammine palladium (II) chloride, tetrammine palladium (II) sulfate, tetrammine palladium tetrachloropalladate, tetramine palladium carbonate and tetramine palladium hydrogen carbonate.
  • palladium compounds include, but are not limited to, palladium dichloride, palladium dibromide, palladium sulfate, palladium nitrate, palladium monoxide-hydrate, palladium acetates, palladium propionates, palladium oxalates and palladium formates.
  • Palladium compounds are included in the plating compositions is amounts of 10 g/L to 50 g/L.
  • Water-soluble nickel salts include, but are not limited to, halides, sulfates, sulfites and phosphates. Typically, the nickel halide and sulfate salts are used. Water-soluble nickel salts are included in amounts of 0.1 g/L to 150 g/L.
  • Water-soluble tin compounds include, but are not limited to salts, such as tin halides, tin sulfates, tin alkane sulfonates and tin alkanol sulfonates. When tin halide is used, it is typical that the halide is chloride.
  • the tin compound is typically tin sulfate, tin chloride or tin alkane sulfonate, and more typically tin sulfate or tin methane sulfonate. Tin salts are included in the compositions in amounts of 5 to 100 g/L.
  • Water-soluble copper salts include without limitation: copper sulfate; copper halides such as copper chloride; copper acetate; copper nitrate; copper fluoroborate; copper alkylsulfonates; copper arylsulfonates; copper sulfamate; and copper gluconate.
  • Exemplary copper alkylsulfonates include copper (C 1 -C 6 )alkylsulfonate and more typically copper (C 1 -C 3 )alkylsulfonate.
  • the copper salt is included in amounts of 10 g/L to 180 g/L of plating composition.
  • Sources of indium ions include, but are not limited to, indium salts of alkane sulfonic acids and aromatic sulfonic acids, such as methanesulfonic acid, ethanesulfonic acid, butane sulfonic acid, benzenesulfonic acid and toluenesulfonic acid, salts of sulfamic acid, sulfate salts, chloride and bromide salts of indium, nitrate salts, hydroxide salts, indium oxides, fluoroborate salts, indium salts of carboxylic acids, such as citric acid, acetoacetic acid, glyoxylic acid, pyruvic acid, glycolic acid, malonic acid, hydroxamic acid, iminodiacetic acid, salicylic acid, glyceric acid, succinic acid, malic acid, tartaric acid, hydroxybutyric acid, indium salts of amino acids, such as arginine, aspartic
  • the electroplating baths optionally include one or more conventional additives typically included in metal electroplating baths.
  • additives may vary depending on the type of metal to be plated.
  • Such additives are well known in the art and the literature.
  • conventional additives include, but are not limited to, complexing agents and chelating agents for metal ions, suppressors, levelers, stabilizers, antioxidants, grain refiners, buffers to maintain the pH of the electroplating bath, electrolytes, acids, bases, salts of acids and bases, surfactants and dispersing agents.
  • the pH of the electroplating baths may range from less than 1 to 14, typically, the pH ranges from 1 to 12, more typically from 3 to 10.
  • the pH depends on the particular metal or metal alloy to be co-deposited with the carbon black nano-particles as well as the other bath components.
  • Conventional inorganic and organic acids and bases may be used to modify the pH.
  • the carbon black nano-particle and metal electroplating baths may include one or more surfactants to assist in providing a uniform dispersion of carbon black nano-particles.
  • surfactants may be included in the baths in amounts of 1 g/L to 100 g/L, preferably from 1 g/L to 60 g/L.
  • Such surfactants include, but are not limited to, secondary alcohol ethoxylates, EO/PO copolymers, beta-naphthol ethoxylates, alkyl ether phosphates, also known as alcohol phosphate esters, and alkyldiphenyloxide disulfonates, and surfactants such as cetyltrimethylammonium hydrogensulfate and quaternary polyvinylimidazole.
  • fluorocarbon polymers such as tetrafluoroethylene fluorocarbon polymers, are included in the plating bath.
  • surfactants examples include TERGITOLTM XD EO/PO copolymer, POLYMAXTM PA-31 ethoxylated beta-naphthol, BASOTRONICTM PVI quaternary polyvinylimidazole, and TEFLONTM tetrafluoroethylene fluorocarbon polymers.
  • Exemplary alcohol phosphate esters have a general formula:
  • the silver electroplating bath preferably includes such alcohol phosphate esters.
  • compositions of carbon black nano-particles and one or more metal ions may be electroplated onto substrates using conventional electroplating methods.
  • current densities may range from 0.1 ASD and greater.
  • current densities range from 0.1 ASD to 100 ASD.
  • current densities range from 0.1 ASD to 10 ASD.
  • Composition temperatures during electroplating may range from room temperature to 90° C.
  • the substrates may be immersed in the electroplating bath, such as in vertical electroplating or by horizontal plating where the substrate is placed on a conveyor and the bath is sprayed onto the substrate.
  • the electroplating bath is agitated during plating usually through pumping the plating solution within the tank or in the case of reel-to-reel plating pumping the solution from the sump tank to the plating cell.
  • Reel-to-reel plating allows for select plating of metal.
  • Various reel-to-reel apparatus are known by those of skill in the art. The method can plate strips of manufactured products or reels of raw material before they are stamped into parts.
  • the electroplating bath may also be agitated using ultrasound with conventional ultrasound apparatus.
  • Electroplating times vary depending on the type of metal or metal alloy to be co-deposited with the carbon black nano-particles.
  • the deposited composites are a matrix of metal or metal alloy with carbon black nano-particles substantially uniformly dispersed throughout the metal or metal alloy matrix.
  • the composites have a matrix of silver, gold, palladium, tin or palladium/nickel alloy. More preferably the composites have a matrix of silver or tin. Most preferably the composites have a silver matrix.
  • Composite thicknesses may vary depending on the metal or metal alloy and the function of the substrate plated. In general, composite thicknesses are at least 0.1 ⁇ m, typically from 1 ⁇ m to 1000 ⁇ m.
  • the composite has a thickness of 0.5 ⁇ m to 100 ⁇ m, more preferably from 1 ⁇ m to 50 ⁇ m.
  • the composites may be electroplated adjacent conductive surfaces of various types of substrates. Such conductive surfaces include, but are not limited to, copper, copper alloys, nickel, nickel alloys, tin and tin alloys.
  • the composites are electrically conductive and provide a wear resistant deposit with improved durability in comparison to many conventional metal and metal alloy coatings.
  • the composite coatings may be used to replace hard gold coatings of gold/cobalt and gold/nickel which are often used to coat articles which are exposed to rigorous wear cycles or are prone to oxidation due to heat in sliding processes, such as is typical in switches and connectors.
  • An aqueous silver electroplating solution was prepared as shown in the table below.
  • Graphite nano-particles supplied by Nanostructured & Amorphous Materials Inc having an average diameter of 400 nm at a concentration of 20 g/L were mixed with the silver electroplating bath.
  • a clean copper rotating disk cathode was immersed into the solution and was connected to a rectifier.
  • the counter electrode was a silver anode.
  • the temperature of the silver electroplating bath was maintained at 60° C. during silver composite electroplating.
  • the current density was 1 ASD.
  • Electroplating was done until a layer of silver 25 ⁇ m thick was deposited on the copper rotating disk. The silver plated disk was removed from the electroplating bath and rinsed with deionized water at room temperature.
  • a UP400S 400 Watt full amplitude ultrasonic probe supplied by Hielscher Ultrasonics, Germany, was inserted in the vicinity of the cathode prior to and during the electroplating, at 60% amplitude and 0.5 duty cycle.
  • FIG. 1 is a SEM image (secondary electrons) of a cross-section of the composite layer on the copper substrate at 3500 ⁇ , obtained using secondary electrons. The dark sections or bands indicate where graphite nano-particles were incorporated into the silver metal matrix. As is evidenced by the SEM the nano-particle incorporation was both sparse and not homogeneous. The nano-particles of graphite agglomerated in the composite.
  • Example 2 The method of Example 1 was repeated except that 5 g/L of carbon black nano-particles with an average diameter of 25 nm (available from Orion Engineered Carbons) were mixed with the silver electroplating bath in Table 2. The plating parameters were the same as described above.
  • FIG. 2 is a 5000 ⁇ SEM cross-section (back scattered electrons) of the composite. The dark sections indicate areas where the nano-particles of carbon black were incorporated into the silver matrix. As is evident from the SEM in FIG. 2 substantial amounts of nano-particles were incorporated into the silver matrix. The incorporation was homogeneous in contrast to the graphite incorporation of Example 1.
  • an ultrasonic probe UP400S was inserted in the vicinity of the cathode prior to and during the electroplating at 60% amplitude and 0.5 duty cycle. Electroplating was done until a layer of silver or silver composite of 25 um thick was deposited on the copper rotating disks. The plated disks were removed from the electroplating baths and rinsed with deionized water at room temperature.
  • FIG. 3 shows the contact resistance in mOhms of both the composite of silver and carbon black nano-particles (AgCB) and the silver (Ag), under varied contact forces in centiNewtons. The results indicated that the contact resistance of the silver and carbon black nano-particles composite remained substantially the same as the silver deposit over the various forces applied.
  • Example 2 The method of Example 2 was repeated with 50 g/L of carbon black nano-particles. Instead of using ultrasonic disintegration, a surfactant was added into the plating solution to facilitate the particle dispersion.
  • the bath formulation was as disclosed in Table 3. The plating parameters were the same as described above in Example 2.
  • FIG. 4 is a 10,000 ⁇ SEM cross-section of the composite. The dark sections indicate areas where the nano-particles of carbon black were incorporated into the silver matrix. As is evident from the SEM in FIG. 4 substantial amounts of nano-particles were incorporated into the silver matrix. The incorporation was homogeneous in contrast to the graphite incorporation of Example 1.

Abstract

Nano-sized particles of carbon black and various metal ions are mixed to form substantially homogenous solutions or dispersions. The nano-sized particles of carbon black and metal ions are electroplated on various types of substrates as composites of one or more metals and substantially uniformly dispersed nano-sized particles of carbon black within the metals.

Description

  • This application claims the benefit of priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 61/606,170, filed Mar. 2, 2012, the entire contents of which application are incorporated herein by reference.
  • FIELD OF THE INVENTION
  • The present invention is directed to composites of carbon black particles and metal. More specifically, the present invention is directed to composites of carbon black particles and metal where the carbon black particles are in the nanometer range.
  • BACKGROUND OF THE INVENTION
  • Composite plating is a technology well documented and widely practiced in both electrolytic and electroless plating. Composite plating refers to the inclusion of particulate matter within a metal plated layer. The development and acceptance of composite plating stems from the discovery that the inclusion of particles within a metal plated layer can enhance various properties of the metal plated layer and in many situations actually provide entirely new properties to the metal layer. Particles of various materials can provide characteristics to the metal layer including wear resistance, lubricity, corrosion resistance, phosphorescence, friction altered appearances and other properties.
  • For some time the most common composites used for increasing durability of articles were those deposited from electroless nickel plating baths which included particles of diamond and polytetrafluoroethylene (PTFE). Over the years the variety of metals and fine particles has increased to produce a wide range of different composites. JP09-007445 discloses a sliding contact electric component which has an electroplated coating film of graphite particles dispersed in a silver metal matrix. In addition to graphite, particles of SiC, WC, ZrB, Al2O3, ZrO2 and Cr2O3 may also be incorporated into the composite. Also, particles of TiO2, ThO2, MoO3, W2C, TiC, B4C and CrB2 may be included to increase the hardness of the deposited coating.
  • U.S. Pat. No. 6,635,166 discloses an electrolytic composite plating method. In addition to fine particles of diamond and PTFE, the patent discloses particles of SiC, glass, kaolin, corundum, Si3N4, various metal oxides, graphite, graphite fluoride, various colorants and other metal compounds such as compounds of W, Mo and Ti. Metals which may be electroplated with such particles include, for example, silver, gold, nickel, copper, zinc, tin, lead, chromium and alloys thereof. To achieve the desired properties mentioned above, azo-surfactants are included in the composite plating formulations to enable an increase in the content of the particles in the electroplating bath.
  • U.S. Pat. No. 7,514,022 discloses a composite of silver and graphite particles used to electroplate a coating on switches and connectors. The graphite particles range in size from 0.1 μm to 1.0 μm. Additives such as dispersing agents are excluded from the formulation. Although including dispersing agents or surfactants in composite plating baths may increase the content of fine particles to some extent, the dispersing agent effect is known to be limited. It is believed that the dispersing agent or surfactant remains as it is on the fine particles which have been deposited by electroplating in the adsorbed state. This is believed to inhibit other fine particles from being deposited. Instead the graphite particles are oxidized to achieve the desired dispersion of particles in the silver electroplating baths. Such oxidizing agents include nitric acid, hydrogen peroxide, potassium permanganate, potassium persulfate, sodium persulfate and sodium perchlorate.
  • In addition to achieving as high a concentration of fine particles as possible in the electroplating bath, it is also desirable to use particles with sufficient electrical conductivity and as small a diameter as possible. This is important to ensure electrical continuity between the plated mating surfaces of an electronic connector. However, the smaller the particle the more readily it is to agglomerate with other particles in the plating bath causing the particles to rapidly settle to the bottom of the plating vessel thus making them unavailable for codeposition. Therefore codepositing all particles in a metal plating bath which have diameters in the nanometer range has been challenging. Accordingly, there is a need for a composite of nano-particles and metal where the nano-particles have sufficient electrical conductivity and at the same time do not readily agglomerate in the metal electroplating bath.
  • SUMMARY OF THE INVENTION
  • In one aspect compositions include one or more sources of metal ions and carbon black nano-particles.
  • In another aspect methods include providing a composition including one or more sources of metal ions and carbon black nano-particles; contacting a substrate with the composition; and electroplating a composite of one or more metals and carbon black nano-particles onto the substrate.
  • In an additional aspect articles include a composite including one or more metals and carbon black nano-particles dispersed within the one or more metals.
  • The compositions are substantially stable dispersions of carbon black nano-particles and metal ions which can be electroplated on various substrates to form coatings of composites of metal or metal alloy having substantially uniform dispersions of the carbon black nano-particles throughout a metal or metal alloy matrix. The composites are electrically conductive and provide good wear resistance with improved durability in comparison to many conventional metal and metal alloy coatings. The composite coatings may be used to replace hard gold coatings of gold/cobalt and gold/nickel which are often used to coat articles which are exposed to rigorous wear cycles or are prone to oxidation due to heat in sliding processes, such as is typical in switches and connectors.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a SEM at 3500× of a cross-section of a composite of silver and graphite particles.
  • FIG. 2 is a SEM at 5000× of a cross-section of a composite of silver and carbon black nano-particles.
  • FIG. 3 is a graph of contact resistance in mOhm versus contact forces in cN of a silver and silver and carbon black nanoparticles.
  • FIG. 4 is a SEM at 10,000× of a cross section of a composite of silver and carbon black nano-particles.
  • DETAILED DESCRIPTION OF THE INVENTION
  • As used throughout this specification, the terms “depositing”, “plating” and “electroplating” are used interchangeably, and the terms “composition” and “bath” are used interchangeably. The indefinite articles “a” and “an” are intended to include both the singular and the plural.
  • The following abbreviations have the following meanings unless the context clearly indicates otherwise: ° C.=degrees Celsius; g=grams; ml=milliliter; L=liter; cm=centimeters; A=amperes; dm=decimeter; ASD=A/dm2; μm=microns; nm=nanometers; mmol=millimoles; mOhm=milliohms; cN=centiNewtons; SEM=scanning electron micrograph; and EO/PO=thylene oxide/propylene oxide. All percentages and ratios are by weight unless otherwise indicated. All ranges are inclusive and combinable in any order except where it is logical that such numerical ranges are constrained to add up to 100%.
  • Compositions are aqueous dispersions of carbon black nano-particles and one or more sources of metal ions. Carbon black is an amorphous form of carbon with a high surface area to volume ratio and is electrically conductive. In contrast to carbon black, diamond and graphite are crystalline in structure. Diamond has a tetrahedral configuration. Graphite has a layered, planar crystal structure where each carbon atom is bonded to three other carbons forming a hexagonal structure. Graphite is much softer than diamond and the layered, planar type structure facilitates easy cleavage along the planes which makes it desirable as a solid lubricant but is not very durable in coatings which are exposed to rigorous wear cycles. In general, it has a relatively low coefficient of friction.
  • Carbon black nano-particles have an average diameter range from 5 nm to 500 nm, preferably from 10 nm to 250 nm, more preferably from 15 nm to 100 nm and most preferably from 15 nm to 30 nm The carbon black nano-particles are spherical or elliptical in shape, not fibers or nano-tubes. Carbon black may be obtained from various commercial sources or prepared by one or more conventional methods known in the art. Carbon black may be produced industrially, for example, by the incomplete combustion of heavy petroleum products such as coal tar and ethylene cracking tar. A commercially available source of carbon black is Degussa® Carbon Black (available from Orion Engineered Carbons, Germany). Typically, the commercially available carbon black is agglomerated and is not within the desired particle size range. Accordingly, to achieve the desired particle size range the agglomerated carbon black particles may be de-agglomerated using ultrasonic methods and apparatus well known in the art.
  • The carbon black nano-particles may be added to an aqueous solution of one or more water-soluble metal salts which may include one or more surfactants and conventional additives found in metal plating baths. In general, the surfactants are added to the water first then the carbon black nano-particles are added and this mixture is added to the plating bath. The carbon black nano-particles may also be mixed in commercially available metal electroplating baths. The components of the bath are typically mixed using high power ultrasonic laboratory mixing apparatus to achieve a substantially uniform dispersion of carbon black nano-particles and plating bath components. Carbon black nano-particles are included in the metal electroplating baths in amounts of at least 1 g/L, preferably at least 10 g/L, more preferably from 20 g/1 to 200 g/l, most preferably from 50 g/L to 150 g/L.
  • Metals which may be co-deposited with the carbon black nano-particles are provided by one or more sources of water-soluble metal salts. Although silver is the most preferred metal for forming the composite with the carbon black nano-particles, it is envisioned that other metals and metal alloys may be used to form the composites. Water-soluble metal salts which provide metal ions for the deposition of metals include, but are not limited to, silver, gold, palladium, tin, indium, copper and nickel. Such water-soluble metal salts are generally commercially available from a variety of suppliers or may be prepared by methods well known in the art. It is envisioned that alloys of such metals may also be co-deposited with the carbon black nano-particles. Such alloys may include, but are not limited to, tin/silver, tin/copper, palladium/nickel and tin/silver/copper. Preferably the metal co-deposited with the carbon black nano-particles is silver, gold, palladium, tin or palladium/nickel alloy. More preferably the metal co-deposited with the carbon black nano-particles is silver or tin. Most preferably the metal co-deposited with the carbon black nano-particles is silver. In general, one or more sources of metal ions are included in the electroplating baths in amounts of 0.1 g/L to 200 g/L.
  • Sources of silver ions include, but are not limited to, silver oxide, silver nitrate, silver sodium thiosulfate, silver cyanide, silver gluconate; silver-amino acid complexes such as silver-cysteine complexes; silver alkyl sulfonates, such as silver methane sulfonate and silver hydantoin and silver succinimide compound complexes. Although silver cyanide may be a source of silver ions, preferably silver and silver alloy electroplating baths are cyanide-free. The sources of silver ions are included in the aqueous baths in amounts of 1 g/L to 150 g/L.
  • Sources of gold ions include, but are not limited to, gold salts which provide gold (I) ions. Such sources of gold (I) ions include, but are not limited to, alkali gold cyanide compounds such as potassium gold cyanide, sodium gold cyanide, and ammonium gold cyanide, alkali gold thiosulfate compounds such as trisodium gold thiosulfate and tripotassium gold thiosulfate, alkali gold sulfite compounds such as sodium gold sulfite and potassium gold sulfite, ammonium gold sulfite, and gold (I) and gold (III) halides such as gold (I) chloride and gold (III) trichloride. Typically, the alkali gold cyanide compounds are used such as potassium gold cyanide. The amount of gold salts ranges from 1 g/L to 50 g/L.
  • A wide variety of palladium compounds may be used as a source of palladium ions. Such palladium compounds include, but are not limited to, palladium complex ion compounds with ammonia as the complexing agent. Such compounds include, but are not limited to, dichlorodiammine palladium (II), dinitrodiammine palladium (II), tetrammine palladium (II) chloride, tetrammine palladium (II) sulfate, tetrammine palladium tetrachloropalladate, tetramine palladium carbonate and tetramine palladium hydrogen carbonate. Additional sources of palladium include, but are not limited to, palladium dichloride, palladium dibromide, palladium sulfate, palladium nitrate, palladium monoxide-hydrate, palladium acetates, palladium propionates, palladium oxalates and palladium formates. Palladium compounds are included in the plating compositions is amounts of 10 g/L to 50 g/L.
  • Water-soluble nickel salts include, but are not limited to, halides, sulfates, sulfites and phosphates. Typically, the nickel halide and sulfate salts are used. Water-soluble nickel salts are included in amounts of 0.1 g/L to 150 g/L.
  • Water-soluble tin compounds include, but are not limited to salts, such as tin halides, tin sulfates, tin alkane sulfonates and tin alkanol sulfonates. When tin halide is used, it is typical that the halide is chloride. The tin compound is typically tin sulfate, tin chloride or tin alkane sulfonate, and more typically tin sulfate or tin methane sulfonate. Tin salts are included in the compositions in amounts of 5 to 100 g/L.
  • Water-soluble copper salts include without limitation: copper sulfate; copper halides such as copper chloride; copper acetate; copper nitrate; copper fluoroborate; copper alkylsulfonates; copper arylsulfonates; copper sulfamate; and copper gluconate. Exemplary copper alkylsulfonates include copper (C1-C6)alkylsulfonate and more typically copper (C1-C3)alkylsulfonate. Typically, the copper salt is included in amounts of 10 g/L to 180 g/L of plating composition.
  • Sources of indium ions include, but are not limited to, indium salts of alkane sulfonic acids and aromatic sulfonic acids, such as methanesulfonic acid, ethanesulfonic acid, butane sulfonic acid, benzenesulfonic acid and toluenesulfonic acid, salts of sulfamic acid, sulfate salts, chloride and bromide salts of indium, nitrate salts, hydroxide salts, indium oxides, fluoroborate salts, indium salts of carboxylic acids, such as citric acid, acetoacetic acid, glyoxylic acid, pyruvic acid, glycolic acid, malonic acid, hydroxamic acid, iminodiacetic acid, salicylic acid, glyceric acid, succinic acid, malic acid, tartaric acid, hydroxybutyric acid, indium salts of amino acids, such as arginine, aspartic acid, asparagine, glutamic acid, glycine, glutamine, leucine, lysine, threonine, isoleucine, and valine. Water-soluble indium salts are included in the compositions in amounts of 5 g/L to 70 g/L.
  • In addition to the sources of metal ions, the electroplating baths optionally include one or more conventional additives typically included in metal electroplating baths. Such additives may vary depending on the type of metal to be plated. Such additives are well known in the art and the literature. In general, such conventional additives include, but are not limited to, complexing agents and chelating agents for metal ions, suppressors, levelers, stabilizers, antioxidants, grain refiners, buffers to maintain the pH of the electroplating bath, electrolytes, acids, bases, salts of acids and bases, surfactants and dispersing agents. Some minor experimentation may be required to determine the proper amount of an additive to tailor a particular formulation to improve electroplating performance in view of the addition of the carbon black nono-particles to the bath.
  • In general, the pH of the electroplating baths may range from less than 1 to 14, typically, the pH ranges from 1 to 12, more typically from 3 to 10. The pH depends on the particular metal or metal alloy to be co-deposited with the carbon black nano-particles as well as the other bath components. Conventional inorganic and organic acids and bases may be used to modify the pH.
  • In addition to conventional surfactants and dispersing agents, the carbon black nano-particle and metal electroplating baths may include one or more surfactants to assist in providing a uniform dispersion of carbon black nano-particles. In general, surfactants may be included in the baths in amounts of 1 g/L to 100 g/L, preferably from 1 g/L to 60 g/L. Such surfactants include, but are not limited to, secondary alcohol ethoxylates, EO/PO copolymers, beta-naphthol ethoxylates, alkyl ether phosphates, also known as alcohol phosphate esters, and alkyldiphenyloxide disulfonates, and surfactants such as cetyltrimethylammonium hydrogensulfate and quaternary polyvinylimidazole. When tin is used as the metal for the composite, fluorocarbon polymers, such as tetrafluoroethylene fluorocarbon polymers, are included in the plating bath. Examples of commercially available surfactants are TERGITOL™ XD EO/PO copolymer, POLYMAX™ PA-31 ethoxylated beta-naphthol, BASOTRONIC™ PVI quaternary polyvinylimidazole, and TEFLON™ tetrafluoroethylene fluorocarbon polymers.
  • Exemplary alcohol phosphate esters have a general formula:
  • Figure US20130228465A1-20130905-C00001
  • where R′ is hydrogen, C4-C20 alkyl, phenyl or C4-C20 alkyl phenyl, R″ is C2-C3 alkyl, m is an integer from 0 to 20 and n is an integer from 1 to 3, preferably n is an integer from 1 to 2. When silver is used as the metal for the composite, the silver electroplating bath preferably includes such alcohol phosphate esters.
  • The compositions of carbon black nano-particles and one or more metal ions may be electroplated onto substrates using conventional electroplating methods. In general, current densities may range from 0.1 ASD and greater. Typically current densities range from 0.1 ASD to 100 ASD. Preferably, current densities range from 0.1 ASD to 10 ASD. When the compositions are electroplated by jet plating, current densities may be from 10 ASD and greater, more typically from 20 ASD to 100 ASD. Composition temperatures during electroplating may range from room temperature to 90° C.
  • The substrates may be immersed in the electroplating bath, such as in vertical electroplating or by horizontal plating where the substrate is placed on a conveyor and the bath is sprayed onto the substrate. Typically the electroplating bath is agitated during plating usually through pumping the plating solution within the tank or in the case of reel-to-reel plating pumping the solution from the sump tank to the plating cell. Reel-to-reel plating allows for select plating of metal. Various reel-to-reel apparatus are known by those of skill in the art. The method can plate strips of manufactured products or reels of raw material before they are stamped into parts. The electroplating bath may also be agitated using ultrasound with conventional ultrasound apparatus.
  • Electroplating times vary depending on the type of metal or metal alloy to be co-deposited with the carbon black nano-particles. The deposited composites are a matrix of metal or metal alloy with carbon black nano-particles substantially uniformly dispersed throughout the metal or metal alloy matrix. Preferably the composites have a matrix of silver, gold, palladium, tin or palladium/nickel alloy. More preferably the composites have a matrix of silver or tin. Most preferably the composites have a silver matrix. Composite thicknesses may vary depending on the metal or metal alloy and the function of the substrate plated. In general, composite thicknesses are at least 0.1 μm, typically from 1 μm to 1000 μm. Preferably, the composite has a thickness of 0.5 μm to 100 μm, more preferably from 1 μm to 50 μm.
  • The composites may be electroplated adjacent conductive surfaces of various types of substrates. Such conductive surfaces include, but are not limited to, copper, copper alloys, nickel, nickel alloys, tin and tin alloys. The composites are electrically conductive and provide a wear resistant deposit with improved durability in comparison to many conventional metal and metal alloy coatings. The composite coatings may be used to replace hard gold coatings of gold/cobalt and gold/nickel which are often used to coat articles which are exposed to rigorous wear cycles or are prone to oxidation due to heat in sliding processes, such as is typical in switches and connectors.
  • The following examples are included to illustrate the invention but are not intended to limit the scope of the invention.
  • Example 1 (Comparative)
  • An aqueous silver electroplating solution was prepared as shown in the table below.
  • TABLE 1
    COMPONENT AMOUNT
    Silver ions as silver 5,5-dimethyl hydantoin 40 g/L
    5,5-dimethyl hydantoin 70 g/L
    Sulfamic acid 35 g/L
    Potassium hydroxide 50 g/L
    Graphite (400 nm) 20 g/1
    pH 9.5
  • Graphite nano-particles supplied by Nanostructured & Amorphous Materials Inc having an average diameter of 400 nm at a concentration of 20 g/L were mixed with the silver electroplating bath. A clean copper rotating disk cathode was immersed into the solution and was connected to a rectifier. The counter electrode was a silver anode. The temperature of the silver electroplating bath was maintained at 60° C. during silver composite electroplating. The current density was 1 ASD. Electroplating was done until a layer of silver 25 μm thick was deposited on the copper rotating disk. The silver plated disk was removed from the electroplating bath and rinsed with deionized water at room temperature. To ensure that the graphite particles were well dispersed in the plating solution and to facilitate the graphite particle incorporation, a UP400S 400 Watt full amplitude ultrasonic probe, supplied by Hielscher Ultrasonics, Germany, was inserted in the vicinity of the cathode prior to and during the electroplating, at 60% amplitude and 0.5 duty cycle.
  • Nano-particle incorporation was investigated by a SEM using a Philips SEM XL-30 microscope on cross sections of the deposits. FIG. 1 is a SEM image (secondary electrons) of a cross-section of the composite layer on the copper substrate at 3500×, obtained using secondary electrons. The dark sections or bands indicate where graphite nano-particles were incorporated into the silver metal matrix. As is evidenced by the SEM the nano-particle incorporation was both sparse and not homogeneous. The nano-particles of graphite agglomerated in the composite.
  • Example 2
  • The method of Example 1 was repeated except that 5 g/L of carbon black nano-particles with an average diameter of 25 nm (available from Orion Engineered Carbons) were mixed with the silver electroplating bath in Table 2. The plating parameters were the same as described above.
  • TABLE 2
    COMPONENT AMOUNT
    Silver ions as silver 5,5-dimethyl hydantoin 40 g/L
    5,5-dimethyl hydantoin 70 g/L
    Sulfamic acid 35 g/L
    Potassium hydroxide 50 g/L
    Carbon Black (25 nm)  5 g/1
    pH 9.5
  • After plating a 25 um thick composite of silver and carbon black nano-particles on the copper substrate, the substrate was cross-sectioned and examined for nano-particle incorporation in the silver matrix using SEM. FIG. 2 is a 5000× SEM cross-section (back scattered electrons) of the composite. The dark sections indicate areas where the nano-particles of carbon black were incorporated into the silver matrix. As is evident from the SEM in FIG. 2 substantial amounts of nano-particles were incorporated into the silver matrix. The incorporation was homogeneous in contrast to the graphite incorporation of Example 1.
  • Contact resistance of the composite of silver and carbon black nano-particles was determined and compared to a silver deposit without carbon black nano-particles. Each bath was prepared under the same conditions. The silver and carbon black nano-particle plating bath was the same as in Table 2 above. The silver plating bath was the same as in Table 2 above except that the carbon black nano-particles were excluded from the formulation. A clean copper rotating disk cathode was immersed into each bath and was connected to a rectifier. The counter electrode was a silver anode. The temperature of the baths was maintained at 60° C. during electroplating. The current density was 1 ASD. To ensure that the carbon black particles were well dispersed in the plating solution and to facilitate the carbon black particle incorporation, an ultrasonic probe UP400S was inserted in the vicinity of the cathode prior to and during the electroplating at 60% amplitude and 0.5 duty cycle. Electroplating was done until a layer of silver or silver composite of 25 um thick was deposited on the copper rotating disks. The plated disks were removed from the electroplating baths and rinsed with deionized water at room temperature.
  • Contact resistance measurements were done using a KOWI 3000 Contact Resistance Tester manufactured by WSK Mess- und Datentechnik GmbH, Germany. FIG. 3 shows the contact resistance in mOhms of both the composite of silver and carbon black nano-particles (AgCB) and the silver (Ag), under varied contact forces in centiNewtons. The results indicated that the contact resistance of the silver and carbon black nano-particles composite remained substantially the same as the silver deposit over the various forces applied.
  • Example 3
  • The method of Example 2 was repeated with 50 g/L of carbon black nano-particles. Instead of using ultrasonic disintegration, a surfactant was added into the plating solution to facilitate the particle dispersion. The bath formulation was as disclosed in Table 3. The plating parameters were the same as described above in Example 2.
  • TABLE 3
    COMPONENT AMOUNT
    Silver ions as silver 5,5-dimethyl hydantoin 40 g/L
    5,5-dimethyl hydantoin 70 g/L
    Sulfamic acid 35 g/L
    Potassium hydroxide 50 g/L
    PHOSPHOLAN ™ PS 331 50 g/1
    (an alcohol phosphate ester)
    Carbon Black (25 nm) 50 g/1
    pH 9.5
  • The addition of an alcohol phosphate surfactant to the bath stabilized the carbon black nano-particle dispersion and assisted particle incorporation into the composite. FIG. 4 is a 10,000× SEM cross-section of the composite. The dark sections indicate areas where the nano-particles of carbon black were incorporated into the silver matrix. As is evident from the SEM in FIG. 4 substantial amounts of nano-particles were incorporated into the silver matrix. The incorporation was homogeneous in contrast to the graphite incorporation of Example 1.

Claims (11)

What is claimed is:
1. A composition comprising one or more sources of metal ions and carbon black nano-particles.
2. The composition of claim 1, wherein the carbon black nano-particles range in size from 5 nm to 500 nm.
3. The composition of claim 1, wherein metal ions are chosen from silver, gold, palladium, nickel, copper, tin and indium ions.
4. The composition of claim 1, wherein a concentration of the carbon black nano-particles in the composition is at least 1 g/L.
5. The composition of claim 1, further comprising one or more surfactants.
6. The composition of claim 5, wherein the surfactants are chosen from alcohol phosphate esters.
7. A method comprising:
a) providing a composition comprising one or more sources of metal ions and carbon black nano-particles;
b) contacting a substrate with the composition; and
c) electroplating a composite of one or more metals and carbon black nano-particles onto the substrate.
8. The method of claim 7, wherein the carbon black nano-particles range in size from 5 nm to 500 nm.
9. The method of claim 7, wherein metal ions are chosen from silver, gold, palladium, nickel, copper, tin and indium ions.
10. An article comprising a composite comprising one or more metals and carbon black nano-particles dispersed within the one or more metals.
11. The article of claim 10, wherein a thickness of the composite is at least 0.1 μm.
US13/784,009 2012-03-02 2013-03-04 Composites of carbon black and metal Abandoned US20130228465A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/784,009 US20130228465A1 (en) 2012-03-02 2013-03-04 Composites of carbon black and metal
US14/748,599 US20150292105A1 (en) 2012-03-02 2015-06-24 Composites of carbon black and metal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261606170P 2012-03-02 2012-03-02
US13/784,009 US20130228465A1 (en) 2012-03-02 2013-03-04 Composites of carbon black and metal

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/748,599 Division US20150292105A1 (en) 2012-03-02 2015-06-24 Composites of carbon black and metal

Publications (1)

Publication Number Publication Date
US20130228465A1 true US20130228465A1 (en) 2013-09-05

Family

ID=47779943

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/784,009 Abandoned US20130228465A1 (en) 2012-03-02 2013-03-04 Composites of carbon black and metal
US14/748,599 Abandoned US20150292105A1 (en) 2012-03-02 2015-06-24 Composites of carbon black and metal

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/748,599 Abandoned US20150292105A1 (en) 2012-03-02 2015-06-24 Composites of carbon black and metal

Country Status (6)

Country Link
US (2) US20130228465A1 (en)
EP (1) EP2634293B1 (en)
JP (1) JP6076138B2 (en)
KR (1) KR102079961B1 (en)
CN (1) CN103290457B (en)
TW (1) TWI539034B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176137A1 (en) * 2013-12-20 2015-06-25 University Of Connecticut Methods for preparing substrate cored-metal layer shelled metal alloys
US20170158980A1 (en) * 2014-05-16 2017-06-08 Ab Nanol Technologies Oy Composition
US20190233961A1 (en) * 2018-01-26 2019-08-01 Samsung Electronics Co., Ltd. Plating solution and metal composite and method of manufacturing the same
CN111705340A (en) * 2019-03-18 2020-09-25 同和金属技术有限公司 Composite plated article and method of making same
US20210366628A1 (en) * 2018-03-16 2021-11-25 Nexans Process for manufacturing a carbon-metal composite material and use thereof for manufacturing an electric cable
US11225726B2 (en) * 2019-01-22 2022-01-18 Dowa Metaltech Co., Ltd. Composite plated product and method for producing same
US11234456B2 (en) * 2018-08-13 2022-02-01 China Tobacco Yunnan Industrial Co., Ltd Modified carbon material and method for reducing carbonaceous material ignition temperature
EP4328934A1 (en) * 2022-08-26 2024-02-28 TE Connectivity Solutions GmbH Coating on a surface to transmit electrical current

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014110651B3 (en) * 2014-07-29 2015-07-09 Harting Kgaa Galvanic bath for depositing a silver layer with nanoparticles and contact element for a connector
RU2656914C1 (en) * 2017-09-19 2018-06-07 федеральное государственное автономное образовательное учреждение высшего образования "Южный федеральный университет" Method for obtaining nanostructural material of tin oxide on basis of carbon
CN110158132A (en) * 2018-02-13 2019-08-23 华瑞墨石丹阳有限公司 A kind of electro-plating method of insulating materials
DE102018005352A1 (en) * 2018-07-05 2020-01-09 Dr.-Ing. Max Schlötter GmbH & Co KG Silver electrolyte for the deposition of dispersion silver layers and contact surfaces with dispersion silver layers
DE102018005348A1 (en) * 2018-07-05 2020-01-09 Dr.-Ing. Max Schlötter GmbH & Co KG Silver electrolyte for the deposition of dispersion silver layers and contact surfaces with dispersion silver layers
WO2020038948A1 (en) 2018-08-21 2020-02-27 Umicore Galvanotechnik Gmbh Electrolyte for the cyanide-free deposition of silver
DE102018120357A1 (en) * 2018-08-21 2020-02-27 Umicore Galvanotechnik Gmbh Electrolyte for the deposition of silver and silver alloy coatings
EP3636804A1 (en) * 2018-10-11 2020-04-15 ABB Schweiz AG Silver-graphene composite coating for sliding contact and electroplating method thereof
CN111554430A (en) * 2020-05-19 2020-08-18 东莞市硕美电子材料科技有限公司 Novel composite conductive coating paste composition and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609671A (en) * 1994-06-20 1997-03-11 Orient Chemical Industries, Ltd. Water-based pigment ink and process for producing the same
JPH1115206A (en) * 1997-04-30 1999-01-22 Canon Inc Image forming method
US6190789B1 (en) * 1997-10-27 2001-02-20 Nihon Parkerizing Co., Ltd. Slide member
US20050244644A1 (en) * 2004-03-15 2005-11-03 Hampden-Smith Mark J Modified carbon products and their applications
US20100159528A1 (en) * 2007-06-13 2010-06-24 Ge Healthcare Bio-Science Corp. Polymerase stabilization
US20110217229A1 (en) * 2008-09-29 2011-09-08 Lion Corporation Method for producing high-purity carbon black

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139642A (en) * 1991-05-01 1992-08-18 Olin Corporation Process for preparing a nonconductive substrate for electroplating
JP3054628B2 (en) 1996-06-25 2000-06-19 富士電機株式会社 Sliding contacts for electrical equipment
DE19852202C2 (en) * 1998-11-12 2002-01-24 Hille & Mueller Gmbh & Co Battery case made from formed, cold-rolled sheet metal and method for producing battery cases
DE19937271C2 (en) * 1999-08-06 2003-01-09 Hille & Mueller Gmbh & Co Process for the production of deep-drawn or ironable, refined cold strip, and cold strip, preferably for the production of cylindrical containers and in particular battery containers
JP3945956B2 (en) 2000-03-06 2007-07-18 独立行政法人科学技術振興機構 Composite plating method
JP2004076118A (en) * 2002-08-20 2004-03-11 Toyo Kohan Co Ltd Surface treated steel sheet for battery case, manufacturing method therefor, battery case formed of the steel sheet, and battery using the battery case
WO2005056885A1 (en) * 2003-12-08 2005-06-23 Toyo Kohan Co., Ltd. Metal-plated steel sheet for battery case, battery case using the plated steel sheet for battery case and battery using the battery case
JP2005310451A (en) * 2004-04-19 2005-11-04 Toyo Kohan Co Ltd Plated steel sheet for battery case, battery case using the plated steel sheet for battery case, and battery using the battery case
JP2005310452A (en) * 2004-04-19 2005-11-04 Toyo Kohan Co Ltd Plated steel sheet for battery case, battery case using the plated steel sheet for battery case, and battery using the battery case
JP4783954B2 (en) 2004-06-21 2011-09-28 Dowaメタルテック株式会社 Composite plating material and method for producing the same
JP4044926B2 (en) * 2004-12-20 2008-02-06 株式会社エルグ Surface treatment method and contact member
JP2006348362A (en) * 2005-06-17 2006-12-28 Toyo Kohan Co Ltd Plated steel sheet for battery receptacle, battery receptacle using the plated steel sheet, and battery using the battery receptacle
JP5102945B2 (en) * 2005-06-17 2012-12-19 東洋鋼鈑株式会社 Plated steel sheet for battery container, battery container using the plated steel sheet for battery container, and alkaline battery using the battery container
WO2007020007A1 (en) * 2005-08-12 2007-02-22 Umicore Ag & Co. Kg Silver/carbon-based material and method for producing the same
WO2007040257A1 (en) * 2005-10-05 2007-04-12 Nippon Sheet Glass Company, Limited Article provided with organic-inorganic composite film and method for producing same
JP2007291469A (en) * 2006-04-26 2007-11-08 Ebara Corp Substrate treating method, semiconductor apparatus and substrate treating apparatus
JP5375107B2 (en) * 2009-01-09 2013-12-25 株式会社リコー Ink jet ink, ink cartridge, image forming apparatus, image forming method, and image formed product
JP2012049107A (en) * 2010-07-27 2012-03-08 Panasonic Electric Works Co Ltd Electrical contact component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609671A (en) * 1994-06-20 1997-03-11 Orient Chemical Industries, Ltd. Water-based pigment ink and process for producing the same
JPH1115206A (en) * 1997-04-30 1999-01-22 Canon Inc Image forming method
US6190789B1 (en) * 1997-10-27 2001-02-20 Nihon Parkerizing Co., Ltd. Slide member
US20050244644A1 (en) * 2004-03-15 2005-11-03 Hampden-Smith Mark J Modified carbon products and their applications
US20100159528A1 (en) * 2007-06-13 2010-06-24 Ge Healthcare Bio-Science Corp. Polymerase stabilization
US20110217229A1 (en) * 2008-09-29 2011-09-08 Lion Corporation Method for producing high-purity carbon black

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Bulk Density Chart", obtained at http://www.anval.net/downloads/bulk%20density%20chart.pdf on 29 September 2015 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150176137A1 (en) * 2013-12-20 2015-06-25 University Of Connecticut Methods for preparing substrate cored-metal layer shelled metal alloys
US20170158980A1 (en) * 2014-05-16 2017-06-08 Ab Nanol Technologies Oy Composition
US10144896B2 (en) * 2014-05-16 2018-12-04 Ab Nanol Technologies Oy Composition
US20190233961A1 (en) * 2018-01-26 2019-08-01 Samsung Electronics Co., Ltd. Plating solution and metal composite and method of manufacturing the same
US11021804B2 (en) * 2018-01-26 2021-06-01 Samsung Electronics Co., Ltd. Plating solution and metal composite and method of manufacturing the same
US20210366628A1 (en) * 2018-03-16 2021-11-25 Nexans Process for manufacturing a carbon-metal composite material and use thereof for manufacturing an electric cable
US11646125B2 (en) * 2018-03-16 2023-05-09 Nexans Process for manufacturing a carbon-metal composite material and use thereof for manufacturing an electric cable
US11234456B2 (en) * 2018-08-13 2022-02-01 China Tobacco Yunnan Industrial Co., Ltd Modified carbon material and method for reducing carbonaceous material ignition temperature
US11225726B2 (en) * 2019-01-22 2022-01-18 Dowa Metaltech Co., Ltd. Composite plated product and method for producing same
CN111705340A (en) * 2019-03-18 2020-09-25 同和金属技术有限公司 Composite plated article and method of making same
EP4328934A1 (en) * 2022-08-26 2024-02-28 TE Connectivity Solutions GmbH Coating on a surface to transmit electrical current
EP4328933A1 (en) * 2022-08-26 2024-02-28 TE Connectivity Solutions GmbH Coating on a surface to transmit electrical current

Also Published As

Publication number Publication date
KR20130100756A (en) 2013-09-11
EP2634293A2 (en) 2013-09-04
EP2634293B1 (en) 2018-07-18
US20150292105A1 (en) 2015-10-15
KR102079961B1 (en) 2020-02-21
JP2013216971A (en) 2013-10-24
TWI539034B (en) 2016-06-21
EP2634293A3 (en) 2017-01-04
TW201348519A (en) 2013-12-01
CN103290457A (en) 2013-09-11
CN103290457B (en) 2016-03-16
JP6076138B2 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
EP2634293B1 (en) Composites of carbon black and metal
JP5554718B2 (en) Electrolytic deposits of metal-based composite coatings containing nanoparticles
TWI453307B (en) Composite coatings for whisker reduction
JP6046406B2 (en) High temperature resistant silver coated substrate
Ibrahim et al. Electrodeposition and characterization of nickel–TiN microcomposite coatings
KR20210025600A (en) Silver electrolyte for the deposition of a dispersed silver layer and the surface in contact with the dispersed silver layer
KR20150131346A (en) Electrodeposition of silver with fluoropolymer nanoparticles
JP4907107B2 (en) Tin plating material and method for producing the same
KR20200091345A (en) Composite plated product and method for producing same
TW202024401A (en) Thermally stable silver alloy layers
EP3816326B1 (en) Acidic aqueous binary silver-bismuth alloy electroplating compositions and methods
JP4855032B2 (en) Composite plating material and method for producing the same
US20200240029A1 (en) Indium electroplating compositions and methods for electroplating indium on nickel
US20090145764A1 (en) Composite coatings for whisker reduction
TWI467065B (en) Electrolytic deposition of metal-based composite coatings comprising nano-particles
US20220307149A1 (en) Silver electroplating compositions and methods for electroplating silver with low coefficients of friction
KR20210138399A (en) A Cyanide Copper Plating Solution And A Method for Cyanide Copper Plating Using The Same

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION