US20130297840A1 - Intelligent electronic device capable of operating as a usb master device and a usb slave device - Google Patents

Intelligent electronic device capable of operating as a usb master device and a usb slave device Download PDF

Info

Publication number
US20130297840A1
US20130297840A1 US13/834,737 US201313834737A US2013297840A1 US 20130297840 A1 US20130297840 A1 US 20130297840A1 US 201313834737 A US201313834737 A US 201313834737A US 2013297840 A1 US2013297840 A1 US 2013297840A1
Authority
US
United States
Prior art keywords
usb
ied
data
device controller
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/834,737
Inventor
Erran Kagan
Tibor Banhegyesi
Avi Cohen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EI Electronics LLC
Original Assignee
Electro Industries Gauge Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/628,636 external-priority patent/US9885739B2/en
Application filed by Electro Industries Gauge Technology filed Critical Electro Industries Gauge Technology
Priority to US29/449,582 priority Critical patent/USD712289S1/en
Priority to US13/834,737 priority patent/US20130297840A1/en
Publication of US20130297840A1 publication Critical patent/US20130297840A1/en
Priority to US29/477,065 priority patent/USD712290S1/en
Priority to US29/477,147 priority patent/USD712291S1/en
Assigned to ELECTRO INDUSTRIES/GAUGE TECH reassignment ELECTRO INDUSTRIES/GAUGE TECH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: COHEN, AVI, BANHEGYESI, TIBOR, KAGAN, ERRAN
Priority to US29/496,764 priority patent/USD739283S1/en
Priority to US15/921,308 priority patent/US10474591B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/10Program control for peripheral devices
    • G06F13/12Program control for peripheral devices using hardware independent of the central processor, e.g. channel or peripheral processor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • G01R19/2513Arrangements for monitoring electric power systems, e.g. power lines or loads; Logging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present disclosure relates generally to intelligent electronic devices (IEDs) for electrical power systems, and more particularly, to an IED including a removable device for storing data relating to electrical power distribution systems.
  • IEDs intelligent electronic devices
  • Electric utility companies track electric usage by customers by using power meters. These meters track the amount of power consumed at a particular location. These locations range from power substations, to commercial businesses, to residential homes. The electric utility companies use information obtained from the power meter to charge their customers for their power consumption, i.e., revenue metering.
  • a popular type of power meter is the socket-type power meter, i.e., S-base or Type S meter. As its name implies, the meter itself plugs into a socket for easy installation, removal and replacement. Other meter installations include panel mounted, switchboard mounted, and circuit breaker mounted. Typically, the power meter connects between utility power lines supplying electricity and a usage point, namely, a residence or commercial place of business.
  • a power meter may also be placed at a point within the utility's power grid to monitor power flowing through that point for distribution, power loss, or capacity monitoring, e.g., at a substation.
  • These power and energy meters are installed in substations to provide a visual display of real-time data and to alarm when problems occur. These problems include limit alarms, breaker control, outages and many other types of events.
  • IED intelligent electronic device
  • An intelligent electronic device e.g., an electrical power meter, having at least one removable memory device for storing data sensed and generated by the intelligent electronic device is provided.
  • IED intelligent electronic device
  • a user will be able to just remove the portable or removable memory device and replace it with a fresh one and then download the data from the removable memory device to a computing device at a later period.
  • the IED will utilize a USB (Universal Serial Bus) architecture for communicating generated data to the removable memory device.
  • USB Universal Serial Bus
  • an IED is configured to operate as a USB master and/or USB slave device.
  • the USB master configuration for the IED can be implemented using both hardware and software both internally to the host IED processor or by an additional processor or processors or other type of silicon coupled to the IED processor either directly or indirectly.
  • the USB interface may also be allowed to be used as a USB slave wherein under user control or wherein the IED itself via its processor or other components stored internally can determine whether it chooses to be a USB master or USB slave device.
  • the IED can be configured to have the interface act as a Ethernet or RS-232 device or any other type of communication architecture.
  • an intelligent electronic device including a housing; at least one sensor configured for sensing at least one electrical parameter distributed to a load; at least one analog-to-digital converter coupled to the at least one sensor and configured for converting an analog signal output from the at least one sensor to a digital data; at least one processing unit coupled to the at least one analog-to-digital converter configured to receive the digital data and store the digital data in a removable memory; and at least one device controller coupled to the at least one processing unit, the at least one device controller including at least one interface disposed on the housing for interfacing with the removable memory, wherein the at least one device controller is operative as a master or slave device controller.
  • the at least one device controller operates in accordance with a Universal Serial Bus (USB) specification.
  • USB Universal Serial Bus
  • FIG. 1 is a diagram of an intelligent electronic device in accordance with an embodiment of the present disclosure
  • FIG. 2A is a diagram of an intelligent electronic device utilizing a USB (Universal Serial Bus) architecture in accordance with an embodiment of the present disclosure
  • FIG. 2B is a schematic diagram of the USB architecture employed in the IED shown in FIG. 2A ;
  • FIG. 3A is a diagram of an intelligent electronic device utilizing a USB architecture in accordance with another embodiment of the present disclosure
  • FIG. 3B is a schematic diagram of the USB architecture employed in the IED shown in FIG. 3A ;
  • FIG. 4 is exemplary data in CSV format generated by an IED in accordance with an embodiment of the present disclosure
  • FIGS. 5A-5C illustrate an IED utilizing a USB memory device in accordance with an embodiment of the present disclosure
  • FIGS. 6A-6H illustrates various views of an intelligent electronic device in accordance with an embodiment of the present disclosure
  • FIG. 7A is a front, top, left perspective view of an intelligent electronic device with a port plug removed in accordance with an embodiment of the present disclosure
  • FIG. 7B is a front elevational view of an intelligent electronic device with a port plug removed in accordance with an embodiment of the present disclosure
  • FIG. 8A is a rear elevational view of a bezel for an intelligent electronic device in accordance with an embodiment of the present disclosure
  • FIG. 8B is a rear perspective view of a bezel for an intelligent electronic device in accordance with an embodiment of the present disclosure
  • FIG. 8C is a partial view of the intelligent electronic device shown in FIG. 7B ;
  • FIGS. 9A-9F illustrates several views of a port plug for an intelligent electronic device in accordance with an embodiment of the present disclosure.
  • FIG. 10 illustrates a security mechanism of an intelligent electronic device in accordance with an embodiment of the present disclosure.
  • processor or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (“DSP”) hardware, read only memory (“ROM”) for storing software, random access memory (“RAM”), and nonvolatile storage.
  • DSP digital signal processor
  • ROM read only memory
  • RAM random access memory
  • any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
  • exemplary is used herein to mean “serving as an example, instance, or illustration.” Any configuration or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other configurations or designs.
  • the phrase “coupled with” is defined to mean directly connected to or indirectly connected with through one or more intermediate components. Such intermediate components may include both hardware and software based components.
  • intelligent electronic devices include Programmable Logic Controllers (“PLC's”), Remote Terminal Units (“RTU's”), electric power meters, protective relays, fault recorders and other devices which are coupled with power distribution networks to manage and control the distribution and consumption of electrical power.
  • PLC's Programmable Logic Controllers
  • RTU's Remote Terminal Units
  • electric power meters protective relays
  • fault recorders and other devices which are coupled with power distribution networks to manage and control the distribution and consumption of electrical power.
  • a meter is a device that records and measures power events, power quality, current, voltage waveforms, harmonics, transients and other power disturbances.
  • Revenue accurate meters (“revenue meter”) relate to revenue accuracy electrical power metering devices with the ability to detect, monitor, report, quantify and communicate power quality information about the power which they are metering.
  • FIG. 1 An intelligent electronic device (IED) 10 for monitoring and determining an amount of electrical power usage by a consumer and for providing audible and visual indications to a user is illustrated in FIG. 1 .
  • the IED 10 includes sensors 12 , a plurality of analog-to-digital (ND) converters 14 and a processing system including a central processing unit (CPU) 18 and/or a digital signal processor (DSP) 16 .
  • the sensors 12 will sense electrical parameters, e.g., voltage and current, of the incoming lines from an electrical power distribution system.
  • the sensors will include current transformers and potential transformers, wherein one current transformer and one voltage transformer will be coupled to each phase of the incoming power lines.
  • a primary winding of each transformer will be coupled to the incoming power lines and a secondary winding of each transformer will output a voltage representative of the sensed voltage and current.
  • the output of each transformer will be coupled to the ND converters 14 configured to convert the analog output voltage from the transformer to a digital signal that can be processed by the CPU 18 or DSP 16 .
  • the CPU 18 is configured for receiving the digital signals from the ND converters 14 to perform the necessary calculations to determine the power usage and controlling the overall operations of the IED 10 .
  • the DSP 16 will receive the digital signals from the ND converters 14 and perform the necessary calculations to determine the power usage to free the resources of the CPU 18 .
  • the CPU 18 will include a microprocessor 20 executing instructions and performing various calculations, flash memory 22 for storing executable instructions and permanent data tables for controlling the overall operation of the microprocessor and random access memory (RAM) 24 for holding data during computations by the microprocessor 20 .
  • a first memory 26 is coupled to CPU 18 and stores calibration and setup parameters of the IED 10 , e.g., meter configuration, serial number of the device, etc.
  • Memory 26 may be an integrated circuit in the form of a FLASH or EEPROM, or any other known or to be developed type of memory which is nonvolatile, capable of being changed in the IED, and amenable to making such changes difficult for an end user.
  • the IED 10 further includes a second memory 28 for storing sensed and generated data for further processing and for retrieval, e.g., data logs.
  • Memory 28 may be flash memory and may be removable or non-removable. In one embodiment, data stored on memory 28 may be retrieved by an external device or computer via a communication device 30 . In another embodiment, where memory 28 is removable, memory 28 will be in the form of a memory card such as a CompactFlash card, a Memory Stick, a SmartMedia card, etc., and data stored therein will be retrieved from an appropriate memory card reader.
  • a power supply 32 is also provided for providing power to each component of the IED 10 .
  • the power supply 32 is a transformer with its primary windings coupled to the incoming power distribution lines and having an appropriate number of windings to provide a nominal voltage, e.g., 5VDC, at its secondary windings.
  • power is supplied from an independent source to the power supply 32 , e.g., from a different electrical circuit, an uninterruptible power supply (UPS), etc.
  • UPS uninterruptible power supply
  • the IED 10 of the present disclosure will have a user interface for interacting with a user and for communicating events, alarms and instructions to the user.
  • the user interface will include a display 34 for providing visual indications to the user.
  • the display 34 may include a touch screen, a liquid crystal display (LCD), a plurality of LED number segments, individual light bulbs or any combination of these.
  • the display 34 may provide the information to the user in the form of alpha-numeric lines, computer-generated graphics, videos, etc.
  • the user interface will include an input device 35 for entering data, e.g., parameters, limits, etc.
  • the input device may include pushbuttons, a keypad, a touch screen, at least one dial, etc.
  • the user interface may also include a speaker or audible output means 36 for audibly producing instructions, alarms, data, etc.
  • the speaker 36 will be coupled to the CPU 18 via a digital-to-analog converter (D/A) for converting digital audio files stored in memory to analog signals playable by the speaker 36 .
  • D/A digital-to-analog converter
  • the IED 10 will include the communication device 30 for enabling data communications between the IED 10 and other computing devices, e.g., a desktop computer, laptop computer, other IEDs, etc.
  • the communication device 34 may be a modem, network interface card (NIC), wireless transceiver, etc.
  • the IED 10 may be coupled to a personal computer over a network, e.g., a LAN, WAN, the Internet, etc., via the communication device 30 , where the personal computer will retrieve data, e.g., logs, from the IED 10 .
  • the communication device 30 will perform its functionality by hardwired and/or wireless connectivity.
  • the hardwire connection may include but is not limited to hard wire cabling e.g., parallel or serial cables, USB cable, Firewire (1394 connectivity) cables, and the appropriate port.
  • the wireless connection will operate under any of the various known wireless protocols including but not limited to BluetoothTM interconnectivity, infrared connectivity, radio transmission connectivity including computer digital signal broadcasting and reception commonly referred to as Wi-Fi or 802.11.X (where x denotes the type of transmission), satellite transmission or any other type of communication protocols or systems currently existing or to be developed for wirelessly transmitting data.
  • the network may be a local area network (LAN), wide area network (WAN), the Internet or any known network that couples a plurality of computers to enable various modes of communication via network messages.
  • the IED 10 will communicate using the various known protocols such as Transmission Control Protocol/ Internet Protocol (TCP/IP), File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), etc. and secure protocols such as Internet Protocol Security Protocol (IPSec), Point-to-Point Tunneling Protocol (PPTP), Secure Sockets Layer (SSL) Protocol, etc.
  • TCP/IP Transmission Control Protocol/ Internet Protocol
  • FTP File Transfer Protocol
  • HTTP Hypertext Transfer Protocol
  • SSL Secure Sockets Layer
  • the IED may also include an operating system and micro instruction code.
  • the various processes and functions described herein may either be part of the micro instruction code or part of an application program (or a combination thereof) which is executed via the operating system.
  • the data will be stored on, for example, flash memory 28 .
  • the data may be stored in various types of logs, e.g., a historical trend log which is a collection of time-stamped records used to track any parameter over time.
  • Other exemplary logs may include limit logs, event-triggered waveforms logs (e.g., records a waveform when a user-programmable value goes out of limit and when the value returns to normal), power quality logs (e.g., records magnitude and duration of voltage and current surges and sags for every power quality event), status change (input) logs, control output (relay) logs, system event logs, flicker logs and reset logs.
  • flash devices “wear out” after a large but finite number of erases.
  • the IED 10 may determine and store meter diagnostic data. This can become an issue if the same place in the flash memory is used over and over again.
  • Flash devices are partitioned into sectors and impose the rule that all bytes in a sector must be erased at the same time.
  • the sector is the basic unit.
  • the IED 10 of the present disclosure manages sector wear by placing data in the flash memory 28 so that the number of erases in all sectors is equalized over time.
  • the IED 10 uses the flash memory for its logs. This technique is appropriate for any similar application in which memory contents change over time and in which there is slightly more capacity in the flash memory than is actually needed. The extra capacity is used to ensure that free sectors are always available when needed.
  • the memory for storing the data and/or logs is configured as removable memory.
  • the IED of this embodiment facilitates replacing or swapping out the memory if the memory is “worn” or about to go bad.
  • the IED will utilize a USB (Universal Serial Bus) architecture for communicating generated data to the removable memory.
  • USB Universal Serial Bus
  • an IED 110 utilizing a USB architecture in accordance with the present disclosure is Illustrated.
  • the IED 110 shown in FIG. 2A includes a USB interface 140 disposed on an external surface of a housing 111 of the IED 110 .
  • the USB interface 140 includes a USB master port 142 and a USB slave port 144 .
  • the USB master port 142 will allow a USB master device, e.g., PC 146 , to access the internal memory of the IED 110 .
  • a USB master device is coupled to the IED 110 via port 142
  • the IED 110 will respond as a USB slave device.
  • the IED 110 acts a USB master device when a slave device, e.g., removable storage device 148 , is coupled to the USB slave port 144 .
  • USB connector port to the front panel of the housing and then utilize the power coming from the USB reading device, i.e., master device, and not from the meter or IED to power the connector and the USB electronics.
  • USB master port 142 is coupled to a master device controller 150 .
  • the master device controller 150 may be any known programmable device operating in accordance with one of the various known USB specifications and may include one or more drivers for various master devices. It is envisioned that the master device controller could be a separate hardware chip or processing module or could be embedded directly into the host CPU 18 as hardware, software or a combination thereof.
  • At least one optoisolator 152 is then coupled from the secondary of the USB chip 150 to the at least one host or intermediary processor 18 of the IED. This allows for very high electrical isolation and very low cost eliminating the needs of isolation transformers, a multiple tap power supply or DC to DC isolating power supplies.
  • the master device such as a lap top computer, smart phone or other intelligent device is providing power to the USB master device controller 150 .
  • USB slave port 144 is coupled to a slave device controller 154 .
  • the slave device controller 154 may be any known programmable device operating in accordance with one of the various known USB specifications and may include one or more drivers for various slave devices.
  • the slave device controller 152 is coupled to the at least one host or intermediary processor 18 of the IED with out the use of an optoisolator. Since the slave device, e.g., a memory stick, in most cases will not have a power source, a power source internal to the IED will be utilized to power the slave device controller 154 and the slave device coupled to USB slave port 144 . In one embodiment, power supply 32 will be coupled to the slave device controller 154 .
  • At least one intermediary device may be used to coupled power supply 32 to the slave device controller 154 to step down or condition the power being provided. It is envisioned that the slave device controller could also be separate hardware or a separate processing module or could be embedded into the host CPU 18 as hardware, software or a combination thereof.
  • USB master and USB slave connections depicted in FIG. 2A could also share the same physical USB connector, as will be described below.
  • the device or IED can auto-detect or a user could configure the port to act as a master or a slave port. All other embodiments are contemplated by the present disclosure such as for non-limiting example wireless USB or other similar architectures using embedded serial protocol.
  • the IED 210 includes a USB interface 240 that has only one port 241 as shown in FIG. 3A .
  • port 241 may be utilized by a master device, e.g., PC 146 , or a slave device, i.e., storage device 148 .
  • a switching mechanism is provided to change modes of the port 241 from a USB master to USB slave port.
  • the switching mechanism could be physical or virtual utilizing software commands to change the port configuration.
  • An exemplary virtual switching technique for an electrical panel meter is disclosed in commonly owned U.S. Pat. No. 7,313,489 to Kagan, the contents of which are incorporated by reference in their entirety.
  • the port may also self configure itself by utilizing software algorithms or hardware schemes such as signal change detection or other type of software algorithm all of which are contemplated in the present disclosure.
  • FIG. 3B a schematic diagram for the USB architecture employed in the IED shown in FIG. 3A is illustrated.
  • the port 241 is disposed on an external surface of housing 211 and is coupled to a single device controller 251 .
  • At least one optoisolator 252 is coupled from the secondary of the USB chip 251 to the at least one host or intermediary processor 18 of the IED.
  • the device controller 251 is capable of operating in a master mode or slave mode upon loading of an appropriate driver. It is to be appreciated that device controller 251 , in certain embodiments, will have on-board memory 253 for storing, among others, at least one master driver and at least one slave driver.
  • the master/slave drivers may be stored in other memory, e.g., flash memory 22 , and, upon determining the proper mode, the CPU 18 will retrieve the appropriate driver and load it into the device controller 251 . In further embodiments, the appropriate driver will be transmitted to the device controller 251 from the external device being coupled to port 241 .
  • the mode of the device controller 251 will be determined based on the type of device coupled to port 241 . If a master device, e.g., PC 146 , is coupled to the port 241 , the device controller 251 will need to operate in a master mode. In one embodiment, switch 256 will transmit a control signal to the device controller 251 to change its mode. The switch 256 will operate either based on a manual input via a button or the like 243 mounted on the IED adjacent to the port 241 or the switch will receive a signal from the CPU 18 in the case where an operator changes the mode via a touch screen 235 .
  • a master device e.g., PC 146
  • switch 256 When the device controller 251 is place in the master mode, that is, a USB master device is coupled to port 243 and the IED 210 is operating as a USB slave, switch 256 send a master control signal to the device controller 251 and removes the power supply from the circuit. In the master mode of the device controller 251 , the device controller 251 will receive power via the port 241 from the master device, e.g., a laptop computer. When the device controller 251 is place in the slave mode, that is, a USB slave device is coupled to port 243 and the IED 210 is operating as a USB master, switch 256 sends a slave control signal to the device controller 251 and switches in the power supply 232 to the circuit. In the slave mode of the device controller 251 , the device controller 251 will receive power via the power supply 232 and provide power to the slave device, e.g., a removable memory device.
  • the mode of the device controller 251 could be switched automatically without a manual input from an operator.
  • the device controller 251 will auto-detect if the connected device is a master or slave device. For example, once the device controller 251 determines that something is connected to port 241 , the device controller will wait a predetermined period of time to see if a command or message is received. If no command or message is received, the connected device is most likely a slave device since slave device do not send commands or messages and the device controller 251 will send an appropriate control signal to switch 256 . Alternatively, if the device controller 251 receives a command or message from the connected device, the device controller 251 will send the appropriate signal to the switch 256 to remove power.
  • the IED of the present disclosure will be a USB master.
  • the IED uses the USB memory stick as a storage medium.
  • the USB master could treat the stick as a USB hard drive or a form of IDE interface.
  • the IED will be programmed to control the USB memory stick for placing data and/or files on to the memory stick.
  • the IED will perform this function by sensing the electrical parameters of the electrical power distribution system, processing the data collected from the sensors 12 and analog-to-digital converters 14 and then storing the raw or modified or computed results from such sensing to the USB “drive”.
  • the IED will also utilize a real time clock or other type of time sensing algorithm to store with data a time stamp. This will allow a user to have timed analysis of events on the line of the electrical power distribution system.
  • the user will be able to ascertain historical profiling such as by non-limiting example 15 minute watt and VARs distribution, energy over a month and many other applications.
  • the IED can be configured to sense or received data from sensors or be coupled to external sensors whether directly or indirectly to sense non-electrical parameters such as ambient temperature, gas pressure, greenhouse emissions or other such parameters. This data can be stored with the time stamp in the USB drive for additional later analysis.
  • the IED stores the data in a comma separated value (CSV) format, as shown in FIG. 4 , so that the data can be easily imported into standard data analysis software such as spreadsheets, databases, etc.
  • CSV comma separated value
  • the format will normally include data and/or the time/date stamp related to that data or some form of time/date encoding so that a software package will be able to ascertain the time and/or date for when the data was captured and/or stored.
  • data can be stored in a binary or ASCII format so that either a computer could read or process the data in a recognizable format.
  • Such storage of data could include the Electric Power Research Institute PQDIF format, Comtrade format and/or ANSI C12.19 protocol data.
  • Other protocols and file formats are contemplated by the present disclosure. The above are only for illustrative examples.
  • USB memory stick i.e., USB slave device
  • USB slave device could also be used to store a shadow copy of the internal system memory or be used as a debug device for the IED to ascertain if it is working properly.
  • This USB memory stick or device could be used by the IED to store debug codes, failures codes or provide a log of executable information that the internal IED processor is using.
  • the IED When the IED is operating as a USB slave, the IED to be able to download stored data from internal meter storage and is treated like a “serial” port wherein the a computing device can establish a communication stream with the meter by serial master/slave communication such as but not limited to Modbus and DNP 3.0 type protocols or PPP, TCP/IP or other such communication protocols.
  • serial master/slave communication such as but not limited to Modbus and DNP 3.0 type protocols or PPP, TCP/IP or other such communication protocols.
  • the USB “slave” could also allow data to be sent to and from the IED utilizing file transferring methods such as FTP or other such file transferring protocol.
  • USB port in the front panel of the device. This allows a user to access either the USB port to remove and install new USB media, e.g., a storage device.
  • the USB media can be mounted on the front panel of the device anywhere accessible to a meter once install in an electrical switchgear panel.
  • Other mounting options would include mounting the USB storage device in the rear of the instrument behind the electrical switchgear providing some security from unauthorized removal.
  • the USB interface 542 is disposed in a recess 545 of the housing of the IED 510 as illustrated in FIG. 5A .
  • the recess 545 is configured to fully accept the USB memory stick 548 to protect the USB memory stick or device from damage.
  • both the housing of the IED 510 and the USB memory stick 548 include corresponding ring members 560 , 562 respectfully. As shown in FIG.
  • a security device 564 can be applied therethrough, e.g., a wire 566 and seal 568 , to prevent unauthorized removal of the USB device 548 and to indicate tampering.
  • mounting could be within a door 570 on the instrument or IED 510 providing an enclosed structure for the USB or similar type memory as illustrated in FIG. 5C .
  • the door 570 for the memory could then be sealed utilizing a type of lock or seal, e.g., wire 566 and seal 568 .
  • ring member 560 remains coupled to the housing of the IED 510 and ring member 572 is coupled to the door 570 .
  • There are many mechanical methods of placing and/or securing the memory to the meter 510 whether internal or external without or without a door and these methods are envisioned by the present disclosure.
  • the IED may communicate to devices other than a storage device.
  • the IED may be coupled to a USB slave device(s) such as: a printer for printing data measured or calculated by the IED; an input device, e.g., a mouse, joystick, keyboard, etc., for navigating the display 34 ; a image capture device, e.g., a webcam, to capture images of the environment surrounding the IED; and a communication device (e.g., a modem, a wireless transceiver, a network interface card, etc.) for enabling the IED to transmit or forward its data to other IEDs, computing devices, servers, etc.
  • a USB slave device such as: a printer for printing data measured or calculated by the IED; an input device, e.g., a mouse, joystick, keyboard, etc., for navigating the display 34 ; a image capture device, e.g., a webcam, to capture images of the environment surrounding the IED; and a communication device (e.
  • the IED is configured or selected to be the USB master device and can connect up to 127 slaves devices via at least one USB hub.
  • the USB master device will go through an enumeration process, either on power up or when devices are connected via a USB bus, and assign each connected slave device an address.
  • the IED as the USB master device will query each device to find out what type of data transfer the specific device wants to perform, for example, interrupt mode, bulk transfer mode or isochronous mode.
  • the IED as the USB master device can also send commands or query parameters with control packets.
  • the Universal Serial Bus divides the available bandwidth into frames with the USB master IED device keeping track of the total bandwidth that the slave devices are requesting and controls the frames to ensure the slaves devices get the bandwidth they need.
  • USB 1.0, 2.0 and 3.0 also known as SuperSpeed USB
  • the architectures disclosed herein support the following signaling or transmission rates: a low speed rate of 1.5 Mbits/s as defined by USB 1.0; a full speed rate of 12 Mbits/s as defined by USB 1.1; a hi-speed rate of 480 Mbits/s as defined by USB 2.0; and a SuperSpeed rate of 5.0 Gbits/s as defined by USB 3.0.
  • Other signaling or transmission rates are also contemplated.
  • the IED of the present disclosure is forward and backward compatible to communicate to any existing or to be developed external device.
  • the disclosed interfaces or ports include any known or to be developed USB connector, e.g., a plug or receptacle, such as a type A connector, a type B connector, Mini-A connector, Mini-B connector, Micro-A connector, Micro-B connector, Micro-AB connector, etc.
  • the interfaces and ports may include proprietary connectors such as the UltraPort employed by IBM, 10P10C connectors employed by American Power Conversion, HTC ExtUSB employed by HTC Corporation, the Port-Port connector employed by Nokia, among others.
  • an IED 610 in accordance with another embodiment of the present disclosure is illustrated.
  • the IED 610 is configured as a panel meter.
  • An exemplary panel meter is described in commonly owned U.S. Pat. No. 7,271,996, the contents of which are hereby incorporated by reference.
  • the IED 610 includes a housing 611 defining a front surface 702 a, a rear surface 702 b , a top surface 702 c, a bottom surface 702 d, a right side surface 702 e, and a left side surface 702 f.
  • Electrical device 610 includes a face plate 613 operatively connected to front surface 702 a of housing 611 .
  • Face plate 613 includes displays 706 , indicators 708 (e.g., LEDs and the like), buttons 710 , and the like providing a user with an interface for visualization and operation of electrical device 610 .
  • face plate 613 of electrical device 610 includes analog and/or digital displays 706 capable of producing alphanumeric characters.
  • the display 706 is configured as a user interface in accordance with any of the previously described embodiments.
  • the face plate 613 includes a plurality of indicators 708 which, when illuminated, indicate to the user the “type of reading”, the “% of load bar”, the “parameter designation” which indicates the reading which is being displayed on displays 706 , a “scale selector” (e.g., Kilo or Mega multiplier of Displayed Readings), etc.
  • a “scale selector” e.g., Kilo or Mega multiplier of Displayed Readings
  • Face plate 613 includes a plurality of buttons 710 (e.g., a “menu” button, an “enter” button, a “down” button, a “right” button, etc.) for performing a plurality of functions, including and not limited to: viewing of meter information; enter display modes; configuring parameters; performing re-sets; performing LED checks; changing settings; viewing parameter values; scrolling parameter values; and viewing limit states.
  • the housing 611 includes voltage connections or inputs 712 provided on rear surface 702 b thereof, and current inputs 714 provided along right side surface 702 e thereof.
  • the IED 610 may include a first interface or communication port 616 for connection to a master and/or slave device. Desirably, first communication port 716 is situated in rear surface 702 b of housing 611 .
  • the front face 613 further includes a communication interface 640 .
  • the interface 640 is protected by a plug 644 which when removed reveals a communication port 642 , as shown in FIGS. 7A and 7B .
  • the interface 640 is illustrated in an enlarged view.
  • the interface 640 includes a keyhole opening 614 which further includes a port opening 642 , e.g., a USB port opening, and a circular opening 643 defined in a platform 645 .
  • the keyhole opening 614 is surrounded by a channel 647 .
  • the plug 644 includes a cover 646 with a leg portion 648 extending perpendicular from the cover 646 .
  • the cover 646 further includes a lip portion 650 surrounding a periphery of the cover 646 and a seal 652 extending from the lip portion 650 around the periphery of the cover 646 .
  • the leg portion 648 further includes a step 645 for securing the plug 644 to the IED 610 , as will be described below.
  • a bezel 649 of the face plate 613 is removed from the housing 611 to illustrate how the plug 644 is coupled to the interface 640 .
  • the leg portion 648 of the plug 644 is inserted into the circular opening 643 from the front of the IED 610 .
  • the leg portion 648 is then pulled from a rear side 651 of the bezel until the step 645 of the leg portion 648 passes through to the rear side of the circular portion 643 .
  • the cover 646 may now be rotated about the longitudinal axis of the leg portion 648 to either seal the interface 640 or exposed the port opening 642 .
  • the cover 646 When sealing the interface 640 with the plug 644 , the cover 646 is aligned with the channel 647 and pressed toward the face of the IED 610 .
  • the seal 652 mates with the channel 647 until the lip portion 650 makes contact with the channel 647 , sealing the interface from the elements of the environment.
  • the plug may be configured from a variety of materials including, but not limited to, plastic, rubber, nylon, etc.
  • the plug 644 will make a water-tight seal with the channel 647 .
  • the water-tight seal created could block out water, moisture, alternate liquids, dust, alternate solids, etc., and possibly keep the port, e.g., a USB port free of particles that could potentially damage the electronics described above.
  • Removal of the plug 644 involves lifting the cover 646 until the seal 652 disengages the channel 647 .
  • the cover 646 may now be rotated about the longitudinal axis of the leg portion 648 to exposed the port opening 642 . It is to be appreciated that the step 654 of the leg portion 648 will retain the plug 644 to the bezel 649 thus preventing loss of the plug 644 .
  • any of the ports described above may be arranged with the port opening 642 of the interface 640 .
  • other ports may be employed, for example, an Ethernet port, a RS-232 port, a RS485 port, etc.
  • the plug may be used to protect a port, a switch, a reset button, a demand reset or any other user accessible item on the face or around the body or housing of the IED.
  • the plug may also have a mechanism to be locked as sealed using a meter seal, wire lock, pad lock or other type of lock that would enter through an opening and seal the plug to the instrument blocking removal.
  • the plug 644 includes an opening 670 and the face plate 613 includes a corresponding opening 672 .
  • a wire 666 may be passed through openings 670 , 672 and secured with a seal 668 to prevent access to the interface 640 .

Abstract

An intelligent electronic device (IED), e.g., an electrical power meter, having at least one removable memory device for storing data sensed and generated by the intelligent electronic device is provided. The IED includes a housing; at least one sensor; at least one analog-to-digital converter; at least one processing unit coupled to the at least one analog-to-digital converter configured to receive the digital data and store the digital data in a removable memory; and at least one device controller coupled to the at least one processing unit, the at least one device controller including an interface disposed on the housing for interfacing with the removable memory, wherein the at least one device controller is operative as a USB master or USB slave device controller.

Description

  • This application is a continuation-in-part application of U.S. application Ser. No. 12/628,636 filed on Dec. 1, 2009, the contents of which are hereby incorporated by reference in its entirety.
  • BACKGROUND
  • 1. Field
  • The present disclosure relates generally to intelligent electronic devices (IEDs) for electrical power systems, and more particularly, to an IED including a removable device for storing data relating to electrical power distribution systems.
  • 2. Description of the Related Art
  • Electric utility companies (“utilities”) track electric usage by customers by using power meters. These meters track the amount of power consumed at a particular location. These locations range from power substations, to commercial businesses, to residential homes. The electric utility companies use information obtained from the power meter to charge their customers for their power consumption, i.e., revenue metering.
  • A popular type of power meter is the socket-type power meter, i.e., S-base or Type S meter. As its name implies, the meter itself plugs into a socket for easy installation, removal and replacement. Other meter installations include panel mounted, switchboard mounted, and circuit breaker mounted. Typically, the power meter connects between utility power lines supplying electricity and a usage point, namely, a residence or commercial place of business.
  • A power meter may also be placed at a point within the utility's power grid to monitor power flowing through that point for distribution, power loss, or capacity monitoring, e.g., at a substation. These power and energy meters are installed in substations to provide a visual display of real-time data and to alarm when problems occur. These problems include limit alarms, breaker control, outages and many other types of events.
  • In today's times, users are interested in capturing data in an intelligent electronic device (IED) and taking that data back to an office and analyzing or databasing the data at a later time. The common way to gather data in the art now is to download stored data via a communication port to a laptop or a stationary computing device utilizing a serial or Ethernet protocol. The disadvantage of this technology is that the user doesn't always have a laptop available and there is a latency time to gathering the data due to the protocol communication. For instance, to download 2 megabytes of data using traditional serial download schemes could take as long as 10 minutes.
  • Therefore, a need exists for devices, systems and methods for storing data sensed and generated by an intelligent electronic device (IED), e.g., a power meter, and for managing the stored data to extend the useful life of the meter.
  • SUMMARY
  • An intelligent electronic device (IED), e.g., an electrical power meter, having at least one removable memory device for storing data sensed and generated by the intelligent electronic device is provided. Utilizing the techniques of the present disclosure, a user will be able to just remove the portable or removable memory device and replace it with a fresh one and then download the data from the removable memory device to a computing device at a later period. In one embodiment, the IED will utilize a USB (Universal Serial Bus) architecture for communicating generated data to the removable memory device.
  • In one aspect of the present disclosure, an IED is configured to operate as a USB master and/or USB slave device. The USB master configuration for the IED can be implemented using both hardware and software both internally to the host IED processor or by an additional processor or processors or other type of silicon coupled to the IED processor either directly or indirectly. Moreover, the USB interface may also be allowed to be used as a USB slave wherein under user control or wherein the IED itself via its processor or other components stored internally can determine whether it chooses to be a USB master or USB slave device.
  • It is to be appreciated that the IED can be configured to have the interface act as a Ethernet or RS-232 device or any other type of communication architecture.
  • According to one aspect of the present disclosure, an intelligent electronic device (IED) is provided including a housing; at least one sensor configured for sensing at least one electrical parameter distributed to a load; at least one analog-to-digital converter coupled to the at least one sensor and configured for converting an analog signal output from the at least one sensor to a digital data; at least one processing unit coupled to the at least one analog-to-digital converter configured to receive the digital data and store the digital data in a removable memory; and at least one device controller coupled to the at least one processing unit, the at least one device controller including at least one interface disposed on the housing for interfacing with the removable memory, wherein the at least one device controller is operative as a master or slave device controller.
  • In one aspect, the at least one device controller operates in accordance with a Universal Serial Bus (USB) specification.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other aspects, features, and advantages of the present disclosure will become more apparent in light of the following detailed description when taken in conjunction with the accompanying drawings in which:
  • FIG. 1 is a diagram of an intelligent electronic device in accordance with an embodiment of the present disclosure;
  • FIG. 2A is a diagram of an intelligent electronic device utilizing a USB (Universal Serial Bus) architecture in accordance with an embodiment of the present disclosure;
  • FIG. 2B is a schematic diagram of the USB architecture employed in the IED shown in FIG. 2A;
  • FIG. 3A is a diagram of an intelligent electronic device utilizing a USB architecture in accordance with another embodiment of the present disclosure;
  • FIG. 3B is a schematic diagram of the USB architecture employed in the IED shown in FIG. 3A;
  • FIG. 4 is exemplary data in CSV format generated by an IED in accordance with an embodiment of the present disclosure;
  • FIGS. 5A-5C illustrate an IED utilizing a USB memory device in accordance with an embodiment of the present disclosure;
  • FIGS. 6A-6H illustrates various views of an intelligent electronic device in accordance with an embodiment of the present disclosure;
  • FIG. 7A is a front, top, left perspective view of an intelligent electronic device with a port plug removed in accordance with an embodiment of the present disclosure;
  • FIG. 7B is a front elevational view of an intelligent electronic device with a port plug removed in accordance with an embodiment of the present disclosure;
  • FIG. 8A is a rear elevational view of a bezel for an intelligent electronic device in accordance with an embodiment of the present disclosure;
  • FIG. 8B is a rear perspective view of a bezel for an intelligent electronic device in accordance with an embodiment of the present disclosure;
  • FIG. 8C is a partial view of the intelligent electronic device shown in FIG. 7B;
  • FIGS. 9A-9F illustrates several views of a port plug for an intelligent electronic device in accordance with an embodiment of the present disclosure; and
  • FIG. 10 illustrates a security mechanism of an intelligent electronic device in accordance with an embodiment of the present disclosure.
  • DETAILED DESCRIPTION
  • It should be understood that the elements shown in the figures may be implemented in various forms of hardware, software or combinations thereof. Preferably, these elements are implemented in a combination of hardware and software on one or more appropriately programmed general-purpose devices, which may include a processor, memory and input/output interfaces.
  • The present description illustrates the principles of the present disclosure. It will thus be appreciated that those skilled in the art will be able to devise various arrangements that, although not explicitly described or shown herein, embody the principles of the disclosure and are included within its spirit and scope.
  • All examples and conditional language recited herein are intended for pedagogical purposes to aid the reader in understanding the principles of the disclosure and the concepts contributed by the inventor to furthering the art, and are to be construed as being without limitation to such specifically recited examples and conditions.
  • Moreover, all statements herein reciting principles, aspects, and embodiments of the disclosure, as well as specific examples thereof, are intended to encompass both structural and functional equivalents thereof. Additionally, it is intended that such equivalents include both currently known equivalents as well as equivalents developed in the future, i.e., any elements developed that perform the same function, regardless of structure.
  • Thus, for example, it will be appreciated by those skilled in the art that the block diagrams presented herein represent conceptual views of illustrative circuitry embodying the principles of the disclosure. Similarly, it will be appreciated that any flow charts, flow diagrams, state transition diagrams, pseudo-code, and the like represent various processes which may be substantially represented in computer readable media and so executed by a computer or processor, whether or not such computer or processor is explicitly shown.
  • The functions of the various elements shown in the figures may be provided through the use of dedicated hardware as well as hardware capable of executing software in association with appropriate software. When provided by a processor, the functions may be provided by a single dedicated processor, by a single shared processor, or by a plurality of individual processors, some of which may be shared. Moreover, explicit use of the term “processor” or “controller” should not be construed to refer exclusively to hardware capable of executing software, and may implicitly include, without limitation, digital signal processor (“DSP”) hardware, read only memory (“ROM”) for storing software, random access memory (“RAM”), and nonvolatile storage.
  • Other hardware, conventional and/or custom, may also be included. Similarly, any switches shown in the figures are conceptual only. Their function may be carried out through the operation of program logic, through dedicated logic, through the interaction of program control and dedicated logic, or even manually, the particular technique being selectable by the implementer as more specifically understood from the context.
  • The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any configuration or design described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other configurations or designs. Herein, the phrase “coupled with” is defined to mean directly connected to or indirectly connected with through one or more intermediate components. Such intermediate components may include both hardware and software based components.
  • As used herein, intelligent electronic devices (“IED's”) include Programmable Logic Controllers (“PLC's”), Remote Terminal Units (“RTU's”), electric power meters, protective relays, fault recorders and other devices which are coupled with power distribution networks to manage and control the distribution and consumption of electrical power. A meter is a device that records and measures power events, power quality, current, voltage waveforms, harmonics, transients and other power disturbances. Revenue accurate meters (“revenue meter”) relate to revenue accuracy electrical power metering devices with the ability to detect, monitor, report, quantify and communicate power quality information about the power which they are metering.
  • An intelligent electronic device (IED) 10 for monitoring and determining an amount of electrical power usage by a consumer and for providing audible and visual indications to a user is illustrated in FIG. 1. Generally, the IED 10 includes sensors 12, a plurality of analog-to-digital (ND) converters 14 and a processing system including a central processing unit (CPU) 18 and/or a digital signal processor (DSP) 16. The sensors 12 will sense electrical parameters, e.g., voltage and current, of the incoming lines from an electrical power distribution system. Preferably, the sensors will include current transformers and potential transformers, wherein one current transformer and one voltage transformer will be coupled to each phase of the incoming power lines. A primary winding of each transformer will be coupled to the incoming power lines and a secondary winding of each transformer will output a voltage representative of the sensed voltage and current. The output of each transformer will be coupled to the ND converters 14 configured to convert the analog output voltage from the transformer to a digital signal that can be processed by the CPU 18 or DSP 16.
  • The CPU 18 is configured for receiving the digital signals from the ND converters 14 to perform the necessary calculations to determine the power usage and controlling the overall operations of the IED 10. In a preferred embodiment, the DSP 16 will receive the digital signals from the ND converters 14 and perform the necessary calculations to determine the power usage to free the resources of the CPU 18. The CPU 18 will include a microprocessor 20 executing instructions and performing various calculations, flash memory 22 for storing executable instructions and permanent data tables for controlling the overall operation of the microprocessor and random access memory (RAM) 24 for holding data during computations by the microprocessor 20.
  • A first memory 26 is coupled to CPU 18 and stores calibration and setup parameters of the IED 10, e.g., meter configuration, serial number of the device, etc. Memory 26 may be an integrated circuit in the form of a FLASH or EEPROM, or any other known or to be developed type of memory which is nonvolatile, capable of being changed in the IED, and amenable to making such changes difficult for an end user.
  • The IED 10 further includes a second memory 28 for storing sensed and generated data for further processing and for retrieval, e.g., data logs. Memory 28 may be flash memory and may be removable or non-removable. In one embodiment, data stored on memory 28 may be retrieved by an external device or computer via a communication device 30. In another embodiment, where memory 28 is removable, memory 28 will be in the form of a memory card such as a CompactFlash card, a Memory Stick, a SmartMedia card, etc., and data stored therein will be retrieved from an appropriate memory card reader.
  • A power supply 32 is also provided for providing power to each component of the IED 10. In one embodiment, the power supply 32 is a transformer with its primary windings coupled to the incoming power distribution lines and having an appropriate number of windings to provide a nominal voltage, e.g., 5VDC, at its secondary windings. In other embodiments, power is supplied from an independent source to the power supply 32, e.g., from a different electrical circuit, an uninterruptible power supply (UPS), etc.
  • The IED 10 of the present disclosure will have a user interface for interacting with a user and for communicating events, alarms and instructions to the user. The user interface will include a display 34 for providing visual indications to the user. The display 34 may include a touch screen, a liquid crystal display (LCD), a plurality of LED number segments, individual light bulbs or any combination of these. The display 34 may provide the information to the user in the form of alpha-numeric lines, computer-generated graphics, videos, etc. The user interface will include an input device 35 for entering data, e.g., parameters, limits, etc. The input device may include pushbuttons, a keypad, a touch screen, at least one dial, etc. The user interface may also include a speaker or audible output means 36 for audibly producing instructions, alarms, data, etc. The speaker 36 will be coupled to the CPU 18 via a digital-to-analog converter (D/A) for converting digital audio files stored in memory to analog signals playable by the speaker 36.
  • The IED 10 will include the communication device 30 for enabling data communications between the IED 10 and other computing devices, e.g., a desktop computer, laptop computer, other IEDs, etc. The communication device 34 may be a modem, network interface card (NIC), wireless transceiver, etc. As described above, the IED 10 may be coupled to a personal computer over a network, e.g., a LAN, WAN, the Internet, etc., via the communication device 30, where the personal computer will retrieve data, e.g., logs, from the IED 10. The communication device 30 will perform its functionality by hardwired and/or wireless connectivity. The hardwire connection may include but is not limited to hard wire cabling e.g., parallel or serial cables, USB cable, Firewire (1394 connectivity) cables, and the appropriate port. The wireless connection will operate under any of the various known wireless protocols including but not limited to Bluetooth™ interconnectivity, infrared connectivity, radio transmission connectivity including computer digital signal broadcasting and reception commonly referred to as Wi-Fi or 802.11.X (where x denotes the type of transmission), satellite transmission or any other type of communication protocols or systems currently existing or to be developed for wirelessly transmitting data. It is to be appreciated that the network may be a local area network (LAN), wide area network (WAN), the Internet or any known network that couples a plurality of computers to enable various modes of communication via network messages. Furthermore, the IED 10 will communicate using the various known protocols such as Transmission Control Protocol/ Internet Protocol (TCP/IP), File Transfer Protocol (FTP), Hypertext Transfer Protocol (HTTP), etc. and secure protocols such as Internet Protocol Security Protocol (IPSec), Point-to-Point Tunneling Protocol (PPTP), Secure Sockets Layer (SSL) Protocol, etc.
  • It is to be understood that the present disclosure may be implemented in various forms of hardware, software, firmware, special purpose processors, or a combination thereof. The IED may also include an operating system and micro instruction code. The various processes and functions described herein may either be part of the micro instruction code or part of an application program (or a combination thereof) which is executed via the operating system.
  • It is to be further understood that because some of the constituent system components and method steps depicted in the accompanying figures may be implemented in software, the actual connections between the system components (or the process steps) may differ depending upon the manner in which the present disclosure is programmed. Given the teachings of the present disclosure provided herein, one of ordinary skill in the related art will be able to contemplate these and similar implementations or configurations of the present disclosure.
  • As the IED 10 collects data and processes the collected data, the data will be stored on, for example, flash memory 28. The data may be stored in various types of logs, e.g., a historical trend log which is a collection of time-stamped records used to track any parameter over time. Other exemplary logs may include limit logs, event-triggered waveforms logs (e.g., records a waveform when a user-programmable value goes out of limit and when the value returns to normal), power quality logs (e.g., records magnitude and duration of voltage and current surges and sags for every power quality event), status change (input) logs, control output (relay) logs, system event logs, flicker logs and reset logs. However, flash devices “wear out” after a large but finite number of erases. Furthermore, the IED 10 may determine and store meter diagnostic data. This can become an issue if the same place in the flash memory is used over and over again.
  • Flash devices are partitioned into sectors and impose the rule that all bytes in a sector must be erased at the same time. Thus, for managing the number of erases, the sector is the basic unit. The IED 10 of the present disclosure manages sector wear by placing data in the flash memory 28 so that the number of erases in all sectors is equalized over time. The IED 10 uses the flash memory for its logs. This technique is appropriate for any similar application in which memory contents change over time and in which there is slightly more capacity in the flash memory than is actually needed. The extra capacity is used to ensure that free sectors are always available when needed.
  • In one embodiment, the memory for storing the data and/or logs is configured as removable memory. The IED of this embodiment facilitates replacing or swapping out the memory if the memory is “worn” or about to go bad. In one embodiment, the IED will utilize a USB (Universal Serial Bus) architecture for communicating generated data to the removable memory.
  • Referring to FIG. 2A, an IED 110 utilizing a USB architecture in accordance with the present disclosure is Illustrated. The IED 110 shown in FIG. 2A includes a USB interface 140 disposed on an external surface of a housing 111 of the IED 110. The USB interface 140 includes a USB master port 142 and a USB slave port 144. The USB master port 142 will allow a USB master device, e.g., PC 146, to access the internal memory of the IED 110. When a USB master device is coupled to the IED 110 via port 142, the IED 110 will respond as a USB slave device. Furthermore, the IED 110 acts a USB master device when a slave device, e.g., removable storage device 148, is coupled to the USB slave port 144.
  • One of the common issues with USB design is that since the connections are electrical and not optical connections, they run a danger to the user when connected to a high power source, e.g., an electrical power distribution system. Because of this danger, there will need to be a large amount of isolation between the USB connector and the electrical voltage input. One elegant and innovative way of providing isolation is to connect the USB connector port to the front panel of the housing and then utilize the power coming from the USB reading device, i.e., master device, and not from the meter or IED to power the connector and the USB electronics.
  • Referring to FIG. 2B, a schematic diagram of a USB architecture in accordance with one embodiment of the present disclosure is illustrated. USB master port 142 is coupled to a master device controller 150. The master device controller 150 may be any known programmable device operating in accordance with one of the various known USB specifications and may include one or more drivers for various master devices. It is envisioned that the master device controller could be a separate hardware chip or processing module or could be embedded directly into the host CPU 18 as hardware, software or a combination thereof.
  • At least one optoisolator 152 is then coupled from the secondary of the USB chip 150 to the at least one host or intermediary processor 18 of the IED. This allows for very high electrical isolation and very low cost eliminating the needs of isolation transformers, a multiple tap power supply or DC to DC isolating power supplies. When a master device is coupled to the USB master port 142, the master device such as a lap top computer, smart phone or other intelligent device is providing power to the USB master device controller 150.
  • USB slave port 144 is coupled to a slave device controller 154. The slave device controller 154 may be any known programmable device operating in accordance with one of the various known USB specifications and may include one or more drivers for various slave devices. The slave device controller 152 is coupled to the at least one host or intermediary processor 18 of the IED with out the use of an optoisolator. Since the slave device, e.g., a memory stick, in most cases will not have a power source, a power source internal to the IED will be utilized to power the slave device controller 154 and the slave device coupled to USB slave port 144. In one embodiment, power supply 32 will be coupled to the slave device controller 154. It is to be appreciated that at least one intermediary device may be used to coupled power supply 32 to the slave device controller 154 to step down or condition the power being provided. It is envisioned that the slave device controller could also be separate hardware or a separate processing module or could be embedded into the host CPU 18 as hardware, software or a combination thereof.
  • It is envisioned by the teachings of the present disclosure that the USB master and USB slave connections depicted in FIG. 2A could also share the same physical USB connector, as will be described below. In this mode, the device or IED can auto-detect or a user could configure the port to act as a master or a slave port. All other embodiments are contemplated by the present disclosure such as for non-limiting example wireless USB or other similar architectures using embedded serial protocol.
  • In another embodiment, the IED 210 includes a USB interface 240 that has only one port 241 as shown in FIG. 3A. In this embodiment, port 241 may be utilized by a master device, e.g., PC 146, or a slave device, i.e., storage device 148. A switching mechanism is provided to change modes of the port 241 from a USB master to USB slave port. The switching mechanism could be physical or virtual utilizing software commands to change the port configuration. An exemplary virtual switching technique for an electrical panel meter is disclosed in commonly owned U.S. Pat. No. 7,313,489 to Kagan, the contents of which are incorporated by reference in their entirety. The port may also self configure itself by utilizing software algorithms or hardware schemes such as signal change detection or other type of software algorithm all of which are contemplated in the present disclosure.
  • Referring to FIG. 3B, a schematic diagram for the USB architecture employed in the IED shown in FIG. 3A is illustrated. In this embodiment, the port 241 is disposed on an external surface of housing 211 and is coupled to a single device controller 251. At least one optoisolator 252 is coupled from the secondary of the USB chip 251 to the at least one host or intermediary processor 18 of the IED. The device controller 251 is capable of operating in a master mode or slave mode upon loading of an appropriate driver. It is to be appreciated that device controller 251, in certain embodiments, will have on-board memory 253 for storing, among others, at least one master driver and at least one slave driver. In other embodiments, the master/slave drivers may be stored in other memory, e.g., flash memory 22, and, upon determining the proper mode, the CPU 18 will retrieve the appropriate driver and load it into the device controller 251. In further embodiments, the appropriate driver will be transmitted to the device controller 251 from the external device being coupled to port 241.
  • The mode of the device controller 251 will be determined based on the type of device coupled to port 241. If a master device, e.g., PC 146, is coupled to the port 241, the device controller 251 will need to operate in a master mode. In one embodiment, switch 256 will transmit a control signal to the device controller 251 to change its mode. The switch 256 will operate either based on a manual input via a button or the like 243 mounted on the IED adjacent to the port 241 or the switch will receive a signal from the CPU 18 in the case where an operator changes the mode via a touch screen 235. When the device controller 251 is place in the master mode, that is, a USB master device is coupled to port 243 and the IED 210 is operating as a USB slave, switch 256 send a master control signal to the device controller 251 and removes the power supply from the circuit. In the master mode of the device controller 251, the device controller 251 will receive power via the port 241 from the master device, e.g., a laptop computer. When the device controller 251 is place in the slave mode, that is, a USB slave device is coupled to port 243 and the IED 210 is operating as a USB master, switch 256 sends a slave control signal to the device controller 251 and switches in the power supply 232 to the circuit. In the slave mode of the device controller 251, the device controller 251 will receive power via the power supply 232 and provide power to the slave device, e.g., a removable memory device.
  • It is to be appreciated that the mode of the device controller 251 could be switched automatically without a manual input from an operator. For example, the device controller 251 will auto-detect if the connected device is a master or slave device. For example, once the device controller 251 determines that something is connected to port 241, the device controller will wait a predetermined period of time to see if a command or message is received. If no command or message is received, the connected device is most likely a slave device since slave device do not send commands or messages and the device controller 251 will send an appropriate control signal to switch 256. Alternatively, if the device controller 251 receives a command or message from the connected device, the device controller 251 will send the appropriate signal to the switch 256 to remove power.
  • In utilizing the hardware device(s) described herein, the user will be able to accomplish the various applications of the disclosure which are described below.
  • Utilizing a USB memory stick, the IED of the present disclosure will be a USB master. As a USB master, the IED uses the USB memory stick as a storage medium. The USB master could treat the stick as a USB hard drive or a form of IDE interface. This being the case, the IED will be programmed to control the USB memory stick for placing data and/or files on to the memory stick. The IED will perform this function by sensing the electrical parameters of the electrical power distribution system, processing the data collected from the sensors 12 and analog-to-digital converters 14 and then storing the raw or modified or computed results from such sensing to the USB “drive”. The IED will also utilize a real time clock or other type of time sensing algorithm to store with data a time stamp. This will allow a user to have timed analysis of events on the line of the electrical power distribution system.
  • Utilizing this technique, the user will be able to ascertain historical profiling such as by non-limiting example 15 minute watt and VARs distribution, energy over a month and many other applications. Additionally, the IED can be configured to sense or received data from sensors or be coupled to external sensors whether directly or indirectly to sense non-electrical parameters such as ambient temperature, gas pressure, greenhouse emissions or other such parameters. This data can be stored with the time stamp in the USB drive for additional later analysis.
  • In one embodiment, the IED stores the data in a comma separated value (CSV) format, as shown in FIG. 4, so that the data can be easily imported into standard data analysis software such as spreadsheets, databases, etc. The format will normally include data and/or the time/date stamp related to that data or some form of time/date encoding so that a software package will be able to ascertain the time and/or date for when the data was captured and/or stored.
  • Other non-limiting embodiments include that data can be stored in a binary or ASCII format so that either a computer could read or process the data in a recognizable format. Such storage of data could include the Electric Power Research Institute PQDIF format, Comtrade format and/or ANSI C12.19 protocol data. Other protocols and file formats are contemplated by the present disclosure. The above are only for illustrative examples.
  • Furthermore, the USB memory stick, i.e., USB slave device, could also be used to store a shadow copy of the internal system memory or be used as a debug device for the IED to ascertain if it is working properly. This USB memory stick or device could be used by the IED to store debug codes, failures codes or provide a log of executable information that the internal IED processor is using.
  • When the IED is operating as a USB slave, the IED to be able to download stored data from internal meter storage and is treated like a “serial” port wherein the a computing device can establish a communication stream with the meter by serial master/slave communication such as but not limited to Modbus and DNP 3.0 type protocols or PPP, TCP/IP or other such communication protocols. The USB “slave” could also allow data to be sent to and from the IED utilizing file transferring methods such as FTP or other such file transferring protocol.
  • Other forms of data retrieval anticipated by the present disclosure would be to use removable serial flash such as SD flash manufactured by SanDisk Corporation of Milpitas, Calif. (an exemplary flash is commercially available as model number SDSDRH-032G-A11) or parallel flash such as but not limited to NOR flash and Compact Flash, an example of which is manufactured by SanDisk Corporation as model number SDCFX-032G-A61. This technology will enable use similar to the USB type device and as such is contemplated by the present disclosure.
  • Different mounting forms are envisioned by the present disclosure. One preferable form would be to mount the USB port in the front panel of the device. This allows a user to access either the USB port to remove and install new USB media, e.g., a storage device. The USB media can be mounted on the front panel of the device anywhere accessible to a meter once install in an electrical switchgear panel. Other mounting options would include mounting the USB storage device in the rear of the instrument behind the electrical switchgear providing some security from unauthorized removal.
  • In one embodiment, the USB interface 542 is disposed in a recess 545 of the housing of the IED 510 as illustrated in FIG. 5A. In this embodiment, the recess 545 is configured to fully accept the USB memory stick 548 to protect the USB memory stick or device from damage. In certain embodiments, both the housing of the IED 510 and the USB memory stick 548 include corresponding ring members 560, 562 respectfully. As shown in FIG. 5B, when the USB memory stick is fully disposed in the recess 545, the corresponding ring members 560 and 562 align so a security device 564 can be applied therethrough, e.g., a wire 566 and seal 568, to prevent unauthorized removal of the USB device 548 and to indicate tampering.
  • It is also envisioned that mounting could be within a door 570 on the instrument or IED 510 providing an enclosed structure for the USB or similar type memory as illustrated in FIG. 5C. The door 570 for the memory could then be sealed utilizing a type of lock or seal, e.g., wire 566 and seal 568. In this embodiment, ring member 560 remains coupled to the housing of the IED 510 and ring member 572 is coupled to the door 570. There are many mechanical methods of placing and/or securing the memory to the meter 510, whether internal or external without or without a door and these methods are envisioned by the present disclosure.
  • It is to be appreciated that the IED may communicate to devices other than a storage device. For example, when the IED is in a master mode, the IED may be coupled to a USB slave device(s) such as: a printer for printing data measured or calculated by the IED; an input device, e.g., a mouse, joystick, keyboard, etc., for navigating the display 34; a image capture device, e.g., a webcam, to capture images of the environment surrounding the IED; and a communication device (e.g., a modem, a wireless transceiver, a network interface card, etc.) for enabling the IED to transmit or forward its data to other IEDs, computing devices, servers, etc. It is to be appreciated this listing of USB slave devices is merely illustrative and not exhaustive of the possible devices that could be coupled to the IED.
  • In one embodiment, the IED is configured or selected to be the USB master device and can connect up to 127 slaves devices via at least one USB hub. In this embodiment, the USB master device, will go through an enumeration process, either on power up or when devices are connected via a USB bus, and assign each connected slave device an address. The IED as the USB master device will query each device to find out what type of data transfer the specific device wants to perform, for example, interrupt mode, bulk transfer mode or isochronous mode. The IED as the USB master device can also send commands or query parameters with control packets. The Universal Serial Bus divides the available bandwidth into frames with the USB master IED device keeping track of the total bandwidth that the slave devices are requesting and controls the frames to ensure the slaves devices get the bandwidth they need.
  • It is to be appreciated that the teachings, and devices, of the present disclosure are compatible with any known or to be developed USB standard, for example, USB 1.0, 2.0 and 3.0 (also known as SuperSpeed USB) including any preceding and intermediate versions. Furthermore, the architectures disclosed herein support the following signaling or transmission rates: a low speed rate of 1.5 Mbits/s as defined by USB 1.0; a full speed rate of 12 Mbits/s as defined by USB 1.1; a hi-speed rate of 480 Mbits/s as defined by USB 2.0; and a SuperSpeed rate of 5.0 Gbits/s as defined by USB 3.0. Other signaling or transmission rates are also contemplated. Regardless of the specific standard employed, the IED of the present disclosure is forward and backward compatible to communicate to any existing or to be developed external device.
  • Furthermore, it is to be appreciated that the disclosed interfaces or ports, e.g., interfaces 140, 240 and ports 142, 144, 241, include any known or to be developed USB connector, e.g., a plug or receptacle, such as a type A connector, a type B connector, Mini-A connector, Mini-B connector, Micro-A connector, Micro-B connector, Micro-AB connector, etc. Additionally, the interfaces and ports may include proprietary connectors such as the UltraPort employed by IBM, 10P10C connectors employed by American Power Conversion, HTC ExtUSB employed by HTC Corporation, the Port-Port connector employed by Nokia, among others.
  • Referring to FIG. 6A-6H, an IED 610 in accordance with another embodiment of the present disclosure is illustrated. The IED 610 is configured as a panel meter. An exemplary panel meter is described in commonly owned U.S. Pat. No. 7,271,996, the contents of which are hereby incorporated by reference. As seen in FIGS. 6A-6H, the IED 610 includes a housing 611 defining a front surface 702 a, a rear surface 702 b, a top surface 702 c, a bottom surface 702 d, a right side surface 702 e, and a left side surface 702 f. Electrical device 610 includes a face plate 613 operatively connected to front surface 702 a of housing 611. Face plate 613 includes displays 706, indicators 708 (e.g., LEDs and the like), buttons 710, and the like providing a user with an interface for visualization and operation of electrical device 610. For example, as seen in FIG. 6C, face plate 613 of electrical device 610 includes analog and/or digital displays 706 capable of producing alphanumeric characters. In one embodiment, the display 706 is configured as a user interface in accordance with any of the previously described embodiments.
  • Additionally, the face plate 613 includes a plurality of indicators 708 which, when illuminated, indicate to the user the “type of reading”, the “% of load bar”, the “parameter designation” which indicates the reading which is being displayed on displays 706, a “scale selector” (e.g., Kilo or Mega multiplier of Displayed Readings), etc. Face plate 613 includes a plurality of buttons 710 (e.g., a “menu” button, an “enter” button, a “down” button, a “right” button, etc.) for performing a plurality of functions, including and not limited to: viewing of meter information; enter display modes; configuring parameters; performing re-sets; performing LED checks; changing settings; viewing parameter values; scrolling parameter values; and viewing limit states. The housing 611 includes voltage connections or inputs 712 provided on rear surface 702 b thereof, and current inputs 714 provided along right side surface 702 e thereof. The IED 610 may include a first interface or communication port 616 for connection to a master and/or slave device. Desirably, first communication port 716 is situated in rear surface 702 b of housing 611.
  • The front face 613 further includes a communication interface 640. The interface 640 is protected by a plug 644 which when removed reveals a communication port 642, as shown in FIGS. 7A and 7B.
  • Referring to FIG. 8C, the interface 640 is illustrated in an enlarged view. The interface 640 includes a keyhole opening 614 which further includes a port opening 642, e.g., a USB port opening, and a circular opening 643 defined in a platform 645. The keyhole opening 614 is surrounded by a channel 647.
  • Referring to FIGS. 9A-9F, the plug 644 is shown. The plug 644 includes a cover 646 with a leg portion 648 extending perpendicular from the cover 646. The cover 646 further includes a lip portion 650 surrounding a periphery of the cover 646 and a seal 652 extending from the lip portion 650 around the periphery of the cover 646. The leg portion 648 further includes a step 645 for securing the plug 644 to the IED 610, as will be described below.
  • Referring to FIGS. 8A and 8B, a bezel 649 of the face plate 613 is removed from the housing 611 to illustrate how the plug 644 is coupled to the interface 640. As shown in FIG. 8B, the leg portion 648 of the plug 644 is inserted into the circular opening 643 from the front of the IED 610. The leg portion 648 is then pulled from a rear side 651 of the bezel until the step 645 of the leg portion 648 passes through to the rear side of the circular portion 643. The cover 646 may now be rotated about the longitudinal axis of the leg portion 648 to either seal the interface 640 or exposed the port opening 642.
  • When sealing the interface 640 with the plug 644, the cover 646 is aligned with the channel 647 and pressed toward the face of the IED 610. The seal 652 mates with the channel 647 until the lip portion 650 makes contact with the channel 647, sealing the interface from the elements of the environment. It is to be appreciated that the plug may be configured from a variety of materials including, but not limited to, plastic, rubber, nylon, etc. In certain embodiments, the plug 644 will make a water-tight seal with the channel 647. The water-tight seal created could block out water, moisture, alternate liquids, dust, alternate solids, etc., and possibly keep the port, e.g., a USB port free of particles that could potentially damage the electronics described above.
  • Removal of the plug 644 involves lifting the cover 646 until the seal 652 disengages the channel 647. The cover 646 may now be rotated about the longitudinal axis of the leg portion 648 to exposed the port opening 642. It is to be appreciated that the step 654 of the leg portion 648 will retain the plug 644 to the bezel 649 thus preventing loss of the plug 644.
  • It is further to be appreciated that any of the ports described above may be arranged with the port opening 642 of the interface 640. Additionally, other ports may be employed, for example, an Ethernet port, a RS-232 port, a RS485 port, etc.
  • Furthermore, it is to be appreciated that the plug may be used to protect a port, a switch, a reset button, a demand reset or any other user accessible item on the face or around the body or housing of the IED. The plug may also have a mechanism to be locked as sealed using a meter seal, wire lock, pad lock or other type of lock that would enter through an opening and seal the plug to the instrument blocking removal. For example, referring to FIG. 10, the plug 644 includes an opening 670 and the face plate 613 includes a corresponding opening 672. When the plug 644 is in the appropriate position, a wire 666 may be passed through openings 670, 672 and secured with a seal 668 to prevent access to the interface 640.
  • Although the disclosure herein has been described with reference to particular illustrative embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present disclosure. Therefore numerous modifications may be made to the illustrative embodiments and other arrangements may be devised without departing from the spirit and scope of the present disclosure, which is defined by the appended claims.
  • Furthermore, although the foregoing text sets forth a detailed description of numerous embodiments, it should be understood that the legal scope of the present disclosure is defined by the words of the claims set forth at the end of this patent. The detailed description is to be construed as exemplary only and does not describe every possible embodiment, as describing every possible embodiment would be impractical, if not impossible. One could implement numerous alternate embodiments, using either current technology or technology developed after the filing date of this patent, which would still fall within the scope of the claims.
  • It should also be understood that, unless a term is expressly defined in this patent using the sentence “As used herein, the term ‘_____’ is hereby defined to mean . . . ” or a similar sentence, there is no intent to limit the meaning of that term, either expressly or by implication, beyond its plain or ordinary meaning, and such term should not be interpreted to be limited in scope based on any statement made in any section of this patent (other than the language of the claims). To the extent that any term recited in the claims at the end of this patent is referred to in this patent in a manner consistent with a single meaning, that is done for sake of clarity only so as to not confuse the reader, and it is not intended that such claim term be limited, by implication or otherwise, to that single meaning. Finally, unless a claim element is defined by reciting the word “means” and a function without the recital of any structure, it is not intended that the scope of any claim element be interpreted based on the application of 35 U.S.C. §112, sixth paragraph.

Claims (1)

What is claimed is:
1. An intelligent electronic device comprising:
a housing;
at least one sensor configured for sensing at least one electrical parameter distributed to a load;
at least one analog-to-digital converter coupled to the at least one sensor and configured for converting an analog signal output from the at least one sensor to a digital data;
at least one processing unit coupled to the at least one analog-to-digital converter configured to receive the digital data and store the digital data in a removable memory; and
at least one device controller coupled to the at least one processing unit, the at least one device controller including at least one interface disposed on the housing for interfacing with the removable memory, wherein the at least one device controller is operative as a master or slave device controller.
US13/834,737 2009-12-01 2013-03-15 Intelligent electronic device capable of operating as a usb master device and a usb slave device Abandoned US20130297840A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US29/449,582 USD712289S1 (en) 2009-12-01 2013-03-15 Electronic meter
US13/834,737 US20130297840A1 (en) 2009-12-01 2013-03-15 Intelligent electronic device capable of operating as a usb master device and a usb slave device
US29/477,065 USD712290S1 (en) 2009-12-01 2013-12-19 Electronic meter
US29/477,147 USD712291S1 (en) 2009-12-01 2013-12-19 Electronic meter
US29/496,764 USD739283S1 (en) 2009-12-01 2014-07-17 Electronic meter
US15/921,308 US10474591B2 (en) 2009-12-01 2018-03-14 Electronic meter with a removable protective plug

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/628,636 US9885739B2 (en) 2006-12-29 2009-12-01 Intelligent electronic device capable of operating as a USB master device and a USB slave device
US13/834,737 US20130297840A1 (en) 2009-12-01 2013-03-15 Intelligent electronic device capable of operating as a usb master device and a usb slave device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/628,636 Continuation-In-Part US9885739B2 (en) 2006-12-29 2009-12-01 Intelligent electronic device capable of operating as a USB master device and a USB slave device

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US29/449,582 Continuation USD712289S1 (en) 2009-12-01 2013-03-15 Electronic meter
US15/921,308 Continuation US10474591B2 (en) 2009-12-01 2018-03-14 Electronic meter with a removable protective plug

Publications (1)

Publication Number Publication Date
US20130297840A1 true US20130297840A1 (en) 2013-11-07

Family

ID=49513530

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/834,737 Abandoned US20130297840A1 (en) 2009-12-01 2013-03-15 Intelligent electronic device capable of operating as a usb master device and a usb slave device
US29/449,582 Active USD712289S1 (en) 2009-12-01 2013-03-15 Electronic meter
US15/921,308 Active US10474591B2 (en) 2009-12-01 2018-03-14 Electronic meter with a removable protective plug

Family Applications After (2)

Application Number Title Priority Date Filing Date
US29/449,582 Active USD712289S1 (en) 2009-12-01 2013-03-15 Electronic meter
US15/921,308 Active US10474591B2 (en) 2009-12-01 2018-03-14 Electronic meter with a removable protective plug

Country Status (1)

Country Link
US (3) US20130297840A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104932613A (en) * 2014-03-21 2015-09-23 纬创资通股份有限公司 Electronic device
WO2016176315A1 (en) 2015-04-27 2016-11-03 Raritan Americas, Inc. Modular power metering system
CN106093557A (en) * 2016-05-30 2016-11-09 国家电网公司 Electric power data acquisition based on GPRS communication module and distance transmission system
CN106527254A (en) * 2015-09-11 2017-03-22 罗伯特·博世有限公司 Integrated circuit
US20170324271A1 (en) * 2014-11-04 2017-11-09 Abb Schweiz Ag A power supply unit for a self-powered intelligent electronic device
US9885739B2 (en) 2006-12-29 2018-02-06 Electro Industries/Gauge Tech Intelligent electronic device capable of operating as a USB master device and a USB slave device
US9897461B2 (en) * 2015-02-27 2018-02-20 Electro Industries/Gauge Tech Intelligent electronic device with expandable functionality
US10048088B2 (en) 2015-02-27 2018-08-14 Electro Industries/Gauge Tech Wireless intelligent electronic device
US20190132964A1 (en) * 2017-10-31 2019-05-02 Fanuc Corporation Display device
US10474591B2 (en) 2009-12-01 2019-11-12 Electro Industries/Gauge Tech Electronic meter with a removable protective plug
US11009922B2 (en) 2015-02-27 2021-05-18 Electro Industries/Gaugetech Wireless intelligent electronic device
EP3839672A1 (en) * 2019-12-20 2021-06-23 Simmonds Precision Products, Inc. Distributed sensing processing systems
USD939988S1 (en) 2019-09-26 2022-01-04 Electro Industries/Gauge Tech Electronic power meter
US20220208368A1 (en) * 2020-12-29 2022-06-30 Stryker Corporation Tool for configuring headwall units used for patient support apparatus communication
US11516029B2 (en) * 2016-10-27 2022-11-29 Vega Grieshaber Kg Process measuring device having a plug-in memory unit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD753003S1 (en) 2015-01-21 2016-04-05 Electro Industries/Gauge Tech Electronic power meter
DE102018100364A1 (en) * 2018-01-09 2019-07-11 Maschinenfabrik Rieter Ag Method for operating a spinning or winding machine

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989334A (en) * 1975-05-14 1976-11-02 Gem Electric Manufacturing Co., Inc. Extension cord terminal with safety closures
US4609247A (en) * 1983-07-11 1986-09-02 Houston Geophysical Products, Inc. Connector having two seal-rings of different diameters
US5014213A (en) * 1988-04-20 1991-05-07 Domestic Automation Company, Inc. System for use with polyphase utility meters for recording time of energy use
JPH07235881A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Water-proof and dust-proof cap for small-sized electric device
US6007353A (en) * 1998-04-22 1999-12-28 Webster; Stephen L. Electrical connector enclosure
US6183274B1 (en) * 1999-02-24 2001-02-06 Sony Corporation Electronic interface connector cover and method of using same
US20020162014A1 (en) * 2001-02-23 2002-10-31 Power Measurement, Ltd. Intelligent electronic device with assured data storage on powerdown
US20040138786A1 (en) * 1994-12-30 2004-07-15 Power Measurement, Ltd. Method and system for master slave protocol communication in an intelligent electronic device
US20070067119A1 (en) * 2005-09-16 2007-03-22 Power Measurement Ltd. Rack-mounted power meter having removable metering options module
US20070114054A1 (en) * 2005-11-23 2007-05-24 Le Mon Lawrence M Security block for a communications connector
US20070165365A1 (en) * 2004-02-10 2007-07-19 Shinichi Kamiya Structure of terminal protection cover of electronic apparatus and terminal protection cover attaching method
US20120314354A1 (en) * 2011-06-13 2012-12-13 Treefrog Developments, Inc. Dba Lifeproof. Housing For Encasing a Tablet Computer
US8365960B1 (en) * 2009-03-26 2013-02-05 Fadi Kalaouze Multi-compartment beverage container

Family Cites Families (139)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1705301A (en) 1929-03-12 Strttment co
USD273574S (en) 1982-01-26 1984-04-24 Overs Ronald R Indicator and dial face for marine knotmeter, log and depth sounder
USD332923S (en) 1990-05-25 1993-02-02 Enm Company Engine operating time hour meter
US5581470A (en) 1991-07-05 1996-12-03 The Detroit Edison Company Apparatus for visually graphically displaying the operating point of a generator in reference to its capability curve including digital readouts of watts, vars and hydrogen pressure
US6256642B1 (en) 1992-01-29 2001-07-03 Microsoft Corporation Method and system for file system management using a flash-erasable, programmable, read-only memory
USD343786S (en) 1992-10-27 1994-02-01 Multiplex Technology, Inc. Video camera wall mounting bracket
US5459850A (en) 1993-02-19 1995-10-17 Conner Peripherals, Inc. Flash solid state drive that emulates a disk drive and stores variable length and fixed lenth data blocks
JP2856621B2 (en) 1993-02-24 1999-02-10 インターナショナル・ビジネス・マシーンズ・コーポレイション Batch erase nonvolatile memory and semiconductor disk device using the same
USD348019S (en) 1993-03-12 1994-06-21 Enm Company Hour meter
US5485595A (en) 1993-03-26 1996-01-16 Cirrus Logic, Inc. Flash memory mass storage architecture incorporating wear leveling technique without using cam cells
US5640529A (en) 1993-07-29 1997-06-17 Intel Corporation Method and system for performing clean-up of a solid state disk during host command execution
USD366434S (en) 1994-10-17 1996-01-23 General Electric Company Electronic power meter and display
US5475693A (en) 1994-12-27 1995-12-12 Intel Corporation Error management processes for flash EEPROM memory arrays
US6944555B2 (en) 1994-12-30 2005-09-13 Power Measurement Ltd. Communications architecture for intelligent electronic devices
US5650936A (en) 1994-12-30 1997-07-22 Cd Power Measurement Limited Power monitor apparatus and method with object oriented structure
US6694270B2 (en) 1994-12-30 2004-02-17 Power Measurement Ltd. Phasor transducer apparatus and system for protection, control, and management of electricity distribution systems
US5736847A (en) 1994-12-30 1998-04-07 Cd Power Measurement Limited Power meter for determining parameters of muliphase power lines
US7188003B2 (en) 1994-12-30 2007-03-06 Power Measurement Ltd. System and method for securing energy management systems
US6751562B1 (en) 2000-11-28 2004-06-15 Power Measurement Ltd. Communications architecture for intelligent electronic devices
US6988025B2 (en) 2000-11-28 2006-01-17 Power Measurement Ltd. System and method for implementing XML on an energy management device
US7127328B2 (en) 1994-12-30 2006-10-24 Power Measurement Ltd. System and method for federated security in an energy management system
US6961641B1 (en) 1994-12-30 2005-11-01 Power Measurement Ltd. Intra-device communications architecture for managing electrical power distribution and consumption
US6384946B1 (en) 1995-12-22 2002-05-07 Thomson Licensing S.A. Electrical isolation between IR receiver and further electronic circuits
US5787445A (en) 1996-03-07 1998-07-28 Norris Communications Corporation Operating system including improved file management for use in devices utilizing flash memory as main memory
JPH10207726A (en) 1997-01-23 1998-08-07 Oki Electric Ind Co Ltd Semiconductor disk device
US20030105608A1 (en) 1997-02-12 2003-06-05 Power Measurement Ltd. Phasor transducer apparatus and system for protection, control, and management of electricity distribution systems
US7216043B2 (en) 1997-02-12 2007-05-08 Power Measurement Ltd. Push communications architecture for intelligent electronic devices
US5995911A (en) 1997-02-12 1999-11-30 Power Measurement Ltd. Digital sensor apparatus and system for protection, control, and management of electricity distribution systems
US5897661A (en) 1997-02-25 1999-04-27 International Business Machines Corporation Logical volume manager and method having enhanced update capability with dynamic allocation of storage and minimal storage of metadata information
US6000034A (en) 1997-05-06 1999-12-07 Power Measurement Ltd. Security system and method for revenue class electricity meter
US5841269A (en) 1997-08-01 1998-11-24 Pitney Bowes Inc. Power-down circuit
US6538577B1 (en) 1997-09-05 2003-03-25 Silver Springs Networks, Inc. Electronic electric meter for networked meter reading
JP2000057039A (en) 1998-08-03 2000-02-25 Canon Inc Method and device for controlling access, file system and information processor
ATE321271T1 (en) 1999-01-27 2006-04-15 Elster Electricity Llc INSTRUMENT HOUSING FOR ELECTRONIC ELECTRICITY METER
US6587462B2 (en) 2001-02-16 2003-07-01 Dunti Corporation Address mapping mechanism enabling multi-domain addressing in communication networks
USD435471S (en) 1999-07-21 2000-12-26 Power Measurement Ltd. Electric meter
USD429655S (en) 1999-08-09 2000-08-22 Power Measurement Ltd. Electric meter cover
US6186842B1 (en) 1999-08-09 2001-02-13 Power Measurement Ltd. Revenue meter bayonet assembly and method of attachment
US6825776B2 (en) 1999-08-09 2004-11-30 Power Measurement Ltd. External I/O and communications interface for a revenue meter
US6615147B1 (en) 1999-08-09 2003-09-02 Power Measurement Ltd. Revenue meter with power quality features
US6493644B1 (en) 1999-08-09 2002-12-10 Power Measurement Ltd. A-base revenue meter with power quality features
US6611922B2 (en) 1999-08-09 2003-08-26 Power Measurement, Ltd. Power system time synchronization device and method for sequence of event recording
US6798191B1 (en) 1999-08-09 2004-09-28 Power Measurement Ltd. Revenue meter with a graphic user interface being operative to display scalable objects
US6397155B1 (en) 1999-08-09 2002-05-28 Power Measurement Ltd. Method and apparatus for automatically controlled gain switching of monitors
KR100621615B1 (en) 1999-08-30 2006-09-06 삼성전자주식회사 swap bay device supporting both master and slave mode and portable computer having the same
USD439535S1 (en) 1999-09-07 2001-03-27 Power Measurement Ltd. Electric meter drawout case
USD427533S (en) 1999-10-20 2000-07-04 Power Measurement Ltd. Electric meter external I/O enclosure
US6513091B1 (en) 1999-11-12 2003-01-28 International Business Machines Corporation Data routing using status-response signals
AU141437S (en) 2000-02-18 2000-08-14 Nokia Mobile Phones Ltd A charger for example a desktop charger with wall stand
JP4553279B2 (en) 2000-03-09 2010-09-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Data transfer system, data transfer terminal, controller, and interface method
US6466434B1 (en) 2000-04-05 2002-10-15 Windbond Electronics Corp. Disk assembly incorporating therein usb connector and computer case having therein same
US6735535B1 (en) 2000-05-05 2004-05-11 Electro Industries/Gauge Tech. Power meter having an auto-calibration feature and data acquisition capabilities
US6891855B2 (en) 2000-07-27 2005-05-10 Corrigent Systems, Ltd. Dynamic packet fragmentation
US6476729B1 (en) 2000-08-22 2002-11-05 Daniel Liu Power monitoring module with display unit for electrical power source device
USD443541S1 (en) 2000-09-01 2001-06-12 Power Measurement Ltd. Electric meter drawout case
US6671654B1 (en) 2000-11-28 2003-12-30 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system
US6611773B2 (en) 2000-11-28 2003-08-26 Power Measurement Ltd. Apparatus and method for measuring and reporting the reliability of a power distribution system with improved accuracy
US20060133454A1 (en) 2000-12-12 2006-06-22 Beckwith Robert W Wide band interoperable peer to peer wireless systems
US6871150B2 (en) 2001-02-23 2005-03-22 Power Measurement Ltd. Expandable intelligent electronic device
US6853978B2 (en) 2001-02-23 2005-02-08 Power Measurement Ltd. System and method for manufacturing and configuring intelligent electronic devices to order
US7249265B2 (en) 2001-02-23 2007-07-24 Power Measurement, Ltd. Multi-featured power meter with feature key
US7085824B2 (en) 2001-02-23 2006-08-01 Power Measurement Ltd. Systems for in the field configuration of intelligent electronic devices
USD459259S1 (en) 2001-02-23 2002-06-25 Power Measurement, Ltd. Dinrail mountable electric meter
US6813571B2 (en) 2001-02-23 2004-11-02 Power Measurement, Ltd. Apparatus and method for seamlessly upgrading the firmware of an intelligent electronic device
US6563697B1 (en) 2001-02-23 2003-05-13 Power Measurement, Ltd. Apparatus for mounting a device on a mounting surface
USD458863S1 (en) 2001-02-23 2002-06-18 Power Measurement, Ltd. Compact electric meter
US6671635B1 (en) 2001-02-23 2003-12-30 Power Measurement Ltd. Systems for improved monitoring accuracy of intelligent electronic devices
US6636030B1 (en) 2001-03-28 2003-10-21 Electro Industries/Gauge Technologies Revenue grade meter with high-speed transient detection
US6751563B2 (en) 2001-05-11 2004-06-15 Electro Industries/Gauge Tech Electronic power meter
JP4772214B2 (en) 2001-06-08 2011-09-14 ルネサスエレクトロニクス株式会社 Nonvolatile memory device and rewrite control method thereof
US7155560B2 (en) 2001-06-27 2006-12-26 Intel Corporation Method and apparatus for storing data in flash memory
TW517356B (en) 2001-10-09 2003-01-11 Delta Optoelectronics Inc Package structure of display device and its packaging method
US7336313B2 (en) 2002-02-05 2008-02-26 Canon Kabushiki Kaisha Image sensing apparatus and signal processing apparatus
US6988182B2 (en) 2002-02-13 2006-01-17 Power Measurement Ltd. Method for upgrading firmware in an electronic device
US6737855B2 (en) 2002-03-15 2004-05-18 Power Measurement Ltd. Electric meter cover including an integrally molded optical port with lens
US7136384B1 (en) 2002-03-19 2006-11-14 Cisco Technology, Inc. System and method for communicating asynchronous transfer mode cells in a network environment
US7256709B2 (en) 2002-04-01 2007-08-14 Electro Industries/Gauge Tech Meter with IrDA port
US20030210699A1 (en) 2002-05-08 2003-11-13 Adc Dsl Systems, Inc. Extending a network management protocol to network nodes without IP address allocations
JP2004080102A (en) 2002-08-09 2004-03-11 Fujitsu Ltd Packet processing apparatus
US7415725B2 (en) 2002-08-29 2008-08-19 Power Measurement Ltd. Multi-function intelligent electronic device with secure access
WO2004061462A1 (en) 2002-12-23 2004-07-22 Power Measurement Ltd. Power monitoring integrated circuit with communication interface
US6957158B1 (en) 2002-12-23 2005-10-18 Power Measurement Ltd. High density random access memory in an intelligent electric device
US7417419B2 (en) 2003-02-03 2008-08-26 Landis+Gyr, Inc. Method and arrangement for connecting electrical components in an electricity meter
US7369950B2 (en) 2003-02-07 2008-05-06 Power Measurement Ltd. System and method for power quality analytics
EP1593072A2 (en) 2003-02-07 2005-11-09 Power Measurement Ltd A method and system for calculating and distributing utility costs
US7174261B2 (en) 2003-03-19 2007-02-06 Power Measurement Ltd. Power line sensors and systems incorporating same
US7089089B2 (en) 2003-03-31 2006-08-08 Power Measurement Ltd. Methods and apparatus for retrieving energy readings from an energy monitoring device
US7417558B2 (en) 2003-05-12 2008-08-26 Power Measurement Ltd. Wireless communications system incorporating intelligent electronic devices
US7096316B1 (en) 2003-06-30 2006-08-22 Veritas Operating Corporation Multi-host environment with coordinated distributed logging for writes to a raid storage volume
US7145438B2 (en) * 2003-07-24 2006-12-05 Hunt Technologies, Inc. Endpoint event processing system
US7173852B2 (en) 2003-10-03 2007-02-06 Sandisk Corporation Corrected data storage and handling methods
US7265533B2 (en) 2004-06-15 2007-09-04 Power Measurement Ltd. Non-intrusive power monitor
JP4751037B2 (en) 2004-06-22 2011-08-17 株式会社東芝 Memory card
US7337080B2 (en) 2004-06-25 2008-02-26 Power Measurement, Ltd. Method and apparatus for instrument transformer reclassification
US20050288877A1 (en) 2004-06-25 2005-12-29 Power Measurement Ltd., Method and apparatus for instrument transformer reclassification
US7294997B2 (en) 2004-07-22 2007-11-13 Electro Industries/Gauge Tech Electrical meter system with color coding features
US7155350B2 (en) 2004-07-22 2006-12-26 Erran Kagan System and method utilizing virtual switching for electrical panel metering
USD505087S1 (en) 2004-08-25 2005-05-17 Power Measurement Ltd. Energy monitoring device
US7350384B2 (en) 2004-10-01 2008-04-01 Matsushita Electric Industrial Co., Ltd. Door device equipped with lock
US7994934B2 (en) 2004-10-05 2011-08-09 Electro Industries/Gauge Tech Meter having a communication interface for receiving and interfacing with a communication device
US7298134B2 (en) * 2004-10-12 2007-11-20 Elster Electricity, Llc Electrical-energy meter adaptable for optical communication with various external devices
US7609719B2 (en) 2004-10-12 2009-10-27 Electro Industries/Gauge Tech System and method for simultaneous communication on modbus and DNP 3.0 over Ethernet for electronic power meter
US7305310B2 (en) 2004-10-18 2007-12-04 Electro Industries/Gauge Tech. System and method for compensating for potential and current transformers in energy meters
US7508190B2 (en) 2004-10-20 2009-03-24 Electro Industries/Gauge Tech. Test pulses for enabling revenue testable panel meters
US7304586B2 (en) 2004-10-20 2007-12-04 Electro Industries / Gauge Tech On-line web accessed energy meter
US7337081B1 (en) 2005-01-27 2008-02-26 Electro Industries/Gauge Tech Metering device with control functionality and method thereof
US7747733B2 (en) 2004-10-25 2010-06-29 Electro Industries/Gauge Tech Power meter having multiple ethernet ports
US7388189B2 (en) 2004-10-27 2008-06-17 Electro Industries/Gauge Tech System and method for connecting electrical devices using fiber optic serial communication
US7441067B2 (en) 2004-11-15 2008-10-21 Sandisk Corporation Cyclic flash memory wear leveling
US7271996B2 (en) 2004-12-03 2007-09-18 Electro Industries/Gauge Tech Current inputs interface for an electrical device
US7472138B2 (en) 2004-12-14 2008-12-30 International Business Machines Corporation System and method for handing input/output errors during recovery of journaling files in a data processing system
USD532747S1 (en) 2005-01-19 2006-11-28 Power Measurement Ltd. Current transformer frame
USD534120S1 (en) 2005-01-19 2006-12-26 Power Measurement Ltd. Current transformer body
US7184904B2 (en) 2005-01-20 2007-02-27 Electro Industries/Gaugetech System and method for providing universal additional functionality for power meters
USD525893S1 (en) 2005-02-23 2006-08-01 Electro Industries/Gauge Tech Electronic power meter
USD545181S1 (en) 2005-03-07 2007-06-26 Electro Industries/Gaugetech Wall mount
USD526920S1 (en) 2005-07-12 2006-08-22 Electro Industries/Gauge Tech Electronic meter
US20070033151A1 (en) * 2005-08-02 2007-02-08 General Electric Company Systems, Methods, and Apparatuses for Reporting Transient Conditions in an Unattended Meter
US7698582B2 (en) 2005-12-23 2010-04-13 Schweitzer Engineering Laboratories, Inc. Apparatus and method for compensating digital input delays in an intelligent electronic device
WO2007105279A1 (en) 2006-03-10 2007-09-20 Fujitsu Limited Portable communication apparatus
US9063181B2 (en) 2006-12-29 2015-06-23 Electro Industries/Gauge Tech Memory management for an intelligent electronic device
US9885739B2 (en) 2006-12-29 2018-02-06 Electro Industries/Gauge Tech Intelligent electronic device capable of operating as a USB master device and a USB slave device
AU2008210195B2 (en) 2007-02-02 2013-09-12 Aztech Associates Inc. Utility monitoring device, system and method
US8587949B2 (en) 2007-03-27 2013-11-19 Electro Industries/Gauge Tech Electronic meter having user-interface and central processing functionality on a single printed circuit board
TW200842591A (en) 2007-04-20 2008-11-01 Genesys Logic Inc OTG device for multi-directional transmitting GPS data and controlling method of same
US7937520B2 (en) 2008-01-11 2011-05-03 Mediatek Inc. General purpose interface controller of resoure limited system
USD615895S1 (en) 2008-12-23 2010-05-18 Utility Metering Services Limited Energy consumption display
WO2010135260A2 (en) 2009-05-18 2010-11-25 Boston-Power, Inc. Energy efficient and fast charge modes of a rechargeable battery
USD642083S1 (en) 2009-09-17 2011-07-26 Electricite Reseau Distribution France Electricity meter
US20130297840A1 (en) 2009-12-01 2013-11-07 Electro Industries/Gaugetech Intelligent electronic device capable of operating as a usb master device and a usb slave device
USD712291S1 (en) 2009-12-01 2014-09-02 Electro Industries/Gauge Tech Electronic meter
USD712290S1 (en) 2009-12-01 2014-09-02 Electro Industries/Gauge Tech Electronic meter
USD739283S1 (en) 2009-12-01 2015-09-22 Electro Industries/Gauge Tech Electronic meter
USD653572S1 (en) 2010-07-15 2012-02-07 Mitutoyo Corporation Digital dial gauge
US8310403B2 (en) 2010-08-25 2012-11-13 General Electric Company Antenna attachment scheme for mounting an antenna to a meter
USD666933S1 (en) 2011-04-08 2012-09-11 Marshall Excelsior Company Glow-in-the-dark dial assembly
US8947246B2 (en) 2011-09-07 2015-02-03 General Electric Company Utility meter arc detection system
USD682721S1 (en) 2012-01-05 2013-05-21 Electro Industries/Gauge Tech Multi-feeder power monitor
USD682720S1 (en) 2012-01-05 2013-05-21 Electro Industries/Gauge Tech Digital display

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3989334A (en) * 1975-05-14 1976-11-02 Gem Electric Manufacturing Co., Inc. Extension cord terminal with safety closures
US4609247A (en) * 1983-07-11 1986-09-02 Houston Geophysical Products, Inc. Connector having two seal-rings of different diameters
US5014213A (en) * 1988-04-20 1991-05-07 Domestic Automation Company, Inc. System for use with polyphase utility meters for recording time of energy use
JPH07235881A (en) * 1994-02-22 1995-09-05 Matsushita Electric Ind Co Ltd Water-proof and dust-proof cap for small-sized electric device
US20040138786A1 (en) * 1994-12-30 2004-07-15 Power Measurement, Ltd. Method and system for master slave protocol communication in an intelligent electronic device
US6007353A (en) * 1998-04-22 1999-12-28 Webster; Stephen L. Electrical connector enclosure
US6183274B1 (en) * 1999-02-24 2001-02-06 Sony Corporation Electronic interface connector cover and method of using same
US20020162014A1 (en) * 2001-02-23 2002-10-31 Power Measurement, Ltd. Intelligent electronic device with assured data storage on powerdown
US20070165365A1 (en) * 2004-02-10 2007-07-19 Shinichi Kamiya Structure of terminal protection cover of electronic apparatus and terminal protection cover attaching method
US20070067119A1 (en) * 2005-09-16 2007-03-22 Power Measurement Ltd. Rack-mounted power meter having removable metering options module
US20070114054A1 (en) * 2005-11-23 2007-05-24 Le Mon Lawrence M Security block for a communications connector
US8365960B1 (en) * 2009-03-26 2013-02-05 Fadi Kalaouze Multi-compartment beverage container
US20120314354A1 (en) * 2011-06-13 2012-12-13 Treefrog Developments, Inc. Dba Lifeproof. Housing For Encasing a Tablet Computer

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9885739B2 (en) 2006-12-29 2018-02-06 Electro Industries/Gauge Tech Intelligent electronic device capable of operating as a USB master device and a USB slave device
US10474591B2 (en) 2009-12-01 2019-11-12 Electro Industries/Gauge Tech Electronic meter with a removable protective plug
CN104932613A (en) * 2014-03-21 2015-09-23 纬创资通股份有限公司 Electronic device
US10944333B2 (en) * 2014-11-04 2021-03-09 Abb Schweiz Ag Power supply unit for a self-powered intelligent electronic device
US20170324271A1 (en) * 2014-11-04 2017-11-09 Abb Schweiz Ag A power supply unit for a self-powered intelligent electronic device
US20190250010A1 (en) * 2015-02-27 2019-08-15 Electro Industries/Gauge Tech Intelligent electronic device
US10739162B2 (en) * 2015-02-27 2020-08-11 Electro Industries/Gauge Tech Intelligent electronic device with surge supression
US10048088B2 (en) 2015-02-27 2018-08-14 Electro Industries/Gauge Tech Wireless intelligent electronic device
US11641052B2 (en) 2015-02-27 2023-05-02 El Electronics Llc Wireless intelligent electronic device
US11644341B2 (en) * 2015-02-27 2023-05-09 El Electronics Llc Intelligent electronic device with hot swappable battery
US10274340B2 (en) * 2015-02-27 2019-04-30 Electro Industries/Gauge Tech Intelligent electronic device with expandable functionality
US9897461B2 (en) * 2015-02-27 2018-02-20 Electro Industries/Gauge Tech Intelligent electronic device with expandable functionality
US11009922B2 (en) 2015-02-27 2021-05-18 Electro Industries/Gaugetech Wireless intelligent electronic device
US20210108944A1 (en) * 2015-02-27 2021-04-15 Electro Industries/Gauge Tech Intelligent electronic device
WO2016176315A1 (en) 2015-04-27 2016-11-03 Raritan Americas, Inc. Modular power metering system
EP3289368A4 (en) * 2015-04-27 2018-12-26 Raritan Americas, Inc. Modular power metering system
CN106527254A (en) * 2015-09-11 2017-03-22 罗伯特·博世有限公司 Integrated circuit
US10133684B2 (en) * 2015-09-11 2018-11-20 Robert Bosch Gmbh Integrated circuit having ADC, DSP and computing units
CN106093557A (en) * 2016-05-30 2016-11-09 国家电网公司 Electric power data acquisition based on GPRS communication module and distance transmission system
US11516029B2 (en) * 2016-10-27 2022-11-29 Vega Grieshaber Kg Process measuring device having a plug-in memory unit
TWI799396B (en) * 2016-10-27 2023-04-21 德商Vega格里沙貝兩合公司 Process measuring device with plug-in memory card
US20190132964A1 (en) * 2017-10-31 2019-05-02 Fanuc Corporation Display device
US11109494B2 (en) * 2017-10-31 2021-08-31 Fanuc Corporation Display device
USD939988S1 (en) 2019-09-26 2022-01-04 Electro Industries/Gauge Tech Electronic power meter
US11582304B2 (en) 2019-12-20 2023-02-14 Simmonds Precision Products, Inc. Distributed sensing processing systems
EP3839672A1 (en) * 2019-12-20 2021-06-23 Simmonds Precision Products, Inc. Distributed sensing processing systems
US20220208368A1 (en) * 2020-12-29 2022-06-30 Stryker Corporation Tool for configuring headwall units used for patient support apparatus communication

Also Published As

Publication number Publication date
USD712289S1 (en) 2014-09-02
US20180225231A1 (en) 2018-08-09
US10474591B2 (en) 2019-11-12

Similar Documents

Publication Publication Date Title
US10474591B2 (en) Electronic meter with a removable protective plug
US9885739B2 (en) Intelligent electronic device capable of operating as a USB master device and a USB slave device
US8581169B2 (en) System and method for data transmission between an intelligent electronic device and a remote device
US10739162B2 (en) Intelligent electronic device with surge supression
US9322669B2 (en) Intelligent electronic device having audible and visual interface
US7962299B2 (en) Electricity metering
EP1805523B1 (en) Method and apparatus for an electric meter
US8717007B2 (en) Intelligent electronic device having a terminal assembly for coupling to a meter mounting socket
US9927470B2 (en) Intelligent electronic device having a memory structure for preventing data loss upon power loss
KR100622986B1 (en) Multi Function Data Gathering Device of Automatic Meter Reading System
US9280505B2 (en) System on a module for smart grid nodes
US11300424B2 (en) Metering assembly, switchboard case, adapter cradle and method of use
US20230051528A1 (en) Devices, systems and methods for electrical utility submetering
US10585125B2 (en) Devices, systems and methods for data transmission over a communication media using modular connectors
Ali et al. Smart energy meters for energy conservation & minimizing errors
KR20100135501A (en) Desorption the integrated amr modem which is possible
CN208350888U (en) Low voltage equipment intelligent power monitor
EP1340311A2 (en) Auxiliary metering apparatus and methods
CN211928051U (en) Low-voltage distribution network line loss diagnosis system
CN202206063U (en) GIS (geographic information system) integrated imitation screen
KR100438986B1 (en) Remote metering system using multi airconditioner's power metering system
CN201383680Y (en) Intelligent power cabinet control system and intelligent power cabinet employing same
CN104749469A (en) Circuit line loss comprehensive monitoring device
CN116068268A (en) Modularized electric energy meter
Cross Sunview. Development of a domestic PV display/indicator

Legal Events

Date Code Title Description
AS Assignment

Owner name: ELECTRO INDUSTRIES/GAUGE TECH, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KAGAN, ERRAN;BANHEGYESI, TIBOR;COHEN, AVI;SIGNING DATES FROM 20140219 TO 20140220;REEL/FRAME:032253/0882

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION