US20130258950A1 - Characterizing transmission of access nodes within a wireless network - Google Patents

Characterizing transmission of access nodes within a wireless network Download PDF

Info

Publication number
US20130258950A1
US20130258950A1 US13/903,051 US201313903051A US2013258950A1 US 20130258950 A1 US20130258950 A1 US 20130258950A1 US 201313903051 A US201313903051 A US 201313903051A US 2013258950 A1 US2013258950 A1 US 2013258950A1
Authority
US
United States
Prior art keywords
access node
transmission
nodes
node
access
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/903,051
Inventor
Peter Behroozi
Cyrus Behroozi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tropos Networks Inc
Original Assignee
Tropos Networks Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tropos Networks Inc filed Critical Tropos Networks Inc
Priority to US13/903,051 priority Critical patent/US20130258950A1/en
Assigned to TROPOS NETWORKS, INC. reassignment TROPOS NETWORKS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BEHROOZI, CYRUS, BEHROOZI, PETER
Publication of US20130258950A1 publication Critical patent/US20130258950A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/26TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service]
    • H04W52/267TPC being performed according to specific parameters using transmission rate or quality of service QoS [Quality of Service] taking into account the information rate

Definitions

  • the invention relates generally to wireless communications. More particularly, the invention relates to a method and apparatus for characterizing transmission power levels and data rates of access nodes within a mesh network.
  • Packet networking is a form of data communication in which data packets are routed from a source device to a destination device. Packets can be networked directly between a source node and a destination node, or the packets can be relayed through a number of intermediate nodes.
  • different transmission protocols allow the transmission of information at different power levels and data rates.
  • some power levels and data rates can be more desirable than others.
  • Increasing transmission power levels generally increases the probability of successful packet reception. However, within a wireless network, increasing the transmission power levels increases the probability of the transmission interfering with other wireless communication links, resulting in a reduction in available network-wide airtime and overall network capacity. Similarly, there are tradeoffs to operating a link at different transmit data rates. Increasing transmit rate (if the link supports it) can result in more efficient use of airtime, since it takes less time to transmit a bit. As a result, network capacity can be increased. However, higher data rates require a larger signal-to-noise ratio at the receiver for successful packet reception, and using a higher data rate may result in higher probability of packet loss, necessitating retransmissions.
  • An embodiment includes an access node, wherein the access node is operative to determine a neighbor function based on how many neighboring nodes are affected by signals transmitted from the access node at varying power levels, determine an airtime per link occupied by transmission packets on links to each of the identified neighbor nodes of the neighbor function, determine an airtime metric based on the neighboring nodes and the airtime per link occupied by the transmission packets, calculate combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric , and set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates.
  • Another embodiment includes an access node, wherein the access node is operative to identify neighboring access nodes of the access node based on path losses of corresponding links between the access node and the neighboring access nodes, determine a neighbor function based on how many of the identified neighboring access nodes are affected by signals transmitted from the access node at varying power levels, calculate for a range of transmission path losses between the access node and neighboring access nodes, combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and an air-time occupied by transmission packets.
  • the access node is further operative to set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates, wherein the air-time metric is further determined by multiplying a transmit time of a set number of bits by a number of identified neighboring access nodes that can receive the signal transmitted at the predetermined power level.
  • FIG. 1 shows a wireless mesh network that includes access nodes of varying distances from each other.
  • FIG. 2 is a plot of one example of a neighbor node function of one of the access nodes of the wireless mesh network.
  • FIG. 3 is a plot of one example of air-time metric values versus transmission signal power for a particular quality transmission link.
  • FIG. 4 is a plot of one example of a power-rate curve of the one access node of the wireless mesh network.
  • FIG. 5 shows and access node and neighboring access nodes for varying levels of transmission signal power.
  • FIG. 6 is a flow chart showing one example of steps included within a method of characterizing transmission of a node of a wireless network.
  • FIG. 7 is a flow chart showing one example of steps included within a method of setting transmission power levels and data rates of a node within a wireless mesh network.
  • the invention includes a method and apparatus for characterizing transmission (power level and data rate) of a node within a wireless network.
  • the characterization allows for selection of transmission power level and data rate to minimize an air-time metric of transmission of the node.
  • the transmission protocols of a wireless networks typically includes multiple possible transmission data rates.
  • the IEEE 802.11g standard specifies operating data rates including 1 Mbps, 2 Mbps, 5.5 Mbps, 6 Mbps, 9 Mbps, 11 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps and 54 Mbps.
  • Successful transmission at the higher data rates requires higher levels of SNR (signal-to-noise ratio) at the receiver, typically requiring higher transmission signal power.
  • the higher data rates typically require less transmission air-time per bit. Therefore, a trade-off typically exits in wireless networks between transmission power levels and data rates.
  • the higher SNR required for higher data rates typically requires a higher transmission power level that is more likely to interfere with neighboring nodes.
  • the higher data rates typically require less air-time per bit, and therefore, are typically friendly to neighboring nodes with respect to available air-time.
  • Wireless networks in general can benefit from the methods of characterizing transmission power levels and transmission data rates described.
  • FIG. 1 shows a wireless mesh network with many access nodes.
  • the wireless access nodes interconnect with each other, and gateways to form a mesh.
  • the interconnections are wireless links, and therefore, the air-time occupied by each of the access nodes is important because there is only a finite amount of air-time available.
  • certain access nodes are more likely to interfere with other nodes of the wireless network.
  • a first exemplary node 233 is more likely to interfere with neighboring nodes of the wireless mesh network than a second exemplary node 235 , because the first node 233 is physically located closer to more neighboring nodes than the second node 235 .
  • Neighbor nodes can be defined as other nodes that can receive signals from a node at a predetermined amount of signal strength when the signals are transmitted from the node at another predetermined level of signal strength.
  • An embodiment of each of the access nodes of the wireless network includes determining a neighbor function for the access node.
  • the neighbor function for each of the access nodes can be different depending upon how the access node is physically located with respect to the other access nodes of the wireless network.
  • One exemplary method of determining the neighbor function includes determining how many neighboring nodes are affected by signals transmitted from the node at varying power levels. Assuming reciprocity in the transmission signal links, this can be determined by having nodes of the wireless network transmit signals of a predetermined power level. If the node receives the transmitted signals with a power level above another threshold, then the nodes transmitting the signals are designated as neighboring nodes. Effectively, the path losses of the links between the access nodes and the other nodes are determined. Nodes are designated as neighboring nodes if the path loss of the corresponding link is less than a threshold.
  • CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
  • transceivers sense a channel (link) and defer transmissions while the channel is considered to be busy. The channel is deemed to be busy if a received signal exceeds a Clear Channel Assessment Threshold (CCAT).
  • CCAT Clear Channel Assessment Threshold
  • One method of determining the neighbor function is to determine the transmission power level that would trip the CCAT of the neighboring nodes. Once the CCAT has been tripped, the nodes can no longer transmit any signals.
  • a neighbor function can easily be determined from the neighboring nodes once the path losses of the links between the node and the neighboring nodes are determined. At maximum transmission power, all of the neighbor nodes are affected. As the transmission power from the node is decreased, the number of affected nodes can be determined by knowing the path losses of each of the links between the node and the neighboring nodes.
  • the first exemplary access node 233 can be determined to have neighboring nodes 130 , 131 , 234 , 336 , 337 when transmitting the predetermined power level.
  • the number of neighboring nodes affected by transmission of the access node 233 decreases as the transmission power of the access node 233 decreases.
  • the second exemplary access node 235 can be determined to have neighboring nodes 132 , 338 .
  • FIG. 2 is a plot of one example of a neighbor node function of one of the access nodes of the wireless mesh network. It should be understood that this function varies from access node to access node depending on the number and the proximity of neighboring access nodes.
  • the number of other (neighboring) access nodes that are affected by the transmission from a particular access node increases as the transmission power increases.
  • the shape of the curve (neighbor function) shown in FIG. 2 varies depending upon the locations of the neighboring nodes with respect to the particular access node.
  • the neighbor function is used by each access node to determine transmission power levels and data rates that minimize an air-time metric.
  • the air-time metric is dependent on the neighbor function and a percentage of air-time occupied.
  • the air-time metric is typically calculated for a range of transmission path losses between the node and the neighboring nodes.
  • the air-time (seconds per packet) is determined for each of the available data rates.
  • T the time required to transmit a packet (which is dependent on the data rate and order of modulation of the transmission signal, and the average number of retries to successfully transmit the packet)
  • N is the number of neighboring nodes (which is dependent on the neighbor function, and the transmission power).
  • the packets are assumed to include a set number of bits.
  • the packets sizes can change (that is, include a different number of bits), but when calculating the air-time metric, the packet sizes are fixed. That is, a change in packet size requires a new air-time metric calculation.
  • FIG. 3 shows an exemplary representation of the air-time metric with a variation in the transmission power of a particular node. This representation is for a set quality of transmission link.
  • the air-time metric representation of FIG. 3 can be for a link having a path loss of, for example, 100 dB.
  • an optimal (or at least a near-optimal) transmission power can be determined for the particular link quality.
  • the point 310 as designated on FIG. 3 can be determined to be a near-optimal transmission power.
  • the curve shows that increasing the transmission power level can improve the air-time metric (the increased transmission power provides an increasing SNR required for a higher data rate which results in less transmission time per packet) until a certain point in which the number of neighbors affected by the transmission starts to increase the air-time metric.
  • the transmission power level and transmission data rate corresponding to the minimization (as shown, for example, as the point 310 ) of the air-time metric is typically selected as the desired transmission power level and transmission data rate for a particular transmission path quality.
  • FIG. 4 is a plot of one example of a power-rate curve of the one access node of the wireless mesh network.
  • the power-rate curve provides suggested transmission power levels and transmission data rates for a range of quality of transmission links
  • the upper-left portion 410 of the curve depicts the suggested transmission power level and data rate for the worst cased link quality.
  • the worst-case link quality typically, but not always, corresponds to the longest link.
  • the curve provides varying transmission power levels and transmission data rates that are calculated for use with progressively better links as indicated by arrow 420 .
  • the curve of FIG. 4 essentially provides a selection of transmission power level and transmission data rate that corresponds with the optimal (minimal, or at least near-minimal) air-time metric as shown in FIG. 3 , for all of the possible transmission path qualities.
  • a power-rate curve similar to the power-rate curve of FIG. 4 can be generated for different packet sizes that include different numbers of data bits. Smaller-sized packets (fewer data bits) can have a greater probability of being successfully transmitted.
  • the access node determines the approximate path loss between the access node and the target node and sets the transmission power level and data rate according to the calculated values as shown, for example, by FIG. 4 .
  • the air-time metric accounts for both the number of affected neighboring nodes, and the transmission time per packet.
  • the power-rate curve is generated based on the quality of the expected link while minimizing the air-time metric. Due to this inter-relationship between the transmission time per packet and the number of affected nodes, the power rate curve includes unique discontinuities, such as, those designated 430 , 440 . These discontinuities suggest that with a slightly better quality link, the air-time metric is improved by decreasing the transmission power level, and decreasing the transmission data rate. This typically occurs because a slight decrease in the transmission power level causes a significant change in the number of affected neighbors.
  • FIG. 5 shows a particular access node 510 and neighboring nodes 522 , 524 , 532 , 534 , 536 , 538 that can be used to provide a better understanding of the existence of the discontinuities 430 , 440 of the power-rate curve of FIG. 4 .
  • the range of the transmission for a first transmission signal power level from the access node 520 can be shown by the range 540 , and the transmission affects, for example, only a couple of neighboring access nodes 522 , 524 .
  • By increasing the transmission power level to cover a range as depicted by 550 several other access nodes 532 , 534 , 536 , 538 are affected by the transmission signals of the access node 510 .
  • the increased transmission signal power may support a higher data rate which could work to decease the value of the air-time metric
  • the number of neighboring nodes affected by the increased transmission power level increases the air-time metric more than the increased data rate decreases the air-time metric. Therefore, the discontinuities 430 , 440 of the power rate curve of FIG. 4 exist because decreasing the transmission power level and the transmission data rate can, at times, decrease the air-time metric.
  • FIG. 6 is a flow chart showing one example of steps included within a method of characterizing transmission of a node of a wireless network.
  • a first step 610 includes determining a neighbor function based on how many neighboring nodes are affected by signals transmitted from the node at varying power levels.
  • a second step 620 includes calculating for a range of transmission path losses between the node and neighboring nodes, transmission power levels and transmission data rates that minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and a percentage of air-time occupied.
  • the neighbor function provides a representation of how many other access nodes of the wireless network are affected by an access node as a function of the power level of a signal transmitted from the access node.
  • the neighbor function can be determined by determining the path loss between the access node and other access nodes of the wireless network. As previously described, one method of determining the path loss is to measure the signal strength at the access node of signals transmitted from the other access nodes at a predetermined level. Assuming reciprocity in the transmission paths, the neighbor function can be determined calculating the power level of signals received at each of the other nodes by subtracting the path loss from signals transmitted from the access node.
  • an exemplary embodiment of the air-time metric is dependent on the neighbor function and a percentage of air-time occupied.
  • the air-time metric is typically calculated for a range of transmission path losses between the node and the neighboring nodes.
  • the air-time occupied is estimated based on a transmission packet air-time.
  • the air-time occupied is estimated based on a percentage of air-time which is determined by the number of packets transmitted during a period of time.
  • the air-time metric is determined by multiplying a packet transmission time by a number of neighbors that can receive the signal transmitted at the predetermined power level.
  • the air-time metric is determined by multiplying a number of packets transmitted during a period of time by a number of neighbors that can receive the signal transmitted at the predetermined power level.
  • An access node of a wireless network can set its transmission power level and transmission data rate for a target neighbor node based on a path loss between the node and the target node.
  • the path loss can be used to estimate the link (path) quality between the access node and the target node. From the power level and data rate curve, the desired transmission power level and transmission data rate can be determined.
  • FIG. 7 is a flow chart showing one example of steps included within a method of setting transmission power levels and data rates of a node within a wireless mesh network.
  • a first step 710 includes each node determining a neighbor function based on how many neighboring nodes are affected by a signal transmitted from the corresponding node at a predetermined power level.
  • a second step 720 includes each node calculating for a range of transmission path losses between the node and neighboring nodes, transmission power levels and transmission data rates that minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and an air-time occupied by transmission packets.
  • a third step 730 includes each access node setting its transmission power level and data rate based on the calculated power levels and data rates.
  • One method includes each of the other nodes of the wireless network transmitting reference signals at predetermined times. Each node estimating a path loss corresponding to each other node based on received signal strength of the reference signals. Each node determines which of the other nodes the node can receive the reference signals from, having at least a predetermined minimum power level, and designating these nodes as neighboring nodes.
  • the described methods of determining access node transmission power levels and data rates can be implemented as computer programs that are operable on the access node. Executing the computer program causes the access node to execute the steps of the described methods.

Abstract

Methods, apparatuses and systems for characterizing transmission of access nodes within a wireless mesh network are disclosed. One apparatus includes an access node, wherein the access node is operative to determine a neighbor function based on how many neighboring nodes are affected by signals transmitted from the access node at varying power levels, determine an airtime per link occupied by transmission packets on links to each of the identified neighbor nodes of the neighbor function, determine an airtime metric based on the neighboring nodes and the airtime per link occupied by the transmission packets, calculate combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric, and set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates.

Description

    RELATED APPLICATIONS
  • This patent application is a continuation of U.S. patent application Ser. No. 11/699,101, filed Jan. 29, 2007, which is herein incorporated by reference.
  • FIELD OF THE INVENTION
  • The invention relates generally to wireless communications. More particularly, the invention relates to a method and apparatus for characterizing transmission power levels and data rates of access nodes within a mesh network.
  • BACKGROUND OF THE INVENTION
  • Packet networking is a form of data communication in which data packets are routed from a source device to a destination device. Packets can be networked directly between a source node and a destination node, or the packets can be relayed through a number of intermediate nodes.
  • In wireless networks, different transmission protocols (such as, 802.11) allow the transmission of information at different power levels and data rates. Depending upon the characteristics of the links between the access nodes, some power levels and data rates can be more desirable than others.
  • Increasing transmission power levels generally increases the probability of successful packet reception. However, within a wireless network, increasing the transmission power levels increases the probability of the transmission interfering with other wireless communication links, resulting in a reduction in available network-wide airtime and overall network capacity. Similarly, there are tradeoffs to operating a link at different transmit data rates. Increasing transmit rate (if the link supports it) can result in more efficient use of airtime, since it takes less time to transmit a bit. As a result, network capacity can be increased. However, higher data rates require a larger signal-to-noise ratio at the receiver for successful packet reception, and using a higher data rate may result in higher probability of packet loss, necessitating retransmissions.
  • It is desirable to determine and operate access nodes of a wireless mesh network at transmission power levels and transmission data rates that account for interference the transmission causes with wireless links of other access nodes of the wireless mesh network.
  • SUMMARY OF THE INVENTION
  • An embodiment includes an access node, wherein the access node is operative to determine a neighbor function based on how many neighboring nodes are affected by signals transmitted from the access node at varying power levels, determine an airtime per link occupied by transmission packets on links to each of the identified neighbor nodes of the neighbor function, determine an airtime metric based on the neighboring nodes and the airtime per link occupied by the transmission packets, calculate combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric , and set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates.
  • Another embodiment includes an access node, wherein the access node is operative to identify neighboring access nodes of the access node based on path losses of corresponding links between the access node and the neighboring access nodes, determine a neighbor function based on how many of the identified neighboring access nodes are affected by signals transmitted from the access node at varying power levels, calculate for a range of transmission path losses between the access node and neighboring access nodes, combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and an air-time occupied by transmission packets. The access node is further operative to set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates, wherein the air-time metric is further determined by multiplying a transmit time of a set number of bits by a number of identified neighboring access nodes that can receive the signal transmitted at the predetermined power level.
  • Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a wireless mesh network that includes access nodes of varying distances from each other.
  • FIG. 2 is a plot of one example of a neighbor node function of one of the access nodes of the wireless mesh network.
  • FIG. 3 is a plot of one example of air-time metric values versus transmission signal power for a particular quality transmission link.
  • FIG. 4 is a plot of one example of a power-rate curve of the one access node of the wireless mesh network.
  • FIG. 5 shows and access node and neighboring access nodes for varying levels of transmission signal power.
  • FIG. 6 is a flow chart showing one example of steps included within a method of characterizing transmission of a node of a wireless network.
  • FIG. 7 is a flow chart showing one example of steps included within a method of setting transmission power levels and data rates of a node within a wireless mesh network.
  • DETAILED DESCRIPTION
  • The invention includes a method and apparatus for characterizing transmission (power level and data rate) of a node within a wireless network. The characterization allows for selection of transmission power level and data rate to minimize an air-time metric of transmission of the node.
  • The transmission protocols of a wireless networks typically includes multiple possible transmission data rates. For example, the IEEE 802.11g standard specifies operating data rates including 1 Mbps, 2 Mbps, 5.5 Mbps, 6 Mbps, 9 Mbps, 11 Mbps, 12 Mbps, 18 Mbps, 24 Mbps, 36 Mbps, 48 Mbps and 54 Mbps. Successful transmission at the higher data rates requires higher levels of SNR (signal-to-noise ratio) at the receiver, typically requiring higher transmission signal power. However, the higher data rates typically require less transmission air-time per bit. Therefore, a trade-off typically exits in wireless networks between transmission power levels and data rates. The higher SNR required for higher data rates typically requires a higher transmission power level that is more likely to interfere with neighboring nodes. However, the higher data rates typically require less air-time per bit, and therefore, are typically friendly to neighboring nodes with respect to available air-time.
  • The following embodiment and descriptions are directed to wireless mesh network. However, it is to be understood that the embodiments are not limited to wireless mesh networks. Wireless networks in general can benefit from the methods of characterizing transmission power levels and transmission data rates described.
  • FIG. 1 shows a wireless mesh network with many access nodes. The wireless access nodes interconnect with each other, and gateways to form a mesh. The interconnections are wireless links, and therefore, the air-time occupied by each of the access nodes is important because there is only a finite amount of air-time available. Depending upon the physical locations of the access nodes, certain access nodes are more likely to interfere with other nodes of the wireless network. A first exemplary node 233 is more likely to interfere with neighboring nodes of the wireless mesh network than a second exemplary node 235, because the first node 233 is physically located closer to more neighboring nodes than the second node 235. Neighbor nodes can be defined as other nodes that can receive signals from a node at a predetermined amount of signal strength when the signals are transmitted from the node at another predetermined level of signal strength.
  • An embodiment of each of the access nodes of the wireless network includes determining a neighbor function for the access node. The neighbor function for each of the access nodes can be different depending upon how the access node is physically located with respect to the other access nodes of the wireless network. One exemplary method of determining the neighbor function includes determining how many neighboring nodes are affected by signals transmitted from the node at varying power levels. Assuming reciprocity in the transmission signal links, this can be determined by having nodes of the wireless network transmit signals of a predetermined power level. If the node receives the transmitted signals with a power level above another threshold, then the nodes transmitting the signals are designated as neighboring nodes. Effectively, the path losses of the links between the access nodes and the other nodes are determined. Nodes are designated as neighboring nodes if the path loss of the corresponding link is less than a threshold.
  • Medium access protocols such as 802.11 implement Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA). In such protocols, transceivers sense a channel (link) and defer transmissions while the channel is considered to be busy. The channel is deemed to be busy if a received signal exceeds a Clear Channel Assessment Threshold (CCAT). One method of determining the neighbor function is to determine the transmission power level that would trip the CCAT of the neighboring nodes. Once the CCAT has been tripped, the nodes can no longer transmit any signals.
  • A neighbor function can easily be determined from the neighboring nodes once the path losses of the links between the node and the neighboring nodes are determined. At maximum transmission power, all of the neighbor nodes are affected. As the transmission power from the node is decreased, the number of affected nodes can be determined by knowing the path losses of each of the links between the node and the neighboring nodes.
  • Referring to FIG. 1, the first exemplary access node 233 can be determined to have neighboring nodes 130, 131, 234, 336, 337 when transmitting the predetermined power level. The number of neighboring nodes affected by transmission of the access node 233 decreases as the transmission power of the access node 233 decreases. The second exemplary access node 235 can be determined to have neighboring nodes 132, 338.
  • FIG. 2 is a plot of one example of a neighbor node function of one of the access nodes of the wireless mesh network. It should be understood that this function varies from access node to access node depending on the number and the proximity of neighboring access nodes.
  • As would be expected, the number of other (neighboring) access nodes that are affected by the transmission from a particular access node increases as the transmission power increases. The shape of the curve (neighbor function) shown in FIG. 2 varies depending upon the locations of the neighboring nodes with respect to the particular access node.
  • The neighbor function is used by each access node to determine transmission power levels and data rates that minimize an air-time metric. For an exemplary embodiment, the air-time metric is dependent on the neighbor function and a percentage of air-time occupied. The air-time metric is typically calculated for a range of transmission path losses between the node and the neighboring nodes. The air-time (seconds per packet) is determined for each of the available data rates.
  • For an embodiment, the air-time metric (A) can be defined as a product of the time required to transmit a packet of data, and the neighboring nodes. That is, A=T*N, where T is the time required to transmit a packet (which is dependent on the data rate and order of modulation of the transmission signal, and the average number of retries to successfully transmit the packet), and where N is the number of neighboring nodes (which is dependent on the neighbor function, and the transmission power). For a calculated air-time metric, the packets are assumed to include a set number of bits. As will be described, the packets sizes can change (that is, include a different number of bits), but when calculating the air-time metric, the packet sizes are fixed. That is, a change in packet size requires a new air-time metric calculation.
  • FIG. 3 shows an exemplary representation of the air-time metric with a variation in the transmission power of a particular node. This representation is for a set quality of transmission link. For example, the air-time metric representation of FIG. 3 can be for a link having a path loss of, for example, 100 dB.
  • Generally, an optimal (or at least a near-optimal) transmission power can be determined for the particular link quality. For example, the point 310 as designated on FIG. 3 can be determined to be a near-optimal transmission power. The curve shows that increasing the transmission power level can improve the air-time metric (the increased transmission power provides an increasing SNR required for a higher data rate which results in less transmission time per packet) until a certain point in which the number of neighbors affected by the transmission starts to increase the air-time metric. The transmission power level and transmission data rate corresponding to the minimization (as shown, for example, as the point 310) of the air-time metric is typically selected as the desired transmission power level and transmission data rate for a particular transmission path quality.
  • FIG. 4 is a plot of one example of a power-rate curve of the one access node of the wireless mesh network. The power-rate curve provides suggested transmission power levels and transmission data rates for a range of quality of transmission links The upper-left portion 410 of the curve depicts the suggested transmission power level and data rate for the worst cased link quality. The worst-case link quality typically, but not always, corresponds to the longest link. The curve provides varying transmission power levels and transmission data rates that are calculated for use with progressively better links as indicated by arrow 420. The curve of FIG. 4 essentially provides a selection of transmission power level and transmission data rate that corresponds with the optimal (minimal, or at least near-minimal) air-time metric as shown in FIG. 3, for all of the possible transmission path qualities.
  • A power-rate curve similar to the power-rate curve of FIG. 4 can be generated for different packet sizes that include different numbers of data bits. Smaller-sized packets (fewer data bits) can have a greater probability of being successfully transmitted.
  • When an access node is transmitting to a particular neighboring node, the access node determines the approximate path loss between the access node and the target node and sets the transmission power level and data rate according to the calculated values as shown, for example, by FIG. 4.
  • The air-time metric accounts for both the number of affected neighboring nodes, and the transmission time per packet. The power-rate curve is generated based on the quality of the expected link while minimizing the air-time metric. Due to this inter-relationship between the transmission time per packet and the number of affected nodes, the power rate curve includes unique discontinuities, such as, those designated 430, 440. These discontinuities suggest that with a slightly better quality link, the air-time metric is improved by decreasing the transmission power level, and decreasing the transmission data rate. This typically occurs because a slight decrease in the transmission power level causes a significant change in the number of affected neighbors.
  • FIG. 5 shows a particular access node 510 and neighboring nodes 522, 524, 532, 534, 536, 538 that can be used to provide a better understanding of the existence of the discontinuities 430, 440 of the power-rate curve of FIG. 4. The range of the transmission for a first transmission signal power level from the access node 520 can be shown by the range 540, and the transmission affects, for example, only a couple of neighboring access nodes 522, 524. By increasing the transmission power level to cover a range as depicted by 550, several other access nodes 532, 534, 536, 538 are affected by the transmission signals of the access node 510. Therefore, although the increased transmission signal power may support a higher data rate which could work to decease the value of the air-time metric, the number of neighboring nodes affected by the increased transmission power level increases the air-time metric more than the increased data rate decreases the air-time metric. Therefore, the discontinuities 430, 440 of the power rate curve of FIG. 4 exist because decreasing the transmission power level and the transmission data rate can, at times, decrease the air-time metric.
  • FIG. 6 is a flow chart showing one example of steps included within a method of characterizing transmission of a node of a wireless network. A first step 610 includes determining a neighbor function based on how many neighboring nodes are affected by signals transmitted from the node at varying power levels. A second step 620 includes calculating for a range of transmission path losses between the node and neighboring nodes, transmission power levels and transmission data rates that minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and a percentage of air-time occupied.
  • Neighbor Function
  • The neighbor function provides a representation of how many other access nodes of the wireless network are affected by an access node as a function of the power level of a signal transmitted from the access node. The neighbor function can be determined by determining the path loss between the access node and other access nodes of the wireless network. As previously described, one method of determining the path loss is to measure the signal strength at the access node of signals transmitted from the other access nodes at a predetermined level. Assuming reciprocity in the transmission paths, the neighbor function can be determined calculating the power level of signals received at each of the other nodes by subtracting the path loss from signals transmitted from the access node.
  • Air-time Metric
  • As previously described, an exemplary embodiment of the air-time metric is dependent on the neighbor function and a percentage of air-time occupied. The air-time metric is typically calculated for a range of transmission path losses between the node and the neighboring nodes.
  • For an embodiment, the air-time metric (A) can be defined as a product of the time required to transmit a packet of data, and the neighboring nodes. That is, A=T*N, where T is the time required to transmit a packet (which is dependent on the data rate and order of modulation of the transmission signal), and where N is the number of neighboring nodes (which is dependent on the neighbor function, and the transmission power).
  • For one embodiment the air-time occupied is estimated based on a transmission packet air-time. For another embodiment the air-time occupied is estimated based on a percentage of air-time which is determined by the number of packets transmitted during a period of time.
  • For one embodiment the air-time metric is determined by multiplying a packet transmission time by a number of neighbors that can receive the signal transmitted at the predetermined power level. For another embodiment, the air-time metric is determined by multiplying a number of packets transmitted during a period of time by a number of neighbors that can receive the signal transmitted at the predetermined power level.
  • An access node of a wireless network can set its transmission power level and transmission data rate for a target neighbor node based on a path loss between the node and the target node. The path loss can be used to estimate the link (path) quality between the access node and the target node. From the power level and data rate curve, the desired transmission power level and transmission data rate can be determined.
  • FIG. 7 is a flow chart showing one example of steps included within a method of setting transmission power levels and data rates of a node within a wireless mesh network. A first step 710 includes each node determining a neighbor function based on how many neighboring nodes are affected by a signal transmitted from the corresponding node at a predetermined power level. A second step 720 includes each node calculating for a range of transmission path losses between the node and neighboring nodes, transmission power levels and transmission data rates that minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and an air-time occupied by transmission packets. A third step 730 includes each access node setting its transmission power level and data rate based on the calculated power levels and data rates.
  • Various methods can be used to determine how many neighboring nodes are affected by signals from the node. One method includes each of the other nodes of the wireless network transmitting reference signals at predetermined times. Each node estimating a path loss corresponding to each other node based on received signal strength of the reference signals. Each node determines which of the other nodes the node can receive the reference signals from, having at least a predetermined minimum power level, and designating these nodes as neighboring nodes.
  • The described methods of determining access node transmission power levels and data rates can be implemented as computer programs that are operable on the access node. Executing the computer program causes the access node to execute the steps of the described methods.
  • Although specific embodiments of the invention have been described and illustrated, the invention is not to be limited to the specific forms or arrangements of parts so described and illustrated. The invention is limited only by the appended claims.

Claims (18)

What is claimed:
1. An access node, wherein the access node is operative to:
determine a neighbor function based on how many neighboring nodes are affected by signals transmitted from the access node at varying power levels;
determine an airtime per link occupied by transmission packets on links to each of the identified neighbor nodes of the neighbor function;
determine an airtime metric based on the neighboring nodes and the airtime per link occupied by the transmission packets;
calculate combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric; and
set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates.
2. The access node of claim 1, further comprising calculating a transmission power level and transmission data rate for multiple values of expected transmission path loss between the access node and the target node.
3. The access node of claim 1, wherein the air-time per link occupied is determined by a percentage of air-time occupied.
4. The access node of claim 1, wherein determining how many neighboring nodes are affected by a signals from the access node comprises:
other nodes of the wireless network transmitting a reference signal at predetermined times; and wherein
the node access node is further operative to determine which of the nodes the node can receive the reference signals from, having at least a predetermined minimum power level, and designate these nodes as neighboring nodes.
5. The access node of claim 4, wherein the access node is further operative to estimate a path loss corresponding to each neighboring node.
6. The access node of claim 1, wherein a percentage of airtime per link occupied is estimated based on a transmission packet air-time.
7. The access node of claim 1, wherein a percentage of airtime per link occupied is estimated based on a number of packets transmitted during a period of time.
8. The access node of claim 1, wherein the air-time metric is determined by multiplying a packet transmit time by a number of neighbors that can receive the signal transmitted at the predetermined power level.
9. The access node of claim 1, wherein the air-time metric is determined by multiplying a number of packets transmitted during a period of time by a number of neighbors that can receive the signal transmitted at the predetermined power level.
10. The access node of claim 1, wherein the transmission power and data rate are set for each data packet transmitted.
11. The access node of claim 10, wherein the node periodically checks different calculated transmission power levels and data rates to determine if a different combination provides a better link.
12. The access node of claim 10, wherein the node periodically checks different calculated transmission power levels and data rates to determine if a different combination provides a link that provides a better air-time metric.
13. The access node of claim 10, wherein if an error rate of transmitted data is above a threshold, the access node increases the transmission power level or decreases the transmission data rate according to the calculated transmission power levels and data rates.
14. The access node of claim 10, wherein if an error rate of transmitted data is below a threshold, the access node decreases the transmission power level or increases the transmission data rate according to the calculated transmission power levels and data rates.
15. An access node, wherein the access node is operative to:
identify neighboring access nodes of the access node based on path losses of corresponding links between the access node and the neighboring access nodes;
determine a neighbor function based on how many of the identified neighboring access nodes are affected by signals transmitted from the access node at varying power levels;
calculate for a range of transmission path losses between the access node and neighboring access nodes, combinations of transmission power levels and transmission data rates that jointly minimize an air-time metric, wherein the air-time metric is dependent on the neighbor function and an air-time occupied by transmission packets;
set a transmission power level and transmission data rate for transmission to a target node based on a path loss between the access node and the target node, and the calculated transmission power levels and data rates; wherein
the air-time metric is further determined by multiplying a transmit time of a set number of bits by a number of identified neighboring access nodes that can receive the signal transmitted at the predetermined power level.
16. The access node of claim 15, wherein calculating an expected range of transmission path losses between the access node and identified neighboring access nodes, transmission power levels and transmission data rates comprises calculating a transmission power level and transmission data rate for multiple values of expected transmission path loss.
17. The access node of claim 15, wherein the air-time occupied is determined by a percentage of air-time occupied.
18. The access node of claim 15, wherein determining how many neighboring access nodes are affected by a signals from the access node comprises:
other access nodes of the wireless network transmitting a reference signal at predetermined times;
the access node determining which of the access nodes the access node can receive the reference signals from, having at least a predetermined minimum power level, and designating these access nodes as neighboring access nodes.
US13/903,051 2007-01-29 2013-05-28 Characterizing transmission of access nodes within a wireless network Abandoned US20130258950A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/903,051 US20130258950A1 (en) 2007-01-29 2013-05-28 Characterizing transmission of access nodes within a wireless network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/699,101 US8493945B2 (en) 2007-01-29 2007-01-29 Characterizing transmission of access nodes within a wireless network
US13/903,051 US20130258950A1 (en) 2007-01-29 2013-05-28 Characterizing transmission of access nodes within a wireless network

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/699,101 Continuation US8493945B2 (en) 2007-01-29 2007-01-29 Characterizing transmission of access nodes within a wireless network

Publications (1)

Publication Number Publication Date
US20130258950A1 true US20130258950A1 (en) 2013-10-03

Family

ID=39668595

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/699,101 Active 2029-12-19 US8493945B2 (en) 2007-01-29 2007-01-29 Characterizing transmission of access nodes within a wireless network
US13/903,051 Abandoned US20130258950A1 (en) 2007-01-29 2013-05-28 Characterizing transmission of access nodes within a wireless network

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/699,101 Active 2029-12-19 US8493945B2 (en) 2007-01-29 2007-01-29 Characterizing transmission of access nodes within a wireless network

Country Status (1)

Country Link
US (2) US8493945B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213109A1 (en) * 2011-02-22 2012-08-23 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US9380479B2 (en) 2014-05-02 2016-06-28 Abb Inc. Wireless mesh access node neighboring channel quality estimation
US20170093663A1 (en) * 2015-09-25 2017-03-30 Osram Sylvania Inc. Wireless mesh network health determination
US10285101B2 (en) * 2015-02-06 2019-05-07 Dongguk University Industry-Academic Cooperation Foundation Method and apparatus for adjusting data transmission rate between vehicle and access point
WO2020176355A1 (en) * 2019-02-26 2020-09-03 Landis+Gyr Innovations, Inc. Mode selection for mesh network communication

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2931327A1 (en) * 2008-05-16 2009-11-20 France Telecom TECHNIQUE FOR TRANSMISSION BY A NODE OF A COMMUNICATION NETWORK
US9237024B2 (en) 2013-03-15 2016-01-12 Cooper Technologies Company Informational broadcast messages and its uses in wireless multihop networks
CA2931043A1 (en) * 2013-12-20 2015-06-25 Thales Canada Inc. Method and system for estimating a topology of a network and its use in a mobile ad hoc radio network
CN105744550A (en) * 2016-02-04 2016-07-06 中国联合网络通信集团有限公司 Wireless Mesh network, and routing method and apparatus thereof
CN108207021B (en) * 2016-12-20 2020-11-06 华为技术有限公司 Transmission power control method, device and wireless controller

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388101A (en) * 1992-10-26 1995-02-07 Eon Corporation Interactive nationwide data service communication system for stationary and mobile battery operated subscriber units
US20060153081A1 (en) * 2005-01-11 2006-07-13 Telefonaktiebolaget L M Ericsson (Publ) Interference-based routing in a wireless mesh network
US20060199545A1 (en) * 2005-03-07 2006-09-07 David Abusch-Magder Methods of simplifying network simulation
US20060211441A1 (en) * 2005-03-15 2006-09-21 Murat Mese Power control and overlapping control for a quasi-orthogonal communication system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6707862B1 (en) * 2000-03-21 2004-03-16 Denso Corporation Predictive data rate control in wireless transmitters
US7082107B1 (en) * 2001-11-26 2006-07-25 Intel Corporation Power control in wireless communications based on estimations of packet error rate
US6879840B2 (en) * 2001-11-30 2005-04-12 M2 Networks, Inc. Method and apparatus for adaptive QoS-based joint rate and power control algorithm in multi-rate wireless systems
US6735420B2 (en) * 2001-12-18 2004-05-11 Globespanvirata, Inc. Transmit power control for multiple rate wireless communications
KR100739725B1 (en) * 2005-08-29 2007-07-13 삼성전자주식회사 Method and apparatus for fast and efficient handover at link layer of wireless LAN

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5388101A (en) * 1992-10-26 1995-02-07 Eon Corporation Interactive nationwide data service communication system for stationary and mobile battery operated subscriber units
US20060153081A1 (en) * 2005-01-11 2006-07-13 Telefonaktiebolaget L M Ericsson (Publ) Interference-based routing in a wireless mesh network
US20060199545A1 (en) * 2005-03-07 2006-09-07 David Abusch-Magder Methods of simplifying network simulation
US20060211441A1 (en) * 2005-03-15 2006-09-21 Murat Mese Power control and overlapping control for a quasi-orthogonal communication system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213109A1 (en) * 2011-02-22 2012-08-23 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US9635624B2 (en) * 2011-02-22 2017-04-25 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US9380479B2 (en) 2014-05-02 2016-06-28 Abb Inc. Wireless mesh access node neighboring channel quality estimation
US10285101B2 (en) * 2015-02-06 2019-05-07 Dongguk University Industry-Academic Cooperation Foundation Method and apparatus for adjusting data transmission rate between vehicle and access point
US20170093663A1 (en) * 2015-09-25 2017-03-30 Osram Sylvania Inc. Wireless mesh network health determination
US10390241B2 (en) * 2015-09-25 2019-08-20 Osram Sylvania Inc. Wireless mesh network health determination
US20190373494A1 (en) * 2015-09-25 2019-12-05 Osram Sylvania Inc. Wireless mesh network health determination
WO2020176355A1 (en) * 2019-02-26 2020-09-03 Landis+Gyr Innovations, Inc. Mode selection for mesh network communication
US11006431B2 (en) 2019-02-26 2021-05-11 Landis+Gyr Innovations, Inc. Mode selection for mesh network communication

Also Published As

Publication number Publication date
US8493945B2 (en) 2013-07-23
US20080182607A1 (en) 2008-07-31

Similar Documents

Publication Publication Date Title
US8493945B2 (en) Characterizing transmission of access nodes within a wireless network
US7321614B2 (en) Apparatus and methods for communicating using symbol-modulated subcarriers
KR100885628B1 (en) Method for data rate selection in a wireless communication network
US7089028B1 (en) Radio communication system
US8606187B2 (en) Mitigation of uncoordinated interference of a wireless access node
JP4933028B2 (en) System and method for high speed dynamic link adaptation
JP5531338B2 (en) Interference detection device, interference avoidance device, wireless communication device, wireless network system, interference detection method, interference avoidance method, and program
US20050129051A1 (en) Self-configuring physical carrier sensing threshold adaptation
US8134961B2 (en) Adaptively capping data throughput of client devices associated with a wireless network
US8634447B2 (en) Adaption of medium access and transmission parameters for wireless networks
EP1225736A2 (en) Adaptive fragmentation for wireless network communications
US8045562B2 (en) Estimating link interference and bandwidth
US20050239411A1 (en) Method and apparatus to distribute statistics in a wireless communication network
JP2008536353A (en) Introduction of power control and quality of service (QOS) in communication systems
WO2007030600A2 (en) Adaptive control of transmission power and data rates in a mesh network
KR20110113590A (en) Division free duplexing networks
JP2008512024A (en) Method and system for link adaptation in a wireless network
Yoo et al. Eliminating the Performance Anomaly of 802.11 b
US9197572B2 (en) Throughput enabled rate adaptation in wireless networks
JP2008512025A (en) Method and system for error identification in a wireless network
EP1882313A2 (en) An adaptive mac protocol based on multi-user detection
Huang et al. Rate matching: a new approach to hidden terminal problem in ad hoc networks
Edalat Exploring Computational Intelligence to Improve Network Performance
KR100929595B1 (en) How to Set Communication Parameters on the Edho Wireless Network
JP2007512736A (en) Adjusting the initial downlink transmit power for non-real-time services

Legal Events

Date Code Title Description
AS Assignment

Owner name: TROPOS NETWORKS, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BEHROOZI, PETER;BEHROOZI, CYRUS;REEL/FRAME:030492/0105

Effective date: 20070125

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION