US20130235845A1 - Session handover in mobile-network content-delivery devices - Google Patents

Session handover in mobile-network content-delivery devices Download PDF

Info

Publication number
US20130235845A1
US20130235845A1 US13/859,427 US201313859427A US2013235845A1 US 20130235845 A1 US20130235845 A1 US 20130235845A1 US 201313859427 A US201313859427 A US 201313859427A US 2013235845 A1 US2013235845 A1 US 2013235845A1
Authority
US
United States
Prior art keywords
ame
mobile device
base station
application
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/859,427
Inventor
Surya Kumar Kovvali
Ravi Valmikam
Charles W. Boyle
Christopher Leary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/536,537 external-priority patent/US8111630B2/en
Application filed by Individual filed Critical Individual
Priority to US13/859,427 priority Critical patent/US20130235845A1/en
Publication of US20130235845A1 publication Critical patent/US20130235845A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/16Performing reselection for specific purposes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/50Network services
    • H04L67/56Provisioning of proxy services
    • H04L67/568Storing data temporarily at an intermediate stage, e.g. caching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/005Control or signalling for completing the hand-off involving radio access media independent information, e.g. MIH [Media independent Hand-off]

Definitions

  • Embodiments of the invention generally relate to mobile networks and, in particular, to transferring service to a mobile device moving between mobile-network domains.
  • GPRS general-packet radio service
  • UMTS universal mobile-telecommunication system
  • GGSN gateway GPRS service node
  • a serving GPRS support node (“SGSN”) is disposed one level of hierarchy below the GGSN and delivers packets to and from radio-network controllers (“RNCs”) in its geographical area.
  • RNCs radio-network controllers
  • Each RNC controls one or more base-transceiver stations (“NodeB” stations).
  • NodeB base-transceiver stations
  • the mobile network operates as a transport network and is thus unaware of, for example, user-level TCP/UDP/IP sessions and application protocols above TCP/UDP.
  • FIG. 1 illustrates an example of a network 100 that includes a UMTS radio-access network (“RAN”) and the Internet.
  • a GGSN 102 within the RAN sends and receives content from a server 104 over the Internet 106 .
  • the RAN operates only as a transport network, and application sessions are therefore terminated outside the RAN (in, e.g., the Internet 106 ).
  • a mobile device 108 moves from a first position 110 to a second position 112 , it leaves the coverage area of a first base-transmitter station 114 and enters the coverage area of a second base-transmitter station 116 .
  • RNCs 118 , 120 use an inter-RNC logical connection 122 in accordance with industry-standard protocols to hand over control-plane and user-plane sessions to the new RNC 120 and new base-transmitter station 116 .
  • the hand-over in the user plane happens at the transport level, and any packets lost en route to or from the first base-transmitter station 114 via the first RNC 118 are re-transmitted to the mobile device 108 at its new position 112 using the second RNC 120 and the second base-transmitter station 116 (or other, similar recovery operations are performed).
  • the common point in the network between the first position 110 and the second position 112 may be further “downstream” (e.g., if the two base-transmitter stations 114 , 116 are managed by a common RNC 118 ) or farther “upstream” (e.g., if a first SGSN 120 or GGSN 102 manages the first base-transmitter station 114 and a second, different SGSN or GGSN manages the second base-transmitter station 116 ).
  • packets are dropped in the system 100 during a base-transmitter transfer in each case, the higher upstream the common point, the more packets will be dropped and the greater the inefficiency of the transfer.
  • 3GPP Third-Generation Partnership Project
  • 3GPP Third-Generation Partnership Project
  • LTE long-term evolution
  • These operations include intra-NodeB handover, inter-NodeB handover, and inter-RNC handover between two RNCs connected to the same or different SGSNs.
  • the mobility and handover scenarios include soft handover, softer handover, and hard handover.
  • the handover and relocation procedures in the prior-art 3GPP standards operate at the packet-transport level and do not, for example, terminate TCP or UDP sessions.
  • various aspects of the systems and methods described herein track data in a RAN at a per-user application (e.g., TCP/UDP) level and forward the buffered data to a new location when a mobile device moves from one area of a RAN to another.
  • a per-user application e.g., TCP/UDP
  • Such user-application-level tracking may use transit buffer, split-tcp, and/or content-caching mechanisms. Any application sessions running on the mobile device prior to this transition are preserved and handed over gracefully to the mobile device following the transition, thus reducing or eliminating dropped packets normally associated with such movement.
  • the tracked per-user application data includes data streams from a buffer, proxy, cache, and/or application server.
  • a method of delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station includes identifying, in the radio-access network, a user application running on the mobile device.
  • the user application receives a stream of application data routed to the mobile device via the first base station. Movement of the mobile device, from the first base station area to the second base station area, is detected.
  • a connection is established, in the radio-access network, between a first application mobility-management entity (“AME”) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station.
  • AME application mobility-management entity
  • the stream of application data is routed over the connection to the mobile device via the second base station.
  • identifying the user application includes recognizing per-user tunnels in the data routed to the mobile device and identifying user-application streams therein; in this embodiment, transport packets in the data routed to the first base station may be analyzed. Routing the stream of application data may be halted when an application using the application data closes. A second stream of data may be routed from a second application, after detecting movement of the mobile device, through the second base station. Data received from the mobile device may be routed over the connection.
  • Identifying the stream of application data may include snooping control-plane protocol traffic and/or user-plane protocol traffic in the radio-access network. Routing the stream of application data may include tunneling the stream of application data.
  • a topology map identifying the first and second base stations may be constructed, and constructing the topology map may include determining an RNC-ID, a SGSN-ID, an eNodeB-ID, and/or an S-GW/MME-ID.
  • the stream of application data may include data streams from at least one of a proxy, cache, and application server, and/or it may stream from a pipeline buffer. Detecting movement may include determining that the target of the movement is the area served by the second base station.
  • a system for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station includes identification, detection, connection, and routing modules.
  • the identification module identifies, in the radio-access network, a user application running on the mobile device; the user application receives a stream of application data routed to the mobile device via the first base station.
  • the detection module detects movement of the mobile device from the first base station area to the second base station area.
  • the connection module establishes a connection, in the radio-access network, between a first application mobility-management entity (AME) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station.
  • AME application mobility-management entity
  • the routing module routes the stream of application data over the connection to the mobile device via the second base station.
  • the system also includes a cache for caching application data; the stream of application data may be served from the cache.
  • the connection may include a TCP, UDP, GRE, and/or GTP connection.
  • an application mobility-management entity (“AME”) device delivers content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station.
  • An input module receives traffic from a radio-access network.
  • a processor analyzes the received traffic, identifies a user application running on the mobile device, determines an address of the second base station, and establishes a connection in the radio-access network to a second AME device in communication with the second base station.
  • An output module for sending the content to the second AME device, the second AME device sending content related to the user application to the mobile device.
  • the received traffic includes control-plane data and/or user-plane data.
  • the AME device may be configured to be disposed between one of a NodeB and an RNC, an RNC and a SGSN, a SGSN and a GGSN, an eNodeB and a S-GW/MME, and a S-GW/MME and a P-GW.
  • the AME may be configured to be logically in-line between two network devices, and/or include a server, a rack-mount server, and/or a blade server.
  • the AME may be configured for communication with a third AME device associated with a third base station, the AME device sending the content to the third AME device upon detecting the mobile device moving to an area served by the third base station.
  • FIG. 1 is a block diagram of a network that includes the Internet and a prior-art RAN;
  • FIG. 2 is a block diagram of a network that includes the Internet and a UMTS RAN in accordance with an embodiment of the invention
  • FIG. 3 is a block diagram of a network that includes the Internet and an LTE RAN in accordance with an embodiment of the invention
  • FIG. 4 is a block diagram illustrating re-direction of application data streams in a UMTS network in accordance with an embodiment of the invention
  • FIG. 5 is a block diagram illustrating re-direction of application data streams in an LTE network in accordance with an embodiment of the invention
  • FIG. 6 is a block diagram of a device implementing an application mobility-management entity in accordance with an embodiment of the invention.
  • FIG. 7 is a block diagram of an application mobility-management entity in accordance with an embodiment of the invention.
  • FIG. 8 is a flowchart illustrating a session handover process in accordance with an embodiment of the invention.
  • FIG. 9 is a block diagram of a RAN cache in accordance with an embodiment of the invention.
  • FIG. 10 is a block diagram of a network that includes a RAN cache and an application mobility-management entity.
  • FIG. 2 illustrates a network 200 that includes a UMTS network and the Internet.
  • a server 202 serves content over the Internet 204 to a GGSN 206 and through a SGSN 208 .
  • the content is routed to an RNC 210 and a base-transmitter station 212 to be delivered to a mobile device 214 .
  • an application mobility-management entity (“AME”) 216 Disposed between the SGSN 208 and the RNC 210 is an application mobility-management entity (“AME”) 216 .
  • AME application mobility-management entity
  • the AME 216 examines traffic between the SGSN 208 and the RNC 210 , identifies movement of the mobile device 214 from a first position 218 to a second position 220 , and, if any streams of application data were being routed through the RNC 210 and base-transmitter station 212 , re-routes the streams of data via an inter-AME link 222 to a second AME 224 , a second RNC 226 , and a second base-transmitter station 228 .
  • the AME 216 may be logically in-line between the SSGN 208 and RNC 210 and intercept user plane-protocols (e.g., IuPS/GTP-U packets) corresponding to the mobile device 214 and control-plane protocols (e.g., IuPS-CP packets) passing between the devices 208 , 210 , as described in more detail below.
  • user plane-protocols e.g., IuPS/GTP-U packets
  • control-plane protocols e.g., IuPS-CP packets
  • the AME 216 is a stand-alone device such as a stand-alone server, a rack-mount server, a blade server, a custom-designed appliance, or any other type of content-aware computing device capable of examining and routing network traffic.
  • the AME 216 is a software or firmware program running on a network device already existing in the network 200 .
  • the AME 216 may be incorporated in to a RAN cache device, a traffic-offload device, or any other application proxy or content-edge device, or its functionality distributed among multiple such devices.
  • the AME 216 may alternatively be located elsewhere in the RAN, such as between the base-transmitter station 212 and RNC 210 or between the SGSN 208 and GGSN 206 .
  • the flow of relevant traffic between the Internet 204 and the mobile device 214 is defined as a set of one or more TCP and UDP connections that may be combined to deliver applications to the mobile device 214 .
  • An application is defined as any service that requires a flow-level anchor point. Examples of applications include web-browsing applications, file-transfer applications, and video-player applications, each using TCP/UDP/IP transport mechanisms.
  • the set or grouping of TCP/UDP connections is based on application requirements and may be configured or dynamically negotiated between an application and the mobility management function. For example, in the case of an HTTP server, the grouping may include only one TCP connection. In the case of an RTSP streaming application, on the other hand, the grouping may include a TCP-based RTSP connection and an UDP-based RTP stream.
  • FIG. 3 illustrates a network 300 that includes AMEs 302 , 304 deployed in an LTE network (as opposed to the UMTS network illustrated in FIG. 2 ).
  • the AMEs 302 , 304 are disposed on an S1 interface between base-transceiver stations (i.e., eNodeBs) 306 , 308 and serving gateway/mobility-management entity (“S-GW/MME”) 310 .
  • the AMEs 302 , 304 may intercept S1 user-plane protocols and/or S1 control-plane protocols and communicate session-handover information, in accordance with embodiments of the current invention, over the inter-AME connection 312 .
  • an inter-eNodeB connection 314 may be used, in accordance with the LTE architecture, during inter-eNodeB handovers for transport level packet forwarding without user-application level knowledge.
  • the AMEs 302 , 304 behave similarly to the AMEs described above with reference to FIG. 2 and as described in more detail below.
  • the AMEs 302 , 304 are disposed between the S-GW/MME 310 and a packet gateway (“P-GW”) 316 .
  • the AMEs 302 , 304 may be incorporated into the eNodeBs 306 , 308 or into the S-GW/MME 310 .
  • AMEs may be used in any wireless network, and are not limited to only UMTS and LTE networks. Identification and Mapping
  • each AME Upon deployment and/or periodically during their use, each AME identifies the specific RAN in which it is located by intercepting and observing control-plane protocol packets (e.g., IuPS packets in an UMTS network or S1 packets in an LTE network).
  • the AME may, for example, determine an RNC-ID and/or SGSN-ID for its particular RAN.
  • the RNCs 210 , 226 and SGSN 208 communicate to exchange their RNC-IDs and SGSN-ID.
  • the eNodeBs 306 , 308 and S-GW/MME 310 communicate to exchange their eNodeB-IDs and MME-ID.
  • the AMEs intercept the control-plane protocol packets used to convey this information (e.g., RANAP in UMTS and S1AP in LTE).
  • Each AME identifies the RNC-ID or eNodeB-ID of its local RNC or eNodeB and associates the scope of the discovered interface with that RNC-ID or eNodeB-ID.
  • the first AME 216 of FIG. 2 associates the base-transmitter station 212 , RNC 210 , SGSN 208 , and/or GGSN 206 with the RNC-ID of the RNC 210 and/or the SGSN-ID of the SGSN 208 .
  • each AME If the AME intercepts multiple IuPS or S1AP interfaces, it associates each RANAP/S1AP interface with the corresponding RNC-ID/S1AP-ID. Thus, in a network with multiple AMEs, in which each AME intercepts a plurality of RANAP/S1AP interfaces, each AME knows the RNC-ID/eNodeB-ID of each of the intercepted interfaces.
  • the AMEs may communicate with each other to build a topology map that incorporates the location information learned by each AME about its corresponding RAN(s) (for UMTS networks).
  • the topology map includes information about each AME's eNodeB(s) and S-GW/MME.
  • the AMEs may use allocated TCP/UDP port numbers for inter-AME communication.
  • Each AME may be statically configured with its own IP address, and the topology map may include the IP addresses of some or all of the AMEs in the network.
  • the AMEs are dynamically assigned IP addresses using a discovery protocol and their allocated communicated parameters such as TCP/UDP port numbers.
  • an AME when an AME associates itself with one or more RNCs or eNodeBs, it propagates the set of associated RNCs/eNodeBs to other AMEs. As a result of this step, each AME knows about other AMEs and the RNC-IDs/eNodeB-IDs with which they are associated.
  • the AME-to-AME communication is not limited to TCP/UDP protocols, however, and any appropriate communications protocol, such as VLAN, MPLS, IPSec, GRE, and/or GTP may be used. Some protocols, such as GTP, may have less packet latency due to, for example, not requiring packet transformation.
  • the AME snoops user-plane protocols (instead of, or in addition to, control-plane protocols) to learn its associated RNC/eNodeB IP addresses.
  • the AME may monitor the IuPS interface in a UMTS network or the S1 interface in an LTE network to determine this information.
  • the user-data packets may be carried within GTP-U tunnels and contain transport addresses of a RNC, SGSN, and/or GGSN in the UMTS network or eNodeB and/or S-GW in the LTE network.
  • each AME associates itself with the set of transport IP addresses of a RNC or eNodeB for the corresponding interface.
  • each AME may be configured with its own IP address and the map of IP addresses of the other AMEs in the RAN.
  • each AME monitors the user-plane traffic flowing through or alongside it.
  • Information such as client sessions, port numbers, TCP/UDP connection setup/tear-downs, and/or application context (for example, byte offset in an FTP transfer) may be gathered.
  • an AME may monitor traffic for thousands of mobile devices.
  • Each stream of application data is assigned to a mobile device; as described above, a single device may be the source or termination for multiple streams of application data (from one or more applications).
  • Each AME may build a list of TCP and UDP ports that each application uses to communicate with a mobile device at any given point of time.
  • a mobile device accesses the UMTS or LTE wireless mobile network
  • the mobile device first establishes a signaling connection (e.g., an Iu connection) to the SGSN (in UMTS networks) or MME (in LTE networks).
  • a signaling connection e.g., an Iu connection
  • This connection is established through an IuPS/RANAP logical interface in UMTS and an S1/S1AP logical interface in LTE.
  • the AME intercepting the control-plane protocols associates the mobile device with corresponding logical control-plane interface and the associated RNC or eNodeB.
  • the serving AME As the mobile device moves from the scope of one AME location (the “serving AME”) to the scope of another AME (the “drift AME”) in a UMTS network, the serving AME snoops the RAN's control-plane traffic to derive the details of the movement from one RAN to another and to identify the drift AME using the topology map described above.
  • the RNC/eNodeB when a mobile device moves from the scope of one RNC (or from the scope of one eNodeB in an LTE network) to another, the RNC/eNodeB performs a handover procedure using an IuR/X2 interface.
  • the serving RNC/eNodeB recognizes that the mobile device moved outside scope and that the mobile device is better serviced by moving the associated signaling connection and datapath bearers to the drift RNC/eNB.
  • the serving RNC initiates a RNC-relocation procedure, in accordance with the 3GPP standard.
  • the serving RNC sends a “relocation required” message, containing the serving RNC-ID and drift RNC-ID information elements, to its SGSN.
  • This “relocation required” message may be intercepted by an AME, which uses this information to identify the drift RNC-ID.
  • the serving AME identifies the IP address of the drift AME.
  • Detecting motion of a mobile device in an LTE network is similar to the procedure for detecting motion in a UMTS network, although the LTE interface protocols and corresponding messages differ.
  • An AME in an LTE network associates its SLAP interfaces with corresponding eNodeB-IDs, and the AMEs communicate with each other to exchange eNodeB-to-AME associations.
  • the AME intercepting the SLAP messages identifies the information contained therein (e.g., the MME-UE-S1AP-ID, or ENB-UE-S1AP-ID) that corresponds to the mobile device and associates that with its eNodeB.
  • the serving and drift eNodeBs and their governing MME transfer control from serving to drift using handover-signaling messages, as described in the 3GPP standards.
  • the serving eNodeB sends a “hand-over-required” message, containing the drift eNodeB's ID information element, to the MME.
  • the serving AME intercepts this eNodeB-to-MME message, identifies the drift eNodeB's ID, and identifies a drift AME using the eNodeB-ID-to-AME association described above.
  • the serving and drift AMEs set up a user-plane tunnel for transferring user-plane data packets therebetween.
  • the AMEs may then use this tunnel to transfer user-plane data between the mobile device and the serving AME (in either direction) though the drift AME.
  • FIG. 4 illustrates a UMTS network 400 that includes a serving AME 402 and a drift AME 404 that collaborate to route an application stream to a mobile device 406 after it moved from a first position 408 to a second position 410 .
  • Each AME 402 , 404 may include an application entity.
  • the two AMEs 402 , 404 communicate over an interface 412 , which may be a TCP, UDP, or any other type of connection.
  • An existing application data stream 414 created while the mobile device 406 was in the first position 408 , is routed over the inter-AME connection 412 .
  • a new application data stream 416 created after the mobile device 406 has moved to the new position 410 , is routed directly through the drift AME 402 .
  • the mobile device 406 moves from the first position 408 (i.e., within the scope of a first RNC 418 ) to the second position 410 (i.e., within the scope of a second RNC 420 ), the RNC transport address changes accordingly.
  • the drift AME 402 checks the neighboring AME 404 , in accordance with its local configuration, for previously active TCP/UDP application data flows. If such data flows exist, the drift AME 402 establishes the user-plane tunnel 414 for exchanging the user-data packets.
  • FIG. 5 is an LTE implementation 500 of the AMEs described above.
  • a serving AME 502 and a drift AME 504 are placed on the S1 logical interface (and employ S1-AP control-plane and S1 user-plane protocols) between an MME/S-GW 506 and eNodeBs 508 , 510 .
  • the drift AME 502 identifies a “path-switch request message” sent by the target eNodeB 508 to the MME/S-GW 506 and communicates with the source AME 504 to start the forwarding of mobile-device data between the source AME 504 and the mobile device 516 through the drift AME 502 for already-active TCP/UDP sessions.
  • a previously active application flow 512 is forwarded by the serving AME 504 through the drift AME 502 .
  • a newly started application session 514 is serviced directly by the drift AME 502 .
  • the serving AME 404 informs the drift AME 402 of all the existing flows and all the TCP and UDP connections used by each flow that correspond to applications used by the mobile device 406 .
  • the serving AME 404 transfers previously active session packets to/from the mobile device 406 through the drift AME 402 until the old TCP/UDP sessions (e.g., the session 414 ) are closed. Sessions may close when, for example, data in a cache or buffer (e.g., a pipeline buffer) associated with the source AME 404 is exhausted or when the application requesting the flows is terminated.
  • a cache or buffer e.g., a pipeline buffer
  • the drift AME 402 Because the drift AME 402 has direct contact with the mobile device 406 device after it has moved to the new position 410 , the drift AME 402 forwards all the up-link packets received from the mobile device 406 that belong to the existing flows 414 to the serving AME 404 .
  • the drift AME 402 forwards all other packets (e.g., packets related to the setup of new TCP/UDP sessions and/or DNS Requests) to either local applications (e.g., local-application proxies) or to the core network 422 .
  • the drift AME 402 filters out previously established flows and sends them to the serving AME 404 and treats all other flows as it normally would.
  • Newly started application flows e.g., new TCP connections and/or DNS requests
  • that are not explicitly specified by the serving AME 404 are processed locally, without co-ordination with the serving AME 404 .
  • the serving AME 404 forwards all the packets received from the drift AME 402 to a local application function and forwards all the packets received from the local application function to the drift AME 402 .
  • the drift AME 402 transfers packets received from serving AME 404 either to the RNC 420 for delivery to the mobile device 406 or to the core network 422 to deliver to, e.g., servers 424 over the Internet 426 .
  • the drift 402 and serving 404 AMEs may also keep track of termination of some or all the TCP/UDP connections 412 , 414 by intercepting user-plane traffic. When these connections terminate, the drift AME 402 stops forwarding packets associated with these flows to the serving AME 404 .
  • the former target AME 402 sends the set of flows 414 handled by the serving AME 404 to the new target AME.
  • the former target AME 402 may also send the set of flows 416 handled by the former target AME 402 to the new target AME.
  • the new target AME takes over all the responsibility of the former target AME 402 and forwards packets to (and receives packets from) the serving AME 404 . If the mobile device 406 started new application flows while at the first drifting location 410 , the new target AME forwards traffic associated with those flows to the former target AME 402 (i.e., the former target AME 402 acts like a serving AME for these flows).
  • the current target AME notifies the rest of AMEs in the network, and all the AMEs clear their internal states with respect to the mobile device 406 .
  • FIG. 6 is a block diagram of a representative device 600 implementing an AME.
  • the AME 600 may be any appropriate network device or appliance, such as a server, rack-mount server, blade server, or edge server.
  • Instructions for operating the AME 600 are stored in a storage device 602 , which may be a magnetic disk, optical disk, solid-state drive, flash memory, or any other storage medium.
  • a processor 604 executes the instructions and stores instructions and data in memory 606 .
  • An input/output interface module 608 communicates with other devices in a RAN in accordance with their appropriate communications protocols (e.g., IuB, IuPC, or Gn for a UMTS network or S1 or S5 for an LTE network) and with the internal components of the device 600 via a bidirectional bus.
  • the input/output module 608 may observe RAN traffic passively (e.g., by observing it at a tap point in the RAN network) or may be inserted inline within the RAN network (and receive input RAN traffic, decode and re-encode it, and output the examined RAN traffic back into the RAN network).
  • the AME 600 may be controlled remotely via the input/output interface 608 or locally via a user interface 610 .
  • FIG. 7 is a block diagram illustrating software modules of an AME 700 .
  • a data-stream identification module 702 monitors data moving in a RAN network, identifies streams of data, and associates streams of data with individual originating and receiving mobile devices.
  • a mobile device may have one or more streams of data associated with it.
  • a RAN may include many AMEs, and each AME identifies streams of data associated with its part of the RAN.
  • a movement-detection module 704 detects movement of a mobile device from one part of the RAN to another (e.g., movement from a first base-transmitter station or RNC to a second base-transmitter station or RNC, as described above).
  • An RNC or eNodeB as described above, sends detected movement information in accordance with 3GPP standards, and the movement-detection module 704 intercepts this traffic and extracts the movement information. The mobile device's beginning and ending locations are thus determined.
  • An inter-AME connection module 706 establishes a TCP/UDP connection between a serving AME and a drift AME.
  • the connection may include a direct link between the two AMEs or may include a more circuitous path passing through other network components.
  • the inter-AME connection module 706 may create a logical link between the two AMEs that abstracts away details of the physical link and behaves as if the link were a direct one.
  • a data-routing module 708 routes existing streams of data between a drift AME and a serving AME in accordance with embodiments of the invention.
  • FIG. 8 illustrates a method 800 for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station (e.g., the scope of a first RNC in a UMTS network) to an area served by a second base station (e.g., the scope of a second RNC in the UMTS network).
  • a first step 802 a stream of application data routed to the mobile device via the first base station is identified in the radio-access network.
  • the stream of application data is identified with a user application running on the mobile device.
  • embodiments of the present invention identify application data at the TCP/UDP level by, for example, recognizing per-user tunnels in the data routed to the mobile device and tracking which per-user tunnels are associated with each device and application.
  • transport packets routed to the mobile device are analyzed to obtain this information.
  • a second step 804 movement of the mobile device from an area served by the first base station to an area served by the second base station the second base station is detected.
  • the detection of the movement may include determining a destination or target of the movement (Step 805 ).
  • a connection in the radio-access network is established between a first logical or physical device (e.g., a first AME) disposed within a first portion of the radio-access network serving the first base station and a second logical or physical device (e.g., a second AME) disposed within a second portion of the radio-access network serving the second base station.
  • a first logical or physical device e.g., a first AME
  • a second logical or physical device e.g., a second AME
  • Edge or application devices may be used to cache content and/or to act as proxies for content (as, e.g., a web proxy). These devices may be deployed within the RAN to cache content and/or act as proxies between two network elements in the RAN.
  • This RAN Cache (“RANC”) delivers locally cached content and/or terminates a client-side application session and uses a different session for communication with the home server.
  • An AME as described above, may be used to identify and re-route content being served from a RANC as a mobile device travels from the scope of one RAN (i.e., from a first RNC) to the scope of another RAN (i.e., to a second RNC).
  • a RANC may be disposed proximate a first AME, which monitors traffic between the RANC and a mobile device.
  • the mobile device may move away from the portion of the RAN monitored by the first AME to a new portion monitored by a second AME.
  • the first and second AMEs may then establish a connection between them, as described above, to transport the data in the RANC to the new location of the mobile device.
  • data cached in a RANC may be preserved during a movement of a mobile device instead of flushed.
  • FIG. 9 is block diagram of one embodiment of a RANC 900 .
  • the RANC 900 includes two interface modules 902 , 904 , for the hardware signaling required to communicate with other devices in the RAN using an appropriate interface and software protocol (e.g., IuB, IuPS, or Gn).
  • Each interface module 902 , 904 may receive and/or transmit data on the selected interface. Received data may be placed into a storage element 906 .
  • the movement of data between the interface modules 902 , 904 and the storage element 906 may involve dedicated hardware, such as a DMA controller, or a dedicated data-movement processor.
  • control-plane and user-plane tunnels within the RANC 900 on the interfaces that connect to RAN devices, is in accordance with the RAN specifications.
  • the processing of application protocols within these user-plane tunnels is per the application proxy, caching, etc. policies with the RANC device.
  • This data processing may be accomplished using dedicated control logic or a processing unit 908 .
  • the control logic/processing unit 908 may have its own local storage element 910 , which contains instructions to execute and store local status. Using known specifications and protocols, the control logic/processing unit 908 parses the received information to understand received packets at each protocol layer.
  • a cache storage element 912 may also be included for holding cached information.
  • the storage element 906 , local storage 910 , and cache 912 may be implemented with any appropriate storage technology known in the art, such as random-access memory, flash memory, or a block storage device (e.g., a magnetic or solid-state disk).
  • the control logic/processing unit 908 may be a general-purpose processor and executing a set of instructions from an internal or external storage device. In other embodiments, the control logic/processing unit 908 is a dedicated hardware device having embedded instructions or a state machine.
  • FIG. 10 illustrates a network 1000 that includes RANCs 1002 , 1004 .
  • the RANCs 1002 , 1004 may include AMEs for handling mobility of a mobile device 1006 from the scope of one RNC 1008 to another RNC 1010 .
  • 3GPP standards define mobility and handover operations for handling mobility within one SGSN 1012 or across two different SGSNs 1012 , 1014 .
  • the 3GPP standard protocols define relocation procedures by which the first RNC 1008 moves an active session of a UE to the second RNC 1010 .
  • the RANC/AME 1002 becomes the serving RANC/AME and the RANC/AME 1004 becomes the drift RANC/AME.
  • the serving RANC/AME 1002 recognizes the mobile-device relocation and provides TCP/UDP-level application forwarding to the drift RANC/AME 1004 for the content cached therein.
  • the serving RANC/AME 1002 may initiate context handover for some or all of the content that it is serving from its local cache. Any traffic that passes through the serving RANC/AME 1002 is re-configured to pass through the target RANC/AME 1004 .
  • each RANC/AME communicates with its neighboring RANC/AME(s).
  • Each RANC/AME maintains the identification of RNC to which it is connected as well as list of RANCs and the RNCs to which the first RNC is connected.
  • the serving RANC/AME 1002 recognizes a relocation request and the identification of the target RNC 1010 . It determines the drift RANC/AME 1004 that connects to target RNC 1010 and initiates a context transfer with the drift RANC/AME 1004 .
  • the source RANC/AME 1002 handles relocation of the mobile device 1006 for which it is performing content-aware operations to the target RANC/AME 1004 by two basic operations.
  • the current RANC/AME 1002 transfers the mobile-device context, including user subscription, GTP-U tunnel information, and other information, to the drift RANC/AME 1004 .
  • the serving RANC/AME 1002 continues to send and receive traffic from the mobile device 1006 through its new coverage area (i.e., through a new base-transmitter station 1016 ) through the drift RANC/AME 1004 using the inter-RANC/AME link 1018 .
  • the drift RANC/AME 1004 In the uplink direction (i.e., traffic received from the mobile device 1006 ), the drift RANC/AME 1004 identifies traffic for new flows (e.g., new TCP connections, DNS requests, and/or UDP Requests) as opposed to the traffic for previously active flows (e.g., TCP ACKs or RTP retransmission requests). The drift RANC/AME 1004 forwards the packets for already-active flows to the serving RANC/AME 1002 and processes traffic for new flows locally. In the downlink direction (i.e., traffic to the mobile device 1006 ), the drift RANC/AME 1004 receives downlink packets for already-active flows from the serving RANC/AME 1002 and handles traffic for new flows locally.
  • traffic for new flows e.g., new TCP connections, DNS requests, and/or UDP Requests
  • the drift RANC/AME 1004 forwards the packets for already-active flows to the serving RANC/AME 1002 and processes traffic for new flows locally.
  • the serving RANC/AME 1002 continues to supply cached content, or any other TCP/UDP data, for active flows.
  • This step also includes the drift RANC/AME 1004 recognizing new flows from the mobile device 1006 , anchoring them, and at the same time, forwarding already-active flows through the serving RANC/AME 1002 .
  • Embodiments of the present invention may be provided as one or more computer programs embodied on or in one or more articles of manufacture.
  • the article of manufacture may be any suitable computer-readable medium, such as, for example, a floppy disk, a hard disk, a CD ROM, a CD-RW, a CD-R, a DVD ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape.
  • the computer-readable programs may be implemented in any programming language. Some examples of languages that may be used include C, C++, or JAVA.
  • the software programs may be further translated into machine language or virtual machine instructions and stored in a program file in that form.
  • the program file may then be stored on or in one or more of the articles of manufacture.
  • the computer programs may be distributed over various intercommunicating hardware elements (e.g., network nodes in a radio-access network).

Abstract

An application mobility-management entity (“AME”) in a radio-access network detects movement of a mobile device and routes application data for already-active application streams associated with the mobile device to the device's new location by establishing a connection to a second AME in the radio-access network. The second AME merges forwarded application data from/to the first AME for previously active application streams with the new application streams (e.g., new TCP connections) locally and forwards to/from the mobile device through the radio access network elements.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of, and claims priority to and the benefit of, co-pending U.S. patent application Ser. No. 12/536,537, filed on Aug. 6, 2009, and claims priority to and the benefit of U.S. Provisional Patent Application Ser. No. 61/257,899, filed on Nov. 4, 2009, the disclosures of which are hereby incorporated herein by reference in their entireties.
  • TECHNICAL FIELD
  • Embodiments of the invention generally relate to mobile networks and, in particular, to transferring service to a mobile device moving between mobile-network domains.
  • BACKGROUND
  • The increasing number of network-connected mobile devices, as well as the increasingly data-intensive applications run on these devices, continue to tax mobile-network infrastructure. As network bandwidth limits are reached, inefficiencies in network architectures and implementations become more apparent. One such inefficiency occurs when a mobile devices moves from a coverage area of a first base-transceiver station to a second; packets sent to or from the first base-transmitter station are dropped and must be re-sent using the second base-transmitter station.
  • In a prior-art general-packet radio service (“GPRS”) system such as a universal mobile-telecommunication system (“UMTS”), a gateway GPRS service node (“GGSN”) links a packet-switched network, such as the Internet, to the GPRS network. A serving GPRS support node (“SGSN”) is disposed one level of hierarchy below the GGSN and delivers packets to and from radio-network controllers (“RNCs”) in its geographical area. Each RNC controls one or more base-transceiver stations (“NodeB” stations). In such deployments, the mobile network operates as a transport network and is thus unaware of, for example, user-level TCP/UDP/IP sessions and application protocols above TCP/UDP.
  • FIG. 1 illustrates an example of a network 100 that includes a UMTS radio-access network (“RAN”) and the Internet. A GGSN 102 within the RAN sends and receives content from a server 104 over the Internet 106. The RAN operates only as a transport network, and application sessions are therefore terminated outside the RAN (in, e.g., the Internet 106). When a mobile device 108 moves from a first position 110 to a second position 112, it leaves the coverage area of a first base-transmitter station 114 and enters the coverage area of a second base-transmitter station 116. RNCs 118, 120 use an inter-RNC logical connection 122 in accordance with industry-standard protocols to hand over control-plane and user-plane sessions to the new RNC 120 and new base-transmitter station 116. The hand-over in the user plane happens at the transport level, and any packets lost en route to or from the first base-transmitter station 114 via the first RNC 118 are re-transmitted to the mobile device 108 at its new position 112 using the second RNC 120 and the second base-transmitter station 116 (or other, similar recovery operations are performed).
  • In other examples, the common point in the network between the first position 110 and the second position 112 may be further “downstream” (e.g., if the two base- transmitter stations 114, 116 are managed by a common RNC 118) or farther “upstream” (e.g., if a first SGSN 120 or GGSN 102 manages the first base-transmitter station 114 and a second, different SGSN or GGSN manages the second base-transmitter station 116). Although packets are dropped in the system 100 during a base-transmitter transfer in each case, the higher upstream the common point, the more packets will be dropped and the greater the inefficiency of the transfer.
  • Existing Third-Generation Partnership Project (“3GPP”) standards define different types of mobility and relocation operations when a mobile device moves from the coverage area of the first base-transmitter station 114 (e.g., a NodeB/RNC combination in an UMTS network or an eNodeB in a long-term evolution (“LTE”) network) to the second base-transmitter station 116. These operations include intra-NodeB handover, inter-NodeB handover, and inter-RNC handover between two RNCs connected to the same or different SGSNs. The mobility and handover scenarios include soft handover, softer handover, and hard handover. The handover and relocation procedures in the prior-art 3GPP standards operate at the packet-transport level and do not, for example, terminate TCP or UDP sessions.
  • SUMMARY
  • In general, various aspects of the systems and methods described herein track data in a RAN at a per-user application (e.g., TCP/UDP) level and forward the buffered data to a new location when a mobile device moves from one area of a RAN to another. Such user-application-level tracking may use transit buffer, split-tcp, and/or content-caching mechanisms. Any application sessions running on the mobile device prior to this transition are preserved and handed over gracefully to the mobile device following the transition, thus reducing or eliminating dropped packets normally associated with such movement. If the RAN includes caches or buffers, any data therein is maintained even if the mobile device moves out of the domain of the cache or buffer; the stored data is routed to the new location of the mobile device, which ideally experiences no interruption or delay in service. In various embodiments, the tracked per-user application data includes data streams from a buffer, proxy, cache, and/or application server.
  • Accordingly, in a first aspect, a method of delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station includes identifying, in the radio-access network, a user application running on the mobile device. The user application receives a stream of application data routed to the mobile device via the first base station. Movement of the mobile device, from the first base station area to the second base station area, is detected. A connection is established, in the radio-access network, between a first application mobility-management entity (“AME”) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station. The stream of application data is routed over the connection to the mobile device via the second base station.
  • In various embodiments, identifying the user application includes recognizing per-user tunnels in the data routed to the mobile device and identifying user-application streams therein; in this embodiment, transport packets in the data routed to the first base station may be analyzed. Routing the stream of application data may be halted when an application using the application data closes. A second stream of data may be routed from a second application, after detecting movement of the mobile device, through the second base station. Data received from the mobile device may be routed over the connection.
  • Identifying the stream of application data may include snooping control-plane protocol traffic and/or user-plane protocol traffic in the radio-access network. Routing the stream of application data may include tunneling the stream of application data. A topology map identifying the first and second base stations may be constructed, and constructing the topology map may include determining an RNC-ID, a SGSN-ID, an eNodeB-ID, and/or an S-GW/MME-ID. The stream of application data may include data streams from at least one of a proxy, cache, and application server, and/or it may stream from a pipeline buffer. Detecting movement may include determining that the target of the movement is the area served by the second base station.
  • In general, in another aspect, a system for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station includes identification, detection, connection, and routing modules. The identification module identifies, in the radio-access network, a user application running on the mobile device; the user application receives a stream of application data routed to the mobile device via the first base station. The detection module detects movement of the mobile device from the first base station area to the second base station area. The connection module establishes a connection, in the radio-access network, between a first application mobility-management entity (AME) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station. The routing module routes the stream of application data over the connection to the mobile device via the second base station. In various embodiments, the system also includes a cache for caching application data; the stream of application data may be served from the cache. The connection may include a TCP, UDP, GRE, and/or GTP connection.
  • In general, in yet another aspect, an application mobility-management entity (“AME”) device delivers content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station. An input module receives traffic from a radio-access network. A processor analyzes the received traffic, identifies a user application running on the mobile device, determines an address of the second base station, and establishes a connection in the radio-access network to a second AME device in communication with the second base station. An output module for sending the content to the second AME device, the second AME device sending content related to the user application to the mobile device. In various embodiments, the received traffic includes control-plane data and/or user-plane data. The AME device may be configured to be disposed between one of a NodeB and an RNC, an RNC and a SGSN, a SGSN and a GGSN, an eNodeB and a S-GW/MME, and a S-GW/MME and a P-GW. The AME may be configured to be logically in-line between two network devices, and/or include a server, a rack-mount server, and/or a blade server. The AME may be configured for communication with a third AME device associated with a third base station, the AME device sending the content to the third AME device upon detecting the mobile device moving to an area served by the third base station.
  • These and other objects, along with advantages and features of the present invention herein disclosed, will become more apparent through reference to the following description, the accompanying drawings, and the claims. Furthermore, it is to be understood that the features of the various embodiments described herein are not mutually exclusive and may exist in various combinations and permutations.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • In the drawings, like reference characters generally refer to the same parts throughout the different views. In the following description, various embodiments of the present invention are described with reference to the following drawings, in which:
  • FIG. 1 is a block diagram of a network that includes the Internet and a prior-art RAN;
  • FIG. 2 is a block diagram of a network that includes the Internet and a UMTS RAN in accordance with an embodiment of the invention;
  • FIG. 3 is a block diagram of a network that includes the Internet and an LTE RAN in accordance with an embodiment of the invention;
  • FIG. 4 is a block diagram illustrating re-direction of application data streams in a UMTS network in accordance with an embodiment of the invention;
  • FIG. 5 is a block diagram illustrating re-direction of application data streams in an LTE network in accordance with an embodiment of the invention;
  • FIG. 6 is a block diagram of a device implementing an application mobility-management entity in accordance with an embodiment of the invention;
  • FIG. 7 is a block diagram of an application mobility-management entity in accordance with an embodiment of the invention;
  • FIG. 8 is a flowchart illustrating a session handover process in accordance with an embodiment of the invention;
  • FIG. 9 is a block diagram of a RAN cache in accordance with an embodiment of the invention; and
  • FIG. 10 is a block diagram of a network that includes a RAN cache and an application mobility-management entity.
  • DETAILED DESCRIPTION
  • FIG. 2 illustrates a network 200 that includes a UMTS network and the Internet. A server 202 serves content over the Internet 204 to a GGSN 206 and through a SGSN 208. The content is routed to an RNC 210 and a base-transmitter station 212 to be delivered to a mobile device 214. Disposed between the SGSN 208 and the RNC 210 is an application mobility-management entity (“AME”) 216. In general, as described in more detail below, the AME 216 examines traffic between the SGSN 208 and the RNC 210, identifies movement of the mobile device 214 from a first position 218 to a second position 220, and, if any streams of application data were being routed through the RNC 210 and base-transmitter station 212, re-routes the streams of data via an inter-AME link 222 to a second AME 224, a second RNC 226, and a second base-transmitter station 228. The AME 216 may be logically in-line between the SSGN 208 and RNC 210 and intercept user plane-protocols (e.g., IuPS/GTP-U packets) corresponding to the mobile device 214 and control-plane protocols (e.g., IuPS-CP packets) passing between the devices 208, 210, as described in more detail below.
  • In one embodiment, the AME 216 is a stand-alone device such as a stand-alone server, a rack-mount server, a blade server, a custom-designed appliance, or any other type of content-aware computing device capable of examining and routing network traffic. In other embodiments, the AME 216 is a software or firmware program running on a network device already existing in the network 200. For example, as explained in greater detail below, the AME 216 may be incorporated in to a RAN cache device, a traffic-offload device, or any other application proxy or content-edge device, or its functionality distributed among multiple such devices. In UMTS networks such as the network depicted in FIG. 2, the AME 216 may alternatively be located elsewhere in the RAN, such as between the base-transmitter station 212 and RNC 210 or between the SGSN 208 and GGSN 206.
  • The flow of relevant traffic between the Internet 204 and the mobile device 214 is defined as a set of one or more TCP and UDP connections that may be combined to deliver applications to the mobile device 214. An application is defined as any service that requires a flow-level anchor point. Examples of applications include web-browsing applications, file-transfer applications, and video-player applications, each using TCP/UDP/IP transport mechanisms. The set or grouping of TCP/UDP connections is based on application requirements and may be configured or dynamically negotiated between an application and the mobility management function. For example, in the case of an HTTP server, the grouping may include only one TCP connection. In the case of an RTSP streaming application, on the other hand, the grouping may include a TCP-based RTSP connection and an UDP-based RTP stream.
  • FIG. 3 illustrates a network 300 that includes AMEs 302, 304 deployed in an LTE network (as opposed to the UMTS network illustrated in FIG. 2). The AMEs 302, 304 are disposed on an S1 interface between base-transceiver stations (i.e., eNodeBs) 306, 308 and serving gateway/mobility-management entity (“S-GW/MME”) 310. The AMEs 302, 304 may intercept S1 user-plane protocols and/or S1 control-plane protocols and communicate session-handover information, in accordance with embodiments of the current invention, over the inter-AME connection 312. Note that an inter-eNodeB connection 314 may be used, in accordance with the LTE architecture, during inter-eNodeB handovers for transport level packet forwarding without user-application level knowledge. The AMEs 302, 304 behave similarly to the AMEs described above with reference to FIG. 2 and as described in more detail below. In one embodiment, the AMEs 302, 304 are disposed between the S-GW/MME 310 and a packet gateway (“P-GW”) 316. In another embodiment, the AMEs 302, 304 may be incorporated into the eNodeBs 306, 308 or into the S-GW/MME 310. In general, AMEs may be used in any wireless network, and are not limited to only UMTS and LTE networks. Identification and Mapping
  • Upon deployment and/or periodically during their use, each AME identifies the specific RAN in which it is located by intercepting and observing control-plane protocol packets (e.g., IuPS packets in an UMTS network or S1 packets in an LTE network). The AME may, for example, determine an RNC-ID and/or SGSN-ID for its particular RAN.
  • In greater detail and with reference to FIG. 2, during initialization, the RNCs 210, 226 and SGSN 208 communicate to exchange their RNC-IDs and SGSN-ID. Similarly, with reference to the LTE network illustrated in FIG. 3, the eNodeBs 306, 308 and S-GW/MME 310 communicate to exchange their eNodeB-IDs and MME-ID. In each case, the AMEs intercept the control-plane protocol packets used to convey this information (e.g., RANAP in UMTS and S1AP in LTE). Each AME identifies the RNC-ID or eNodeB-ID of its local RNC or eNodeB and associates the scope of the discovered interface with that RNC-ID or eNodeB-ID. For example, the first AME 216 of FIG. 2 associates the base-transmitter station 212, RNC 210, SGSN 208, and/or GGSN 206 with the RNC-ID of the RNC 210 and/or the SGSN-ID of the SGSN 208.
  • If the AME intercepts multiple IuPS or S1AP interfaces, it associates each RANAP/S1AP interface with the corresponding RNC-ID/S1AP-ID. Thus, in a network with multiple AMEs, in which each AME intercepts a plurality of RANAP/S1AP interfaces, each AME knows the RNC-ID/eNodeB-ID of each of the intercepted interfaces.
  • Once two or more AMEs have identified their locations, the AMEs may communicate with each other to build a topology map that incorporates the location information learned by each AME about its corresponding RAN(s) (for UMTS networks). In LTE networks, the topology map includes information about each AME's eNodeB(s) and S-GW/MME. The AMEs may use allocated TCP/UDP port numbers for inter-AME communication. Each AME may be statically configured with its own IP address, and the topology map may include the IP addresses of some or all of the AMEs in the network. In an alternative embodiment, the AMEs are dynamically assigned IP addresses using a discovery protocol and their allocated communicated parameters such as TCP/UDP port numbers. In this embodiment, when an AME associates itself with one or more RNCs or eNodeBs, it propagates the set of associated RNCs/eNodeBs to other AMEs. As a result of this step, each AME knows about other AMEs and the RNC-IDs/eNodeB-IDs with which they are associated. The AME-to-AME communication is not limited to TCP/UDP protocols, however, and any appropriate communications protocol, such as VLAN, MPLS, IPSec, GRE, and/or GTP may be used. Some protocols, such as GTP, may have less packet latency due to, for example, not requiring packet transformation.
  • In an alternative embodiment, the AME snoops user-plane protocols (instead of, or in addition to, control-plane protocols) to learn its associated RNC/eNodeB IP addresses. The AME may monitor the IuPS interface in a UMTS network or the S1 interface in an LTE network to determine this information. The user-data packets may be carried within GTP-U tunnels and contain transport addresses of a RNC, SGSN, and/or GGSN in the UMTS network or eNodeB and/or S-GW in the LTE network. Thus, in this embodiment, each AME associates itself with the set of transport IP addresses of a RNC or eNodeB for the corresponding interface. Like the above-described control-plane identification process, each AME may be configured with its own IP address and the map of IP addresses of the other AMEs in the RAN.
  • Tracking Applications
  • Once some or all of the AMEs in the RAN have been identified and mapped, each AME monitors the user-plane traffic flowing through or alongside it. Information such as client sessions, port numbers, TCP/UDP connection setup/tear-downs, and/or application context (for example, byte offset in an FTP transfer) may be gathered. Depending on the amount of traffic, an AME may monitor traffic for thousands of mobile devices. Each stream of application data is assigned to a mobile device; as described above, a single device may be the source or termination for multiple streams of application data (from one or more applications). Each AME may build a list of TCP and UDP ports that each application uses to communicate with a mobile device at any given point of time.
  • In greater detail, when a mobile device accesses the UMTS or LTE wireless mobile network, the mobile device first establishes a signaling connection (e.g., an Iu connection) to the SGSN (in UMTS networks) or MME (in LTE networks). This connection is established through an IuPS/RANAP logical interface in UMTS and an S1/S1AP logical interface in LTE. Thus, when the Iu signaling connection is established, the AME intercepting the control-plane protocols associates the mobile device with corresponding logical control-plane interface and the associated RNC or eNodeB.
  • Detecting Motion
  • As the mobile device moves from the scope of one AME location (the “serving AME”) to the scope of another AME (the “drift AME”) in a UMTS network, the serving AME snoops the RAN's control-plane traffic to derive the details of the movement from one RAN to another and to identify the drift AME using the topology map described above. In greater detail, in accordance with existing 3GPP standards, when a mobile device moves from the scope of one RNC (or from the scope of one eNodeB in an LTE network) to another, the RNC/eNodeB performs a handover procedure using an IuR/X2 interface. The serving RNC/eNodeB recognizes that the mobile device moved outside scope and that the mobile device is better serviced by moving the associated signaling connection and datapath bearers to the drift RNC/eNB. To move the mobile device permanently from the serving RNC/eNodeB to the drift RNC, the serving RNC initiates a RNC-relocation procedure, in accordance with the 3GPP standard. During this procedure, the serving RNC sends a “relocation required” message, containing the serving RNC-ID and drift RNC-ID information elements, to its SGSN. This “relocation required” message may be intercepted by an AME, which uses this information to identify the drift RNC-ID. Using the AME-to-RNC-ID associations described above, the serving AME identifies the IP address of the drift AME.
  • Detecting motion of a mobile device in an LTE network is similar to the procedure for detecting motion in a UMTS network, although the LTE interface protocols and corresponding messages differ. An AME in an LTE network associates its SLAP interfaces with corresponding eNodeB-IDs, and the AMEs communicate with each other to exchange eNodeB-to-AME associations. When a mobile device establishes a signaling connection to an MME through the eNodeB, the AME intercepting the SLAP messages identifies the information contained therein (e.g., the MME-UE-S1AP-ID, or ENB-UE-S1AP-ID) that corresponds to the mobile device and associates that with its eNodeB.
  • When a mobile device moves from the scope of a serving eNodeB to the scope of a drift eNodeB, the serving and drift eNodeBs and their governing MME transfer control from serving to drift using handover-signaling messages, as described in the 3GPP standards. The serving eNodeB sends a “hand-over-required” message, containing the drift eNodeB's ID information element, to the MME. The serving AME intercepts this eNodeB-to-MME message, identifies the drift eNodeB's ID, and identifies a drift AME using the eNodeB-ID-to-AME association described above.
  • Establishing an Inter-AME Connection
  • Once the drift AME is identified, the serving and drift AMEs set up a user-plane tunnel for transferring user-plane data packets therebetween. The AMEs may then use this tunnel to transfer user-plane data between the mobile device and the serving AME (in either direction) though the drift AME.
  • FIG. 4 illustrates a UMTS network 400 that includes a serving AME 402 and a drift AME 404 that collaborate to route an application stream to a mobile device 406 after it moved from a first position 408 to a second position 410. Each AME 402, 404 may include an application entity. The two AMEs 402, 404 communicate over an interface 412, which may be a TCP, UDP, or any other type of connection. An existing application data stream 414, created while the mobile device 406 was in the first position 408, is routed over the inter-AME connection 412. A new application data stream 416, created after the mobile device 406 has moved to the new position 410, is routed directly through the drift AME 402.
  • In greater detail, when the mobile device 406 moves from the first position 408 (i.e., within the scope of a first RNC 418) to the second position 410 (i.e., within the scope of a second RNC 420), the RNC transport address changes accordingly. When a new user-plane tunnel is detected by the drift AME 402, it checks the neighboring AME 404, in accordance with its local configuration, for previously active TCP/UDP application data flows. If such data flows exist, the drift AME 402 establishes the user-plane tunnel 414 for exchanging the user-data packets.
  • FIG. 5 is an LTE implementation 500 of the AMEs described above. A serving AME 502 and a drift AME 504 are placed on the S1 logical interface (and employ S1-AP control-plane and S1 user-plane protocols) between an MME/S-GW 506 and eNodeBs 508, 510. The drift AME 502 identifies a “path-switch request message” sent by the target eNodeB 508 to the MME/S-GW 506 and communicates with the source AME 504 to start the forwarding of mobile-device data between the source AME 504 and the mobile device 516 through the drift AME 502 for already-active TCP/UDP sessions. A previously active application flow 512 is forwarded by the serving AME 504 through the drift AME 502. A newly started application session 514 is serviced directly by the drift AME 502.
  • Sending Data Over the Connection
  • Referring again to FIG. 4, the serving AME 404 informs the drift AME 402 of all the existing flows and all the TCP and UDP connections used by each flow that correspond to applications used by the mobile device 406. The serving AME 404 transfers previously active session packets to/from the mobile device 406 through the drift AME 402 until the old TCP/UDP sessions (e.g., the session 414) are closed. Sessions may close when, for example, data in a cache or buffer (e.g., a pipeline buffer) associated with the source AME 404 is exhausted or when the application requesting the flows is terminated.
  • Because the drift AME 402 has direct contact with the mobile device 406 device after it has moved to the new position 410, the drift AME 402 forwards all the up-link packets received from the mobile device 406 that belong to the existing flows 414 to the serving AME 404. The drift AME 402 forwards all other packets (e.g., packets related to the setup of new TCP/UDP sessions and/or DNS Requests) to either local applications (e.g., local-application proxies) or to the core network 422. Thus, the drift AME 402 filters out previously established flows and sends them to the serving AME 404 and treats all other flows as it normally would. Newly started application flows (e.g., new TCP connections and/or DNS requests) that are not explicitly specified by the serving AME 404 are processed locally, without co-ordination with the serving AME 404.
  • In greater detail, the serving AME 404 forwards all the packets received from the drift AME 402 to a local application function and forwards all the packets received from the local application function to the drift AME 402. The drift AME 402 transfers packets received from serving AME 404 either to the RNC 420 for delivery to the mobile device 406 or to the core network 422 to deliver to, e.g., servers 424 over the Internet 426. The drift 402 and serving 404 AMEs may also keep track of termination of some or all the TCP/ UDP connections 412, 414 by intercepting user-plane traffic. When these connections terminate, the drift AME 402 stops forwarding packets associated with these flows to the serving AME 404.
  • If the mobile device 406 moves again from the current drift location 410 to a third location, the former target AME 402 sends the set of flows 414 handled by the serving AME 404 to the new target AME. The former target AME 402 may also send the set of flows 416 handled by the former target AME 402 to the new target AME. In general, the new target AME takes over all the responsibility of the former target AME 402 and forwards packets to (and receives packets from) the serving AME 404. If the mobile device 406 started new application flows while at the first drifting location 410, the new target AME forwards traffic associated with those flows to the former target AME 402 (i.e., the former target AME 402 acts like a serving AME for these flows). When the mobile device 406 logs out of the network, the current target AME notifies the rest of AMEs in the network, and all the AMEs clear their internal states with respect to the mobile device 406.
  • FIG. 6 is a block diagram of a representative device 600 implementing an AME. As described above, the AME 600 may be any appropriate network device or appliance, such as a server, rack-mount server, blade server, or edge server. Instructions for operating the AME 600 are stored in a storage device 602, which may be a magnetic disk, optical disk, solid-state drive, flash memory, or any other storage medium. A processor 604 executes the instructions and stores instructions and data in memory 606. An input/output interface module 608 communicates with other devices in a RAN in accordance with their appropriate communications protocols (e.g., IuB, IuPC, or Gn for a UMTS network or S1 or S5 for an LTE network) and with the internal components of the device 600 via a bidirectional bus. The input/output module 608 may observe RAN traffic passively (e.g., by observing it at a tap point in the RAN network) or may be inserted inline within the RAN network (and receive input RAN traffic, decode and re-encode it, and output the examined RAN traffic back into the RAN network). The AME 600 may be controlled remotely via the input/output interface 608 or locally via a user interface 610.
  • The functionality of an AME may be implemented in software; FIG. 7 is a block diagram illustrating software modules of an AME 700. A data-stream identification module 702 monitors data moving in a RAN network, identifies streams of data, and associates streams of data with individual originating and receiving mobile devices. A mobile device may have one or more streams of data associated with it. As described above, a RAN may include many AMEs, and each AME identifies streams of data associated with its part of the RAN.
  • A movement-detection module 704 detects movement of a mobile device from one part of the RAN to another (e.g., movement from a first base-transmitter station or RNC to a second base-transmitter station or RNC, as described above). An RNC or eNodeB, as described above, sends detected movement information in accordance with 3GPP standards, and the movement-detection module 704 intercepts this traffic and extracts the movement information. The mobile device's beginning and ending locations are thus determined.
  • An inter-AME connection module 706 establishes a TCP/UDP connection between a serving AME and a drift AME. The connection may include a direct link between the two AMEs or may include a more circuitous path passing through other network components. In that case, the inter-AME connection module 706 may create a logical link between the two AMEs that abstracts away details of the physical link and behaves as if the link were a direct one. A data-routing module 708 routes existing streams of data between a drift AME and a serving AME in accordance with embodiments of the invention.
  • The operation of the AME 600, 700 is shown in FIG. 8, which illustrates a method 800 for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station (e.g., the scope of a first RNC in a UMTS network) to an area served by a second base station (e.g., the scope of a second RNC in the UMTS network). In a first step 802, a stream of application data routed to the mobile device via the first base station is identified in the radio-access network. The stream of application data is identified with a user application running on the mobile device. In other words, embodiments of the present invention identify application data at the TCP/UDP level by, for example, recognizing per-user tunnels in the data routed to the mobile device and tracking which per-user tunnels are associated with each device and application. In one embodiment, transport packets routed to the mobile device (via, for example, a base-transmitter station) are analyzed to obtain this information. In a second step 804, movement of the mobile device from an area served by the first base station to an area served by the second base station the second base station is detected. The detection of the movement may include determining a destination or target of the movement (Step 805). In a third step 806, a connection in the radio-access network is established between a first logical or physical device (e.g., a first AME) disposed within a first portion of the radio-access network serving the first base station and a second logical or physical device (e.g., a second AME) disposed within a second portion of the radio-access network serving the second base station. In a fourth step 808, the stream of application data is routed over the connection to the mobile device via the second base station. AMEs and RAN Caches/Buffers
  • Edge or application devices may be used to cache content and/or to act as proxies for content (as, e.g., a web proxy). These devices may be deployed within the RAN to cache content and/or act as proxies between two network elements in the RAN. This RAN Cache (“RANC”) delivers locally cached content and/or terminates a client-side application session and uses a different session for communication with the home server. An AME, as described above, may be used to identify and re-route content being served from a RANC as a mobile device travels from the scope of one RAN (i.e., from a first RNC) to the scope of another RAN (i.e., to a second RNC). For example, a RANC may be disposed proximate a first AME, which monitors traffic between the RANC and a mobile device. The mobile device may move away from the portion of the RAN monitored by the first AME to a new portion monitored by a second AME. The first and second AMEs may then establish a connection between them, as described above, to transport the data in the RANC to the new location of the mobile device. Thus, using embodiments of the current invention, data cached in a RANC may be preserved during a movement of a mobile device instead of flushed.
  • FIG. 9 is block diagram of one embodiment of a RANC 900. The RANC 900 includes two interface modules 902, 904, for the hardware signaling required to communicate with other devices in the RAN using an appropriate interface and software protocol (e.g., IuB, IuPS, or Gn). Each interface module 902, 904 may receive and/or transmit data on the selected interface. Received data may be placed into a storage element 906. The movement of data between the interface modules 902, 904 and the storage element 906 may involve dedicated hardware, such as a DMA controller, or a dedicated data-movement processor. The processing of control-plane and user-plane tunnels within the RANC 900, on the interfaces that connect to RAN devices, is in accordance with the RAN specifications. The processing of application protocols within these user-plane tunnels is per the application proxy, caching, etc. policies with the RANC device. This data processing may be accomplished using dedicated control logic or a processing unit 908. The control logic/processing unit 908 may have its own local storage element 910, which contains instructions to execute and store local status. Using known specifications and protocols, the control logic/processing unit 908 parses the received information to understand received packets at each protocol layer. A cache storage element 912 may also be included for holding cached information.
  • The storage element 906, local storage 910, and cache 912 may be implemented with any appropriate storage technology known in the art, such as random-access memory, flash memory, or a block storage device (e.g., a magnetic or solid-state disk). The control logic/processing unit 908 may be a general-purpose processor and executing a set of instructions from an internal or external storage device. In other embodiments, the control logic/processing unit 908 is a dedicated hardware device having embedded instructions or a state machine.
  • FIG. 10 illustrates a network 1000 that includes RANCs 1002, 1004. The RANCs 1002, 1004 may include AMEs for handling mobility of a mobile device 1006 from the scope of one RNC 1008 to another RNC 1010. As described above, 3GPP standards define mobility and handover operations for handling mobility within one SGSN 1012 or across two different SGSNs 1012, 1014. The 3GPP standard protocols define relocation procedures by which the first RNC 1008 moves an active session of a UE to the second RNC 1010. The RANC/AME 1002 becomes the serving RANC/AME and the RANC/AME 1004 becomes the drift RANC/AME. The serving RANC/AME 1002 recognizes the mobile-device relocation and provides TCP/UDP-level application forwarding to the drift RANC/AME 1004 for the content cached therein. The serving RANC/AME 1002 may initiate context handover for some or all of the content that it is serving from its local cache. Any traffic that passes through the serving RANC/AME 1002 is re-configured to pass through the target RANC/AME 1004.
  • For supporting mobility, each RANC/AME communicates with its neighboring RANC/AME(s). Each RANC/AME maintains the identification of RNC to which it is connected as well as list of RANCs and the RNCs to which the first RNC is connected. While monitoring the IuPS control protocol as described earlier, the serving RANC/AME 1002 recognizes a relocation request and the identification of the target RNC 1010. It determines the drift RANC/AME 1004 that connects to target RNC 1010 and initiates a context transfer with the drift RANC/AME 1004. The source RANC/AME 1002 handles relocation of the mobile device 1006 for which it is performing content-aware operations to the target RANC/AME 1004 by two basic operations. First, the current RANC/AME 1002 transfers the mobile-device context, including user subscription, GTP-U tunnel information, and other information, to the drift RANC/AME 1004. Second, for an ongoing transfer (of, for example, active TCP traffic), the serving RANC/AME 1002 continues to send and receive traffic from the mobile device 1006 through its new coverage area (i.e., through a new base-transmitter station 1016) through the drift RANC/AME 1004 using the inter-RANC/AME link 1018. In the uplink direction (i.e., traffic received from the mobile device 1006), the drift RANC/AME 1004 identifies traffic for new flows (e.g., new TCP connections, DNS requests, and/or UDP Requests) as opposed to the traffic for previously active flows (e.g., TCP ACKs or RTP retransmission requests). The drift RANC/AME 1004 forwards the packets for already-active flows to the serving RANC/AME 1002 and processes traffic for new flows locally. In the downlink direction (i.e., traffic to the mobile device 1006), the drift RANC/AME 1004 receives downlink packets for already-active flows from the serving RANC/AME 1002 and handles traffic for new flows locally. Thus the serving RANC/AME 1002 continues to supply cached content, or any other TCP/UDP data, for active flows. This step also includes the drift RANC/AME 1004 recognizing new flows from the mobile device 1006, anchoring them, and at the same time, forwarding already-active flows through the serving RANC/AME 1002.
  • It should also be noted that the various hardware-based implementations described above are illustrative only. Embodiments of the present invention may be provided as one or more computer programs embodied on or in one or more articles of manufacture. The article of manufacture may be any suitable computer-readable medium, such as, for example, a floppy disk, a hard disk, a CD ROM, a CD-RW, a CD-R, a DVD ROM, a DVD-RW, a DVD-R, a flash memory card, a PROM, a RAM, a ROM, or a magnetic tape. In general, the computer-readable programs may be implemented in any programming language. Some examples of languages that may be used include C, C++, or JAVA. The software programs may be further translated into machine language or virtual machine instructions and stored in a program file in that form. The program file may then be stored on or in one or more of the articles of manufacture. Moreover, the computer programs may be distributed over various intercommunicating hardware elements (e.g., network nodes in a radio-access network).
  • Certain embodiments of the present invention were described above. It is, however, expressly noted that the present invention is not limited to those embodiments, but rather the intention is that additions and modifications to what was expressly described herein are also included within the scope of the invention. Moreover, it is to be understood that the features of the various embodiments described herein were not mutually exclusive and can exist in various combinations and permutations, even if such combinations or permutations were not made express herein, without departing from the spirit and scope of the invention. In fact, variations, modifications, and other implementations of what was described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. As such, the invention is not to be defined only by the preceding illustrative description.

Claims (23)

What is claimed is:
1. A method of delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station, the method comprising:
identifying, in the radio-access network, a user application running on the mobile device, the user application receiving a stream of application data routed to the mobile device via the first base station;
detecting movement of the mobile device from the first base station area to the second base station area;
establishing a connection, in the radio-access network, between a first application mobility-management entity (AME) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station; and
routing the stream of application data over the connection to the mobile device via the second base station.
2. The method of claim 1, wherein identifying the user application comprises recognizing per-user tunnels in the data routed to the mobile device and identifying user-application streams therein.
3. The method of claim 2, further comprising analyzing transport packets in the data routed to the first base station.
4. The method of claim 1, further comprising halting routing the stream of application data when an application using the application data closes.
5. The method of claim 1, further comprising routing a second stream of data from a second application, after detecting movement of the mobile device, through the second base station.
6. The method of claim 1, further comprising routing data received from the mobile device over the connection.
7. The method of claim 1, wherein identifying the stream of application data comprises snooping at least one of control-plane protocol traffic and user-plane protocol traffic in the radio-access network.
8. The method of claim 1, wherein routing the stream of application data comprises tunneling the stream of application data.
9. The method of claim 1, further comprising constructing a topology map identifying the first and second base stations.
10. The method of claim 9, wherein constructing the topology map comprises determining one of an RNC-ID, a SGSN-ID, an eNodeB-ID, and an S-GW/MME-ID.
11. The method of claim 1, wherein the stream of application data comprises data streams from at least one of a proxy, cache, and application server.
12. The method of claim 1, wherein the stream of application data streams from a pipeline buffer.
13. The method of claim 1, wherein detecting movement comprises determining that the target of the movement is the area served by the second base station.
14. A system for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station, the system comprising:
an identification module for identifying, in the radio-access network, a user application running on the mobile device, the user application receiving a stream of application data routed to the mobile device via the first base station;
a detection module for detecting movement of the mobile device from the first base station area to the second base station area;
a connection module for establishing a connection, in the radio-access network, between a first application mobility-management entity (AME) monitoring traffic to the first base station and a second AME monitoring traffic to the second base station; and
a routing module for routing the stream of application data over the connection to the mobile device via the second base station.
15. The system of claim 14, further comprising a cache for caching application data.
16. The system of claim 15, wherein the stream of application data is served from the cache.
17. The system of claim 14, wherein the connection comprises at least one of a TCP, UDP, GRE, and GTP connection.
18. An application mobility-management entity (“AME”) device for delivering content to a mobile device in a radio-access network as the mobile device moves from an area served by a first base station to an area served by a second base station, the AME device comprising:
an input module for receiving traffic from a radio-access network;
a processor for analyzing the received traffic, identifying a user application running on the mobile device, determining an address of the second base station, and establishing a connection in the radio-access network to a second AME device in communication with the second base station; and
an output module for sending the content to the second AME device, the second AME device sending content related to the user application to the mobile device.
19. The system of claim 18, wherein the received traffic comprises at least one of control-plane data and user-plane data.
20. The system of claim 18, wherein the AME device is configured to be disposed between at least one of a NodeB and an RNC, an RNC and a SGSN, a SGSN and a GGSN, an eNodeB and a S-GW/MME, and a S-GW/MME and a P-GW.
21. The system of claim 20, wherein the AME is configured to be logically in-line between two network devices.
22. The system of claim 18, wherein the AME device comprises at least one of a server, a rack-mount server, and a blade server.
23. The system of claim 18, wherein the AME is configured for communication with a third AME device associated with a third base station, the AME device sending the content to the third AME device upon detecting the mobile device moving to an area served by the third base station.
US13/859,427 2008-08-06 2013-04-09 Session handover in mobile-network content-delivery devices Abandoned US20130235845A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/859,427 US20130235845A1 (en) 2008-08-06 2013-04-09 Session handover in mobile-network content-delivery devices

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US8652108P 2008-08-06 2008-08-06
US12/536,537 US8111630B2 (en) 2008-08-06 2009-08-06 Content caching in the radio access network (RAN)
US25789909P 2009-11-04 2009-11-04
US12/939,690 US8451800B2 (en) 2009-08-06 2010-11-04 Session handover in mobile-network content-delivery devices
US13/859,427 US20130235845A1 (en) 2008-08-06 2013-04-09 Session handover in mobile-network content-delivery devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/939,690 Continuation US8451800B2 (en) 2008-08-06 2010-11-04 Session handover in mobile-network content-delivery devices

Publications (1)

Publication Number Publication Date
US20130235845A1 true US20130235845A1 (en) 2013-09-12

Family

ID=44082521

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/939,690 Active US8451800B2 (en) 2008-08-06 2010-11-04 Session handover in mobile-network content-delivery devices
US13/859,427 Abandoned US20130235845A1 (en) 2008-08-06 2013-04-09 Session handover in mobile-network content-delivery devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/939,690 Active US8451800B2 (en) 2008-08-06 2010-11-04 Session handover in mobile-network content-delivery devices

Country Status (1)

Country Link
US (2) US8451800B2 (en)

Cited By (169)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110185049A1 (en) * 2010-01-28 2011-07-28 Verizon Patent And Licensing, Inc. Localized media offload
US20120314689A1 (en) * 2010-02-25 2012-12-13 Zte Corporation Method, System and Evolved NodeB Apparatus for Implementing Inter-Evolved NodeB Handover
US8908507B2 (en) 2011-07-21 2014-12-09 Movik Networks RAN analytics, control and tuning via multi-protocol, multi-domain, and multi-RAT analysis
US9001682B2 (en) 2011-07-21 2015-04-07 Movik Networks Content and RAN aware network selection in multiple wireless access and small-cell overlay wireless access networks
US9042812B1 (en) 2013-11-06 2015-05-26 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9204329B2 (en) 2011-07-21 2015-12-01 Movik Networks Distributed RAN information collection, consolidation and RAN-analytics
US9204474B2 (en) 2010-09-24 2015-12-01 Movik Networks Destination learning and mobility detection in transit network device in LTE and UMTS radio access networks
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9538563B2 (en) 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10091701B1 (en) 2017-05-31 2018-10-02 Sprint Communications Company L.P. Information centric network (ICN) with content aware routers (CARs) to facilitate a user equipment (UE) handover
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8451800B2 (en) * 2009-08-06 2013-05-28 Movik Networks, Inc. Session handover in mobile-network content-delivery devices
EP2643992B1 (en) * 2010-11-26 2014-09-03 Telefonaktiebolaget L M Ericsson (PUBL) Efficient data delivery in cellular networks
US8850491B2 (en) * 2010-12-20 2014-09-30 Microsoft Corporation Wireless distribution system proxy caches
US8904431B2 (en) 2010-12-20 2014-12-02 Microsoft Corporation Current device location advertisement distribution
CN103460786B (en) 2011-04-01 2016-11-09 交互数字专利控股公司 For sharing the system and method for public PDP Context
KR20160003867A (en) * 2011-08-11 2016-01-11 인터디지탈 패튼 홀딩스, 인크 Machine type communications connectivity sharing
WO2013051970A1 (en) * 2011-10-04 2013-04-11 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatuses for initialising a radio base station
WO2013050216A1 (en) * 2011-10-04 2013-04-11 International Business Machines Corporation Pre-emptive content caching in mobile networks
KR101983034B1 (en) * 2012-09-05 2019-09-03 삼성전자주식회사 Method and apparatus for supporting handover over internet
EP2900011A4 (en) * 2012-10-30 2015-12-23 Huawei Tech Co Ltd Data transmission method, switching method, data transmission apparatus, switching apparatus, user equipment, wireless access node, data transmission system and switching system
EP2934040B1 (en) 2012-12-31 2020-09-16 Huawei Technologies Co., Ltd. Method for providing application service
CN103430516B (en) * 2013-02-21 2017-02-22 华为技术有限公司 Business providing system and method,mobile edge application server and support node thereof
US9408115B2 (en) * 2013-03-21 2016-08-02 Telefonaktiebolaget L M Ericsson (Publ) Base station controller selection for a roaming radio base station and method of operating the same
US9432440B2 (en) 2013-05-16 2016-08-30 Huawei Technologies Co., Ltd. Method of content delivery in LTE RAN, an eNB and communication system
US9277429B2 (en) * 2013-08-06 2016-03-01 Cellos Software Ltd. Monitoring probe for identifying a user plane identifier of a user device
EP3183839B1 (en) * 2014-08-18 2020-10-21 Nokia Solutions and Networks Oy Group communication service enabler security
KR102342144B1 (en) 2014-12-01 2021-12-22 삼성전자주식회사 Method and apparatus for establishing split tcp connention in a communication, and handover method and apparatus
EP4096343A1 (en) * 2021-05-28 2022-11-30 Airbus SAS Routing method and device implementing said method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080311911A1 (en) * 2007-06-15 2008-12-18 Nokia Siemens Networks Oy Handover trigger for an inter-access-gateway interface
US20080316971A1 (en) * 2007-06-22 2008-12-25 Interdigital Technology Corporation Method and apparatus for resource management in handover operation
US20090109925A1 (en) * 2007-10-26 2009-04-30 Hitomi Nakamura Communication system and gateway apparatus
US20100054204A1 (en) * 2008-08-28 2010-03-04 Alcatel Lucent System and method of serving gateway having mobile packet protocol application-aware packet management
US20100075678A1 (en) * 2008-09-23 2010-03-25 Arda Akman Methods, systems, and computer readable media for stress testing mobile network equipment using a common public radio interface (cpri)
US20100232391A1 (en) * 2007-02-06 2010-09-16 Lars-Bertil Olsson Method And System For Intra E-Utran Handover
US20110136488A1 (en) * 2009-08-06 2011-06-09 Surya Kumar Kuvvali Session handover in mobile-network content-delivery devices

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7634252B2 (en) * 2003-03-07 2009-12-15 Computer Assocaites Think, Inc. Mobility management in wireless networks
GB0308980D0 (en) * 2003-04-17 2003-05-28 Orange Personal Comm Serv Ltd Telecommunications
BRPI0506473A (en) * 2004-01-08 2007-02-06 Sk Telecom Co Ltd system for mixed network data packet service of asynchronous communication network and synchronous communication network and method of transmission thereof
EP1871069A1 (en) * 2006-05-25 2007-12-26 Samsung Electronics Co., Ltd. Apparatus and method for controlling layer 3 handover of mobile node
US8218512B2 (en) * 2006-06-14 2012-07-10 Toshiba America Research, Inc. Distribution of session keys to the selected multiple access points based on geo-location of APs
US8422466B2 (en) * 2007-11-26 2013-04-16 Nokia Corporation Multiple network connections

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100232391A1 (en) * 2007-02-06 2010-09-16 Lars-Bertil Olsson Method And System For Intra E-Utran Handover
US20080311911A1 (en) * 2007-06-15 2008-12-18 Nokia Siemens Networks Oy Handover trigger for an inter-access-gateway interface
US20080316971A1 (en) * 2007-06-22 2008-12-25 Interdigital Technology Corporation Method and apparatus for resource management in handover operation
US20090109925A1 (en) * 2007-10-26 2009-04-30 Hitomi Nakamura Communication system and gateway apparatus
US20100054204A1 (en) * 2008-08-28 2010-03-04 Alcatel Lucent System and method of serving gateway having mobile packet protocol application-aware packet management
US20100075678A1 (en) * 2008-09-23 2010-03-25 Arda Akman Methods, systems, and computer readable media for stress testing mobile network equipment using a common public radio interface (cpri)
US20110136488A1 (en) * 2009-08-06 2011-06-09 Surya Kumar Kuvvali Session handover in mobile-network content-delivery devices

Cited By (233)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9021072B2 (en) * 2010-01-28 2015-04-28 Verizon Patent And Licensing Inc. Localized media offload
US20110185049A1 (en) * 2010-01-28 2011-07-28 Verizon Patent And Licensing, Inc. Localized media offload
US20120314689A1 (en) * 2010-02-25 2012-12-13 Zte Corporation Method, System and Evolved NodeB Apparatus for Implementing Inter-Evolved NodeB Handover
US8804667B2 (en) * 2010-02-25 2014-08-12 Zte Corporation Method, system and evolved NodeB apparatus for implementing inter-evolved NodeB handover
US9204474B2 (en) 2010-09-24 2015-12-01 Movik Networks Destination learning and mobility detection in transit network device in LTE and UMTS radio access networks
US9204329B2 (en) 2011-07-21 2015-12-01 Movik Networks Distributed RAN information collection, consolidation and RAN-analytics
US8908507B2 (en) 2011-07-21 2014-12-09 Movik Networks RAN analytics, control and tuning via multi-protocol, multi-domain, and multi-RAT analysis
US9001682B2 (en) 2011-07-21 2015-04-07 Movik Networks Content and RAN aware network selection in multiple wireless access and small-cell overlay wireless access networks
US9699785B2 (en) 2012-12-05 2017-07-04 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US10009065B2 (en) 2012-12-05 2018-06-26 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9119127B1 (en) 2012-12-05 2015-08-25 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US10194437B2 (en) 2012-12-05 2019-01-29 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9788326B2 (en) 2012-12-05 2017-10-10 At&T Intellectual Property I, L.P. Backhaul link for distributed antenna system
US9525524B2 (en) 2013-05-31 2016-12-20 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10091787B2 (en) 2013-05-31 2018-10-02 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9930668B2 (en) 2013-05-31 2018-03-27 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9661505B2 (en) 2013-11-06 2017-05-23 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9467870B2 (en) 2013-11-06 2016-10-11 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9042812B1 (en) 2013-11-06 2015-05-26 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9154966B2 (en) 2013-11-06 2015-10-06 At&T Intellectual Property I, Lp Surface-wave communications and methods thereof
US9876584B2 (en) 2013-12-10 2018-01-23 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9479266B2 (en) 2013-12-10 2016-10-25 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9794003B2 (en) 2013-12-10 2017-10-17 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9209902B2 (en) 2013-12-10 2015-12-08 At&T Intellectual Property I, L.P. Quasi-optical coupler
US9692101B2 (en) 2014-08-26 2017-06-27 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves between a waveguide surface and a surface of a wire
US10096881B2 (en) 2014-08-26 2018-10-09 At&T Intellectual Property I, L.P. Guided wave couplers for coupling electromagnetic waves to an outer surface of a transmission medium
US9755697B2 (en) 2014-09-15 2017-09-05 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9628854B2 (en) 2014-09-29 2017-04-18 At&T Intellectual Property I, L.P. Method and apparatus for distributing content in a communication network
US9615269B2 (en) 2014-10-02 2017-04-04 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9998932B2 (en) 2014-10-02 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9503189B2 (en) 2014-10-10 2016-11-22 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US11153802B2 (en) 2014-10-13 2021-10-19 At&T Intellectual Property I, L.P. System and methods for managing a user data path
US9538563B2 (en) 2014-10-13 2017-01-03 At&T Intellectual Property I, L.P. System and methods for managing a user data path
US9854499B2 (en) 2014-10-13 2017-12-26 At&T Intellectual Property I, L.P. System and methods for managing a user data path
US10412655B2 (en) 2014-10-13 2019-09-10 At&T Intellectual Property I, L.P. System and methods for managing a user data path
US9973299B2 (en) 2014-10-14 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9762289B2 (en) 2014-10-14 2017-09-12 At&T Intellectual Property I, L.P. Method and apparatus for transmitting or receiving signals in a transportation system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9577306B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9948355B2 (en) 2014-10-21 2018-04-17 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9653770B2 (en) 2014-10-21 2017-05-16 At&T Intellectual Property I, L.P. Guided wave coupler, coupling module and methods for use therewith
US9571209B2 (en) 2014-10-21 2017-02-14 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9525210B2 (en) 2014-10-21 2016-12-20 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9627768B2 (en) 2014-10-21 2017-04-18 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9564947B2 (en) 2014-10-21 2017-02-07 At&T Intellectual Property I, L.P. Guided-wave transmission device with diversity and methods for use therewith
US9520945B2 (en) 2014-10-21 2016-12-13 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9596001B2 (en) 2014-10-21 2017-03-14 At&T Intellectual Property I, L.P. Apparatus for providing communication services and methods thereof
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9577307B2 (en) 2014-10-21 2017-02-21 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9312919B1 (en) 2014-10-21 2016-04-12 At&T Intellectual Property I, Lp Transmission device with impairment compensation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9531427B2 (en) 2014-11-20 2016-12-27 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9680670B2 (en) 2014-11-20 2017-06-13 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9712350B2 (en) 2014-11-20 2017-07-18 At&T Intellectual Property I, L.P. Transmission device with channel equalization and control and methods for use therewith
US9544006B2 (en) 2014-11-20 2017-01-10 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9654173B2 (en) 2014-11-20 2017-05-16 At&T Intellectual Property I, L.P. Apparatus for powering a communication device and methods thereof
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10144036B2 (en) 2015-01-30 2018-12-04 At&T Intellectual Property I, L.P. Method and apparatus for mitigating interference affecting a propagation of electromagnetic waves guided by a transmission medium
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9948354B2 (en) 2015-04-28 2018-04-17 At&T Intellectual Property I, L.P. Magnetic coupling device with reflective plate and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9490869B1 (en) 2015-05-14 2016-11-08 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10679767B2 (en) 2015-05-15 2020-06-09 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10154493B2 (en) 2015-06-03 2018-12-11 At&T Intellectual Property I, L.P. Network termination and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10396887B2 (en) 2015-06-03 2019-08-27 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10348391B2 (en) 2015-06-03 2019-07-09 At&T Intellectual Property I, L.P. Client node device with frequency conversion and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10103801B2 (en) 2015-06-03 2018-10-16 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10027398B2 (en) 2015-06-11 2018-07-17 At&T Intellectual Property I, Lp Repeater and methods for use therewith
US10142010B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US10142086B2 (en) 2015-06-11 2018-11-27 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9608692B2 (en) 2015-06-11 2017-03-28 At&T Intellectual Property I, L.P. Repeater and methods for use therewith
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9667317B2 (en) 2015-06-15 2017-05-30 At&T Intellectual Property I, L.P. Method and apparatus for providing security using network traffic adjustments
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10090601B2 (en) 2015-06-25 2018-10-02 At&T Intellectual Property I, L.P. Waveguide system and methods for inducing a non-fundamental wave mode on a transmission medium
US9640850B2 (en) 2015-06-25 2017-05-02 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9509415B1 (en) 2015-06-25 2016-11-29 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9882657B2 (en) 2015-06-25 2018-01-30 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9947982B2 (en) 2015-07-14 2018-04-17 At&T Intellectual Property I, Lp Dielectric transmission medium connector and methods for use therewith
US10341142B2 (en) 2015-07-14 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an uninsulated conductor
US10033108B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave having a wave mode that mitigates interference
US10033107B2 (en) 2015-07-14 2018-07-24 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10170840B2 (en) 2015-07-14 2019-01-01 At&T Intellectual Property I, L.P. Apparatus and methods for sending or receiving electromagnetic signals
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9628116B2 (en) 2015-07-14 2017-04-18 At&T Intellectual Property I, L.P. Apparatus and methods for transmitting wireless signals
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9836957B2 (en) 2015-07-14 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for communicating with premises equipment
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9722318B2 (en) 2015-07-14 2017-08-01 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10320586B2 (en) 2015-07-14 2019-06-11 At&T Intellectual Property I, L.P. Apparatus and methods for generating non-interfering electromagnetic waves on an insulated transmission medium
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9608740B2 (en) 2015-07-15 2017-03-28 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9793951B2 (en) 2015-07-15 2017-10-17 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US10784670B2 (en) 2015-07-23 2020-09-22 At&T Intellectual Property I, L.P. Antenna support for aligning an antenna
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US10074886B2 (en) 2015-07-23 2018-09-11 At&T Intellectual Property I, L.P. Dielectric transmission medium comprising a plurality of rigid dielectric members coupled together in a ball and socket configuration
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US10020587B2 (en) 2015-07-31 2018-07-10 At&T Intellectual Property I, L.P. Radial antenna and methods for use therewith
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9461706B1 (en) 2015-07-31 2016-10-04 At&T Intellectual Property I, Lp Method and apparatus for exchanging communication signals
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US10225842B2 (en) 2015-09-16 2019-03-05 At&T Intellectual Property I, L.P. Method, device and storage medium for communications using a modulated signal and a reference signal
US10349418B2 (en) 2015-09-16 2019-07-09 At&T Intellectual Property I, L.P. Method and apparatus for managing utilization of wireless resources via use of a reference signal to reduce distortion
US10079661B2 (en) 2015-09-16 2018-09-18 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a clock reference
US10009901B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method, apparatus, and computer-readable storage medium for managing utilization of wireless resources between base stations
US9705571B2 (en) 2015-09-16 2017-07-11 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system
US10051629B2 (en) 2015-09-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an in-band reference signal
US10136434B2 (en) 2015-09-16 2018-11-20 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an ultra-wideband control channel
US10009063B2 (en) 2015-09-16 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having an out-of-band reference signal
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US9882277B2 (en) 2015-10-02 2018-01-30 At&T Intellectual Property I, Lp Communication device and antenna assembly with actuated gimbal mount
US10074890B2 (en) 2015-10-02 2018-09-11 At&T Intellectual Property I, L.P. Communication device and antenna with integrated light assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10665942B2 (en) 2015-10-16 2020-05-26 At&T Intellectual Property I, L.P. Method and apparatus for adjusting wireless communications
US10051483B2 (en) 2015-10-16 2018-08-14 At&T Intellectual Property I, L.P. Method and apparatus for directing wireless signals
US9912419B1 (en) 2016-08-24 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for managing a fault in a distributed antenna system
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10291311B2 (en) 2016-09-09 2019-05-14 At&T Intellectual Property I, L.P. Method and apparatus for mitigating a fault in a distributed antenna system
US11032819B2 (en) 2016-09-15 2021-06-08 At&T Intellectual Property I, L.P. Method and apparatus for use with a radio distributed antenna system having a control channel reference signal
US10135146B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via circuits
US10340600B2 (en) 2016-10-18 2019-07-02 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via plural waveguide systems
US10135147B2 (en) 2016-10-18 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for launching guided waves via an antenna
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US9991580B2 (en) 2016-10-21 2018-06-05 At&T Intellectual Property I, L.P. Launcher and coupling system for guided wave mode cancellation
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US9876605B1 (en) 2016-10-21 2018-01-23 At&T Intellectual Property I, L.P. Launcher and coupling system to support desired guided wave mode
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10091701B1 (en) 2017-05-31 2018-10-02 Sprint Communications Company L.P. Information centric network (ICN) with content aware routers (CARs) to facilitate a user equipment (UE) handover

Also Published As

Publication number Publication date
US8451800B2 (en) 2013-05-28
US20110136488A1 (en) 2011-06-09

Similar Documents

Publication Publication Date Title
US8451800B2 (en) Session handover in mobile-network content-delivery devices
US8565076B2 (en) Destination learning and mobility detection in transit network device in LTE and UMTS radio access networks
US8787303B2 (en) Methods and apparatus for data traffic offloading at a router
US9237438B2 (en) Continuous cache service in cellular networks
US9693241B2 (en) Mitigating effects of predicted failures in a mobile network basestation due to weather
US9544389B2 (en) Method and device for processing service in software-defined networking system
US20120297009A1 (en) Method and system for cahing in mobile ran
US8958303B2 (en) Avoiding network address translation in a mobile data network
US8929242B2 (en) Mobility support in a mobile data network
US8493898B2 (en) Macro diversity in a mobile data network with edge breakout
TWI578745B (en) Object caching for mobile data communication with mobility management
US20190182175A1 (en) Transport Protocol Server Relocation
KR102066923B1 (en) Method and apparatus for providing contents in mobile communication system
US8848614B2 (en) Cooperative mobility management in a mobile data network with data breakout at the edge
US10805845B2 (en) Supporting transport protocol server relocation
JP5710549B2 (en) Changing the serving access point for the forward and reverse links
US9560557B2 (en) Mobility management of OSI connections between cell towers
EP2903225B1 (en) Bit-rate control for access to content stored in local delivery devices of a content-delivery network
Carmona‐Murillo et al. DM3: distributed mobility management in MPLS‐based access networks
KR20130050656A (en) Mobile communication system and method for providing contents thereof

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION