US20140005718A1 - Multi-functional powered surgical device with external dissection features - Google Patents

Multi-functional powered surgical device with external dissection features Download PDF

Info

Publication number
US20140005718A1
US20140005718A1 US13/536,288 US201213536288A US2014005718A1 US 20140005718 A1 US20140005718 A1 US 20140005718A1 US 201213536288 A US201213536288 A US 201213536288A US 2014005718 A1 US2014005718 A1 US 2014005718A1
Authority
US
United States
Prior art keywords
end effector
drive
rotary drive
jaw member
jaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/536,288
Inventor
Frederick E. Shelton, IV
Jeffrey S. Swayze
Charles J. Scheib
Tamara Widenhouse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cilag GmbH International
Original Assignee
Ethicon Endo Surgery Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ethicon Endo Surgery Inc filed Critical Ethicon Endo Surgery Inc
Priority to US13/536,271 priority Critical patent/US9204879B2/en
Priority to US13/536,288 priority patent/US20140005718A1/en
Assigned to ETHICON ENDO-SURGERY, INC. reassignment ETHICON ENDO-SURGERY, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCHEIB, CHARLES J., WIDENHOUSE, TAMARA, SHELTON, FREDERICK E., IV, SWAYZE, JEFFREY S.
Priority to EP13735123.5A priority patent/EP2866694A1/en
Priority to PCT/US2013/046718 priority patent/WO2014004235A1/en
Priority to RU2015102669A priority patent/RU2644274C2/en
Priority to EP21174099.8A priority patent/EP3888571B1/en
Priority to JP2015520307A priority patent/JP6279567B2/en
Priority to RU2015102539A priority patent/RU2643402C2/en
Priority to EP13735121.9A priority patent/EP2866693B1/en
Priority to CN201380044583.1A priority patent/CN104582600B/en
Priority to BR112014032754A priority patent/BR112014032754A2/en
Priority to PCT/US2013/046722 priority patent/WO2014004236A1/en
Priority to JP2015520306A priority patent/JP6266609B2/en
Priority to BR112014032738-6A priority patent/BR112014032738B1/en
Priority to CN201380044963.5A priority patent/CN104582601B/en
Priority to EP19186781.1A priority patent/EP3574855B1/en
Publication of US20140005718A1 publication Critical patent/US20140005718A1/en
Assigned to ETHICON ENDO-SURGERY, LLC reassignment ETHICON ENDO-SURGERY, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, INC.
Priority to US15/393,990 priority patent/US10987123B2/en
Priority to US15/459,558 priority patent/US11007004B2/en
Assigned to ETHICON LLC reassignment ETHICON LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON ENDO-SURGERY, LLC
Assigned to CILAG GMBH INTERNATIONAL reassignment CILAG GMBH INTERNATIONAL ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ETHICON LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/062Needle manipulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • A61B2017/00305Constructional details of the flexible means
    • A61B2017/00314Separate linked members
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00353Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery one mechanical instrument performing multiple functions, e.g. cutting and grasping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00858Material properties high friction, non-slip
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/2812Surgical forceps with a single pivotal connection
    • A61B17/282Jaws
    • A61B2017/2825Inserts of different material in jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2902Details of shaft characterized by features of the actuating rod
    • A61B2017/2903Details of shaft characterized by features of the actuating rod transferring rotary motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2927Details of heads or jaws the angular position of the head being adjustable with respect to the shaft
    • A61B2017/2929Details of heads or jaws the angular position of the head being adjustable with respect to the shaft with a head rotatable about the longitudinal axis of the shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2933Transmission of forces to jaw members camming or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • A61B2017/2932Transmission of forces to jaw members
    • A61B2017/2943Toothed members, e.g. rack and pinion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320016Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes
    • A61B17/32002Endoscopic cutting instruments, e.g. arthroscopes, resectoscopes with continuously rotating, oscillating or reciprocating cutting instruments
    • A61B2017/320032Details of the rotating or oscillating shaft, e.g. using a flexible shaft
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • A61B2034/306Wrists with multiple vertebrae

Definitions

  • FIGS. Various example embodiments are described herein by way of example in conjunction with the following FIGS. wherein:
  • FIG. 1 is a perspective view of one embodiment of a robotic controller.
  • FIG. 2 is a perspective view of a robotic surgical arm cart/manipulator of a robotic system operably supporting a plurality of surgical tool embodiments.
  • FIG. 3 is a side view of one embodiment of the robotic surgical arm cart/manipulator depicted in FIG. 2 .
  • FIG. 4 is a perspective view of a cart structure with positioning linkages for operably supporting robotic manipulators that may be used with surgical tool embodiments.
  • FIG. 5 is a perspective view of a surgical tool embodiment and a surgical end effector embodiment.
  • FIG. 6 is a perspective view of one embodiment of an electrosurgical tool in electrical communication with a generator
  • FIG. 7 shows a perspective view of one embodiment of the end effector of the surgical tool of FIG. 6 with the jaw members open and the distal end of an axially movable member in a retracted position.
  • FIG. 8 shows a perspective view of one embodiment of the end effector of the surgical tool of FIG. 6 with the jaw members closed and the distal end of an axially movable member in a partially advanced position.
  • FIG. 9 is a perspective view of one embodiment of the axially moveable member of the surgical tool of FIG. 6 .
  • FIG. 10 is a section view of one embodiment of the electrosurgical end effector of the surgical tool of FIG. 6 .
  • FIG. 11 is an exploded assembly view of one embodiment of an adapter and tool holder arrangement for attaching various surgical tool embodiments to a robotic system.
  • FIG. 12 is a side view of one embodiment of the adapter shown in FIG. 11 .
  • FIG. 13 is a bottom view of one embodiment of the adapter shown in FIG. 11 .
  • FIG. 14 is a top view of one embodiment of the adapter of FIGS. 11 and 12 .
  • FIG. 15 is a partial bottom perspective view of one embodiment of a surgical tool.
  • FIG. 16 is a front perspective view of one embodiment of a portion of a surgical tool with some elements thereof omitted for clarity.
  • FIG. 17 is a rear perspective view of one embodiment of the surgical tool of FIG. 16 .
  • FIG. 18 is a top view of one embodiment of the surgical tool of FIGS. 16 and 17 .
  • FIG. 19 is a partial top view of one embodiment of the surgical tool of FIGS. 16-18 with the manually actuatable drive gear in an unactuated position.
  • FIG. 20 is another partial top view of one embodiment of the surgical tool of FIGS. 16-19 with the manually actuatable drive gear in an initially actuated position.
  • FIG. 21 is another partial top view of one embodiment of the surgical tool of FIGS. 16-20 with the manually actuatable drive gear in an actuated position.
  • FIG. 22 is a rear perspective view of another surgical tool embodiment.
  • FIG. 23 is a side elevational view of one embodiment of the surgical tool of FIG. 22 .
  • FIG. 24 is a cross-sectional view of one embodiment of a portion of an articulation joint and end effector.
  • FIG. 24A illustrates one embodiment of the shaft assembly and articulation joint of FIG. 24 showing connections between distal cable sections and proximal cable portions.
  • FIG. 25 is an exploded assembly view of one embodiment of a portion of the articulation joint and end effector of FIG. 24 .
  • FIG. 26 is a partial cross-sectional perspective view of one embodiment of the articulation joint and end effector portions depicted in FIG. 25 .
  • FIG. 27 is a partial perspective view of an end effector and drive shaft assembly embodiment.
  • FIG. 28 is a partial side view of one embodiment of a drive shaft assembly.
  • FIG. 29 is a perspective view of one embodiment of a drive shaft assembly.
  • FIG. 30 is a side view of one embodiment of the drive shaft assembly of FIG. 29 .
  • FIG. 31 is a perspective view of one embodiment of a composite drive shaft assembly.
  • FIG. 32 is a side view of one embodiment of the composite drive shaft assembly of FIG. 31 .
  • FIG. 33 is another view of one embodiment of the drive shaft assembly of FIGS. 29 and 30 assuming an arcuate or “flexed” configuration.
  • FIG. 33A is a side view of one embodiment of a drive shaft assembly assuming an arcuate or “flexed” configuration.
  • FIG. 33B is a side view of one embodiment of another drive shaft assembly assuming an arcuate or “flexed” configuration.
  • FIG. 34 is a perspective view of a portion of another drive shaft assembly embodiment.
  • FIG. 35 is a top view of the drive shaft assembly embodiment of FIG. 34 .
  • FIG. 36 is another perspective view of the drive shaft assembly embodiment of FIGS. 34 and 35 in an arcuate configuration.
  • FIG. 37 is a top view of the drive shaft assembly embodiment depicted in FIG. 36 .
  • FIG. 38 is a perspective view of another drive shaft assembly embodiment.
  • FIG. 39 is another perspective view of the drive shaft assembly embodiment of FIG. 38 in an arcuate configuration.
  • FIG. 40 is a top view of the drive shaft assembly embodiment of FIGS. 38 and 39 .
  • FIG. 41 is a cross-sectional view of the drive shaft assembly embodiment of FIG. 40 .
  • FIG. 42 is a partial cross-sectional view of another drive shaft assembly embodiment.
  • FIG. 43 is another cross-sectional view of the drive shaft assembly embodiment of FIG. 42 .
  • FIG. 44 is another cross-sectional view of a portion of another drive shaft assembly embodiment.
  • FIG. 45 is another cross-sectional view of one embodiment of the drive shaft assembly of FIG. 44 .
  • FIG. 46 is a perspective view of another surgical tool embodiment.
  • FIG. 47 is a cross-sectional perspective view of the surgical tool embodiment of FIG. 46
  • FIG. 48 is a cross-sectional perspective view of a portion of one embodiment of an articulation system.
  • FIG. 49 is a cross-sectional view of one embodiment of the articulation system of FIG. 48 in a neutral position.
  • FIG. 50 is another cross-sectional view of one embodiment of the articulation system of FIGS. 48 and 49 in an articulated position.
  • FIG. 51 is a side elevational view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 52 is a rear perspective view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 53 is a rear elevational view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 54 is a front perspective view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 55 is a side elevational view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 56 is an exploded assembly view of an example reversing system embodiment of the surgical tool of FIGS. 46-47 .
  • FIG. 57 is a perspective view of a lever arm embodiment of the reversing system of FIG. 56 .
  • FIG. 58 is a perspective view of a knife retractor button of one embodiment of the reversing system of FIG. 56 .
  • FIG. 59 is a perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in actuatable engagement with the reversing gear.
  • FIG. 60 is a perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in an unactuated position.
  • FIG. 61 is another perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in actuatable engagement with the reversing gear.
  • FIG. 62 is a side elevational view of a portion of a handle assembly portion of the surgical tool embodiment of FIGS. 46-47 with a shifter button assembly moved into a position which will result in the rotation of the end effector when the drive shaft assembly is actuated.
  • FIG. 63 is another side elevational view of a portion of a handle assembly portion of one embodiment of the surgical tool of FIGS. 46-47 with the a shifter button assembly moved into another position which will result in the firing of the firing member in the end effector when the drive shaft assembly is actuated.
  • FIG. 64 is a perspective view of an embodiment of a multi-axis articulating and rotating surgical tool.
  • FIG. 65 is an exploded perspective view of various components of one embodiment of the surgical tool shown in FIG. 64 .
  • FIG. 66 is a partial cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64 , illustrating a rotary drive shaft engaging a rotary drive nut for actuating translation of an I-beam member and closure of a jaw assembly of an end effector.
  • FIG. 67 is a cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64 , illustrating a rotary drive shaft engaging a rotary drive nut for actuating translation of an I-beam member and closure of a jaw assembly of an end effector.
  • FIG. 68 is a partial cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64 , illustrating a rotary drive shaft engaging a shaft coupling for actuating rotation of an end effector.
  • FIG. 69 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64 , illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, and a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and closure of the jaw assembly of the end effector.
  • FIG. 70 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64 , illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, and a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and opening of the jaw assembly of the end effector.
  • FIG. 71 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64 , illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, and a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector.
  • FIG. 72 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64 , illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, and a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector.
  • FIGS. 73 and 74 are side cross-sectional detail views of one embodiment of the surgical tool shown in FIG. 64 , illustrating the engagement of cam surfaces of an I-beam member with anvil surfaces of a first jaw member to move the first jaw member relative to a second jaw member between an open position and a closed position.
  • FIG. 75 is an exploded view of the components comprising an embodiment of a multi-axis articulating and rotating surgical tool comprising a head locking mechanism.
  • FIG. 76 is an exploded view of spline lock components of one embodiment of the head locking mechanism of the surgical tool illustrated in FIG. 75 .
  • FIG. 77 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75 , illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and closure of the jaw assembly of the end effector, and an engaged spline lock preventing rotation of the end effector.
  • FIG. 78 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75 , illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and opening of the jaw assembly of the end effector, and an engaged spline lock preventing rotation of the end effector.
  • FIG. 79 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75 , illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector, and a disengaged spline lock allowing rotation of the end effector.
  • FIG. 80 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64 , illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector, and a disengaged spline lock allowing rotation of the end effector.
  • FIG. 81 is a side cross-sectional detail view of one embodiment of the surgical tool shown in FIG. 80 .
  • FIG. 82 is a side cross-sectional detail view of one embodiment of the surgical tool shown in FIG. 78 .
  • FIG. 83 is a cross sectional perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 84 is prospective view of a closure nut of one embodiment of the surgical tool of FIG. 83 .
  • FIG. 85 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably disengaged with the rotary drive nut.
  • FIG. 86 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably engaged with the rotary drive nut.
  • FIG. 87 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the closure nut is operably disengaged from the rotary drive nut.
  • FIG. 88 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially extended.
  • FIG. 89 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially retracted.
  • FIG. 90 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially retracted.
  • FIG. 91 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the closure nut is operably engaged from the rotary drive nut.
  • FIG. 92 is a cross sectional perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 93 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the end effector drive housing.
  • FIG. 94 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the barrel cam.
  • FIG. 95 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is not operably engaged with any of the spline coupling portions.
  • FIG. 96 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the rotary drive nut.
  • FIG. 97 illustrates a perspective view of an end effector and an articulation joint of a surgical instrument in accordance with at least one embodiment illustrated with portions removed for the purposes of illustration.
  • FIG. 98 illustrates a detail view of a drive shaft in accordance with at least one embodiment configured to be translated within the end effector and the articulation joint of FIG. 97 .
  • FIG. 99 illustrates a perspective view of a drive shaft in accordance with at least one alternative embodiment.
  • FIG. 100 illustrates an elevational view of one embodiment of the drive shaft of FIG. 99 .
  • FIG. 101 illustrates an elevational view of one embodiment of the drive shaft of FIG. 99 illustrated in an articulated condition.
  • FIG. 102 illustrates a perspective view of a drive shaft assembly comprising a drive tube and a thread extending around the drive tube in accordance with at least one alternative embodiment.
  • FIG. 103 illustrates an elevational view of one embodiment of the drive shaft assembly of FIG. 102 .
  • FIG. 104 illustrates a perspective view of a drive shaft assembly comprising a drive tube, a thread extending around the drive tube, and an inner core extending through the drive tube in accordance with at least one embodiment.
  • FIG. 105 illustrates an elevational view of one embodiment of the drive shaft assembly of FIG. 104 .
  • FIG. 106 is a perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 107 is cross sectional view of distal portions of one embodiment of the first and second jaw members of the surgical end tool shown in FIG. 106 .
  • FIG. 108 is a perspective view of a surgical end effector and a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 109 is a prospective view of a jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 110 is a cross-sectional view of a surgical effector detached from a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 111 is a cross-sectional view of a surgical effector attached to a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 112 is a perspective view of multiple interchangeable surgical end effectors in accordance with certain embodiments described herein.
  • FIG. 113 is a perspective view of a surgical end effector including a cross sectional view of a jaw member in accordance with certain embodiments described herein.
  • FIG. 114 is a cross-sectional view of a surgical effector detached from a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 115 is a cross-sectional view of a surgical effector attached to a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 116 is a perspective view of a surgical end effector having first and second jaws in accordance with certain embodiments described herein.
  • FIG. 117 is another perspective view of the surgical end effector shown in FIG. 116 including a cross sectional perspective view of a jaw member in accordance with certain embodiments described herein.
  • FIG. 118 is cross sectional view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 119 is cross sectional view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein
  • FIG. 120 is a perspective view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 121 is a prospective view of a distal portion of a jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 122 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 123 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 124 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 125 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 126 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 127 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 128 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 129 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 130 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 131 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 132 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position and angled tissue-contacting surfaces along substantially the entire length of the jaw members.
  • FIG. 133 is another perspective view of one embodiment of the end effector shown in FIG. 132 with the first and second jaw members in a closed position.
  • FIG. 134 is a front view of one embodiment of the end effector shown in FIG. 133 .
  • FIG. 135 is a cross-sectional view of one embodiment of the end effector shown in FIG. 134 .
  • FIG. 136 is a side view of one embodiment of the end effector shown in FIG. 132 .
  • FIG. 137 is a side view of one embodiment of the end effector shown in FIG. 133 .
  • FIG. 138 is a schematic diagram showing a front view of one embodiment of an end effector having first and second jaw members, wherein each jaw member has two oppositely-angled tissue-contacting surfaces.
  • FIG. 139 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position and angled tissue-contacting surfaces along a portion of the length of the jaw members.
  • FIG. 140 is another perspective view of one embodiment of the end effector shown in FIG. 139 .
  • FIG. 141 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position, angled tissue-contacting surfaces along a portion of the length of the jaw members, and electrodes positioned between the two angled tissue-contacting surfaces on the second jaw member.
  • FIG. 142 is a cross-sectional view of one embodiment of an end effector having first and second jaw members in a closed position clamping tissue between the jaw members, wherein the first and second jaw members have opposed angled tissue-contacting surfaces.
  • FIG. 143 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 64-82 illustrating an example installation of a rotary electrode assembly.
  • FIG. 144 is an exploded view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly both installed and exploded.
  • FIG. 145 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly with a rotary drive head in a proximal position.
  • FIG. 146 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly with the rotary drive head in a distal position.
  • FIGS. 147-148 are cross-sectional views of one embodiment of the end effector and shaft assembly of FIG. 143 where a longitudinal length of the outer contact is selected such that the rotary connector assembly alternately creates and breaks an electrical connection limited by the longitudinal position of the brush assembly.
  • FIGS. 149-150 illustrate one embodiment of the end effector and shaft assembly of FIG. 143 showing a configuration including lead portions and connector assembly between the end effector and the shaft assembly.
  • FIG. 151 illustrates a cross-sectional view one embodiment of an end effector and shaft assembly showing another context in which a rotary connector assembly may utilized.
  • FIG. 152 illustrates a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 83-91 illustrating another example installation of a rotary electrode assembly.
  • FIG. 153 illustrates one embodiment of an end effector that may be utilized with various surgical tools, including those described herein.
  • FIG. 154 illustrates one embodiment of the end effector of FIG. 153 showing a tissue contacting portion adjacent a longitudinal channel of the second jaw member of the end effector.
  • FIG. 155 illustrates one embodiment of the end effector of FIG. 153 showing an axial cross-section along a midline of the first jaw member showing a tissue-contacting portion disposed adjacent to a longitudinal channel of the first jaw member.
  • FIG. 156 illustrates a perspective view of one embodiment of the end effector of FIG. 153 in an open position.
  • FIG. 157 illustrates a top view of one embodiment of a second jaw member suitable for use with the end effector of FIG. 153 .
  • FIG. 158 illustrates a bottom view of one embodiment of a first jaw member suitable for use with the end effector of FIG. 153 .
  • FIG. 159 illustrates a front cross-sectional view of another embodiment of the end effector of FIG. 153 in a closed position.
  • FIGS. 160-165 illustrates side cross-sectional views of various embodiments of the end effector of FIG. 153
  • FIG. 166 illustrates another embodiment of the second jaw member suitable for use with the end effector of FIG. 153 . in a closed position holding a surgical implement.
  • FIG. 167 illustrates one embodiment of the second jaw member suitable for use with the end effector of FIG. 153 .
  • FIG. 168 illustrates another embodiment of the second jaw member suitable for use with the end effector of FIG. 153 .
  • FIG. 1 depicts a master controller 12 that is used in connection with a robotic arm slave cart 20 of the type depicted in FIG. 2 .
  • Master controller 12 and robotic arm slave cart 20 are collectively referred to herein as a robotic system 10 .
  • Examples of such systems and devices are disclosed in U.S. Pat. No. 7,524,320 which has been herein incorporated by reference. Thus, various details of such devices will not be described in detail herein beyond that which may be necessary to understand various example embodiments disclosed herein.
  • the master controller 12 generally includes master controllers (generally represented as 14 in FIG. 1 ) which are grasped by the surgeon and manipulated in space while the surgeon views the procedure via a stereo display 16 .
  • the master controllers 12 generally comprise manual input devices which preferably move with multiple degrees of freedom, and which often further have an actuatable handle for actuating tools (for example, for closing grasping jaws, applying an electrical potential to an electrode, or the like).
  • the robotic arm cart 20 is configured to actuate a plurality of surgical tools, generally designated as 30 .
  • a plurality of surgical tools generally designated as 30 .
  • the robotic arm cart 20 includes a base 22 from which, in the illustrated embodiment, three surgical tools 30 are supported.
  • the surgical tools 30 are each supported by a series of manually articulatable linkages, generally referred to as set-up joints 32 , and a robotic manipulator 34 .
  • set-up joints 32 generally referred to as set-up joints 32
  • robotic manipulator 34 robotic manipulator
  • the cart 20 generally has dimensions suitable for transporting the cart 20 between operating rooms.
  • the cart 20 is configured to typically fit through standard operating room doors and onto standard hospital elevators.
  • the cart 20 would preferably have a weight and include a wheel (or other transportation) system that allows the cart 20 to be positioned adjacent an operating table by a single attendant.
  • robotic manipulators 34 as shown include a linkage 38 that constrains movement of the surgical tool 30 .
  • Linkage 38 includes rigid links coupled together by rotational joints in a parallelogram arrangement so that the surgical tool 30 rotates around a point in space 40 , as more fully described in U.S. Pat. No. 5,817,084, the full disclosure of which is herein incorporated by reference.
  • the parallelogram arrangement constrains rotation to pivoting about an axis 40 a , sometimes called the pitch axis.
  • the links supporting the parallelogram linkage are pivotally mounted to set-up joints 32 ( FIG. 2 ) so that the surgical tool 30 further rotates about an axis 40 b , sometimes called the yaw axis.
  • the pitch and yaw axes 40 a , 40 b intersect at the remote center 42 , which is aligned along a shaft 44 of the surgical tool 30 .
  • the surgical tool 30 may have further degrees of driven freedom as supported by manipulator 50 , including sliding motion of the surgical tool 30 along the longitudinal tool axis “LT-LT”.
  • remote center 42 remains fixed relative to base 52 of manipulator 50 .
  • Linkage 54 of manipulator 50 is driven by a series of motors 56 . These motors actively move linkage 54 in response to commands from a processor of a control system. Motors 56 are also employed to manipulate the surgical tool 30 .
  • An alternative set-up joint structure is illustrated in FIG. 4 . In this embodiment, a surgical tool 30 is supported by an alternative manipulator structure 50 ′ between two tissue manipulation tools.
  • FIGS. 5-6 A surgical tool 100 that is well-adapted for use with a robotic system 10 is depicted in FIGS. 5-6 .
  • FIG. 5 illustrates an additional embodiment of the surgical tool 100 and electrosurgical end effector 3000 .
  • the surgical tool 100 includes an electrosurgical end effector 3000 .
  • the electrosurgical end effector 3000 may utilize electrical energy to treat and/or destroy tissue.
  • the electrosurgical end effector 3000 generally comprises first and second jaw members 3008 A, 3008 B which may be straight, as shown in FIGS. 6-10 , or curved as shown in various other figures described herein.
  • One or both of the jaw members 3008 A, 3008 B generally comprise various electrodes for providing electrosurgical energy to tissue.
  • the surgical tool 100 generally includes an elongate shaft assembly 200 that is operably coupled to the manipulator 50 by a tool mounting portion, generally designated as 300 .
  • Electrosurgical tools e.g., surgical tools that include an electrosurgical end effector, such at the tool 100 and end effector 3000
  • Electrosurgical tools may be used in any suitable type of surgical environment including, for example, open, laparoscopic, endoscopic, etc.
  • electrosurgical tools comprise one or more electrodes for providing electric current.
  • the electrodes may be positioned against and/or positioned relative to tissue such that electrical current can flow through the tissue.
  • the electrical current may generate heat in the tissue that, in turn, causes one or more hemostatic seals to form within the tissue and/or between tissues.
  • tissue heating caused by the electrical current may at least partially denature proteins within the tissue.
  • proteins such as collagen, for example, may be denatured into a proteinaceous amalgam that intermixes and fuses, or “welds”, together as the proteins renature. As the treated region heals over time, this biological “weld” may be reabsorbed by the body's wound healing process.
  • Electrical energy provided by electrosurgical tools may be of any suitable form including, for example, direct or alternating current.
  • the electrical energy may include high frequency alternating current such as radio frequency or “RF” energy.
  • RF energy may include energy in the range of 300 kilohertz (kHz) to 1 megahertz (MHz).
  • kHz kilohertz
  • MHz megahertz
  • RF energy may cause ionic agitation or friction, increasing the temperature of the tissue.
  • RF energy may provide a sharp boundary between affected tissue and other tissue surrounding it, allowing surgeons to operate with a high level of precision and control.
  • the low operating temperatures of RF energy enables surgeons to remove, shrink or sculpt soft tissue while simultaneously sealing blood vessels.
  • RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.
  • some bi-polar (e.g., two-electrode) electrosurgical tools can comprise opposing first and second jaw members, where the face of each jaw can comprise a current path and/or electrode.
  • the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaw members and through the tissue positioned therebetween.
  • Such tools may have to coagulate, seal or “weld” many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example.
  • Some embodiments may include a knife or cutting edge to transect the tissue, for example, during or after the application of electrosurgical energy. With particular regard to cutting and sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
  • FIG. 6 is a perspective view of one embodiment of the electrosurgical tool 100 in electrical communication with a generator 3002 .
  • the electrosurgical tool 100 in conjunction with the generator 3002 can be configured to supply energy, such as electrical energy, ultrasonic energy, and/or heat energy, for example, to the tissue of a patient.
  • the generator 3002 is connected to electrosurgical tool 100 via a suitable transmission medium such as a cable 3010 .
  • the generator 3002 is coupled to a controller, such as a control unit 3004 , for example.
  • control unit 3004 may be formed integrally with the generator 3002 or may be provided as a separate circuit module or device electrically coupled to the generator 3002 (shown in phantom to illustrate this option).
  • the generator 3002 is shown separate from the electrosurgical tool 100
  • the generator 3002 (and/or the control unit 3004 ) may be formed integrally with the electrosurgical tool 100 to form a unitary electrosurgical system.
  • a generator or equivalent circuit may be present within the tool mounting portion 300 and/or within a handle in suitable manual embodiments (as described herein).
  • the generator 3002 may comprise an input device 3006 located on a front panel of the generator 3002 console.
  • the input device 3006 may comprise any suitable device that generates signals suitable for programming the operation of the generator 3002 , such as a keyboard, or input port, for example.
  • various electrodes in the first jaw member 3008 A and the second jaw member 3008 B may be coupled to the generator 3002 .
  • a cable 3010 connecting the tool mounting portion 300 to the generator 3002 may comprise multiple electrical conductors for the application of electrical energy to positive (+) and negative ( ⁇ ) electrodes of the electrosurgical tool 100 .
  • the control unit 3004 may be used to activate the generator 3002 , which may serve as an electrical source.
  • the generator 3002 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example.
  • surgical tool 100 may comprise at least one supply conductor 3012 and at least one return conductor 3014 , wherein current can be supplied to electrosurgical tool 100 via the supply conductor 3012 and wherein the current can flow back to the generator 3002 via return conductor 3014 .
  • the supply conductor 3012 and the return conductor 3014 may comprise insulated wires and/or any other suitable type of conductor.
  • the supply conductor 3012 and the return conductor 3014 may be contained within and/or may comprise the cable 3010 extending between, or at least partially between, the generator 3002 and the end effector 3000 of the electrosurgical tool 100 .
  • the generator 3002 can be configured to apply a sufficient voltage differential between the supply conductor 3012 and the return conductor 3014 such that sufficient current can be supplied to the end effector 3000 .
  • the electrosurgical end effector 3000 may be adapted for capturing and transecting tissue and for the contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy).
  • FIG. 7 illustrates one embodiment of the electrosurgical end effector 300 with the jaw members 3008 A, 3008 B open and an axially movable member 3016 in a proximally retracted position.
  • FIG. 8 illustrates one embodiment of the electrosurgical end effector 300 with the jaw members 3008 A, 3008 B closed and the axially movable member 3016 in a partially advanced position.
  • the jaw members 3008 A, 3008 B close to thereby capture or engage tissue about a longitudinal tool axis LT-LT defined by the axially moveable member 3016 (or a distal portion thereof).
  • the first jaw member 3008 A and second jaw member 3008 B may also apply compression to the tissue.
  • the elongate shaft 200 along with first jaw member 3008 A and second jaw member 3008 B, can be rotated a full 360° degrees, as shown by arrow 3018 (see FIG. 8 ), relative to tool mounting portion 300 .
  • the first jaw member 3008 A and the second jaw member 3008 B may each comprise an elongate slot or channel 3020 A and 3020 B ( FIG. 7 ), respectively, disposed outwardly along their respective middle portions. Further, the first jaw member 3008 A and second jaw member 3008 B may each have tissue-gripping elements, such as teeth 3022 , disposed on the inner portions of first jaw member 3008 A and second jaw member 3008 B.
  • the lower jaw member 3008 B may define a jaw body with an energy delivery surface or electrode 3024 B.
  • the electrode 3024 B may be in electrical communication with the generator 3002 via the supply conductor 3012 .
  • An energy delivery surface 3024 A on the upper first jaw member 3008 may provide a return path for electrosurgical energy.
  • the energy delivery surface 3024 A may be in electrical communication with the return conductor 3014 .
  • other conductive parts of the surgical tool 100 including, for example the jaw members 3008 A, 3008 B, the shaft 200 , etc. may form all or a part of the return path.
  • Various configurations of electrodes and various configurations for coupling the energy delivery surfaces 3024 A, 3024 B to the conductors 3012 , 3014 are described herein.
  • the supply electrode 3024 B may be provided on the lower jaw member 3008 B as shown or on the upper jaw member 3008 A.
  • FIG. 9 is a perspective view of one embodiment of the axially moveable member 3016 of the surgical tool 100 .
  • the axially moveable member 3016 may comprise one or several pieces, but in any event, may be movable or translatable with respect to the elongate shaft 200 and/or the jaw members 3008 A, 3008 B. Also, in at least one embodiment, the axially moveable member 3016 may be made of 17-4 precipitation hardened stainless steel.
  • the distal end of axially moveable member 3016 may comprise a flanged “I”-beam configured to slide within the channels 3020 AA and 3020 B in jaw members 3008 A and 3008 B.
  • the axially moveable member 3016 may slide within the channels 3020 A, 3020 B to open and close first jaw member 3008 A and second jaw member 3008 B.
  • the distal end of the axially moveable member 3016 may also comprise an upper flange or “c”-shaped portion 3016 A and a lower flange or “c”-shaped portion 3016 B.
  • the flanges 3016 A and 3016 B respectively define inner cam surfaces 3026 A and 3026 B for engaging outward facing surfaces of first jaw member 3008 A and second jaw member 3008 B.
  • jaw members 3008 A and 3008 B can apply very high compressive forces on tissue using cam mechanisms which may include movable “I-beam” axially moveable member 3016 and the outward facing surfaces 3028 A, 3028 B of jaw members 3008 A, 3008 B.
  • cam mechanisms which may include movable “I-beam” axially moveable member 3016 and the outward facing surfaces 3028 A, 3028 B of jaw members 3008 A, 3008 B.
  • the inner cam surfaces 3026 A and 3026 B of the distal end of axially moveable member 3016 may be adapted to slidably engage the first outward-facing surface 3028 A and the second outward-facing surface 3028 B of the first jaw member 3008 A and the second jaw member 3008 B, respectively.
  • the channel 3020 A within first jaw member 3008 A and the channel 3020 B within the second jaw member 3008 B may be sized and configured to accommodate the movement of the axially moveable member 3016 , which may comprise a tissue-cutting element 3030 , for example, comprising a sharp distal edge.
  • the upper first jaw member 3008 A and lower second jaw member 3008 B define a gap or dimension D between the first energy delivery surface 3024 A and second energy delivery surface 3024 B of first jaw member 3008 A and second jaw member 3008 B, respectively.
  • dimension D can equal from about 0.0005′′ to about 0.040′′, for example, and in some embodiments, between about 0.001′′ to about 0.010′′, for example.
  • the edges of the first energy delivery surface 3024 A and the second energy delivery surface 3024 B may be rounded to prevent the dissection of tissue.
  • FIG. 10 is a section view of one embodiment of the end effector 3000 of the surgical tool 100 .
  • the engagement, or tissue-contacting, surface 3024 B of the lower jaw member 3008 B is adapted to deliver energy to tissue, at least in part, through a conductive-resistive matrix, such as a variable resistive positive temperature coefficient (PTC) body, as discussed in more detail below.
  • a conductive-resistive matrix such as a variable resistive positive temperature coefficient (PTC) body, as discussed in more detail below.
  • At least one of the upper and lower jaw members 3008 A, 3008 B may carry at least one electrode 3032 configured to deliver the energy from the generator 3002 to the captured tissue.
  • the engagement, or tissue-contacting, surface 3024 A of upper jaw member 3008 A may carry a similar conductive-resistive matrix (i.e., a PTC material), or in some embodiments the surface may be a conductive electrode or an insulative layer, for example.
  • the engagement surfaces of the jaw members can carry any of the energy delivery components disclosed in U.S. Pat. No. 6,773,409, filed Oct. 22, 2001, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, the entire disclosure of which is incorporated herein by reference.
  • the first energy delivery surface 3024 A and the second energy delivery surface 3024 B may each be in electrical communication with the generator 3002 .
  • the first energy delivery surface 3024 A and the second energy delivery surface 3024 B may be configured to contact tissue and deliver electrosurgical energy to captured tissue which are adapted to seal or weld the tissue.
  • the control unit 3004 regulates the electrical energy delivered by electrical generator 3002 which in turn delivers electrosurgical energy to the first energy delivery surface 3024 A and the second energy delivery surface 3024 B.
  • the energy delivery may be initiated in any suitable manner (e.g., upon actuation of the robot system 10 .
  • the electrosurgical tool 100 may be energized by the generator 3002 by way of a foot switch 3034 ( FIG. 6 ).
  • the foot switch 3034 When actuated, the foot switch 3034 triggers the generator 3002 to deliver electrical energy to the end effector 3000 , for example.
  • the control unit 3004 may regulate the power generated by the generator 3002 during activation.
  • the foot switch 3034 may be suitable in many circumstances, other suitable types of switches can be used.
  • the electrosurgical energy delivered by electrical generator 3002 and regulated, or otherwise controlled, by the control unit 3004 may comprise radio frequency (RF) energy, or other suitable forms of electrical energy.
  • RF radio frequency
  • one or both of the opposing first and second energy delivery surfaces 3024 A and 3024 B may carry variable resistive positive temperature coefficient (PTC) bodies that are in electrical communication with the generator 3002 and the control unit 3004 . Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos.
  • the generator 3002 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy.
  • ESU electrosurgery unit
  • RF radio frequency
  • the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga.
  • a surgical tool having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, adjacent to and/or in electrical communication with, the tissue to be treated such that current can flow from the active electrode, through the positive temperature coefficient (PTC) bodies and to the return electrode through the tissue.
  • PTC positive temperature coefficient
  • the electrosurgical system 150 may comprise a supply path and a return path, wherein the captured tissue being treated completes, or closes, the circuit.
  • the generator 3002 may be a monopolar RF ESU and the electrosurgical tool 100 may comprise a monopolar end effector 3000 in which one or more active electrodes are integrated.
  • the generator 3002 may require a return pad in intimate contact with the patient at a location remote from the operative site and/or other suitable return path. The return pad may be connected via a cable to the generator 3002 .
  • the clinician generally grasps tissue, supplies energy to the captured tissue to form a weld or a seal (e.g., by actuating button 214 and/or pedal 216 ), and then drives the tissue-cutting element 3030 at the distal end of the axially moveable member 3016 through the captured tissue.
  • the translation of the axial movement of the axially moveable member 3016 may be paced, or otherwise controlled, to aid in driving the axially moveable member 3016 at a suitable rate of travel. By controlling the rate of the travel, the likelihood that the captured tissue has been properly and functionally sealed prior to transection with the cutting element 3030 is increased.
  • the tool mounting portion 300 includes a tool mounting plate 304 that operably supports a plurality of (four are shown in FIG. 15 ) rotatable body portions, driven discs or elements 306 , that each include a pair of pins 308 that extend from a surface of the driven element 306 .
  • One pin 308 is closer to an axis of rotation of each driven elements 306 than the other pin 308 on the same driven element 306 , which helps to ensure positive angular alignment of the driven element 306 .
  • Interface 302 may include an adaptor portion 310 that is configured to mountingly engage a mounting plate 304 as will be further discussed below.
  • the illustrated adaptor portion 310 includes an array of electrical connecting pins 312 ( FIG.
  • interface 302 is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like in other embodiments.
  • the adapter portion 310 generally includes a tool side 314 and a holder side 316 .
  • a plurality of rotatable bodies 320 are mounted to a floating plate 318 which has a limited range of movement relative to the surrounding adaptor structure normal to the major surfaces of the adaptor 310 .
  • Axial movement of the floating plate 318 helps decouple the rotatable bodies 320 from the tool mounting portion 300 when levers or other latch formations along the sides of the tool mounting portion housing (not shown) are actuated.
  • Other embodiments may employ other mechanisms/arrangements for releasably coupling the tool mounting portion 300 to the adaptor 310 . In the embodiment of FIGS.
  • rotatable bodies 320 are resiliently mounted to floating plate 318 by resilient radial members which extend into a circumferential indentation about the rotatable bodies 320 .
  • the rotatable bodies 320 can move axially relative to plate 318 by deflection of these resilient structures.
  • tabs 322 (extending radially from the rotatable bodies 320 ) laterally engage detents on the floating plates so as to limit angular rotation of the rotatable bodies 320 about their axes.
  • This limited rotation can be used to help drivingly engage the rotatable bodies 320 with drive pins 332 of a corresponding tool holder portion 330 of the robotic system 10 , as the drive pins 332 will push the rotatable bodies 320 into the limited rotation position until the pins 332 are aligned with (and slide into) openings 334 ′.
  • Openings 334 on the tool side 314 and openings 334 ′ on the holder side 316 of rotatable bodies 320 are configured to accurately align the driven elements 306 ( FIG. 15 ) of the tool mounting portion 300 with the drive elements 336 of the tool holder 330 .
  • the openings 304 , 304 ′ are at differing distances from the axis of rotation on their respective rotatable bodies 306 so as to ensure that the alignment is not 180 degrees from its intended position.
  • each of the openings 304 may be slightly radially elongate so as to fittingly receive the pins 308 in the circumferential orientation. This allows the pins 308 to slide radially within the openings 334 , 334 ′ and accommodate some axial misalignment between the tool 100 and tool holder 330 , while minimizing any angular misalignment and backlash between the drive and driven elements.
  • Openings 334 on the tool side 314 may be offset by about 90 degrees from the openings 334 ′ (shown in broken lines) on the holder side 316 , as can be seen most clearly in FIG. 14 .
  • an array of electrical connector pins 340 are located on holder side 316 of adaptor 310 and the tool side 314 of the adaptor 310 includes slots 342 ( FIG. 14 ) for receiving a pin array (not shown) from the tool mounting portion 300 .
  • at least some of these electrical connections may be coupled to an adaptor memory device 344 ( FIG. 13 ) by a circuit board of the adaptor 310 .
  • a detachable latch arrangement 346 is employed to releasably affix the adaptor 310 to the tool holder 330 .
  • the term “tool drive assembly” when used in the context of the robotic system 10 at least encompasses the adapter 310 and tool holder 330 and which have been collectively generally designated as 110 in FIG. 11 .
  • the tool holder 330 includes a first latch pin arrangement 337 that is sized to be received in corresponding clevis slots 311 provided in the adaptor 310 .
  • the tool holder 330 further has second latch pins 338 that are sized to be retained in corresponding latch clevises 313 in the adaptor 310 . See FIG. 11 .
  • a latch assembly 315 is movably supported on the adapter 310 and has a pair of latch clevises 317 formed therein that is biasable from a first latched position wherein the latch pins 338 are retained within their respective latch clevis 313 and an unlatched position wherein the clevises 317 are aligned with clevises 313 to enable the second latch pins 338 may be inserted into or removed from the latch clevises 313 .
  • a spring or springs (not shown) are employed to bias the latch assembly into the latched position.
  • a lip on the tool side 314 of adaptor 310 slidably receives laterally extending tabs of the tool mounting housing (not shown).
  • the tool mounting portion 300 operably supports a plurality of drive systems for generating various forms of control motions necessary to operate a particular type of end effector that is coupled to the distal end of the elongate shaft assembly 200 .
  • the tool mounting portion 300 includes a first drive system generally designated as 350 that is configured to receive a corresponding “first” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that first rotary output motion to a first rotary control motion to be applied to the surgical end effector.
  • the first rotary control motion is employed to rotate the elongate shaft assembly 200 (and surgical end effector 3000 ) about a longitudinal tool axis LT-LT.
  • the first drive system 350 includes a tube gear segment 354 that is formed on (or attached to) the proximal end 208 of a proximal tube segment 202 of the elongate shaft assembly 200 .
  • the proximal end 208 of the proximal tube segment 202 is rotatably supported on the tool mounting plate 304 of the tool mounting portion 300 by a forward support cradle 352 that is mounted on the tool mounting plate 304 . See FIG. 16 .
  • the tube gear segment 354 is supported in meshing engagement with a first rotational gear assembly 360 that is operably supported on the tool mounting plate 304 . As can be seen in FIG.
  • the rotational gear assembly 360 comprises a first rotation drive gear 362 that is coupled to a corresponding first one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110 . See FIG. 15 .
  • the rotational gear assembly 360 further comprises a first rotary driven gear 364 that is rotatably supported on the tool mounting plate 304 .
  • the first rotary driven gear 364 is in meshing engagement with a second rotary driven gear 366 which, in turn, is in meshing engagement with the tube gear segment 354 .
  • Application of a first rotary output motion from the tool drive assembly 110 of the robotic system 10 to the corresponding driven element 306 will thereby cause rotation of the rotation drive gear 362 .
  • Rotation of the rotation drive gear 362 ultimately results in the rotation of the elongate shaft assembly 200 (and the surgical end effector 3000 ) about the longitudinal tool axis LT-LT (represented by arrow “R” in FIG. 5 ).
  • the application of a rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the elongate shaft assembly 200 and surgical end effector 3000 about the longitudinal tool axis LT-LT in a first rotary direction and an application of the rotary output motion in an opposite direction will result in the rotation of the elongate shaft assembly 200 and surgical end effector 3000 in a second rotary direction that is opposite to the first rotary direction.
  • the tool mounting portion 300 further includes a second drive system generally designated as 370 that is configured to receive a corresponding “second” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that second rotary output motion to a second rotary control motion for application to the surgical end effector.
  • the second drive system 370 includes a second rotation drive gear 372 that is coupled to a corresponding second one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110 . See FIG. 15 .
  • the second drive system 370 further comprises a first rotary driven gear 374 that is rotatably supported on the tool mounting plate 304 .
  • the first rotary driven gear 374 is in meshing engagement with a shaft gear 376 that is movably and non-rotatably mounted onto a proximal drive shaft segment 380 .
  • the shaft gear 376 is non-rotatably mounted onto the proximal drive shaft segment 380 by a series of axial keyways 384 that enable the shaft gear 376 to axially move on the proximal drive shaft segment 380 while being non-rotatably affixed thereto.
  • Rotation of the proximal drive shaft segment 380 results in the transmission of a second rotary control motion to the surgical end effector 3000 .
  • the second drive system 370 in the embodiment of FIGS. 5 and 16 - 21 includes a shifting system 390 for selectively axially shifting the proximal drive shaft segment 380 which moves the shaft gear 376 into and out of meshing engagement with the first rotary driven gear 374 .
  • the proximal drive shaft segment 380 is supported within a second support cradle 382 that is attached to the tool mounting plate 304 such that the proximal drive shaft segment 380 may move axially and rotate relative to the second support cradle 382 .
  • the shifting system 390 further includes a shifter yoke 392 that is slidably supported on the tool mounting plate 304 .
  • the proximal drive shaft segment 380 is supported in the shifter yoke 392 and has a pair of collars 386 thereon such that shifting of the shifter yoke 392 on the tool mounting plate 304 results in the axial movement of the proximal drive shaft segment 380 .
  • the shifting system 390 further includes a shifter solenoid 394 that operably interfaces with the shifter yoke 392 .
  • the shifter solenoid 394 receives control power from the robotic controller 12 such that when the shifter solenoid 394 is activated, the shifter yoke 392 is moved in the distal direction “DD”.
  • a shaft spring 396 is journaled on the proximal drive shaft segment 380 between the shaft gear 376 and the second support cradle 382 to bias the shaft gear 376 in the proximal direction “PD” and into meshing engagement with the first rotary driven gear 374 . See FIGS. 16 , 18 and 19 .
  • Rotation of the second rotation drive gear 372 in response to rotary output motions generated by the robotic system 10 ultimately results in the rotation of the proximal drive shaft segment 380 and other drive shaft components coupled thereto (drive shaft assembly 388 ) about the longitudinal tool axis LT-LT.
  • the robotic controller 12 activates the shifter solenoid 390 to shift the shifter yoke 392 in the distal direction “DD”.
  • the shifter solenoid 390 may be capable of shifting the proximal drive shaft segment 380 between more than two longitudinal positions.
  • some embodiments such as those described herein with respect to FIGS. 83-96 , may utilize the rotary drive shaft (e.g., coupled to the proximal drive shaft segment 380 ) in more than two longitudinal positions.
  • FIGS. 22-23 illustrate another embodiment that employs the same components of the embodiment depicted in FIGS. 5 and 16 - 21 except that this embodiment employs a battery-powered drive motor 400 for supplying rotary drive motions to the proximal drive shaft segment 380 .
  • a battery-powered drive motor 400 for supplying rotary drive motions to the proximal drive shaft segment 380 .
  • the motor 400 is attached to the tool mounting plate 304 by a support structure 402 such that a driver gear 404 that is coupled to the motor 400 is retained in meshing engagement with the shaft gear 376 .
  • the support structure 402 is configured to removably engage latch notches 303 formed in the tool mounting plate 304 that are designed to facilitate attachment of a housing member (not shown) to the mounting plate 304 when the motor 400 is not employed.
  • the clinician removes the housing from the tool mounting plate 304 and then inserts the legs 403 of the support structure into the latch notches 303 in the tool mounting plate 304 .
  • the proximal drive shaft segment 380 and the other drive shaft components attached thereto are rotated about the longitudinal tool axis LT-LT by powering the motor 400 .
  • the motor 400 is battery powered. In such arrangement, however, the motor 400 interface with the robotic controller 12 such that the robotic system 10 controls the activation of the motor 400 .
  • the motor 400 is manually actuatable by an on/off switch (not shown) mounted on the motor 400 itself or on the tool mounting portion 300 .
  • the motor 400 may receive power and control signals from the robotic system.
  • FIGS. 5 and 16 - 21 includes a manually-actuatable reversing system, generally designated as 410 , for manually applying a reverse rotary motion to the proximal drive shaft segment 380 in the event that the motor fails or power to the robotic system is lost or interrupted.
  • a manually-actuatable reversing system 410 may also be particularly useful, for example, when the drive shaft assembly 388 becomes jammed or otherwise bound in such a way that would prevent reverse rotation of the drive shaft components under the motor power alone.
  • the mechanically-actuatable reversing system 410 includes a drive gear assembly 412 that is selectively engagable with the second rotary driven gear 376 and is manually actuatable to apply a reversing rotary motion to the proximal drive shaft segment 380 .
  • the drive gear assembly 412 includes a reversing gear 414 that is movably mounted to the tool mounting plate 304 .
  • the reversing gear 414 is rotatably journaled on a pivot shaft 416 that is movably mounted to the tool mounting plate 304 through a slot 418 . See FIG. 17 .
  • the manually-actuatable reversing system 410 further includes a manually actuatable drive gear 420 that includes a body portion 422 that has an arcuate gear segment 424 formed thereon.
  • the body portion 422 is pivotally coupled to the tool mounting plate 304 for selective pivotal travel about an actuator axis A-A ( FIG. 16 ) that is substantially normal to the tool mounting plate 304 .
  • FIGS. 16-19 depict the manually-actuatable reversing system 410 in a first unactuated position.
  • an actuator handle portion 426 is formed on or otherwise attached to the body portion 422 .
  • the actuator handle portion 426 is sized relative to the tool mounting plate 304 such that a small amount of interference is established between the handle portion 426 and the tool mounting plate 304 to retain the handle portion 426 in the first unactuated position.
  • the clinician can easily overcome the interference fit by applying a pivoting motion to the handle portion 426 .
  • the arcuate gear segment 424 is brought into meshing engagement with the reversing gear 414 .
  • Continued ratcheting of the drive gear 420 results in the application of a reverse rotary drive motion to the drive shaft gear 376 and ultimately to the proximal drive shaft segment 380 .
  • the clinician may continue to ratchet the drive gear assembly 412 for as many times as are necessary to fully release or reverse the associated end effector component(s).
  • the clinician returns the drive gear 420 to the starting or unactuated position wherein the arcuate gear segment 416 is out of meshing engagement with the drive shaft gear 376 .
  • the shaft spring 396 once again biases the shaft gear 376 into meshing engagement with first rotary driven gear 374 of the second drive system 370 .
  • the clinician may input control commands to the controller or control unit of the robotic system 10 which “robotically-generates” output motions that are ultimately transferred to the various components of the second drive system 370 .
  • the terms “robotically-generates” or “robotically-generated” refer to motions that are created by powering and controlling the robotic system motors and other powered drive components. These terms are distinguishable from the terms “manually-actuatable” or “manually generated” which refer to actions taken by the clinician which result in control motions that are generated independent from those motions that are generated by powering the robotic system motors.
  • Application of robotically-generated control motions to the second drive system in a first direction results in the application of a first rotary drive motion to the drive shaft assembly 388 .
  • the drive shaft assembly 388 is rotated in a first rotary direction
  • the axially movable member 3016 is driven in the distal direction “DD” from its starting position toward its ending position in the end effector 3000 , for example, as described herein with respect to FIGS. 64-96 .
  • Application of robotically-generated control motions to the second drive system in a second direction results in the application of a second rotary drive motion to the drive shaft assembly 388 .
  • the axially movable member 3016 is driven in the proximal direction “PD” from its ending position toward its starting position in the end effector 3000 .
  • the drive shaft assembly 388 is rotated in the second rotary direction which causes a firing member (e.g., axially translatable member 3016 ) to move in the proximal direction “PD” in the end effector.
  • the drive shaft assembly that is used to fire, close and rotate the end effector can be actuated and shifted manually allowing the end effector to release and be extracted from the surgical site as well as the abdomen even in the event that the motor(s) fail, the robotic system loses power or other electronic failure occurs.
  • Actuation of the handle portion 426 results in the manual generation of actuation or control forces that are applied to the drive shaft assembly 388 ′ by the various components of the manually-actuatable reversing system 410 . If the handle portion 426 is in its unactuated state, it is biased out of actuatable engagement with the reversing gear 414 . The beginning of the actuation of the handle portion 426 shifts the bias.
  • the handle 426 is configured for repeated actuation for as many times as are necessary to fully release the axially movable member 3016 and the end effector 3000 .
  • the tool mounting portion 300 includes a third drive system 430 that is configured to receive a corresponding “third” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that third rotary output motion to a third rotary control motion.
  • the third drive system 430 includes a third drive pulley 432 that is coupled to a corresponding third one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110 . See FIG. 15 .
  • the third drive pulley 432 is configured to apply a third rotary control motion (in response to corresponding rotary output motions applied thereto by the robotic system 10 ) to a corresponding third drive cable 434 that may be used to apply various control or manipulation motions to the end effector that is operably coupled to the shaft assembly 200 .
  • the third drive cable 434 extends around a third drive spindle assembly 436 .
  • the third drive spindle assembly 436 is pivotally mounted to the tool mounting plate 304 and a third tension spring 438 is attached between the third drive spindle assembly 436 and the tool mounting plate 304 to maintain a desired amount of tension in the third drive cable 434 .
  • cable end portion 434 A of the third drive cable 434 extends around an upper portion of a pulley block 440 that is attached to the tool mounting plate 304 and cable end portion 434 B extends around a sheave pulley or standoff 442 on the pulley block 440 .
  • cable end portion 434 A and 434 B extends around a sheave pulley or standoff 442 on the pulley block 440 .
  • the tool mounting portion 300 illustrated in FIGS. 5 and 16 - 21 includes a fourth drive system 450 that is configured to receive a corresponding “fourth” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that fourth rotary output motion to a fourth rotary control motion.
  • the fourth drive system 450 includes a fourth drive pulley 452 that is coupled to a corresponding fourth one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110 . See FIG. 15 .
  • the fourth drive pulley 452 is configured to apply a fourth rotary control motion (in response to corresponding rotary output motions applied thereto by the robotic system 10 ) to a corresponding fourth drive cable 454 that may be used to apply various control or manipulation motions to the end effector that is operably coupled to the shaft assembly 200 .
  • the fourth drive cable 454 extends around a fourth drive spindle assembly 456 .
  • the fourth drive spindle assembly 456 is pivotally mounted to the tool mounting plate 304 and a fourth tension spring 458 is attached between the fourth drive spindle assembly 456 and the tool mounting plate 304 to maintain a desired amount of tension in the fourth drive cable 454 .
  • Cable end portion 454 A of the fourth drive cable 454 extends around a bottom portion of the pulley block 440 that is attached to the tool mounting plate 304 and cable end portion 454 B extends around a sheave pulley or fourth standoff 462 on the pulley block 440 . It will be appreciated that the application of a rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the fourth drive pulley 452 in a first direction and cause the cable end portions 454 A and 454 B to move in opposite directions to apply control motions to the end effector or elongate shaft assembly 200 as will be discussed in further detail below.
  • the surgical tool 100 as depicted in FIGS. 5-6 includes an articulation joint 3500 .
  • the third drive system 430 may also be referred to as a “first articulation drive system” and the fourth drive system 450 may be referred to herein as a “second articulation drive system”.
  • the third drive cable 434 may be referred to as a “first proximal articulation cable” and the fourth drive cable 454 may be referred to herein as a “second proximal articulation cable”.
  • the tool mounting portion 300 of the embodiment illustrated in FIGS. 5 and 16 - 21 includes a fifth drive system generally designated as 470 that is configured to axially displace a drive rod assembly 490 .
  • the drive rod assembly 490 includes a proximal drive rod segment 492 that extends through the proximal drive shaft segment 380 and the drive shaft assembly 388 . See FIG. 18 .
  • the fifth drive system 470 includes a movable drive yoke 472 that is slidably supported on the tool mounting plate 304 .
  • the proximal drive rod segment 492 is supported in the drive yoke 372 and has a pair of retainer balls 394 thereon such that shifting of the drive yoke 372 on the tool mounting plate 304 results in the axial movement of the proximal drive rod segment 492 .
  • the fifth drive system 370 further includes a drive solenoid 474 that operably interfaces with the drive yoke 472 .
  • the drive solenoid 474 receives control power from the robotic controller 12 .
  • the end effector 3000 includes a jaw members that are movable between open and closed positions upon application of axial closure motions to a closure system.
  • the fifth drive system 470 is employed to generate such closure motions.
  • the fifth drive system 470 may also be referred to as a “closure drive”.
  • the surgical tool 100 depicted in FIGS. 5 and 16 - 21 includes an articulation joint 3500 that cooperates with the third and fourth drive systems 430 , 450 , respectively for articulating the end effector 3000 about the longitudinal tool axis “LT”.
  • the articulation joint 3500 includes a proximal socket tube 3502 that is attached to the distal end 233 of the distal outer tube portion 231 and defines a proximal ball socket 3504 therein. See FIG. 24 .
  • a proximal ball member 3506 is movably seated within the proximal ball socket 3504 .
  • the proximal ball member 3506 has a central drive passage 3508 that enables the distal drive shaft segment 3740 to extend therethrough.
  • the proximal ball member 3506 has four articulation passages 3510 therein which facilitate the passage of distal cable segments 444 , 445 , 446 , 447 therethrough.
  • distal cable segments 444 , 445 , 446 , 447 may be directly or indirectly coupled to proximal cable end portions 434 A, 434 B, 454 A, 454 B, respectively, for example, as illustrated by FIG. 24A .
  • the articulation joint 3500 further includes an intermediate articulation tube segment 3512 that has an intermediate ball socket 3514 formed therein.
  • the intermediate ball socket 3514 is configured to movably support therein an end effector ball 3522 formed on an end effector connector tube 3520 .
  • the distal cable segments 444 , 445 , 446 , 447 extend through cable passages 3524 formed in the end effector ball 3522 and are attached thereto by lugs 3526 received within corresponding passages 3528 in the end effector ball 3522 .
  • Other attachment arrangements may be employed for attaching distal cable segments 444 , 445 , 446 , 447 to the end effector ball 3522 .
  • a unique and novel rotary support joint assembly, generally designated as 3540 is depicted in FIGS. 25 and 26 .
  • the illustrated rotary support joint assembly 3540 includes a connector portion 4012 of the end effector drive housing 4010 that is substantially cylindrical in shape.
  • a first annular race 4014 is formed in the perimeter of the cylindrically-shaped connector portion 4012 .
  • the rotary support joint assembly 3540 further comprises a distal socket portion 3530 that is formed in the end effector connector tube 3520 as shown in FIGS. 25 and 26 .
  • the distal socket portion 3530 is sized relative to the cylindrical connector portion 4012 such that the connector portion 4012 can freely rotate within the socket portion 3530 .
  • a second annular race 3532 is formed in an inner wall 3531 of the distal socket portion 3530 .
  • the rotary support joint assembly 3540 further includes a ring-like bearing 3534 .
  • the ring-like bearing 3534 comprises a plastic deformable substantially-circular ring that has a cut 3535 therein. The cut forms free ends 3536 , 3537 in the ring-like bearing 3534 .
  • the ring-like bearing 3534 has a substantially annular shape in its natural unbiased state.
  • the cylindrically shaped connector position 4012 is inserted into the distal socket portion 3530 to bring the second annular race 3532 into substantial registry with the first annular race 4014 .
  • One of the free ends 3536 , 3537 of the ring-like bearing is then inserted into the registered annular races 4014 , 3532 through the window 3533 in the distal socket portion 3530 of the end effector connector tube 3520 .
  • the window or opening 3533 has a tapered surface 3538 formed thereon. See FIG. 25 .
  • the ring-like bearing 3534 is essentially rotated into place and, because it tends to form a circle or ring, it does not tend to back out through the window 3533 once installed.
  • the end effector connector tube 3520 will be rotatably affixed to the connector portion 4012 of the end effector drive housing 4010 .
  • Such arrangement enables the end effector drive housing 4010 to rotate about the longitudinal tool axis LT-LT relative to the end effector connector tube 3520 .
  • the ring-like bearing 3534 becomes the bearing surface that the end effector drive housing 4010 then rotates on.
  • any side loading tries to deform the ring-like bearing 3534 which is supported and contained by the two interlocking races 4014 , 3532 preventing damage to the ring-like bearing 3534 .
  • Such simple and effective joint assembly employing the ring-like bearing 3534 forms a highly lubricious interface between the rotatable portions 4010 , 3530 .
  • the rotary support joint assembly 3540 may be disassembled by withdrawing the ring-like bearing member 3532 out through the window 3533 .
  • the rotary support joint assembly 3540 allows for easy assembly and manufacturing while also providing for good end effector support while facilitating rotary manipulation thereof.
  • the articulation joint 3500 facilitates articulation of the end effector 3000 about the longitudinal tool axis LT.
  • the robotic system 10 may power the third drive system 430 such that the third drive spindle assembly 436 ( FIGS. 16-18 ) is rotated in a first direction thereby drawing the proximal cable end portion 434 A and ultimately distal cable segment 444 in the proximal direction “PD” and releasing the proximal cable end portion 434 B and distal cable segment 445 to thereby cause the end effector ball 3522 to rotate within the socket 3514 .
  • the robotic system 10 may power the third drive system 430 such that the third drive spindle assembly 436 is rotated in a second direction thereby drawing the proximal cable end portion 434 B and ultimately distal cable segment 445 in the proximal direction “PD” and releasing the proximal cable end portion 434 A and distal cable segment 444 to thereby cause the end effector ball 3522 to rotate within the socket 3514 .
  • a third direction “TD” as shown in FIG.
  • the robotic system 10 may power the fourth drive system 450 such that the fourth drive spindle assembly 456 is rotated in a third direction thereby drawing the proximal cable end portion 454 A and ultimately distal cable segment 446 in the proximal direction “PD” and releasing the proximal cable end portion 454 B and distal cable segment 447 to thereby cause the end effector ball 3522 to rotate within the socket 3514 .
  • the robotic system 10 may power the fourth drive system 450 such that the fourth drive spindle assembly 456 is rotated in a fourth direction thereby drawing the proximal cable end portion 454 B and ultimately distal cable segment 447 in the proximal direction “PD” and releasing the proximal cable end portion 454 A and distal cable segment 446 to thereby cause the end effector ball 3522 to rotate within the socket 3514 .
  • FIGS. 5 and 16 - 21 employs rotary and longitudinal motions that are transmitted from the tool mounting portion 300 through the elongate shaft assembly for actuation.
  • the drive shaft assembly employed to transmit such rotary and longitudinal motions (e.g., torsion, tension and compression motions) to the end effector is relatively flexible to facilitate articulation of the end effector about the articulation joint.
  • FIGS. 27-28 illustrate an alternative drive shaft assembly 3600 that may be employed in connection with the embodiment illustrated in FIGS. 5 and 16 - 21 or in other embodiments. In the embodiment depicted in FIG.
  • the proximal drive shaft segment 380 comprises a segment of drive shaft assembly 3600 and the distal drive shaft segment 3740 similarly comprises another segment of drive shaft assembly 3600 .
  • the drive shaft assembly 3600 includes a drive tube 3602 that has a series of annular joint segments 3604 cut therein.
  • the drive tube 3602 comprises a distal portion of the proximal drive shaft segment 380 .
  • the shaft assembly 3600 as well as the shaft assemblies 3600 ′, 3600 ′′ described herein with respect to FIGS. 27-45 may be components of and/or mechanically coupled to various rotary drive shafts described herein including, for example, rotary drive shafts 680 , 1270 , 1382 , etc.
  • the drive tube 3602 comprises a hollow metal tube (stainless steel, titanium, etc.) that has a series of annular joint segments 3604 formed therein.
  • the annular joint segments 3604 comprise a plurality of loosely interlocking dovetail shapes 3606 that are, for example, cut into the drive tube 3602 by a laser and serve to facilitate flexible movement between the adjoining joint segments 3604 . See FIG. 28 .
  • Such laser cutting of a tube stock creates a flexible hollow drive tube that can be used in compression, tension and torsion.
  • Such arrangement employs a full diametric cut that is interlocked with the adjacent part via a “puzzle piece” configuration. These cuts are then duplicated along the length of the hollow drive tube in an array and are sometimes “clocked” or rotated to change the tension or torsion performance.
  • FIGS. 29-33 illustrate alternative example micro-annular joint segments 3604 ′ that comprise plurality of laser cut shapes 3606 ′ that roughly resemble loosely interlocking, opposed “T” shapes and T-shapes with a notched portion therein.
  • the annular joint segments 3604 , 3604 ′ essentially comprise multiple micro-articulating torsion joints. That is, each joint segment 3604 , 3604 ′ can transmit torque while facilitating relative articulation between each annular joint segment.
  • the joint segment 3604 D′ on the distal end 3603 of the drive tube 3602 has a distal mounting collar portion 3608 D that facilitates attachment to other drive components for actuating the end effector or portions of the quick disconnect joint, etc.
  • the joint segment 3604 P′ on the proximal end 605 of the drive tube 3602 has a proximal mounting collar portion 3608 P′ that facilitates attachment to other proximal drive components or portions of the quick disconnect joint.
  • the joint-to-joint range of motion for each particular drive shaft assembly 3600 can be increased by increasing the spacing in the laser cuts.
  • a secondary constraining member 3610 is employed.
  • the secondary constraining member 3610 comprises a spring 3612 or other helically-wound member.
  • the distal end 3614 of the spring 3612 corresponds to the distal mounting collar portion 3608 D and is wound tighter than the central portion 3616 of the spring 3612 .
  • the constraining member 3610 is installed on the drive tube 3602 with a desired pitch such that the constraining member also functions, for example, as a flexible drive thread for threadably engaging other threaded control components on the end effector and/or the control system. It will also be appreciated that the constraining member may be installed in such a manner as to have a variable pitch to accomplish the transmission of the desired rotary control motions as the drive shaft assembly is rotated. For example, the variable pitch arrangement of the constraining member may be used to enhance open/close and firing motions which would benefit from differing linear strokes from the same rotation motion.
  • the drive shaft assembly comprises a variable pitch thread on a hollow flexible drive shaft that can be pushed and pulled around a ninety degree bend.
  • the secondary constraining member comprises an elastomeric tube or coating 3611 applied around the exterior or perimeter of the drive tube 3602 as illustrated in FIG. 33A .
  • the elastomeric tube or coating 3611 ′ is installed in the hollow passageway 613 formed within the drive tube 3602 as shown in FIG. 33B .
  • Such drive shaft arrangements comprise a composite torsional drive axle which allows superior load transmission while facilitating a desirable axial range of articulation. See, e.g., FIGS. 33 and 33 A- 33 B. That is, these composite drive shaft assemblies allow a large range of motion while maintaining the ability to transmit torsion in both directions as well as facilitating the transmission of tension and compression control motions therethrough.
  • the hollow nature of such drive shaft arrangements facilitate passage of other control components therethrough while affording improved tension loading.
  • some other embodiments include a flexible internal cable that extends through the drive shaft assembly which can assist in the alignment of the joint segments while facilitating the ability to apply tension motions through the drive shaft assembly.
  • such drive shaft arrangements are relatively easily to manufacture and assemble.
  • FIGS. 34-37 depict a segment 3620 of a drive shaft assembly 3600 ′.
  • This embodiment includes joint segments 3622 , 3624 that are laser cut out of tube stock material (e.g., stainless steel, titanium, polymer, etc.).
  • the joint segments 3622 , 3624 remain loosely attached together because the cuts 3626 are radial and are somewhat tapered.
  • each of the lug portions 3628 has a tapered outer perimeter portion 3629 that is received within a socket 3630 that has a tapered inner wall portion. See, e.g., FIGS. 35 and 37 .
  • joint segment 3622 has opposing pivot lug portions 3628 cut on each end thereof that are pivotally received in corresponding sockets 3630 formed in adjacent joint segments 3624 .
  • FIGS. 34-37 illustrate a small segment of the drive shaft assembly 3600 ′.
  • the lugs/sockets may be cut throughout the entire length of the drive shaft assembly. That is, the joint segments 3624 may have opposing sockets 3630 cut therein to facilitate linkage with adjoining joint segments 3622 to complete the length of the drive shaft assembly 3600 ′.
  • the joint segments 3624 have an angled end portion 3632 cut therein to facilitate articulation of the joint segments 3624 relative to the joint segments 3622 as illustrated in FIGS. 36-37 .
  • each lug 3628 has an articulation stop portion 3634 that is adapted to contact a corresponding articulation stop 3636 formed in the joint segment 3622 . See FIGS. 36-37 .
  • Other embodiments, which may otherwise be identical to the segment 3620 are not provided with the articulation stop portions 3634 and stops 3636 .
  • the joint-to-joint range of motion for each particular drive shaft assembly can be increased by increasing the spacing in the laser cuts.
  • a secondary constraining member in the form of an elastomeric sleeve or coating 3640 is employed.
  • Other embodiments employ other forms of constraining members disclosed herein and their equivalent structures.
  • the joint segments 3622 , 3624 are capable of pivoting about pivot axes “PA-PA” defined by the pivot lugs 3628 and corresponding sockets 3630 .
  • the drive shaft assembly 3600 ′ may be rotated about the tool axis TL-TL while pivoting about the pivot axes PA-PA.
  • FIGS. 38-43 depict a segment 3640 of another drive shaft assembly 3600 ′′.
  • the drive shaft assembly 3600 ′′ comprises a multi-segment drive system that includes a plurality of interconnected joint segments 3642 that form a flexible hollow drive tube 3602 ′′.
  • a joint segment 3642 includes a ball connector portion 3644 and a socket portion 3648 .
  • Each joint segment 3642 may be fabricated by, for example, metal injection molding “MIM” and be fabricated from 17-4, 17-7, 420 stainless steel. Other embodiments may be machined from 300 or 400 series stainless steel, 6065 or 7071 aluminum or titanium. Still other embodiments could be molded out of plastic infilled or unfilled Nylon, Ultem, ABS, Polycarbonate or Polyethylene, for example.
  • the ball connector 3644 is hexagonal in shape. That is, the ball connector 3644 has six arcuate surfaces 3646 formed thereon and is adapted to be rotatably received in like-shaped sockets 3650 .
  • Each socket 3650 has a hexagonally-shaped outer portion 3652 formed from six flat surfaces 3654 and a radially-shaped inner portion 3656 . See FIG. 41 .
  • Each joint segment 3642 is identical in construction, except that the socket portions of the last joint segments forming the distal and proximal ends of the drive shaft assembly 3600 may be configured to operably mate with corresponding control components.
  • Each ball connector 3644 has a hollow passage 3645 therein that cooperate to form a hollow passageway 3603 through the hollow flexible drive tube 3602 ′′.
  • the interconnected joint segments 3642 are contained within a constraining member 3660 which comprises a tube or sleeve fabricated from a flexible polymer material, for example.
  • FIG. 44 illustrates a flexible inner core member 3662 extending through the interconnected joint segments 3642 .
  • the inner core member 3662 comprises a solid member fabricated from a polymer material or a hollow tube or sleeve fabricated from a flexible polymer material.
  • FIG. 45 illustrates another embodiment wherein a constraining member 3660 and an inner core member 3662 are both employed.
  • Drive shaft assembly 3600 ′′ facilitates transmission of rotational and translational motion through a variable radius articulation joint.
  • the hollow nature of the drive shaft assembly 3600 ′′ provides room for additional control components or a tensile element (e.g., a flexible cable) to facilitate tensile and compressive load transmission.
  • the joint segments 3624 do not afford a hollow passage through the drive shaft assembly.
  • the ball connector portion is solid.
  • Rotary motion is translated via the edges of the hexagonal surfaces. Tighter tolerances may allow greater load capacity.
  • Using a cable or other tensile element through the centerline of the drive shaft assembly 3600 ′′ the entire drive shaft assembly 3600 ′′ can be rotated bent, pushed and pulled without limiting range of motion.
  • the drive shaft assembly 3600 ′′ may form an arcuate drive path, a straight drive path, a serpentine drive path, etc.
  • FIGS. 46-47 depict a handheld surgical tool 2400 that may employ various components and systems described above to operably actuate an electrosurgical end effector 3000 coupled thereto.
  • the handheld surgical tool 2400 may contain and/or be electrically connected to a generator, such as the generator 3002 , for generating an electrosurgical drive signal to drive the end effector 300 .
  • a generator such as the generator 3002
  • a quick disconnect joint 2210 is employed to couple the end effector 3000 to an elongate shaft assembly 2402 .
  • the quick disconnect joint 2210 may operate to remove the end effector 3000 in the manner described herein with reference to FIGS. 106-115 .
  • the proximal portion of the elongate shaft assembly 2402 includes an example manually actuatable articulation drive 2410 .
  • the articulation drive 2410 includes four axially movable articulation slides that are movably journaled on the proximal drive shaft segment 380 ′ between the proximal outer tube segment 2214 and the proximal drive shaft segment 380 ′.
  • the articulation cable segment 434 A′ is attached to a first articulation slide 2420 that has a first articulation actuator rod 2422 protruding therefrom.
  • Articulation cable segment 434 B′ is attached to a second articulation slide 2430 that is diametrically opposite from the first articulation slide 2420 .
  • the second articulation slide 2430 has a second articulation actuator rod 2432 protruding therefrom.
  • Articulation cable segment 454 A′ is attached to a third articulation slide 2440 that has a third articulation actuator rod 2442 protruding therefrom.
  • Articulation cable segment 454 B′ is attached to a fourth articulation slide 2450 that is diametrically opposite to the third articulation slide 2440 .
  • a fourth articulation actuator rod 2452 protrudes from the fourth articulation slide 2450 .
  • Articulation actuator rods 2422 , 2432 , 2442 , 2452 facilitate the application of articulation control motions to the articulation slides 2420 , 2430 , 2440 , 2450 , respectively by an articulation ring assembly 2460 .
  • the articulation actuator rods 2422 , 2432 , 2442 , 2452 movably pass through a mounting ball 2470 that is journaled on a proximal outer tube segment 2404 .
  • the mounting ball 2470 may be manufactured in segments that are attached together by appropriate fastener arrangements (e.g., welding, adhesive, screws, etc.).
  • the articulation actuator rods 2422 and 2432 extend through slots 2472 in the proximal outer tube segment 2404 and slots 2474 in the mounting ball 2470 to enable the articulation slides 2420 , 2430 to axially move relative thereto.
  • the articulation actuator rods 2442 , 2452 extend through similar slots 2472 , 2474 in the proximal outer tube segment 2404 and the mounting ball 2470 .
  • Each of the articulation actuator rods 2422 , 2432 , 2442 , 2452 protrude out of the corresponding slots 2474 in the mounting ball 2470 to be operably received within corresponding mounting sockets 2466 in the articulation ring assembly 2460 . See FIG. 49 .
  • the articulation ring assembly 2460 is fabricated from a pair of ring segments 2480 , 2490 that are joined together by, for example, welding, adhesive, snap features, screws, etc. to form the articulation ring assembly 2460 .
  • the ring segments 2480 , 2490 cooperate to form the mounting sockets 2466 .
  • Each of the articulation actuator rods has a mounting ball 2468 formed thereon that are each adapted to be movably received within a corresponding mounting socket 2466 in the articulation ring assembly 2460 .
  • the articulation drive 2410 may further include an example locking system 2486 configured to retain the articulation ring assembly 2460 in an actuated position.
  • the locking system 2486 comprises a plurality of locking flaps formed on the articulation ring assembly 2460 .
  • the ring segments 2480 , 2490 may be fabricated from a somewhat flexible polymer or rubber material.
  • Ring segment 2480 has a series of flexible proximal locking flaps 2488 formed therein and ring segment 2490 has a series of flexible distal locking flaps 2498 formed therein.
  • Each locking flap 2388 has at least one locking detent 2389 formed thereon and each locking flap 2398 has at least one locking detent 2399 thereon.
  • Locking detents 2389 , 2399 may serve to establish a desired amount of locking friction with the articulation ball so as to retain the articulation ball in position.
  • the locking detents 2389 , 2390 are configured to matingly engage various locking dimples formed in the outer perimeter of the mounting ball 2470 .
  • FIG. 49 illustrates the articulation drive 2410 in an unarticulated position.
  • the clinician has manually tilted the articulation ring assembly 2460 to cause the articulation slide 2420 to move axially in the distal direction “DD” thereby advancing the articulation cable segment 434 A′ distally.
  • Such movement of the articulation ring assembly 2460 also results in the axial movement of the articulation slide 2430 in the proximal direction which ultimately pulls the articulation cable 434 B in the proximal direction.
  • Such pushing and pulling of the articulation cable segments 434 A′, 434 B′ will result in articulation of the end effector 3000 relative to the longitudinal tool axis “LT-LT” in the manner described above.
  • the clinician simply reverses the orientation of the articulation ring assembly 2460 to thereby cause the articulation slide 2430 to move in the distal direction “DD” and the articulation slide 2420 to move in the proximal direction “PD”.
  • the articulation ring assembly 2460 may be similarly actuated to apply desired pushing and pulling motions to the articulation cable segments 454 A′, 454 B′.
  • the friction created between the locking detents 2389 , 2399 and the outer perimeter of the mounting ball serves to retain the articulation drive 2410 in position after the end effector 3000 has been articulated to the desired position.
  • the locking detents 2389 , 2399 when the locking detents 2389 , 2399 are positioned so as to be received in corresponding locking dimples in the mounting ball, the mounting ball will be retained in position.
  • the elongate shaft assembly 2402 operably interfaces with a handle assembly 2500 .
  • An example embodiment of handle assembly 2500 comprises a pair of handle housing segments 2502 , 2504 that are coupled together to form a housing for various drive components and systems as will be discussed in further detail below. See, e.g., FIG. 46 .
  • the handle housing segments 2502 , 2504 may be coupled together by screws, snap features, adhesive, etc. When coupled together, the handle segments 2502 , 2504 may form a handle assembly 2500 that includes a pistol grip portion 2506 .
  • the elongate shaft assembly 2402 may interface with a first drive system, generally designated as 2510 .
  • the drive system 2510 includes a manually-actuatable rotation nozzle 2512 that is rotatably supported on the handle assembly 2500 such that it can be rotated relative thereto as well as be axially moved between a locked position and an unlocked position.
  • the surgical tool 2400 may include a closure system 3670 .
  • the closure system 3670 may be used in some embodiments to bring about distal and proximal motion in the elongate shaft assembly 2402 and end effector 3000 .
  • the closure system 3670 may drive an axially movable member such as 3016 .
  • the closure system 3670 may be used to translate the axially movable member 3016 instead of the various rotary drive shafts described herein with respect to FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • the closure system 3670 is actuated by a closure trigger 2530 that is pivotally mounted to the handle frame assembly 2520 that is supported within the handle housing segments 2502 , 2504 .
  • the closure trigger 2530 includes an actuation portion 2532 that is pivotally mounted on a pivot pin 2531 that is supported within the handle frame assembly 2520 . See FIG. 51 .
  • Such example arrangement facilitates pivotal travel toward and away from the pistol grip portion 2506 of the handle assembly 2500 .
  • the closure trigger 2530 includes a closure link 2534 that is linked to the first pivot link and gear assembly 3695 by a closure wire 2535 .
  • closure link 2534 and closure wire 2535 causes the first pivot link and gear assembly 3695 to move in the distal direction “DD” to cause distal motion through the shaft and, in some embodiments, to the end effector.
  • the surgical tool 2400 may further include a closure trigger locking system 2536 to retain the closure trigger in the actuated position.
  • the closure trigger locking system 2536 includes a closure lock member 2538 that is pivotally coupled to the handle frame assembly 2520 .
  • the closure lock member 2538 has a lock arm 2539 formed thereon that is configured to ride upon an arcuate portion 2537 of the closure link 2532 as the closure trigger 2530 is actuated toward the pistol grip portion 2506 .
  • the lock arm 2539 drops behind the end of the closure link 2532 and prevents the closure trigger 2530 from returning to its unactuated position.
  • the distal motion translated through the shaft assembly to the end effector may be locked.
  • the clinician simply pivots the closure lock member 2538 until the lock arm 2539 thereof disengages the end of the closure link 2532 to thereby permit the closure link 2532 to move to the unactuated position.
  • the closure trigger 2532 is returned to the unactuated position by a closure return system 2540 .
  • the closure trigger return system 2540 includes a closure trigger slide member 2542 that is linked to the closure link 2534 by a closure trigger yoke 2544 .
  • the closure trigger slide member 2542 is slidably supported within a slide cavity 2522 in the handle frame assembly 2520 .
  • a closure trigger return spring 2546 is positioned within the slide cavity 2520 to apply a biasing force to the closure trigger slide member 2542 .
  • the closure trigger yoke 2544 moves the closure trigger slide member 2542 in the distal direction “DD” compressing the closure trigger return spring 2546 .
  • closure trigger locking system 2536 When the closure trigger locking system 2536 is disengaged and the closure trigger is released 2530 , the closure trigger return spring 2546 moves the closure trigger slide member 2542 in the proximal direction “PD” to thereby pivot the closure trigger 2530 into the starting unactuated position.
  • the surgical tool 2400 can also employ any of the various example drive shaft assemblies described above.
  • the surgical tool 2400 employs a second drive system 2550 for applying rotary control motions to a proximal drive shaft assembly 380 ′. See FIG. 55 .
  • the second drive system 2550 may include a motor assembly 2552 that is operably supported in the pistol grip portion 2506 .
  • the motor assembly 2552 may be powered by a battery pack 2554 that is removably attached to the handle assembly 2500 or it may be powered by a source of alternating current.
  • a second drive gear 2556 is operably coupled to the drive shaft 2555 of the motor assembly 2552 .
  • the second drive gear 2556 is supported for meshing engagement with a second rotary driven gear 2558 that is attached to the proximal drive shaft segment 380 ′ of the drive shaft assembly.
  • the second drive gear 2556 is also axially movable on the motor drive shaft 2555 relative to the motor assembly 2552 in the directions represented by arrow “U” in FIG. 55 .
  • a biasing member e.g., a coil spring 2560 or similar member, is positioned between the second drive gear 2556 and the motor housing 2553 and serves to bias the second drive gear 2556 on the motor drive shaft 2555 into meshing engagement with a first gear segment 2559 on the second driven gear 2558 .
  • the second drive system 2550 may further include a firing trigger assembly 2570 that is movably, e.g., pivotally attached to the handle frame assembly 2520 .
  • the firing trigger assembly 2570 includes a first rotary drive trigger 2572 that cooperates with a corresponding switch/contact (not shown) that electrically communicates with the motor assembly 2552 and which, upon activation, causes the motor assembly 2552 to apply a first rotary drive motion to the second driven gear 2558 .
  • the firing trigger assembly 2570 further includes a retraction drive trigger 2574 that is pivotal relative to the first rotary drive trigger.
  • the retraction drive trigger 2574 operably interfaces with a switch/contact (not shown) that is in electrical communication with the motor assembly 2552 and which, upon activation, causes the motor assembly 2552 to apply a second rotary drive motion to the second driven gear 2558 .
  • the first rotary drive motion results in the rotation of the drive shaft assembly and the implement drive shaft in the end effector to cause the firing member to move distally in the end effector 3000 .
  • the second rotary drive motion is opposite to the first rotary drive motion and will ultimately result in rotation of the drive shaft assembly and the implement drive shaft in a rotary direction which results in the proximal movement or retraction of the firing member in the end effector 3000 .
  • the illustrated embodiment also includes a manually actuatable safety member 2580 that is pivotally attached to the closure trigger actuation portion 2532 and is selectively pivotable between a first “safe” position wherein the safety member 2580 physically prevents pivotal travel of the firing trigger assembly 2570 and a second “off” position, wherein the clinician can freely pivot the firing trigger assembly 2570 .
  • a first dimple 2582 is provided in the closure trigger actuation portion 2532 that corresponds to the first position of the safety member 2580 .
  • a detent (not shown) on the safety member 2580 is received within the first dimple 2582 .
  • a second dimple 2584 is also provided in the closure trigger actuation portion 2532 that corresponds to the second position of the safety member 2580 .
  • the detent on the safety member 2580 is received within the second dimple 2582 .
  • the surgical tool 2400 may include a mechanically actuatable reversing system, generally designated as 2590 , for mechanically applying a reverse rotary motion to the proximal drive shaft segment 380 ′ in the event that the motor assembly 2552 fails or battery power is lost or interrupted.
  • a mechanically actuatable reversing system 2590 may also be particularly useful, for example, when the drive shaft system components operably coupled to the proximal drive shaft segment 380 ′ become jammed or otherwise bound in such a way that would prevent reverse rotation of the drive shaft components under the motor power alone.
  • the mechanically actuatable reversing system 2590 includes a reversing gear 2592 that is rotatably mounted on a shaft 2524 A formed on the handle frame assembly 2520 in meshing engagement with a second gear segment 2562 on the second driven gear 2558 . See FIG. 53 .
  • the reversing gear 2592 freely rotates on shaft 2524 A when the second driven gear 2558 rotates the proximal drive shaft segment 380 ′ of the drive shaft assembly.
  • the mechanical reversing system 2590 further includes a manually actuatable driver 2594 in the form of a lever arm 2596 .
  • the lever arm 2596 includes a yoke portion 2597 that has elongate slots 2598 therethrough.
  • the shaft 2524 A extends through slot 2598 A and a second opposing shaft 2598 B formed on the handle housing assembly 2520 extends through the other elongate slot to movably affix the lever arm 2596 thereto.
  • the lever arm 2596 has an actuator fin 2597 formed thereon that can meshingly engage the reversing gear 2592 .
  • Various example embodiments of the mechanical reversing system 2590 further includes a knife retractor button 2600 that is movably journaled in the handle frame assembly 2520 . As can be seen in FIGS. 56 and 57 , the knife retractor button 2600 includes a disengagement flap 2602 that is configured to engage the top of the second drive gear 2556 . The knife retractor button 2600 is biased to a disengaged position by a knife retractor spring 2604 .
  • the disengagement flap 2602 When in the disengaged position, the disengagement flap 2602 is biased out of engagement with the second drive gear 2556 .
  • the clinician desires to activate the mechanical reversing system 2590 by depressing the knife retractor button 2600 , the second drive gear 2556 is in meshing engagement with the first gear segment 2559 of the second driven gear 2558 .
  • the clinician When the clinician desires to apply a reverse rotary drive motion to the proximal drive shaft segment 380 ′, the clinician depresses the knife retractor button 2600 to disengage the first gear segment 2559 on the second driven gear 2558 from the second drive gear 2556 . Thereafter, the clinician begins to apply a pivotal ratcheting motion to the manually actuatable driver 2594 which causes the gear fin 2597 thereon to drive the reversing gear 2592 . The reversing gear 2592 is in meshing engagement with the second gear segment 2562 on the second driven gear 2558 .
  • the surgical tool 2400 can also be employed with an electrosurgical end effector comprising various rotary drive components that are driven differently with a rotary drive shaft at different axial positions. Examples of such end effectors and drive mechanisms are described herein with respect to FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • the surgical tool 2400 may employ a shifting system 2610 for selectively axially shifting the proximal drive shaft segment 380 ′ which moves the shaft gear 376 into and out of meshing engagement with the first rotary driven gear 374 .
  • the proximal drive shaft segment 380 ′ is movably supported within the handle frame assembly 2520 such that the proximal drive shaft segment 380 ′ may move axially and rotate therein.
  • the shifting system 2610 further includes a shifter yoke 2612 that is slidably supported by the handle frame assembly 2520 . See FIGS. 51 and 54 .
  • the proximal drive shaft segment 380 ′ has a pair of collars 386 (shown in FIGS. 51 and 55 ) thereon such that shifting of the shifter yoke 2612 on the handle frame assembly 2520 results in the axial movement of the proximal drive shaft segment 380 ′.
  • the shifting system 2610 further includes a shifter button assembly 2614 operably interfaces with the shifter yoke 2612 and extends through a slot 2505 in the handle housing segment 2504 of the handle assembly 2500 . See FIGS.
  • a shifter spring 2616 is mounted with the handle frame assembly 2520 such that it engages the proximal drive shaft segment 380 ′. See FIGS. 54 and 61 .
  • the spring 2616 serves to provide the clinician with an audible click and tactile feedback as the shifter button assembly 2614 is slidably positioned between the first axial position depicted in FIG. 62 wherein rotation of the drive shaft assembly results in rotation of the end effector 3000 about the longitudinal tool axis “LT-LT” relative to the articulation joint 3500 (illustrated in FIG. 67 ) and the second axial position depicted in FIG. 63 wherein rotation of the drive shaft assembly results in the axial movement of the firing member in the end effector (illustrated in FIG.
  • the shifter button assembly 2500 may have more than two axial positions, corresponding to more than two desired axial positions of the rotary drive shaft. Examples of such surgical tools are provided herein in conjunction with FIGS. 83-91 and 92 - 96 .
  • a multi-axis articulating and rotating surgical tool 600 comprises an end effector 550 comprising a first jaw member 602 A and a second jaw member 602 B.
  • the first jaw member 602 A is movable relative to the second jaw member 602 B between an open position ( FIGS. 64 , 66 - 69 , 71 ) and a closed position ( FIGS. 70 and 72 ) to clamp tissue between the first jaw member 602 A and the second jaw member 602 B.
  • the surgical tool 600 is configured to independently articulate about an articulation joint 640 in a vertical direction (labeled direction V in FIGS. 64 and 66 - 72 ) and a horizontal direction (labeled direction H in FIGS.
  • the surgical tool 600 is configured to independently rotate about a head rotation joint 645 in a longitudinal direction (labeled direction H in FIGS. 64 and 66 - 72 ).
  • the end effector 550 comprises an I-beam member 620 and a jaw assembly 555 comprising the first jaw member 602 A, the second jaw member 602 B, a proximal portion 603 of the second jaw member 602 B, and a rotary drive nut 606 seated in the proximal portion 603 .
  • the I-beam member 620 and jaw assembly 555 may operate in a manner described herein and similar to that described above with respect to the axially movable member 3016 and jaw members 3008 A, 3008 B described herein above.
  • the end effector 550 is coupled to a shaft assembly 560 comprising an end effector drive housing 608 , an end effector connector tube 610 , an intermediate articulation tube segment 616 , and a distal outer tube portion 642 .
  • the end effector 550 and the shaft assembly 560 together comprise the surgical tool 600 .
  • the end effector 550 may be removably coupled to the end effector drive housing 608 using a mechanism as described, for example, in connection with FIGS. 106-115 .
  • the end effector connector tube 610 comprises a cylindrical portion 612 and a ball member 614 .
  • the end effector drive housing 608 is coupled to the cylindrical portion 612 of the end effector connector tube 610 through the head rotation joint 645 .
  • the end effector 550 and the end effector drive housing 608 together comprise a head portion 556 of the surgical tool 600 .
  • the head portion 556 of the surgical tool 600 is independently rotatable about the head rotation joint 645 , as described in greater detail
  • the intermediate articulation tube segment 616 comprises a ball member 618 and a ball socket 619 .
  • the end effector connector tube 610 is coupled to the intermediate articulation tube segment 616 through a ball-and-socket joint formed by the mutual engagement of the ball member 614 of the end effector connector tube 610 and the ball socket 619 of the intermediate articulation tube segment 616 .
  • the intermediate articulation tube segment 616 is coupled to the distal outer tube portion 642 through a ball-and-socket joint formed by the mutual engagement of the ball member 618 of the intermediate articulation tube segment 616 and a ball socket of the distal outer tube portion 642 .
  • the articulation joint 640 comprises the end effector connector tube 610 , the intermediate articulation tube segment 616 , and the distal outer tube portion 642 .
  • the independent vertical articulation and/or horizontal articulation of the surgical tool 600 about the articulation joint 640 may be actuated, for example, using independently actuatable cable segments, such as 444 , 445 , 446 , 447 described herein above, connected to the ball member 614 of the end effector connector tube 610 .
  • This independent articulation functionality is described, for example, in connection with FIGS. 24 , 24 A and 25 .
  • Robotic and hand-held apparatuses for allowing a clinician to initiate articulation functionality are described, for example, in connection with FIGS. 6 , 16 - 21 and 46 - 50 .
  • the movement of the first jaw member 602 A relative to the second jaw member 602 B between an open position ( FIGS. 64 , 66 - 69 , and 71 ) and a closed position ( FIGS. 70 and 72 ) may be actuated with a suitable closure actuation mechanism.
  • closure of the jaw assembly 555 may be actuated by translation of the I-beam member 620 .
  • the I-beam member 620 comprises a first I-beam flange 622 A and a second I-beam flange 622 B.
  • the first I-beam flange 622 A and the second I-beam flange 622 B are connected with an intermediate portion 624 .
  • the intermediate portion 624 of the I-beam member 620 comprises a cutting member 625 , which is configured to transect tissue clamped between the first jaw member 602 A and the second jaw member 602 B when the jaw assembly 555 is in a closed position.
  • the I-beam member 620 is configured to translate within a first channel 601 A in the first jaw member 602 A and within a second channel 601 B in the second jaw member 602 B.
  • the first channel 601 A comprises a first channel flange 605 A
  • the second channel 601 B comprises a second channel flange 605 B.
  • the first I-beam flange 622 A can define a first cam surface 626 A
  • the second I-beam flange 622 B can define a second cam surface 626 B.
  • the first and second cam surfaces 626 A and 626 B can slidably engage outwardly-facing opposed surfaces of the first and second channel flanges 605 A and 605 B, respectively.
  • first cam surface 626 A can comprise a suitable profile configured to slidably engage the opposed surface of the first channel flange 605 A of the first jaw member 602 A and, similarly, the second cam surface 626 B can comprise a suitable profile configured to slidably engage the opposed surface of the second channel flange 605 B of the second jaw member 602 B, such that, as the I-beam member 620 is advanced distally, the cam surfaces 626 A and 626 B can co-operate to cam first jaw member 602 A toward second jaw member 602 B and move the jaw assembly 555 from an open position to a closed position as indicated by arrow 629 in FIG. 74 .
  • FIG. 73 shows the I-beam member 620 in a fully proximal position and the jaw assembly 555 in an open position.
  • the first cam surface 626 A is engaging a proximal portion of an arcuate-shaped anvil surface 628 , which mechanically holds the first jaw member 602 A open relative to the second jaw member 602 B ( FIGS. 69 and 71 ).
  • first cam surface 626 A results in sliding engagement of the first cam surface 626 A with the length of the arcuate-shaped anvil surface 628 , which cams first jaw member 602 A toward second jaw member 602 B until the first cam surface 626 A is engaging a distal portion of the arcuate-shaped anvil surface 628 .
  • the first cam surface 626 A engages a distal portion of the arcuate-shaped anvil surface 628 and the jaw assembly is in the closed position ( FIG. 74 ).
  • the I-beam member 620 can be further translated distally in order to transect tissue clamped between the first jaw member 602 A and the second jaw member 602 B when in the closed position.
  • the first and second cam surfaces 626 A and 626 B of the first and second I-beam flanges 622 A and 622 B slidably engage the opposed surfaces of the first and second channel flanges 605 A and 605 B, respectively.
  • the I-beam member is advanced distally through the first and second channels 601 A and 601 B of the first and second jaw members 602 A and 602 B.
  • the distal, or leading, end of the I-beam member 620 comprises a cutting member 625 , which may be a sharp edge or blade configured to cut through clamped tissue during a distal translation stroke of the I-beam member, thereby transecting the tissue.
  • FIGS. 72 and 70 show the I-beam member 620 in a fully distal position after a distal translation stroke. After a distal translation stroke, the I-beam member 620 may be proximally refracted back to the longitudinal position shown in FIG. 74 in which the jaw assembly remains closed, clamping any transected tissue between the first jaw member 602 A and the second jaw member 602 B. Further retraction of the I-beam member to the fully proximal position ( FIGS.
  • electrodes located in the first and/or second jaw members 602 A and 602 B in order to weld/fuse the tissue, as described in greater detail in this specification.
  • electrodes may be configured to deliver RF energy to tissue clamped between the first jaw member 602 A and the second jaw member 602 B when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 620 between a proximally retracted position ( FIGS. 64 , 66 - 69 , 71 , and 73 ), an intermediate position ( FIG. 74 ), and a distally advanced position ( FIGS. 70 and 72 ) may be accomplished with a suitable translation actuation mechanism.
  • the I-beam member 620 is connected to a threaded rotary drive member 604 .
  • a threaded rotary drive nut 606 is threaded onto the threaded rotary drive member 604 .
  • the threaded rotary drive nut 606 is seated in the proximal portion 603 of the second jaw member 602 B.
  • the threaded rotary drive nut 606 is mechanically constrained from translation in any direction, but the threaded rotary drive nut 606 is rotatable within the proximal portion 603 of the second jaw member 602 B. Therefore, given the threaded engagement of the rotary drive nut 606 and the threaded rotary drive member 604 , rotational motion of the rotary drive nut 606 is transformed into translational motion of the threaded rotary drive member 604 in the longitudinal direction and, in turn, into translational motion of the I-beam member 620 in the longitudinal direction.
  • the threaded rotary drive member 604 is threaded through the rotary drive nut 606 and is located inside a lumen of a rotary drive shaft 630 .
  • the threaded rotary drive member 604 is not attached or connected to the rotary drive shaft 630 .
  • the threaded rotary drive member 604 is freely movable within the lumen of the rotary drive shaft 630 and will translate within the lumen of the rotary drive shaft 630 when driven by rotation of the rotary drive nut 606 .
  • the rotary drive shaft 630 comprising the threaded rotary drive member 604 located within the lumen of the rotary drive shaft 630 forms a concentric rotary drive shaft/screw assembly that is located in the lumen of the shaft assembly 560 .
  • the end effector drive housing 608 , the end effector connector tube 610 , and the intermediate articulation tube segment 616 which together comprise the shaft assembly 560 , have open lumens and, therefore, the shaft assembly has a lumen, as shown in FIGS. 66-68 .
  • the concentric rotary drive shaft/threaded rotary drive member assembly is located within the lumen of the shaft assembly 560 and passes through the end effector drive housing 608 , the end effector connector tube 610 , and the intermediate articulation tube segment 616 .
  • the rotary drive shaft 630 passes through a lumen of the distal outer tube portion 642 and is operably coupled to a driving mechanism that provides rotational and axial translational motion to the rotary drive shaft 630 .
  • the surgical tool 600 may be operably coupled through the shaft assembly 560 to a robotic surgical system that provides rotational motion and axial translational motion to the rotary drive shaft 630 , such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16 - 21 .
  • the rotary drive shaft 630 may be operably coupled, through the shaft assembly 560 , to the proximal drive shaft segment 380 described herein above.
  • the surgical tool 600 may be utilized in conjunction with a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63 .
  • the rotary drive shaft 630 may be operably coupled, though the shaft assembly 560 , to the proximal drive shaft segment 380 ′ described herein above.
  • the rotary drive shaft 630 comprises a rotary drive head 632 .
  • the rotary drive head 632 comprises a female hex coupling portion 634 on the distal side of the rotary drive head 632
  • the rotary drive head 632 comprises a male hex coupling portion 636 on the proximal side of the rotary drive head 632 .
  • the distal female hex coupling portion 634 of the rotary drive head 632 is configured to mechanically engage with a male hex coupling portion 607 of the rotary drive nut 606 located on the proximal side of the rotary drive nut 606 .
  • the proximal male hex coupling portion 636 of the rotary drive head 632 is configured to mechanically engage with a female hex shaft coupling portion 609 of the end effector drive housing 608 .
  • the rotary drive shaft 630 is shown in a fully distal axial position in which the female hex coupling portion 634 of the rotary drive head 632 is mechanically engaged with the male hex coupling portion 607 of the rotary drive nut 606 .
  • rotation of the rotary drive shaft 630 actuates rotation of the rotary drive nut 606 , which actuates translation of the threaded rotary drive member 604 , which actuates translation of the I-beam member 620 .
  • the orientation of the threading of the threaded rotary drive member 604 and the rotary drive nut 606 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 630 will actuate distal or proximal translation of the threaded rotary drive member 604 and I-beam member 620 .
  • the direction, speed, and duration of rotation of the rotary drive shaft 630 can be controlled in order to control the direction, speed, and magnitude of the longitudinal translation of the I-beam member 620 and, therefore, the closing and opening of the jaw assembly and the transection stroke of the I-beam member along the first and second channels 601 A and 601 B, as described above.
  • rotation of the rotary drive shaft 630 in a clockwise direction actuates clockwise rotation of the rotary drive nut 606 , which actuates distal translation of the threaded rotary drive member 604 , which actuates distal translation of the I-beam member 620 , which actuates closure of the jaw assembly and a distal transection stroke of the I-beam member 620 /cutting member 625 .
  • FIG. 69 for example, rotation of the rotary drive shaft 630 in a clockwise direction (as viewed from a proximal-to-distal vantage point) actuates clockwise rotation of the rotary drive nut 606 , which actuates distal translation of the threaded rotary drive member 604 , which actuates distal translation of the I-beam member 620 , which actuates closure of the jaw assembly and a distal transection stroke of the I-beam member 620 /cutting member 625 .
  • rotation of the rotary drive shaft 630 in a counterclockwise direction actuates counterclockwise rotation of the rotary drive nut 606 , which actuates proximal translation of the threaded rotary drive member 604 , which actuates proximal translation of the I-beam member 620 , which actuates a proximal return stroke of the I-beam member 620 /cutting member 625 and opening of the jaw assembly.
  • the rotary drive shaft 630 may be used to independently actuate the opening and closing of the jaw assembly and the proximal-distal transection stroke of the I-beam 620 /cutting member 625 .
  • the rotary drive shaft 630 is shown in a fully proximal axial position in which the male hex coupling portion 636 of the rotary drive head 632 is mechanically engaged with the female hex shaft coupling portion 609 of the end effector drive housing 608 .
  • rotation of the rotary drive shaft 630 actuates rotation of the head portion 556 of the surgical tool 600 about rotation joint 645 , including rotation of the end effector 550 and the end effector drive housing 608 .
  • the portion of the surgical tool 600 that is distal to the head rotation joint 645 i.e., the head portion 556 of the surgical tool 600 , comprising the end effector 550 and the end effector drive housing 608
  • the portion of the surgical tool that is proximal to the head rotation joint 645 e.g., the end effector connector tube 610 , the intermediate articulation tube segment 616 , and the distal outer tube portion 642
  • the portion of the surgical tool 600 that is distal to the head rotation joint 645 i.e., the head portion 556 of the surgical tool 600 , comprising the end effector 550 and the end effector drive housing 608
  • the portion of the surgical tool that is proximal to the head rotation joint 645 e.g., the end effector connector tube 610 , the intermediate articulation tube segment 616 , and the distal outer tube portion 642 .
  • a desired rotation speed of the rotary drive shaft 630 to drive the rotary drive nut 606 may be greater than a desired rotational speed for rotating the head portion 556 .
  • the rotary drive shaft 630 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • rotation of the rotary drive shaft 630 in a clockwise direction actuates clockwise rotation of the end effector 550 and the end effector drive housing 608 (i.e., the head portion 556 of the surgical tool 600 ) with the jaw assembly 555 in an open position.
  • Rotation of the rotary drive shaft 630 in a counterclockwise direction actuates counterclockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in an open position.
  • rotation of the rotary drive shaft 630 in a clockwise direction actuates clockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in a closed position.
  • Rotation of the rotary drive shaft 630 in a counterclockwise direction actuates counterclockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in a closed position.
  • the I-beam member 620 may be located in an intermediate position where the jaw assembly is closed but the I-beam is not fully distally advanced (see, e.g., FIG. 74 ) when the rotary drive shaft 630 is in a fully proximal axial position and the male hex coupling portion 636 of the rotary drive head 632 is mechanically engaged with the female hex shaft coupling portion 609 of the end effector drive housing 608 to actuate rotation of the head portion of the surgical tool.
  • the rotary drive shaft 630 may be used to independently actuate the opening and closing of the jaw assembly, the proximal-distal transection stroke of the I-beam 620 /cutting member 625 , and the rotation of the head portion 556 of the surgical tool 600 d.
  • a surgical tool may comprise an end effector, a first actuation mechanism, and a second actuation mechanism.
  • the surgical tool may also comprise a clutch member configured to selectively engage and transmit rotary motion to either the first actuation mechanism or the second actuation mechanism.
  • a clutch member may comprise a rotary drive shaft comprising a rotary drive head as described, for example, in connection with FIGS. 64-72 .
  • a first actuation mechanism may comprise an I-beam member connected to a threaded rotary drive member threaded through a rotary drive nut, as described, for example, in connection with FIGS.
  • a second actuation mechanism may comprise a shaft coupling portion, as described, for example, in connection with FIGS. 64-72 , wherein the shaft coupling portion is configured to actuate rotation of a head portion of a surgical tool.
  • a surgical tool may comprise an end effector comprising a first jaw member, a second jaw member, and a first actuation mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the surgical tool may also comprise a shaft assembly proximal to the surgical end effector.
  • the surgical tool may also comprise a rotary drive shaft.
  • the rotary drive shaft may be configured to transmit rotary motions and may also be selectively moveable between a first position and a second position relative to the shaft assembly.
  • the rotary drive shaft may be configured to engage and selectively transmit the rotary motions to the first actuation mechanism when in the first position and the rotary drive shaft may be configured to disengage from the actuation mechanism when in the second position.
  • the first actuation mechanism may comprise an I-beam member connected to a threaded rotary drive member threaded through a rotary drive nut, as described, for example, in connection with FIGS. 64-74 , wherein the I-beam, the threaded rotary drive member, and the rotary drive nut are configured to actuate the closing and opening of a jaw assembly when the rotary drive shaft engages and selectively transmits rotary motion to the drive nut.
  • a surgical tool may comprise a surgical end effector comprising a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the surgical tool may also comprise a shaft assembly proximal to the surgical end effector, wherein the surgical end effector is configured to rotate relative to the shaft assembly.
  • the surgical tool may also comprise a rotary drive shaft configured to transmit rotary motions, the rotary drive shaft selectively movable axially between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to apply the rotary motions to the closure mechanism when in the first axial position, and wherein the rotary drive shaft is configured to apply the rotary motions to the surgical end effector when in the second axial position.
  • the first axial position may correspond to the rotary drive shaft being in a fully distal axial position in which a rotary drive head is mechanically engaged with a rotary drive nut as described, for example, in connection with FIGS. 64-72 .
  • the second axial position may correspond to the rotary drive shaft being in a fully proximal axial position in which a rotary drive head is mechanically engaged with a shaft coupling portion of a shaft member as described, for example, in connection with FIGS. 64-72 .
  • a surgical tool comprising an end effector, a first actuation mechanism, and a second actuation mechanism, may further comprise a head locking mechanism.
  • a multi-axis articulating and rotating surgical tool 650 comprises an end effector 570 , a shaft assembly 580 , and a head locking mechanism 590 .
  • the end effector 570 comprises a first jaw member 652 A and a second jaw member 652 B.
  • the first jaw member 602 A is movable relative to the second jaw member 602 B between an open position ( FIGS. 77 and 79 ) and a closed position ( FIGS.
  • the surgical tool 650 is configured to independently articulate about an articulation joint in a vertical direction and a horizontal direction like the surgical tool 600 shown in FIGS. 64-72 .
  • the surgical tool 650 is also configured to independently rotate about a head rotation joint like the surgical tool 600 shown in FIGS. 64-72 .
  • the end effector 570 comprises an I-beam member 670 and a jaw assembly 575 comprising the first jaw member 652 A, the second jaw member 652 B, a proximal portion 653 of the second jaw member 652 B, and a rotary drive nut 656 seated in the proximal portion 653 .
  • the end effector 570 is coupled to a shaft assembly 580 comprising an end effector drive housing 658 , an end effector connector tube 660 , an intermediate articulation tube segment 666 , and a surgical tool shaft member (not shown).
  • the end effector 570 and the shaft assembly 580 together comprise the surgical tool 650 .
  • the end effector 570 may be removably coupled to the end effector drive housing 658 using a mechanism as described, for example, in connection with FIGS. 106-115 .
  • the end effector drive housing 608 is coupled to the end effector connector tube 660 through the head rotation joint.
  • the end effector 570 and the end effector drive housing 658 together comprise a head portion 578 of the surgical tool 650 .
  • the head portion 578 of the surgical tool 650 is independently rotatable about the head rotation joint, as described in greater detail above in connection FIGS. 64-72 showing the surgical tool 600 .
  • the end effector connector tube 660 is coupled to the intermediate articulation tube segment 666 through a ball-and-socket joint formed by the mutual engagement of the ball member of the end effector connector tube 660 and the ball socket of the intermediate articulation tube segment 666 .
  • the intermediate articulation tube segment 666 is coupled to a surgical tool shaft member through a ball-and-socket joint formed by the mutual engagement of the ball member of the intermediate articulation tube segment 616 and a ball socket of the surgical tool shaft member.
  • the articulation joint comprises the end effector connector tube 660 , the intermediate articulation tube segment 666 , and the surgical tool shaft member.
  • the independent vertical articulation and/or horizontal articulation of the surgical tool 650 about the articulation joint may be actuated, for example, using independently actuatable drive cables connected to the ball member of the end effector connector tube 660 .
  • This independent articulation functionality is described, for example, in connection with FIGS. 24-25 .
  • Robotic and hand-held apparatuses for allowing a clinician to initiate articulation functionality are described, for example, in connection with FIGS. 6 , 16 - 21 and 46 - 50 .
  • the movement of the first jaw member 652 A relative to the second jaw member 652 B is actuated using the same actuation mechanism described above in connection with FIGS. 73 and 74 .
  • Distal and proximal translation of the I-beam member 670 between a proximally retracted position ( FIGS. 77 and 79 ), an intermediate position (see FIG. 74 ), and a distally advanced position ( FIGS. 78 and 80 ) may be accomplished with a suitable translation actuation mechanism.
  • the I-beam member 670 is connected to a threaded rotary drive member 654 .
  • a threaded rotary drive nut 656 is threaded onto the threaded rotary drive member 654 .
  • the threaded rotary drive nut 656 is seated in the proximal portion 653 of the second jaw member 652 B.
  • the threaded rotary drive nut 656 is mechanically constrained from translation in any direction, but is rotatable within the proximal portion 653 of the second jaw member 652 B. Therefore, given the threaded engagement of the rotary drive nut 656 and the threaded rotary drive member 654 , rotational motion of the rotary drive nut 656 is transformed into translational motion of the threaded rotary drive member 654 in the longitudinal direction and, in turn, into translational motion of the I-beam member 670 in the longitudinal direction.
  • the threaded rotary drive member 654 is threaded through the rotary drive nut 656 and is located inside a lumen of a rotary drive shaft 680 .
  • the threaded rotary drive member 654 is not attached or connected to the rotary drive shaft 680 .
  • the threaded rotary drive member 654 is freely movable within the lumen of the rotary drive shaft 680 and will translate within the lumen of the rotary drive shaft 680 when driven by rotation of the rotary drive nut 656 .
  • the rotary drive shaft 680 comprising the threaded rotary drive member 654 located within the lumen of the rotary drive shaft 680 forms a concentric rotary drive shaft/screw assembly that is located in the lumen of the shaft assembly 580 .
  • the concentric rotary drive shaft/screw assembly is located within the lumen of the shaft assembly 560 and passes through the end effector drive housing 658 , the end effector connector tube 660 , and the intermediate articulation tube segment 666 .
  • at least the rotary drive shaft 680 passes through a lumen of the surgical tool shaft member and is operably coupled to a driving mechanism that provides rotary motion and axial translational motion to the rotary drive shaft 680 .
  • the surgical tool 650 may be operably coupled through the shaft assembly 580 to a robotic surgical system that provides rotary motion and axial translational motion to the rotary drive shaft 680 , such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16 - 21 .
  • the surgical tool 650 may be operably coupled through the shaft assembly 580 to a hand-held surgical device that provides rotary motion and axial translational motion to the rotary drive shaft 680 , such as, for example, the hand-held surgical devices described in connection with FIGS. 46-63 .
  • the threaded rotary drive member 654 has a length that is less than the length of the rotary drive shaft 680 and, therefore, lies within only a distal portion of the rotary drive shaft 680 .
  • the threaded rotary drive member 654 and the rotary drive shaft 680 are flexible so that the portions of the threaded rotary drive member 654 and the rotary drive shaft 680 that are located in the articulation joint can bend without damage or loss of operability during independent articulation of the surgical tool 650 about the articulation joint.
  • Example configurations of the rotary drive shaft 680 are provided herein with reference to FIGS. 28-45 .
  • the rotary drive shaft 680 comprises a rotary drive head 682 .
  • the rotary drive head 682 comprises a female hex coupling portion 684 on the distal side of the rotary drive head 682
  • the rotary drive head 682 comprises a male hex coupling portion 686 on the proximal side of the rotary drive head 682 .
  • the distal female hex coupling portion 684 of the rotary drive head 682 is configured to mechanically engage with a male hex coupling portion 657 of the rotary drive nut 656 located on the proximal side of the rotary drive nut 656 .
  • the proximal male hex coupling portion 686 of the rotary drive head 682 is configured to mechanically engage with a female hex shaft coupling portion 659 of the end effector drive housing 658 .
  • the rotary drive shaft 680 is shown in a fully distal axial position in which the female hex coupling portion 684 of the rotary drive head 682 is mechanically engaged with the male hex coupling portion 657 of the rotary drive nut 656 .
  • rotation of the rotary drive shaft 680 actuates rotation of the rotary drive nut 656 , which actuates translation of the threaded rotary drive member 654 , which actuates translation of the I-beam member 670 .
  • the rotary drive shaft 680 is shown in a fully proximal axial position in which the male hex coupling portion 686 of the rotary drive head 682 is mechanically engaged with the female hex shaft coupling portion 659 of the end effector drive housing 658 .
  • rotation of the rotary drive shaft 680 actuates rotation of the head portion 578 of the surgical tool 650 about rotation joint, including rotation of the end effector 570 and the end effector drive housing 658 .
  • the rotary drive shaft 680 also comprises a spline lock 690 .
  • the spline lock 690 is coupled to the rotary drive shaft 680 using shaft flanges 685 .
  • the spline lock 690 is mechanically constrained from translation in any direction by the rotary drive shaft 680 and the shaft flanges 685 , but the spline lock 690 is freely rotatable about the rotary drive shaft 680 .
  • the spline lock 690 comprises spline members 692 disposed circumferentially around the external surface of the spline lock 690 and oriented co-axially with the shaft assembly 580 . As shown in FIGS.
  • the spline lock 690 is located at the rotational joint formed by the coupling of the end effector drive housing 658 and the end effector connector tube 660 .
  • the end effector drive housing 658 comprises a spline coupling portion 694 comprising spline members 696 disposed circumferentially around the internal surface of the end effector drive housing 658 and oriented co-axially with the shaft assembly 580 .
  • the end effector connector tube 660 comprises a spline coupling portion 662 comprising spline members 664 disposed circumferentially around the internal surface of the end effector connector tube 660 and oriented co-axially with the shaft assembly 580 .
  • the spline members 692 , 696 , and 664 of the spline lock 690 , the end effector drive housing 658 , and the end effector connector tube 660 , respectively, are configured to mechanically engage with each other when the rotary drive shaft 680 is in a fully distal axial position in which the female hex coupling portion 684 of the rotary drive head 682 is mechanically engaged with the male hex coupling portion 657 of the rotary drive nut 656 to drive rotation of the rotary drive nut 656 and translation of the threaded rotary drive member 654 and the I-beam member 670 ( FIGS. 77 , 78 , and 82 ).
  • the mechanical engagement of the respective spline members 692 , 696 , and 664 locks the end effector drive housing 658 into position with the end effector connector tube 660 , thereby locking the rotational joint and preventing rotation of the head portion 578 of the surgical tool 650 . Because the spline lock 690 is freely rotatable about the rotary drive shaft 680 , the mechanical engagement of the respective spline members 692 , 696 , and 664 does not prevent the rotary drive shaft 680 from actuating the rotary drive nut 656 , the threaded rotary drive member 654 , and the I-beam member 670 .
  • the spline members 692 of the spline lock 690 and the spline members 664 of the end effector connector tube 660 are completely engaged, and the spline members 692 of the spline lock 690 and the spline members 696 of the end effector drive housing 658 are completely disengaged.
  • the mechanical disengagement of the spline members 692 of the spline lock 690 and the spline members 696 of the end effector drive housing 658 when the rotary drive shaft 680 is in a fully proximal axial position unlocks the end effector drive housing 658 from the end effector connector tube 660 , thereby unlocking the rotational joint and permitting rotation of the head portion 578 of the surgical tool 650 .
  • the spline lock 690 is freely rotatable about the rotary drive shaft 680 , the mechanical engagement of spline members 692 of the spline lock 690 and the spline members 664 of the end effector connector tube 660 does not prevent the rotary drive shaft 680 from actuating the rotation of the head portion 578 of the surgical tool 650 .
  • the head locking mechanism 590 ensures that the head portion 578 of the surgical tool 650 does not rotate when the rotary drive shaft 680 is in a fully distal axial position engaging the rotary drive nut 656 to drive actuation of the jaw closure mechanism and/or the I-beam translation mechanism as described above ( FIGS. 77 , 78 , and 82 ).
  • the head locking mechanism 590 ensures that the head portion 578 of the surgical tool 650 is freely rotatable when the rotary drive shaft 680 is in a fully proximal axial position engaging the shaft coupling portion 659 of the end effector drive housing 658 to drive actuation of head rotation as described above ( FIGS. 79 , 80 , and 81 ).
  • rotation of the rotary drive shaft 680 actuates rotation of the rotary drive nut 656 , which actuates distal or proximal translation of the threaded rotary drive member 654 (depending on the direction of rotary motion of the rotary drive shaft 680 ), which actuates distal or proximal translation of the I-beam member 670 , which actuates the closing and opening of the jaw assembly 575 , and distal and proximal transection strokes of the I-beam member 670 /cutting member 675 .
  • the spline lock 690 engages both the end effector drive housing 658 and the end effector connector tube 660 to prevent unintended head rotation.
  • rotation of the rotary drive shaft 680 actuates rotation of the end effector drive housing 658 , which actuates rotation of the end effector 570 .
  • the spline lock 690 is disengaged both the end effector drive housing 658 and does not prevent head rotation.
  • the rotary drive shaft 680 may be used to independently actuate the opening and closing of the jaw assembly 575 , the proximal-distal transection stroke of the I-beam 670 /cutting member 675 , and the rotation of the head portion 578 of the surgical tool 650 .
  • an end effector such as the end effectors 550 and 570 shown in FIGS. 64-82 , may comprise first and second jaw members comprising a first and second distal textured portions, respectively.
  • the first and second distal textured portions of the first and second jaw members of an end effector may be opposed and may allow the end effector to grip, pass, and/or manipulate surgical implements such as needles for suturing tissue, in addition to gripping tissue, for example, during dissection operations.
  • the distal textured portions may also be electrodes configured, for example, to deliver RF energy to tissue during dissection operations. This gripping, passing, manipulating, and/or dissecting functionality is described, for example, in connection with FIGS. 153-168 .
  • an end effector such as the end effectors 550 and 570 shown in FIGS. 64-82 , may comprise first and second jaw members comprising first and second gripping portions disposed on outwardly facing surfaces of the first and second jaw members.
  • the first and second gripping portions of the first and second jaw members of an end effector may function to aid in tissue dissection as described, for example, in connection with FIGS. 116-131 .
  • an end effector such as the end effectors 550 and 570 shown in FIGS. 64-82 , may comprise at least one electrode disposed on at least one tissue-contacting surface of at least one jaw member.
  • the electrodes may be configured, for example, to deliver RF energy to tissue clamped between the jaw members when in a closed position to weld/fuse the tissue, which in some embodiments, may also be transected by translating an I-beam member comprising a cutting member.
  • a second jaw member may also comprises an offset electrode located at the distal tip of the jaw member, the electrode configured to deliver RF energy to tissue during dissection operations, for example. This electrode functionality is described, for example, in connection with 153 - 168 .
  • an end effector such as the end effectors 550 and 570 shown in FIGS. 64-82 , may comprise jaw members comprising angled tissue-contacting surfaces as described, for example, in connection with FIGS. 132-142 .
  • a multi-axis articulating and rotating surgical tool 1200 comprises an end effector 1202 including a jaw assembly 1211 comprising a first jaw member 1204 and a second jaw member 1206 .
  • the first jaw member 1204 is movable relative to the second jaw member 1206 between an open position and a closed position to clamp tissue between the first jaw member 1204 and the second jaw member 1206 .
  • the surgical tool 1200 is configured to independently articulate about an articulation joint 1208 .
  • the surgical tool 1200 is also configured to independently rotate about a head rotation joint 1210 .
  • the end effector 1202 further comprises a proximal shaft portion 1212 .
  • the end effector 1202 is coupled to a shaft assembly 1214 comprising an end effector drive housing 1216 , an end effector connector tube 1218 , an intermediate articulation tube segment 1220 , and a distal outer tube portion (not shown in FIGS. 83-91 ).
  • the end effector 1202 and the shaft assembly 1214 together can comprise the surgical tool 1200 .
  • the end effector 1202 may be removably coupled to the end effector drive housing 1216 using a mechanism as described, for example, in connection with FIGS. 106-115 .
  • the end effector connector tube 1218 comprises a cylindrical portion 1222 and a ball portion 1224 .
  • the end effector drive housing 1216 is coupled to the cylindrical portion 1222 of the end effector connector tube 1218 through the head rotation joint 1210 .
  • the end effector 1202 and the end effector drive housing 1216 together comprise a head portion of the surgical tool 1200 .
  • the head portion of the surgical tool 1200 is independently rotatable about the head rotation joint 1210 .
  • the surgical tool 1200 may include a closure mechanism 1226 for moving the first jaw member 1204 relative to the second jaw member 1206 between an open position ( FIG. 86 ) and a closed position ( FIG. 87 ).
  • the first jaw member 1204 may include first mounting holes 1228
  • the second jaw member 1206 may include second mounting holes (not shown in FIGS. 83-91 ).
  • the first jaw member 1204 can be arranged relative to the second jaw member 1206 such that a pivot or trunnion pin (not shown in FIGS.
  • first jaw member 1204 extends through the first mounting holes 1228 of the first jaw member 1204 and the second mounting holes of the second jaw member 1206 to pivotally couple the first jaw member 1204 to the second jaw member 1206 .
  • Other suitable means for coupling the first jaw member 1204 and the second jaw member 1206 are within the scope of this disclosure.
  • the closure mechanism 1226 may comprise a linkage arrangement which may comprise a first link 1230 and a second link (not shown in FIGS. 83-91 ).
  • the closure mechanism 1226 may also comprise a closure driver in the form of a closure nut 1232 for example.
  • the closure nut 1232 ( FIG. 84 ) may be at least partially positioned within the end effector drive housing 1216 .
  • the closure nut 1232 may translate axially between a first position ( FIG. 86 ) and a second position ( FIG. 87 ) relative to the end effector drive housing 1216 and may include a first arm 1234 and a second arm 1236 . Referring primarily to FIG.
  • the first arm 1234 and the second arm 1236 may extend distally from a distal portion 1238 of the closure nut 1232 , wherein the first arm 1234 may comprise a first opening 1240 and the first arm 1234 may be pivotally connected to the first link 1230 by a first pin 1242 through the first opening 1240 .
  • the second arm 1236 may comprise a second opening 1244 , wherein the second arm 1236 may be pivotally connected to the second link by a second pin (not shown in FIGS. 83-91 ) through the second opening 1244 .
  • the first link 1230 and the second link (not shown in FIGS.
  • FIG. 85 illustrates the closure nut 1232 in a first position and the jaw assembly 1211 in an open position.
  • closure nut 1232 shows the closure nut 1232 in a second position and the jaw assembly 1211 in a closed position.
  • the closure nut 1232 may be constrained from rotation relative to the end effector drive housing 1316 by an indexing feature, for example, abutting against the end effector drive housing 11316 .
  • the surgical tool 1200 may include a firing mechanism 1246 having a suitable firing driver.
  • the firing mechanism 1246 may include an I-beam member 1247 , a threaded drive member 1248 , and a threaded rotary drive nut 1250 .
  • the I-beam member 1247 may comprise a first I-beam flange 1252 and a second I-beam flange 1254 .
  • the I-beam member 1247 may operate in a manner similar to that described above with respect to the axially movable member 3016 described herein above.
  • the first I-beam flange 1252 and the second I-beam flange 1254 are connected with an intermediate portion 1256 .
  • the intermediate portion 1256 of the I-beam member 1247 may comprise a cutting member 1258 on a distal or a leading end thereof.
  • the I-beam member 1247 is configured to translate within a first channel 1260 in the first jaw member 1204 and within a second channel 1262 in the second jaw member 1206 .
  • FIG. 84 shows the I-beam member 1247 in a fully proximal position and the jaw assembly 1211 in an open position.
  • the I-beam member 1247 may be translated distally in order for the cutting member 1258 to transect tissue clamped between the first jaw member 1204 and the second jaw member 1206 when in the closed position.
  • the cutting member 1258 which may comprise a sharp edge or blade for example, is configured to cut through clamped tissue during a distal translation (firing) stroke of the I-beam member 1247 , thereby transecting the tissue.
  • FIG. 88 shows the I-beam member 1247 in a fully distal position after a firing stroke.
  • Electrodes located in the first jaw member 1204 and/or second jaw member 1206 in order to weld/fuse the tissue, as described in greater detail in this specification.
  • electrodes may be configured to deliver RF energy to tissue clamped between the first jaw member 1204 and the second jaw member 1206 when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 1247 between a proximally retracted position and a distally advanced position may be accomplished with a suitable firing mechanism 1246 .
  • the I-beam member 1247 is connected to the threaded drive member 1248 , wherein the threaded rotary drive nut 1250 is in a threaded engagement with the threaded drive member 1248 .
  • the threaded rotary drive nut 1250 is positioned within in the end effector drive housing 1216 proximal to the closure nut 1232 between a proximal annular flange 1264 and a distal annular flange 1266 .
  • the threaded rotary drive nut 1250 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1216 around a central axis A. Therefore, given the threaded engagement of the rotary drive nut 1250 and the threaded drive member 1248 , rotational motion of the rotary drive nut 1250 is transformed into translational motion of the threaded drive member 1248 along the central axis A and, in turn, into translational motion of the I-beam member 1247 along the central axis A.
  • the threaded drive member 1248 is threaded through the rotary drive nut 1250 and is located at least partially inside a lumen 1268 of a rotary drive shaft 1270 .
  • the threaded drive member 1248 is not attached or connected to the rotary drive shaft 1270 .
  • the threaded drive member 1248 is freely movable within the lumen of the rotary drive shaft 1270 and will translate within the lumen of the rotary drive shaft 1270 when driven by rotation of the rotary drive nut 1250 .
  • the rotary drive shaft 1270 and the threaded drive member 1248 form a concentric rotary drive shaft/screw assembly that is located in the shaft assembly 1214 .
  • the threaded drive member 1248 extends distally through a lumen 1272 of the closure nut 1232 . Similar to the above, the threaded drive member 1248 is freely movable within the lumen 1272 of the closure nut 1232 , and, as a result, the threaded drive member 1248 will translate within the lumen 1272 of the closure nut 1232 when driven by rotation of the rotary drive nut 1250 .
  • the rotary drive nut 1250 may comprise a threaded distal portion 1274 .
  • the closure nut 1232 may comprise a threaded proximal portion 1276 .
  • the threaded distal portion 1274 of the rotary drive nut 1250 and the threaded proximal portion 1276 of the closure nut 1232 are in a threaded engagement.
  • the threaded rotary drive nut 1250 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1216 around a central axis A.
  • the end effector drive housing 1216 , the end effector connector tube 1218 , and the intermediate articulation tube segment 1220 which together comprise the shaft assembly 1214 , have open lumens and, therefore, the shaft assembly 1214 comprises a lumen extending longitudinally therethrough, as shown in FIGS. 83 and 85 - 91 .
  • the concentric rotary drive shaft/threaded drive member assembly is located within the lumen of the shaft assembly 1214 and passes through the end effector drive housing 1216 , the end effector connector tube 1218 , and the intermediate articulation tube segment 1220 .
  • the rotary drive shaft 1270 passes through a lumen of the shaft assembly 1214 and is operably coupled to a driving mechanism that provides rotational motion and axial translational motion to the rotary drive shaft 1270 .
  • the surgical tool 1200 may be operably coupled through the shaft assembly 1214 to a robotic surgical system that provides rotational motion and axial translational motion to the rotary drive shaft 1270 , such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16 - 21 .
  • the rotary drive shaft 1270 may be coupled, through the shaft assembly, to the proximal drive shaft segment 380 described herein above.
  • the surgical tool 1200 may be operably coupled through the shaft assembly 1214 to a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63 .
  • the rotary drive shaft 1270 may be operably coupled, though the shaft assembly 560 , to the proximal drive shaft segment 380 ′ described herein above.
  • the threaded drive member 1248 has a length that is less than the length of the rotary drive shaft 1270 and, therefore, lies within only a distal portion of the rotary drive shaft 1270 , for example.
  • the threaded drive member 1248 and the rotary drive shaft 1270 may be flexible so that the threaded drive member 1248 and the rotary drive shaft 1270 can bend without damage or loss of operability during articulation of the surgical tool 1200 about the articulation joint 1208 .
  • the rotary drive shaft 1270 may comprise a rotary drive head 1278 .
  • the rotary drive head 1278 comprises a female hex coupling portion 1280 on the distal side of the rotary drive head 1278 and the rotary drive head 1278 comprises a male hex coupling portion 1282 on the proximal side of the rotary drive head 1278 .
  • the distal female hex coupling portion 1280 of the rotary drive head 1278 is configured to mechanically engage with a male hex coupling portion 1284 of the rotary drive nut 1250 located on the proximal side of the rotary drive nut 1250 .
  • proximal male hex coupling portion 1282 of the rotary drive head 1278 is configured to mechanically engage with a female hex coupling portion 1286 of the end effector drive housing 1216 in order to rotate the end effector 1202 around the central axis A.
  • the rotary drive shaft 1270 is shown in a fully proximal axial position in which the hex coupling portion 1282 of the rotary drive head 1278 is mechanically engaged with the female hex shaft coupling portion of the end effector drive housing 1216 .
  • rotation of the rotary drive shaft 1270 causes rotation of the head portion of the surgical tool 1200 about the head rotation joint 1210 , including rotation of the end effector 1202 and the end effector drive housing 1216 .
  • the portion of the surgical tool 1200 that is distal to the head rotation joint 1210 (e.g., a head portion) rotates with rotation of the rotary drive shaft 1270 , and the portion of the surgical tool 1200 that is proximal to the head rotation joint 1210 does not rotate with rotation of the rotary drive shaft 1270 .
  • An example of a head rotation joint 1210 is described in connection with FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • Other suitable techniques and rotation means for rotating the end effector 1202 relative to the shaft assembly 1214 are within the scope of the current disclosure.
  • a desired rotation speed of the rotary drive shaft 1270 to drive the rotary drive nut 1250 may be greater than a desired rotational speed for rotating the head portion.
  • the rotary drive shaft 1270 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • the orientation of the threading of the threaded drive member 1248 and the rotary drive nut 1250 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 1270 will cause distal or proximal translation of the threaded drive member 1248 and I-beam member 1247 .
  • the rotary drive shaft 1270 , and the rotary drive nut 1250 can be rotated in a first direction to advance the threaded drive member 1248 distally and correspondingly, rotated in a second opposite direction to retract the threaded drive member 1248 proximally.
  • the pitch and/or number of starts of the threading of the threaded drive member 1248 and the threading of the rotary drive nut 1250 may be selected to control the speed and/or duration of the rotation of the rotary drive nut 1250 and, in turn, the translation of the threaded drive member 1248 .
  • the direction, speed, and/or duration of rotation of the rotary drive shaft 1270 can be controlled in order to control the direction, speed, and magnitude of the longitudinal translation of the I-beam member 1247 along the first channel 1260 and second channel 1262 , as described above.
  • threaded distal portion 1274 of the rotary drive nut 1250 and the threading of the threaded proximal portion 1276 of the closure nut 1232 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 1270 will cause distal or proximal translation of the closure nut 1232 and in turn closure or opening of the jaw assembly 1211 .
  • threaded distal portion 1274 can be rotated in a first direction to advance the threaded proximal portion 1276 distally and correspondingly, rotated in a second opposite direction to retract the threaded proximal portion 1276 proximally.
  • the pitch and/or number of starts of the threading of the threaded distal portion 1274 of the threaded drive member 1248 and the threading of threaded proximal portion 1276 of the closure nut 1232 may be selected to control speed and/or duration of the rotation of the rotary drive nut 1250 and translation of the closure nut 1232 . In this manner, the direction, speed, and/or duration of rotation of the rotary drive shaft 1270 can be controlled in order to control the direction, speed, and magnitude of the pivoting of the of the jaw assembly 1211 .
  • the rotary drive shaft 1270 is shown in a fully extended distal axial position in which the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically engaged with the male hex coupling portion 1284 of the rotary drive nut 1250 .
  • rotation of the rotary drive shaft 1270 in a first direction begins a firing stroke by causing rotation of the rotary drive nut 1250 in the first direction.
  • the rotation of the rotary drive nut advances the threaded drive member 1248 , which, in turn, advances the I-beam member 1247 distally.
  • the rotation of the rotary drive nut 1250 advances the closure nut 1232 distally, which closes the jaw assembly 1211 .
  • the closure nut 1232 and the threaded drive member 1248 are advanced distally until the closure nut 1232 is disengaged from threaded engagement with the rotary drive nut 1250 as illustrated in FIG. 88 .
  • the closure nut 1232 can be advanced distally until the threads of the threaded distal portion 1274 of the rotary drive nut 1250 are no longer threadedly engaged with the threads of the threaded proximal portion 1276 of the closure nut 1232 .
  • the surgical tool 1200 may comprise a biasing member 1288 , a helical spring, and/or a washer spring for example, situated at least partially around the threaded distal portion 1274 of the rotary drive nut 1250 .
  • the biasing member 1288 may include a proximal end abutted against the distal annular flange 1266 of the end effector drive housing 1216 , and a distal end abutted against a proximal end 1290 of the closure nut 1232 .
  • the biasing member 1288 can keep the closure nut 1232 from reengaging the rotary drive nut 1250 by pushing the closure nut 1232 axially in a distal direction along the central axis A until the distal portion 1238 of the closure nut 1232 abuts against a terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 .
  • the biasing member 1288 also ensures that the jaw assembly 1211 remains under positive closure pressure by biasing the closure nut 1232 abutted against the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 as the I-beam member 1247 is being advanced distally through the closed jaw assembly 1211 .
  • the closure nut 1232 may comprise a cam member 1296 extending distally from the closure nut 1232 .
  • the cam member 1296 may extend through an opening 1298 of the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 when the distal portion 1238 of the closure nut 1232 is abutted against the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 under positive pressure from the biasing member 1288 .
  • the rotary drive shaft 1270 is shown in a fully extended distal axial position in which the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically engaged with the make hex coupling portion 1284 of the rotary drive nut 1250 .
  • rotation of the rotary drive shaft 1270 in a second direction opposite the first direction begins a reverse stroke by causing an opposite rotation of the rotary drive nut 1250 , which retracts the threaded drive member 1248 , which in turn retracts the I-beam member 1247 .
  • the closure nut 1232 remains disengaged from the rotary drive nut 1250 .
  • the I-beam member 1247 when the I-beam member 1247 is being retracted, the I-beam member 1247 can engage the cam member 1296 of the closure nut 1232 . Any further retraction of the I-beam member 1247 can simultaneously open the jaw assembly 1211 by pushing the closure nut 1232 axially in a proximal direction along the central axis A toward the rotary drive nut 1250 . In order for the I-beam member 1247 to push the closure nut 1232 proximally, the I-beam member 1247 must compress the biasing member 1288 .
  • the I-beam member 1247 can push the closure nut 1232 proximally until the closure nut is returned into threaded engagement with the rotary drive nut 1250 .
  • the rotary drive nut 1250 can pull the closure nut 1232 proximally owing to the threaded engagement therebetween.
  • the closure nut 1232 is retracted proximally, the first link 1230 , and the second link will cause the jaw assembly 1211 to open. The retraction of the I-beam member 1247 and the opening of the jaw assembly 1211 continue simultaneously during the remainder of the reverse stroke.
  • FIGS. 85-91 The sequence of events causing the closure of the jaw assembly 1211 , the full extension of the I-beam member 1247 , the full refraction of the I-beam member 1247 , and the reopening of the jaw assembly 1211 is illustrated in FIGS. 85-91 in a chronological order.
  • FIG. 85 shows the jaw assembly 1211 in a fully open position, the I-beam member 1247 in a fully retracted position, and the rotary drive shaft 1270 in a fully retracted axial position, wherein the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically disengaged from the male hex coupling portion 1284 of the rotary drive nut 1250 .
  • a first phase of operation returning to FIG.
  • the rotary drive shaft 1270 is advanced axially to mechanically engage the female hex coupling portion 1280 of the rotary drive head 1278 with the male hex coupling portion 1284 of the rotary drive nut 1250 .
  • the rotation of the rotary drive shaft 1270 in a first direction causes the rotation of the rotary drive nut 1250 in the first direction.
  • the closure nut 1232 and the threaded drive member 1248 are simultaneously advanced distally by rotation of the rotary drive nut 1250 in the first direction.
  • the closure of the jaw assembly 1211 and the initial advancement of the I-beam member 1247 occur simultaneously during the first phase of operation.
  • a second phase of operation referring now to FIG. 87 , the closure nut 1232 is disengaged from threaded engagement with the rotary drive nut 1250 .
  • the rotary drive nut 1250 continues to advance the threaded drive member 1248 independently of the closure nut 1232 .
  • the jaw assembly 1211 remains closed and the I-beam member 1247 continues to advance until the end of the second phase of operation.
  • a third phase of operation as illustrated in FIG. 89 , the rotary drive shaft 1270 is rotated in a second direction opposite the first direction, which causes the rotation of the rotary drive nut 1250 in the second direction.
  • the closure nut 1232 remains disengaged from rotary drive nut 1250 .
  • the rotation of the rotary drive nut 1250 retracts the threaded drive member 1248 independent of the closure nut 1232 .
  • the jaw assembly 1211 remains closed, and the I-beam member 1247 is retracted in response to the rotation of the rotary drive.
  • a fourth phase of operation referring primarily to FIG.
  • the rotary drive nut 1250 continues its rotation in the second direction thereby retracting the threaded drive member 1248 which retracts I-beam member 1247 until the I-beam member 1247 engages the cam member 1296 of closure nut 1232 .
  • Any further retraction of the I-beam member 1247 simultaneously opens the jaw assembly 1211 by pushing the closure nut 1232 axially in a proximal direction along the central axis A towards the rotary drive nut 1250 compressing the biasing member 1288 .
  • the I-beam member 1247 can continue to push the closure nut 1232 proximally until it is returned into threaded engagement with the rotary drive nut 1250 .
  • the retraction of the I-beam member 1247 and the opening of the jaw assembly 1211 continue simultaneously during the remainder of the fourth phase of operation.
  • a multi-axis articulating and rotating surgical tool 1300 comprises an end effector 1302 including a jaw assembly 1311 comprising a first jaw member 1304 and a second jaw member 1306 .
  • the first jaw member 1304 is movable relative to the second jaw member 1306 between an open position and a closed position to clamp tissue between the first jaw member 1304 and the second jaw member 1306 .
  • the surgical tool 1300 is configured to independently articulate about an articulation joint 1308 . As described above, the surgical tool 1300 is also configured to independently rotate about a head rotation joint 1310 .
  • the end effector 1302 is coupled to a shaft assembly 1314 comprising an end effector drive housing 1316 , an end effector connector tube 1318 , an intermediate articulation tube segment 1320 , and a distal outer tube portion (not shown in FIGS. 92-96 ).
  • the end effector 1302 and the shaft assembly 1314 together can comprise the surgical tool 1300 .
  • the end effector 1302 may be removably coupled to the end effector drive housing 1316 using a mechanism as described, for example, in connection with FIGS. 106-115 .
  • the end effector connector tube 1318 comprises a cylindrical portion 1322 and a ball portion 1324 .
  • the end effector drive housing 1316 is coupled to the cylindrical portion 1322 of the end effector connector tube 1318 through the head rotation joint 1310 .
  • the end effector 1302 and the end effector drive housing 1316 together comprise a head portion of the surgical tool 1300 .
  • the head portion of the surgical tool 1300 is independently rotatable about the head rotation joint 1310 .
  • the surgical tool 1300 may include a closure mechanism 1326 for moving the first jaw member 1304 relative to the second jaw member 1306 between an open position ( FIG. 93 ) and a closed position ( FIG. 94 ).
  • the first jaw member 1304 may include first mounting holes 1328
  • the second jaw member 1306 may include second mounting holes (not shown in FIGS. 92-96 ).
  • the first jaw member 1304 can be arranged relative to the second jaw member 1306 such that a pivot or trunnion pin (not shown in FIGS.
  • first jaw member 1304 extends through the first mounting holes 1328 of the first jaw member 1304 and the second mounting holes of the second jaw member 1306 to pivotally couple the first jaw member 1304 to the second jaw member 1306 .
  • Other suitable means for coupling the first jaw member 1304 and the second jaw member 1306 are within the scope of this disclosure.
  • the closure mechanism may comprise a closure link 1330 which translates axially relative to the end effector drive housing 1316 between a first position and a second position.
  • the closure link 1330 may comprise a distal end 1332 and a proximal end 1334 .
  • the distal end 1332 may be pivotally connected to a proximal portion 1336 of the first jaw member 1304 such that when the closure link 1330 is translated between the first position and the second position, the first jaw member 1304 is moved relative to the second jaw member 1306 between an open and a closed position.
  • the closure mechanism 1328 may also comprise a closure driver in the form of a barrel cam 1338 for example.
  • the barrel cam 1338 may be positioned within the end effector drive housing 1316 .
  • the barrel cam 1338 may comprise a generally cylindrical shape having a lumen 1340 therethrough.
  • the barrel cam 1338 may include a first arcuate groove 1346 , and a second arcuate groove 1348 defined in a peripheral surface thereof.
  • the first arcuate groove 1346 may receive a first pin 1350 extending from the end effector drive housing 1316 .
  • the second arcuate groove 1348 may receive a second pin (not shown in FIGS. 92-96 ) extending from the end effector drive housing 1316 .
  • the first pin 1350 and the second pin may extend from circumferentially opposite sides of an inner wall of the end effector drive housing 1316 .
  • the barrel cam 1338 may rotate around central axis A, wherein, as the barrel cam 1338 is rotated around central axis A, the first pin 1350 travels along the first arcuate groove 1346 , and the second pin travels along the second arcuate groove 1348 thereby translating the barrel cam 1338 axially along central axis A.
  • the result is a conversion of the rotational motion of the barrel cam 1338 into an axial motion of the closure link 1330 .
  • the rotation of the barrel cam 1338 in a first direction (for example a clockwise direction) around the central axis A may result in advancing the barrel cam 1338 axially in a distal direction.
  • the rotation of the barrel cam 1338 in a second direction (for example a counter clockwise direction) opposite the first direction may result in retracting the barrel cam 1338 axially in a proximal direction along the central axis A.
  • the proximal end 1334 of the closure link 1330 may be operatively engaged with the barrel cam 1338 such that the axially advancement of the barrel cam 1338 may cause the closure link 1330 to be advanced axially, and, in turn close the jaw assembly 1311 .
  • the proximal retraction of the barrel cam 1338 may retract the closure link 1330 , which may open the jaw assembly 1311 .
  • the barrel cam 1338 may include a circumferential recess 1354 on the external wall of the barrel cam 1338 at a distal portion thereof.
  • the proximal end of the closure link 1330 may comprise a connector member 1356 .
  • the connector member 1356 may be operably engaged with the barrel cam 1338 along the recess 1354 . As a result, the barrel cam 1338 may translate axial motions to the closure link 1330 through the connector member 1356 .
  • the surgical tool 1300 may include a firing mechanism 1358 .
  • the firing mechanism 1358 may include an I-beam member 1360 , a threaded drive member 1362 , and a threaded rotary drive nut 1364 .
  • the I-beam member 1360 may operate in a manner similar to that of the axially movable member 3016 described herein above and may comprise a first I-beam flange 1367 and a second I-beam flange 1368 .
  • the first I-beam flange 1367 and the second I-beam flange 1368 are connected with an intermediate portion 1370 .
  • the intermediate portion 1370 of the I-beam member 1360 may comprise a cutting member 1372 , which may comprise a sharp edge or blade for example, to transect tissue clamped between the first jaw member 1304 and the second jaw member 1306 when the jaw assembly 1311 is closed.
  • the I-beam member 1360 may translate distally within a first channel (not shown in FIGS. 92-96 ) defined in the first jaw member 1304 and within a second channel 1376 defined in the second jaw member 1306 to cut through clamped tissue during a distal translation (firing) stroke.
  • FIG. 96 illustrates the I-beam member 1360 after a firing stroke.
  • electrodes 1378 located in the first jaw member 1304 and/or second jaw member 1306 in order to weld/fuse the tissue, as described in greater detail in this specification.
  • electrodes 1378 may be configured to deliver RF energy to tissue clamped between the first jaw member 1304 and the second jaw member 1306 when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 1360 between a proximally retracted position and a distally advanced position may be accomplished with a suitable firing mechanism 1358 .
  • the I-beam member 1360 is connected to the threaded drive member 1362 , wherein the threaded drive member 1362 is threadedly engaged with the rotary drive nut 1364 .
  • the threaded rotary drive nut 1364 is positioned within the end effector drive housing 1316 distal to the barrel cam 1338 between a proximal annular flange 1339 A and a distal annular flange 1339 B.
  • the threaded rotary drive nut 1364 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1316 . Therefore, given the threaded engagement of the rotary drive nut 1364 and the threaded drive member 1362 , rotational motion of the rotary drive nut 1364 is transformed into translational motion of the threaded drive member 1362 along the central axis A and, in turn, into translational motion of the I-beam member 1360 along the central axis A.
  • the threaded drive member 1362 is threaded through the rotary drive nut 1364 and is located at least partially inside a lumen 1381 of a rotary drive shaft 1382 .
  • the threaded drive member 1362 is not attached or connected to the rotary drive shaft 1382 .
  • the threaded drive member 1362 is freely movable within the lumen 1381 of the rotary drive shaft 1382 and will translate within the lumen 1381 of the rotary drive shaft 1382 when driven by rotation of the rotary drive nut 1364 .
  • the rotary drive shaft 1382 and the threaded drive member 1362 form a concentric rotary drive shaft/threaded drive member assembly that is located in the shaft assembly 1314 .
  • the threaded drive member 1362 extends distally through a lumen 1384 of the barrel cam 1338 wherein the threaded drive member 1362 is freely movable within the lumen 1384 of the barrel cam 1338 and will translate within the lumen 1384 of the barrel cam 1338 when the threaded drive member is driven by rotation of the rotary drive nut 1364 .
  • the end effector drive housing 1316 , the end effector connector tube 1318 , and the intermediate articulation tube segment 1320 which together comprise the shaft assembly 1314 , have lumens extending therethrough.
  • the shaft assembly 1314 can comprise a lumen extending therethrough, as illustrated in FIGS. 92-96 .
  • the concentric rotary drive shaft/threaded drive member assembly is located within the lumen of the shaft assembly 1314 and passes through the end effector drive housing 1316 , the end effector connector tube 1318 , and the intermediate articulation tube segment 1320 .
  • the rotary drive shaft 1382 passes through a lumen of the shaft assembly 1314 and is operably coupled to a driving mechanism that provides rotational and/or axial translational motion to the rotary drive shaft 1382 .
  • the surgical tool 1300 may be operably coupled through the shaft assembly 1314 to a robotic surgical system that provides rotational motion and/or axial translational motion to the rotary drive shaft 1382 , such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16 - 21 .
  • the rotary drive shaft 1382 may be operably coupled, though the shaft assembly 1314 , to the proximal drive shaft segment 380 described herein above.
  • the surgical tool 1300 may be utilized in conjunction with a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63 .
  • the rotary drive shaft 1382 may be operably coupled, through the shaft assembly 1314 , to the proximal drive shaft segment 380 ′ described herein above.
  • the threaded drive member 1362 has a length that is less than the length of the rotary drive shaft 1382 and, therefore, lies within only a distal portion of the rotary drive shaft 1382 , for example.
  • the threaded drive member 1362 and the rotary drive shaft 1382 may be flexible so that the threaded drive member 1362 and the rotary drive shaft 1382 can bend without damage or loss of operability during articulation of the surgical tool 1300 about the articulation joint 1308 .
  • the rotary drive shaft 1382 may comprise a rotary drive head 1386 .
  • the rotary drive head 1386 may comprise spline members 1388 disposed circumferentially around an external surface of the rotary drive head 1386 and oriented co-axially with the shaft assembly 1314 .
  • the end effector drive housing 1316 may comprise a spline coupling portion 1390 comprising spline members 1392 disposed circumferentially around an internal wall of the end effector drive housing 1316 and oriented co-axially with the shaft assembly 1314 .
  • the barrel cam 1338 may comprise a spline coupling portion 1394 comprising spline members 1396 disposed circumferentially around an internal wall of barrel cam 1338 and oriented co-axially with the shaft assembly 1314 .
  • the rotary drive nut 1364 may also comprise a spline coupling portion 1397 comprising spline members 1398 disposed circumferentially around an internal wall of rotary drive nut 1364 and oriented co-axially with the shaft assembly 1314 .
  • the rotary drive shaft 1382 may be selectively retracted proximally to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1390 of the end effector drive housing 1316 .
  • rotation of the rotary drive shaft 1382 causes rotation of the head portion of the surgical tool 1300 about the head rotation joint 1310 , including rotation of the end effector 1302 and the end effector drive housing 1316 .
  • a desired rotation speed of the rotary drive shaft 1382 to drive the rotary drive nut 1364 may be greater than a desired rotational speed for rotating the head portion.
  • the rotary drive shaft 1270 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • the rotary drive shaft 1382 may be selectively advanced distally to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338 .
  • rotation of the rotary drive shaft 1382 causes rotation of the barrel cam 1338 .
  • the rotation of the barrel cam 1338 causes axial motions in the closure link 1330 .
  • the rotation of the rotary drive shaft 1382 in a first direction (for example a clockwise direction) around the central axis A may cause the closure link 1330 to be advanced distally along the central axis A, which may close the jaw assembly 1311 .
  • the rotation of the rotary drive shaft 1382 in a second direction (for example a clockwise direction) opposite the first direction may cause the closure link 1330 to be retracted proximally along the central axis A, which in turn may open the jaw assembly 1311 .
  • the rotary drive shaft 1382 may be selectively advanced distally to pass the rotary drive head 1386 through the lumen of the barrel cam 1338 into a space 1399 in the end effector drive housing 1316 between the barrel cam 1338 and the rotary drive nut 1364 wherein the rotary drive head 1386 is not in operable engagement with any of the spline coupling portions.
  • the rotary drive shaft 1382 may then be further advanced distally to bring rotary drive head 1386 into operable engagement with the spline coupling portion 1397 of the rotary drive nut 1364 as illustrated in FIG. 96 . In this configuration, rotation of the rotary drive shaft 1382 causes rotation of the rotary drive nut 1364 .
  • the rotation of the rotary drive nut 1364 causes axial motions in the threaded drive member 1362 .
  • rotation of the rotary drive shaft 1382 in a first direction may cause the threaded drive member 1362 to be advanced distally, which in turn may advance the I-beam member 1360 distally.
  • rotation of the rotary drive shaft 1382 in a second direction may cause the threaded drive member 1362 to be retracted proximally, which may retract the I-beam member 1360 proximally.
  • FIGS. 93-96 The sequence of events causing the closure of the jaw assembly 1311 , the full extension of the I-beam member 1360 , the full refraction of the I-beam member 1360 , and the reopening of the jaw assembly 1311 is illustrated in FIGS. 93-96 in a chronological order.
  • FIG. 93 shows the jaw assembly 1311 in a fully open position, the I-beam member 1360 in a fully retracted position, and the rotary drive shaft 1382 in a retracted axial position, wherein the rotary drive head 1386 is operably engaged with the spline coupling portion 1390 of the end effector drive housing 1316 .
  • the rotary drive shaft 1382 In a first phase of operation, the rotary drive shaft 1382 is rotated to rotate the end effector 1302 into an appropriate orientation, for example relative to a blood vessel. In a second phase of operation, the rotary drive shaft 1382 is advanced axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338 . In this configuration, the rotary drive shaft 1382 may be rotated in a first direction (for example a clockwise direction) around the central axis A to close the jaw assembly 1311 around the blood vessel. The electrodes 1378 in the first jaw member 1304 and the second jaw member 1306 may be activated to seal the blood vessel.
  • a first direction for example a clockwise direction
  • the rotary drive shaft 1382 may then be advanced axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1397 of the rotary drive nut 1364 .
  • the rotary drive shaft 1382 may be rotated in a first direction around the central axis A (for example a clockwise direction) to advance the I-beam member 1360 thereby transecting the sealed blood vessel.
  • the rotary drive shaft 1382 may be rotated in a second direction (for example a counter clockwise direction) opposite the first direction to retract the I-beam member 1360 .
  • the rotary drive shaft 1382 is retracted axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338 .
  • the rotary drive shaft 1382 may be rotated in a second direction (for example a counter clockwise direction) opposite the first direction to reopen the jaw assembly 1311 thereby releasing the sealed cut blood vessel.
  • a surgical tool can utilize a drive system for translating a drive member distally within an end effector of the surgical tool, to advance a cutting member within the end effector, for example, and for translating the drive tube proximally to retract the drive tube and/or cutting member.
  • FIGS. 97 and 98 illustrate an example drive shaft assembly 1400 that may be employed in connection with an end effector 1420 and/or any of the end effectors described herein.
  • the drive shaft assembly 1400 (as well as the assembly 1400 ′) may correspond to various threaded rotary drive members described herein including, for example, the threaded rotary drive members 604 , 654 , 1040 , 1248 , 1364 , etc.
  • the drive shaft assembly 1400 can be advanced distally in order to rotate a jaw member 1422 of the end effector 1420 between a closed position and an open position, as illustrated in FIG. 97 , and advance a cutting member between the jaw member 1422 and a jaw member 1424 positioned opposite the jaw member 1422 .
  • the drive shaft assembly 1400 includes a drive member, or tube, 1402 that can comprise a series of annular joint segments 1404 cut therein.
  • the drive member 1402 can comprise a hollow metal tube comprised of stainless steel, titanium, and/or any other suitable material, for example, that has a series of annular joint segments 1404 formed therein.
  • the annular joint segments 1404 can comprise a plurality of loosely interlocking dovetail shapes 1406 that are, for example, cut into the drive member 1402 by a laser and serve to facilitate flexible movement between the adjoining joint segments 1404 .
  • Such laser cutting of a tube stock can create a flexible hollow drive tube that can be used in compression, tension and/or torsion.
  • Such an arrangement can employ a full diametric cut that is interlocked with the adjacent part via a “puzzle piece” configuration.
  • the interlocking dovetails shapes 1406 are but one example embodiment and, in various circumstances, the drive member 1402 can comprise any suitable array of articulation joints comprising interlocking drive projections and drive recesses. In various circumstances, the drive member 1402 can comprise an articulation joint lattice comprising operably engaged projections and recesses which can be interlocked to transmit linear and/or rotary motions therebetween. In a sense, in various embodiments, the drive member 1402 can comprise a plurality or a multitude of articulation joints defined within the body of the drive member 1402 . The drive member 1402 can include a plurality of articulation joints which are intrinsic to the body of the drive member 1402 .
  • the drive member 1402 can be pushed distally such that a longitudinal force is transmitted through the drive member 1402 and to a cutting member, for example, operably coupled with a distal end of the drive member 1402 .
  • the drive member 1402 can be pulled proximally such that a longitudinal force is transmitted through the drive member 1402 and to the cutting member.
  • the interlocking dovetail shapes 1406 can be configured to transmit the longitudinal pushing and pulling forces between the joint segments 1404 regardless of whether the joint segments 1404 are longitudinally aligned, as illustrated in FIG. 98 , and/or articulated relative to each other to accommodate the articulation of the articulation joint 1430 which rotatably connects the end effector 1420 to the shaft of the surgical instrument.
  • the articulation joint 1430 can comprise one or more articulation segments 1434 which can move relative to one another to permit the end effector 1420 to rotate wherein, in order to accommodate the relative movement of the articulation joint segments 1434 , the joint segments 1404 of the drive member 1402 can rotate or shift relative to each other.
  • the articulation joint segments 1434 can define a passage 1435 extending therethrough which can be configured to closely receive the drive tube 1402 and constrain large transverse movements between the joint segments 1404 while concurrently permitting sufficient relative movement between the joint segments 1404 when the articulation joint 1430 has been articulated.
  • 99-101 illustrate alternative example micro-annular joint segments 1404 ′ of a drive member 1402 ′ that can comprise a plurality of laser cut shapes 1406 ′ that roughly resemble loosely interlocking, opposed “T” shapes and T-shapes with a notched portion therein, for example.
  • the laser cut shapes 1406 ′ can also roughly resemble loosely interlocking, opposed “L” shapes and L-shapes defining a notched portion, for example.
  • the annular joint segments 1404 , 1404 ′ can essentially comprise multiple micro-articulating torsion joints. That is, each joint segment 1404 , 1404 ′ can transmit torque while facilitating at least some relative articulation between each annular joint segment. As shown in FIGS.
  • the joint segment 1404 D′ on the distal end 1403 ′ of the drive member 1402 ′ has a distal mounting collar portion 1408 D′ that facilitates attachment to other drive components for actuating the end effector.
  • the joint segment 1404 P′ on the proximal end 1405 ′ of the drive member 1402 ′ has a proximal mounting collar portion 1408 P′ that facilitates attachment to other proximal drive components or portions of a quick disconnect joint, for example.
  • the joint-to-joint range of motion for each particular joint segment 1404 ′ can be increased by increasing the spacing in the laser cuts. In various circumstances, however, the number and/or density of the laser cuts within any particular region of the drive member 1402 ′ can cause the drive member 1402 ′ to be particularly flexible in that region.
  • a secondary constraining member can be employed to limit or prevent the outward expansion of the joint segments 1404 ′.
  • a secondary constraining member 1410 comprises a spring 1412 or an otherwise helically-wound member.
  • the distal end 1414 of the spring 1412 can correspond to and can be attached to the distal mounting collar portion 1408 D′ and can be wound tighter than the central portion 1416 of the spring 1412 .
  • the proximal end 1418 of the spring 1412 can correspond to and can be attached to the proximal collar portion 1408 P′ and can be wound tighter than the central portion 1416 of the spring 1412 .
  • the distal end 1414 and/or the proximal end 1418 can comprise coils which are positioned closer together than the coils of the central portion 1416 .
  • the coils per unit distance of the distal end 1414 and/or the proximal end 1418 can be greater than the coils per unit distance of the central portion 1416 .
  • the spring 1412 can define a longitudinal aperture 1413 within which the drive member 1402 ′, and/or the drive member 1402 , for example, can be positioned.
  • the longitudinal aperture 1413 and the drive member 1402 ′ can be sized and configured such that the drive member 1402 ′ is closely received within the longitudinal aperture 1413 wherein, in various circumstances, the coils of the spring 1412 can limit the outward movement of the joint segments 1404 ′ such that the joint segments 1404 ′ do not become disconnected from one another when they are articulated relative to one other.
  • the distal end 1414 of the spring 1412 can be fixedly mounted to the distal end 1403 ′ of the drive member 1402 ′ and the proximal end 1418 of the spring 1412 can be fixedly mounted to the proximal end 1405 ′ of the drive member 1402 ′ wherein the movement of the distal tube end 1403 ′ can move the distal spring end 1414 and, correspondingly, the movement of the proximal tube end 1405 ′ can move the proximal spring end 1418 .
  • the spring ends 1414 and 1418 can be welded, for example, to the tube ends 1403 ′ and 1405 ′, respectively.
  • the coils of the central portion 1416 may not be fixedly mounted to the drive member 1402 ′.
  • the drive member 1402 ′ can be configured to at least partially articulate within the coils of the central portion 1416 until the drive member 1402 ′ contacts the coils wherein, at such point, the coils can be configured to at least partially expand or shift to accommodate the lateral movement of the drive member 1402 ′.
  • at least portions of the coils of the central portion 1416 can be fixedly mounted, such as by welding, for example, to the drive member 1402 ′.
  • the constraining member 1410 may be installed on the drive member 1402 ′ with a desired pitch such that the constraining member 1410 also functions, for example, as a flexible drive thread 1440 which can be threadably engaged with other threaded drive components on the end effector and/or the drive system, as described above.
  • the drive member 1402 ′ can be constrained from being revolved around its longitudinal axis wherein, when a threaded drive input is engaged with the thread 1440 and is rotated in a first direction by a motor, for example, the drive member 1402 ′ can be advanced distally within the end effector 1420 .
  • the drive member 1402 ′ when the threaded drive input engaged with the thread 1440 is rotated in a second, or opposite, direction, the drive member 1402 ′ can be retracted proximally.
  • the constraining member 1410 may be installed in such a manner that the thread 1440 includes a constant, or at least substantially constant, pitch along the length thereof.
  • the drive member 1402 ′ can be advanced and/or retracted at a constant, or an at least substantially constant, rate for a given rate in which the threaded drive input is rotated.
  • the constraining member 1410 can be installed in such a manner that the thread 1440 includes a variable pitch, or a pitch which changes along the length of the drive member 1402 ′.
  • variable pitch arrangement of the constraining member 1410 may be used to slow the drive assembly 1400 ′ down or speed the drive assembly 1400 ′ up during certain portions of the firing stroke of the drive assembly 1400 ′.
  • a first portion of the thread 1440 can include a first pitch which is smaller than the pitch of a second portion of the thread 1440 wherein the first pitch can drive a closing member at a first rate and the second portion can drive a firing member at a second rate, for example.
  • the drive shaft assembly comprises a variable pitch thread on a hollow flexible drive shaft that can be pushed and pulled around a ninety degree bend or greater, for example.
  • the drive member 1402 ′ can be constrained from revolving about its longitudinal axis. Moreover, the entire drive shaft assembly 1400 ′ can be constrained from rotating about its longitudinal axis.
  • the drive member 1402 ′ can comprise a longitudinal slot defined therein which can be engaged with one or more projections which can extend inwardly from the end effector 1420 and/or the articulation joint members 1434 into the longitudinal slot, for example. Such an arrangement of the longitudinal slot and the projections can be configured to prevent or at least limit the rotation of the drive shaft assembly 1400 ′ about its own longitudinal axis.
  • the longitudinal axis of the drive shaft assembly 1400 ′, and/or the drive member 1402 ′ can extend along the center of the drive shaft assembly 1400 ′ regardless of whether the drive shaft assembly 1400 ′ is in a straight configuration or a bent configuration.
  • the path and direction of the longitudinal axis of the drive shaft assembly 1400 ′ may change when the end effector 1420 is articulated and the drive shaft assembly 1400 ′ articulates to accommodate the articulation of the end effector 1420 .
  • the drive member 1402 ′ can be fixedly mounted to and extend proximally from a cutting member positioned within the end effector 1420 .
  • the cutting member can be closely received within various slots and/or channels defined in the end effector which can prevent the cutting member, and the drive shaft assembly 1400 ′ extending therefrom, from being rotated, or at least substantially rotated about its longitudinal axis. While the longitudinal axis of the drive shaft assembly 1400 ′ can be defined by the drive member 1402 ′, the longitudinal axis can be defined by the spring 1412 . In at least one such embodiment, the center path of the spring coils can define the longitudinal axis of the drive shaft assembly 1400 ′. In any event, the drive shaft assembly 1400 ′ can be constrained from revolving around its longitudinal axis.
  • the drive shaft assembly 1400 ′ can comprise an internal constraining member, such as a flexible core 1417 , for example, which can be configured to limit or prevent the inward movement or collapse of the joint segments 1404 ′ of the drive member 1402 ′.
  • the drive member 1402 ′ can define an internal longitudinal cavity 1415 which can be configured to closely receive the flexible core 1417 .
  • the internal cavity 1415 defined in the drive member 1402 ′ can comprise a diameter or width which is equal to, or at least substantially equal to, the diameter or width of the flexible core 1417 .
  • portions of the joint segments 1404 ′ can deflect or be displaced inwardly toward the flexible core 1417 wherein, when the joint segments 1404 ′ contact the flexible core 1417 , the core 1417 can inhibit the inward movement of the joint segments 1404 ′ and prevent the drive member 1402 ′ from collapsing inwardly.
  • the flexible core 1417 can be mounted to at least portions of the drive member 1402 ′ such as the distal end 1408 D′ and/or the proximal end 1408 P′ thereof, for example.
  • the flexible core 1417 may not be fixedly mounted to the drive member 1402 ′ wherein, in such embodiments, the flexible core 1417 can be held in place by the drive member 1402 ′. In any event, the flexible core 1417 can be sufficiently flexible so as to permit the drive shaft assembly 1400 ′ to bend or articulate as necessary to transmit the pushing and pulling motions applied thereto, as described above.
  • the shaft assembly 1400 ′ can be configured to bend or flex to accommodate the articulation of the end effector 1420 about the articulation joint 1430 .
  • the drive member 1402 ′, the flexible core 1417 , and/or the spring 1412 can be resilient such that the shaft assembly 1400 ′ can return to its original longitudinal configuration, for example.
  • the end effector 1420 can be rotated from its articulated position back to its longitudinal, or straight, position and, as such, the shaft assembly 1400 ′ can be configured to bend or flex in order to accommodate the return of the end effector 1420 .
  • a surgical tool 1000 may include a surgical end effector 1001 and a shaft assembly 1003 .
  • Surgical end effector 1001 may be configured to perform surgical activities in response to drive motions applied thereto.
  • Shaft assembly 1003 may be configured to transmit such drive motions to surgical end effector 1001 .
  • the surgical end effector 1001 may include a first jaw member 1002 , and a second jaw member 1004 .
  • the first jaw member 1002 may be movable relative to the second jaw member 1004 between a first position and a second position.
  • the first jaw member 1002 and second jaw member 1004 may be moveable relative to each other between a first position and a second position.
  • the first position may be an open position and the second position may be a closed position.
  • the first jaw member 1002 may be pivotally movable relative to the second jaw member 1004 between a first position and a second position.
  • the first jaw member 1002 may include mounting holes (not shown), and the second jaw member 1004 may include mounting holes 1008 .
  • the first jaw member 1002 can be arranged relative to the second jaw member 1004 such that a pivot or trunnion pin (not shown) is inserted through the mounting holes of the first jaw member 1002 and the mounting holes 1008 of the second jaw member 1004 to pivotally couple the first jaw member 1002 to the second jaw member 1004 .
  • Other suitable means for coupling the first jaw member 1002 and the second jaw member 1004 are contemplated within the scope of this disclosure.
  • surgical end effector 1001 may be adapted to perform multiple functions.
  • surgical end effector 1001 may include gripping portions 1010 disposed on exterior surfaces of the first jaw member 1002 and/or the second jaw member 1004 .
  • Gripping portions 1010 may be adapted for contacting and bluntly dissecting tissue. Suitable gripping portions 1010 are described, for example, in connection with FIGS. 116-131 .
  • Surgical end effector 1001 may also include angled tissue engagement surfaces 1012 for transecting tissue. Suitable angled tissue engagement surfaces 1012 are described, for example, in connection with FIGS. 132-142 .
  • the first jaw member 1002 may include an interior surface 1014 and the second jaw member 1004 may include an interior surface 1016 .
  • the first 1014 and second 1016 interior surfaces may be configured to grip, pass, and/or manipulate tissue and/or surgical implements such as needles 1015 for suturing tissue. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 153-168 .
  • surgical end effector 1001 may also include electrodes 1017 and/or another electrically active surface for sealing blood vessels during a surgical procedure.
  • the electrodes 1017 may be configured to deliver radio frequency (RF) energy to tissue clamped between the first jaw member 1002 and the second jaw member 1004 when in a closed position to weld/fuse the tissue, which may be transected by translating a cutting member 1018 . Suitable electrodes are described, for example, in connection with FIGS. 153-168 .
  • RF radio frequency
  • surgical end effector 1001 may be releasably attached to shaft assembly 1003 .
  • An operator or a surgeon may attach surgical end effector 1001 to shaft assembly 1003 to perform a surgical procedure.
  • shaft assembly 1003 includes a coupling arrangement in the form of a quick disconnect arrangement or joint 1019 that facilitates quick attachment of a distal shaft portion 1020 of the shaft assembly 1003 to a proximal shaft portion 1022 of the surgical end effector 1001 .
  • the quick disconnect joint 1019 may serve to facilitate the quick attachment and detachment of a plurality of drive train components used to provide control motions from a source of drive motions to an end effector that is operably coupled thereto.
  • surgical end effector 1001 may be interchanged with other surgical end effectors suitable for use with shaft assembly 1003 .
  • surgical end effector 1001 may be detached from shaft assembly 1003 and a second surgical end effector 1024 may be attached to shaft assembly 1003 .
  • the second surgical end effector 1024 may be replaced with a third surgical end effector 1026 .
  • Surgical end effectors 1001 , 1024 , and 1026 may include common drive train components that are operably engageable with their counter parts in the shaft assembly 1003 .
  • surgical end effectors 1001 , 1024 , and 1026 may each include unique operational features suitable for certain surgical tasks.
  • the surgical end effector 1001 may include an actuation mechanism.
  • the actuation mechanism may comprise a closure mechanism for moving the first jaw member 1002 relative to the second jaw member 1004 .
  • the actuation mechanism may comprise a firing mechanism for transecting tissue grasped between the first, jaw member 1002 and the second jaw member 1004 .
  • the closure and firing may be accomplished by separate mechanisms, which may be driven separately or contemporaneously. Alternatively, the closure and firing may be accomplished via a single mechanism. Suitable closure mechanisms and suitable firing mechanisms are described, for example, in connection with FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • the actuation mechanism may include a reciprocating member 1030 .
  • the reciprocating member 1030 may define a cam slot 1032 configured to receive a cam pin 1034 coupled to the first jaw member 1002 . Distal and proximal movement of the reciprocating member 1030 may cause the cam pin 1032 to translate within the cam slot 1034 , which may, in turn, cause the first jaw member 1002 to pivot from an open position (e.g., proximal position of the reciprocating member 1030 ) to a closed (e.g., distal position of the reciprocating member 1030 ).
  • both jaw members 1002 and 1004 may comprise a cam pin and the reciprocating member 1030 may define a pair of cam slots or grooves.
  • the reciprocating member 1030 may comprise an I-beam member adapted to slide over the jaw members 1002 and 1004 to close the jaw members 1002 and 1004 , and/or to provide a clamping force tending to force the jaw members 1002 , and 1004 together.
  • the reciprocating member 1030 may include a cutting blade 1036 .
  • the cutting blade 1036 may be attached to the reciprocating member 1030 and situated such that it can be extended and retracted with the reciprocating member 1030 .
  • the cutting member may be extended to transect tissue or material present between the jaw members 1002 , and 1004 .
  • the actuation mechanism 1028 may include a rotary drive nut 1038 and a threaded rotary drive member 1040 .
  • the rotary drive member 1040 may extend proximally from the reciprocating member 1030 .
  • the reciprocating member 1030 and the rotary drive member 1040 may be formed together as one piece.
  • the reciprocating member 1030 and the rotary drive member 1040 may be formed separately and welded together.
  • Other techniques for joining the reciprocating member 1030 and the rotary drive member 1040 may be employed and are contemplated within the scope of this disclosure.
  • the rotary drive nut 1038 may be operably supported within the proximal shaft portion 1022 of the surgical end effector 1001 , which extends proximally relative to the jaw members 1002 , and 1004 .
  • the rotary drive nut 1038 may be rotated around a central axis extending through the proximal shaft portion 1022 , for example, as described herein above.
  • the rotary drive member 1040 may extend proximally from the reciprocating member 1030 along the central axis through the rotary drive nut 1038 .
  • the rotary drive nut 1038 and the rotary drive member 1040 may be arranged in a mating arrangement such that rotation of the rotary drive nut 1038 around the central axis in one direction (e.g.
  • the surgical tool 1000 may include a rotary drive shaft 1042 disposed longitudinally through shaft assembly 1003 .
  • the rotary drive shaft 1042 may include a rotary drive head 1044 at a distal portion thereof.
  • the rotary drive nut 1038 may comprise an actuation coupler 1046 for mating arrangement with the rotary drive head 1044 such that when coupled, the rotary drive head 1044 may transmit rotary motions to the actuation coupler 1046 .
  • the rotary drive shaft 1042 may be selectively moved axially between multiple discrete positions. For example, the rotary drive shaft 1042 may be extended axially to bring the rotary drive head 1044 into operable engagement with the actuation coupler 1046 as depicted in FIG. 111 .
  • the rotary drive shaft 1042 may be retracted axially to disengage the rotary drive head 1044 from the actuation coupler 1046 .
  • Such arrangement may allow for a quick and efficient attachment and detachment of a plurality of surgical end effectors to shaft assembly 1003 .
  • surgical end effector 1001 is shown detached from shaft assembly 1003 .
  • the proximal shaft portion 1022 of surgical end effector 1001 is disengaged from the distal shaft portion 1020 of the shaft assembly 1003 .
  • the proximal shaft portion 1022 of the surgical end effector 1001 may include a tapered end for mating arrangement with a funneling end on the distal shaft portion 1020 of the shaft assembly 1003 .
  • the rotary drive shaft 1042 may include a hollow distal portion that extends distally along a central axis through the rotary drive head 1044 and terminates at a distal opening thereof.
  • the hollow distal portion may receive a proximal portion of the rotary drive member 1040 when the surgical end effector 1001 is attached to the shaft assembly 1003 .
  • the rotary drive member 1040 may rotate freely in the hollow distal portion of the rotary drive shaft 1042 .
  • the surgical end effector 1001 is attached to shaft assembly 1003 simply by inserting the proximal portion of the rotary drive member 1040 into the hollow portion of the rotary drive shaft 1042 and guiding the tapered end of the proximal shaft portion 1022 of the surgical end effector 1001 into a mating arrangement with the funneling end of the distal shaft portion 1020 of the shaft assembly 1003 .
  • FIG. 110 the surgical end effector 1001 is attached to shaft assembly 1003 simply by inserting the proximal portion of the rotary drive member 1040 into the hollow portion of the rotary drive shaft 1042 and guiding the tapered end of the proximal shaft portion 1022 of the surgical end effector 1001 into a mating arrangement with the funneling end of the dis
  • the rotary drive shaft 1042 may be advanced to bring the rotary drive head 1044 into operable engagement with the actuation coupler 1046 to transmit rotary motions to the rotary drive nut 1038 .
  • Other attachment means and techniques for releasably attaching the surgical end effector 1001 to the shaft assembly 1003 are contemplated within the scope of this disclosure.
  • the proximal shaft portion 1022 of surgical end effector 1001 and the distal shaft portion 1020 of the shaft assembly 1003 may have aligning features to ensure that the surgical end effector 1001 and the shaft assembly 1003 are correctly aligned upon attachment.
  • the proximal shaft portion 1022 of surgical end effector 1001 includes a key feature 1048 and the distal shaft portion 1020 of the shaft assembly 1003 may include a slot 1050 for receiving the key feature.
  • Other aligning means and techniques for aligning the surgical end effector 1001 to the shaft assembly 1003 are contemplated within the scope of this disclosure.
  • the surgical end effector 1001 may include an actuation mechanism wherein the firing and closure are performed separately. This actuation mechanism and other suitable actuation mechanisms are described, for example, in connection with FIGS. 83-91 and 92 - 96 .
  • the surgical end effector 1001 comprises a closure mechanism 1052 and a firing mechanism 1054 which are driven separately.
  • the closure mechanism 1052 includes a closure driver 1056 and the firing mechanism 1054 includes a firing driver 1058 .
  • surgical end effector 1001 may be releasably attached to shaft assembly 1003 . As depicted in FIG.
  • the proximal shaft portion 1022 of surgical end effector 1001 may be detached from the distal shaft portion 1020 of the shaft assembly 1003 .
  • the shaft drive 1042 may be extended distally to a first discrete position to be in operable engagement with the closure driver 1056 .
  • the shaft drive may be extended distally to a second discrete position distal to the first discrete position to be in operable engagement with the firing driver 1058 .
  • the surgical tool 1000 may include an articulation joint 1060 for articulating the surgical end effector 1001 about a longitudinal tool axis “LT”.
  • the articulation joint 1060 is disposed proximal to the distal portion 1020 of the shaft assembly 1003 .
  • the articulation joint 1060 articulates the distal portion 1020 of the shaft assembly 1003 .
  • articulation of the distal portion 1020 of shaft assembly 1003 will cause the surgical end effector 1003 to articulate.
  • the articulation joint 1060 includes a proximal socket tube 1062 that is attached to the shaft assembly 1003 and defines a proximal ball socket therein. See FIG. 115 .
  • a proximal ball member 1064 is movably seated within the proximal ball socket.
  • the proximal ball member 1064 has a central drive passage that enables the rotary drive shaft 1042 to extend therethrough.
  • the proximal ball member 1064 has four articulation passages therein which facilitate the passage of four distal cables 1066 therethrough. As can be further seen in FIG.
  • the articulation joint 1060 further includes an intermediate articulation tube segment 1068 that has an intermediate ball socket formed therein.
  • the intermediate ball socket is configured to movably support therein a distal ball member 1070 formed on a distal connector tube 1072 .
  • the cables 1066 extend through cable passages formed in the distal ball member 1070 and are attached thereto by lugs 1074 .
  • Other attachment means suitable for attaching cables to the end effector ball 1070 are contemplated within the scope of this disclosure.
  • a surgical tool 900 may include a surgical end effector extending from a shaft assembly 903 .
  • the surgical end effector 901 may be configured to perform surgical activities in response to drive motions applied thereto.
  • the surgical end effector 901 may include a first jaw member 902 , and a second jaw member 904 .
  • the first jaw member 902 may be movable relative to the second jaw member 904 between a first position and a second position.
  • the first jaw member 902 and second jaw member 904 may be moveable relative to each other between a first position and a second position.
  • the first position may be an open position and the second position may be a closed position.
  • the first jaw member 902 may be pivotally movable relative to the second jaw member 904 between an open position and a closed position.
  • the first jaw member 902 may include mounting holes 906
  • the second jaw member 904 may include mounting holes 908 .
  • the first jaw member 902 can be arranged relative to the second jaw member 904 such that a pivot or trunnion pin (not shown) is inserted through the mounting holes 906 of the first jaw member 902 and the mounting holes 908 of the second jaw member 904 to pivotally couple the first jaw member 902 to the second jaw member 904 .
  • Other suitable means for coupling the first jaw member 902 and the second jaw member 904 are contemplated within the scope of this disclosure.
  • surgical end effector 901 may be adapted to perform multiple functions.
  • surgical end effector 901 may include angled tissue engagement surfaces 910 for transecting tissue. Suitable tissue engagement surfaces 910 are described, for example, in connection with FIGS. 132-142 .
  • the first jaw member 902 may include an interior surface 912 and the second jaw member 904 may include an interior surface 914 .
  • the first interior surface 912 and the second interior surface 914 may be configured to grip, pass, and/or manipulate tissue and/or surgical implements such as needles 915 for suturing tissue. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 153-168 .
  • the surgical end effector 901 may also include electrodes 916 and/or another electrically active surface for sealing blood vessels during a surgical procedure.
  • the electrodes 916 may be configured to deliver radio frequency (RF) energy to tissue clamped between the first jaw member 902 and the second jaw member 904 when in a closed position to weld/fuse the tissue, which may be transected by translating a cutting member.
  • RF radio frequency
  • Suitable electrodes 916 are described, for example, in connection with FIGS. 6-10 and FIGS. 153-168 .
  • the surgical end effector 901 may be releasably attached to a shaft assembly 903 . An operator or a surgeon may attach surgical end effector 901 to shaft assembly 903 to perform a surgical procedure. Suitable techniques and mechanisms for releasably attaching the surgical end effector 901 to the shaft assembly 903 are described, for example, in connection with FIGS. 106-115 .
  • the surgical end effector 901 may include an actuation mechanism.
  • the actuation mechanism may comprise a closure mechanism for moving the first jaw member relative to the second jaw member.
  • the actuation mechanism may comprise a firing mechanism for transecting tissue grasped between the first jaw member and the second jaw member.
  • the closure and firing may be accomplished by separate mechanisms, which may be driven separately or contemporaneously. Alternatively, the closure and firing may be accomplished by a single mechanism. Suitable closure mechanisms and suitable firing mechanisms are described, for example, in connection with FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • the actuation mechanism 920 may include a reciprocating member 918 similar to the axially movable member 3016 described herein above.
  • the reciprocating member 918 or a cam pin 924 thereof, may be received within a cam slot 922 .
  • Distal and proximal movement of the reciprocating member 918 may cause the cam pin 924 to translate within the cam slot 922 , which may, in turn, cause the first jaw member 902 to pivot from an open position (e.g., proximal position of the reciprocating member 918 ) to a closed (e.g., distal position of the reciprocating member 918 ).
  • both jaw members may comprise cam slot 922 and the reciprocating member 918 may define a pair of cam pins.
  • the reciprocating member 918 may comprise an I-beam member adapted to slide over the first jaw member 902 and the second jaw member 904 to close the first jaw member 902 and the second jaw member 904 , and/or to provide a clamping force tending to force the first jaw member 902 and the second jaw member 904 together.
  • the reciprocating member 918 may include a cutting blade 926 .
  • the cutting blade 926 may be attached to the reciprocating member 918 and situated such that it can be extended and retracted with the reciprocating member 918 .
  • the cutting blade 926 may be extended to transect tissue or material present between the first jaw member 902 and the second jaw member 904 .
  • the first jaw member 902 may include an exterior surface 928 .
  • the exterior surface of first jaw member 902 may include a first tissue gripping portion 930 .
  • the second jaw member 904 may also include an exterior surface 932 .
  • the exterior surface 932 of second jaw member 904 may include a second tissue gripping portion 934 .
  • the first tissue gripping portion 930 and second tissue gripping portion 934 may grip tissue by contacting and temporarily adhering to tissue.
  • the first gripping portion 930 and the second gripping portion 934 may contact and bluntly dissect tissue while the first jaw member 902 and the second jaw member 904 is moving relative to each other from the closed position to the open position.
  • the surgical end effector 901 may be utilized during a surgical procedure to dissect tissue.
  • the first gripping portion 930 and the second gripping portion 934 may contact and temporarily adhere to a first and second tissue portions (not shown) respectively such that when the first jaw member 902 is moved relative to the second jaw member 904 from a closed position to an open position, the first tissue portion is separated from the second tissue portion along facial planes while substantially preserving locoregional architecture and structural integrity of vessels and nerves.
  • the first gripping portion 930 and the second gripping portion 934 may be configured to create operative space during a surgical procedure by bluntly separating (dissecting) tissue layers as the first jaw member 902 is moved relative to the second jaw member 904 .
  • the first gripping portion 930 and the second gripping portion 934 may be formed onto distal sections of the exterior surfaces 928 and 932 of the first and second jaw members 902 and 904 by applying a coating.
  • the first and second gripping portions 930 and 934 are attached to the exterior surfaces 928 and 932 of their respective jaw members by an adhesive.
  • the first and second gripping portions 930 and 934 are press fitted onto distal portions of the exterior surfaces 928 and 932 .
  • Other techniques and attachment means suitable for attaching or forming a gripping portion onto an exterior surface are contemplated by the current disclosure.
  • the first and second gripping portions 930 and 934 may include materials with high coefficient of friction to grip tissue as tissue slides relative to the first and second jaw members 902 and 904 upon moving the first and second jaw members 902 and 904 relative to each other to the open position thereby separating (dissecting) tissue layers along fascial planes while substantially preserving locoregional architecture and structural integrity of vessels and nerves.
  • first and second gripping portions 930 and 934 examples include but are not limited to Silicone based elastomers, styrenic-based thermoplastic elastomers (TPE), polyisoprene, low density polyethylene, polypropylene, sanoprene, silicone, polyurethane, natural rubber, isoplast, liquid crystal polymer (LCP), etc.
  • TPE styrenic-based thermoplastic elastomers
  • polyisoprene low density polyethylene
  • polypropylene polypropylene
  • sanoprene silicone
  • polyurethane silicone
  • natural rubber isoplast
  • LCP liquid crystal polymer
  • the first and second gripping portions 930 and 934 may include a semi-rigid material sufficiently flexible to contour without shearing upon tissue contact.
  • the first and second gripping portions 930 and 934 may include a non-allergenic biocompatible material.
  • the first and second gripping portions 930 and 934 may comprise a material with a low Young's modulus and high yield strain such as an elastomer.
  • Suitable elastomers include but are not limited to Silicone based elastomers, styrenic-based thermoplastic elastomers (TPE), polyisoprene, low density polyethylene, polypropylene, sanoprene, silicone, polyurethane, natural rubber, isoplast, liquid crystal polymer (LCP), etc.
  • the first and second gripping portions 930 and 934 may include gripping features 936 .
  • the gripping features 936 may be sufficiently flexible to contour without shearing upon tissue contact.
  • the gripping features 936 may be in the form of protrusions 938 .
  • the gripping features 936 may be in the form of depressions 940 .
  • the gripping features 936 may be spatially arranged in a gripping pattern 942 .
  • Gripping pattern 942 may include a plurality of protrusions 938 .
  • the gripping pattern may include a plurality of depressions 940 .
  • the gripping pattern 942 may include a plurality of alternating protrusions 938 and depressions 940 .
  • the gripping pattern 942 may include four protrusions 938 .
  • gripping pattern 942 may include a plurality of protrusions 940 spatially arranged in a circle. Other arrangements are possible and within the scope of the present disclosure. As illustrated in FIG. 122 , gripping pattern 942 may include a plurality of protrusions 938 spatially arranged in multiple rows wherein each row includes several protrusions 938 aligned along the length of the row. Each row may include alternating protrusions 938 and depressions 940 .
  • the gripping pattern 942 may include vertical protrusions 938 that extend horizontally on gripping portion 930 . As illustrated in FIG., the vertical protrusions 938 may extend in opposing directions. In certain embodiments, as illustrated in FIG. 124 , the protrusions 938 may extend in parallel rows. In at least one embodiment, as illustrated in FIG. 125 , gripping pattern 942 includes a first plurality of parallel protrusions 938 a , and a second plurality of parallel protrusions 938 b , wherein the first plurality 938 a is in a slanted arrangement with the second plurality 938 b . In at least one embodiment, as illustrated in FIG. 125 , the gripping portion 930 may include a herringbone pattern.
  • the gripping pattern 942 may define vertical protrusions 938 that extend horizontally on gripping portion 930 in a non linear fashion.
  • the non-linear protrusions 938 may extend in a in a zigzag fashion.
  • the non-linear protrusions 938 may extend in parallel rows.
  • the non-linear protrusions 938 may extend in opposing directions.
  • an end effector 500 comprises a first jaw member 502 A and a second jaw member 502 B.
  • the first jaw member 502 A is movable relative to the second jaw member 502 B between an open position ( FIGS. 132 and 136 ) and a closed position ( FIGS. 133 , 134 , and 137 ) to clamp tissue between the first jaw member 502 A and the second jaw member 502 B.
  • the first jaw member 502 A comprises angled tissue-contacting surfaces 504 A and 506 A.
  • the second jaw member 502 B comprises angled tissue-contacting surfaces 504 B and 506 B.
  • the first jaw member 502 A comprises a first positively-angled tissue-contacting surface 504 A and a first negatively-angled tissue-contacting surface 506 A.
  • the second jaw member 502 B comprises a second positively-angled tissue-contacting surface 504 B and a second negatively-angled tissue-contacting surface 506 B.
  • the terms “positively-angled” and “negatively-angled” refer to the direction in which a tissue-contacting surface is angled relative to the body of the jaw member comprising the tissue-contacting surface and a clamping plane of the jaw member.
  • a first jaw member 502 A′ and a second jaw member 502 B′ are shown in a closed position such as to clamp tissue between the opposed jaw members 502 A′ and 502 B′.
  • This closed position is analogous to the closed position shown in FIGS. 133 , 134 , 135 , 137 , and 142 .
  • the first jaw member 502 A′ comprises a first jaw body 503 A′, a first tissue gripping element 507 A′, and a first clamping plane 505 A.
  • the second jaw member 502 B′ comprises a second jaw body 503 B′, a second tissue gripping element 507 B′, and a second clamping plane 505 B.
  • the tissue gripping elements and the clamping planes of the jaw members of an end effector are in an opposed orientation when the jaw members are in a closed position such as to clamp tissue between opposed jaw members.
  • the first jaw member 502 A′ comprises a first positively-angled tissue-contacting surface 504 A′ forming an angle ( ⁇ ) relative to the first clamping plane 505 A and away from the first jaw body 503 A′ at the periphery of the first tissue gripping element 507 A′ of the first jaw member 502 A′.
  • the first jaw member 502 A′ comprises a first negatively-angled tissue-contacting surface 506 A′ forming an angle ( ⁇ ) relative to the first clamping plane 505 A and toward from the first jaw body 503 A′ at the periphery of the first tissue gripping element 507 A′ of the jaw member 502 A′.
  • the term “positively-angled” is used to specify tissue-contacting surfaces that angle away from a clamping plane and that angle away from the jaw body at the periphery of the tissue gripping element of the jaw member comprising the positively-angled tissue-contacting surface.
  • the term “negatively-angled” is used to specify tissue-contacting surfaces that angle away from a clamping plane and that angle toward the jaw body at the periphery of the tissue gripping element of the jaw member comprising the negatively-angled tissue-contacting surface.
  • the second jaw member 502 B′ comprises a second positively-angled tissue-contacting surface 504 B′ forming an angle ( ⁇ ) relative to the second clamping plane 505 B and away from the second jaw body 503 B′ at the periphery of the second tissue gripping element 507 B′ of the second jaw member 502 B′.
  • the second jaw member 502 B′ comprises a second negatively-angled tissue-contacting surface 506 A′ forming an angle ( ⁇ ) relative to the second clamping plane 505 B and toward from the second jaw body 503 B′ at the periphery of the second tissue gripping element 507 B′ of the second jaw member 502 B′.
  • the first jaw member 502 A comprises a first jaw body 503 A and a first tissue gripping element 507 A
  • the second jaw member 502 B comprises a second jaw body 503 B and a second tissue gripping element 507 B.
  • the first positively-angled tissue-contacting surface 504 A of the first jaw member 502 A is angled away from the first jaw body 503 A at the periphery of the first tissue gripping element 507 A.
  • the first negatively-angled tissue-contacting surface 506 A of the first jaw member 502 A is angled toward the first jaw body 503 A at the periphery of the first tissue gripping element 507 A.
  • the second positively-angled tissue-contacting surface 504 B of the second jaw member 502 B is angled away from the second jaw body 503 B at the periphery of the second tissue gripping element 507 B.
  • the second negatively-angled tissue-contacting surface 506 B of the second jaw member 502 B is angled toward the second jaw body 503 B at the periphery of the second tissue gripping element 507 B.
  • first positively-angled tissue-contacting surface 504 A opposes the second negatively-angled tissue-contacting surface 506 B.
  • first negatively-angled tissue-contacting surface 506 A opposes the second positively-angled tissue-contacting surface 504 B.
  • the first positively-angled tissue-contacting surface 504 A and the first negatively-angled tissue-contacting surface 506 A are disposed along substantially the entire length of the first jaw member 502 A.
  • the second positively-angled tissue-contacting surface 504 B and the second negatively-angled tissue-contacting surface 506 B are disposed along substantially the entire length of the second jaw member 502 B.
  • the end effector 500 comprises an “I-beam” member 508 , which in some embodiments, may function as a closure member and/or a tissue-cutting member.
  • the I-beam member 508 may operate in a manner similar to that described herein above with respect to the axially movable member 3016 described herein above.
  • the I-beam member 508 may be sized and configured to fit at least partially within channels in the first jaw member 502 A and the second jaw member 502 B.
  • the I-beam member 508 may operably translate along the channels in the first jaw member 502 A and the second jaw member 502 B, for example, between a first, proximally retracted position correlating with the jaw members 502 A and 502 B being at an open position, and a second, distally advanced position correlating with the jaw members 502 A and 502 B being at a closed position.
  • the I-beam member 508 may be configured to operably translate within the channels in the first and second jaw members 502 A and 502 B to close the jaw members using a camming action and/or to advance a cutting member through the first and second tissue gripping elements 507 A and 507 B to transect tissue clamped between the first and second jaw members 502 A and 502 B.
  • the movement of the first jaw member 502 A relative to the second jaw member 502 B between an open position ( FIGS. 132 and 136 ) and a closed position ( FIGS. 133 , 134 , and 137 ) to clamp tissue between the first jaw member 502 A and the second jaw member 502 B may be actuated with a suitable closure actuation mechanism.
  • Translation of the I-beam member between a retracted position and an advanced position may be actuated with a suitable translation actuation mechanism.
  • Suitable closure actuation mechanisms and suitable translation actuation mechanisms are described, for example, in connection with FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • an end effector 510 comprises a first jaw member 512 A and a second jaw member 512 B.
  • the first jaw member 512 A is movable relative to the second jaw member 512 B between an open position ( FIGS. 139 and 140 ) and a closed position (no shown) to clamp tissue between the first jaw member 512 A and the second jaw member 512 B.
  • the first jaw member 512 A comprises angled tissue-contacting surfaces 514 A and 516 A.
  • the second jaw member 512 B comprises angled tissue-contacting surfaces 514 B and 516 B.
  • the first jaw member 512 A comprises a first positively-angled tissue-contacting surface 514 A and a first negatively-angled tissue-contacting surface 516 A.
  • the second jaw member 512 B comprises a second positively-angled tissue-contacting surface 514 B and a second negatively-angled tissue-contacting surface 516 B.
  • the first jaw member 512 A comprises a first jaw body 513 A and a first tissue gripping element 517 A
  • the second jaw member 512 B comprises a second jaw body 513 B and a second tissue gripping element 517 B.
  • the first positively-angled tissue-contacting surface 514 A of the first jaw member 512 A is angled away from a first jaw body 513 A at the periphery of the first tissue gripping element 517 A.
  • the first negatively-angled tissue-contacting surface 516 A of the first jaw member 512 A is angled toward the first jaw body 513 A at the periphery of the first tissue gripping element 517 A.
  • the second positively-angled tissue-contacting surface 514 B of the second jaw member 512 B is angled away from a second jaw body 513 B at the periphery of the second tissue gripping element 517 B.
  • the second negatively-angled tissue-contacting surface 516 B of the second jaw member 512 B is angled toward the second jaw body 513 B at the periphery of the second tissue gripping element 517 B.
  • first positively-angled tissue-contacting surface 514 A opposes the second negatively-angled tissue-contacting surface 516 B.
  • first negatively-angled tissue-contacting surface 516 A opposes the second positively-angled tissue-contacting surface 514 B.
  • the first positively-angled tissue-contacting surface 514 A is disposed along a proximal portion of the length of the first jaw member 512 A.
  • the second positively-angled tissue-contacting surface 514 B is disposed along a proximal portion of the length of the second jaw member 512 B.
  • the first negatively-angled tissue-contacting surface 516 A is disposed along substantially the entire length of the first jaw member 512 A.
  • the second negatively-angled tissue-contacting surface 516 B is disposed along substantially the entire length of the second jaw member 502 B.
  • the end effector 510 comprises an “I-beam” member 518 , which in some embodiments, may function as a closure member and/or a tissue-cutting member.
  • the I-beam member 518 may be sized and configured to fit at least partially within channels in the first jaw member 512 A and the second jaw member 512 B.
  • the I-beam member 518 may translate along the channels in the first jaw member 512 A and the second jaw member 512 B, for example, between a first, proximally retracted position correlating with the jaw members 512 A and 512 B being at an open position, and a second, distally advanced position correlating with the jaw members 512 A and 512 B being at a closed position.
  • the I-beam member 518 may be configured to operably translate within the channels in the first and second jaw members 512 A and 512 B to close the jaw members using a camming action and/or to advance a cutting member through the first and second tissue gripping elements 517 A and 517 B to transect tissue clamped between the first and second jaw members 512 A and 512 B.
  • the movement of the first jaw member 512 A relative to the second jaw member 512 B between an open position ( FIGS. 139 and 140 ) and a closed position (not shown) to clamp tissue between the first jaw member 512 A and the second jaw member 512 B may be actuated with a suitable closure actuation mechanism.
  • Translation of the I-beam member between a retracted position and an advanced position may be actuated with a suitable translation actuation mechanism.
  • Suitable closure actuation mechanisms and suitable translation actuation mechanisms are described, for example, in connection with FIGS. 64-82 , 83 - 91 and 92 - 96 .
  • the first jaw member 512 A and the second jaw member 512 B comprise a first distal textured portion 519 A and second distal textured portion 519 B, respectively.
  • the first distal textured portion 519 A of the first jaw member 512 A is disposed distal and directly adjacent to the proximal tissue gripping element 517 A of the first jaw member 512 A comprising the first positively-angled tissue-contacting surface 514 A.
  • the first positively-angled tissue-contacting surface 514 A does not extend distally along the length of the first jaw member 512 A into the first distal textured portion 519 A.
  • the second distal textured portion 519 B of the second jaw member 512 B is disposed distal and directly adjacent to the proximal tissue gripping element 517 B of the second jaw member 512 B comprising the second positively-angled tissue-contacting surface 514 B.
  • the second positively-angled tissue-contacting surface 514 B does not extend distally along the length of the second jaw member 512 B into the second distal textured portion 519 B.
  • the first and second distal textured portions 519 A and 519 B of the first and second jaw members 512 A and 512 B may be opposed and may allow the end effector 510 to grip, pass, and/or manipulate surgical implements such as needles for suturing tissue, in addition to gripping tissue, for example, during dissection operations. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 116-131 and 154 - 164 .
  • the first jaw member 512 A and the second jaw member 512 B comprise a first gripping portion 521 A and second gripping portion 521 B, respectively.
  • the first gripping portion 521 A is disposed on an outwardly-facing surface of the first jaw member 512 A
  • the second gripping portion 521 B is disposed on an outwardly-facing surface of the second jaw member 512 B.
  • the gripping portions 521 A and 521 B may function to aid in tissue dissection as described, for example, in connection with FIGS. 116-131 and 154 - 164 .
  • FIG. 141 is a perspective view of an end effector 510 ′ similar to the end effector 510 shown in FIGS. 139 and 140 , but comprising electrodes 522 located in the second tissue gripping element 517 B of the second jaw member 516 B and located between the second positively-angled tissue-contacting surface 514 B and the second negatively-angled tissue-contacting surface 516 B.
  • the electrodes 522 may be configured to deliver RF energy to tissue clamped between the first jaw member 512 A and the second jaw member 512 B when in a closed position to weld/fuse the tissue, which may be transected by translating the I-beam member 518 comprising a cutting member.
  • an end-effector in accordance with the embodiments described in this specification may comprise at least one or more electrodes comprising any suitable shape and orientation, as described, for example, in this specification.
  • the second jaw member 516 B also comprises an offset electrode 524 at the distal tip 525 configured to deliver RF energy to tissue during dissection operations, for example.
  • the first distal textured portion 519 A and second distal textured portion 519 B may also be electrodes configured, for example, to deliver RF energy to tissue during dissection operations. This electrode functionality is described, for example, in connection with FIGS. 154-164 .
  • an end effector 530 comprises a first jaw member 532 A and a second jaw member 532 B shown in a closed position clamping tissue 545 between the jaw members.
  • the first jaw member 532 A comprises a first positively-angled tissue-contacting surface 534 A and a first negatively-angled tissue-contacting surface 536 A.
  • the second jaw member 532 B comprises a second positively-angled tissue-contacting surface 534 B and a second negatively-angled tissue-contacting surface 536 B.
  • the tissue 545 physically contacts the angled tissue-contacting surfaces 534 A, 534 B, 536 A, and 536 B.
  • the physical contact between the tissue 545 and the angled tissue-contacting surfaces 534 A, 534 B, 536 A, and 536 B compresses the tissue 545 between the first jaw member 532 A and the second jaw member 532 B.
  • the clamping of the tissue between the first jaw member 532 A and the second jaw member 532 B compresses the tissue 545 between the mutually opposed tissue-contacting surfaces 536 A and 534 B, and also between the mutually opposed tissue-contacting surfaces 534 A and 536 B, which establishes a tortuous deformation in the compressed tissue 545 .
  • the tortuous deformation improves the clamping action of the end effector 530 on the tissue 545 , which in turn, improves the welding/fusion of the tissue 545 and/or the transection of the tissue 545 .
  • the tissue 545 can be welded/fused, for example, by the application of RF energy through electrodes 542 located in the tissue gripping element of the second jaw member 532 B and located between the second positively-angled tissue-contacting surface 534 B and the second negatively-angled tissue-contacting surface 536 B.
  • the tissue 545 can be transected, for example, by translating the I-beam member 538 , which translates the cutting member 541 through the clamped tissue 545 .
  • an end effector may comprise a first jaw member comprising a first positively-angled tissue-contacting surface and a first negatively-angled tissue-contacting surface, and a second jaw member comprising a second positively-angled tissue-contacting surface and a second negatively-angled tissue-contacting surface.
  • the angled tissue-contacting surfaces may form angles ( ⁇ ) relative to a clamping plane as described, for example, in connection with FIG. 138 .
  • the magnitude of the angle ( ⁇ ) between a tissue contacting surface and a clamping plane may range from 5-degrees to 85-degrees or any sub-range subsumed therein such as, for example, from 10-degrees to 80-degrees, from 20-degrees to 70-degrees, from 30-degrees to 60-degrees, from 40-degrees to 50-degrees, from 25-degrees to 50-degrees, or from 30-degrees to 45-degrees.
  • angled tissue-contacting surfaces may independently form angles relative to respective clamping planes.
  • the angle formed by the angled tissue-contacting surfaces may be substantially the same or different in a given end effector.
  • two opposed angled tissue-contacting surfaces e.g., a first positively-angled tissue-contacting surface and an opposed second negatively-angled tissue-contacting surface
  • ⁇ 1 a common angle relative to respective clamping planes
  • two other opposed angled tissue-contacting surfaces e.g., a first negatively-angled tissue-contacting surface and an opposed second positively-angled tissue-contacting surface
  • an angled tissue-contacting surface may extend a predetermined distance normal to a respective clamping plane coincident with a horizontal tissue contacting portion of a jaw member.
  • first positively-angled tissue-contacting surface 504 A′ extends a distance normal to the first clamping plane 505 A
  • the second positively-angled tissue-contacting surface 504 B′ extends a distance normal to the second clamping plane 505 B.
  • first negatively-angled tissue-contacting surface 506 A′ extends a distance normal to the first clamping plane 505 A
  • the second negatively-angled tissue-contacting surface 506 B′ extends a distance normal to the second clamping plane 505 B.
  • an angled tissue-contacting surface may extend a distance between 0.025 inch to 0.25 inch normal to a respective clamping plane, or any sub-range subsumed therein such as, for example, 0.025 inch to 0.01 inch or 0.025 inch to 0.05 inch.
  • angled tissue-contacting surfaces shown in FIGS. 132 through 142 are illustrated as being planar surfaces, it is to be appreciated that in some embodiments, the angled tissue-contacting surfaces may be curved surfaces or a combination of planar surfaces and curved surfaces.
  • end effectors comprising angled tissue-contacting surfaces may be configured to operably couple to robotic surgical systems such as, for example, the robotic surgical systems described in connection with, for example, FIGS. 1-45 .
  • end effectors having angled tissue-contacting surfaces may be configured to operably couple to hand-held surgical devices such as, for example, the hand-held surgical devices described in connection with FIGS. 46-63 .
  • the angled tissue-contacting surfaces described in connection with FIGS. 132 through 142 provide various advantages to end effectors configured to grip/clamp tissue, weld/fuse tissue, transect tissue, or any combination of these operations.
  • the positively-angled tissue contacting surfaces are integral with the outer surfaces of the jaw members (i.e., formed from a single piece of material).
  • the positively-angled tissue contacting surfaces provide for a thicker jaw member structure in the thickness dimension (labeled dimension T in FIGS. 141 and 142 ).
  • the thicker jaw member structure increases the strength and stiffness of the jaw members, which provides improved gripping/clamping load to tissue.
  • a thicker jaw member structure provided by positively-angled tissue contacting surfaces may increase the moment of inertia of the jaw members by 20-30% relative to jaw members comprising co-planar tissue-contacting surfaces.
  • An increased moment of inertia may provide an improved weld zone for fusing and cauterizing tissue clamped in an end effector comprising angled tissue-contacting surfaces by providing a more focused area for RF energy to enter and fuse tissue.
  • any of the electrosurgical tools described herein may be energized utilizing current/energy paths extending from the generator or other signal source (such as generator 3002 ) through conductors, such as the supply 3012 and return 3014 conductors (see FIG. 6 ), through the shaft assembly to the electrode or electrodes.
  • the current paths may be provided by wires that extend through the shaft assembly. Wires, however, must be configured to avoid kinking, twisting or other deformation at the various articulation and rotation joints of the tools, including the articulation joint 3500 described herein.
  • an electrosurgical tool may utilize components of the shaft assembly as current paths for energizing electrosurgical electrodes. This may eliminate the need for wires and simplify articulation and rotation of the surgical tool.
  • a rotary connector assembly may be utilized to allow a rotary drive shaft or other internal component of the shaft assembly to provide an energized current path between a generator and the end effector and/or an electrode thereof.
  • the rotary connector may be configured to maintain a connection between the energized current path and the end effector despite rotation of the shaft and/or end effector.
  • a return path may be formed by conductive components of the shaft and end effector such as, for example, a skin of the shaft, the I-beam member or other knife, portions of the various jaw members, etc., as described herein
  • FIGS. 143-146 illustrate one embodiment of a rotary connector assembly 1100 installed in an end effector 550 and shaft assembly 560 as described herein with respect to FIGS. 64-81 .
  • FIG. 143 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 illustrating an example installation of the rotary electrode assembly 1100 .
  • FIG. 144 is an exploded view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 both installed on the rotary drive shaft 630 (indicated by reference numbers 1100 ′, 1102 ′, 1104 ′) and exploded (indicated by reference numbers 1100 , 1102 , 1104 ).
  • FIG. 143 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 illustrating an example installation of the rotary electrode assembly 1100 .
  • FIG. 144 is an exploded view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode
  • FIG. 145 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 with a rotary drive head 632 in a proximal position.
  • FIG. 146 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 with the rotary drive head 632 in a distal position.
  • the rotary electrode assembly 1100 may be positioned within the end effector drive housing 608 and may comprise an outer contact 1102 and an inner contact 1103 .
  • the outer contact 1102 may be positioned around an inner wall of the end effector drive housing 608 .
  • the outer contact 1102 may be in the shape of a cylinder or other figure of revolution.
  • the outer contact 1102 may be in electrical communication with one or more electrodes 1112 in the end effector 550 via one or more leads, such as lead 1110 .
  • the lead 1110 may be in physical contact with the outer contact 1102 and may extend through the lower jaw member 602 B to the electrode 1112 as shown.
  • the lead 1110 may be fastened to the electrode 1112 in any suitable manner including, for example, with a solder or other similar joint.
  • multiple energized electrodes may be utilized with one lead 1110 directed to each electrode.
  • the lead 1110 may be insulated so as to avoid electrical communication with other portions of the end effector 550 and shaft assembly 560 .
  • the inner contact 1103 may be physically coupled to the rotary drive shaft 630 , for example, proximal from the hex coupling portion 634 , as shown.
  • the inner contact 1103 may be in electrical contact with the outer contact 1102 .
  • the inner contact 1103 may be in physical contact with the outer contact 1102 .
  • the inner contact 1103 may maintain electrical contact with the outer contact 1102 as the rotary drive shaft 630 and/or the end effector 560 rotates.
  • the outer contact 1102 may be a figure of revolution such that the inner contact 1103 is in physical contact with the contact 1102 as the rotary drive shaft 630 rotates.
  • the inner contact 1103 may also be a figure of revolution.
  • the inner contact 1103 may comprise a ringed brush 1104 and a grooved conductor 1106 .
  • the grooved conductor 1106 may be positioned around the rotary drive shaft 630 proximal from the hex coupling portion 634 .
  • the grooved conductor 1106 may define a groove 1107 to receive the ringed brush 1104 .
  • the ringed brush 1104 may have a diameter larger than that of the groove 1107 .
  • the ringed brush 1104 may define a slot 1105 .
  • the slot 1105 may allow the diameter of the ringed brush 1104 to expand and contract.
  • the diameter of the ringed brush 1104 may be expanded in order to place it over the remainder of the grooved conductor 1106 and into the slot 1107 .
  • its diameter may be contracted. In this way, the tendency of the ringed brush 1104 to resume its original diameter may cause the ringed brush 1104 to exert an outward force on the outer contact 1102 tending to keep the ringed brush 1104 and outer contact 1102 in physical and electrical contact with one another.
  • the inner contact 1103 may be in electrical communication with a suitable shaft component, thus completing the current path from the electrode 1112 to a generator, such as the generator 3002 described herein above with respect to FIG. 6 and/or an internal generator.
  • the inner contact 1103 and particularly the grooved conductor 1106 , is in physical and electrical contact with a coiled wire component 1114 wrapped around the rotary drive shaft 630 .
  • the coiled wire component 1114 may extend proximally through the shaft where it may be coupled directly or indirectly to the generator.
  • the coiled wire component 1114 may also act as a spring to provide rigidity to the rotary drive shaft 630 around an articulation joint, for example, as described herein with respect to FIGS.
  • the rotary drive shaft 630 may comprise an outer insulated sleeve.
  • the inner contact 1103 may be in electrical contact with the outer insulated sleeve in addition to or instead of the coiled wire component 1114 .
  • An example insulated sleeve 1166 is described herein with respect to FIG. 151 .
  • Another example of a potential insulated sleeve is the constraining member 3660 described herein above with respect to FIG. 45 .
  • the a current return path from the electrode 1112 may be provided by various components of the end effector 550 and shaft assembly 560 including, for example, the jaw members 602 A, 602 B, the end effector drive housing 608 and other shaft members extending proximally. Accordingly, portions of the energized current path may be electrically isolated from other components of the end effector 550 and shaft assembly 560 .
  • the lead 1110 between the outer contact 1102 and electrode 1112 may be surrounded by an electrical insulator 1111 , as shown.
  • the outer contact 1102 and inner contact 1103 may be isolated from other components of the end effector 550 and shaft assembly 560 .
  • an insulator 1118 may be positioned to electrically isolate the outer contact 1102 from the end effector drive housing 608 .
  • An insulator 1116 may be positioned to isolate the outer contact 1102 and inner contact 1103 from the rotary drive shaft 630 .
  • the insulator 1118 may be an additional component or, in some embodiments, may be provided as a TEFLON or other insulating coating. As illustrated in FIGS. 145-146 , the insulator 1116 may extend proximally, also isolating the coiled wire component 1114 from both the rotary drive shaft 630 and from other components of the shaft assembly 560 such as, for example, the end effector drive housing 608 .
  • the outer contact 1102 may be extended proximally and distally such that electrical contact between the outer contact 1102 and inner contact 1103 is maintained with the rotary drive shaft 630 and rotary drive head 632 in different proximal and distal positions.
  • the rotary drive shaft 630 and rotary drive head 632 are pulled proximally such that the male hex coupling portion 636 of the drive shaft head 632 is received by hex shaft coupling portion 609 of the end effector drive housing 608 .
  • rotation of the rotary drive shaft 630 may cause rotation of the end effector drive housing 608 and end effector 550 , as described herein.
  • FIG. 145 the rotary drive shaft 630 and rotary drive head 632 are pulled proximally such that the male hex coupling portion 636 of the drive shaft head 632 is received by hex shaft coupling portion 609 of the end effector drive housing 608 .
  • rotation of the rotary drive shaft 630 may cause rotation of the end effector drive housing 608 and end effector
  • the inner contact 1103 may be in physical and electrical contact with the outer contact 1102 .
  • the rotary drive shaft 630 and rotary drive head 632 are pushed distally such that the hex coupling portion 634 of the rotary drive head 632 receives the threaded rotary drive nut 606 .
  • rotation of the rotary drive shaft 630 may cause rotation of the threaded rotary drive nut 606 that, in turn, causes rotation of the threaded rotary drive member 604 and distal and/or proximal translation of the I-beam member 620 .
  • the inner contact 1103 may be in physical and electrical contact with the outer contact 1102 .
  • FIGS. 147-148 are cross-sectional views of one embodiment of the end effector 550 and shaft assembly 560 where a longitudinal length of the outer contact 1108 is selected such that the rotary connector assembly 1100 alternately creates and breaks an electrical connection limited by the longitudinal position of the inner contact 1103 .
  • the rotary drive shaft 630 and rotary drive head 632 are positioned proximally such that the male hex coupling portion 636 is received into the hex shaft coupling portion 609 of the distal shaft portion 608 .
  • the inner contact 1103 (and specifically the ring brush 1104 ) may contact not the contact 1102 , but instead may contact the insulator 1108 .
  • FIG. 147 there may not be a completed electrical connection between the electrode 1112 and the generator when the rotary drive shaft 630 and rotary drive head 632 are in the proximal position shown in FIG. 147 .
  • the inner contact 1103 may be in electrical (and physical) contact with the contact 1102 , completing the current path between the electrode 1112 and generator.
  • FIGS. 147-148 may be useful in various different contexts. For example, it may be undesirable to energize the electrode 1112 when the jaw members 602 A, 602 B are open.
  • the jaw members 602 A, 602 B are closed by the rotary drive shaft 630 when the shaft 630 is positioned distally ( FIG. 148 ) and not when the shaft 630 is positioned proximally ( FIG. 147 ). Accordingly, in the configuration of FIGS. 147-148 , the current path from the generator to the electrode 1112 is complete only when the rotary drive shaft 630 and rotary drive head 632 are positioned distally.
  • the end effector 550 may be removable from the end effector drive housing 608 and, for example, may be interchangeable with other end effectors (not shown). Examples of mechanisms for implementing interchangeable electrodes are provided herein with respect to FIGS. 106-115 .
  • the lead 1110 may comprise an end effector portion and a shaft portion connected by a connector assembly.
  • FIGS. 149-150 illustrate one embodiment of the end effector 550 and shaft assembly 560 showing a configuration including the lead portions 1130 , 1132 and connector assembly 1120 . For example, as illustrated in FIGS.
  • a proximal portion 603 of the jaw member 602 B may be received within the end effector drive housing 608 .
  • the proximal portion 603 of the jaw member 602 B is illustrated within the end effector drive housing 608 in FIG. 149 and separated from the end effector drive housing 608 in FIG. 150 .
  • the connector assembly 1120 may comprise an end effector side-lead 1122 and a shaft-side lead 1124 .
  • the respective leads may be brought into physical and electrical contact with one another when the proximal portion 603 is received into the distal shaft portion 608 , as illustrated in FIG. 149 .
  • the connector assembly 1120 may be configured so as to maintain electrical isolation of the energized current path from other components of the end effector 550 and shaft 560 .
  • insulation 1126 , 1128 may electrically isolate the connector leads 1122 , 1124 .
  • the insulation 1126 , 1128 may take the form of plastic or other insulating shrink tubes positions over all or part of the leads 1122 , 1124 .
  • the insulation 1126 , 1128 may comprise a TEFLON or other insulating coating applied to portions of the leads 1122 , 1124 and/or surrounding material.
  • FIG. 151 illustrates a cross-sectional view of an alternate embodiment of an end effector 1140 and shaft assembly 1142 showing another context in which a rotary connector assembly 1147 may utilized.
  • the end effector 1140 may comprise jaw members 1146 A, 1146 B that may operate similar to the jaw members 3008 A, 3008 B, 602 A, 602 B, etc., described herein above.
  • the jaw members 1146 A, 1146 B may be actuated by an I-beam member 1156 that, in the illustrated embodiment, may comprise a cutting edge 1148 for severing tissue between the jaw members 1146 A, 1146 B.
  • the I-beam member 1156 may be driven distally and proximally by rotation of a threaded I-beam member shaft 1154 .
  • the I-beam member shaft 1154 may be rotated via a main drive shaft 1149 .
  • the main drive shaft 1149 may be coupled to a gear 1150 .
  • the gear 1150 may be in mechanical communication with a gear 1152 coupled to the I-beam member shaft 1154 as illustrated.
  • the end effector 1140 may comprise an electrode 1158 that may operate in a manner similar to that of electrode 1112 , etc., described herein above.
  • An insulated lead 1160 may be electrically coupled to the electrode 1158 and may extend proximally to an outer contact 1162 .
  • the outer contact 1162 may be positioned on an inner wall of a shaft member 1141 in a manner similar to that in which the contact 1102 is coupled to the inner wall 1108 of the end effector drive housing 608 .
  • a inner contact 1164 (e.g., brush) may be positioned around the main drive shaft 1149 such that the brush 1164 is in electrical contact with the contact 1162 .
  • the brush 1164 may also be in electrical contact with a conductive sleeve 1166 positioned around the main drive shaft 1149 .
  • the sleeve 1166 may be electrically isolated from the main drive shaft 1149 and from the remainder of the shaft 1142 , for example, by insulators 1168 , 1170 .
  • FIG. 152 illustrates a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 83-91 illustrating another example installation of a rotary electrode assembly 1100 including the outer contact 1102 and inner contact 1103 as described herein.
  • FIGS. 153-168 illustrate various embodiments of an electrosurgical end effector 700 comprising a proximal tissue treatment zone 706 and a distal tissue treatment zone 708 .
  • the proximal tissue treatment zone 706 utilizes various electrodes and cutting edges to treat tissue, for example, as described herein above with respect to end effector 3000 shown in FIGS. 6-10 .
  • Treatment provided by the proximal tissue treatment zone 706 may include, for example, clamping, grasping, transsection, coagulation, welding, etc.
  • the distal tissue treatment zone 708 may also comprise one or more electrodes 742 and may be utilized to apply treatment to tissue and, in some embodiments, to perform other surgical tasks such as grasping and manipulating suturing needles and/or other surgical implements.
  • FIG. 153 illustrates one embodiment of the end effector 700 .
  • the end effector 700 may be utilized with various surgical tools including those described herein.
  • the end effector 700 comprises a first jaw member 720 and a second jaw member 710 .
  • the first jaw member 720 may be movable relative to the second jaw member 1004 between open positions (shown in FIGS. 153-156 ) and closed positions (shown in FIGS. 166 and 165 ).
  • the jaw members 720 , 710 may be pivotably coupled at a pivot point 702 .
  • the jaw members 710 , 720 may be curved with respect to a longitudinal tool axis “LT,” as illustrated.
  • the jaw members 710 , 720 may be instead straight, as illustrated with respect to jaw members 3008 A, 3008 B shown in FIGS. 6-8 .
  • the end effector 700 may be transitioned from an open position to a closed position to capture tissue between the jaw members 720 , 710 .
  • the tissue captured between the jaw members 720 , 710 may be clamped or grasped along portions of the jaw members 710 , 720 for application of one or more tissue treatments such as transection, welding, dissection, and electrocauterization.
  • the proximal tissue treatment zone 706 of the end effector 700 may treat tissue in a manner similar to that described above with respect to the end effector 3000 .
  • Tissue between the jaw members 720 , 710 in the proximal treatment zone may be secured in place, for example, by teeth 734 a , 734 b . See, e.g., FIGS. 154-159 .
  • the jaw members 720 , 710 may each define respective longitudinal channels 812 , 810 .
  • An I-beam member 820 ( FIGS.
  • distal and proximal translation of the I-beam member 820 may also transition the jaw members 720 , 710 between open and closed positions.
  • the I-beam member 820 may comprise flanges positioned to contact cam surfaces of the respective jaw members 720 , 710 , similar to the manner in which flanges 3016 A, 3016 B contact cam surfaces 3026 A, 3026 B in the embodiment described with respect to FIGS. 6-10 .
  • the I-beam member 820 may also define a distally directed cutting element 822 that may transect tissue between the jaw members 720 , 710 as the I-beam member 820 advances distally.
  • the jaw members 720 , 710 may comprise tissue-contacting surfaces 730 a , 730 b , 732 a , 732 b similar to the tissue-contacting surfaces 504 A, 504 B, 506 A, 506 B described herein above with respect to FIGS. 132-137 .
  • the proximal tissue treatment zone 706 may additionally comprise various electrodes and/or current paths for providing electrosurgical (RF) and/or other energy to tissue.
  • the second jaw member 710 may comprise a supply electrode 848 positioned around the channel 810 . See e.g., FIGS. 153-155 and 157 .
  • the supply electrode 848 may be in electrical communication with a generator for providing RF energy, such as the generator 3002 described herein above.
  • the supply electrode 848 may be coupled to one or more supply connector leads 846 .
  • the supply connector leads 846 may extend distally through a shaft assembly to a tool interface 302 and/or handle 2500 and ultimately to a generator, such as the generator 3002 or an internal generator, as described herein.
  • the supply electrode 848 may be electrically insulated from other elements of the end effector 700 .
  • the supply electrode (indicated on either side of the channel 810 by 848 a and 848 b ) may be positioned on an insulating layer 844 (again indicated on either side of the channel 810 by 844 a , 844 b ).
  • the insulating layer 844 may be made of any suitable insulating material, such as ceramic, TEFLON, etc.
  • the insulating layer 844 may be applied as a coating to the jaw member 810 .
  • the supply electrode 848 may operate in conjunction with a return path to apply bipolar RF energy to tissue, such as tissue 762 shown in FIG. 159 .
  • the return path may comprise various electrically conducting components of the end effector 700 .
  • the return path may comprise bodies of the first and second jaws 720 , 710 , the I-beam member 820 , the tissue-contacting surfaces 730 a , 730 b , 732 a , 732 b , etc.
  • the supply electrode 848 is offset from the return path.
  • the supply electrode 848 is positioned such that when the jaw members 720 , 710 are in the closed position illustrated in FIG. 159 , the electrode 848 is not in electrical contact (e.g., physical contact) with conductive portions of the end effector 700 that may serve and a return path for RF current.
  • the first jaw member 720 may comprise an opposing member 878 (indicated in FIG.
  • the opposing member 878 may be electrically insulating. In this way, it may be possible to close the jaw members 720 , 710 without shorting the supply electrode 848 to the return path. In some embodiments, the opposing member 878 may be selectively insulating.
  • the opposing member 878 may comprise a positive temperature coefficient (PTC) body, as described above, that is conductive below a temperature threshold (e.g., about 100° C.) and insulating at higher temperatures. In this way, the opposing member 878 may form part of the return path, but only until its temperature exceeds the temperature threshold. For example, if the supply electrode 848 were to be electrically shorted to an opposing member 878 comprising PTC or a similar material, the short would quickly drive the temperature of the opposing member 878 about the threshold, thus relieving the short.
  • PTC positive temperature coefficient
  • the distal tissue treatment zone 708 may define distal grasping surfaces 790 a , 790 b positioned on jaw members 710 , 720 , respectively.
  • the distal grasping surfaces 790 a , 790 b may be positioned distally from the proximally treatment zone 706 .
  • the distal grasping surfaces 790 a , 790 b may, in some embodiments, be configured to grasp and hold tissue.
  • the distal grasping surfaces 790 a , 790 b may comprise grip elements 741 for increasing friction between the grasping surfaces 790 a , 790 b and tissue and/or surgical implements, as described herein below.
  • the grip elements 741 may comprise any suitable texture defined by the surfaces 790 a , 790 b , a friction enhancing coating applied to the surfaces 790 a , 790 b , etc.
  • the distal tissue treatment zone 708 may also be configured to apply monopolar and/or bipolar electrosurgical (e.g., RF) energy.
  • the surface 790 a may be and/or comprise a distal supply electrode 742 .
  • the surface 790 a itself may be made from a conductive material and therefore be the distal supply electrode 742 .
  • the conductive electrode 742 may comprise a conductive material coupled to an insulating layer 845 .
  • the insulating layer 845 may be a dielectric layer and/or a coating applied to the jaw member 710 .
  • the distal supply electrode 742 may be in electrical contact with a generator, such as the generator 3002 described herein above and/or an internal generator.
  • the distal supply electrode 742 may be in electrical contact with the supply electrode 848 of the proximal tissue treatment zone 706 . In this way, the distal supply electrode 742 may be energized when the proximal supply electrode 848 is energized. In some embodiments, the distal supply electrode 742 may be energized independent of the proximal supply electrode 848 . For example, the distal supply electrode 742 may be coupled to the generator via a dedicated supply line (not shown).
  • a return path for electrical energy provided by the distal supply electrode 742 may also comprise any suitable conductive portion of the end effector including, for example, the jaw member 710 , the jaw member 720 , the I-beam member 820 , etc.
  • the distal grasping surface 790 b may also form a distal return electrode 748 that may be part of the return path from the distal supply electrode 742 .
  • the distal return electrode 748 may be in electrical contact with the jaw member 720 that may, in turn, be in electrical contact with a generator such as the generator 3000 .
  • the distal return electrode 748 may be formed in any suitable manner.
  • the surface 790 b may be conductive, thus forming the electrode 748 .
  • a conductive material may be applied to the surface 790 b , where the conductive material makes up the electrode 748 .
  • the distal supply electrode 742 is not offset.
  • the distal supply electrode 742 is aligned with the return electrode 748 .
  • the end effector 700 may be configured such that the distal supply electrode 742 does not come into contact with the return electrode 748 when the jaw members 720 , 710 are in the closed position.
  • a gap 780 may exist between the distal supply electrode 742 and the distal return electrode 748 when the jaw members 720 , 710 are in a closed position. The gap 780 is visible in FIGS. 160 , 161 , 162 , 163 , 164 and 165 .
  • the gap 780 may be generated as a result of the dimensions (e.g., thickness) of various components of the proximal tissue treatment zone 706 .
  • the opposing member 878 and the proximal supply electrode 848 may extend towards the axis LT such that when the electrode 848 and member 878 are in physical contact with one another (e.g., when the jaw members 720 , 710 are in the closed position), the distal grasping surfaces 790 a,b are not in physical contact with one another. Any suitable combination of the opposing member 878 , the supply electrode 848 and the insulating layer 844 may be utilized to bring about this result.
  • the insulating layer 844 and the insulating layer 845 may be continuous (e.g., form a continuous insulating layer).
  • the proximal supply electrode 848 and distal supply electrode 742 may be continuous (form a continuous electrode).
  • the opposing member 878 is also illustrated.
  • the electrode 848 e.g., the portion of the continuous electrode in the proximal zone 706
  • the thickness of the electrode 848 may prevent the distal grasping surfaces 790 a,b from contacting one another, thus forming the gap 780 .
  • FIG. 161 illustrates an alternative embodiment of the end effector 700 where the electrode 742 and the electrode 848 are of the same thickness.
  • the thickness of the opposing member 878 is selected such that when the electrode 848 contacts the opposing member 878 , the distal grasping surfaces 790 a,b do not contact one another, forming the gap 780 .
  • FIG. 162 illustrates another embodiment where the insulating layer 844 is thicker than the insulating layer 845 , thus preventing contact between the distal grasping surfaces 790 a, b and forming the gap 780 .
  • the distal supply electrode 742 may extend distally to a portion of a distal edge 886 of the jaw member 710 .
  • FIG. 153 shows a distal electrode portion 744 .
  • the distal electrode portion 744 may be utilized by a clinician to apply electrosurgical energy to tissue that is not necessarily between the jaw members 720 , 710 .
  • the distal electrode portion 744 may be utilized to provide bipolar and/or monopolar cauterization.
  • the distal electrode portion 744 may utilize a return path similar to the return paths described herein.
  • the respective jaw members may comprise external depressions and/or protrusions 800 , 802 similar to the protrusions described herein with respect to FIGS.
  • the depressions and/or protrusions 800 , 802 may be conductive and may provide possible return paths for current passed via the distal electrode portion 744 .
  • the insulating layer 845 may extend distally under the distal electrode portion, as shown in FIG. 164 .
  • FIG. 165 shows an embodiment where the distal tissue treatment zone 708 is relatively shorter than the zone 708 shown in the other figures.
  • the distal tissue treatment zone 708 extends proximally by a lesser distance from the distal tip of the end effector 700 than the zones 708 illustrated elsewhere.
  • the distal tissue treatment zone 708 may be utilized as a general surgical grasper.
  • the distal grasping surfaces 790 a,b may be utilized to grasp and manipulate tissue.
  • the distal grasping surfaces 790 a,b may be utilized to grasp and manipulate artificial surgical implements such as needles, clips, staples, etc.
  • FIGS. 160 , 161 , 162 and 163 show a surgical implement 896 secured between the distal grasping surfaces 790 a, b .
  • the surgical implement 896 has a round cross-section (e.g., a suturing needle).
  • the surgical implement 896 has a non-round cross-section (e.g., a trailing end of a suturing needle, a clip, etc.).
  • the distal treatment zone 708 may or may not apply electrosurgical energy to objects between the tissue surfaces 790 a,b .
  • FIG. 167 illustrates one embodiment of the jaw member 710 with the electrodes 878 , 742 removed to illustrate the insulating layers 845 , 844 .
  • the insulating layers 845 , 844 define a common, continuous layer 899 .
  • a distal portion of the continuous layer 899 may make up the insulating layer 845 while a proximal portion of the insulating layer 899 may make up the insulating layer 844 .
  • the insulating layer 844 defines a notch 897 corresponding to the channel 810 , as shown, such that the I-beam member 820 may traverse the channel 810 without contacting the continuous layer 899 .
  • the insulating layer 845 defines a distal portion 843 that extends over a part of the distal end 886 of the jaw member 710 .
  • the distal portion 843 may be positioned under the distal electrode portion 744 .
  • FIG. 166 illustrates an embodiment of the jaw member 710 , as illustrated in FIG. 167 , with the electrodes 742 , 848 installed.
  • the proximal supply electrode may comprise regions 850 a , 850 b , 850 c . Regions 850 a and 850 b are positioned on either side of the channel 810 . Region 850 c is positioned distal from a distal-most portion of the channel 810 .
  • FIG. 168 illustrates an alternate embodiment where the third region 850 c is omitted. Accordingly, first and second regions 850 a , 850 b of the electrode 848 extend distally to the distal supply electrode 742 .
  • a surgical instrument can comprise an end effector and a shaft assembly coupled proximal to the end effector.
  • the end effector comprises a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the shaft assembly comprises an articulation joint configured to independently articulate the end effector in a vertical direction and a horizontal direction.
  • the surgical instrument also comprises at least one active electrode disposed on at least one of the first jaw member and the second jaw member. The at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • a surgical instrument can comprise an end effector and a shaft assembly coupled proximal to the end effector.
  • the end effector comprises a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the shaft assembly comprises a head rotation joint configured to independently rotate the end effector.
  • the surgical instrument also comprises at least one active electrode disposed on at least one of the first jaw member and the second jaw member. The at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • a surgical tool can comprise an end effector, comprising a first jaw member, a second jaw member and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the surgical tool further comprises a shaft assembly proximal to the surgical end effector, wherein the surgical end effector is configured to rotate relative to the shaft assembly, and a rotary drive shaft configured to transmit rotary motions.
  • the rotary drive shaft is selectively movable axially between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to apply the rotary motions to the closure mechanism when in the first axial position, and wherein the rotary drive shaft is configured to apply the rotary motions to the end effector when in the second axial position.
  • the closure mechanism of the surgical tool comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward to the second jaw member.
  • the I-beam member is connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the rotary drive shaft is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut.
  • Rotary motions of the rotary drive nut actuate translation of the threaded rotary drive member and the I-beam in the axial direction.
  • first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally refracted position and a distally advanced position.
  • a surgical tool can comprise an end effector, comprising a first jaw member, a second jaw member, and a first actuation mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position.
  • the surgical tool further comprises a shaft assembly proximal to the surgical end effector, and a rotary drive shaft configured to transmit rotary motions.
  • the rotary drive shaft is selectively moveable between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to engage and selectively transmit the rotary motions to the first actuation mechanism when in the first position, and wherein the rotary drive shaft is configured to disengage from the actuation mechanism when in the second position.
  • the first actuation mechanism comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward to the second jaw member, the I-beam member connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the rotary drive shaft is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut, and wherein rotary motions of the rotary drive nut actuate translation of the threaded rotary drive member and the I-beam in the axial direction.
  • first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, and wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally retracted position and a distally advanced position.
  • a surgical tool can comprise an end effector comprising a first jaw member, and a second jaw member, wherein the first jaw member is movable relative to the second jaw member between an open position and a closed position.
  • the surgical tool also comprises first and second actuation mechanisms, and a clutch member configured to selectively engage and transmit rotary motion to either the first or the second actuation mechanism.
  • the first actuation mechanism comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward the second jaw member, the I-beam member connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the clutch member is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut, and wherein rotary motions of the rotary drive nut actuates translation of the threaded rotary drive member and the I-beam in the axial direction.
  • first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, and wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally retracted position and a distally advanced position.
  • a surgical tool can comprise an interchangeable end effector, a handle assembly and a shaft assembly.
  • the interchangeable end effector comprises a first jaw member including a first electrode and a second jaw member including a second electrode.
  • the first jaw member is moveable relative to the second jaw member between a first position and a second position.
  • the handle assembly is proximal to said surgical end effector.
  • the shaft assembly extends between the handle assembly and the interchangeable end effector.
  • the shaft assembly comprises a rotary drive shaft configured to transmit rotary motions.
  • the rotary drive shaft is selectively axially moveable relative to the shaft assembly between a plurality of discrete positions.
  • a coupling arrangement can releasably attach the interchangeable end effector to the shaft assembly.
  • a surgical tool can comprise an interchangeable end and a shaft assembly.
  • the interchangeable end may comprise a first jaw member including a first electrode, a second jaw member including a second electrode, a closure mechanism configured to move the first jaw member relative to the second jaw member between a first position and a second position, and an actuation driver configured to drive the closure mechanism.
  • the shaft assembly extends proximal to the interchangeable end effector and comprises a rotary drive shaft configured to transmit rotary motions to the actuation driver.
  • a coupling arrangement can releasably attach the interchangeable end effector to the shaft assembly.
  • a surgical tool can comprise, an interchangeable end effector and a shaft assembly.
  • the end effector comprises a first jaw member including a first electrode, a second jaw member including a second electrode, a closure mechanism configured to move the first jaw member relative to the second jaw member between a first position and a second position, and an actuation driver configured to drive the closure mechanism.
  • the shaft assembly extends proximal to the interchangeable end effector and comprises a rotary drive shaft configured to transmit rotary motions.
  • the interchangeable end effector is releasably attached to the shaft assembly.
  • the rotary drive shaft is selectively extendable axially to operably engage and transmit the rotary motions to the actuation driver.
  • a surgical end effector can comprise a first jaw member and a second jaw member.
  • the first jaw member defines an exterior surface on a distal portion thereof.
  • the second jaw member defines an exterior surface on a distal portion thereof.
  • the first jaw member is moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion.
  • a surgical tool can comprise a surgical end effector, a handle assembly and a drive shaft.
  • the surgical end effector comprises a first jaw member defining an exterior surface on a distal portion thereof and a second jaw member defining an exterior surface on a distal portion thereof.
  • the first jaw member is moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion.
  • the handle assembly is proximal to said surgical end effector.
  • the drive shaft extends between said surgical end effector and said handle assembly and is configured to move the first jaw relative to the second jaw between the first position and the second position in response to actuation motions in the handle.
  • a surgical tool can comprise an actuation system, a surgical end effector and a shaft assembly.
  • the actuation system is for selectively generating a plurality of control motions.
  • the surgical end effector is operably coupled to said actuation system and comprises a first jaw member and a second jaw member.
  • the first jaw member defines an exterior surface on a distal portion thereof.
  • the second jaw member defines an exterior surface on a distal portion thereof.
  • the first jaw member is movably supported relative to the second jaw member between an open position and a closed position in response to closure motions generated by said actuation system.
  • At least one of the exterior surfaces of the first and second jaw members includes a tissue adhering portion.
  • the shaft assembly is for transmitting said plurality of control motions to the surgical end effector.
  • An end effector can comprise a first jaw member and a second jaw member.
  • the first jaw member is movable relative to the second jaw member between an open position and a closed position.
  • the first jaw member comprises a first positively-angled tissue-contacting surface.
  • the second jaw member comprises a second positively-angled tissue-contacting surface.
  • At least one of the first jaw member and the second jaw member comprises at least one active electrode disposed on the jaw member adjacent to the positively-angled tissue-contacting surface.
  • the at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • An end effector can comprise a first jaw member and a second jaw member.
  • the first jaw member is movable relative to the second jaw member between an open position and a closed position.
  • the first jaw member comprises a first positively-angled tissue-contacting surface and a first negatively-angled tissue-contacting surface.
  • the second jaw member comprises a second positively-angled tissue-contacting surface and a second negatively-angled tissue-contacting surface.
  • the first positively-angled tissue-contacting surface opposes the second negatively-angled tissue-contacting surface when the first and second jaw members are in the closed position.
  • the first negatively-angled tissue-contacting surface opposes the second positively-angled tissue-contacting surface when the first and second jaw members are in the closed position.
  • An end effector can comprise a first jaw member and a second jaw member.
  • the first jaw member is movable relative to the second jaw member between an open position and a closed position.
  • the first jaw member comprises a first proximal tissue-contacting portion, a first distal textured portion adjacent to the first proximal tissue-contacting portion, a first positively-angled tissue-contacting surface disposed along the first proximal tissue-contacting portion, and at least one first electrode located in the first proximal tissue-contacting portion adjacent to the first positively-angled tissue-contacting surface.
  • the second jaw member comprises a second proximal tissue-contacting portion, a second distal textured portion adjacent to the second proximal tissue-contacting portion, a second positively-angled tissue-contacting surface disposed along the second proximal tissue-contacting portion, and at least one second electrode located in the second proximal tissue-contacting portion adjacent to the second positively-angled tissue-contacting surface.
  • the at least one first electrode and the at least one second electrode are in a bipolar configuration to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • a surgical tool can comprise an end effector.
  • the end effector can comprise first and second jaw members, a shaft assembly, a rotatable drive shaft, a first electrical contact and a second electrical contact.
  • the first and second jaw members are pivotable relative to one another from an open position to a closed position.
  • An electrode is positioned on the first jaw member.
  • the shaft assembly extends proximally from the end effector, is at least partially hollow, and defines an inner wall.
  • the rotatable drive shaft extends proximally within the shaft assembly.
  • the first electrical contact is coupled to the inner wall of the shaft assembly and positioned around at least a portion of the drive shaft.
  • the second electrical contact is coupled to and rotatable with the drive shaft.
  • the second electrical contact is positioned to be electrically connected to the first electrical contact as the drive shaft rotates.
  • a surgical end effector for use with a surgical tool can comprise a first jaw member and a second jaw member.
  • the second jaw member is pivotable relative to the first jaw member from a first open position to a closed position, where the first and second jaw members are substantially parallel in the closed position.
  • the second jaw member comprises an offset proximal supply electrode and a distal supply electrode.
  • the offset proximal supply electrode is positioned to contact an opposing member of the first jaw member when the first and second jaw members are in the closed position.
  • the distal supply electrode is positioned distal of the offset proximal electrode and is aligned with a conductive surface of the first jaw member when the first and second jaw members are in the closed position.
  • a surgical end effector for use with a surgical tool can comprise first and second jaw members pivotable from a first open position to a closed position.
  • the first and second jaw members define a proximal tissue treatment region and distal tissue treatment region.
  • the second jaw member comprises, in the proximal tissue treatment region, an offset proximal supply electrode positioned such that when the jaw members are in the closed position the proximal supply electrode is in physical contact with the first jaw member and is not in electrical contact with the first jaw member.
  • the second jaw member further comprises, in the distal tissue treatment region, a distal supply electrode positioned such that when the jaw members are in the closed position, the distal supply electrode is aligned with a conductive surface of the first jaw member.
  • the jaw members When the jaw members are in the closed position, the jaw members define a physical gap between the distal supply electrode and the conductive surface of the first jaw member.
  • the devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure.
  • reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.

Abstract

A surgical end effector can comprise a first jaw member and a second jaw member. The first jaw member may define an exterior surface on a distal portion thereof. The second jaw member may define an exterior surface on a distal portion thereof. The first jaw member may be moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members may include a tissue gripping portion.

Description

    BACKGROUND
  • Over the years a variety of minimally invasive robotic (or “telesurgical”) systems have been developed to increase surgical dexterity as well as to permit a surgeon to operate on a patient in an intuitive manner. Many of such systems are disclosed in the following U.S. patents which are each herein incorporated by reference in their respective entirety: U.S. Pat. No. 5,792,135, entitled “Articulated Surgical Instrument For Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity”, U.S. Pat. No. 6,231,565, entitled “Robotic Arm DLUS For Performing Surgical Tasks”, U.S. Pat. No. 6,783,524, entitled “Robotic Surgical Tool With Ultrasound Cauterizing and Cutting Instrument”, U.S. Pat. No. 6,364,888, entitled “Alignment of Master and Slave In a Minimally Invasive Surgical Apparatus”, U.S. Pat. No. 7,524,320, entitled “Mechanical Actuator Interface System For Robotic Surgical Tools”, U.S. Pat. No. 7,691,098, entitled Platform Link Wrist Mechanism”, U.S. Pat. No. 7,806,891, entitled “Repositioning and Reorientation of Master/Slave Relationship in Minimally Invasive Telesurgery”, and U.S. Pat. No. 7,824,401, entitled “Surgical Tool With Writed Monopolar Electrosurgical End Effectors”. Many of such systems, however, have in the past been unable to generate the magnitude of forces required to effectively cut and fasten tissue. In addition, existing robotic surgical systems are limited in the number of different types of surgical devices that they may operate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The features and advantages of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of example embodiments of the invention taken in conjunction with the accompanying drawings, wherein:
  • Various example embodiments are described herein by way of example in conjunction with the following FIGS. wherein:
  • FIG. 1 is a perspective view of one embodiment of a robotic controller.
  • FIG. 2 is a perspective view of a robotic surgical arm cart/manipulator of a robotic system operably supporting a plurality of surgical tool embodiments.
  • FIG. 3 is a side view of one embodiment of the robotic surgical arm cart/manipulator depicted in FIG. 2.
  • FIG. 4 is a perspective view of a cart structure with positioning linkages for operably supporting robotic manipulators that may be used with surgical tool embodiments.
  • FIG. 5 is a perspective view of a surgical tool embodiment and a surgical end effector embodiment.
  • FIG. 6 is a perspective view of one embodiment of an electrosurgical tool in electrical communication with a generator
  • FIG. 7 shows a perspective view of one embodiment of the end effector of the surgical tool of FIG. 6 with the jaw members open and the distal end of an axially movable member in a retracted position.
  • FIG. 8 shows a perspective view of one embodiment of the end effector of the surgical tool of FIG. 6 with the jaw members closed and the distal end of an axially movable member in a partially advanced position.
  • FIG. 9 is a perspective view of one embodiment of the axially moveable member of the surgical tool of FIG. 6.
  • FIG. 10 is a section view of one embodiment of the electrosurgical end effector of the surgical tool of FIG. 6.
  • FIG. 11 is an exploded assembly view of one embodiment of an adapter and tool holder arrangement for attaching various surgical tool embodiments to a robotic system.
  • FIG. 12 is a side view of one embodiment of the adapter shown in FIG. 11.
  • FIG. 13 is a bottom view of one embodiment of the adapter shown in FIG. 11.
  • FIG. 14 is a top view of one embodiment of the adapter of FIGS. 11 and 12.
  • FIG. 15 is a partial bottom perspective view of one embodiment of a surgical tool.
  • FIG. 16 is a front perspective view of one embodiment of a portion of a surgical tool with some elements thereof omitted for clarity.
  • FIG. 17 is a rear perspective view of one embodiment of the surgical tool of FIG. 16.
  • FIG. 18 is a top view of one embodiment of the surgical tool of FIGS. 16 and 17.
  • FIG. 19 is a partial top view of one embodiment of the surgical tool of FIGS. 16-18 with the manually actuatable drive gear in an unactuated position.
  • FIG. 20 is another partial top view of one embodiment of the surgical tool of FIGS. 16-19 with the manually actuatable drive gear in an initially actuated position.
  • FIG. 21 is another partial top view of one embodiment of the surgical tool of FIGS. 16-20 with the manually actuatable drive gear in an actuated position.
  • FIG. 22 is a rear perspective view of another surgical tool embodiment.
  • FIG. 23 is a side elevational view of one embodiment of the surgical tool of FIG. 22.
  • FIG. 24 is a cross-sectional view of one embodiment of a portion of an articulation joint and end effector.
  • FIG. 24A illustrates one embodiment of the shaft assembly and articulation joint of FIG. 24 showing connections between distal cable sections and proximal cable portions.
  • FIG. 25 is an exploded assembly view of one embodiment of a portion of the articulation joint and end effector of FIG. 24.
  • FIG. 26 is a partial cross-sectional perspective view of one embodiment of the articulation joint and end effector portions depicted in FIG. 25.
  • FIG. 27 is a partial perspective view of an end effector and drive shaft assembly embodiment.
  • FIG. 28 is a partial side view of one embodiment of a drive shaft assembly.
  • FIG. 29 is a perspective view of one embodiment of a drive shaft assembly.
  • FIG. 30 is a side view of one embodiment of the drive shaft assembly of FIG. 29.
  • FIG. 31 is a perspective view of one embodiment of a composite drive shaft assembly.
  • FIG. 32 is a side view of one embodiment of the composite drive shaft assembly of FIG. 31.
  • FIG. 33 is another view of one embodiment of the drive shaft assembly of FIGS. 29 and 30 assuming an arcuate or “flexed” configuration.
  • FIG. 33A is a side view of one embodiment of a drive shaft assembly assuming an arcuate or “flexed” configuration.
  • FIG. 33B is a side view of one embodiment of another drive shaft assembly assuming an arcuate or “flexed” configuration.
  • FIG. 34 is a perspective view of a portion of another drive shaft assembly embodiment.
  • FIG. 35 is a top view of the drive shaft assembly embodiment of FIG. 34.
  • FIG. 36 is another perspective view of the drive shaft assembly embodiment of FIGS. 34 and 35 in an arcuate configuration.
  • FIG. 37 is a top view of the drive shaft assembly embodiment depicted in FIG. 36.
  • FIG. 38 is a perspective view of another drive shaft assembly embodiment.
  • FIG. 39 is another perspective view of the drive shaft assembly embodiment of FIG. 38 in an arcuate configuration.
  • FIG. 40 is a top view of the drive shaft assembly embodiment of FIGS. 38 and 39.
  • FIG. 41 is a cross-sectional view of the drive shaft assembly embodiment of FIG. 40.
  • FIG. 42 is a partial cross-sectional view of another drive shaft assembly embodiment.
  • FIG. 43 is another cross-sectional view of the drive shaft assembly embodiment of FIG. 42.
  • FIG. 44 is another cross-sectional view of a portion of another drive shaft assembly embodiment.
  • FIG. 45 is another cross-sectional view of one embodiment of the drive shaft assembly of FIG. 44.
  • FIG. 46 is a perspective view of another surgical tool embodiment.
  • FIG. 47 is a cross-sectional perspective view of the surgical tool embodiment of FIG. 46
  • FIG. 48 is a cross-sectional perspective view of a portion of one embodiment of an articulation system.
  • FIG. 49 is a cross-sectional view of one embodiment of the articulation system of FIG. 48 in a neutral position.
  • FIG. 50 is another cross-sectional view of one embodiment of the articulation system of FIGS. 48 and 49 in an articulated position.
  • FIG. 51 is a side elevational view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 52 is a rear perspective view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 53 is a rear elevational view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 54 is a front perspective view of a portion of one embodiment of the surgical tool of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 55 is a side elevational view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity.
  • FIG. 56 is an exploded assembly view of an example reversing system embodiment of the surgical tool of FIGS. 46-47.
  • FIG. 57 is a perspective view of a lever arm embodiment of the reversing system of FIG. 56.
  • FIG. 58 is a perspective view of a knife retractor button of one embodiment of the reversing system of FIG. 56.
  • FIG. 59 is a perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in actuatable engagement with the reversing gear.
  • FIG. 60 is a perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in an unactuated position.
  • FIG. 61 is another perspective view of a portion of the surgical tool embodiment of FIGS. 46-47 with portions thereof omitted for clarity and with the lever arm in actuatable engagement with the reversing gear.
  • FIG. 62 is a side elevational view of a portion of a handle assembly portion of the surgical tool embodiment of FIGS. 46-47 with a shifter button assembly moved into a position which will result in the rotation of the end effector when the drive shaft assembly is actuated.
  • FIG. 63 is another side elevational view of a portion of a handle assembly portion of one embodiment of the surgical tool of FIGS. 46-47 with the a shifter button assembly moved into another position which will result in the firing of the firing member in the end effector when the drive shaft assembly is actuated.
  • FIG. 64 is a perspective view of an embodiment of a multi-axis articulating and rotating surgical tool.
  • FIG. 65 is an exploded perspective view of various components of one embodiment of the surgical tool shown in FIG. 64.
  • FIG. 66 is a partial cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64, illustrating a rotary drive shaft engaging a rotary drive nut for actuating translation of an I-beam member and closure of a jaw assembly of an end effector.
  • FIG. 67 is a cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64, illustrating a rotary drive shaft engaging a rotary drive nut for actuating translation of an I-beam member and closure of a jaw assembly of an end effector.
  • FIG. 68 is a partial cross-sectional perspective view of one embodiment of the surgical tool shown in FIG. 64, illustrating a rotary drive shaft engaging a shaft coupling for actuating rotation of an end effector.
  • FIG. 69 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64, illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, and a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and closure of the jaw assembly of the end effector.
  • FIG. 70 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64, illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, and a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and opening of the jaw assembly of the end effector.
  • FIG. 71 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64, illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, and a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector.
  • FIG. 72 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64, illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, and a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector.
  • FIGS. 73 and 74 are side cross-sectional detail views of one embodiment of the surgical tool shown in FIG. 64, illustrating the engagement of cam surfaces of an I-beam member with anvil surfaces of a first jaw member to move the first jaw member relative to a second jaw member between an open position and a closed position.
  • FIG. 75 is an exploded view of the components comprising an embodiment of a multi-axis articulating and rotating surgical tool comprising a head locking mechanism.
  • FIG. 76 is an exploded view of spline lock components of one embodiment of the head locking mechanism of the surgical tool illustrated in FIG. 75.
  • FIG. 77 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75, illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and closure of the jaw assembly of the end effector, and an engaged spline lock preventing rotation of the end effector.
  • FIG. 78 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75, illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, a rotary drive shaft engaging a rotary drive nut for actuating translation of the I-beam member and opening of the jaw assembly of the end effector, and an engaged spline lock preventing rotation of the end effector.
  • FIG. 79 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 75, illustrating the jaw assembly of an end effector in an open position, an I-beam member in a proximally retracted position, a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector, and a disengaged spline lock allowing rotation of the end effector.
  • FIG. 80 is a side cross-sectional view of one embodiment of the surgical tool shown in FIG. 64, illustrating the jaw assembly of an end effector in a closed position, an I-beam member in a distally advanced position, a rotary drive shaft engaging a shaft coupling for actuating rotation of the end effector, and a disengaged spline lock allowing rotation of the end effector.
  • FIG. 81 is a side cross-sectional detail view of one embodiment of the surgical tool shown in FIG. 80.
  • FIG. 82 is a side cross-sectional detail view of one embodiment of the surgical tool shown in FIG. 78.
  • FIG. 83 is a cross sectional perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 84 is prospective view of a closure nut of one embodiment of the surgical tool of FIG. 83.
  • FIG. 85 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably disengaged with the rotary drive nut.
  • FIG. 86 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably engaged with the rotary drive nut.
  • FIG. 87 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the closure nut is operably disengaged from the rotary drive nut.
  • FIG. 88 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially extended.
  • FIG. 89 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially retracted.
  • FIG. 90 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially closed position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the I-beam member is at least partially retracted.
  • FIG. 91 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 83 wherein the first jaw member and the second jaw member are in an at least partially open position, wherein the rotary drive shaft is operably engaged with the rotary drive nut, and wherein the closure nut is operably engaged from the rotary drive nut.
  • FIG. 92 is a cross sectional perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 93 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially open position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the end effector drive housing.
  • FIG. 94 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the barrel cam.
  • FIG. 95 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is not operably engaged with any of the spline coupling portions.
  • FIG. 96 is a cross sectional elevation view of one embodiment of the surgical tool of FIG. 92 wherein the first jaw member and the second jaw member are in an at least partially closed position, and wherein the rotary drive shaft is operably engaged with spline coupling portion of the rotary drive nut.
  • FIG. 97 illustrates a perspective view of an end effector and an articulation joint of a surgical instrument in accordance with at least one embodiment illustrated with portions removed for the purposes of illustration.
  • FIG. 98 illustrates a detail view of a drive shaft in accordance with at least one embodiment configured to be translated within the end effector and the articulation joint of FIG. 97.
  • FIG. 99 illustrates a perspective view of a drive shaft in accordance with at least one alternative embodiment.
  • FIG. 100 illustrates an elevational view of one embodiment of the drive shaft of FIG. 99.
  • FIG. 101 illustrates an elevational view of one embodiment of the drive shaft of FIG. 99 illustrated in an articulated condition.
  • FIG. 102 illustrates a perspective view of a drive shaft assembly comprising a drive tube and a thread extending around the drive tube in accordance with at least one alternative embodiment.
  • FIG. 103 illustrates an elevational view of one embodiment of the drive shaft assembly of FIG. 102.
  • FIG. 104 illustrates a perspective view of a drive shaft assembly comprising a drive tube, a thread extending around the drive tube, and an inner core extending through the drive tube in accordance with at least one embodiment.
  • FIG. 105 illustrates an elevational view of one embodiment of the drive shaft assembly of FIG. 104.
  • FIG. 106 is a perspective view of a surgical tool having first and second jaw members in accordance with certain embodiments described herein.
  • FIG. 107 is cross sectional view of distal portions of one embodiment of the first and second jaw members of the surgical end tool shown in FIG. 106.
  • FIG. 108 is a perspective view of a surgical end effector and a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 109 is a prospective view of a jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 110 is a cross-sectional view of a surgical effector detached from a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 111 is a cross-sectional view of a surgical effector attached to a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 112 is a perspective view of multiple interchangeable surgical end effectors in accordance with certain embodiments described herein.
  • FIG. 113 is a perspective view of a surgical end effector including a cross sectional view of a jaw member in accordance with certain embodiments described herein.
  • FIG. 114 is a cross-sectional view of a surgical effector detached from a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 115 is a cross-sectional view of a surgical effector attached to a shaft assembly in accordance with certain embodiments described herein.
  • FIG. 116 is a perspective view of a surgical end effector having first and second jaws in accordance with certain embodiments described herein.
  • FIG. 117 is another perspective view of the surgical end effector shown in FIG. 116 including a cross sectional perspective view of a jaw member in accordance with certain embodiments described herein.
  • FIG. 118 is cross sectional view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 119 is cross sectional view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein
  • FIG. 120 is a perspective view of a first jaw member and a second jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 121 is a prospective view of a distal portion of a jaw member of a surgical end effector in accordance with certain embodiments described herein.
  • FIG. 122 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 123 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 124 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 125 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 126 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 127 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 128 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 129 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 130 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 131 is a top view of a gripping portion in accordance with certain embodiments described herein.
  • FIG. 132 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position and angled tissue-contacting surfaces along substantially the entire length of the jaw members.
  • FIG. 133 is another perspective view of one embodiment of the end effector shown in FIG. 132 with the first and second jaw members in a closed position.
  • FIG. 134 is a front view of one embodiment of the end effector shown in FIG. 133.
  • FIG. 135 is a cross-sectional view of one embodiment of the end effector shown in FIG. 134.
  • FIG. 136 is a side view of one embodiment of the end effector shown in FIG. 132.
  • FIG. 137 is a side view of one embodiment of the end effector shown in FIG. 133.
  • FIG. 138 is a schematic diagram showing a front view of one embodiment of an end effector having first and second jaw members, wherein each jaw member has two oppositely-angled tissue-contacting surfaces.
  • FIG. 139 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position and angled tissue-contacting surfaces along a portion of the length of the jaw members.
  • FIG. 140 is another perspective view of one embodiment of the end effector shown in FIG. 139.
  • FIG. 141 is a perspective view of one embodiment of an end effector having first and second jaw members in an open position, angled tissue-contacting surfaces along a portion of the length of the jaw members, and electrodes positioned between the two angled tissue-contacting surfaces on the second jaw member.
  • FIG. 142 is a cross-sectional view of one embodiment of an end effector having first and second jaw members in a closed position clamping tissue between the jaw members, wherein the first and second jaw members have opposed angled tissue-contacting surfaces.
  • FIG. 143 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 64-82 illustrating an example installation of a rotary electrode assembly.
  • FIG. 144 is an exploded view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly both installed and exploded.
  • FIG. 145 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly with a rotary drive head in a proximal position.
  • FIG. 146 is a cross-sectional view of one embodiment of the end effector and shaft assembly of FIG. 143 showing the rotary electrode assembly with the rotary drive head in a distal position.
  • FIGS. 147-148 are cross-sectional views of one embodiment of the end effector and shaft assembly of FIG. 143 where a longitudinal length of the outer contact is selected such that the rotary connector assembly alternately creates and breaks an electrical connection limited by the longitudinal position of the brush assembly.
  • FIGS. 149-150 illustrate one embodiment of the end effector and shaft assembly of FIG. 143 showing a configuration including lead portions and connector assembly between the end effector and the shaft assembly.
  • FIG. 151 illustrates a cross-sectional view one embodiment of an end effector and shaft assembly showing another context in which a rotary connector assembly may utilized.
  • FIG. 152 illustrates a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 83-91 illustrating another example installation of a rotary electrode assembly.
  • FIG. 153 illustrates one embodiment of an end effector that may be utilized with various surgical tools, including those described herein.
  • FIG. 154 illustrates one embodiment of the end effector of FIG. 153 showing a tissue contacting portion adjacent a longitudinal channel of the second jaw member of the end effector.
  • FIG. 155 illustrates one embodiment of the end effector of FIG. 153 showing an axial cross-section along a midline of the first jaw member showing a tissue-contacting portion disposed adjacent to a longitudinal channel of the first jaw member.
  • FIG. 156 illustrates a perspective view of one embodiment of the end effector of FIG. 153 in an open position.
  • FIG. 157 illustrates a top view of one embodiment of a second jaw member suitable for use with the end effector of FIG. 153.
  • FIG. 158 illustrates a bottom view of one embodiment of a first jaw member suitable for use with the end effector of FIG. 153.
  • FIG. 159 illustrates a front cross-sectional view of another embodiment of the end effector of FIG. 153 in a closed position.
  • FIGS. 160-165 illustrates side cross-sectional views of various embodiments of the end effector of FIG. 153
  • FIG. 166 illustrates another embodiment of the second jaw member suitable for use with the end effector of FIG. 153. in a closed position holding a surgical implement.
  • FIG. 167 illustrates one embodiment of the second jaw member suitable for use with the end effector of FIG. 153.
  • FIG. 168 illustrates another embodiment of the second jaw member suitable for use with the end effector of FIG. 153.
  • DETAILED DESCRIPTION
  • Applicant of the present application also owns the following patent applications that have been filed on even date herewith and which are each herein incorporated by reference in their respective entireties:
    • 1. U.S. patent application Ser. No. ______, entitled “Flexible Drive Member,” (Attorney Docket No. END7131USNP/120135).
    • 2. U.S. patent application Ser. No. ______, entitled “Coupling Arrangements for Attaching Surgical End Effectors to Drive Systems Therefor,” (Attorney Docket No. END7133USNP/120137).
    • 3. U.S. patent application Ser. No. ______, entitled “Rotary Actuatable Closure Arrangement for Surgical End Effector,” (Attorney Docket No. END7134USNP/120138).
    • 4. U.S. patent application Ser. No. ______, entitled “Interchangeable End Effector Coupling Arrangement,” (Attorney Docket No. END7136USNP/120140).
    • 5. U.S. patent application Ser. No. ______, entitled “Surgical End Effector Jaw and Electrode Configurations,” (Attorney Docket No. END7137USNP/120141.
    • 6. U.S. patent application Ser. No. ______, entitled “Multi-Axis Articulating and Rotating Surgical Tools,” (Attorney Docket No. END7138USNP/120142).
    • 7. U.S. patent application Ser. No. ______, entitled “Differential Locking Arrangements for Rotary Powered Surgical Instruments,” (Attorney Docket No. END7139USNP/120143).
    • 8. U.S. patent application Ser. No. ______, entitled “Interchangeable Clip Applier,” (Attorney Docket No. END7140USNP/120144).
    • 9. U.S. patent application Ser. No. ______, entitled “Firing System Lockout Arrangements for Surgical Instruments,” (Attorney Docket No. END7141USNP/120145).
    • 10. U.S. patent application Ser. No. ______, entitled “Rotary Drive Shaft Assemblies for Surgical Instruments with Articulatable End Effectors,” (Attorney Docket No. END7142USNP/120146).
    • 11. U.S. patent application Ser. No. ______, entitled “Rotary Drive Arrangements for Surgical Instruments,” (Attorney Docket No. END7143USNP/120147).
    • 12. U.S. patent application Ser. No. ______, entitled “Robotically Powered Surgical Device With Manually-Actuatable Reversing System,” (Attorney Docket No. END7144USNP/120148).
    • 13. U.S. patent application Ser. No. ______, entitled “Replaceable Clip Cartridge for a Clip Applier,” (Attorney Docket No. END7145USNP/120149).
    • 14. U.S. patent application Ser. No. ______, entitled “Empty Clip Cartridge Lockout,” (Attorney Docket No. END7146USNP/120150).
    • 15. U.S. patent application Ser. No. ______, entitled “Surgical Instrument System Including Replaceable End Effectors,” (Attorney Docket No. END7147USNP/120151).
    • 16. U.S. patent application Ser. No. ______, entitled “Rotary Support Joint Assemblies for Coupling a First Portion of a Surgical Instrument to a Second Portion of a Surgical Instrument,” (Attorney Docket No. END7148USNP/120152).
    • 17. U.S. patent application Ser. No. ______, entitled “Electrode Connections for Rotary Driven Surgical Tools,” (Attorney Docket No. END7149USNP/120153).
  • Applicant also owns the following patent applications that are each incorporated by reference in their respective entireties:
    • U.S. patent application Ser. No. 13/118,259, entitled “Surgical Instrument With Wireless Communication Between a Control Unit of a Robotic System and Remote Sensor”, U.S. Patent Application Publication No. 2011-0295270 A1;
    • U.S. patent application Ser. No. 13/118,210, entitled “Robotically-Controlled Disposable Motor Driven Loading Unit”, U.S. Patent Application Publication No. 2011-0290855 A1;
    • U.S. patent application Ser. No. 13/118,194, entitled “Robotically-Controlled Endoscopic Accessory Channel”, U.S. Patent Application Publication No. 2011-0295242;
    • U.S. patent application Ser. No. 13/118,253, entitled “Robotically-Controlled Motorized Surgical Instrument”, U.S. Patent Application Publication No. 2011-0295269 A1;
    • U.S. patent application Ser. No. 13/118,278, entitled “Robotically-Controlled Surgical Stapling Devices That Produce Formed Staples Having Different Lengths”, U.S. Patent Application Publication No. 2011-0290851 A1;
    • U.S. patent application Ser. No. 13/118,190, entitled “Robotically-Controlled Motorized Cutting and Fastening Instrument”, U.S. Patent Application Publication No. 2011-0288573 A1
    • U.S. patent application Ser. No. 13/118,223, entitled “Robotically-Controlled Shaft Based Rotary Drive Systems For Surgical Instruments”, U.S. Patent Application Publication No. 2011-0290854 A1;
    • U.S. patent application Ser. No. 13/118,263, entitled “Robotically-Controlled Surgical Instrument Having Recording Capabilities”, U.S. Patent Application Publication No. 2011-0295295 A1;
    • U.S. patent application Ser. No. 13/118,272, entitled “Robotically-Controlled Surgical Instrument With Force Feedback Capabilities”, U.S. Patent Application Publication No. 2011-0290856 A1;
    • U.S. patent application Ser. No. 13/118,246, entitled “Robotically-Driven Surgical Instrument With E-Beam Driver”, U.S. Patent Application Publication No. 2011-0290853 A1; and
    • U.S. patent application Ser. No. 13/118,241, entitled “Surgical Stapling Instruments With Rotatable Staple Deployment Arrangements”.
  • Certain example embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these example embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting example embodiments and that the scope of the various example embodiments of the present invention is defined solely by the claims. The features illustrated or described in connection with one example embodiment may be combined with the features of other example embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
  • FIG. 1 depicts a master controller 12 that is used in connection with a robotic arm slave cart 20 of the type depicted in FIG. 2. Master controller 12 and robotic arm slave cart 20, as well as their respective components and control systems are collectively referred to herein as a robotic system 10. Examples of such systems and devices are disclosed in U.S. Pat. No. 7,524,320 which has been herein incorporated by reference. Thus, various details of such devices will not be described in detail herein beyond that which may be necessary to understand various example embodiments disclosed herein. As is known, the master controller 12 generally includes master controllers (generally represented as 14 in FIG. 1) which are grasped by the surgeon and manipulated in space while the surgeon views the procedure via a stereo display 16. The master controllers 12 generally comprise manual input devices which preferably move with multiple degrees of freedom, and which often further have an actuatable handle for actuating tools (for example, for closing grasping jaws, applying an electrical potential to an electrode, or the like).
  • As can be seen in FIG. 2, the robotic arm cart 20 is configured to actuate a plurality of surgical tools, generally designated as 30. Various robotic surgery systems and methods employing master controller and robotic arm cart arrangements are disclosed in U.S. Pat. No. 6,132,368, entitled “Multi-Component Telepresence System and Method”, the full disclosure of which is incorporated herein by reference. As shown, the robotic arm cart 20 includes a base 22 from which, in the illustrated embodiment, three surgical tools 30 are supported. The surgical tools 30 are each supported by a series of manually articulatable linkages, generally referred to as set-up joints 32, and a robotic manipulator 34. These structures are herein illustrated with protective covers extending over much of the robotic linkage. These protective covers may be optional, and may be limited in size or entirely eliminated to minimize the inertia that is encountered by the servo mechanisms used to manipulate such devices, to limit the volume of moving components so as to avoid collisions, and to limit the overall weight of the cart 20. The cart 20 generally has dimensions suitable for transporting the cart 20 between operating rooms. The cart 20 is configured to typically fit through standard operating room doors and onto standard hospital elevators. The cart 20 would preferably have a weight and include a wheel (or other transportation) system that allows the cart 20 to be positioned adjacent an operating table by a single attendant.
  • Referring now to FIG. 3, robotic manipulators 34 as shown include a linkage 38 that constrains movement of the surgical tool 30. Linkage 38 includes rigid links coupled together by rotational joints in a parallelogram arrangement so that the surgical tool 30 rotates around a point in space 40, as more fully described in U.S. Pat. No. 5,817,084, the full disclosure of which is herein incorporated by reference. The parallelogram arrangement constrains rotation to pivoting about an axis 40 a, sometimes called the pitch axis. The links supporting the parallelogram linkage are pivotally mounted to set-up joints 32 (FIG. 2) so that the surgical tool 30 further rotates about an axis 40 b, sometimes called the yaw axis. The pitch and yaw axes 40 a, 40 b intersect at the remote center 42, which is aligned along a shaft 44 of the surgical tool 30. The surgical tool 30 may have further degrees of driven freedom as supported by manipulator 50, including sliding motion of the surgical tool 30 along the longitudinal tool axis “LT-LT”. As the surgical tool 30 slides along the tool axis LT-LT relative to manipulator 50 (arrow 40 c), remote center 42 remains fixed relative to base 52 of manipulator 50. Hence, the entire manipulator is generally moved to re-position remote center 42. Linkage 54 of manipulator 50 is driven by a series of motors 56. These motors actively move linkage 54 in response to commands from a processor of a control system. Motors 56 are also employed to manipulate the surgical tool 30. An alternative set-up joint structure is illustrated in FIG. 4. In this embodiment, a surgical tool 30 is supported by an alternative manipulator structure 50′ between two tissue manipulation tools.
  • Other embodiments may incorporate a wide variety of alternative robotic structures, including those described in U.S. Pat. No. 5,878,193, entitled “Automated Endoscope System For Optimal Positioning”, the full disclosure of which is incorporated herein by reference. Additionally, while the data communication between a robotic component and the processor of the robotic surgical system is described with reference to communication between the surgical tool 30 and the master controller 12, similar communication may take place between circuitry of a manipulator, a set-up joint, an endoscope or other image capture device, or the like, and the processor of the robotic surgical system for component compatibility verification, component-type identification, component calibration (such as off-set or the like) communication, confirmation of coupling of the component to the robotic surgical system, or the like.
  • A surgical tool 100 that is well-adapted for use with a robotic system 10 is depicted in FIGS. 5-6. FIG. 5 illustrates an additional embodiment of the surgical tool 100 and electrosurgical end effector 3000. As can be seen in FIG. 5, the surgical tool 100 includes an electrosurgical end effector 3000. The electrosurgical end effector 3000 may utilize electrical energy to treat and/or destroy tissue. The electrosurgical end effector 3000 generally comprises first and second jaw members 3008A, 3008B which may be straight, as shown in FIGS. 6-10, or curved as shown in various other figures described herein. One or both of the jaw members 3008A, 3008B generally comprise various electrodes for providing electrosurgical energy to tissue. The surgical tool 100 generally includes an elongate shaft assembly 200 that is operably coupled to the manipulator 50 by a tool mounting portion, generally designated as 300. Electrosurgical tools (e.g., surgical tools that include an electrosurgical end effector, such at the tool 100 and end effector 3000) may be used in any suitable type of surgical environment including, for example, open, laparoscopic, endoscopic, etc.
  • Generally, electrosurgical tools comprise one or more electrodes for providing electric current. The electrodes may be positioned against and/or positioned relative to tissue such that electrical current can flow through the tissue. The electrical current may generate heat in the tissue that, in turn, causes one or more hemostatic seals to form within the tissue and/or between tissues. For example, tissue heating caused by the electrical current may at least partially denature proteins within the tissue. Such proteins, such as collagen, for example, may be denatured into a proteinaceous amalgam that intermixes and fuses, or “welds”, together as the proteins renature. As the treated region heals over time, this biological “weld” may be reabsorbed by the body's wound healing process.
  • Electrical energy provided by electrosurgical tools may be of any suitable form including, for example, direct or alternating current. For example, the electrical energy may include high frequency alternating current such as radio frequency or “RF” energy. RF energy may include energy in the range of 300 kilohertz (kHz) to 1 megahertz (MHz). When applied to tissue, RF energy may cause ionic agitation or friction, increasing the temperature of the tissue. Also, RF energy may provide a sharp boundary between affected tissue and other tissue surrounding it, allowing surgeons to operate with a high level of precision and control. The low operating temperatures of RF energy enables surgeons to remove, shrink or sculpt soft tissue while simultaneously sealing blood vessels. RF energy works particularly well on connective tissue, which is primarily comprised of collagen and shrinks when contacted by heat.
  • In certain arrangements, some bi-polar (e.g., two-electrode) electrosurgical tools can comprise opposing first and second jaw members, where the face of each jaw can comprise a current path and/or electrode. In use, the tissue can be captured between the jaw faces such that electrical current can flow between the electrodes in the opposing jaw members and through the tissue positioned therebetween. Such tools may have to coagulate, seal or “weld” many types of tissues, such as anatomic structures having walls with irregular or thick fibrous content, bundles of disparate anatomic structures, substantially thick anatomic structures, and/or tissues with thick fascia layers such as large diameter blood vessels, for example. Some embodiments may include a knife or cutting edge to transect the tissue, for example, during or after the application of electrosurgical energy. With particular regard to cutting and sealing large diameter blood vessels, for example, such applications may require a high strength tissue weld immediately post-treatment.
  • FIG. 6 is a perspective view of one embodiment of the electrosurgical tool 100 in electrical communication with a generator 3002. The electrosurgical tool 100 in conjunction with the generator 3002 can be configured to supply energy, such as electrical energy, ultrasonic energy, and/or heat energy, for example, to the tissue of a patient. In the illustrated embodiment and in functionally similar embodiments, the generator 3002 is connected to electrosurgical tool 100 via a suitable transmission medium such as a cable 3010. In one embodiment, the generator 3002 is coupled to a controller, such as a control unit 3004, for example. In various embodiments, the control unit 3004 may be formed integrally with the generator 3002 or may be provided as a separate circuit module or device electrically coupled to the generator 3002 (shown in phantom to illustrate this option). Although in the presently disclosed embodiment, the generator 3002 is shown separate from the electrosurgical tool 100, in one embodiment, the generator 3002 (and/or the control unit 3004) may be formed integrally with the electrosurgical tool 100 to form a unitary electrosurgical system. For example, in some embodiments a generator or equivalent circuit may be present within the tool mounting portion 300 and/or within a handle in suitable manual embodiments (as described herein).
  • The generator 3002 may comprise an input device 3006 located on a front panel of the generator 3002 console. The input device 3006 may comprise any suitable device that generates signals suitable for programming the operation of the generator 3002, such as a keyboard, or input port, for example. In one embodiment, various electrodes in the first jaw member 3008A and the second jaw member 3008B may be coupled to the generator 3002. A cable 3010 connecting the tool mounting portion 300 to the generator 3002 may comprise multiple electrical conductors for the application of electrical energy to positive (+) and negative (−) electrodes of the electrosurgical tool 100. The control unit 3004 may be used to activate the generator 3002, which may serve as an electrical source. In various embodiments, the generator 3002 may comprise an RF source, an ultrasonic source, a direct current source, and/or any other suitable type of electrical energy source, for example.
  • In various embodiments, surgical tool 100 may comprise at least one supply conductor 3012 and at least one return conductor 3014, wherein current can be supplied to electrosurgical tool 100 via the supply conductor 3012 and wherein the current can flow back to the generator 3002 via return conductor 3014. In various embodiments, the supply conductor 3012 and the return conductor 3014 may comprise insulated wires and/or any other suitable type of conductor. In certain embodiments, as described below, the supply conductor 3012 and the return conductor 3014 may be contained within and/or may comprise the cable 3010 extending between, or at least partially between, the generator 3002 and the end effector 3000 of the electrosurgical tool 100. In any event, the generator 3002 can be configured to apply a sufficient voltage differential between the supply conductor 3012 and the return conductor 3014 such that sufficient current can be supplied to the end effector 3000.
  • The electrosurgical end effector 3000 may be adapted for capturing and transecting tissue and for the contemporaneously welding the captured tissue with controlled application of energy (e.g., RF energy). FIG. 7 illustrates one embodiment of the electrosurgical end effector 300 with the jaw members 3008A, 3008B open and an axially movable member 3016 in a proximally retracted position. FIG. 8 illustrates one embodiment of the electrosurgical end effector 300 with the jaw members 3008A, 3008B closed and the axially movable member 3016 in a partially advanced position.
  • In use, the jaw members 3008A, 3008B close to thereby capture or engage tissue about a longitudinal tool axis LT-LT defined by the axially moveable member 3016 (or a distal portion thereof). The first jaw member 3008A and second jaw member 3008B may also apply compression to the tissue. In some embodiments, the elongate shaft 200, along with first jaw member 3008A and second jaw member 3008B, can be rotated a full 360° degrees, as shown by arrow 3018 (see FIG. 8), relative to tool mounting portion 300.
  • The first jaw member 3008A and the second jaw member 3008B may each comprise an elongate slot or channel 3020A and 3020B (FIG. 7), respectively, disposed outwardly along their respective middle portions. Further, the first jaw member 3008A and second jaw member 3008B may each have tissue-gripping elements, such as teeth 3022, disposed on the inner portions of first jaw member 3008A and second jaw member 3008B. The lower jaw member 3008B may define a jaw body with an energy delivery surface or electrode 3024B. For example, the electrode 3024B may be in electrical communication with the generator 3002 via the supply conductor 3012. An energy delivery surface 3024A on the upper first jaw member 3008 may provide a return path for electrosurgical energy. For example, the energy delivery surface 3024A may be in electrical communication with the return conductor 3014. In the illustrated embodiment and in functionally similar embodiments, other conductive parts of the surgical tool 100 including, for example the jaw members 3008A, 3008B, the shaft 200, etc. may form all or a part of the return path. Various configurations of electrodes and various configurations for coupling the energy delivery surfaces 3024A, 3024B to the conductors 3012, 3014 are described herein. Also, it will be appreciated that the supply electrode 3024B may be provided on the lower jaw member 3008B as shown or on the upper jaw member 3008A.
  • Distal and proximal translation of the axially moveable member 3016 may serve to open and close the jaw members 3008A, 3008B and to sever tissue held therebetween. FIG. 9 is a perspective view of one embodiment of the axially moveable member 3016 of the surgical tool 100. The axially moveable member 3016 may comprise one or several pieces, but in any event, may be movable or translatable with respect to the elongate shaft 200 and/or the jaw members 3008A, 3008B. Also, in at least one embodiment, the axially moveable member 3016 may be made of 17-4 precipitation hardened stainless steel. The distal end of axially moveable member 3016 may comprise a flanged “I”-beam configured to slide within the channels 3020AA and 3020B in jaw members 3008A and 3008B. The axially moveable member 3016 may slide within the channels 3020A, 3020B to open and close first jaw member 3008A and second jaw member 3008B. The distal end of the axially moveable member 3016 may also comprise an upper flange or “c”-shaped portion 3016A and a lower flange or “c”-shaped portion 3016B. The flanges 3016A and 3016B respectively define inner cam surfaces 3026A and 3026B for engaging outward facing surfaces of first jaw member 3008A and second jaw member 3008B. The opening-closing of jaw members 3008A and 3008B can apply very high compressive forces on tissue using cam mechanisms which may include movable “I-beam” axially moveable member 3016 and the outward facing surfaces 3028A, 3028B of jaw members 3008A, 3008B.
  • More specifically, referring now to FIGS. 7-9, collectively, the inner cam surfaces 3026A and 3026B of the distal end of axially moveable member 3016 may be adapted to slidably engage the first outward-facing surface 3028A and the second outward-facing surface 3028B of the first jaw member 3008A and the second jaw member 3008B, respectively. The channel 3020A within first jaw member 3008A and the channel 3020B within the second jaw member 3008B may be sized and configured to accommodate the movement of the axially moveable member 3016, which may comprise a tissue-cutting element 3030, for example, comprising a sharp distal edge. FIG. 8, for example, shows the distal end of the axially moveable member 3016 advanced at least partially through channels 3020A and 3020B (FIG. 7). The advancement of the axially moveable member 3016 may close the end effector 3000 from the open configuration shown in FIG. 7. In the closed position shown by FIG. 8, the upper first jaw member 3008A and lower second jaw member 3008B define a gap or dimension D between the first energy delivery surface 3024A and second energy delivery surface 3024B of first jaw member 3008A and second jaw member 3008B, respectively. In various embodiments, dimension D can equal from about 0.0005″ to about 0.040″, for example, and in some embodiments, between about 0.001″ to about 0.010″, for example. Also, the edges of the first energy delivery surface 3024A and the second energy delivery surface 3024B may be rounded to prevent the dissection of tissue.
  • FIG. 10 is a section view of one embodiment of the end effector 3000 of the surgical tool 100. The engagement, or tissue-contacting, surface 3024B of the lower jaw member 3008B is adapted to deliver energy to tissue, at least in part, through a conductive-resistive matrix, such as a variable resistive positive temperature coefficient (PTC) body, as discussed in more detail below. At least one of the upper and lower jaw members 3008A, 3008B may carry at least one electrode 3032 configured to deliver the energy from the generator 3002 to the captured tissue. The engagement, or tissue-contacting, surface 3024A of upper jaw member 3008A may carry a similar conductive-resistive matrix (i.e., a PTC material), or in some embodiments the surface may be a conductive electrode or an insulative layer, for example. Alternatively, the engagement surfaces of the jaw members can carry any of the energy delivery components disclosed in U.S. Pat. No. 6,773,409, filed Oct. 22, 2001, entitled ELECTROSURGICAL JAW STRUCTURE FOR CONTROLLED ENERGY DELIVERY, the entire disclosure of which is incorporated herein by reference.
  • The first energy delivery surface 3024A and the second energy delivery surface 3024B may each be in electrical communication with the generator 3002. The first energy delivery surface 3024A and the second energy delivery surface 3024B may be configured to contact tissue and deliver electrosurgical energy to captured tissue which are adapted to seal or weld the tissue. The control unit 3004 regulates the electrical energy delivered by electrical generator 3002 which in turn delivers electrosurgical energy to the first energy delivery surface 3024A and the second energy delivery surface 3024B. The energy delivery may be initiated in any suitable manner (e.g., upon actuation of the robot system 10. In one embodiment, the electrosurgical tool 100 may be energized by the generator 3002 by way of a foot switch 3034 (FIG. 6). When actuated, the foot switch 3034 triggers the generator 3002 to deliver electrical energy to the end effector 3000, for example. The control unit 3004 may regulate the power generated by the generator 3002 during activation. Although the foot switch 3034 may be suitable in many circumstances, other suitable types of switches can be used.
  • As mentioned above, the electrosurgical energy delivered by electrical generator 3002 and regulated, or otherwise controlled, by the control unit 3004 may comprise radio frequency (RF) energy, or other suitable forms of electrical energy. Further, one or both of the opposing first and second energy delivery surfaces 3024A and 3024B may carry variable resistive positive temperature coefficient (PTC) bodies that are in electrical communication with the generator 3002 and the control unit 3004. Additional details regarding electrosurgical end effectors, jaw closing mechanisms, and electrosurgical energy-delivery surfaces are described in the following U.S. patents and published patent applications: U.S. Pat. Nos. 7,087,054; 7,083,619; 7,070,597; 7,041,102; 7,011,657; 6,929,644; 6,926,716; 6,913,579; 6,905,497; 6,802,843; 6,770,072; 6,656,177; 6,533,784; and 6,500,176; and U.S. Pat. App. Pub. Nos. 2010/0036370 and 2009/0076506, all of which are incorporated herein in their entirety by reference and made a part of this specification.
  • In one embodiment, the generator 3002 may be implemented as an electrosurgery unit (ESU) capable of supplying power sufficient to perform bipolar electrosurgery using radio frequency (RF) energy. In one embodiment, the ESU can be a bipolar ERBE ICC 350 sold by ERBE USA, Inc. of Marietta, Ga. In some embodiments, such as for bipolar electrosurgery applications, a surgical tool having an active electrode and a return electrode can be utilized, wherein the active electrode and the return electrode can be positioned against, adjacent to and/or in electrical communication with, the tissue to be treated such that current can flow from the active electrode, through the positive temperature coefficient (PTC) bodies and to the return electrode through the tissue. Thus, in various embodiments, the electrosurgical system 150 may comprise a supply path and a return path, wherein the captured tissue being treated completes, or closes, the circuit. In one embodiment, the generator 3002 may be a monopolar RF ESU and the electrosurgical tool 100 may comprise a monopolar end effector 3000 in which one or more active electrodes are integrated. For such a system, the generator 3002 may require a return pad in intimate contact with the patient at a location remote from the operative site and/or other suitable return path. The return pad may be connected via a cable to the generator 3002.
  • During operation of electrosurgical tool 100, the clinician generally grasps tissue, supplies energy to the captured tissue to form a weld or a seal (e.g., by actuating button 214 and/or pedal 216), and then drives the tissue-cutting element 3030 at the distal end of the axially moveable member 3016 through the captured tissue. According to various embodiments, the translation of the axial movement of the axially moveable member 3016 may be paced, or otherwise controlled, to aid in driving the axially moveable member 3016 at a suitable rate of travel. By controlling the rate of the travel, the likelihood that the captured tissue has been properly and functionally sealed prior to transection with the cutting element 3030 is increased.
  • Referring now to the embodiment depicted in FIGS. 11-15, the tool mounting portion 300 includes a tool mounting plate 304 that operably supports a plurality of (four are shown in FIG. 15) rotatable body portions, driven discs or elements 306, that each include a pair of pins 308 that extend from a surface of the driven element 306. One pin 308 is closer to an axis of rotation of each driven elements 306 than the other pin 308 on the same driven element 306, which helps to ensure positive angular alignment of the driven element 306. Interface 302 may include an adaptor portion 310 that is configured to mountingly engage a mounting plate 304 as will be further discussed below. The illustrated adaptor portion 310 includes an array of electrical connecting pins 312 (FIG. 13) which may be coupled to a memory structure by a circuit board within the tool mounting portion 300. While interface 302 is described herein with reference to mechanical, electrical, and magnetic coupling elements, it should be understood that a wide variety of telemetry modalities might be used, including infrared, inductive coupling, or the like in other embodiments.
  • As can be seen in FIGS. 11-14, the adapter portion 310 generally includes a tool side 314 and a holder side 316. A plurality of rotatable bodies 320 are mounted to a floating plate 318 which has a limited range of movement relative to the surrounding adaptor structure normal to the major surfaces of the adaptor 310. Axial movement of the floating plate 318 helps decouple the rotatable bodies 320 from the tool mounting portion 300 when levers or other latch formations along the sides of the tool mounting portion housing (not shown) are actuated. Other embodiments may employ other mechanisms/arrangements for releasably coupling the tool mounting portion 300 to the adaptor 310. In the embodiment of FIGS. 11-15, rotatable bodies 320 are resiliently mounted to floating plate 318 by resilient radial members which extend into a circumferential indentation about the rotatable bodies 320. The rotatable bodies 320 can move axially relative to plate 318 by deflection of these resilient structures. When disposed in a first axial position (toward tool side 314) the rotatable bodies 320 are free to rotate without angular limitation. However, as the rotatable bodies 320 move axially toward tool side 314, tabs 322 (extending radially from the rotatable bodies 320) laterally engage detents on the floating plates so as to limit angular rotation of the rotatable bodies 320 about their axes. This limited rotation can be used to help drivingly engage the rotatable bodies 320 with drive pins 332 of a corresponding tool holder portion 330 of the robotic system 10, as the drive pins 332 will push the rotatable bodies 320 into the limited rotation position until the pins 332 are aligned with (and slide into) openings 334′. Openings 334 on the tool side 314 and openings 334′ on the holder side 316 of rotatable bodies 320 are configured to accurately align the driven elements 306 (FIG. 15) of the tool mounting portion 300 with the drive elements 336 of the tool holder 330. As described above regarding inner and outer pins 308 of driven elements 306, the openings 304, 304′ are at differing distances from the axis of rotation on their respective rotatable bodies 306 so as to ensure that the alignment is not 180 degrees from its intended position. Additionally, each of the openings 304 may be slightly radially elongate so as to fittingly receive the pins 308 in the circumferential orientation. This allows the pins 308 to slide radially within the openings 334, 334′ and accommodate some axial misalignment between the tool 100 and tool holder 330, while minimizing any angular misalignment and backlash between the drive and driven elements. Openings 334 on the tool side 314 may be offset by about 90 degrees from the openings 334′ (shown in broken lines) on the holder side 316, as can be seen most clearly in FIG. 14.
  • In the embodiment of FIGS. 11-15, an array of electrical connector pins 340 are located on holder side 316 of adaptor 310 and the tool side 314 of the adaptor 310 includes slots 342 (FIG. 14) for receiving a pin array (not shown) from the tool mounting portion 300. In addition to transmitting electrical signals between the surgical tool 100 and the tool holder 330, at least some of these electrical connections may be coupled to an adaptor memory device 344 (FIG. 13) by a circuit board of the adaptor 310.
  • In the embodiment of FIGS. 11-15, a detachable latch arrangement 346 is employed to releasably affix the adaptor 310 to the tool holder 330. As used herein, the term “tool drive assembly” when used in the context of the robotic system 10, at least encompasses the adapter 310 and tool holder 330 and which have been collectively generally designated as 110 in FIG. 11. As can be seen in FIG. 11, the tool holder 330 includes a first latch pin arrangement 337 that is sized to be received in corresponding clevis slots 311 provided in the adaptor 310. In addition, the tool holder 330 further has second latch pins 338 that are sized to be retained in corresponding latch clevises 313 in the adaptor 310. See FIG. 11. A latch assembly 315 is movably supported on the adapter 310 and has a pair of latch clevises 317 formed therein that is biasable from a first latched position wherein the latch pins 338 are retained within their respective latch clevis 313 and an unlatched position wherein the clevises 317 are aligned with clevises 313 to enable the second latch pins 338 may be inserted into or removed from the latch clevises 313. A spring or springs (not shown) are employed to bias the latch assembly into the latched position. A lip on the tool side 314 of adaptor 310 slidably receives laterally extending tabs of the tool mounting housing (not shown).
  • Referring now to FIGS. 5 and 16-21, the tool mounting portion 300 operably supports a plurality of drive systems for generating various forms of control motions necessary to operate a particular type of end effector that is coupled to the distal end of the elongate shaft assembly 200. As shown in FIGS. 5 and 16-21, the tool mounting portion 300 includes a first drive system generally designated as 350 that is configured to receive a corresponding “first” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that first rotary output motion to a first rotary control motion to be applied to the surgical end effector. In the illustrated embodiment, the first rotary control motion is employed to rotate the elongate shaft assembly 200 (and surgical end effector 3000) about a longitudinal tool axis LT-LT.
  • In the embodiment of FIGS. 5 and 16-18, the first drive system 350 includes a tube gear segment 354 that is formed on (or attached to) the proximal end 208 of a proximal tube segment 202 of the elongate shaft assembly 200. The proximal end 208 of the proximal tube segment 202 is rotatably supported on the tool mounting plate 304 of the tool mounting portion 300 by a forward support cradle 352 that is mounted on the tool mounting plate 304. See FIG. 16. The tube gear segment 354 is supported in meshing engagement with a first rotational gear assembly 360 that is operably supported on the tool mounting plate 304. As can be seen in FIG. 16, the rotational gear assembly 360 comprises a first rotation drive gear 362 that is coupled to a corresponding first one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110. See FIG. 15. The rotational gear assembly 360 further comprises a first rotary driven gear 364 that is rotatably supported on the tool mounting plate 304. The first rotary driven gear 364 is in meshing engagement with a second rotary driven gear 366 which, in turn, is in meshing engagement with the tube gear segment 354. Application of a first rotary output motion from the tool drive assembly 110 of the robotic system 10 to the corresponding driven element 306 will thereby cause rotation of the rotation drive gear 362. Rotation of the rotation drive gear 362 ultimately results in the rotation of the elongate shaft assembly 200 (and the surgical end effector 3000) about the longitudinal tool axis LT-LT (represented by arrow “R” in FIG. 5). It will be appreciated that the application of a rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the elongate shaft assembly 200 and surgical end effector 3000 about the longitudinal tool axis LT-LT in a first rotary direction and an application of the rotary output motion in an opposite direction will result in the rotation of the elongate shaft assembly 200 and surgical end effector 3000 in a second rotary direction that is opposite to the first rotary direction.
  • In embodiment of FIGS. 5 and 16-21, the tool mounting portion 300 further includes a second drive system generally designated as 370 that is configured to receive a corresponding “second” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that second rotary output motion to a second rotary control motion for application to the surgical end effector. The second drive system 370 includes a second rotation drive gear 372 that is coupled to a corresponding second one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110. See FIG. 15. The second drive system 370 further comprises a first rotary driven gear 374 that is rotatably supported on the tool mounting plate 304. The first rotary driven gear 374 is in meshing engagement with a shaft gear 376 that is movably and non-rotatably mounted onto a proximal drive shaft segment 380. In this illustrated embodiment, the shaft gear 376 is non-rotatably mounted onto the proximal drive shaft segment 380 by a series of axial keyways 384 that enable the shaft gear 376 to axially move on the proximal drive shaft segment 380 while being non-rotatably affixed thereto. Rotation of the proximal drive shaft segment 380 results in the transmission of a second rotary control motion to the surgical end effector 3000.
  • The second drive system 370 in the embodiment of FIGS. 5 and 16-21 includes a shifting system 390 for selectively axially shifting the proximal drive shaft segment 380 which moves the shaft gear 376 into and out of meshing engagement with the first rotary driven gear 374. For example, as can be seen in FIGS. 16-18, the proximal drive shaft segment 380 is supported within a second support cradle 382 that is attached to the tool mounting plate 304 such that the proximal drive shaft segment 380 may move axially and rotate relative to the second support cradle 382. In at least one form, the shifting system 390 further includes a shifter yoke 392 that is slidably supported on the tool mounting plate 304. The proximal drive shaft segment 380 is supported in the shifter yoke 392 and has a pair of collars 386 thereon such that shifting of the shifter yoke 392 on the tool mounting plate 304 results in the axial movement of the proximal drive shaft segment 380. In at least one form, the shifting system 390 further includes a shifter solenoid 394 that operably interfaces with the shifter yoke 392. The shifter solenoid 394 receives control power from the robotic controller 12 such that when the shifter solenoid 394 is activated, the shifter yoke 392 is moved in the distal direction “DD”.
  • In this illustrated embodiment, a shaft spring 396 is journaled on the proximal drive shaft segment 380 between the shaft gear 376 and the second support cradle 382 to bias the shaft gear 376 in the proximal direction “PD” and into meshing engagement with the first rotary driven gear 374. See FIGS. 16, 18 and 19. Rotation of the second rotation drive gear 372 in response to rotary output motions generated by the robotic system 10 ultimately results in the rotation of the proximal drive shaft segment 380 and other drive shaft components coupled thereto (drive shaft assembly 388) about the longitudinal tool axis LT-LT. It will be appreciated that the application of a rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the proximal drive shaft segment 380 and ultimately of the other drive shaft components attached thereto in a first direction and an application of the rotary output motion in an opposite direction will result in the rotation of the proximal drive shaft segment 380 in a second direction that is opposite to the first direction. When it is desirable to shift the proximal drive shaft segment 380 in the distal direction “DD” as will be discussed in further detail below, the robotic controller 12 activates the shifter solenoid 390 to shift the shifter yoke 392 in the distal direction “DD”. IN some embodiments, the shifter solenoid 390 may be capable of shifting the proximal drive shaft segment 380 between more than two longitudinal positions. For example, some embodiments, such as those described herein with respect to FIGS. 83-96, may utilize the rotary drive shaft (e.g., coupled to the proximal drive shaft segment 380) in more than two longitudinal positions.
  • FIGS. 22-23 illustrate another embodiment that employs the same components of the embodiment depicted in FIGS. 5 and 16-21 except that this embodiment employs a battery-powered drive motor 400 for supplying rotary drive motions to the proximal drive shaft segment 380. Such arrangement enables the tool mounting portion to generate higher rotary output motions and torque which may be advantageous when different forms of end effectors are employed. As can be seen in those Figures, the motor 400 is attached to the tool mounting plate 304 by a support structure 402 such that a driver gear 404 that is coupled to the motor 400 is retained in meshing engagement with the shaft gear 376. In the embodiment of FIGS. 22-23, the support structure 402 is configured to removably engage latch notches 303 formed in the tool mounting plate 304 that are designed to facilitate attachment of a housing member (not shown) to the mounting plate 304 when the motor 400 is not employed. Thus, to employ the motor 400, the clinician removes the housing from the tool mounting plate 304 and then inserts the legs 403 of the support structure into the latch notches 303 in the tool mounting plate 304. The proximal drive shaft segment 380 and the other drive shaft components attached thereto are rotated about the longitudinal tool axis LT-LT by powering the motor 400. As illustrated, the motor 400 is battery powered. In such arrangement, however, the motor 400 interface with the robotic controller 12 such that the robotic system 10 controls the activation of the motor 400. In alternative embodiments, the motor 400 is manually actuatable by an on/off switch (not shown) mounted on the motor 400 itself or on the tool mounting portion 300. In still other embodiments, the motor 400 may receive power and control signals from the robotic system.
  • The embodiment illustrated in FIGS. 5 and 16-21 includes a manually-actuatable reversing system, generally designated as 410, for manually applying a reverse rotary motion to the proximal drive shaft segment 380 in the event that the motor fails or power to the robotic system is lost or interrupted. Such manually-actuatable reversing system 410 may also be particularly useful, for example, when the drive shaft assembly 388 becomes jammed or otherwise bound in such a way that would prevent reverse rotation of the drive shaft components under the motor power alone. In the illustrated embodiment, the mechanically-actuatable reversing system 410 includes a drive gear assembly 412 that is selectively engagable with the second rotary driven gear 376 and is manually actuatable to apply a reversing rotary motion to the proximal drive shaft segment 380. The drive gear assembly 412 includes a reversing gear 414 that is movably mounted to the tool mounting plate 304. The reversing gear 414 is rotatably journaled on a pivot shaft 416 that is movably mounted to the tool mounting plate 304 through a slot 418. See FIG. 17. In the embodiment of FIGS. 5 and 16-21, the manually-actuatable reversing system 410 further includes a manually actuatable drive gear 420 that includes a body portion 422 that has an arcuate gear segment 424 formed thereon. The body portion 422 is pivotally coupled to the tool mounting plate 304 for selective pivotal travel about an actuator axis A-A (FIG. 16) that is substantially normal to the tool mounting plate 304.
  • FIGS. 16-19 depict the manually-actuatable reversing system 410 in a first unactuated position. In one example form, an actuator handle portion 426 is formed on or otherwise attached to the body portion 422. The actuator handle portion 426 is sized relative to the tool mounting plate 304 such that a small amount of interference is established between the handle portion 426 and the tool mounting plate 304 to retain the handle portion 426 in the first unactuated position. However, when the clinician desires to manually actuate the drive gear assembly 412, the clinician can easily overcome the interference fit by applying a pivoting motion to the handle portion 426. As can also be seen in FIGS. 16-19, when the drive gear assembly 412 is in the first unactuated position, the arcuate gear segment 424 is out of meshing engagement with the reversing gear 414. When the clinician desires to apply a reverse rotary drive motion to the proximal drive shaft segment 380, the clinician begins to apply a pivotal ratcheting motion to drive gear 420. As the drive gear 420 begins to pivot about the actuation axis A-A, a portion of the body 422 contacts a portion of the reversing gear 414 and axially moves the reversing gear 414 in the distal direction DD taking the drive shaft gear 376 out of meshing engagement with the first rotary driven gear 374 of the second drive system 370. See FIG. 20. As the drive gear 420 is pivoted, the arcuate gear segment 424 is brought into meshing engagement with the reversing gear 414. Continued ratcheting of the drive gear 420 results in the application of a reverse rotary drive motion to the drive shaft gear 376 and ultimately to the proximal drive shaft segment 380. The clinician may continue to ratchet the drive gear assembly 412 for as many times as are necessary to fully release or reverse the associated end effector component(s). Once a desired amount of reverse rotary motion has been applied to the proximal drive shaft segment 380, the clinician returns the drive gear 420 to the starting or unactuated position wherein the arcuate gear segment 416 is out of meshing engagement with the drive shaft gear 376. When in that position, the shaft spring 396 once again biases the shaft gear 376 into meshing engagement with first rotary driven gear 374 of the second drive system 370.
  • In use, the clinician may input control commands to the controller or control unit of the robotic system 10 which “robotically-generates” output motions that are ultimately transferred to the various components of the second drive system 370. As used herein, the terms “robotically-generates” or “robotically-generated” refer to motions that are created by powering and controlling the robotic system motors and other powered drive components. These terms are distinguishable from the terms “manually-actuatable” or “manually generated” which refer to actions taken by the clinician which result in control motions that are generated independent from those motions that are generated by powering the robotic system motors. Application of robotically-generated control motions to the second drive system in a first direction results in the application of a first rotary drive motion to the drive shaft assembly 388. When the drive shaft assembly 388 is rotated in a first rotary direction, the axially movable member 3016 is driven in the distal direction “DD” from its starting position toward its ending position in the end effector 3000, for example, as described herein with respect to FIGS. 64-96. Application of robotically-generated control motions to the second drive system in a second direction results in the application of a second rotary drive motion to the drive shaft assembly 388. When the drive shaft assembly 388 is rotated in a second rotary direction, the axially movable member 3016 is driven in the proximal direction “PD” from its ending position toward its starting position in the end effector 3000. When the clinician desires to manually-apply rotary control motion to the drive shaft assembly 388, the drive shaft assembly 388 is rotated in the second rotary direction which causes a firing member (e.g., axially translatable member 3016) to move in the proximal direction “PD” in the end effector. Other embodiments containing the same components are configured such that the manual-application of a rotary control motion to the drive shaft assembly could cause the drive shaft assembly to rotate in the first rotary direction which could be used to assist the robotically-generated control motions to drive the axially movable member 3016 in the distal direction.
  • The drive shaft assembly that is used to fire, close and rotate the end effector can be actuated and shifted manually allowing the end effector to release and be extracted from the surgical site as well as the abdomen even in the event that the motor(s) fail, the robotic system loses power or other electronic failure occurs. Actuation of the handle portion 426 results in the manual generation of actuation or control forces that are applied to the drive shaft assembly 388′ by the various components of the manually-actuatable reversing system 410. If the handle portion 426 is in its unactuated state, it is biased out of actuatable engagement with the reversing gear 414. The beginning of the actuation of the handle portion 426 shifts the bias. The handle 426 is configured for repeated actuation for as many times as are necessary to fully release the axially movable member 3016 and the end effector 3000.
  • As illustrated in FIGS. 5 and 16-21, the tool mounting portion 300 includes a third drive system 430 that is configured to receive a corresponding “third” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that third rotary output motion to a third rotary control motion. The third drive system 430 includes a third drive pulley 432 that is coupled to a corresponding third one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110. See FIG. 15. The third drive pulley 432 is configured to apply a third rotary control motion (in response to corresponding rotary output motions applied thereto by the robotic system 10) to a corresponding third drive cable 434 that may be used to apply various control or manipulation motions to the end effector that is operably coupled to the shaft assembly 200. As can be most particularly seen in FIGS. 16-17, the third drive cable 434 extends around a third drive spindle assembly 436. The third drive spindle assembly 436 is pivotally mounted to the tool mounting plate 304 and a third tension spring 438 is attached between the third drive spindle assembly 436 and the tool mounting plate 304 to maintain a desired amount of tension in the third drive cable 434. As can be seen in the Figures, cable end portion 434A of the third drive cable 434 extends around an upper portion of a pulley block 440 that is attached to the tool mounting plate 304 and cable end portion 434B extends around a sheave pulley or standoff 442 on the pulley block 440. It will be appreciated that the application of a third rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the third drive pulley 432 in a first direction and cause the cable end portions 434A and 434B to move in opposite directions to apply control motions to the end effector 3000 or elongate shaft assembly 200 as will be discussed in further detail below. That is, when the third drive pulley 432 is rotated in a first rotary direction, the cable end portion 434A moves in a distal direction “DD” and cable end portion 434B moves in a proximal direction “PD”. Rotation of the third drive pulley 432 in an opposite rotary direction result in the cable end portion 434A moving in a proximal direction “PD” and cable end portion 434B moving in a distal direction “DD”.
  • The tool mounting portion 300 illustrated in FIGS. 5 and 16-21 includes a fourth drive system 450 that is configured to receive a corresponding “fourth” rotary output motion from the tool drive assembly 110 of the robotic system 10 and convert that fourth rotary output motion to a fourth rotary control motion. The fourth drive system 450 includes a fourth drive pulley 452 that is coupled to a corresponding fourth one of the driven discs or elements 306 on the holder side 316 of the tool mounting plate 304 when the tool mounting portion 300 is coupled to the tool drive assembly 110. See FIG. 15. The fourth drive pulley 452 is configured to apply a fourth rotary control motion (in response to corresponding rotary output motions applied thereto by the robotic system 10) to a corresponding fourth drive cable 454 that may be used to apply various control or manipulation motions to the end effector that is operably coupled to the shaft assembly 200. As can be most particularly seen in FIGS. 16-17, the fourth drive cable 454 extends around a fourth drive spindle assembly 456. The fourth drive spindle assembly 456 is pivotally mounted to the tool mounting plate 304 and a fourth tension spring 458 is attached between the fourth drive spindle assembly 456 and the tool mounting plate 304 to maintain a desired amount of tension in the fourth drive cable 454. Cable end portion 454A of the fourth drive cable 454 extends around a bottom portion of the pulley block 440 that is attached to the tool mounting plate 304 and cable end portion 454B extends around a sheave pulley or fourth standoff 462 on the pulley block 440. It will be appreciated that the application of a rotary output motion from the tool drive assembly 110 in one direction will result in the rotation of the fourth drive pulley 452 in a first direction and cause the cable end portions 454A and 454B to move in opposite directions to apply control motions to the end effector or elongate shaft assembly 200 as will be discussed in further detail below. That is, when the fourth drive pulley 434 is rotated in a first rotary direction, the cable end portion 454A moves in a distal direction “DD” and cable end portion 454B moves in a proximal direction “PD”. Rotation of the fourth drive pulley 452 in an opposite rotary direction result in the cable end portion 454A moving in a proximal direction “PD” and cable end portion 454B to move in a distal direction “DD”.
  • The surgical tool 100 as depicted in FIGS. 5-6 includes an articulation joint 3500. In such embodiment, the third drive system 430 may also be referred to as a “first articulation drive system” and the fourth drive system 450 may be referred to herein as a “second articulation drive system”. Likewise, the third drive cable 434 may be referred to as a “first proximal articulation cable” and the fourth drive cable 454 may be referred to herein as a “second proximal articulation cable”.
  • The tool mounting portion 300 of the embodiment illustrated in FIGS. 5 and 16-21 includes a fifth drive system generally designated as 470 that is configured to axially displace a drive rod assembly 490. The drive rod assembly 490 includes a proximal drive rod segment 492 that extends through the proximal drive shaft segment 380 and the drive shaft assembly 388. See FIG. 18. The fifth drive system 470 includes a movable drive yoke 472 that is slidably supported on the tool mounting plate 304. The proximal drive rod segment 492 is supported in the drive yoke 372 and has a pair of retainer balls 394 thereon such that shifting of the drive yoke 372 on the tool mounting plate 304 results in the axial movement of the proximal drive rod segment 492. In at least one example form, the fifth drive system 370 further includes a drive solenoid 474 that operably interfaces with the drive yoke 472. The drive solenoid 474 receives control power from the robotic controller 12. Actuation of the drive solenoid 474 in a first direction will cause the drive rod assembly 490 to move in the distal direction “DD” and actuation of the drive solenoid 474 in a second direction will cause the drive rod assembly 490 to move in the proximal direction “PD”. As can be seen in FIG. 5, the end effector 3000 includes a jaw members that are movable between open and closed positions upon application of axial closure motions to a closure system. In the illustrated embodiment of FIGS. 5 and 16-21, the fifth drive system 470 is employed to generate such closure motions. Thus, the fifth drive system 470 may also be referred to as a “closure drive”.
  • The surgical tool 100 depicted in FIGS. 5 and 16-21 includes an articulation joint 3500 that cooperates with the third and fourth drive systems 430, 450, respectively for articulating the end effector 3000 about the longitudinal tool axis “LT”. The articulation joint 3500 includes a proximal socket tube 3502 that is attached to the distal end 233 of the distal outer tube portion 231 and defines a proximal ball socket 3504 therein. See FIG. 24. A proximal ball member 3506 is movably seated within the proximal ball socket 3504. As can be seen in FIG. 24, the proximal ball member 3506 has a central drive passage 3508 that enables the distal drive shaft segment 3740 to extend therethrough. In addition, the proximal ball member 3506 has four articulation passages 3510 therein which facilitate the passage of distal cable segments 444, 445, 446, 447 therethrough. In various embodiments, distal cable segments 444, 445, 446, 447 may be directly or indirectly coupled to proximal cable end portions 434A, 434B, 454A, 454B, respectively, for example, as illustrated by FIG. 24A. As can be further seen in FIG. 24, the articulation joint 3500 further includes an intermediate articulation tube segment 3512 that has an intermediate ball socket 3514 formed therein. The intermediate ball socket 3514 is configured to movably support therein an end effector ball 3522 formed on an end effector connector tube 3520. The distal cable segments 444, 445, 446, 447 extend through cable passages 3524 formed in the end effector ball 3522 and are attached thereto by lugs 3526 received within corresponding passages 3528 in the end effector ball 3522. Other attachment arrangements may be employed for attaching distal cable segments 444, 445, 446, 447 to the end effector ball 3522.
  • A unique and novel rotary support joint assembly, generally designated as 3540, is depicted in FIGS. 25 and 26. The illustrated rotary support joint assembly 3540 includes a connector portion 4012 of the end effector drive housing 4010 that is substantially cylindrical in shape. A first annular race 4014 is formed in the perimeter of the cylindrically-shaped connector portion 4012. The rotary support joint assembly 3540 further comprises a distal socket portion 3530 that is formed in the end effector connector tube 3520 as shown in FIGS. 25 and 26. The distal socket portion 3530 is sized relative to the cylindrical connector portion 4012 such that the connector portion 4012 can freely rotate within the socket portion 3530. A second annular race 3532 is formed in an inner wall 3531 of the distal socket portion 3530. A window 3533 is provided through the distal socket 3530 that communicates with the second annular race 3532 therein. As can also be seen in FIGS. 25 and 26, the rotary support joint assembly 3540 further includes a ring-like bearing 3534. In various example embodiments, the ring-like bearing 3534 comprises a plastic deformable substantially-circular ring that has a cut 3535 therein. The cut forms free ends 3536, 3537 in the ring-like bearing 3534. As can be seen in FIG. 25, the ring-like bearing 3534 has a substantially annular shape in its natural unbiased state.
  • To couple a surgical end effector 3000 (e.g., a first portion of a surgical tool) to the articulation joint 3500 (e.g., a second portion of a surgical tool), the cylindrically shaped connector position 4012 is inserted into the distal socket portion 3530 to bring the second annular race 3532 into substantial registry with the first annular race 4014. One of the free ends 3536, 3537 of the ring-like bearing is then inserted into the registered annular races 4014, 3532 through the window 3533 in the distal socket portion 3530 of the end effector connector tube 3520. To facilitate easy insertion, the window or opening 3533 has a tapered surface 3538 formed thereon. See FIG. 25. The ring-like bearing 3534 is essentially rotated into place and, because it tends to form a circle or ring, it does not tend to back out through the window 3533 once installed. Once the ring-like bearing 3534 has been inserted into the registered annular races 4014, 3532, the end effector connector tube 3520 will be rotatably affixed to the connector portion 4012 of the end effector drive housing 4010. Such arrangement enables the end effector drive housing 4010 to rotate about the longitudinal tool axis LT-LT relative to the end effector connector tube 3520. The ring-like bearing 3534 becomes the bearing surface that the end effector drive housing 4010 then rotates on. Any side loading tries to deform the ring-like bearing 3534 which is supported and contained by the two interlocking races 4014, 3532 preventing damage to the ring-like bearing 3534. It will be understood that such simple and effective joint assembly employing the ring-like bearing 3534 forms a highly lubricious interface between the rotatable portions 4010, 3530. If during assembly, one of the free ends 3536, 3537 is permitted to protrude out through the window 3533 (see e.g., FIG. 26), the rotary support joint assembly 3540 may be disassembled by withdrawing the ring-like bearing member 3532 out through the window 3533. The rotary support joint assembly 3540 allows for easy assembly and manufacturing while also providing for good end effector support while facilitating rotary manipulation thereof.
  • The articulation joint 3500 facilitates articulation of the end effector 3000 about the longitudinal tool axis LT. For example, when it is desirable to articulate the end effector 3000 in a first direction “FD” as shown in FIG. 5, the robotic system 10 may power the third drive system 430 such that the third drive spindle assembly 436 (FIGS. 16-18) is rotated in a first direction thereby drawing the proximal cable end portion 434A and ultimately distal cable segment 444 in the proximal direction “PD” and releasing the proximal cable end portion 434B and distal cable segment 445 to thereby cause the end effector ball 3522 to rotate within the socket 3514. Likewise, to articulate the end effector 3000 in a second direction “SD” opposite to the first direction FD, the robotic system 10 may power the third drive system 430 such that the third drive spindle assembly 436 is rotated in a second direction thereby drawing the proximal cable end portion 434B and ultimately distal cable segment 445 in the proximal direction “PD” and releasing the proximal cable end portion 434A and distal cable segment 444 to thereby cause the end effector ball 3522 to rotate within the socket 3514. When it is desirable to articulate the end effector 3000 in a third direction “TD” as shown in FIG. 5, the robotic system 10 may power the fourth drive system 450 such that the fourth drive spindle assembly 456 is rotated in a third direction thereby drawing the proximal cable end portion 454A and ultimately distal cable segment 446 in the proximal direction “PD” and releasing the proximal cable end portion 454B and distal cable segment 447 to thereby cause the end effector ball 3522 to rotate within the socket 3514. Likewise, to articulate the end effector 3000 in a fourth direction “FTH” opposite to the third direction TD, the robotic system 10 may power the fourth drive system 450 such that the fourth drive spindle assembly 456 is rotated in a fourth direction thereby drawing the proximal cable end portion 454B and ultimately distal cable segment 447 in the proximal direction “PD” and releasing the proximal cable end portion 454A and distal cable segment 446 to thereby cause the end effector ball 3522 to rotate within the socket 3514.
  • The end effector embodiment depicted in FIGS. 5 and 16-21 employs rotary and longitudinal motions that are transmitted from the tool mounting portion 300 through the elongate shaft assembly for actuation. The drive shaft assembly employed to transmit such rotary and longitudinal motions (e.g., torsion, tension and compression motions) to the end effector is relatively flexible to facilitate articulation of the end effector about the articulation joint. FIGS. 27-28 illustrate an alternative drive shaft assembly 3600 that may be employed in connection with the embodiment illustrated in FIGS. 5 and 16-21 or in other embodiments. In the embodiment depicted in FIG. 5 the proximal drive shaft segment 380 comprises a segment of drive shaft assembly 3600 and the distal drive shaft segment 3740 similarly comprises another segment of drive shaft assembly 3600. The drive shaft assembly 3600 includes a drive tube 3602 that has a series of annular joint segments 3604 cut therein. In that illustrated embodiment, the drive tube 3602 comprises a distal portion of the proximal drive shaft segment 380. For example, the shaft assembly 3600, as well as the shaft assemblies 3600′, 3600″ described herein with respect to FIGS. 27-45 may be components of and/or mechanically coupled to various rotary drive shafts described herein including, for example, rotary drive shafts 680, 1270, 1382, etc.
  • The drive tube 3602 comprises a hollow metal tube (stainless steel, titanium, etc.) that has a series of annular joint segments 3604 formed therein. The annular joint segments 3604 comprise a plurality of loosely interlocking dovetail shapes 3606 that are, for example, cut into the drive tube 3602 by a laser and serve to facilitate flexible movement between the adjoining joint segments 3604. See FIG. 28. Such laser cutting of a tube stock creates a flexible hollow drive tube that can be used in compression, tension and torsion. Such arrangement employs a full diametric cut that is interlocked with the adjacent part via a “puzzle piece” configuration. These cuts are then duplicated along the length of the hollow drive tube in an array and are sometimes “clocked” or rotated to change the tension or torsion performance.
  • FIGS. 29-33 illustrate alternative example micro-annular joint segments 3604′ that comprise plurality of laser cut shapes 3606′ that roughly resemble loosely interlocking, opposed “T” shapes and T-shapes with a notched portion therein. The annular joint segments 3604, 3604′ essentially comprise multiple micro-articulating torsion joints. That is, each joint segment 3604, 3604′ can transmit torque while facilitating relative articulation between each annular joint segment. As shown in FIGS. 29-30, the joint segment 3604D′ on the distal end 3603 of the drive tube 3602 has a distal mounting collar portion 3608D that facilitates attachment to other drive components for actuating the end effector or portions of the quick disconnect joint, etc. and the joint segment 3604P′ on the proximal end 605 of the drive tube 3602 has a proximal mounting collar portion 3608P′ that facilitates attachment to other proximal drive components or portions of the quick disconnect joint.
  • The joint-to-joint range of motion for each particular drive shaft assembly 3600 can be increased by increasing the spacing in the laser cuts. For example, to ensure that the joint segments 3604′ remain coupled together without significantly diminishing the drive tube's ability to articulate through desired ranges of motion, a secondary constraining member 3610 is employed. In the embodiment depicted in FIGS. 31-32, the secondary constraining member 3610 comprises a spring 3612 or other helically-wound member. In various example embodiments, the distal end 3614 of the spring 3612 corresponds to the distal mounting collar portion 3608D and is wound tighter than the central portion 3616 of the spring 3612. Similarly, the proximal end 618 of the spring 3612 is wound tighter than the central portion 3616 of the spring 3612. In other embodiments, the constraining member 3610 is installed on the drive tube 3602 with a desired pitch such that the constraining member also functions, for example, as a flexible drive thread for threadably engaging other threaded control components on the end effector and/or the control system. It will also be appreciated that the constraining member may be installed in such a manner as to have a variable pitch to accomplish the transmission of the desired rotary control motions as the drive shaft assembly is rotated. For example, the variable pitch arrangement of the constraining member may be used to enhance open/close and firing motions which would benefit from differing linear strokes from the same rotation motion. In other embodiments, for example, the drive shaft assembly comprises a variable pitch thread on a hollow flexible drive shaft that can be pushed and pulled around a ninety degree bend. In still other embodiments, the secondary constraining member comprises an elastomeric tube or coating 3611 applied around the exterior or perimeter of the drive tube 3602 as illustrated in FIG. 33A. In still another embodiment, for example, the elastomeric tube or coating 3611′ is installed in the hollow passageway 613 formed within the drive tube 3602 as shown in FIG. 33B.
  • Such drive shaft arrangements comprise a composite torsional drive axle which allows superior load transmission while facilitating a desirable axial range of articulation. See, e.g., FIGS. 33 and 33A-33B. That is, these composite drive shaft assemblies allow a large range of motion while maintaining the ability to transmit torsion in both directions as well as facilitating the transmission of tension and compression control motions therethrough. In addition, the hollow nature of such drive shaft arrangements facilitate passage of other control components therethrough while affording improved tension loading. For example, some other embodiments include a flexible internal cable that extends through the drive shaft assembly which can assist in the alignment of the joint segments while facilitating the ability to apply tension motions through the drive shaft assembly. Moreover, such drive shaft arrangements are relatively easily to manufacture and assemble.
  • FIGS. 34-37 depict a segment 3620 of a drive shaft assembly 3600′. This embodiment includes joint segments 3622, 3624 that are laser cut out of tube stock material (e.g., stainless steel, titanium, polymer, etc.). The joint segments 3622, 3624 remain loosely attached together because the cuts 3626 are radial and are somewhat tapered. For example, each of the lug portions 3628 has a tapered outer perimeter portion 3629 that is received within a socket 3630 that has a tapered inner wall portion. See, e.g., FIGS. 35 and 37. Thus, there is no assembly required to attach the joint segments 3622, 3624 together. As can be seen in the Figures, joint segment 3622 has opposing pivot lug portions 3628 cut on each end thereof that are pivotally received in corresponding sockets 3630 formed in adjacent joint segments 3624.
  • FIGS. 34-37 illustrate a small segment of the drive shaft assembly 3600′. Those of ordinary skill in the art will appreciate that the lugs/sockets may be cut throughout the entire length of the drive shaft assembly. That is, the joint segments 3624 may have opposing sockets 3630 cut therein to facilitate linkage with adjoining joint segments 3622 to complete the length of the drive shaft assembly 3600′. In addition, the joint segments 3624 have an angled end portion 3632 cut therein to facilitate articulation of the joint segments 3624 relative to the joint segments 3622 as illustrated in FIGS. 36-37. In the illustrated embodiment, each lug 3628 has an articulation stop portion 3634 that is adapted to contact a corresponding articulation stop 3636 formed in the joint segment 3622. See FIGS. 36-37. Other embodiments, which may otherwise be identical to the segment 3620, are not provided with the articulation stop portions 3634 and stops 3636.
  • As indicated above, the joint-to-joint range of motion for each particular drive shaft assembly can be increased by increasing the spacing in the laser cuts. In such embodiments, to ensure that the joint segments 3622, 3624 remain coupled together without significantly diminishing the drive tube's ability to articulate through desired ranges of motion, a secondary constraining member in the form of an elastomeric sleeve or coating 3640 is employed. Other embodiments employ other forms of constraining members disclosed herein and their equivalent structures. As can be seen in FIG. 34, the joint segments 3622, 3624 are capable of pivoting about pivot axes “PA-PA” defined by the pivot lugs 3628 and corresponding sockets 3630. To obtain an expanded range of articulation, the drive shaft assembly 3600′ may be rotated about the tool axis TL-TL while pivoting about the pivot axes PA-PA.
  • FIGS. 38-43 depict a segment 3640 of another drive shaft assembly 3600″. The drive shaft assembly 3600″ comprises a multi-segment drive system that includes a plurality of interconnected joint segments 3642 that form a flexible hollow drive tube 3602″. A joint segment 3642 includes a ball connector portion 3644 and a socket portion 3648. Each joint segment 3642 may be fabricated by, for example, metal injection molding “MIM” and be fabricated from 17-4, 17-7, 420 stainless steel. Other embodiments may be machined from 300 or 400 series stainless steel, 6065 or 7071 aluminum or titanium. Still other embodiments could be molded out of plastic infilled or unfilled Nylon, Ultem, ABS, Polycarbonate or Polyethylene, for example. As can be seen in the Figures, the ball connector 3644 is hexagonal in shape. That is, the ball connector 3644 has six arcuate surfaces 3646 formed thereon and is adapted to be rotatably received in like-shaped sockets 3650. Each socket 3650 has a hexagonally-shaped outer portion 3652 formed from six flat surfaces 3654 and a radially-shaped inner portion 3656. See FIG. 41. Each joint segment 3642 is identical in construction, except that the socket portions of the last joint segments forming the distal and proximal ends of the drive shaft assembly 3600 may be configured to operably mate with corresponding control components. Each ball connector 3644 has a hollow passage 3645 therein that cooperate to form a hollow passageway 3603 through the hollow flexible drive tube 3602″.
  • As can be seen in FIGS. 42 and 43, the interconnected joint segments 3642 are contained within a constraining member 3660 which comprises a tube or sleeve fabricated from a flexible polymer material, for example. FIG. 44 illustrates a flexible inner core member 3662 extending through the interconnected joint segments 3642. The inner core member 3662 comprises a solid member fabricated from a polymer material or a hollow tube or sleeve fabricated from a flexible polymer material. FIG. 45 illustrates another embodiment wherein a constraining member 3660 and an inner core member 3662 are both employed.
  • Drive shaft assembly 3600″ facilitates transmission of rotational and translational motion through a variable radius articulation joint. The hollow nature of the drive shaft assembly 3600″ provides room for additional control components or a tensile element (e.g., a flexible cable) to facilitate tensile and compressive load transmission. In other embodiments, however, the joint segments 3624 do not afford a hollow passage through the drive shaft assembly. In such embodiments, for example, the ball connector portion is solid. Rotary motion is translated via the edges of the hexagonal surfaces. Tighter tolerances may allow greater load capacity. Using a cable or other tensile element through the centerline of the drive shaft assembly 3600″, the entire drive shaft assembly 3600″ can be rotated bent, pushed and pulled without limiting range of motion. For example, the drive shaft assembly 3600″ may form an arcuate drive path, a straight drive path, a serpentine drive path, etc.
  • While the various example embodiments described herein are configured to operably interface with and be at least partially actuated by a robotic system, the various end effector and elongate shaft components described herein, may be effectively employed in connection with handheld tools. For example, FIGS. 46-47 depict a handheld surgical tool 2400 that may employ various components and systems described above to operably actuate an electrosurgical end effector 3000 coupled thereto. It will be appreciated that the handheld surgical tool 2400 may contain and/or be electrically connected to a generator, such as the generator 3002, for generating an electrosurgical drive signal to drive the end effector 300. In the example embodiment depicted in FIGS. 46-47, a quick disconnect joint 2210 is employed to couple the end effector 3000 to an elongate shaft assembly 2402. For example, the quick disconnect joint 2210 may operate to remove the end effector 3000 in the manner described herein with reference to FIGS. 106-115. To facilitate articulation of the end effector 3000 about the articulation joint 3500, the proximal portion of the elongate shaft assembly 2402 includes an example manually actuatable articulation drive 2410.
  • Referring now to FIGS. 48-50, in at least one example form, the articulation drive 2410 includes four axially movable articulation slides that are movably journaled on the proximal drive shaft segment 380′ between the proximal outer tube segment 2214 and the proximal drive shaft segment 380′. For example, the articulation cable segment 434A′ is attached to a first articulation slide 2420 that has a first articulation actuator rod 2422 protruding therefrom. Articulation cable segment 434B′ is attached to a second articulation slide 2430 that is diametrically opposite from the first articulation slide 2420. The second articulation slide 2430 has a second articulation actuator rod 2432 protruding therefrom. Articulation cable segment 454A′ is attached to a third articulation slide 2440 that has a third articulation actuator rod 2442 protruding therefrom. Articulation cable segment 454B′ is attached to a fourth articulation slide 2450 that is diametrically opposite to the third articulation slide 2440. A fourth articulation actuator rod 2452 protrudes from the fourth articulation slide 2450. Articulation actuator rods 2422, 2432, 2442, 2452 facilitate the application of articulation control motions to the articulation slides 2420, 2430, 2440, 2450, respectively by an articulation ring assembly 2460.
  • As can be seen in FIG. 48, the articulation actuator rods 2422, 2432, 2442, 2452 movably pass through a mounting ball 2470 that is journaled on a proximal outer tube segment 2404. In at least one embodiment, the mounting ball 2470 may be manufactured in segments that are attached together by appropriate fastener arrangements (e.g., welding, adhesive, screws, etc.). As shown in FIG. 50, the articulation actuator rods 2422 and 2432 extend through slots 2472 in the proximal outer tube segment 2404 and slots 2474 in the mounting ball 2470 to enable the articulation slides 2420, 2430 to axially move relative thereto. Although not shown, the articulation actuator rods 2442, 2452 extend through similar slots 2472, 2474 in the proximal outer tube segment 2404 and the mounting ball 2470. Each of the articulation actuator rods 2422, 2432, 2442, 2452 protrude out of the corresponding slots 2474 in the mounting ball 2470 to be operably received within corresponding mounting sockets 2466 in the articulation ring assembly 2460. See FIG. 49.
  • In at least one example form, the articulation ring assembly 2460 is fabricated from a pair of ring segments 2480, 2490 that are joined together by, for example, welding, adhesive, snap features, screws, etc. to form the articulation ring assembly 2460. The ring segments 2480, 2490 cooperate to form the mounting sockets 2466. Each of the articulation actuator rods has a mounting ball 2468 formed thereon that are each adapted to be movably received within a corresponding mounting socket 2466 in the articulation ring assembly 2460.
  • Various example embodiments of the articulation drive 2410 may further include an example locking system 2486 configured to retain the articulation ring assembly 2460 in an actuated position. In at least one example form, the locking system 2486 comprises a plurality of locking flaps formed on the articulation ring assembly 2460. For example, the ring segments 2480, 2490 may be fabricated from a somewhat flexible polymer or rubber material. Ring segment 2480 has a series of flexible proximal locking flaps 2488 formed therein and ring segment 2490 has a series of flexible distal locking flaps 2498 formed therein. Each locking flap 2388 has at least one locking detent 2389 formed thereon and each locking flap 2398 has at least one locking detent 2399 thereon. Locking detents 2389, 2399 may serve to establish a desired amount of locking friction with the articulation ball so as to retain the articulation ball in position. In other example embodiments, the locking detents 2389, 2390 are configured to matingly engage various locking dimples formed in the outer perimeter of the mounting ball 2470.
  • Operation of the articulation drive 2410 can be understood from reference to FIGS. 49 and 50. FIG. 49 illustrates the articulation drive 2410 in an unarticulated position. In FIG. 50, the clinician has manually tilted the articulation ring assembly 2460 to cause the articulation slide 2420 to move axially in the distal direction “DD” thereby advancing the articulation cable segment 434A′ distally. Such movement of the articulation ring assembly 2460 also results in the axial movement of the articulation slide 2430 in the proximal direction which ultimately pulls the articulation cable 434B in the proximal direction. Such pushing and pulling of the articulation cable segments 434A′, 434B′ will result in articulation of the end effector 3000 relative to the longitudinal tool axis “LT-LT” in the manner described above. To reverse the direction of articulation, the clinician simply reverses the orientation of the articulation ring assembly 2460 to thereby cause the articulation slide 2430 to move in the distal direction “DD” and the articulation slide 2420 to move in the proximal direction “PD”. The articulation ring assembly 2460 may be similarly actuated to apply desired pushing and pulling motions to the articulation cable segments 454A′, 454B′. The friction created between the locking detents 2389, 2399 and the outer perimeter of the mounting ball serves to retain the articulation drive 2410 in position after the end effector 3000 has been articulated to the desired position. In alternative example embodiments, when the locking detents 2389, 2399 are positioned so as to be received in corresponding locking dimples in the mounting ball, the mounting ball will be retained in position.
  • In the illustrated example embodiments and others, the elongate shaft assembly 2402 operably interfaces with a handle assembly 2500. An example embodiment of handle assembly 2500 comprises a pair of handle housing segments 2502, 2504 that are coupled together to form a housing for various drive components and systems as will be discussed in further detail below. See, e.g., FIG. 46. The handle housing segments 2502, 2504 may be coupled together by screws, snap features, adhesive, etc. When coupled together, the handle segments 2502, 2504 may form a handle assembly 2500 that includes a pistol grip portion 2506.
  • To facilitate selective rotation of the end effector 3000 about the longitudinal tool axis “LT=LT”, the elongate shaft assembly 2402 may interface with a first drive system, generally designated as 2510. The drive system 2510 includes a manually-actuatable rotation nozzle 2512 that is rotatably supported on the handle assembly 2500 such that it can be rotated relative thereto as well as be axially moved between a locked position and an unlocked position.
  • The surgical tool 2400 may include a closure system 3670. The closure system 3670 may be used in some embodiments to bring about distal and proximal motion in the elongate shaft assembly 2402 and end effector 3000. For example, in some embodiments, the closure system 3670 may drive an axially movable member such as 3016. For example, the closure system 3670 may be used to translate the axially movable member 3016 instead of the various rotary drive shafts described herein with respect to FIGS. 64-82, 83-91 and 92-96. In this example embodiment, the closure system 3670 is actuated by a closure trigger 2530 that is pivotally mounted to the handle frame assembly 2520 that is supported within the handle housing segments 2502, 2504. The closure trigger 2530 includes an actuation portion 2532 that is pivotally mounted on a pivot pin 2531 that is supported within the handle frame assembly 2520. See FIG. 51. Such example arrangement facilitates pivotal travel toward and away from the pistol grip portion 2506 of the handle assembly 2500. As can be seen in FIG. 51, the closure trigger 2530 includes a closure link 2534 that is linked to the first pivot link and gear assembly 3695 by a closure wire 2535. Thus, by pivoting the closure trigger 2530 toward the pistol grip portion 2506 of the handle assembly 2500 into an actuated position, the closure link 2534 and closure wire 2535 causes the first pivot link and gear assembly 3695 to move in the distal direction “DD” to cause distal motion through the shaft and, in some embodiments, to the end effector.
  • The surgical tool 2400 may further include a closure trigger locking system 2536 to retain the closure trigger in the actuated position. In at least one example form, the closure trigger locking system 2536 includes a closure lock member 2538 that is pivotally coupled to the handle frame assembly 2520. As can be seen in FIGS. 52 and 53, the closure lock member 2538 has a lock arm 2539 formed thereon that is configured to ride upon an arcuate portion 2537 of the closure link 2532 as the closure trigger 2530 is actuated toward the pistol grip portion 2506. When the closure trigger 2530 has been pivoted to the fully actuated position, the lock arm 2539 drops behind the end of the closure link 2532 and prevents the closure trigger 2530 from returning to its unactuated position. Thus, the distal motion translated through the shaft assembly to the end effector may be locked. To enable the closure trigger 2530 to return to its unactuated position, the clinician simply pivots the closure lock member 2538 until the lock arm 2539 thereof disengages the end of the closure link 2532 to thereby permit the closure link 2532 to move to the unactuated position.
  • The closure trigger 2532 is returned to the unactuated position by a closure return system 2540. For example, as can be seen in FIG. 51, one example form of the closure trigger return system 2540 includes a closure trigger slide member 2542 that is linked to the closure link 2534 by a closure trigger yoke 2544. The closure trigger slide member 2542 is slidably supported within a slide cavity 2522 in the handle frame assembly 2520. A closure trigger return spring 2546 is positioned within the slide cavity 2520 to apply a biasing force to the closure trigger slide member 2542. Thus, when the clinician actuates the closure trigger 2530, the closure trigger yoke 2544 moves the closure trigger slide member 2542 in the distal direction “DD” compressing the closure trigger return spring 2546. When the closure trigger locking system 2536 is disengaged and the closure trigger is released 2530, the closure trigger return spring 2546 moves the closure trigger slide member 2542 in the proximal direction “PD” to thereby pivot the closure trigger 2530 into the starting unactuated position.
  • The surgical tool 2400 can also employ any of the various example drive shaft assemblies described above. In at least one example form, the surgical tool 2400 employs a second drive system 2550 for applying rotary control motions to a proximal drive shaft assembly 380′. See FIG. 55. The second drive system 2550 may include a motor assembly 2552 that is operably supported in the pistol grip portion 2506. The motor assembly 2552 may be powered by a battery pack 2554 that is removably attached to the handle assembly 2500 or it may be powered by a source of alternating current. A second drive gear 2556 is operably coupled to the drive shaft 2555 of the motor assembly 2552. The second drive gear 2556 is supported for meshing engagement with a second rotary driven gear 2558 that is attached to the proximal drive shaft segment 380′ of the drive shaft assembly. In at least one form, for example, the second drive gear 2556 is also axially movable on the motor drive shaft 2555 relative to the motor assembly 2552 in the directions represented by arrow “U” in FIG. 55. A biasing member, e.g., a coil spring 2560 or similar member, is positioned between the second drive gear 2556 and the motor housing 2553 and serves to bias the second drive gear 2556 on the motor drive shaft 2555 into meshing engagement with a first gear segment 2559 on the second driven gear 2558.
  • The second drive system 2550 may further include a firing trigger assembly 2570 that is movably, e.g., pivotally attached to the handle frame assembly 2520. In at least one example form, for example, the firing trigger assembly 2570 includes a first rotary drive trigger 2572 that cooperates with a corresponding switch/contact (not shown) that electrically communicates with the motor assembly 2552 and which, upon activation, causes the motor assembly 2552 to apply a first rotary drive motion to the second driven gear 2558. In addition, the firing trigger assembly 2570 further includes a retraction drive trigger 2574 that is pivotal relative to the first rotary drive trigger. The retraction drive trigger 2574 operably interfaces with a switch/contact (not shown) that is in electrical communication with the motor assembly 2552 and which, upon activation, causes the motor assembly 2552 to apply a second rotary drive motion to the second driven gear 2558. The first rotary drive motion results in the rotation of the drive shaft assembly and the implement drive shaft in the end effector to cause the firing member to move distally in the end effector 3000. Conversely, the second rotary drive motion is opposite to the first rotary drive motion and will ultimately result in rotation of the drive shaft assembly and the implement drive shaft in a rotary direction which results in the proximal movement or retraction of the firing member in the end effector 3000.
  • The illustrated embodiment also includes a manually actuatable safety member 2580 that is pivotally attached to the closure trigger actuation portion 2532 and is selectively pivotable between a first “safe” position wherein the safety member 2580 physically prevents pivotal travel of the firing trigger assembly 2570 and a second “off” position, wherein the clinician can freely pivot the firing trigger assembly 2570. As can be seen in FIG. 51, a first dimple 2582 is provided in the closure trigger actuation portion 2532 that corresponds to the first position of the safety member 2580. When the safety member 2580 is in the first position, a detent (not shown) on the safety member 2580 is received within the first dimple 2582. A second dimple 2584 is also provided in the closure trigger actuation portion 2532 that corresponds to the second position of the safety member 2580. When the safety member 2580 is in the second position, the detent on the safety member 2580 is received within the second dimple 2582.
  • In at least some example forms, the surgical tool 2400 may include a mechanically actuatable reversing system, generally designated as 2590, for mechanically applying a reverse rotary motion to the proximal drive shaft segment 380′ in the event that the motor assembly 2552 fails or battery power is lost or interrupted. Such mechanical reversing system 2590 may also be particularly useful, for example, when the drive shaft system components operably coupled to the proximal drive shaft segment 380′ become jammed or otherwise bound in such a way that would prevent reverse rotation of the drive shaft components under the motor power alone. In at least one example form, the mechanically actuatable reversing system 2590 includes a reversing gear 2592 that is rotatably mounted on a shaft 2524A formed on the handle frame assembly 2520 in meshing engagement with a second gear segment 2562 on the second driven gear 2558. See FIG. 53. Thus, the reversing gear 2592 freely rotates on shaft 2524A when the second driven gear 2558 rotates the proximal drive shaft segment 380′ of the drive shaft assembly.
  • In various example forms, the mechanical reversing system 2590 further includes a manually actuatable driver 2594 in the form of a lever arm 2596. As can be seen in FIGS. 56 and 57, the lever arm 2596 includes a yoke portion 2597 that has elongate slots 2598 therethrough. The shaft 2524A extends through slot 2598A and a second opposing shaft 2598B formed on the handle housing assembly 2520 extends through the other elongate slot to movably affix the lever arm 2596 thereto. In addition, the lever arm 2596 has an actuator fin 2597 formed thereon that can meshingly engage the reversing gear 2592. There is a detent or interference that keeps the lever arm 2596 in the unactuated state until the clinician exerts a substantial force to actuate it. This keeps it from accidentally initiating if inverted. Other embodiments may employ a spring to bias the lever arm into the unactuated state. Various example embodiments of the mechanical reversing system 2590 further includes a knife retractor button 2600 that is movably journaled in the handle frame assembly 2520. As can be seen in FIGS. 56 and 57, the knife retractor button 2600 includes a disengagement flap 2602 that is configured to engage the top of the second drive gear 2556. The knife retractor button 2600 is biased to a disengaged position by a knife retractor spring 2604. When in the disengaged position, the disengagement flap 2602 is biased out of engagement with the second drive gear 2556. Thus, until the clinician desires to activate the mechanical reversing system 2590 by depressing the knife retractor button 2600, the second drive gear 2556 is in meshing engagement with the first gear segment 2559 of the second driven gear 2558.
  • When the clinician desires to apply a reverse rotary drive motion to the proximal drive shaft segment 380′, the clinician depresses the knife retractor button 2600 to disengage the first gear segment 2559 on the second driven gear 2558 from the second drive gear 2556. Thereafter, the clinician begins to apply a pivotal ratcheting motion to the manually actuatable driver 2594 which causes the gear fin 2597 thereon to drive the reversing gear 2592. The reversing gear 2592 is in meshing engagement with the second gear segment 2562 on the second driven gear 2558. Continued ratcheting of the manually actuatable driver 2594 results in the application of a reverse rotary drive motion to the second gear segment 2562 and ultimately to the proximal drive shaft segment 380′. The clinician may continue to ratchet the driver 2594 for as many times as are necessary to fully release or reverse the associated end effector component(s). Once a desired amount of reverse rotary motion has been applied to the proximal drive shaft segment 380′, the clinician releases the knife retractor button 2600 and the driver 2594 to their respective starting or unactuated positions wherein the fin 2597 is out of engagement with the reversing gear 2592 and the second drive gear 2556 is once again in meshing engagement with the first gear segment 2559 on the second driven gear 2558.
  • The surgical tool 2400 can also be employed with an electrosurgical end effector comprising various rotary drive components that are driven differently with a rotary drive shaft at different axial positions. Examples of such end effectors and drive mechanisms are described herein with respect to FIGS. 64-82, 83-91 and 92-96. The surgical tool 2400 may employ a shifting system 2610 for selectively axially shifting the proximal drive shaft segment 380′ which moves the shaft gear 376 into and out of meshing engagement with the first rotary driven gear 374. For example, the proximal drive shaft segment 380′ is movably supported within the handle frame assembly 2520 such that the proximal drive shaft segment 380′ may move axially and rotate therein. In at least one example form, the shifting system 2610 further includes a shifter yoke 2612 that is slidably supported by the handle frame assembly 2520. See FIGS. 51 and 54. The proximal drive shaft segment 380′ has a pair of collars 386 (shown in FIGS. 51 and 55) thereon such that shifting of the shifter yoke 2612 on the handle frame assembly 2520 results in the axial movement of the proximal drive shaft segment 380′. In at least one form, the shifting system 2610 further includes a shifter button assembly 2614 operably interfaces with the shifter yoke 2612 and extends through a slot 2505 in the handle housing segment 2504 of the handle assembly 2500. See FIGS. 62 and 63. A shifter spring 2616 is mounted with the handle frame assembly 2520 such that it engages the proximal drive shaft segment 380′. See FIGS. 54 and 61. The spring 2616 serves to provide the clinician with an audible click and tactile feedback as the shifter button assembly 2614 is slidably positioned between the first axial position depicted in FIG. 62 wherein rotation of the drive shaft assembly results in rotation of the end effector 3000 about the longitudinal tool axis “LT-LT” relative to the articulation joint 3500 (illustrated in FIG. 67) and the second axial position depicted in FIG. 63 wherein rotation of the drive shaft assembly results in the axial movement of the firing member in the end effector (illustrated in FIG. 66). Thus, such arrangement enables the clinician to easily slidably position the shifter button assembly 2614 while holding the handle assembly 2500. In some embodiments, the shifter button assembly 2500 may have more than two axial positions, corresponding to more than two desired axial positions of the rotary drive shaft. Examples of such surgical tools are provided herein in conjunction with FIGS. 83-91 and 92-96.
  • Referring to FIGS. 64-72, a multi-axis articulating and rotating surgical tool 600 comprises an end effector 550 comprising a first jaw member 602A and a second jaw member 602B. The first jaw member 602A is movable relative to the second jaw member 602B between an open position (FIGS. 64, 66-69, 71) and a closed position (FIGS. 70 and 72) to clamp tissue between the first jaw member 602A and the second jaw member 602B. The surgical tool 600 is configured to independently articulate about an articulation joint 640 in a vertical direction (labeled direction V in FIGS. 64 and 66-72) and a horizontal direction (labeled direction H in FIGS. 64 and 65-68). Actuation of the articulation joint 640 may be brought about in a manner similar to that described above with respect to FIGS. 24-26. The surgical tool 600 is configured to independently rotate about a head rotation joint 645 in a longitudinal direction (labeled direction H in FIGS. 64 and 66-72). The end effector 550 comprises an I-beam member 620 and a jaw assembly 555 comprising the first jaw member 602A, the second jaw member 602B, a proximal portion 603 of the second jaw member 602B, and a rotary drive nut 606 seated in the proximal portion 603. The I-beam member 620 and jaw assembly 555 may operate in a manner described herein and similar to that described above with respect to the axially movable member 3016 and jaw members 3008A, 3008B described herein above.
  • The end effector 550 is coupled to a shaft assembly 560 comprising an end effector drive housing 608, an end effector connector tube 610, an intermediate articulation tube segment 616, and a distal outer tube portion 642. The end effector 550 and the shaft assembly 560 together comprise the surgical tool 600. The end effector 550 may be removably coupled to the end effector drive housing 608 using a mechanism as described, for example, in connection with FIGS. 106-115. The end effector connector tube 610 comprises a cylindrical portion 612 and a ball member 614. The end effector drive housing 608 is coupled to the cylindrical portion 612 of the end effector connector tube 610 through the head rotation joint 645. The end effector 550 and the end effector drive housing 608 together comprise a head portion 556 of the surgical tool 600. The head portion 556 of the surgical tool 600 is independently rotatable about the head rotation joint 645, as described in greater detail below.
  • The intermediate articulation tube segment 616 comprises a ball member 618 and a ball socket 619. The end effector connector tube 610 is coupled to the intermediate articulation tube segment 616 through a ball-and-socket joint formed by the mutual engagement of the ball member 614 of the end effector connector tube 610 and the ball socket 619 of the intermediate articulation tube segment 616. The intermediate articulation tube segment 616 is coupled to the distal outer tube portion 642 through a ball-and-socket joint formed by the mutual engagement of the ball member 618 of the intermediate articulation tube segment 616 and a ball socket of the distal outer tube portion 642. The articulation joint 640 comprises the end effector connector tube 610, the intermediate articulation tube segment 616, and the distal outer tube portion 642. The independent vertical articulation and/or horizontal articulation of the surgical tool 600 about the articulation joint 640 may be actuated, for example, using independently actuatable cable segments, such as 444, 445, 446, 447 described herein above, connected to the ball member 614 of the end effector connector tube 610. This independent articulation functionality is described, for example, in connection with FIGS. 24, 24A and 25. Robotic and hand-held apparatuses for allowing a clinician to initiate articulation functionality are described, for example, in connection with FIGS. 6, 16-21 and 46-50.
  • The movement of the first jaw member 602A relative to the second jaw member 602B between an open position (FIGS. 64, 66-69, and 71) and a closed position (FIGS. 70 and 72) may be actuated with a suitable closure actuation mechanism. Referring to FIGS. 73 and 74, closure of the jaw assembly 555 may be actuated by translation of the I-beam member 620. The I-beam member 620 comprises a first I-beam flange 622A and a second I-beam flange 622B. The first I-beam flange 622A and the second I-beam flange 622B are connected with an intermediate portion 624. The intermediate portion 624 of the I-beam member 620 comprises a cutting member 625, which is configured to transect tissue clamped between the first jaw member 602A and the second jaw member 602B when the jaw assembly 555 is in a closed position. The I-beam member 620 is configured to translate within a first channel 601A in the first jaw member 602A and within a second channel 601B in the second jaw member 602B. The first channel 601A comprises a first channel flange 605A, and the second channel 601B comprises a second channel flange 605B. The first I-beam flange 622A can define a first cam surface 626A, and the second I-beam flange 622B can define a second cam surface 626B. The first and second cam surfaces 626A and 626B can slidably engage outwardly-facing opposed surfaces of the first and second channel flanges 605A and 605B, respectively. More particularly, the first cam surface 626A can comprise a suitable profile configured to slidably engage the opposed surface of the first channel flange 605A of the first jaw member 602A and, similarly, the second cam surface 626B can comprise a suitable profile configured to slidably engage the opposed surface of the second channel flange 605B of the second jaw member 602B, such that, as the I-beam member 620 is advanced distally, the cam surfaces 626A and 626B can co-operate to cam first jaw member 602A toward second jaw member 602B and move the jaw assembly 555 from an open position to a closed position as indicated by arrow 629 in FIG. 74.
  • FIG. 73 shows the I-beam member 620 in a fully proximal position and the jaw assembly 555 in an open position. In the position shown in FIG. 73, the first cam surface 626A is engaging a proximal portion of an arcuate-shaped anvil surface 628, which mechanically holds the first jaw member 602A open relative to the second jaw member 602B (FIGS. 69 and 71). Translation of the I-beam member 620 distally in a longitudinal direction (labeled direction L in FIGS. 64 and 66-74) results in sliding engagement of the first cam surface 626A with the length of the arcuate-shaped anvil surface 628, which cams first jaw member 602A toward second jaw member 602B until the first cam surface 626A is engaging a distal portion of the arcuate-shaped anvil surface 628. After the distal translation of the I-beam member 620 for a predetermined distance, the first cam surface 626A engages a distal portion of the arcuate-shaped anvil surface 628 and the jaw assembly is in the closed position (FIG. 74). Thereafter, the I-beam member 620 can be further translated distally in order to transect tissue clamped between the first jaw member 602A and the second jaw member 602B when in the closed position.
  • During distal translation of the I-beam member 620 after closure of the jaw assembly, the first and second cam surfaces 626A and 626B of the first and second I- beam flanges 622A and 622B slidably engage the opposed surfaces of the first and second channel flanges 605A and 605B, respectively. In this manner, the I-beam member is advanced distally through the first and second channels 601A and 601B of the first and second jaw members 602A and 602B.
  • The distal, or leading, end of the I-beam member 620 comprises a cutting member 625, which may be a sharp edge or blade configured to cut through clamped tissue during a distal translation stroke of the I-beam member, thereby transecting the tissue. FIGS. 72 and 70 show the I-beam member 620 in a fully distal position after a distal translation stroke. After a distal translation stroke, the I-beam member 620 may be proximally refracted back to the longitudinal position shown in FIG. 74 in which the jaw assembly remains closed, clamping any transected tissue between the first jaw member 602A and the second jaw member 602B. Further retraction of the I-beam member to the fully proximal position (FIGS. 69, 71, and 73) will result in engagement of the first cam surface 626A and the proximal portion of the anvil surface 628, which cams the first jaw member 602A away from the second jaw member 602B, opening the jaw assembly 555.
  • Before, during, and/or after the I-beam member 620 is advanced through tissue clamped between the first jaw member 602A and the second jaw member 602B, electrical current can be supplied to electrodes located in the first and/or second jaw members 602A and 602B in order to weld/fuse the tissue, as described in greater detail in this specification. For example, electrodes may be configured to deliver RF energy to tissue clamped between the first jaw member 602A and the second jaw member 602B when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 620 between a proximally retracted position (FIGS. 64, 66-69, 71, and 73), an intermediate position (FIG. 74), and a distally advanced position (FIGS. 70 and 72) may be accomplished with a suitable translation actuation mechanism. Referring to FIGS. 65-72, the I-beam member 620 is connected to a threaded rotary drive member 604. A threaded rotary drive nut 606 is threaded onto the threaded rotary drive member 604. The threaded rotary drive nut 606 is seated in the proximal portion 603 of the second jaw member 602B. The threaded rotary drive nut 606 is mechanically constrained from translation in any direction, but the threaded rotary drive nut 606 is rotatable within the proximal portion 603 of the second jaw member 602B. Therefore, given the threaded engagement of the rotary drive nut 606 and the threaded rotary drive member 604, rotational motion of the rotary drive nut 606 is transformed into translational motion of the threaded rotary drive member 604 in the longitudinal direction and, in turn, into translational motion of the I-beam member 620 in the longitudinal direction.
  • The threaded rotary drive member 604 is threaded through the rotary drive nut 606 and is located inside a lumen of a rotary drive shaft 630. The threaded rotary drive member 604 is not attached or connected to the rotary drive shaft 630. The threaded rotary drive member 604 is freely movable within the lumen of the rotary drive shaft 630 and will translate within the lumen of the rotary drive shaft 630 when driven by rotation of the rotary drive nut 606. The rotary drive shaft 630 comprising the threaded rotary drive member 604 located within the lumen of the rotary drive shaft 630 forms a concentric rotary drive shaft/screw assembly that is located in the lumen of the shaft assembly 560.
  • As shown in FIG. 65, the end effector drive housing 608, the end effector connector tube 610, and the intermediate articulation tube segment 616, which together comprise the shaft assembly 560, have open lumens and, therefore, the shaft assembly has a lumen, as shown in FIGS. 66-68. Referring again to FIGS. 66-68, the concentric rotary drive shaft/threaded rotary drive member assembly is located within the lumen of the shaft assembly 560 and passes through the end effector drive housing 608, the end effector connector tube 610, and the intermediate articulation tube segment 616. Although not shown in FIGS. 66-68, at least the rotary drive shaft 630 passes through a lumen of the distal outer tube portion 642 and is operably coupled to a driving mechanism that provides rotational and axial translational motion to the rotary drive shaft 630. For example, in some embodiments, the surgical tool 600 may be operably coupled through the shaft assembly 560 to a robotic surgical system that provides rotational motion and axial translational motion to the rotary drive shaft 630, such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16-21. For example, the rotary drive shaft 630 may be operably coupled, through the shaft assembly 560, to the proximal drive shaft segment 380 described herein above. Also, in some embodiments, the surgical tool 600 may be utilized in conjunction with a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63. For example, the rotary drive shaft 630 may be operably coupled, though the shaft assembly 560, to the proximal drive shaft segment 380′ described herein above.
  • The rotary drive shaft 630 comprises a rotary drive head 632. The rotary drive head 632 comprises a female hex coupling portion 634 on the distal side of the rotary drive head 632, and the rotary drive head 632 comprises a male hex coupling portion 636 on the proximal side of the rotary drive head 632. The distal female hex coupling portion 634 of the rotary drive head 632 is configured to mechanically engage with a male hex coupling portion 607 of the rotary drive nut 606 located on the proximal side of the rotary drive nut 606. The proximal male hex coupling portion 636 of the rotary drive head 632 is configured to mechanically engage with a female hex shaft coupling portion 609 of the end effector drive housing 608.
  • Referring to FIGS. 66, 67, 69, and 70, the rotary drive shaft 630 is shown in a fully distal axial position in which the female hex coupling portion 634 of the rotary drive head 632 is mechanically engaged with the male hex coupling portion 607 of the rotary drive nut 606. In this configuration, rotation of the rotary drive shaft 630 actuates rotation of the rotary drive nut 606, which actuates translation of the threaded rotary drive member 604, which actuates translation of the I-beam member 620. The orientation of the threading of the threaded rotary drive member 604 and the rotary drive nut 606 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 630 will actuate distal or proximal translation of the threaded rotary drive member 604 and I-beam member 620. In this manner, the direction, speed, and duration of rotation of the rotary drive shaft 630 can be controlled in order to control the direction, speed, and magnitude of the longitudinal translation of the I-beam member 620 and, therefore, the closing and opening of the jaw assembly and the transection stroke of the I-beam member along the first and second channels 601A and 601B, as described above.
  • Referring to FIG. 69, for example, rotation of the rotary drive shaft 630 in a clockwise direction (as viewed from a proximal-to-distal vantage point) actuates clockwise rotation of the rotary drive nut 606, which actuates distal translation of the threaded rotary drive member 604, which actuates distal translation of the I-beam member 620, which actuates closure of the jaw assembly and a distal transection stroke of the I-beam member 620/cutting member 625. Referring to FIG. 70, for example, rotation of the rotary drive shaft 630 in a counterclockwise direction (as viewed from a proximal-to-distal vantage point) actuates counterclockwise rotation of the rotary drive nut 606, which actuates proximal translation of the threaded rotary drive member 604, which actuates proximal translation of the I-beam member 620, which actuates a proximal return stroke of the I-beam member 620/cutting member 625 and opening of the jaw assembly. In this manner, the rotary drive shaft 630 may be used to independently actuate the opening and closing of the jaw assembly and the proximal-distal transection stroke of the I-beam 620/cutting member 625.
  • Referring to FIGS. 68, 71, and 72, the rotary drive shaft 630 is shown in a fully proximal axial position in which the male hex coupling portion 636 of the rotary drive head 632 is mechanically engaged with the female hex shaft coupling portion 609 of the end effector drive housing 608. In this configuration, rotation of the rotary drive shaft 630 actuates rotation of the head portion 556 of the surgical tool 600 about rotation joint 645, including rotation of the end effector 550 and the end effector drive housing 608. In this configuration, the portion of the surgical tool 600 that is distal to the head rotation joint 645 (i.e., the head portion 556 of the surgical tool 600, comprising the end effector 550 and the end effector drive housing 608) rotates with rotation of the rotary drive shaft 630, and the portion of the surgical tool that is proximal to the head rotation joint 645 (e.g., the end effector connector tube 610, the intermediate articulation tube segment 616, and the distal outer tube portion 642) does not rotate with rotation of the rotary drive shaft 630. It will be appreciated that a desired rotation speed of the rotary drive shaft 630 to drive the rotary drive nut 606 may be greater than a desired rotational speed for rotating the head portion 556. For example, the rotary drive shaft 630 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • Referring to FIG. 71, for example, rotation of the rotary drive shaft 630 in a clockwise direction (as viewed from a proximal-to-distal vantage point) actuates clockwise rotation of the end effector 550 and the end effector drive housing 608 (i.e., the head portion 556 of the surgical tool 600) with the jaw assembly 555 in an open position. Rotation of the rotary drive shaft 630 in a counterclockwise direction (as viewed from a proximal-to-distal vantage point) actuates counterclockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in an open position. Referring to FIG. 72, for example, rotation of the rotary drive shaft 630 in a clockwise direction (as viewed from a proximal-to-distal vantage point) actuates clockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in a closed position. Rotation of the rotary drive shaft 630 in a counterclockwise direction (as viewed from a proximal-to-distal vantage point) actuates counterclockwise rotation of the end effector 550 and the end effector drive housing 608 with the jaw assembly 555 in a closed position. Although not shown, it is understood that the I-beam member 620 may be located in an intermediate position where the jaw assembly is closed but the I-beam is not fully distally advanced (see, e.g., FIG. 74) when the rotary drive shaft 630 is in a fully proximal axial position and the male hex coupling portion 636 of the rotary drive head 632 is mechanically engaged with the female hex shaft coupling portion 609 of the end effector drive housing 608 to actuate rotation of the head portion of the surgical tool.
  • Thus, the rotary drive shaft 630 may be used to independently actuate the opening and closing of the jaw assembly, the proximal-distal transection stroke of the I-beam 620/cutting member 625, and the rotation of the head portion 556 of the surgical tool 600 d.
  • In various embodiments, a surgical tool may comprise an end effector, a first actuation mechanism, and a second actuation mechanism. The surgical tool may also comprise a clutch member configured to selectively engage and transmit rotary motion to either the first actuation mechanism or the second actuation mechanism. For example, in various embodiments, a clutch member may comprise a rotary drive shaft comprising a rotary drive head as described, for example, in connection with FIGS. 64-72. In various embodiments, a first actuation mechanism may comprise an I-beam member connected to a threaded rotary drive member threaded through a rotary drive nut, as described, for example, in connection with FIGS. 64-74, wherein the I-beam, the threaded rotary drive member, and the rotary drive nut are configured to actuate the closing and opening of a jaw assembly and/or the translation of a cutting member. In various embodiments, a second actuation mechanism may comprise a shaft coupling portion, as described, for example, in connection with FIGS. 64-72, wherein the shaft coupling portion is configured to actuate rotation of a head portion of a surgical tool.
  • In various embodiments, a surgical tool may comprise an end effector comprising a first jaw member, a second jaw member, and a first actuation mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The surgical tool may also comprise a shaft assembly proximal to the surgical end effector. The surgical tool may also comprise a rotary drive shaft. The rotary drive shaft may be configured to transmit rotary motions and may also be selectively moveable between a first position and a second position relative to the shaft assembly. The rotary drive shaft may be configured to engage and selectively transmit the rotary motions to the first actuation mechanism when in the first position and the rotary drive shaft may be configured to disengage from the actuation mechanism when in the second position. For example, in various embodiments, the first actuation mechanism may comprise an I-beam member connected to a threaded rotary drive member threaded through a rotary drive nut, as described, for example, in connection with FIGS. 64-74, wherein the I-beam, the threaded rotary drive member, and the rotary drive nut are configured to actuate the closing and opening of a jaw assembly when the rotary drive shaft engages and selectively transmits rotary motion to the drive nut.
  • In various embodiments, a surgical tool may comprise a surgical end effector comprising a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The surgical tool may also comprise a shaft assembly proximal to the surgical end effector, wherein the surgical end effector is configured to rotate relative to the shaft assembly. The surgical tool may also comprise a rotary drive shaft configured to transmit rotary motions, the rotary drive shaft selectively movable axially between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to apply the rotary motions to the closure mechanism when in the first axial position, and wherein the rotary drive shaft is configured to apply the rotary motions to the surgical end effector when in the second axial position. For example, in various embodiments, the first axial position may correspond to the rotary drive shaft being in a fully distal axial position in which a rotary drive head is mechanically engaged with a rotary drive nut as described, for example, in connection with FIGS. 64-72. In various embodiments, the second axial position may correspond to the rotary drive shaft being in a fully proximal axial position in which a rotary drive head is mechanically engaged with a shaft coupling portion of a shaft member as described, for example, in connection with FIGS. 64-72.
  • In various embodiments, a surgical tool comprising an end effector, a first actuation mechanism, and a second actuation mechanism, may further comprise a head locking mechanism. For example, referring to FIGS. 75-82, a multi-axis articulating and rotating surgical tool 650 comprises an end effector 570, a shaft assembly 580, and a head locking mechanism 590. The end effector 570 comprises a first jaw member 652A and a second jaw member 652B. The first jaw member 602A is movable relative to the second jaw member 602B between an open position (FIGS. 77 and 79) and a closed position (FIGS. 78 and 80) to clamp tissue between the first jaw member 652A and the second jaw member 652B. The surgical tool 650 is configured to independently articulate about an articulation joint in a vertical direction and a horizontal direction like the surgical tool 600 shown in FIGS. 64-72. The surgical tool 650 is also configured to independently rotate about a head rotation joint like the surgical tool 600 shown in FIGS. 64-72. The end effector 570 comprises an I-beam member 670 and a jaw assembly 575 comprising the first jaw member 652A, the second jaw member 652B, a proximal portion 653 of the second jaw member 652B, and a rotary drive nut 656 seated in the proximal portion 653.
  • The end effector 570 is coupled to a shaft assembly 580 comprising an end effector drive housing 658, an end effector connector tube 660, an intermediate articulation tube segment 666, and a surgical tool shaft member (not shown). The end effector 570 and the shaft assembly 580 together comprise the surgical tool 650. The end effector 570 may be removably coupled to the end effector drive housing 658 using a mechanism as described, for example, in connection with FIGS. 106-115. The end effector drive housing 608 is coupled to the end effector connector tube 660 through the head rotation joint. The end effector 570 and the end effector drive housing 658 together comprise a head portion 578 of the surgical tool 650. The head portion 578 of the surgical tool 650 is independently rotatable about the head rotation joint, as described in greater detail above in connection FIGS. 64-72 showing the surgical tool 600.
  • The end effector connector tube 660 is coupled to the intermediate articulation tube segment 666 through a ball-and-socket joint formed by the mutual engagement of the ball member of the end effector connector tube 660 and the ball socket of the intermediate articulation tube segment 666. The intermediate articulation tube segment 666 is coupled to a surgical tool shaft member through a ball-and-socket joint formed by the mutual engagement of the ball member of the intermediate articulation tube segment 616 and a ball socket of the surgical tool shaft member. The articulation joint comprises the end effector connector tube 660, the intermediate articulation tube segment 666, and the surgical tool shaft member. The independent vertical articulation and/or horizontal articulation of the surgical tool 650 about the articulation joint may be actuated, for example, using independently actuatable drive cables connected to the ball member of the end effector connector tube 660. This independent articulation functionality is described, for example, in connection with FIGS. 24-25. Robotic and hand-held apparatuses for allowing a clinician to initiate articulation functionality are described, for example, in connection with FIGS. 6, 16-21 and 46-50.
  • The movement of the first jaw member 652A relative to the second jaw member 652B is actuated using the same actuation mechanism described above in connection with FIGS. 73 and 74. Distal and proximal translation of the I-beam member 670 between a proximally retracted position (FIGS. 77 and 79), an intermediate position (see FIG. 74), and a distally advanced position (FIGS. 78 and 80) may be accomplished with a suitable translation actuation mechanism. Referring to FIGS. 75-80, the I-beam member 670 is connected to a threaded rotary drive member 654. A threaded rotary drive nut 656 is threaded onto the threaded rotary drive member 654. The threaded rotary drive nut 656 is seated in the proximal portion 653 of the second jaw member 652B. The threaded rotary drive nut 656 is mechanically constrained from translation in any direction, but is rotatable within the proximal portion 653 of the second jaw member 652B. Therefore, given the threaded engagement of the rotary drive nut 656 and the threaded rotary drive member 654, rotational motion of the rotary drive nut 656 is transformed into translational motion of the threaded rotary drive member 654 in the longitudinal direction and, in turn, into translational motion of the I-beam member 670 in the longitudinal direction.
  • The threaded rotary drive member 654 is threaded through the rotary drive nut 656 and is located inside a lumen of a rotary drive shaft 680. The threaded rotary drive member 654 is not attached or connected to the rotary drive shaft 680. The threaded rotary drive member 654 is freely movable within the lumen of the rotary drive shaft 680 and will translate within the lumen of the rotary drive shaft 680 when driven by rotation of the rotary drive nut 656. The rotary drive shaft 680 comprising the threaded rotary drive member 654 located within the lumen of the rotary drive shaft 680 forms a concentric rotary drive shaft/screw assembly that is located in the lumen of the shaft assembly 580.
  • Referring to FIGS. 77-80, the concentric rotary drive shaft/screw assembly is located within the lumen of the shaft assembly 560 and passes through the end effector drive housing 658, the end effector connector tube 660, and the intermediate articulation tube segment 666. Although not shown in FIGS. 77-80, at least the rotary drive shaft 680 passes through a lumen of the surgical tool shaft member and is operably coupled to a driving mechanism that provides rotary motion and axial translational motion to the rotary drive shaft 680. For example, in some embodiments, the surgical tool 650 may be operably coupled through the shaft assembly 580 to a robotic surgical system that provides rotary motion and axial translational motion to the rotary drive shaft 680, such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16-21. In some embodiments, for example, the surgical tool 650 may be operably coupled through the shaft assembly 580 to a hand-held surgical device that provides rotary motion and axial translational motion to the rotary drive shaft 680, such as, for example, the hand-held surgical devices described in connection with FIGS. 46-63. In some embodiments, the threaded rotary drive member 654 has a length that is less than the length of the rotary drive shaft 680 and, therefore, lies within only a distal portion of the rotary drive shaft 680.
  • The threaded rotary drive member 654 and the rotary drive shaft 680 are flexible so that the portions of the threaded rotary drive member 654 and the rotary drive shaft 680 that are located in the articulation joint can bend without damage or loss of operability during independent articulation of the surgical tool 650 about the articulation joint. Example configurations of the rotary drive shaft 680 are provided herein with reference to FIGS. 28-45.
  • The rotary drive shaft 680 comprises a rotary drive head 682. The rotary drive head 682 comprises a female hex coupling portion 684 on the distal side of the rotary drive head 682, and the rotary drive head 682 comprises a male hex coupling portion 686 on the proximal side of the rotary drive head 682. The distal female hex coupling portion 684 of the rotary drive head 682 is configured to mechanically engage with a male hex coupling portion 657 of the rotary drive nut 656 located on the proximal side of the rotary drive nut 656. The proximal male hex coupling portion 686 of the rotary drive head 682 is configured to mechanically engage with a female hex shaft coupling portion 659 of the end effector drive housing 658.
  • Referring to FIGS. 77 and 78, the rotary drive shaft 680 is shown in a fully distal axial position in which the female hex coupling portion 684 of the rotary drive head 682 is mechanically engaged with the male hex coupling portion 657 of the rotary drive nut 656. In this configuration, rotation of the rotary drive shaft 680 actuates rotation of the rotary drive nut 656, which actuates translation of the threaded rotary drive member 654, which actuates translation of the I-beam member 670. Referring to FIGS. 79 and 80, the rotary drive shaft 680 is shown in a fully proximal axial position in which the male hex coupling portion 686 of the rotary drive head 682 is mechanically engaged with the female hex shaft coupling portion 659 of the end effector drive housing 658. In this configuration, rotation of the rotary drive shaft 680 actuates rotation of the head portion 578 of the surgical tool 650 about rotation joint, including rotation of the end effector 570 and the end effector drive housing 658.
  • The rotary drive shaft 680 also comprises a spline lock 690. The spline lock 690 is coupled to the rotary drive shaft 680 using shaft flanges 685. The spline lock 690 is mechanically constrained from translation in any direction by the rotary drive shaft 680 and the shaft flanges 685, but the spline lock 690 is freely rotatable about the rotary drive shaft 680. The spline lock 690 comprises spline members 692 disposed circumferentially around the external surface of the spline lock 690 and oriented co-axially with the shaft assembly 580. As shown in FIGS. 75 and 76, the spline lock 690 is located at the rotational joint formed by the coupling of the end effector drive housing 658 and the end effector connector tube 660. The end effector drive housing 658 comprises a spline coupling portion 694 comprising spline members 696 disposed circumferentially around the internal surface of the end effector drive housing 658 and oriented co-axially with the shaft assembly 580. The end effector connector tube 660 comprises a spline coupling portion 662 comprising spline members 664 disposed circumferentially around the internal surface of the end effector connector tube 660 and oriented co-axially with the shaft assembly 580.
  • The spline members 692, 696, and 664 of the spline lock 690, the end effector drive housing 658, and the end effector connector tube 660, respectively, are configured to mechanically engage with each other when the rotary drive shaft 680 is in a fully distal axial position in which the female hex coupling portion 684 of the rotary drive head 682 is mechanically engaged with the male hex coupling portion 657 of the rotary drive nut 656 to drive rotation of the rotary drive nut 656 and translation of the threaded rotary drive member 654 and the I-beam member 670 (FIGS. 77, 78, and 82). The mechanical engagement of the respective spline members 692, 696, and 664 locks the end effector drive housing 658 into position with the end effector connector tube 660, thereby locking the rotational joint and preventing rotation of the head portion 578 of the surgical tool 650. Because the spline lock 690 is freely rotatable about the rotary drive shaft 680, the mechanical engagement of the respective spline members 692, 696, and 664 does not prevent the rotary drive shaft 680 from actuating the rotary drive nut 656, the threaded rotary drive member 654, and the I-beam member 670.
  • When the rotary drive shaft 680 is in a fully proximal axial position in which the male hex coupling portion 686 of the rotary drive head 682 is mechanically engaged with the female hex shaft coupling portion 659 of the end effector drive housing 658 to drive rotation of the head portion 578 of the surgical tool 650, the spline lock 690 is completely retracted into the lumen of the end effector connector tube 660 and the spline lock 690 is completely disengaged from the spline coupling portion 694 of the end effector drive housing 658. (FIGS. 79, 80, and 81). In this configuration, the spline members 692 of the spline lock 690 and the spline members 664 of the end effector connector tube 660 are completely engaged, and the spline members 692 of the spline lock 690 and the spline members 696 of the end effector drive housing 658 are completely disengaged. The mechanical disengagement of the spline members 692 of the spline lock 690 and the spline members 696 of the end effector drive housing 658 when the rotary drive shaft 680 is in a fully proximal axial position unlocks the end effector drive housing 658 from the end effector connector tube 660, thereby unlocking the rotational joint and permitting rotation of the head portion 578 of the surgical tool 650. Because the spline lock 690 is freely rotatable about the rotary drive shaft 680, the mechanical engagement of spline members 692 of the spline lock 690 and the spline members 664 of the end effector connector tube 660 does not prevent the rotary drive shaft 680 from actuating the rotation of the head portion 578 of the surgical tool 650.
  • The head locking mechanism 590 ensures that the head portion 578 of the surgical tool 650 does not rotate when the rotary drive shaft 680 is in a fully distal axial position engaging the rotary drive nut 656 to drive actuation of the jaw closure mechanism and/or the I-beam translation mechanism as described above (FIGS. 77, 78, and 82). The head locking mechanism 590 ensures that the head portion 578 of the surgical tool 650 is freely rotatable when the rotary drive shaft 680 is in a fully proximal axial position engaging the shaft coupling portion 659 of the end effector drive housing 658 to drive actuation of head rotation as described above (FIGS. 79, 80, and 81).
  • Referring to FIGS. 77 and 78, for example, rotation of the rotary drive shaft 680 actuates rotation of the rotary drive nut 656, which actuates distal or proximal translation of the threaded rotary drive member 654 (depending on the direction of rotary motion of the rotary drive shaft 680), which actuates distal or proximal translation of the I-beam member 670, which actuates the closing and opening of the jaw assembly 575, and distal and proximal transection strokes of the I-beam member 670/cutting member 675. Simultaneously, the spline lock 690 engages both the end effector drive housing 658 and the end effector connector tube 660 to prevent unintended head rotation.
  • Referring to FIGS. 79 and 80, for example, rotation of the rotary drive shaft 680 actuates rotation of the end effector drive housing 658, which actuates rotation of the end effector 570. Simultaneously, the spline lock 690 is disengaged both the end effector drive housing 658 and does not prevent head rotation. Thus, the rotary drive shaft 680 may be used to independently actuate the opening and closing of the jaw assembly 575, the proximal-distal transection stroke of the I-beam 670/cutting member 675, and the rotation of the head portion 578 of the surgical tool 650.
  • In various embodiments, an end effector, such as the end effectors 550 and 570 shown in FIGS. 64-82, may comprise first and second jaw members comprising a first and second distal textured portions, respectively. The first and second distal textured portions of the first and second jaw members of an end effector may be opposed and may allow the end effector to grip, pass, and/or manipulate surgical implements such as needles for suturing tissue, in addition to gripping tissue, for example, during dissection operations. In some embodiments, the distal textured portions may also be electrodes configured, for example, to deliver RF energy to tissue during dissection operations. This gripping, passing, manipulating, and/or dissecting functionality is described, for example, in connection with FIGS. 153-168.
  • In various embodiments, an end effector, such as the end effectors 550 and 570 shown in FIGS. 64-82, may comprise first and second jaw members comprising first and second gripping portions disposed on outwardly facing surfaces of the first and second jaw members. The first and second gripping portions of the first and second jaw members of an end effector may function to aid in tissue dissection as described, for example, in connection with FIGS. 116-131.
  • In various embodiments, an end effector, such as the end effectors 550 and 570 shown in FIGS. 64-82, may comprise at least one electrode disposed on at least one tissue-contacting surface of at least one jaw member. The electrodes may be configured, for example, to deliver RF energy to tissue clamped between the jaw members when in a closed position to weld/fuse the tissue, which in some embodiments, may also be transected by translating an I-beam member comprising a cutting member. In some embodiments, a second jaw member may also comprises an offset electrode located at the distal tip of the jaw member, the electrode configured to deliver RF energy to tissue during dissection operations, for example. This electrode functionality is described, for example, in connection with 153-168.
  • In various embodiments, an end effector, such as the end effectors 550 and 570 shown in FIGS. 64-82, may comprise jaw members comprising angled tissue-contacting surfaces as described, for example, in connection with FIGS. 132-142.
  • Referring to FIGS. 83-91, a multi-axis articulating and rotating surgical tool 1200 comprises an end effector 1202 including a jaw assembly 1211 comprising a first jaw member 1204 and a second jaw member 1206. The first jaw member 1204 is movable relative to the second jaw member 1206 between an open position and a closed position to clamp tissue between the first jaw member 1204 and the second jaw member 1206. The surgical tool 1200 is configured to independently articulate about an articulation joint 1208. As described above, the surgical tool 1200 is also configured to independently rotate about a head rotation joint 1210. Referring primarily to FIG. 83, the end effector 1202 further comprises a proximal shaft portion 1212.
  • The end effector 1202 is coupled to a shaft assembly 1214 comprising an end effector drive housing 1216, an end effector connector tube 1218, an intermediate articulation tube segment 1220, and a distal outer tube portion (not shown in FIGS. 83-91). The end effector 1202 and the shaft assembly 1214 together can comprise the surgical tool 1200. The end effector 1202 may be removably coupled to the end effector drive housing 1216 using a mechanism as described, for example, in connection with FIGS. 106-115. The end effector connector tube 1218 comprises a cylindrical portion 1222 and a ball portion 1224. The end effector drive housing 1216 is coupled to the cylindrical portion 1222 of the end effector connector tube 1218 through the head rotation joint 1210. The end effector 1202 and the end effector drive housing 1216 together comprise a head portion of the surgical tool 1200. The head portion of the surgical tool 1200 is independently rotatable about the head rotation joint 1210.
  • Referring primarily to FIGS. 85-87, the surgical tool 1200 may include a closure mechanism 1226 for moving the first jaw member 1204 relative to the second jaw member 1206 between an open position (FIG. 86) and a closed position (FIG. 87). As illustrated, in FIG. 83, the first jaw member 1204 may include first mounting holes 1228, and the second jaw member 1206 may include second mounting holes (not shown in FIGS. 83-91). The first jaw member 1204 can be arranged relative to the second jaw member 1206 such that a pivot or trunnion pin (not shown in FIGS. 83-91) extends through the first mounting holes 1228 of the first jaw member 1204 and the second mounting holes of the second jaw member 1206 to pivotally couple the first jaw member 1204 to the second jaw member 1206. Other suitable means for coupling the first jaw member 1204 and the second jaw member 1206 are within the scope of this disclosure.
  • Referring to FIGS. 83-91, the closure mechanism 1226 may comprise a linkage arrangement which may comprise a first link 1230 and a second link (not shown in FIGS. 83-91). The closure mechanism 1226 may also comprise a closure driver in the form of a closure nut 1232 for example. The closure nut 1232 (FIG. 84) may be at least partially positioned within the end effector drive housing 1216. In use, the closure nut 1232 may translate axially between a first position (FIG. 86) and a second position (FIG. 87) relative to the end effector drive housing 1216 and may include a first arm 1234 and a second arm 1236. Referring primarily to FIG. 84, the first arm 1234 and the second arm 1236 may extend distally from a distal portion 1238 of the closure nut 1232, wherein the first arm 1234 may comprise a first opening 1240 and the first arm 1234 may be pivotally connected to the first link 1230 by a first pin 1242 through the first opening 1240. Similarly, the second arm 1236 may comprise a second opening 1244, wherein the second arm 1236 may be pivotally connected to the second link by a second pin (not shown in FIGS. 83-91) through the second opening 1244. The first link 1230 and the second link (not shown in FIGS. 83-91) are also pivotally connected to the first jaw member 1204 such that when the closure nut 1232 is advanced distally from the first position (FIG. 86) to the second position (FIG. 87), the first jaw member 1204 is pivoted relative to the second jaw member 1206 towards a closed position. Correspondingly, when the closure nut 1232 is refracted proximally from the second position (FIG. 89) to the first position (FIG. 91), the first jaw member 1204 is pivoted relative to the second jaw member 1206 towards the open position. FIG. 85 illustrates the closure nut 1232 in a first position and the jaw assembly 1211 in an open position. FIG. 87 shows the closure nut 1232 in a second position and the jaw assembly 1211 in a closed position. The closure nut 1232, however, may be constrained from rotation relative to the end effector drive housing 1316 by an indexing feature, for example, abutting against the end effector drive housing 11316.
  • Referring to FIGS. 83-91, the surgical tool 1200 may include a firing mechanism 1246 having a suitable firing driver. The firing mechanism 1246 may include an I-beam member 1247, a threaded drive member 1248, and a threaded rotary drive nut 1250. The I-beam member 1247 may comprise a first I-beam flange 1252 and a second I-beam flange 1254. The I-beam member 1247 may operate in a manner similar to that described above with respect to the axially movable member 3016 described herein above. For example, the first I-beam flange 1252 and the second I-beam flange 1254 are connected with an intermediate portion 1256. The intermediate portion 1256 of the I-beam member 1247 may comprise a cutting member 1258 on a distal or a leading end thereof. The I-beam member 1247 is configured to translate within a first channel 1260 in the first jaw member 1204 and within a second channel 1262 in the second jaw member 1206. FIG. 84 shows the I-beam member 1247 in a fully proximal position and the jaw assembly 1211 in an open position. The I-beam member 1247 may be translated distally in order for the cutting member 1258 to transect tissue clamped between the first jaw member 1204 and the second jaw member 1206 when in the closed position. The cutting member 1258, which may comprise a sharp edge or blade for example, is configured to cut through clamped tissue during a distal translation (firing) stroke of the I-beam member 1247, thereby transecting the tissue. FIG. 88 shows the I-beam member 1247 in a fully distal position after a firing stroke.
  • Before, during, and/or after the I-beam member 1247 is advanced through tissue clamped between the first jaw member 1204 and the second jaw member 1206, electrical current can be supplied to electrodes located in the first jaw member 1204 and/or second jaw member 1206 in order to weld/fuse the tissue, as described in greater detail in this specification. For example, electrodes may be configured to deliver RF energy to tissue clamped between the first jaw member 1204 and the second jaw member 1206 when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 1247 between a proximally retracted position and a distally advanced position may be accomplished with a suitable firing mechanism 1246. Referring to FIGS. 83-91, the I-beam member 1247 is connected to the threaded drive member 1248, wherein the threaded rotary drive nut 1250 is in a threaded engagement with the threaded drive member 1248. Referring primarily to FIG. 83, the threaded rotary drive nut 1250 is positioned within in the end effector drive housing 1216 proximal to the closure nut 1232 between a proximal annular flange 1264 and a distal annular flange 1266. The threaded rotary drive nut 1250 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1216 around a central axis A. Therefore, given the threaded engagement of the rotary drive nut 1250 and the threaded drive member 1248, rotational motion of the rotary drive nut 1250 is transformed into translational motion of the threaded drive member 1248 along the central axis A and, in turn, into translational motion of the I-beam member 1247 along the central axis A.
  • The threaded drive member 1248 is threaded through the rotary drive nut 1250 and is located at least partially inside a lumen 1268 of a rotary drive shaft 1270. The threaded drive member 1248 is not attached or connected to the rotary drive shaft 1270. In use, the threaded drive member 1248 is freely movable within the lumen of the rotary drive shaft 1270 and will translate within the lumen of the rotary drive shaft 1270 when driven by rotation of the rotary drive nut 1250. The rotary drive shaft 1270 and the threaded drive member 1248 form a concentric rotary drive shaft/screw assembly that is located in the shaft assembly 1214. In addition, the threaded drive member 1248 extends distally through a lumen 1272 of the closure nut 1232. Similar to the above, the threaded drive member 1248 is freely movable within the lumen 1272 of the closure nut 1232, and, as a result, the threaded drive member 1248 will translate within the lumen 1272 of the closure nut 1232 when driven by rotation of the rotary drive nut 1250.
  • Referring to FIGS. 83-91, the rotary drive nut 1250 may comprise a threaded distal portion 1274. The closure nut 1232 may comprise a threaded proximal portion 1276. The threaded distal portion 1274 of the rotary drive nut 1250 and the threaded proximal portion 1276 of the closure nut 1232 are in a threaded engagement. As described above, the threaded rotary drive nut 1250 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1216 around a central axis A. Therefore, given the threaded engagement of the rotary drive nut 1250 and the closure nut 1232, the rotational motion of the rotary drive nut 1250 is transformed into translational motion of the closure nut 1232 along the central axis A and, in turn, into pivotal motion in the jaw assembly 1211.
  • As shown in FIG. 83, the end effector drive housing 1216, the end effector connector tube 1218, and the intermediate articulation tube segment 1220, which together comprise the shaft assembly 1214, have open lumens and, therefore, the shaft assembly 1214 comprises a lumen extending longitudinally therethrough, as shown in FIGS. 83 and 85-91. Referring again to FIGS. 83 and 85-91, the concentric rotary drive shaft/threaded drive member assembly is located within the lumen of the shaft assembly 1214 and passes through the end effector drive housing 1216, the end effector connector tube 1218, and the intermediate articulation tube segment 1220. Although not shown in FIGS. 83-91, at least the rotary drive shaft 1270 passes through a lumen of the shaft assembly 1214 and is operably coupled to a driving mechanism that provides rotational motion and axial translational motion to the rotary drive shaft 1270. For example, in some embodiments, the surgical tool 1200 may be operably coupled through the shaft assembly 1214 to a robotic surgical system that provides rotational motion and axial translational motion to the rotary drive shaft 1270, such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16-21. For example, the rotary drive shaft 1270 may be coupled, through the shaft assembly, to the proximal drive shaft segment 380 described herein above. In some embodiments, for example, the surgical tool 1200 may be operably coupled through the shaft assembly 1214 to a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63. For example, the rotary drive shaft 1270 may be operably coupled, though the shaft assembly 560, to the proximal drive shaft segment 380′ described herein above.
  • In some embodiments, the threaded drive member 1248 has a length that is less than the length of the rotary drive shaft 1270 and, therefore, lies within only a distal portion of the rotary drive shaft 1270, for example. The threaded drive member 1248 and the rotary drive shaft 1270 may be flexible so that the threaded drive member 1248 and the rotary drive shaft 1270 can bend without damage or loss of operability during articulation of the surgical tool 1200 about the articulation joint 1208.
  • Described in greater detail elsewhere in the specification, the rotary drive shaft 1270 may comprise a rotary drive head 1278. The rotary drive head 1278 comprises a female hex coupling portion 1280 on the distal side of the rotary drive head 1278 and the rotary drive head 1278 comprises a male hex coupling portion 1282 on the proximal side of the rotary drive head 1278. The distal female hex coupling portion 1280 of the rotary drive head 1278 is configured to mechanically engage with a male hex coupling portion 1284 of the rotary drive nut 1250 located on the proximal side of the rotary drive nut 1250. As described elsewhere, the proximal male hex coupling portion 1282 of the rotary drive head 1278 is configured to mechanically engage with a female hex coupling portion 1286 of the end effector drive housing 1216 in order to rotate the end effector 1202 around the central axis A.
  • Referring to FIG. 85, the rotary drive shaft 1270 is shown in a fully proximal axial position in which the hex coupling portion 1282 of the rotary drive head 1278 is mechanically engaged with the female hex shaft coupling portion of the end effector drive housing 1216. In this configuration, rotation of the rotary drive shaft 1270 causes rotation of the head portion of the surgical tool 1200 about the head rotation joint 1210, including rotation of the end effector 1202 and the end effector drive housing 1216. In this configuration, the portion of the surgical tool 1200 that is distal to the head rotation joint 1210 (e.g., a head portion) rotates with rotation of the rotary drive shaft 1270, and the portion of the surgical tool 1200 that is proximal to the head rotation joint 1210 does not rotate with rotation of the rotary drive shaft 1270. An example of a head rotation joint 1210 is described in connection with FIGS. 64-82, 83-91 and 92-96. Other suitable techniques and rotation means for rotating the end effector 1202 relative to the shaft assembly 1214 are within the scope of the current disclosure. It will be appreciated that a desired rotation speed of the rotary drive shaft 1270 to drive the rotary drive nut 1250 may be greater than a desired rotational speed for rotating the head portion. For example, the rotary drive shaft 1270 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • The orientation of the threading of the threaded drive member 1248 and the rotary drive nut 1250 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 1270 will cause distal or proximal translation of the threaded drive member 1248 and I-beam member 1247. Stated another way, the rotary drive shaft 1270, and the rotary drive nut 1250 can be rotated in a first direction to advance the threaded drive member 1248 distally and correspondingly, rotated in a second opposite direction to retract the threaded drive member 1248 proximally. The pitch and/or number of starts of the threading of the threaded drive member 1248 and the threading of the rotary drive nut 1250 may be selected to control the speed and/or duration of the rotation of the rotary drive nut 1250 and, in turn, the translation of the threaded drive member 1248. In this manner, the direction, speed, and/or duration of rotation of the rotary drive shaft 1270 can be controlled in order to control the direction, speed, and magnitude of the longitudinal translation of the I-beam member 1247 along the first channel 1260 and second channel 1262, as described above.
  • Similar to the above, the orientation of the threading of the threaded distal portion 1274 of the rotary drive nut 1250 and the threading of the threaded proximal portion 1276 of the closure nut 1232 may be established so that either clockwise or counterclockwise rotation of the rotary drive shaft 1270 will cause distal or proximal translation of the closure nut 1232 and in turn closure or opening of the jaw assembly 1211. Stated another way, threaded distal portion 1274 can be rotated in a first direction to advance the threaded proximal portion 1276 distally and correspondingly, rotated in a second opposite direction to retract the threaded proximal portion 1276 proximally. The pitch and/or number of starts of the threading of the threaded distal portion 1274 of the threaded drive member 1248 and the threading of threaded proximal portion 1276 of the closure nut 1232 may be selected to control speed and/or duration of the rotation of the rotary drive nut 1250 and translation of the closure nut 1232. In this manner, the direction, speed, and/or duration of rotation of the rotary drive shaft 1270 can be controlled in order to control the direction, speed, and magnitude of the pivoting of the of the jaw assembly 1211.
  • Referring to FIGS. 86-88, the rotary drive shaft 1270 is shown in a fully extended distal axial position in which the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically engaged with the male hex coupling portion 1284 of the rotary drive nut 1250. In this configuration, rotation of the rotary drive shaft 1270 in a first direction (for example a clockwise direction) around the central axis A begins a firing stroke by causing rotation of the rotary drive nut 1250 in the first direction. The rotation of the rotary drive nut advances the threaded drive member 1248, which, in turn, advances the I-beam member 1247 distally. Simultaneously, the rotation of the rotary drive nut 1250 advances the closure nut 1232 distally, which closes the jaw assembly 1211. The closure nut 1232 and the threaded drive member 1248 are advanced distally until the closure nut 1232 is disengaged from threaded engagement with the rotary drive nut 1250 as illustrated in FIG. 88. Stated another way, the closure nut 1232 can be advanced distally until the threads of the threaded distal portion 1274 of the rotary drive nut 1250 are no longer threadedly engaged with the threads of the threaded proximal portion 1276 of the closure nut 1232. Thus, as a result, further rotation of the rotary drive nut 1250 in the first direction will not advance the closure nut 1232 distally. The closure nut 1232 will sit idle during the remainder of a firing stroke. Additional rotation of the rotary drive nut 1250, in the same direction, continues the distal advancement of the threaded drive member 1248, which continues the distal advancement of the I-beam member 1247 for the remainder of the firing stroke.
  • The surgical tool 1200 may comprise a biasing member 1288, a helical spring, and/or a washer spring for example, situated at least partially around the threaded distal portion 1274 of the rotary drive nut 1250. As illustrated in FIG. 86, the biasing member 1288 may include a proximal end abutted against the distal annular flange 1266 of the end effector drive housing 1216, and a distal end abutted against a proximal end 1290 of the closure nut 1232. Once the closure nut 1232 is released from threaded engagement with the rotary drive nut 1250, the biasing member 1288 can keep the closure nut 1232 from reengaging the rotary drive nut 1250 by pushing the closure nut 1232 axially in a distal direction along the central axis A until the distal portion 1238 of the closure nut 1232 abuts against a terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202. The biasing member 1288 also ensures that the jaw assembly 1211 remains under positive closure pressure by biasing the closure nut 1232 abutted against the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 as the I-beam member 1247 is being advanced distally through the closed jaw assembly 1211.
  • Referring primarily to FIG. 84, the closure nut 1232 may comprise a cam member 1296 extending distally from the closure nut 1232. Referring primarily to FIG. 87, the cam member 1296 may extend through an opening 1298 of the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 when the distal portion 1238 of the closure nut 1232 is abutted against the terminal wall 1294 of the proximal shaft portion 1212 of the end effector 1202 under positive pressure from the biasing member 1288.
  • Referring to FIG. 88, the rotary drive shaft 1270 is shown in a fully extended distal axial position in which the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically engaged with the make hex coupling portion 1284 of the rotary drive nut 1250. In this configuration, rotation of the rotary drive shaft 1270 in a second direction opposite the first direction (for example a counter clockwise direction) begins a reverse stroke by causing an opposite rotation of the rotary drive nut 1250, which retracts the threaded drive member 1248, which in turn retracts the I-beam member 1247. At least during the initial phase of the reverse stroke, the closure nut 1232 remains disengaged from the rotary drive nut 1250. However, when the I-beam member 1247 is being retracted, the I-beam member 1247 can engage the cam member 1296 of the closure nut 1232. Any further retraction of the I-beam member 1247 can simultaneously open the jaw assembly 1211 by pushing the closure nut 1232 axially in a proximal direction along the central axis A toward the rotary drive nut 1250. In order for the I-beam member 1247 to push the closure nut 1232 proximally, the I-beam member 1247 must compress the biasing member 1288. As the I-beam member 1247 is refracted, the I-beam member 1247 can push the closure nut 1232 proximally until the closure nut is returned into threaded engagement with the rotary drive nut 1250. At such point, the rotary drive nut 1250 can pull the closure nut 1232 proximally owing to the threaded engagement therebetween. As the closure nut 1232 is retracted proximally, the first link 1230, and the second link will cause the jaw assembly 1211 to open. The retraction of the I-beam member 1247 and the opening of the jaw assembly 1211 continue simultaneously during the remainder of the reverse stroke.
  • The sequence of events causing the closure of the jaw assembly 1211, the full extension of the I-beam member 1247, the full refraction of the I-beam member 1247, and the reopening of the jaw assembly 1211 is illustrated in FIGS. 85-91 in a chronological order. FIG. 85 shows the jaw assembly 1211 in a fully open position, the I-beam member 1247 in a fully retracted position, and the rotary drive shaft 1270 in a fully retracted axial position, wherein the female hex coupling portion 1280 of the rotary drive head 1278 is mechanically disengaged from the male hex coupling portion 1284 of the rotary drive nut 1250. In a first phase of operation, returning to FIG. 86, the rotary drive shaft 1270 is advanced axially to mechanically engage the female hex coupling portion 1280 of the rotary drive head 1278 with the male hex coupling portion 1284 of the rotary drive nut 1250. Referring again to FIG. 86, the rotation of the rotary drive shaft 1270 in a first direction (for example a clockwise direction) around the central axis A causes the rotation of the rotary drive nut 1250 in the first direction. The closure nut 1232 and the threaded drive member 1248 are simultaneously advanced distally by rotation of the rotary drive nut 1250 in the first direction. In turn, the closure of the jaw assembly 1211 and the initial advancement of the I-beam member 1247 occur simultaneously during the first phase of operation. In a second phase of operation, referring now to FIG. 87, the closure nut 1232 is disengaged from threaded engagement with the rotary drive nut 1250. During the remainder of the second phase of operation, the rotary drive nut 1250 continues to advance the threaded drive member 1248 independently of the closure nut 1232. As a result, referring primarily to FIG. 88, the jaw assembly 1211 remains closed and the I-beam member 1247 continues to advance until the end of the second phase of operation.
  • In a third phase of operation, as illustrated in FIG. 89, the rotary drive shaft 1270 is rotated in a second direction opposite the first direction, which causes the rotation of the rotary drive nut 1250 in the second direction. In the third phase of operation, the closure nut 1232 remains disengaged from rotary drive nut 1250. The rotation of the rotary drive nut 1250 retracts the threaded drive member 1248 independent of the closure nut 1232. In result, the jaw assembly 1211 remains closed, and the I-beam member 1247 is retracted in response to the rotation of the rotary drive. In a fourth phase of operation, referring primarily to FIG. 90, the rotary drive nut 1250 continues its rotation in the second direction thereby retracting the threaded drive member 1248 which retracts I-beam member 1247 until the I-beam member 1247 engages the cam member 1296 of closure nut 1232. Any further retraction of the I-beam member 1247 simultaneously opens the jaw assembly 1211 by pushing the closure nut 1232 axially in a proximal direction along the central axis A towards the rotary drive nut 1250 compressing the biasing member 1288. Referring primarily to FIG. 91, the I-beam member 1247 can continue to push the closure nut 1232 proximally until it is returned into threaded engagement with the rotary drive nut 1250. The retraction of the I-beam member 1247 and the opening of the jaw assembly 1211 continue simultaneously during the remainder of the fourth phase of operation.
  • Referring to FIGS. 92-96, a multi-axis articulating and rotating surgical tool 1300 comprises an end effector 1302 including a jaw assembly 1311 comprising a first jaw member 1304 and a second jaw member 1306. The first jaw member 1304 is movable relative to the second jaw member 1306 between an open position and a closed position to clamp tissue between the first jaw member 1304 and the second jaw member 1306. The surgical tool 1300 is configured to independently articulate about an articulation joint 1308. As described above, the surgical tool 1300 is also configured to independently rotate about a head rotation joint 1310.
  • The end effector 1302 is coupled to a shaft assembly 1314 comprising an end effector drive housing 1316, an end effector connector tube 1318, an intermediate articulation tube segment 1320, and a distal outer tube portion (not shown in FIGS. 92-96). The end effector 1302 and the shaft assembly 1314 together can comprise the surgical tool 1300. The end effector 1302 may be removably coupled to the end effector drive housing 1316 using a mechanism as described, for example, in connection with FIGS. 106-115. The end effector connector tube 1318 comprises a cylindrical portion 1322 and a ball portion 1324. The end effector drive housing 1316 is coupled to the cylindrical portion 1322 of the end effector connector tube 1318 through the head rotation joint 1310. The end effector 1302 and the end effector drive housing 1316 together comprise a head portion of the surgical tool 1300. The head portion of the surgical tool 1300 is independently rotatable about the head rotation joint 1310.
  • Referring primarily to FIG. 92, the surgical tool 1300 may include a closure mechanism 1326 for moving the first jaw member 1304 relative to the second jaw member 1306 between an open position (FIG. 93) and a closed position (FIG. 94). As illustrated, in FIG. 83, the first jaw member 1304 may include first mounting holes 1328, and the second jaw member 1306 may include second mounting holes (not shown in FIGS. 92-96). The first jaw member 1304 can be arranged relative to the second jaw member 1306 such that a pivot or trunnion pin (not shown in FIGS. 92-96) extends through the first mounting holes 1328 of the first jaw member 1304 and the second mounting holes of the second jaw member 1306 to pivotally couple the first jaw member 1304 to the second jaw member 1306. Other suitable means for coupling the first jaw member 1304 and the second jaw member 1306 are within the scope of this disclosure.
  • Referring to FIGS. 92-96, the closure mechanism may comprise a closure link 1330 which translates axially relative to the end effector drive housing 1316 between a first position and a second position. The closure link 1330 may comprise a distal end 1332 and a proximal end 1334. The distal end 1332 may be pivotally connected to a proximal portion 1336 of the first jaw member 1304 such that when the closure link 1330 is translated between the first position and the second position, the first jaw member 1304 is moved relative to the second jaw member 1306 between an open and a closed position.
  • Referring to FIGS. 92-96, the closure mechanism 1328 may also comprise a closure driver in the form of a barrel cam 1338 for example. The barrel cam 1338 may be positioned within the end effector drive housing 1316. The barrel cam 1338 may comprise a generally cylindrical shape having a lumen 1340 therethrough. The barrel cam 1338 may include a first arcuate groove 1346, and a second arcuate groove 1348 defined in a peripheral surface thereof. The first arcuate groove 1346 may receive a first pin 1350 extending from the end effector drive housing 1316. The second arcuate groove 1348 may receive a second pin (not shown in FIGS. 92-96) extending from the end effector drive housing 1316. The first pin 1350 and the second pin (not shown in FIGS. 92-96) may extend from circumferentially opposite sides of an inner wall of the end effector drive housing 1316. The barrel cam 1338 may rotate around central axis A, wherein, as the barrel cam 1338 is rotated around central axis A, the first pin 1350 travels along the first arcuate groove 1346, and the second pin travels along the second arcuate groove 1348 thereby translating the barrel cam 1338 axially along central axis A. The result is a conversion of the rotational motion of the barrel cam 1338 into an axial motion of the closure link 1330. Stated another way, the rotation of the barrel cam 1338 in a first direction (for example a clockwise direction) around the central axis A may result in advancing the barrel cam 1338 axially in a distal direction. Correspondingly, the rotation of the barrel cam 1338 in a second direction (for example a counter clockwise direction) opposite the first direction may result in retracting the barrel cam 1338 axially in a proximal direction along the central axis A.
  • Referring to FIGS. 92-96, the proximal end 1334 of the closure link 1330 may be operatively engaged with the barrel cam 1338 such that the axially advancement of the barrel cam 1338 may cause the closure link 1330 to be advanced axially, and, in turn close the jaw assembly 1311. Similarly, the proximal retraction of the barrel cam 1338 may retract the closure link 1330, which may open the jaw assembly 1311. As illustrated in FIGS. 92-96, the barrel cam 1338 may include a circumferential recess 1354 on the external wall of the barrel cam 1338 at a distal portion thereof. The proximal end of the closure link 1330 may comprise a connector member 1356. The connector member 1356 may be operably engaged with the barrel cam 1338 along the recess 1354. As a result, the barrel cam 1338 may translate axial motions to the closure link 1330 through the connector member 1356.
  • Referring primarily to FIG. 92, the surgical tool 1300 may include a firing mechanism 1358. The firing mechanism 1358 may include an I-beam member 1360, a threaded drive member 1362, and a threaded rotary drive nut 1364. The I-beam member 1360 may operate in a manner similar to that of the axially movable member 3016 described herein above and may comprise a first I-beam flange 1367 and a second I-beam flange 1368. The first I-beam flange 1367 and the second I-beam flange 1368 are connected with an intermediate portion 1370. The intermediate portion 1370 of the I-beam member 1360 may comprise a cutting member 1372, which may comprise a sharp edge or blade for example, to transect tissue clamped between the first jaw member 1304 and the second jaw member 1306 when the jaw assembly 1311 is closed. The I-beam member 1360 may translate distally within a first channel (not shown in FIGS. 92-96) defined in the first jaw member 1304 and within a second channel 1376 defined in the second jaw member 1306 to cut through clamped tissue during a distal translation (firing) stroke. FIG. 96 illustrates the I-beam member 1360 after a firing stroke.
  • Before, during, and/or after the I-beam member 1360 is advanced through tissue clamped between the first jaw member 1304 and the second jaw member 1306, electrical current can be supplied to electrodes 1378 located in the first jaw member 1304 and/or second jaw member 1306 in order to weld/fuse the tissue, as described in greater detail in this specification. For example, electrodes 1378 may be configured to deliver RF energy to tissue clamped between the first jaw member 1304 and the second jaw member 1306 when in a closed position to weld/fuse the tissue.
  • Distal and proximal translation of the I-beam member 1360 between a proximally retracted position and a distally advanced position may be accomplished with a suitable firing mechanism 1358. Referring to FIGS. 92-96, the I-beam member 1360 is connected to the threaded drive member 1362, wherein the threaded drive member 1362 is threadedly engaged with the rotary drive nut 1364. The threaded rotary drive nut 1364 is positioned within the end effector drive housing 1316 distal to the barrel cam 1338 between a proximal annular flange 1339A and a distal annular flange 1339B. The threaded rotary drive nut 1364 is mechanically constrained from translation in any direction, but is rotatable within the end effector drive housing 1316. Therefore, given the threaded engagement of the rotary drive nut 1364 and the threaded drive member 1362, rotational motion of the rotary drive nut 1364 is transformed into translational motion of the threaded drive member 1362 along the central axis A and, in turn, into translational motion of the I-beam member 1360 along the central axis A.
  • The threaded drive member 1362 is threaded through the rotary drive nut 1364 and is located at least partially inside a lumen 1381 of a rotary drive shaft 1382. The threaded drive member 1362 is not attached or connected to the rotary drive shaft 1382. The threaded drive member 1362 is freely movable within the lumen 1381 of the rotary drive shaft 1382 and will translate within the lumen 1381 of the rotary drive shaft 1382 when driven by rotation of the rotary drive nut 1364. The rotary drive shaft 1382 and the threaded drive member 1362 form a concentric rotary drive shaft/threaded drive member assembly that is located in the shaft assembly 1314. In addition, the threaded drive member 1362 extends distally through a lumen 1384 of the barrel cam 1338 wherein the threaded drive member 1362 is freely movable within the lumen 1384 of the barrel cam 1338 and will translate within the lumen 1384 of the barrel cam 1338 when the threaded drive member is driven by rotation of the rotary drive nut 1364.
  • As shown in FIG. 92, the end effector drive housing 1316, the end effector connector tube 1318, and the intermediate articulation tube segment 1320, which together comprise the shaft assembly 1314, have lumens extending therethrough. As a result, the shaft assembly 1314 can comprise a lumen extending therethrough, as illustrated in FIGS. 92-96. Referring again to FIGS. 92-96, the concentric rotary drive shaft/threaded drive member assembly is located within the lumen of the shaft assembly 1314 and passes through the end effector drive housing 1316, the end effector connector tube 1318, and the intermediate articulation tube segment 1320. Although not shown in FIGS. 92-96, at least the rotary drive shaft 1382 passes through a lumen of the shaft assembly 1314 and is operably coupled to a driving mechanism that provides rotational and/or axial translational motion to the rotary drive shaft 1382. For example, in some embodiments, the surgical tool 1300 may be operably coupled through the shaft assembly 1314 to a robotic surgical system that provides rotational motion and/or axial translational motion to the rotary drive shaft 1382, such as, for example, the robotic surgical systems described in connection with FIGS. 5 and 16-21. For example, the rotary drive shaft 1382 may be operably coupled, though the shaft assembly 1314, to the proximal drive shaft segment 380 described herein above. Also, in some embodiments, the surgical tool 1300 may be utilized in conjunction with a hand-held surgical device, such as the device described herein above with respect to FIGS. 46-63. For example, the rotary drive shaft 1382 may be operably coupled, through the shaft assembly 1314, to the proximal drive shaft segment 380′ described herein above.
  • In some embodiments, the threaded drive member 1362 has a length that is less than the length of the rotary drive shaft 1382 and, therefore, lies within only a distal portion of the rotary drive shaft 1382, for example. The threaded drive member 1362 and the rotary drive shaft 1382 may be flexible so that the threaded drive member 1362 and the rotary drive shaft 1382 can bend without damage or loss of operability during articulation of the surgical tool 1300 about the articulation joint 1308.
  • The rotary drive shaft 1382 may comprise a rotary drive head 1386. The rotary drive head 1386 may comprise spline members 1388 disposed circumferentially around an external surface of the rotary drive head 1386 and oriented co-axially with the shaft assembly 1314. The end effector drive housing 1316 may comprise a spline coupling portion 1390 comprising spline members 1392 disposed circumferentially around an internal wall of the end effector drive housing 1316 and oriented co-axially with the shaft assembly 1314. The barrel cam 1338 may comprise a spline coupling portion 1394 comprising spline members 1396 disposed circumferentially around an internal wall of barrel cam 1338 and oriented co-axially with the shaft assembly 1314. The rotary drive nut 1364 may also comprise a spline coupling portion 1397 comprising spline members 1398 disposed circumferentially around an internal wall of rotary drive nut 1364 and oriented co-axially with the shaft assembly 1314. As illustrated in FIG. 93, the rotary drive shaft 1382 may be selectively retracted proximally to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1390 of the end effector drive housing 1316. In this configuration, rotation of the rotary drive shaft 1382 causes rotation of the head portion of the surgical tool 1300 about the head rotation joint 1310, including rotation of the end effector 1302 and the end effector drive housing 1316. In this configuration, the portion of the surgical tool 1300 that is distal to the head rotation joint 1310 rotates with rotation of the rotary drive shaft 1382, and the portion of the surgical tool 1300 that is proximal to the head rotation joint 1310 does not rotate with rotation of the rotary drive shaft 1382. An example of a head rotation joint 1310 is described in connection with FIGS. 64-82, 83-91 and 92-96. Other suitable techniques and rotation means for rotating the end effector 1302 relative to the shaft assembly 1314 are within the scope of the current disclosure. It will be appreciated that a desired rotation speed of the rotary drive shaft 1382 to drive the rotary drive nut 1364 may be greater than a desired rotational speed for rotating the head portion. For example, the rotary drive shaft 1270 may be driven by a motor (not shown) that is operable at different rotary speeds.
  • As illustrated in FIG. 94, the rotary drive shaft 1382 may be selectively advanced distally to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338. In this configuration, rotation of the rotary drive shaft 1382 causes rotation of the barrel cam 1338. As described above, the rotation of the barrel cam 1338 causes axial motions in the closure link 1330. In result, the rotation of the rotary drive shaft 1382 in a first direction (for example a clockwise direction) around the central axis A may cause the closure link 1330 to be advanced distally along the central axis A, which may close the jaw assembly 1311. Alternatively, the rotation of the rotary drive shaft 1382 in a second direction (for example a clockwise direction) opposite the first direction may cause the closure link 1330 to be retracted proximally along the central axis A, which in turn may open the jaw assembly 1311.
  • As illustrated ire FIG. 95, the rotary drive shaft 1382 may be selectively advanced distally to pass the rotary drive head 1386 through the lumen of the barrel cam 1338 into a space 1399 in the end effector drive housing 1316 between the barrel cam 1338 and the rotary drive nut 1364 wherein the rotary drive head 1386 is not in operable engagement with any of the spline coupling portions. The rotary drive shaft 1382 may then be further advanced distally to bring rotary drive head 1386 into operable engagement with the spline coupling portion 1397 of the rotary drive nut 1364 as illustrated in FIG. 96. In this configuration, rotation of the rotary drive shaft 1382 causes rotation of the rotary drive nut 1364. As described above, the rotation of the rotary drive nut 1364 causes axial motions in the threaded drive member 1362. In result, rotation of the rotary drive shaft 1382 in a first direction (for example a clockwise direction) around the central axis A, may cause the threaded drive member 1362 to be advanced distally, which in turn may advance the I-beam member 1360 distally. Alternatively, rotation of the rotary drive shaft 1382 in a second direction (for example a clockwise direction) opposite the first direction may cause the threaded drive member 1362 to be retracted proximally, which may retract the I-beam member 1360 proximally.
  • The sequence of events causing the closure of the jaw assembly 1311, the full extension of the I-beam member 1360, the full refraction of the I-beam member 1360, and the reopening of the jaw assembly 1311 is illustrated in FIGS. 93-96 in a chronological order. FIG. 93 shows the jaw assembly 1311 in a fully open position, the I-beam member 1360 in a fully retracted position, and the rotary drive shaft 1382 in a retracted axial position, wherein the rotary drive head 1386 is operably engaged with the spline coupling portion 1390 of the end effector drive housing 1316. In a first phase of operation, the rotary drive shaft 1382 is rotated to rotate the end effector 1302 into an appropriate orientation, for example relative to a blood vessel. In a second phase of operation, the rotary drive shaft 1382 is advanced axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338. In this configuration, the rotary drive shaft 1382 may be rotated in a first direction (for example a clockwise direction) around the central axis A to close the jaw assembly 1311 around the blood vessel. The electrodes 1378 in the first jaw member 1304 and the second jaw member 1306 may be activated to seal the blood vessel. In a third phase of operation, the rotary drive shaft 1382 may then be advanced axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1397 of the rotary drive nut 1364. In this configuration, the rotary drive shaft 1382 may be rotated in a first direction around the central axis A (for example a clockwise direction) to advance the I-beam member 1360 thereby transecting the sealed blood vessel. In a fourth phase of operation, the rotary drive shaft 1382 may be rotated in a second direction (for example a counter clockwise direction) opposite the first direction to retract the I-beam member 1360.
  • In a fifth phase of operation, the rotary drive shaft 1382 is retracted axially to bring the rotary drive head 1386 into operable engagement with the spline coupling portion 1394 of the barrel cam 1338. In this configuration, the rotary drive shaft 1382 may be rotated in a second direction (for example a counter clockwise direction) opposite the first direction to reopen the jaw assembly 1311 thereby releasing the sealed cut blood vessel.
  • As described above, a surgical tool can utilize a drive system for translating a drive member distally within an end effector of the surgical tool, to advance a cutting member within the end effector, for example, and for translating the drive tube proximally to retract the drive tube and/or cutting member. FIGS. 97 and 98 illustrate an example drive shaft assembly 1400 that may be employed in connection with an end effector 1420 and/or any of the end effectors described herein. For example, the drive shaft assembly 1400 (as well as the assembly 1400′) may correspond to various threaded rotary drive members described herein including, for example, the threaded rotary drive members 604, 654, 1040, 1248, 1364, etc. Further to the above, the drive shaft assembly 1400 can be advanced distally in order to rotate a jaw member 1422 of the end effector 1420 between a closed position and an open position, as illustrated in FIG. 97, and advance a cutting member between the jaw member 1422 and a jaw member 1424 positioned opposite the jaw member 1422. In one example form, the drive shaft assembly 1400 includes a drive member, or tube, 1402 that can comprise a series of annular joint segments 1404 cut therein.
  • In various example embodiments, the drive member 1402 can comprise a hollow metal tube comprised of stainless steel, titanium, and/or any other suitable material, for example, that has a series of annular joint segments 1404 formed therein. In at least one embodiment, the annular joint segments 1404 can comprise a plurality of loosely interlocking dovetail shapes 1406 that are, for example, cut into the drive member 1402 by a laser and serve to facilitate flexible movement between the adjoining joint segments 1404. Such laser cutting of a tube stock can create a flexible hollow drive tube that can be used in compression, tension and/or torsion. Such an arrangement can employ a full diametric cut that is interlocked with the adjacent part via a “puzzle piece” configuration. These cuts are then duplicated along the length of the hollow drive tube in an array and are sometimes “clocked” or rotated to change the tension or torsion performance. Further to the above, the interlocking dovetails shapes 1406 are but one example embodiment and, in various circumstances, the drive member 1402 can comprise any suitable array of articulation joints comprising interlocking drive projections and drive recesses. In various circumstances, the drive member 1402 can comprise an articulation joint lattice comprising operably engaged projections and recesses which can be interlocked to transmit linear and/or rotary motions therebetween. In a sense, in various embodiments, the drive member 1402 can comprise a plurality or a multitude of articulation joints defined within the body of the drive member 1402. The drive member 1402 can include a plurality of articulation joints which are intrinsic to the body of the drive member 1402.
  • Further to the above, the drive member 1402 can be pushed distally such that a longitudinal force is transmitted through the drive member 1402 and to a cutting member, for example, operably coupled with a distal end of the drive member 1402. Correspondingly, the drive member 1402 can be pulled proximally such that a longitudinal force is transmitted through the drive member 1402 and to the cutting member. The interlocking dovetail shapes 1406 can be configured to transmit the longitudinal pushing and pulling forces between the joint segments 1404 regardless of whether the joint segments 1404 are longitudinally aligned, as illustrated in FIG. 98, and/or articulated relative to each other to accommodate the articulation of the articulation joint 1430 which rotatably connects the end effector 1420 to the shaft of the surgical instrument. More particularly, further to the above, the articulation joint 1430 can comprise one or more articulation segments 1434 which can move relative to one another to permit the end effector 1420 to rotate wherein, in order to accommodate the relative movement of the articulation joint segments 1434, the joint segments 1404 of the drive member 1402 can rotate or shift relative to each other. In at least the illustrated embodiment of FIG. 97, the articulation joint segments 1434 can define a passage 1435 extending therethrough which can be configured to closely receive the drive tube 1402 and constrain large transverse movements between the joint segments 1404 while concurrently permitting sufficient relative movement between the joint segments 1404 when the articulation joint 1430 has been articulated. FIGS. 99-101 illustrate alternative example micro-annular joint segments 1404′ of a drive member 1402′ that can comprise a plurality of laser cut shapes 1406′ that roughly resemble loosely interlocking, opposed “T” shapes and T-shapes with a notched portion therein, for example. The laser cut shapes 1406′ can also roughly resemble loosely interlocking, opposed “L” shapes and L-shapes defining a notched portion, for example. The annular joint segments 1404, 1404′ can essentially comprise multiple micro-articulating torsion joints. That is, each joint segment 1404, 1404′ can transmit torque while facilitating at least some relative articulation between each annular joint segment. As shown in FIGS. 99 and 100, the joint segment 1404D′ on the distal end 1403′ of the drive member 1402′ has a distal mounting collar portion 1408D′ that facilitates attachment to other drive components for actuating the end effector. Similarly, the joint segment 1404P′ on the proximal end 1405′ of the drive member 1402′ has a proximal mounting collar portion 1408P′ that facilitates attachment to other proximal drive components or portions of a quick disconnect joint, for example.
  • The joint-to-joint range of motion for each particular joint segment 1404′ can be increased by increasing the spacing in the laser cuts. In various circumstances, however, the number and/or density of the laser cuts within any particular region of the drive member 1402′ can cause the drive member 1402′ to be particularly flexible in that region. To ensure that the joint segments 1404′ remain coupled together without significantly diminishing the drive tube's ability to articulate through desired ranges of motion, a secondary constraining member can be employed to limit or prevent the outward expansion of the joint segments 1404′. In the example embodiment depicted in FIGS. 102 and 103, a secondary constraining member 1410 comprises a spring 1412 or an otherwise helically-wound member. In various example embodiments, the distal end 1414 of the spring 1412 can correspond to and can be attached to the distal mounting collar portion 1408D′ and can be wound tighter than the central portion 1416 of the spring 1412. Similarly, the proximal end 1418 of the spring 1412 can correspond to and can be attached to the proximal collar portion 1408P′ and can be wound tighter than the central portion 1416 of the spring 1412. As a result of the tighter winding, the distal end 1414 and/or the proximal end 1418 can comprise coils which are positioned closer together than the coils of the central portion 1416. Stated another way, the coils per unit distance of the distal end 1414 and/or the proximal end 1418 can be greater than the coils per unit distance of the central portion 1416. In any event, the spring 1412 can define a longitudinal aperture 1413 within which the drive member 1402′, and/or the drive member 1402, for example, can be positioned. The longitudinal aperture 1413 and the drive member 1402′ can be sized and configured such that the drive member 1402′ is closely received within the longitudinal aperture 1413 wherein, in various circumstances, the coils of the spring 1412 can limit the outward movement of the joint segments 1404′ such that the joint segments 1404′ do not become disconnected from one another when they are articulated relative to one other. As outlined above, the distal end 1414 of the spring 1412 can be fixedly mounted to the distal end 1403′ of the drive member 1402′ and the proximal end 1418 of the spring 1412 can be fixedly mounted to the proximal end 1405′ of the drive member 1402′ wherein the movement of the distal tube end 1403′ can move the distal spring end 1414 and, correspondingly, the movement of the proximal tube end 1405′ can move the proximal spring end 1418. In various circumstances, the spring ends 1414 and 1418 can be welded, for example, to the tube ends 1403′ and 1405′, respectively. In at least the illustrated embodiment, the coils of the central portion 1416 may not be fixedly mounted to the drive member 1402′. In at least one such embodiment, the drive member 1402′ can be configured to at least partially articulate within the coils of the central portion 1416 until the drive member 1402′ contacts the coils wherein, at such point, the coils can be configured to at least partially expand or shift to accommodate the lateral movement of the drive member 1402′. In various other embodiments, at least portions of the coils of the central portion 1416 can be fixedly mounted, such as by welding, for example, to the drive member 1402′.
  • Further to the above, the constraining member 1410 may be installed on the drive member 1402′ with a desired pitch such that the constraining member 1410 also functions, for example, as a flexible drive thread 1440 which can be threadably engaged with other threaded drive components on the end effector and/or the drive system, as described above. The drive member 1402′ can be constrained from being revolved around its longitudinal axis wherein, when a threaded drive input is engaged with the thread 1440 and is rotated in a first direction by a motor, for example, the drive member 1402′ can be advanced distally within the end effector 1420. Correspondingly, when the threaded drive input engaged with the thread 1440 is rotated in a second, or opposite, direction, the drive member 1402′ can be retracted proximally. It will be appreciated that the constraining member 1410 may be installed in such a manner that the thread 1440 includes a constant, or at least substantially constant, pitch along the length thereof. In such embodiments, the drive member 1402′ can be advanced and/or retracted at a constant, or an at least substantially constant, rate for a given rate in which the threaded drive input is rotated. It will also be appreciated that the constraining member 1410 can be installed in such a manner that the thread 1440 includes a variable pitch, or a pitch which changes along the length of the drive member 1402′. For example, the variable pitch arrangement of the constraining member 1410 may be used to slow the drive assembly 1400′ down or speed the drive assembly 1400′ up during certain portions of the firing stroke of the drive assembly 1400′. For instance a first portion of the thread 1440 can include a first pitch which is smaller than the pitch of a second portion of the thread 1440 wherein the first pitch can drive a closing member at a first rate and the second portion can drive a firing member at a second rate, for example. In at least some forms, for example, the drive shaft assembly comprises a variable pitch thread on a hollow flexible drive shaft that can be pushed and pulled around a ninety degree bend or greater, for example.
  • As discussed above, the drive member 1402′ can be constrained from revolving about its longitudinal axis. Moreover, the entire drive shaft assembly 1400′ can be constrained from rotating about its longitudinal axis. In various embodiments, the drive member 1402′ can comprise a longitudinal slot defined therein which can be engaged with one or more projections which can extend inwardly from the end effector 1420 and/or the articulation joint members 1434 into the longitudinal slot, for example. Such an arrangement of the longitudinal slot and the projections can be configured to prevent or at least limit the rotation of the drive shaft assembly 1400′ about its own longitudinal axis. As used herein, the longitudinal axis of the drive shaft assembly 1400′, and/or the drive member 1402′, can extend along the center of the drive shaft assembly 1400′ regardless of whether the drive shaft assembly 1400′ is in a straight configuration or a bent configuration. As a result, the path and direction of the longitudinal axis of the drive shaft assembly 1400′ may change when the end effector 1420 is articulated and the drive shaft assembly 1400′ articulates to accommodate the articulation of the end effector 1420. Further to the above, the drive member 1402′ can be fixedly mounted to and extend proximally from a cutting member positioned within the end effector 1420. As described herein, the cutting member can be closely received within various slots and/or channels defined in the end effector which can prevent the cutting member, and the drive shaft assembly 1400′ extending therefrom, from being rotated, or at least substantially rotated about its longitudinal axis. While the longitudinal axis of the drive shaft assembly 1400′ can be defined by the drive member 1402′, the longitudinal axis can be defined by the spring 1412. In at least one such embodiment, the center path of the spring coils can define the longitudinal axis of the drive shaft assembly 1400′. In any event, the drive shaft assembly 1400′ can be constrained from revolving around its longitudinal axis.
  • Turning now to FIGS. 104 and 105, the drive shaft assembly 1400′ can comprise an internal constraining member, such as a flexible core 1417, for example, which can be configured to limit or prevent the inward movement or collapse of the joint segments 1404′ of the drive member 1402′. The drive member 1402′ can define an internal longitudinal cavity 1415 which can be configured to closely receive the flexible core 1417. In at least one such embodiment, the internal cavity 1415 defined in the drive member 1402′ can comprise a diameter or width which is equal to, or at least substantially equal to, the diameter or width of the flexible core 1417. In various circumstances during the articulation of the end effector 1420, for example, portions of the joint segments 1404′ can deflect or be displaced inwardly toward the flexible core 1417 wherein, when the joint segments 1404′ contact the flexible core 1417, the core 1417 can inhibit the inward movement of the joint segments 1404′ and prevent the drive member 1402′ from collapsing inwardly. The flexible core 1417 can be mounted to at least portions of the drive member 1402′ such as the distal end 1408D′ and/or the proximal end 1408P′ thereof, for example. In certain embodiments, the flexible core 1417 may not be fixedly mounted to the drive member 1402′ wherein, in such embodiments, the flexible core 1417 can be held in place by the drive member 1402′. In any event, the flexible core 1417 can be sufficiently flexible so as to permit the drive shaft assembly 1400′ to bend or articulate as necessary to transmit the pushing and pulling motions applied thereto, as described above.
  • As outlined above, the shaft assembly 1400′, for example, can be configured to bend or flex to accommodate the articulation of the end effector 1420 about the articulation joint 1430. The drive member 1402′, the flexible core 1417, and/or the spring 1412 can be resilient such that the shaft assembly 1400′ can return to its original longitudinal configuration, for example. In various circumstances, the end effector 1420 can be rotated from its articulated position back to its longitudinal, or straight, position and, as such, the shaft assembly 1400′ can be configured to bend or flex in order to accommodate the return of the end effector 1420.
  • Referring to FIGS. 106-108, a surgical tool 1000 may include a surgical end effector 1001 and a shaft assembly 1003. Surgical end effector 1001 may be configured to perform surgical activities in response to drive motions applied thereto. Shaft assembly 1003 may be configured to transmit such drive motions to surgical end effector 1001. The surgical end effector 1001 may include a first jaw member 1002, and a second jaw member 1004. The first jaw member 1002 may be movable relative to the second jaw member 1004 between a first position and a second position. Alternatively, the first jaw member 1002 and second jaw member 1004 may be moveable relative to each other between a first position and a second position. The first position may be an open position and the second position may be a closed position.
  • Referring to FIGS. 106-108, the first jaw member 1002 may be pivotally movable relative to the second jaw member 1004 between a first position and a second position. As illustrated in FIG. 108, the first jaw member 1002 may include mounting holes (not shown), and the second jaw member 1004 may include mounting holes 1008. The first jaw member 1002 can be arranged relative to the second jaw member 1004 such that a pivot or trunnion pin (not shown) is inserted through the mounting holes of the first jaw member 1002 and the mounting holes 1008 of the second jaw member 1004 to pivotally couple the first jaw member 1002 to the second jaw member 1004. Other suitable means for coupling the first jaw member 1002 and the second jaw member 1004 are contemplated within the scope of this disclosure.
  • Referring to FIGS. 106-108, surgical end effector 1001 may be adapted to perform multiple functions. For example, surgical end effector 1001 may include gripping portions 1010 disposed on exterior surfaces of the first jaw member 1002 and/or the second jaw member 1004. Gripping portions 1010 may be adapted for contacting and bluntly dissecting tissue. Suitable gripping portions 1010 are described, for example, in connection with FIGS. 116-131. Surgical end effector 1001 may also include angled tissue engagement surfaces 1012 for transecting tissue. Suitable angled tissue engagement surfaces 1012 are described, for example, in connection with FIGS. 132-142. The first jaw member 1002 may include an interior surface 1014 and the second jaw member 1004 may include an interior surface 1016. The first 1014 and second 1016 interior surfaces may be configured to grip, pass, and/or manipulate tissue and/or surgical implements such as needles 1015 for suturing tissue. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 153-168. Furthermore, surgical end effector 1001 may also include electrodes 1017 and/or another electrically active surface for sealing blood vessels during a surgical procedure. The electrodes 1017 may be configured to deliver radio frequency (RF) energy to tissue clamped between the first jaw member 1002 and the second jaw member 1004 when in a closed position to weld/fuse the tissue, which may be transected by translating a cutting member 1018. Suitable electrodes are described, for example, in connection with FIGS. 153-168.
  • Referring to FIGS. 108-111, surgical end effector 1001 may be releasably attached to shaft assembly 1003. An operator or a surgeon may attach surgical end effector 1001 to shaft assembly 1003 to perform a surgical procedure. In the embodiment depicted in FIG. 108, shaft assembly 1003 includes a coupling arrangement in the form of a quick disconnect arrangement or joint 1019 that facilitates quick attachment of a distal shaft portion 1020 of the shaft assembly 1003 to a proximal shaft portion 1022 of the surgical end effector 1001. The quick disconnect joint 1019 may serve to facilitate the quick attachment and detachment of a plurality of drive train components used to provide control motions from a source of drive motions to an end effector that is operably coupled thereto.
  • As illustrated in FIG. 112, surgical end effector 1001 may be interchanged with other surgical end effectors suitable for use with shaft assembly 1003. For example, surgical end effector 1001 may be detached from shaft assembly 1003 and a second surgical end effector 1024 may be attached to shaft assembly 1003. In another example, the second surgical end effector 1024 may be replaced with a third surgical end effector 1026. Surgical end effectors 1001, 1024, and 1026 may include common drive train components that are operably engageable with their counter parts in the shaft assembly 1003. Yet, surgical end effectors 1001, 1024, and 1026 may each include unique operational features suitable for certain surgical tasks.
  • The surgical end effector 1001 may include an actuation mechanism. The actuation mechanism may comprise a closure mechanism for moving the first jaw member 1002 relative to the second jaw member 1004. The actuation mechanism may comprise a firing mechanism for transecting tissue grasped between the first, jaw member 1002 and the second jaw member 1004. The closure and firing may be accomplished by separate mechanisms, which may be driven separately or contemporaneously. Alternatively, the closure and firing may be accomplished via a single mechanism. Suitable closure mechanisms and suitable firing mechanisms are described, for example, in connection with FIGS. 64-82, 83-91 and 92-96.
  • Referring to FIG. 113, an actuation mechanism 1028 is shown. The actuation mechanism may include a reciprocating member 1030. The reciprocating member 1030 may define a cam slot 1032 configured to receive a cam pin 1034 coupled to the first jaw member 1002. Distal and proximal movement of the reciprocating member 1030 may cause the cam pin 1032 to translate within the cam slot 1034, which may, in turn, cause the first jaw member 1002 to pivot from an open position (e.g., proximal position of the reciprocating member 1030) to a closed (e.g., distal position of the reciprocating member 1030). In embodiments where the first 1002 and the second 1004 jaw members are movable, both jaw members 1002 and 1004 may comprise a cam pin and the reciprocating member 1030 may define a pair of cam slots or grooves. The reciprocating member 1030 may comprise an I-beam member adapted to slide over the jaw members 1002 and 1004 to close the jaw members 1002 and 1004, and/or to provide a clamping force tending to force the jaw members 1002, and 1004 together. The reciprocating member 1030 may include a cutting blade 1036. The cutting blade 1036 may be attached to the reciprocating member 1030 and situated such that it can be extended and retracted with the reciprocating member 1030. The cutting member may be extended to transect tissue or material present between the jaw members 1002, and 1004.
  • Referring to FIGS. 108-111, the actuation mechanism 1028 may include a rotary drive nut 1038 and a threaded rotary drive member 1040. The rotary drive member 1040 may extend proximally from the reciprocating member 1030. The reciprocating member 1030 and the rotary drive member 1040 may be formed together as one piece. Alternatively, the reciprocating member 1030 and the rotary drive member 1040 may be formed separately and welded together. Other techniques for joining the reciprocating member 1030 and the rotary drive member 1040 may be employed and are contemplated within the scope of this disclosure. The rotary drive nut 1038 may be operably supported within the proximal shaft portion 1022 of the surgical end effector 1001, which extends proximally relative to the jaw members 1002, and 1004. The rotary drive nut 1038 may be rotated around a central axis extending through the proximal shaft portion 1022, for example, as described herein above. The rotary drive member 1040 may extend proximally from the reciprocating member 1030 along the central axis through the rotary drive nut 1038. The rotary drive nut 1038 and the rotary drive member 1040 may be arranged in a mating arrangement such that rotation of the rotary drive nut 1038 around the central axis in one direction (e.g. clockwise direction) may advance the rotary drive member 1040, and rotation of the rotary drive nut 1038 around the central axis in the opposite direction (e.g. counter clockwise direction) may retract the rotary drive member 1040. This actuation mechanism and other suitable actuations mechanisms are described, for example, in connection with FIGS. 64-82, 83-91 and 92-96.
  • Referring to FIGS. 108-111, the surgical tool 1000 may include a rotary drive shaft 1042 disposed longitudinally through shaft assembly 1003. The rotary drive shaft 1042 may include a rotary drive head 1044 at a distal portion thereof. The rotary drive nut 1038 may comprise an actuation coupler 1046 for mating arrangement with the rotary drive head 1044 such that when coupled, the rotary drive head 1044 may transmit rotary motions to the actuation coupler 1046. The rotary drive shaft 1042 may be selectively moved axially between multiple discrete positions. For example, the rotary drive shaft 1042 may be extended axially to bring the rotary drive head 1044 into operable engagement with the actuation coupler 1046 as depicted in FIG. 111. Alternatively, the rotary drive shaft 1042 may be retracted axially to disengage the rotary drive head 1044 from the actuation coupler 1046. Such arrangement may allow for a quick and efficient attachment and detachment of a plurality of surgical end effectors to shaft assembly 1003.
  • Referring to FIGS. 108-110, surgical end effector 1001 is shown detached from shaft assembly 1003. The proximal shaft portion 1022 of surgical end effector 1001 is disengaged from the distal shaft portion 1020 of the shaft assembly 1003. As depicted in FIG. 108, the proximal shaft portion 1022 of the surgical end effector 1001 may include a tapered end for mating arrangement with a funneling end on the distal shaft portion 1020 of the shaft assembly 1003. The rotary drive shaft 1042 may include a hollow distal portion that extends distally along a central axis through the rotary drive head 1044 and terminates at a distal opening thereof. The hollow distal portion may receive a proximal portion of the rotary drive member 1040 when the surgical end effector 1001 is attached to the shaft assembly 1003. The rotary drive member 1040 may rotate freely in the hollow distal portion of the rotary drive shaft 1042. As depicted in FIG. 110, the surgical end effector 1001 is attached to shaft assembly 1003 simply by inserting the proximal portion of the rotary drive member 1040 into the hollow portion of the rotary drive shaft 1042 and guiding the tapered end of the proximal shaft portion 1022 of the surgical end effector 1001 into a mating arrangement with the funneling end of the distal shaft portion 1020 of the shaft assembly 1003. As depicted in FIG. 111, once the surgical end effector 1001 is attached to shaft assembly 1003, the rotary drive shaft 1042 may be advanced to bring the rotary drive head 1044 into operable engagement with the actuation coupler 1046 to transmit rotary motions to the rotary drive nut 1038. Other attachment means and techniques for releasably attaching the surgical end effector 1001 to the shaft assembly 1003 are contemplated within the scope of this disclosure.
  • As illustrated in FIGS. 108-110, the proximal shaft portion 1022 of surgical end effector 1001 and the distal shaft portion 1020 of the shaft assembly 1003 may have aligning features to ensure that the surgical end effector 1001 and the shaft assembly 1003 are correctly aligned upon attachment. In an example embodiment, as illustrated in FIG. 108, the proximal shaft portion 1022 of surgical end effector 1001 includes a key feature 1048 and the distal shaft portion 1020 of the shaft assembly 1003 may include a slot 1050 for receiving the key feature. Other aligning means and techniques for aligning the surgical end effector 1001 to the shaft assembly 1003 are contemplated within the scope of this disclosure.
  • Referring to FIG. 114, the surgical end effector 1001 may include an actuation mechanism wherein the firing and closure are performed separately. This actuation mechanism and other suitable actuation mechanisms are described, for example, in connection with FIGS. 83-91 and 92-96. In an example embodiment, as illustrated in FIG. 114, the surgical end effector 1001 comprises a closure mechanism 1052 and a firing mechanism 1054 which are driven separately. The closure mechanism 1052 includes a closure driver 1056 and the firing mechanism 1054 includes a firing driver 1058. As described above, surgical end effector 1001 may be releasably attached to shaft assembly 1003. As depicted in FIG. 114, the proximal shaft portion 1022 of surgical end effector 1001 may be detached from the distal shaft portion 1020 of the shaft assembly 1003. Once the proximal shaft portion 1022 of surgical end effector 1001 is attached to the distal shaft portion 1020 of the shaft assembly 1003, the shaft drive 1042 may be extended distally to a first discrete position to be in operable engagement with the closure driver 1056. Alternatively, the shaft drive may be extended distally to a second discrete position distal to the first discrete position to be in operable engagement with the firing driver 1058.
  • As illustrated in FIG. 115, the surgical tool 1000 may include an articulation joint 1060 for articulating the surgical end effector 1001 about a longitudinal tool axis “LT”. In this example embodiment, the articulation joint 1060 is disposed proximal to the distal portion 1020 of the shaft assembly 1003. The articulation joint 1060 articulates the distal portion 1020 of the shaft assembly 1003. When the proximal portion 1022 of the surgical end effector 1001 is attached to the distal portion 1020 of the shaft assembly 1003, articulation of the distal portion 1020 of shaft assembly 1003 will cause the surgical end effector 1003 to articulate.
  • In an example embodiment, as illustrated in FIG. 115, the articulation joint 1060 includes a proximal socket tube 1062 that is attached to the shaft assembly 1003 and defines a proximal ball socket therein. See FIG. 115. A proximal ball member 1064 is movably seated within the proximal ball socket. As can be seen in FIG. 115, the proximal ball member 1064 has a central drive passage that enables the rotary drive shaft 1042 to extend therethrough. In addition, the proximal ball member 1064 has four articulation passages therein which facilitate the passage of four distal cables 1066 therethrough. As can be further seen in FIG. 115, the articulation joint 1060 further includes an intermediate articulation tube segment 1068 that has an intermediate ball socket formed therein. The intermediate ball socket is configured to movably support therein a distal ball member 1070 formed on a distal connector tube 1072. The cables 1066 extend through cable passages formed in the distal ball member 1070 and are attached thereto by lugs 1074. Other attachment means suitable for attaching cables to the end effector ball 1070 are contemplated within the scope of this disclosure.
  • Referring to FIGS. 116-120, a surgical tool 900 may include a surgical end effector extending from a shaft assembly 903. The surgical end effector 901 may be configured to perform surgical activities in response to drive motions applied thereto. The surgical end effector 901 may include a first jaw member 902, and a second jaw member 904. The first jaw member 902 may be movable relative to the second jaw member 904 between a first position and a second position. Alternatively, the first jaw member 902 and second jaw member 904 may be moveable relative to each other between a first position and a second position. The first position may be an open position and the second position may be a closed position.
  • Referring to FIGS. 116-120, the first jaw member 902 may be pivotally movable relative to the second jaw member 904 between an open position and a closed position. As illustrated in FIG. 120, the first jaw member 902 may include mounting holes 906, and the second jaw member 904 may include mounting holes 908. The first jaw member 902 can be arranged relative to the second jaw member 904 such that a pivot or trunnion pin (not shown) is inserted through the mounting holes 906 of the first jaw member 902 and the mounting holes 908 of the second jaw member 904 to pivotally couple the first jaw member 902 to the second jaw member 904. Other suitable means for coupling the first jaw member 902 and the second jaw member 904 are contemplated within the scope of this disclosure.
  • Referring to FIGS. 116-120, surgical end effector 901 may be adapted to perform multiple functions. For example, surgical end effector 901 may include angled tissue engagement surfaces 910 for transecting tissue. Suitable tissue engagement surfaces 910 are described, for example, in connection with FIGS. 132-142. The first jaw member 902 may include an interior surface 912 and the second jaw member 904 may include an interior surface 914. The first interior surface 912 and the second interior surface 914 may be configured to grip, pass, and/or manipulate tissue and/or surgical implements such as needles 915 for suturing tissue. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 153-168.
  • Referring to FIGS. 116-120, the surgical end effector 901 may also include electrodes 916 and/or another electrically active surface for sealing blood vessels during a surgical procedure. The electrodes 916 may be configured to deliver radio frequency (RF) energy to tissue clamped between the first jaw member 902 and the second jaw member 904 when in a closed position to weld/fuse the tissue, which may be transected by translating a cutting member. Suitable electrodes 916 are described, for example, in connection with FIGS. 6-10 and FIGS. 153-168. The surgical end effector 901 may be releasably attached to a shaft assembly 903. An operator or a surgeon may attach surgical end effector 901 to shaft assembly 903 to perform a surgical procedure. Suitable techniques and mechanisms for releasably attaching the surgical end effector 901 to the shaft assembly 903 are described, for example, in connection with FIGS. 106-115.
  • Referring to FIGS. 116-120, the surgical end effector 901 may include an actuation mechanism. The actuation mechanism may comprise a closure mechanism for moving the first jaw member relative to the second jaw member. The actuation mechanism may comprise a firing mechanism for transecting tissue grasped between the first jaw member and the second jaw member. The closure and firing may be accomplished by separate mechanisms, which may be driven separately or contemporaneously. Alternatively, the closure and firing may be accomplished by a single mechanism. Suitable closure mechanisms and suitable firing mechanisms are described, for example, in connection with FIGS. 64-82, 83-91 and 92-96.
  • As illustrated in FIG. 117, an example actuation mechanism 920 is shown. The actuation mechanism 920 may include a reciprocating member 918 similar to the axially movable member 3016 described herein above. The reciprocating member 918, or a cam pin 924 thereof, may be received within a cam slot 922. Distal and proximal movement of the reciprocating member 918 may cause the cam pin 924 to translate within the cam slot 922, which may, in turn, cause the first jaw member 902 to pivot from an open position (e.g., proximal position of the reciprocating member 918) to a closed (e.g., distal position of the reciprocating member 918). In embodiments where the first 902 and the second 904 jaw members are movable, both jaw members may comprise cam slot 922 and the reciprocating member 918 may define a pair of cam pins. The reciprocating member 918 may comprise an I-beam member adapted to slide over the first jaw member 902 and the second jaw member 904 to close the first jaw member 902 and the second jaw member 904, and/or to provide a clamping force tending to force the first jaw member 902 and the second jaw member 904 together. The reciprocating member 918 may include a cutting blade 926. The cutting blade 926 may be attached to the reciprocating member 918 and situated such that it can be extended and retracted with the reciprocating member 918. The cutting blade 926 may be extended to transect tissue or material present between the first jaw member 902 and the second jaw member 904.
  • Referring to FIGS. 116-120, the first jaw member 902 may include an exterior surface 928. The exterior surface of first jaw member 902 may include a first tissue gripping portion 930. The second jaw member 904 may also include an exterior surface 932. The exterior surface 932 of second jaw member 904 may include a second tissue gripping portion 934. The first tissue gripping portion 930 and second tissue gripping portion 934 may grip tissue by contacting and temporarily adhering to tissue. The first gripping portion 930 and the second gripping portion 934 may contact and bluntly dissect tissue while the first jaw member 902 and the second jaw member 904 is moving relative to each other from the closed position to the open position.
  • In an example embodiment, the surgical end effector 901 may be utilized during a surgical procedure to dissect tissue. For example, the first gripping portion 930 and the second gripping portion 934 may contact and temporarily adhere to a first and second tissue portions (not shown) respectively such that when the first jaw member 902 is moved relative to the second jaw member 904 from a closed position to an open position, the first tissue portion is separated from the second tissue portion along facial planes while substantially preserving locoregional architecture and structural integrity of vessels and nerves. The first gripping portion 930 and the second gripping portion 934 may be configured to create operative space during a surgical procedure by bluntly separating (dissecting) tissue layers as the first jaw member 902 is moved relative to the second jaw member 904.
  • As illustrated in FIG. 121, the first gripping portion 930 and the second gripping portion 934 may be formed onto distal sections of the exterior surfaces 928 and 932 of the first and second jaw members 902 and 904 by applying a coating. In one embodiment, the first and second gripping portions 930 and 934 are attached to the exterior surfaces 928 and 932 of their respective jaw members by an adhesive. In one embodiment, the first and second gripping portions 930 and 934 are press fitted onto distal portions of the exterior surfaces 928 and 932. Other techniques and attachment means suitable for attaching or forming a gripping portion onto an exterior surface are contemplated by the current disclosure.
  • The first and second gripping portions 930 and 934 may include materials with high coefficient of friction to grip tissue as tissue slides relative to the first and second jaw members 902 and 904 upon moving the first and second jaw members 902 and 904 relative to each other to the open position thereby separating (dissecting) tissue layers along fascial planes while substantially preserving locoregional architecture and structural integrity of vessels and nerves. Examples of materials with high coefficient of friction that may be utilized to form the first and second gripping portions 930 and 934 include but are not limited to Silicone based elastomers, styrenic-based thermoplastic elastomers (TPE), polyisoprene, low density polyethylene, polypropylene, sanoprene, silicone, polyurethane, natural rubber, isoplast, liquid crystal polymer (LCP), etc.
  • The first and second gripping portions 930 and 934 may include a semi-rigid material sufficiently flexible to contour without shearing upon tissue contact. The first and second gripping portions 930 and 934 may include a non-allergenic biocompatible material. In one embodiment, the first and second gripping portions 930 and 934 may comprise a material with a low Young's modulus and high yield strain such as an elastomer. Examples of suitable elastomers include but are not limited to Silicone based elastomers, styrenic-based thermoplastic elastomers (TPE), polyisoprene, low density polyethylene, polypropylene, sanoprene, silicone, polyurethane, natural rubber, isoplast, liquid crystal polymer (LCP), etc.
  • Referring to FIGS. 116-120, the first and second gripping portions 930 and 934 may include gripping features 936. The gripping features 936 may be sufficiently flexible to contour without shearing upon tissue contact. The gripping features 936 may be in the form of protrusions 938. In at least one embodiment, the gripping features 936 may be in the form of depressions 940.
  • Referring to FIGS. 121-126, the gripping features 936 may be spatially arranged in a gripping pattern 942. Gripping pattern 942 may include a plurality of protrusions 938. The gripping pattern may include a plurality of depressions 940. In at least one embodiment, as illustrated in FIG., 127 the gripping pattern 942 may include a plurality of alternating protrusions 938 and depressions 940. In one embodiment, as illustrated in FIG. 123, the gripping pattern 942 may include four protrusions 938.
  • As illustrated in FIG. 128, gripping pattern 942 may include a plurality of protrusions 940 spatially arranged in a circle. Other arrangements are possible and within the scope of the present disclosure. As illustrated in FIG. 122, gripping pattern 942 may include a plurality of protrusions 938 spatially arranged in multiple rows wherein each row includes several protrusions 938 aligned along the length of the row. Each row may include alternating protrusions 938 and depressions 940.
  • Referring to FIG. 123-128, the gripping pattern 942 may include vertical protrusions 938 that extend horizontally on gripping portion 930. As illustrated in FIG., the vertical protrusions 938 may extend in opposing directions. In certain embodiments, as illustrated in FIG. 124, the protrusions 938 may extend in parallel rows. In at least one embodiment, as illustrated in FIG. 125, gripping pattern 942 includes a first plurality of parallel protrusions 938 a, and a second plurality of parallel protrusions 938 b, wherein the first plurality 938 a is in a slanted arrangement with the second plurality 938 b. In at least one embodiment, as illustrated in FIG. 125, the gripping portion 930 may include a herringbone pattern.
  • Referring to FIGS. 129-131, the gripping pattern 942 may define vertical protrusions 938 that extend horizontally on gripping portion 930 in a non linear fashion. For example, as illustrated in FIG. 129, the non-linear protrusions 938 may extend in a in a zigzag fashion. In certain embodiments, as illustrated in FIGS. 130 and 131, the non-linear protrusions 938 may extend in parallel rows. In certain embodiments, as illustrated in FIGS. 130, and 131, the non-linear protrusions 938 may extend in opposing directions.
  • Referring to FIGS. 132 through 137, an end effector 500 comprises a first jaw member 502A and a second jaw member 502B. The first jaw member 502A is movable relative to the second jaw member 502B between an open position (FIGS. 132 and 136) and a closed position (FIGS. 133, 134, and 137) to clamp tissue between the first jaw member 502A and the second jaw member 502B. The first jaw member 502A comprises angled tissue-contacting surfaces 504A and 506A. The second jaw member 502B comprises angled tissue-contacting surfaces 504B and 506B. The first jaw member 502A comprises a first positively-angled tissue-contacting surface 504A and a first negatively-angled tissue-contacting surface 506A. The second jaw member 502B comprises a second positively-angled tissue-contacting surface 504B and a second negatively-angled tissue-contacting surface 506B.
  • As used herein, the terms “positively-angled” and “negatively-angled” refer to the direction in which a tissue-contacting surface is angled relative to the body of the jaw member comprising the tissue-contacting surface and a clamping plane of the jaw member. Referring to FIG. 138, a first jaw member 502A′ and a second jaw member 502B′ are shown in a closed position such as to clamp tissue between the opposed jaw members 502A′ and 502B′. This closed position is analogous to the closed position shown in FIGS. 133, 134, 135, 137, and 142. The first jaw member 502A′ comprises a first jaw body 503A′, a first tissue gripping element 507A′, and a first clamping plane 505A. The second jaw member 502B′ comprises a second jaw body 503B′, a second tissue gripping element 507B′, and a second clamping plane 505B. Generally, the tissue gripping elements and the clamping planes of the jaw members of an end effector are in an opposed orientation when the jaw members are in a closed position such as to clamp tissue between opposed jaw members.
  • The first jaw member 502A′ comprises a first positively-angled tissue-contacting surface 504A′ forming an angle (α) relative to the first clamping plane 505A and away from the first jaw body 503A′ at the periphery of the first tissue gripping element 507A′ of the first jaw member 502A′. The first jaw member 502A′ comprises a first negatively-angled tissue-contacting surface 506A′ forming an angle (α) relative to the first clamping plane 505A and toward from the first jaw body 503A′ at the periphery of the first tissue gripping element 507A′ of the jaw member 502A′.
  • Accordingly, as used herein, the term “positively-angled” is used to specify tissue-contacting surfaces that angle away from a clamping plane and that angle away from the jaw body at the periphery of the tissue gripping element of the jaw member comprising the positively-angled tissue-contacting surface. Likewise, as used herein, the term “negatively-angled” is used to specify tissue-contacting surfaces that angle away from a clamping plane and that angle toward the jaw body at the periphery of the tissue gripping element of the jaw member comprising the negatively-angled tissue-contacting surface.
  • Thus, the second jaw member 502B′ comprises a second positively-angled tissue-contacting surface 504B′ forming an angle (α) relative to the second clamping plane 505B and away from the second jaw body 503B′ at the periphery of the second tissue gripping element 507B′ of the second jaw member 502B′. The second jaw member 502B′ comprises a second negatively-angled tissue-contacting surface 506A′ forming an angle (α) relative to the second clamping plane 505B and toward from the second jaw body 503B′ at the periphery of the second tissue gripping element 507B′ of the second jaw member 502B′.
  • Referring again to FIGS. 132-134, the first jaw member 502A comprises a first jaw body 503A and a first tissue gripping element 507A, and the second jaw member 502B comprises a second jaw body 503B and a second tissue gripping element 507B. The first positively-angled tissue-contacting surface 504A of the first jaw member 502A is angled away from the first jaw body 503A at the periphery of the first tissue gripping element 507A. The first negatively-angled tissue-contacting surface 506A of the first jaw member 502A is angled toward the first jaw body 503A at the periphery of the first tissue gripping element 507A. The second positively-angled tissue-contacting surface 504B of the second jaw member 502B is angled away from the second jaw body 503B at the periphery of the second tissue gripping element 507B. The second negatively-angled tissue-contacting surface 506B of the second jaw member 502B is angled toward the second jaw body 503B at the periphery of the second tissue gripping element 507B.
  • When the first jaw member 502A and the second jaw member 502B are in a closed position, such as to clamp tissue between the first and second jaw members, the first positively-angled tissue-contacting surface 504A opposes the second negatively-angled tissue-contacting surface 506B. When the first jaw member 502A and the second jaw member 502B are in a closed position, such as to clamp tissue between the first and second jaw members, the first negatively-angled tissue-contacting surface 506A opposes the second positively-angled tissue-contacting surface 504B.
  • As shown in FIGS. 132-133 and 136-137, the first positively-angled tissue-contacting surface 504A and the first negatively-angled tissue-contacting surface 506A are disposed along substantially the entire length of the first jaw member 502A. The second positively-angled tissue-contacting surface 504B and the second negatively-angled tissue-contacting surface 506B are disposed along substantially the entire length of the second jaw member 502B.
  • The end effector 500 comprises an “I-beam” member 508, which in some embodiments, may function as a closure member and/or a tissue-cutting member. The I-beam member 508 may operate in a manner similar to that described herein above with respect to the axially movable member 3016 described herein above. The I-beam member 508 may be sized and configured to fit at least partially within channels in the first jaw member 502A and the second jaw member 502B. The I-beam member 508 may operably translate along the channels in the first jaw member 502A and the second jaw member 502B, for example, between a first, proximally retracted position correlating with the jaw members 502A and 502B being at an open position, and a second, distally advanced position correlating with the jaw members 502A and 502B being at a closed position. In this manner, for example, the I-beam member 508 may be configured to operably translate within the channels in the first and second jaw members 502A and 502B to close the jaw members using a camming action and/or to advance a cutting member through the first and second tissue gripping elements 507A and 507B to transect tissue clamped between the first and second jaw members 502A and 502B.
  • The movement of the first jaw member 502A relative to the second jaw member 502B between an open position (FIGS. 132 and 136) and a closed position (FIGS. 133, 134, and 137) to clamp tissue between the first jaw member 502A and the second jaw member 502B may be actuated with a suitable closure actuation mechanism. Translation of the I-beam member between a retracted position and an advanced position may be actuated with a suitable translation actuation mechanism. Suitable closure actuation mechanisms and suitable translation actuation mechanisms are described, for example, in connection with FIGS. 64-82, 83-91 and 92-96.
  • Referring to FIGS. 139 and 140, an end effector 510 comprises a first jaw member 512A and a second jaw member 512B. The first jaw member 512A is movable relative to the second jaw member 512B between an open position (FIGS. 139 and 140) and a closed position (no shown) to clamp tissue between the first jaw member 512A and the second jaw member 512B. The first jaw member 512A comprises angled tissue-contacting surfaces 514A and 516A. The second jaw member 512B comprises angled tissue-contacting surfaces 514B and 516B. The first jaw member 512A comprises a first positively-angled tissue-contacting surface 514A and a first negatively-angled tissue-contacting surface 516A. The second jaw member 512B comprises a second positively-angled tissue-contacting surface 514B and a second negatively-angled tissue-contacting surface 516B.
  • The first jaw member 512A comprises a first jaw body 513A and a first tissue gripping element 517A, and the second jaw member 512B comprises a second jaw body 513B and a second tissue gripping element 517B. The first positively-angled tissue-contacting surface 514A of the first jaw member 512A is angled away from a first jaw body 513A at the periphery of the first tissue gripping element 517A. The first negatively-angled tissue-contacting surface 516A of the first jaw member 512A is angled toward the first jaw body 513A at the periphery of the first tissue gripping element 517A. The second positively-angled tissue-contacting surface 514B of the second jaw member 512B is angled away from a second jaw body 513B at the periphery of the second tissue gripping element 517B. The second negatively-angled tissue-contacting surface 516B of the second jaw member 512B is angled toward the second jaw body 513B at the periphery of the second tissue gripping element 517B.
  • When the first jaw member 512A and the second jaw member 512B are in a closed position, such as to clamp tissue between the first and second jaw members, the first positively-angled tissue-contacting surface 514A opposes the second negatively-angled tissue-contacting surface 516B. When the first jaw member 512A and the second jaw member 512B are in a closed position, such as to clamp tissue between the first and second jaw members, the first negatively-angled tissue-contacting surface 516A opposes the second positively-angled tissue-contacting surface 514B.
  • The first positively-angled tissue-contacting surface 514A is disposed along a proximal portion of the length of the first jaw member 512A. The second positively-angled tissue-contacting surface 514B is disposed along a proximal portion of the length of the second jaw member 512B. The first negatively-angled tissue-contacting surface 516A is disposed along substantially the entire length of the first jaw member 512A. The second negatively-angled tissue-contacting surface 516B is disposed along substantially the entire length of the second jaw member 502B.
  • The end effector 510 comprises an “I-beam” member 518, which in some embodiments, may function as a closure member and/or a tissue-cutting member. The I-beam member 518 may be sized and configured to fit at least partially within channels in the first jaw member 512A and the second jaw member 512B. The I-beam member 518 may translate along the channels in the first jaw member 512A and the second jaw member 512B, for example, between a first, proximally retracted position correlating with the jaw members 512A and 512B being at an open position, and a second, distally advanced position correlating with the jaw members 512A and 512B being at a closed position. In this manner, for example, the I-beam member 518 may be configured to operably translate within the channels in the first and second jaw members 512A and 512B to close the jaw members using a camming action and/or to advance a cutting member through the first and second tissue gripping elements 517A and 517B to transect tissue clamped between the first and second jaw members 512A and 512B.
  • The movement of the first jaw member 512A relative to the second jaw member 512B between an open position (FIGS. 139 and 140) and a closed position (not shown) to clamp tissue between the first jaw member 512A and the second jaw member 512B may be actuated with a suitable closure actuation mechanism. Translation of the I-beam member between a retracted position and an advanced position may be actuated with a suitable translation actuation mechanism. Suitable closure actuation mechanisms and suitable translation actuation mechanisms are described, for example, in connection with FIGS. 64-82, 83-91 and 92-96.
  • The first jaw member 512A and the second jaw member 512B comprise a first distal textured portion 519A and second distal textured portion 519B, respectively. The first distal textured portion 519A of the first jaw member 512A is disposed distal and directly adjacent to the proximal tissue gripping element 517A of the first jaw member 512A comprising the first positively-angled tissue-contacting surface 514A. The first positively-angled tissue-contacting surface 514A does not extend distally along the length of the first jaw member 512A into the first distal textured portion 519A. The second distal textured portion 519B of the second jaw member 512B is disposed distal and directly adjacent to the proximal tissue gripping element 517B of the second jaw member 512B comprising the second positively-angled tissue-contacting surface 514B. The second positively-angled tissue-contacting surface 514B does not extend distally along the length of the second jaw member 512B into the second distal textured portion 519B. The first and second distal textured portions 519A and 519B of the first and second jaw members 512A and 512B may be opposed and may allow the end effector 510 to grip, pass, and/or manipulate surgical implements such as needles for suturing tissue, in addition to gripping tissue, for example, during dissection operations. This gripping, passing, and/or manipulating functionality is described, for example, in connection with FIGS. 116-131 and 154-164.
  • The first jaw member 512A and the second jaw member 512B comprise a first gripping portion 521A and second gripping portion 521B, respectively. The first gripping portion 521A is disposed on an outwardly-facing surface of the first jaw member 512A, and the second gripping portion 521B is disposed on an outwardly-facing surface of the second jaw member 512B. The gripping portions 521A and 521B may function to aid in tissue dissection as described, for example, in connection with FIGS. 116-131 and 154-164.
  • FIG. 141 is a perspective view of an end effector 510′ similar to the end effector 510 shown in FIGS. 139 and 140, but comprising electrodes 522 located in the second tissue gripping element 517B of the second jaw member 516B and located between the second positively-angled tissue-contacting surface 514B and the second negatively-angled tissue-contacting surface 516B. The electrodes 522 may be configured to deliver RF energy to tissue clamped between the first jaw member 512A and the second jaw member 512B when in a closed position to weld/fuse the tissue, which may be transected by translating the I-beam member 518 comprising a cutting member. Although FIG. 141 shows two electrodes 522, it is understood that an end-effector in accordance with the embodiments described in this specification may comprise at least one or more electrodes comprising any suitable shape and orientation, as described, for example, in this specification. The second jaw member 516B also comprises an offset electrode 524 at the distal tip 525 configured to deliver RF energy to tissue during dissection operations, for example. In some embodiments, the first distal textured portion 519A and second distal textured portion 519B may also be electrodes configured, for example, to deliver RF energy to tissue during dissection operations. This electrode functionality is described, for example, in connection with FIGS. 154-164.
  • Referring to FIG. 142, an end effector 530 comprises a first jaw member 532A and a second jaw member 532B shown in a closed position clamping tissue 545 between the jaw members. The first jaw member 532A comprises a first positively-angled tissue-contacting surface 534A and a first negatively-angled tissue-contacting surface 536A. The second jaw member 532B comprises a second positively-angled tissue-contacting surface 534B and a second negatively-angled tissue-contacting surface 536B. The tissue 545 physically contacts the angled tissue-contacting surfaces 534A, 534B, 536A, and 536B. The physical contact between the tissue 545 and the angled tissue-contacting surfaces 534A, 534B, 536A, and 536B compresses the tissue 545 between the first jaw member 532A and the second jaw member 532B. As shown in FIG. 142, the clamping of the tissue between the first jaw member 532A and the second jaw member 532B compresses the tissue 545 between the mutually opposed tissue-contacting surfaces 536A and 534B, and also between the mutually opposed tissue-contacting surfaces 534A and 536B, which establishes a tortuous deformation in the compressed tissue 545. The tortuous deformation improves the clamping action of the end effector 530 on the tissue 545, which in turn, improves the welding/fusion of the tissue 545 and/or the transection of the tissue 545. The tissue 545 can be welded/fused, for example, by the application of RF energy through electrodes 542 located in the tissue gripping element of the second jaw member 532B and located between the second positively-angled tissue-contacting surface 534B and the second negatively-angled tissue-contacting surface 536B. The tissue 545 can be transected, for example, by translating the I-beam member 538, which translates the cutting member 541 through the clamped tissue 545.
  • In some embodiments, an end effector may comprise a first jaw member comprising a first positively-angled tissue-contacting surface and a first negatively-angled tissue-contacting surface, and a second jaw member comprising a second positively-angled tissue-contacting surface and a second negatively-angled tissue-contacting surface. The angled tissue-contacting surfaces may form angles (α) relative to a clamping plane as described, for example, in connection with FIG. 138. The magnitude of the angle (α) between a tissue contacting surface and a clamping plane may range from 5-degrees to 85-degrees or any sub-range subsumed therein such as, for example, from 10-degrees to 80-degrees, from 20-degrees to 70-degrees, from 30-degrees to 60-degrees, from 40-degrees to 50-degrees, from 25-degrees to 50-degrees, or from 30-degrees to 45-degrees.
  • In some embodiments, angled tissue-contacting surfaces may independently form angles relative to respective clamping planes. The angle formed by the angled tissue-contacting surfaces may be substantially the same or different in a given end effector. For example, two opposed angled tissue-contacting surfaces (e.g., a first positively-angled tissue-contacting surface and an opposed second negatively-angled tissue-contacting surface) may both form a common angle (α1) relative to respective clamping planes, and two other opposed angled tissue-contacting surfaces (e.g., a first negatively-angled tissue-contacting surface and an opposed second positively-angled tissue-contacting surface) may both form a common angle (α2) relative to respective clamping planes, wherein |α1|≠|α2|.
  • In some embodiments, an angled tissue-contacting surface may extend a predetermined distance normal to a respective clamping plane coincident with a horizontal tissue contacting portion of a jaw member. For example, referring to FIG. 138, the first positively-angled tissue-contacting surface 504A′ extends a distance normal to the first clamping plane 505A, and the second positively-angled tissue-contacting surface 504B′ extends a distance normal to the second clamping plane 505B. Likewise, the first negatively-angled tissue-contacting surface 506A′ extends a distance normal to the first clamping plane 505A, and the second negatively-angled tissue-contacting surface 506B′ extends a distance normal to the second clamping plane 505B. In some embodiments, an angled tissue-contacting surface may extend a distance between 0.025 inch to 0.25 inch normal to a respective clamping plane, or any sub-range subsumed therein such as, for example, 0.025 inch to 0.01 inch or 0.025 inch to 0.05 inch.
  • While the angled tissue-contacting surfaces shown in FIGS. 132 through 142 are illustrated as being planar surfaces, it is to be appreciated that in some embodiments, the angled tissue-contacting surfaces may be curved surfaces or a combination of planar surfaces and curved surfaces.
  • In some embodiments, end effectors comprising angled tissue-contacting surfaces may be configured to operably couple to robotic surgical systems such as, for example, the robotic surgical systems described in connection with, for example, FIGS. 1-45. In some embodiments, end effectors having angled tissue-contacting surfaces may be configured to operably couple to hand-held surgical devices such as, for example, the hand-held surgical devices described in connection with FIGS. 46-63.
  • The angled tissue-contacting surfaces described in connection with FIGS. 132 through 142 provide various advantages to end effectors configured to grip/clamp tissue, weld/fuse tissue, transect tissue, or any combination of these operations. For example, in some embodiments, as illustrated in FIGS. 132 through 142, the positively-angled tissue contacting surfaces are integral with the outer surfaces of the jaw members (i.e., formed from a single piece of material). As such, the positively-angled tissue contacting surfaces provide for a thicker jaw member structure in the thickness dimension (labeled dimension T in FIGS. 141 and 142). The thicker jaw member structure increases the strength and stiffness of the jaw members, which provides improved gripping/clamping load to tissue. In some embodiments, for example, a thicker jaw member structure provided by positively-angled tissue contacting surfaces may increase the moment of inertia of the jaw members by 20-30% relative to jaw members comprising co-planar tissue-contacting surfaces. An increased moment of inertia may provide an improved weld zone for fusing and cauterizing tissue clamped in an end effector comprising angled tissue-contacting surfaces by providing a more focused area for RF energy to enter and fuse tissue.
  • Any of the electrosurgical tools described herein may be energized utilizing current/energy paths extending from the generator or other signal source (such as generator 3002) through conductors, such as the supply 3012 and return 3014 conductors (see FIG. 6), through the shaft assembly to the electrode or electrodes. Within the shaft assembly, the current paths may be provided by wires that extend through the shaft assembly. Wires, however, must be configured to avoid kinking, twisting or other deformation at the various articulation and rotation joints of the tools, including the articulation joint 3500 described herein. In the illustrated embodiments, an electrosurgical tool may utilize components of the shaft assembly as current paths for energizing electrosurgical electrodes. This may eliminate the need for wires and simplify articulation and rotation of the surgical tool.
  • In the illustrated embodiments, a rotary connector assembly may be utilized to allow a rotary drive shaft or other internal component of the shaft assembly to provide an energized current path between a generator and the end effector and/or an electrode thereof. The rotary connector may be configured to maintain a connection between the energized current path and the end effector despite rotation of the shaft and/or end effector. In bi-polar configurations, a return path may be formed by conductive components of the shaft and end effector such as, for example, a skin of the shaft, the I-beam member or other knife, portions of the various jaw members, etc., as described herein
  • FIGS. 143-146 illustrate one embodiment of a rotary connector assembly 1100 installed in an end effector 550 and shaft assembly 560 as described herein with respect to FIGS. 64-81. FIG. 143 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 illustrating an example installation of the rotary electrode assembly 1100. FIG. 144 is an exploded view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 both installed on the rotary drive shaft 630 (indicated by reference numbers 1100′, 1102′, 1104′) and exploded (indicated by reference numbers 1100, 1102, 1104). FIG. 145 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 with a rotary drive head 632 in a proximal position. FIG. 146 is a cross-sectional view of one embodiment of the end effector 550 and shaft assembly 560 showing the rotary electrode assembly 1100 with the rotary drive head 632 in a distal position.
  • The rotary electrode assembly 1100 may be positioned within the end effector drive housing 608 and may comprise an outer contact 1102 and an inner contact 1103. The outer contact 1102 may be positioned around an inner wall of the end effector drive housing 608. In the illustrated embodiment, and in functionally similar embodiments, the outer contact 1102 may be in the shape of a cylinder or other figure of revolution. The outer contact 1102 may be in electrical communication with one or more electrodes 1112 in the end effector 550 via one or more leads, such as lead 1110. The lead 1110 may be in physical contact with the outer contact 1102 and may extend through the lower jaw member 602B to the electrode 1112 as shown. The lead 1110 may be fastened to the electrode 1112 in any suitable manner including, for example, with a solder or other similar joint. For example, multiple energized electrodes may be utilized with one lead 1110 directed to each electrode. In the illustrated embodiment, the lead 1110 may be insulated so as to avoid electrical communication with other portions of the end effector 550 and shaft assembly 560.
  • The inner contact 1103 may be physically coupled to the rotary drive shaft 630, for example, proximal from the hex coupling portion 634, as shown. The inner contact 1103 may be in electrical contact with the outer contact 1102. For example, the inner contact 1103 may be in physical contact with the outer contact 1102. In the illustrated embodiment and in functionally similar embodiments, the inner contact 1103 may maintain electrical contact with the outer contact 1102 as the rotary drive shaft 630 and/or the end effector 560 rotates. For example, the outer contact 1102 may be a figure of revolution such that the inner contact 1103 is in physical contact with the contact 1102 as the rotary drive shaft 630 rotates.
  • In the illustrated embodiment and in functionally similar embodiments, the inner contact 1103 may also be a figure of revolution. For example, as illustrated, the inner contact 1103 may comprise a ringed brush 1104 and a grooved conductor 1106. The grooved conductor 1106 may be positioned around the rotary drive shaft 630 proximal from the hex coupling portion 634. The grooved conductor 1106 may define a groove 1107 to receive the ringed brush 1104. The ringed brush 1104 may have a diameter larger than that of the groove 1107. In the illustrated embodiment and in functionally similar embodiments, the ringed brush 1104 may define a slot 1105. For example, the slot 1105 may allow the diameter of the ringed brush 1104 to expand and contract. For example, the diameter of the ringed brush 1104 may be expanded in order to place it over the remainder of the grooved conductor 1106 and into the slot 1107. Also, when the inner contact 1103 is placed within the outer contact 1102, its diameter may be contracted. In this way, the tendency of the ringed brush 1104 to resume its original diameter may cause the ringed brush 1104 to exert an outward force on the outer contact 1102 tending to keep the ringed brush 1104 and outer contact 1102 in physical and electrical contact with one another.
  • The inner contact 1103 may be in electrical communication with a suitable shaft component, thus completing the current path from the electrode 1112 to a generator, such as the generator 3002 described herein above with respect to FIG. 6 and/or an internal generator. In the illustrated embodiment, the inner contact 1103, and particularly the grooved conductor 1106, is in physical and electrical contact with a coiled wire component 1114 wrapped around the rotary drive shaft 630. The coiled wire component 1114 may extend proximally through the shaft where it may be coupled directly or indirectly to the generator. As described herein, the coiled wire component 1114 may also act as a spring to provide rigidity to the rotary drive shaft 630 around an articulation joint, for example, as described herein with respect to FIGS. 31-31 and spring 3612. In some embodiments, the rotary drive shaft 630 may comprise an outer insulated sleeve. The inner contact 1103 may be in electrical contact with the outer insulated sleeve in addition to or instead of the coiled wire component 1114. An example insulated sleeve 1166 is described herein with respect to FIG. 151. Another example of a potential insulated sleeve is the constraining member 3660 described herein above with respect to FIG. 45.
  • In the illustrated embodiment, the a current return path from the electrode 1112 may be provided by various components of the end effector 550 and shaft assembly 560 including, for example, the jaw members 602A, 602B, the end effector drive housing 608 and other shaft members extending proximally. Accordingly, portions of the energized current path may be electrically isolated from other components of the end effector 550 and shaft assembly 560. For example, as described above, the lead 1110 between the outer contact 1102 and electrode 1112 may be surrounded by an electrical insulator 1111, as shown. Also, the outer contact 1102 and inner contact 1103 may be isolated from other components of the end effector 550 and shaft assembly 560. For example, an insulator 1118 may be positioned to electrically isolate the outer contact 1102 from the end effector drive housing 608. An insulator 1116 may be positioned to isolate the outer contact 1102 and inner contact 1103 from the rotary drive shaft 630. The insulator 1118 may be an additional component or, in some embodiments, may be provided as a TEFLON or other insulating coating. As illustrated in FIGS. 145-146, the insulator 1116 may extend proximally, also isolating the coiled wire component 1114 from both the rotary drive shaft 630 and from other components of the shaft assembly 560 such as, for example, the end effector drive housing 608.
  • In the embodiment illustrated in FIGS. 145-146, the outer contact 1102 may be extended proximally and distally such that electrical contact between the outer contact 1102 and inner contact 1103 is maintained with the rotary drive shaft 630 and rotary drive head 632 in different proximal and distal positions. For example, in FIG. 145, the rotary drive shaft 630 and rotary drive head 632 are pulled proximally such that the male hex coupling portion 636 of the drive shaft head 632 is received by hex shaft coupling portion 609 of the end effector drive housing 608. In this position, rotation of the rotary drive shaft 630 may cause rotation of the end effector drive housing 608 and end effector 550, as described herein. Additionally, as illustrated in FIG. 145, the inner contact 1103 may be in physical and electrical contact with the outer contact 1102. In FIG. 146, the rotary drive shaft 630 and rotary drive head 632 are pushed distally such that the hex coupling portion 634 of the rotary drive head 632 receives the threaded rotary drive nut 606. In this position, rotation of the rotary drive shaft 630 may cause rotation of the threaded rotary drive nut 606 that, in turn, causes rotation of the threaded rotary drive member 604 and distal and/or proximal translation of the I-beam member 620. Additionally, as illustrated in FIG. 146, the inner contact 1103 may be in physical and electrical contact with the outer contact 1102.
  • FIGS. 147-148 are cross-sectional views of one embodiment of the end effector 550 and shaft assembly 560 where a longitudinal length of the outer contact 1108 is selected such that the rotary connector assembly 1100 alternately creates and breaks an electrical connection limited by the longitudinal position of the inner contact 1103. For example, in FIG. 147, the rotary drive shaft 630 and rotary drive head 632 are positioned proximally such that the male hex coupling portion 636 is received into the hex shaft coupling portion 609 of the distal shaft portion 608. As illustrated, the inner contact 1103 (and specifically the ring brush 1104) may contact not the contact 1102, but instead may contact the insulator 1108. In this way, there may not be a completed electrical connection between the electrode 1112 and the generator when the rotary drive shaft 630 and rotary drive head 632 are in the proximal position shown in FIG. 147. When the rotary drive shaft 630 and rotary drive head 632 are positioned distally to contact the threaded drive nut 606, as illustrated in FIG. 148, the inner contact 1103 may be in electrical (and physical) contact with the contact 1102, completing the current path between the electrode 1112 and generator. The configuration illustrated in FIGS. 147-148 may be useful in various different contexts. For example, it may be undesirable to energize the electrode 1112 when the jaw members 602A, 602B are open. In the illustrated embodiment, the jaw members 602A, 602B are closed by the rotary drive shaft 630 when the shaft 630 is positioned distally (FIG. 148) and not when the shaft 630 is positioned proximally (FIG. 147). Accordingly, in the configuration of FIGS. 147-148, the current path from the generator to the electrode 1112 is complete only when the rotary drive shaft 630 and rotary drive head 632 are positioned distally.
  • In some of the embodiments described herein, the end effector 550 may be removable from the end effector drive housing 608 and, for example, may be interchangeable with other end effectors (not shown). Examples of mechanisms for implementing interchangeable electrodes are provided herein with respect to FIGS. 106-115. In such implementations, the lead 1110 may comprise an end effector portion and a shaft portion connected by a connector assembly. FIGS. 149-150 illustrate one embodiment of the end effector 550 and shaft assembly 560 showing a configuration including the lead portions 1130, 1132 and connector assembly 1120. For example, as illustrated in FIGS. 149-150 and as described herein, a proximal portion 603 of the jaw member 602B may be received within the end effector drive housing 608. The proximal portion 603 of the jaw member 602B is illustrated within the end effector drive housing 608 in FIG. 149 and separated from the end effector drive housing 608 in FIG. 150. The connector assembly 1120 may comprise an end effector side-lead 1122 and a shaft-side lead 1124. The respective leads may be brought into physical and electrical contact with one another when the proximal portion 603 is received into the distal shaft portion 608, as illustrated in FIG. 149. In various embodiments, the connector assembly 1120 may be configured so as to maintain electrical isolation of the energized current path from other components of the end effector 550 and shaft 560. For example, insulation 1126, 1128 may electrically isolate the connector leads 1122, 1124. In the illustrated embodiment and in functionally similar embodiments, the insulation 1126, 1128 may take the form of plastic or other insulating shrink tubes positions over all or part of the leads 1122, 1124. In some embodiments, the insulation 1126, 1128 may comprise a TEFLON or other insulating coating applied to portions of the leads 1122, 1124 and/or surrounding material.
  • FIG. 151 illustrates a cross-sectional view of an alternate embodiment of an end effector 1140 and shaft assembly 1142 showing another context in which a rotary connector assembly 1147 may utilized. The end effector 1140 may comprise jaw members 1146A, 1146B that may operate similar to the jaw members 3008A, 3008B, 602A, 602B, etc., described herein above. For example, the jaw members 1146A, 1146B may be actuated by an I-beam member 1156 that, in the illustrated embodiment, may comprise a cutting edge 1148 for severing tissue between the jaw members 1146A, 1146B. The I-beam member 1156 may be driven distally and proximally by rotation of a threaded I-beam member shaft 1154. The I-beam member shaft 1154 may be rotated via a main drive shaft 1149. For example, the main drive shaft 1149 may be coupled to a gear 1150. The gear 1150 may be in mechanical communication with a gear 1152 coupled to the I-beam member shaft 1154 as illustrated.
  • The end effector 1140 may comprise an electrode 1158 that may operate in a manner similar to that of electrode 1112, etc., described herein above. An insulated lead 1160 may be electrically coupled to the electrode 1158 and may extend proximally to an outer contact 1162. The outer contact 1162 may be positioned on an inner wall of a shaft member 1141 in a manner similar to that in which the contact 1102 is coupled to the inner wall 1108 of the end effector drive housing 608. A inner contact 1164 (e.g., brush) may be positioned around the main drive shaft 1149 such that the brush 1164 is in electrical contact with the contact 1162. The brush 1164 may also be in electrical contact with a conductive sleeve 1166 positioned around the main drive shaft 1149. The sleeve 1166 may be electrically isolated from the main drive shaft 1149 and from the remainder of the shaft 1142, for example, by insulators 1168, 1170.
  • It will be appreciated that the rotary electrode assembly 1100 may be utilized with any of the end effector and/or shaft assembly embodiments described herein. For example, FIG. 152 illustrates a cross-sectional view of one embodiment of the end effector and shaft assembly of FIGS. 83-91 illustrating another example installation of a rotary electrode assembly 1100 including the outer contact 1102 and inner contact 1103 as described herein.
  • FIGS. 153-168 illustrate various embodiments of an electrosurgical end effector 700 comprising a proximal tissue treatment zone 706 and a distal tissue treatment zone 708. The proximal tissue treatment zone 706 utilizes various electrodes and cutting edges to treat tissue, for example, as described herein above with respect to end effector 3000 shown in FIGS. 6-10. Treatment provided by the proximal tissue treatment zone 706 may include, for example, clamping, grasping, transsection, coagulation, welding, etc. The distal tissue treatment zone 708 may also comprise one or more electrodes 742 and may be utilized to apply treatment to tissue and, in some embodiments, to perform other surgical tasks such as grasping and manipulating suturing needles and/or other surgical implements.
  • FIG. 153 illustrates one embodiment of the end effector 700. The end effector 700 may be utilized with various surgical tools including those described herein. As illustrated, the end effector 700 comprises a first jaw member 720 and a second jaw member 710. The first jaw member 720 may be movable relative to the second jaw member 1004 between open positions (shown in FIGS. 153-156) and closed positions (shown in FIGS. 166 and 165). For example, the jaw members 720, 710 may be pivotably coupled at a pivot point 702. The jaw members 710, 720 may be curved with respect to a longitudinal tool axis “LT,” as illustrated. In some embodiments, the jaw members 710, 720 may be instead straight, as illustrated with respect to jaw members 3008A, 3008B shown in FIGS. 6-8. In use, the end effector 700 may be transitioned from an open position to a closed position to capture tissue between the jaw members 720, 710. The tissue captured between the jaw members 720, 710 may be clamped or grasped along portions of the jaw members 710,720 for application of one or more tissue treatments such as transection, welding, dissection, and electrocauterization.
  • The proximal tissue treatment zone 706 of the end effector 700 may treat tissue in a manner similar to that described above with respect to the end effector 3000. Tissue between the jaw members 720, 710 in the proximal treatment zone may be secured in place, for example, by teeth 734 a, 734 b. See, e.g., FIGS. 154-159. In the proximal tissue treatment zone 706, the jaw members 720, 710 may each define respective longitudinal channels 812, 810. An I-beam member 820 (FIGS. 155 and 159) may traverse distally and proximally within the longitudinal channels 812, 810, for example, as described herein above with respect to the end effector 3000 and axially movable member 3016. In some embodiments, distal and proximal translation of the I-beam member 820 may also transition the jaw members 720, 710 between open and closed positions. For example, the I-beam member 820 may comprise flanges positioned to contact cam surfaces of the respective jaw members 720, 710, similar to the manner in which flanges 3016A, 3016B contact cam surfaces 3026A, 3026B in the embodiment described with respect to FIGS. 6-10. The I-beam member 820 may also define a distally directed cutting element 822 that may transect tissue between the jaw members 720, 710 as the I-beam member 820 advances distally. In some embodiments, the jaw members 720, 710 may comprise tissue-contacting surfaces 730 a, 730 b, 732 a, 732 b similar to the tissue-contacting surfaces 504A, 504B, 506A, 506B described herein above with respect to FIGS. 132-137.
  • The proximal tissue treatment zone 706 may additionally comprise various electrodes and/or current paths for providing electrosurgical (RF) and/or other energy to tissue. The second jaw member 710 may comprise a supply electrode 848 positioned around the channel 810. See e.g., FIGS. 153-155 and 157. The supply electrode 848 may be in electrical communication with a generator for providing RF energy, such as the generator 3002 described herein above. For example, the supply electrode 848 may be coupled to one or more supply connector leads 846. The supply connector leads 846 may extend distally through a shaft assembly to a tool interface 302 and/or handle 2500 and ultimately to a generator, such as the generator 3002 or an internal generator, as described herein. The supply electrode 848 may be electrically insulated from other elements of the end effector 700. For example, referring to FIG. 10, the supply electrode (indicated on either side of the channel 810 by 848 a and 848 b) may be positioned on an insulating layer 844 (again indicated on either side of the channel 810 by 844 a, 844 b). The insulating layer 844 may be made of any suitable insulating material, such as ceramic, TEFLON, etc. In some embodiments, the insulating layer 844 may be applied as a coating to the jaw member 810. The supply electrode 848 may operate in conjunction with a return path to apply bipolar RF energy to tissue, such as tissue 762 shown in FIG. 159. Current provided via the supply electrode 848 may flow through the tissue 762 and return to the generator via the return path. The return path may comprise various electrically conducting components of the end effector 700. For example, in some embodiments, the return path may comprise bodies of the first and second jaws 720, 710, the I-beam member 820, the tissue-contacting surfaces 730 a, 730 b, 732 a, 732 b, etc.
  • In the illustrated embodiments, the supply electrode 848 is offset from the return path. For example, the supply electrode 848 is positioned such that when the jaw members 720, 710 are in the closed position illustrated in FIG. 159, the electrode 848 is not in electrical contact (e.g., physical contact) with conductive portions of the end effector 700 that may serve and a return path for RF current. For example, the first jaw member 720 may comprise an opposing member 878 (indicated in FIG. 159 as 878 a and 878 b on either side of the channel 812) positioned opposite the electrode 848 such that upon closure of the jaw members 720, 710, the electrode 848 is in direct contact with the opposing member 878 and not with any other portions of the end effector 700. The opposing member 878 may be electrically insulating. In this way, it may be possible to close the jaw members 720, 710 without shorting the supply electrode 848 to the return path. In some embodiments, the opposing member 878 may be selectively insulating. For example, the opposing member 878 may comprise a positive temperature coefficient (PTC) body, as described above, that is conductive below a temperature threshold (e.g., about 100° C.) and insulating at higher temperatures. In this way, the opposing member 878 may form part of the return path, but only until its temperature exceeds the temperature threshold. For example, if the supply electrode 848 were to be electrically shorted to an opposing member 878 comprising PTC or a similar material, the short would quickly drive the temperature of the opposing member 878 about the threshold, thus relieving the short.
  • The distal tissue treatment zone 708 may define distal grasping surfaces 790 a, 790 b positioned on jaw members 710, 720, respectively. The distal grasping surfaces 790 a, 790 b may be positioned distally from the proximally treatment zone 706. The distal grasping surfaces 790 a, 790 b may, in some embodiments, be configured to grasp and hold tissue. For example, the distal grasping surfaces 790 a, 790 b may comprise grip elements 741 for increasing friction between the grasping surfaces 790 a, 790 b and tissue and/or surgical implements, as described herein below. The grip elements 741 may comprise any suitable texture defined by the surfaces 790 a, 790 b, a friction enhancing coating applied to the surfaces 790 a, 790 b, etc.
  • In some embodiments, the distal tissue treatment zone 708 may also be configured to apply monopolar and/or bipolar electrosurgical (e.g., RF) energy. For example, the surface 790 a may be and/or comprise a distal supply electrode 742. For example, the surface 790 a itself may be made from a conductive material and therefore be the distal supply electrode 742. In some embodiments, as described herein, the conductive electrode 742 may comprise a conductive material coupled to an insulating layer 845. The insulating layer 845 may be a dielectric layer and/or a coating applied to the jaw member 710. The distal supply electrode 742 may be in electrical contact with a generator, such as the generator 3002 described herein above and/or an internal generator. In some embodiments, the distal supply electrode 742 may be in electrical contact with the supply electrode 848 of the proximal tissue treatment zone 706. In this way, the distal supply electrode 742 may be energized when the proximal supply electrode 848 is energized. In some embodiments, the distal supply electrode 742 may be energized independent of the proximal supply electrode 848. For example, the distal supply electrode 742 may be coupled to the generator via a dedicated supply line (not shown).
  • A return path for electrical energy provided by the distal supply electrode 742 may also comprise any suitable conductive portion of the end effector including, for example, the jaw member 710, the jaw member 720, the I-beam member 820, etc. In some embodiments, the distal grasping surface 790 b may also form a distal return electrode 748 that may be part of the return path from the distal supply electrode 742. For example, the distal return electrode 748 may be in electrical contact with the jaw member 720 that may, in turn, be in electrical contact with a generator such as the generator 3000. The distal return electrode 748 may be formed in any suitable manner. For example, the surface 790 b may be conductive, thus forming the electrode 748. In some embodiments, a conductive material may be applied to the surface 790 b, where the conductive material makes up the electrode 748.
  • In the illustrated embodiments, the distal supply electrode 742 is not offset. For example, the distal supply electrode 742 is aligned with the return electrode 748. Accordingly, the end effector 700 may be configured such that the distal supply electrode 742 does not come into contact with the return electrode 748 when the jaw members 720, 710 are in the closed position. For example, a gap 780 may exist between the distal supply electrode 742 and the distal return electrode 748 when the jaw members 720, 710 are in a closed position. The gap 780 is visible in FIGS. 160, 161, 162, 163, 164 and 165.
  • In various embodiments, the gap 780 may be generated as a result of the dimensions (e.g., thickness) of various components of the proximal tissue treatment zone 706. For example, when the opposing member 878 and the proximal supply electrode 848 may extend towards the axis LT such that when the electrode 848 and member 878 are in physical contact with one another (e.g., when the jaw members 720, 710 are in the closed position), the distal grasping surfaces 790 a,b are not in physical contact with one another. Any suitable combination of the opposing member 878, the supply electrode 848 and the insulating layer 844 may be utilized to bring about this result.
  • Referring now to FIGS. 160, 163 and 164, the insulating layer 844 and the insulating layer 845 may be continuous (e.g., form a continuous insulating layer). Similarly, the proximal supply electrode 848 and distal supply electrode 742 may be continuous (form a continuous electrode). The opposing member 878 is also illustrated. As illustrated, the electrode 848 (e.g., the portion of the continuous electrode in the proximal zone 706) is thicker than the electrode 742. Accordingly, when the electrode 848 contacts the opposing member 878, the thickness of the electrode 848 may prevent the distal grasping surfaces 790 a,b from contacting one another, thus forming the gap 780. FIG. 161 illustrates an alternative embodiment of the end effector 700 where the electrode 742 and the electrode 848 are of the same thickness. The thickness of the opposing member 878, however, is selected such that when the electrode 848 contacts the opposing member 878, the distal grasping surfaces 790 a,b do not contact one another, forming the gap 780. FIG. 162 illustrates another embodiment where the insulating layer 844 is thicker than the insulating layer 845, thus preventing contact between the distal grasping surfaces 790 a, b and forming the gap 780.
  • In some embodiments, the distal supply electrode 742 may extend distally to a portion of a distal edge 886 of the jaw member 710. For example, FIG. 153 shows a distal electrode portion 744. The distal electrode portion 744 may be utilized by a clinician to apply electrosurgical energy to tissue that is not necessarily between the jaw members 720, 710. In some embodiments, the distal electrode portion 744 may be utilized to provide bipolar and/or monopolar cauterization. In bi-polar embodiments, the distal electrode portion 744 may utilize a return path similar to the return paths described herein. In some embodiments, the respective jaw members may comprise external depressions and/or protrusions 800, 802 similar to the protrusions described herein with respect to FIGS. 116-131. The depressions and/or protrusions 800, 802 may be conductive and may provide possible return paths for current passed via the distal electrode portion 744. In some embodiments where the distal electrode portion 744 is present, the insulating layer 845 may extend distally under the distal electrode portion, as shown in FIG. 164.
  • It will be appreciated that the length of the respective tissue treatment zones 706, 708 may vary with different implementations. For example, FIG. 165 shows an embodiment where the distal tissue treatment zone 708 is relatively shorter than the zone 708 shown in the other figures. For example, in FIG. 165, the distal tissue treatment zone 708 extends proximally by a lesser distance from the distal tip of the end effector 700 than the zones 708 illustrated elsewhere.
  • In some embodiments, the distal tissue treatment zone 708 may be utilized as a general surgical grasper. For example, the distal grasping surfaces 790 a,b may be utilized to grasp and manipulate tissue. Also, in some embodiments, the distal grasping surfaces 790 a,b, may be utilized to grasp and manipulate artificial surgical implements such as needles, clips, staples, etc. For example, FIGS. 160, 161, 162 and 163 show a surgical implement 896 secured between the distal grasping surfaces 790 a, b. In FIGS. 160, 161 and 162 the surgical implement 896 has a round cross-section (e.g., a suturing needle). In FIG. 163, the surgical implement 896 has a non-round cross-section (e.g., a trailing end of a suturing needle, a clip, etc.). When used as a grasper, the distal treatment zone 708 may or may not apply electrosurgical energy to objects between the tissue surfaces 790 a,b. For example, it may not be desirable to apply electrosurgical energy to a needle or other surgical implement.
  • It will be appreciated that, as described above, some components of the proximal tissue treatment zone 706 may be common and/or continuous with some components of the distal tissue treatment zone 708. For example, FIG. 167 illustrates one embodiment of the jaw member 710 with the electrodes 878, 742 removed to illustrate the insulating layers 845, 844. As illustrated, the insulating layers 845, 844 define a common, continuous layer 899. A distal portion of the continuous layer 899 may make up the insulating layer 845 while a proximal portion of the insulating layer 899 may make up the insulating layer 844. The insulating layer 844, as illustrated, defines a notch 897 corresponding to the channel 810, as shown, such that the I-beam member 820 may traverse the channel 810 without contacting the continuous layer 899. Also, as illustrated, the insulating layer 845 defines a distal portion 843 that extends over a part of the distal end 886 of the jaw member 710. The distal portion 843, for example, may be positioned under the distal electrode portion 744.
  • FIG. 166 illustrates an embodiment of the jaw member 710, as illustrated in FIG. 167, with the electrodes 742, 848 installed. As illustrated, the proximal supply electrode may comprise regions 850 a, 850 b, 850 c. Regions 850 a and 850 b are positioned on either side of the channel 810. Region 850 c is positioned distal from a distal-most portion of the channel 810. FIG. 168 illustrates an alternate embodiment where the third region 850 c is omitted. Accordingly, first and second regions 850 a, 850 b of the electrode 848 extend distally to the distal supply electrode 742.
  • Non-Limiting Examples
  • In various embodiments, a surgical instrument can comprise an end effector and a shaft assembly coupled proximal to the end effector. The end effector comprises a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The shaft assembly comprises an articulation joint configured to independently articulate the end effector in a vertical direction and a horizontal direction. The surgical instrument also comprises at least one active electrode disposed on at least one of the first jaw member and the second jaw member. The at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • In various embodiments, a surgical instrument can comprise an end effector and a shaft assembly coupled proximal to the end effector. The end effector comprises a first jaw member, a second jaw member, and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The shaft assembly comprises a head rotation joint configured to independently rotate the end effector. The surgical instrument also comprises at least one active electrode disposed on at least one of the first jaw member and the second jaw member. The at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • A surgical tool can comprise an end effector, comprising a first jaw member, a second jaw member and a closure mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The surgical tool further comprises a shaft assembly proximal to the surgical end effector, wherein the surgical end effector is configured to rotate relative to the shaft assembly, and a rotary drive shaft configured to transmit rotary motions. The rotary drive shaft is selectively movable axially between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to apply the rotary motions to the closure mechanism when in the first axial position, and wherein the rotary drive shaft is configured to apply the rotary motions to the end effector when in the second axial position. In addition, the closure mechanism of the surgical tool comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward to the second jaw member. The I-beam member is connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the rotary drive shaft is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut. Rotary motions of the rotary drive nut actuate translation of the threaded rotary drive member and the I-beam in the axial direction. Furthermore, the first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally refracted position and a distally advanced position.
  • A surgical tool can comprise an end effector, comprising a first jaw member, a second jaw member, and a first actuation mechanism configured to move the first jaw member relative to the second jaw member between an open position and a closed position. The surgical tool further comprises a shaft assembly proximal to the surgical end effector, and a rotary drive shaft configured to transmit rotary motions. The rotary drive shaft is selectively moveable between a first position and a second position relative to the shaft assembly, wherein the rotary drive shaft is configured to engage and selectively transmit the rotary motions to the first actuation mechanism when in the first position, and wherein the rotary drive shaft is configured to disengage from the actuation mechanism when in the second position. In addition, the first actuation mechanism comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward to the second jaw member, the I-beam member connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the rotary drive shaft is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut, and wherein rotary motions of the rotary drive nut actuate translation of the threaded rotary drive member and the I-beam in the axial direction. Furthermore, the first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, and wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally retracted position and a distally advanced position.
  • A surgical tool can comprise an end effector comprising a first jaw member, and a second jaw member, wherein the first jaw member is movable relative to the second jaw member between an open position and a closed position. The surgical tool also comprises first and second actuation mechanisms, and a clutch member configured to selectively engage and transmit rotary motion to either the first or the second actuation mechanism. In addition, the first actuation mechanism comprises an I-beam member configured to translate in an axial direction to cam the first jaw member toward the second jaw member, the I-beam member connected to a threaded rotary drive member coupled to a rotary drive nut, wherein the clutch member is configured to engage with the rotary drive nut to transmit rotary motions to the rotary drive nut, and wherein rotary motions of the rotary drive nut actuates translation of the threaded rotary drive member and the I-beam in the axial direction. Furthermore, the first jaw member and the second jaw member comprise channels configured to slidably engage with the I-beam member, and wherein rotary motions of the rotary drive nut actuate translation of the I-beam in the channels between a proximally retracted position and a distally advanced position.
  • A surgical tool can comprise an interchangeable end effector, a handle assembly and a shaft assembly. The interchangeable end effector comprises a first jaw member including a first electrode and a second jaw member including a second electrode. The first jaw member is moveable relative to the second jaw member between a first position and a second position. The handle assembly is proximal to said surgical end effector. The shaft assembly extends between the handle assembly and the interchangeable end effector. The shaft assembly comprises a rotary drive shaft configured to transmit rotary motions. The rotary drive shaft is selectively axially moveable relative to the shaft assembly between a plurality of discrete positions. A coupling arrangement can releasably attach the interchangeable end effector to the shaft assembly.
  • A surgical tool can comprise an interchangeable end and a shaft assembly. The interchangeable end may comprise a first jaw member including a first electrode, a second jaw member including a second electrode, a closure mechanism configured to move the first jaw member relative to the second jaw member between a first position and a second position, and an actuation driver configured to drive the closure mechanism. The shaft assembly extends proximal to the interchangeable end effector and comprises a rotary drive shaft configured to transmit rotary motions to the actuation driver. A coupling arrangement can releasably attach the interchangeable end effector to the shaft assembly.
  • A surgical tool can comprise, an interchangeable end effector and a shaft assembly. The end effector comprises a first jaw member including a first electrode, a second jaw member including a second electrode, a closure mechanism configured to move the first jaw member relative to the second jaw member between a first position and a second position, and an actuation driver configured to drive the closure mechanism. The shaft assembly extends proximal to the interchangeable end effector and comprises a rotary drive shaft configured to transmit rotary motions. The interchangeable end effector is releasably attached to the shaft assembly. The rotary drive shaft is selectively extendable axially to operably engage and transmit the rotary motions to the actuation driver.
  • A surgical end effector can comprise a first jaw member and a second jaw member. The first jaw member defines an exterior surface on a distal portion thereof. The second jaw member defines an exterior surface on a distal portion thereof. The first jaw member is moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion.
  • A surgical tool can comprise a surgical end effector, a handle assembly and a drive shaft. The surgical end effector comprises a first jaw member defining an exterior surface on a distal portion thereof and a second jaw member defining an exterior surface on a distal portion thereof. The first jaw member is moveable relative to the second jaw member between a first position and a second position. At least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion. The handle assembly is proximal to said surgical end effector. The drive shaft extends between said surgical end effector and said handle assembly and is configured to move the first jaw relative to the second jaw between the first position and the second position in response to actuation motions in the handle.
  • A surgical tool can comprise an actuation system, a surgical end effector and a shaft assembly. The actuation system is for selectively generating a plurality of control motions. The surgical end effector is operably coupled to said actuation system and comprises a first jaw member and a second jaw member. The first jaw member defines an exterior surface on a distal portion thereof. The second jaw member defines an exterior surface on a distal portion thereof. The first jaw member is movably supported relative to the second jaw member between an open position and a closed position in response to closure motions generated by said actuation system. At least one of the exterior surfaces of the first and second jaw members includes a tissue adhering portion. The shaft assembly is for transmitting said plurality of control motions to the surgical end effector.
  • An end effector can comprise a first jaw member and a second jaw member. The first jaw member is movable relative to the second jaw member between an open position and a closed position. The first jaw member comprises a first positively-angled tissue-contacting surface. The second jaw member comprises a second positively-angled tissue-contacting surface. At least one of the first jaw member and the second jaw member comprises at least one active electrode disposed on the jaw member adjacent to the positively-angled tissue-contacting surface. The at least one active electrode is configured to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • An end effector can comprise a first jaw member and a second jaw member. The first jaw member is movable relative to the second jaw member between an open position and a closed position. The first jaw member comprises a first positively-angled tissue-contacting surface and a first negatively-angled tissue-contacting surface. The second jaw member comprises a second positively-angled tissue-contacting surface and a second negatively-angled tissue-contacting surface. The first positively-angled tissue-contacting surface opposes the second negatively-angled tissue-contacting surface when the first and second jaw members are in the closed position. The first negatively-angled tissue-contacting surface opposes the second positively-angled tissue-contacting surface when the first and second jaw members are in the closed position.
  • An end effector can comprise a first jaw member and a second jaw member. The first jaw member is movable relative to the second jaw member between an open position and a closed position. The first jaw member comprises a first proximal tissue-contacting portion, a first distal textured portion adjacent to the first proximal tissue-contacting portion, a first positively-angled tissue-contacting surface disposed along the first proximal tissue-contacting portion, and at least one first electrode located in the first proximal tissue-contacting portion adjacent to the first positively-angled tissue-contacting surface. The second jaw member comprises a second proximal tissue-contacting portion, a second distal textured portion adjacent to the second proximal tissue-contacting portion, a second positively-angled tissue-contacting surface disposed along the second proximal tissue-contacting portion, and at least one second electrode located in the second proximal tissue-contacting portion adjacent to the second positively-angled tissue-contacting surface. The at least one first electrode and the at least one second electrode are in a bipolar configuration to deliver RF energy to tissue located between the first jaw member and the second jaw member when in the closed position.
  • A surgical tool can comprise an end effector. The end effector can comprise first and second jaw members, a shaft assembly, a rotatable drive shaft, a first electrical contact and a second electrical contact. The first and second jaw members are pivotable relative to one another from an open position to a closed position. An electrode is positioned on the first jaw member. The shaft assembly extends proximally from the end effector, is at least partially hollow, and defines an inner wall. The rotatable drive shaft extends proximally within the shaft assembly. The first electrical contact is coupled to the inner wall of the shaft assembly and positioned around at least a portion of the drive shaft. The second electrical contact is coupled to and rotatable with the drive shaft. The second electrical contact is positioned to be electrically connected to the first electrical contact as the drive shaft rotates.
  • A surgical end effector for use with a surgical tool can comprise a first jaw member and a second jaw member. The second jaw member is pivotable relative to the first jaw member from a first open position to a closed position, where the first and second jaw members are substantially parallel in the closed position. The second jaw member comprises an offset proximal supply electrode and a distal supply electrode. The offset proximal supply electrode is positioned to contact an opposing member of the first jaw member when the first and second jaw members are in the closed position. The distal supply electrode is positioned distal of the offset proximal electrode and is aligned with a conductive surface of the first jaw member when the first and second jaw members are in the closed position. When the first and second jaw members are in the closed position, the proximal supply electrode is in contact with the opposing member and the distal supply electrode is not in contact with the conductive surface of the first jaw member.
  • A surgical end effector for use with a surgical tool can comprise first and second jaw members pivotable from a first open position to a closed position. The first and second jaw members define a proximal tissue treatment region and distal tissue treatment region. The second jaw member comprises, in the proximal tissue treatment region, an offset proximal supply electrode positioned such that when the jaw members are in the closed position the proximal supply electrode is in physical contact with the first jaw member and is not in electrical contact with the first jaw member. The second jaw member further comprises, in the distal tissue treatment region, a distal supply electrode positioned such that when the jaw members are in the closed position, the distal supply electrode is aligned with a conductive surface of the first jaw member. When the jaw members are in the closed position, the jaw members define a physical gap between the distal supply electrode and the conductive surface of the first jaw member.
  • The devices disclosed herein can be designed to be disposed of after a single use, or they can be designed to be used multiple times. In either case, however, the device can be reconditioned for reuse after at least one use. Reconditioning can include any combination of the steps of disassembly of the device, followed by cleaning or replacement of particular pieces, and subsequent reassembly. In particular, the device can be disassembled, and any number of the particular pieces or parts of the device can be selectively replaced or removed in any combination. Upon cleaning and/or replacement of particular parts, the device can be reassembled for subsequent use either at a reconditioning facility, or by a surgical team immediately prior to a surgical procedure. Those skilled in the art will appreciate that reconditioning of a device can utilize a variety of techniques for disassembly, cleaning/replacement, and reassembly. Use of such techniques, and the resulting reconditioned device, are all within the scope of the present application.
  • Although the present invention has been described herein in connection with certain disclosed example embodiments, many modifications and variations to those example embodiments may be implemented. For example, different types of end effectors may be employed. Also, where materials are disclosed for certain components, other materials may be used. The foregoing description and following claims are intended to cover all such modification and variations.
  • Any patent, publication, or other disclosure material, in whole or in part, that is said to be incorporated by reference herein is incorporated herein only to the extent that the incorporated materials does not conflict with existing definitions, statements, or other disclosure material set forth in this disclosure. As such, and to the extent necessary, the disclosure as explicitly set forth herein supersedes any conflicting material incorporated herein by reference. Any material, or portion thereof, that is said to be incorporated by reference herein, but which conflicts with existing definitions, statements, or other disclosure material set forth herein will only be incorporated to the extent that no conflict arises between that incorporated material and the existing disclosure material.

Claims (20)

What is claimed is:
1. A surgical end effector comprising:
a first jaw member defining an exterior surface on a distal portion thereof; and
a second jaw member defining an exterior surface on a distal portion thereof, wherein the first jaw member is moveable relative to the second jaw member between a first position and a second position, and wherein at least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion.
2. The surgical end effector of claim 1, wherein the tissue gripping portion comprises a material having a high coefficient of friction.
3. The surgical end effector of claim 1, wherein the tissue gripping portion comprises a semi-rigid material.
4. The surgical end effector of claim 1, wherein the tissue gripping portion comprises an elastomeric material.
5. The surgical end effector of claim 1, wherein the tissue gripping portion comprises a gripping feature configured to be sufficiently flexible to contour without shearing upon tissue contact as the first jaw member is moved relative to the second jaw member between the first position and the second position.
6. The surgical end effector of claim 1, wherein the tissue gripping portion comprises a gripping pattern including a plurality of gripping features.
7. The surgical end effector of claim 1, wherein the tissue gripping portion includes a plurality of protrusions.
8. The surgical end effector of claim 1, wherein the tissue gripping portion includes a plurality of vertical protrusions extending horizontally in opposing directions.
9. The surgical end effector of claim 1, wherein the tissue gripping portion includes a plurality of vertical protrusions extending horizontally in parallel rows.
10. The surgical end effector of claim 1, wherein the tissue gripping portion includes a first plurality of parallel protrusions, and a second plurality of parallel protrusions, wherein the first plurality is in a slanted arrangement with the second plurality.
11. The surgical end effector of claim 1, wherein the tissue gripping portion comprises a plurality of gripping features arranged in a herringbone pattern.
12. A surgical tool comprising:
a surgical end effector comprising:
a first jaw member defining an exterior surface on a distal portion thereof; and
a second jaw member defining an exterior surface on a distal portion thereof, wherein the first jaw member is moveable relative to the second jaw member between a first position and a second position, and wherein at least one of the exterior surfaces of the first and second jaw members includes a tissue gripping portion;
a handle assembly proximal to said surgical end effector; and
a drive shaft extending between said surgical end effector and said handle assembly, the drive shaft configured to move the first jaw relative to the second jaw between the first position and the second position in response to actuation motions in the handle.
13. The surgical end effector of claim 12, wherein the tissue gripping portion comprises a material having a high coefficient of friction.
14. The surgical end effector of claim 13, wherein the tissue gripping portion comprises an elastomeric material.
15. The surgical end effector of claim 13, wherein the tissue gripping portion comprises a gripping feature configured to be sufficiently flexible to contour without shearing upon tissue contact as the first jaw member is moved relative to the second jaw member between the first position and the second position.
16. The surgical end effector of claim 13, wherein the tissue gripping portion comprises a plurality of gripping features arranged in a herringbone pattern.
17. A surgical tool comprising:
an actuation system for selectively generating a plurality of control motions;
a surgical end effector operably coupled to said actuation system, said surgical end effector comprising:
a first jaw member defining an exterior surface on a distal portion thereof; and
a second jaw member defining an exterior surface on a distal portion thereof, wherein the first jaw member is movably supported relative to the second jaw member between an open position and a closed position in response to closure motions generated by said actuation system, wherein at least one of the exterior surfaces of the first and second jaw members includes a tissue adhering portion; and
a shaft assembly for transmitting said plurality of control motions to the surgical end effector.
18. The surgical stapling tool of claim 17, wherein the tissue adhering portion comprises an elastomeric material.
19. The surgical end effector of claim 17, wherein the tissue adhering portion comprises a gripping feature configured to be sufficiently flexible to contour without shearing upon tissue contact as the first jaw member is moved relative to the second jaw member between the first position and the second position.
20. The surgical end effector of claim 17, wherein the tissue adhering portion comprises a plurality of gripping features arranged in a herringbone pattern.
US13/536,288 2012-06-28 2012-06-28 Multi-functional powered surgical device with external dissection features Abandoned US20140005718A1 (en)

Priority Applications (18)

Application Number Priority Date Filing Date Title
US13/536,271 US9204879B2 (en) 2012-06-28 2012-06-28 Flexible drive member
US13/536,288 US20140005718A1 (en) 2012-06-28 2012-06-28 Multi-functional powered surgical device with external dissection features
EP19186781.1A EP3574855B1 (en) 2012-06-28 2013-06-20 Flexible drive member
BR112014032754A BR112014032754A2 (en) 2012-06-28 2013-06-20 multi-functional surgical device equipped with external dissecting motor
BR112014032738-6A BR112014032738B1 (en) 2012-06-28 2013-06-20 SURGICAL TOOL
RU2015102669A RU2644274C2 (en) 2012-06-28 2013-06-20 Flexible drive element
EP21174099.8A EP3888571B1 (en) 2012-06-28 2013-06-20 Flexible drive member
JP2015520307A JP6279567B2 (en) 2012-06-28 2013-06-20 Multi-function power surgical device with outer incision mechanism
RU2015102539A RU2643402C2 (en) 2012-06-28 2013-06-20 Multifunctional surgical device with electric power supply with external dissecting elements
EP13735121.9A EP2866693B1 (en) 2012-06-28 2013-06-20 Flexible drive member
CN201380044583.1A CN104582600B (en) 2012-06-28 2013-06-20 Flexible drive member
EP13735123.5A EP2866694A1 (en) 2012-06-28 2013-06-20 Multi-functional powered surgical device with external dissection features
PCT/US2013/046722 WO2014004236A1 (en) 2012-06-28 2013-06-20 Multi-functional powered surgical device with external dissection features
JP2015520306A JP6266609B2 (en) 2012-06-28 2013-06-20 Flexible drive member
PCT/US2013/046718 WO2014004235A1 (en) 2012-06-28 2013-06-20 Flexible drive member
CN201380044963.5A CN104582601B (en) 2012-06-28 2013-06-20 Multifunction power surgical device with formal open feature structure
US15/393,990 US10987123B2 (en) 2012-06-28 2016-12-29 Surgical instruments with articulating shafts
US15/459,558 US11007004B2 (en) 2012-06-28 2017-03-15 Powered multi-axial articulable electrosurgical device with external dissection features

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/536,271 US9204879B2 (en) 2012-06-28 2012-06-28 Flexible drive member
US13/536,288 US20140005718A1 (en) 2012-06-28 2012-06-28 Multi-functional powered surgical device with external dissection features

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/459,558 Continuation US11007004B2 (en) 2012-06-28 2017-03-15 Powered multi-axial articulable electrosurgical device with external dissection features

Publications (1)

Publication Number Publication Date
US20140005718A1 true US20140005718A1 (en) 2014-01-02

Family

ID=62185901

Family Applications (3)

Application Number Title Priority Date Filing Date
US13/536,288 Abandoned US20140005718A1 (en) 2012-06-28 2012-06-28 Multi-functional powered surgical device with external dissection features
US13/536,271 Active 2032-08-21 US9204879B2 (en) 2012-06-28 2012-06-28 Flexible drive member
US15/459,558 Active 2035-01-11 US11007004B2 (en) 2012-06-28 2017-03-15 Powered multi-axial articulable electrosurgical device with external dissection features

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/536,271 Active 2032-08-21 US9204879B2 (en) 2012-06-28 2012-06-28 Flexible drive member
US15/459,558 Active 2035-01-11 US11007004B2 (en) 2012-06-28 2017-03-15 Powered multi-axial articulable electrosurgical device with external dissection features

Country Status (7)

Country Link
US (3) US20140005718A1 (en)
EP (4) EP3888571B1 (en)
JP (2) JP6279567B2 (en)
CN (2) CN104582600B (en)
BR (1) BR112014032754A2 (en)
RU (2) RU2643402C2 (en)
WO (2) WO2014004235A1 (en)

Cited By (700)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130334281A1 (en) * 2012-06-19 2013-12-19 Covidien Lp Apparatus for endoscopic procedures
US20140114327A1 (en) * 2012-10-22 2014-04-24 Ethicon Endo-Surgery, Inc. Surgeon feedback sensing and display methods
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US8779648B2 (en) 2008-08-06 2014-07-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US20140200612A1 (en) * 2013-01-14 2014-07-17 Intuitive Surgical Operations, Inc. Clamping instrument
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US8925788B2 (en) 2007-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9131940B2 (en) 2010-09-29 2015-09-15 Ethicon Endo-Surgery, Inc. Staple cartridge
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
DE102014009891A1 (en) * 2014-07-04 2016-01-07 gomtec GmbH instrument
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US20160100942A1 (en) * 2014-10-14 2016-04-14 St. Jude Medical, Cardiology Division, Inc. Flexible catheter and methods of forming same
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US9456864B2 (en) 2010-05-17 2016-10-04 Ethicon Endo-Surgery, Llc Surgical instruments and end effectors therefor
US20160287250A1 (en) * 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Surgical instrument with progressive rotary drive systems
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US20160367256A1 (en) * 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Surgical end effectors with positive jaw opening arrangements
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US9554846B2 (en) 2010-10-01 2017-01-31 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US20170095299A1 (en) * 2015-10-02 2017-04-06 Vanderbilt University Concentric tube robot
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US20170187048A1 (en) * 2014-03-20 2017-06-29 Versa Power Systems Ltd. Systems and methods for preventing chromium contamination of solid oxide fuel cells
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
EP3225189A1 (en) * 2016-04-01 2017-10-04 Ethicon LLC Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9808308B2 (en) 2010-04-12 2017-11-07 Ethicon Llc Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US20180049823A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotics communication and control
US20180049829A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotic Visualization and Collision Avoidance
WO2018034965A1 (en) 2016-08-16 2018-02-22 Ethicon Llc Modular surgical robotic tools
US20180049835A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotics Tool Bailouts
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9949788B2 (en) 2013-11-08 2018-04-24 Ethicon Endo-Surgery, Llc Electrosurgical devices
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10016246B2 (en) 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
JP2018519010A (en) * 2015-05-15 2018-07-19 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for minimally invasive cutting instrument operation
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US10034717B2 (en) 2014-03-17 2018-07-31 Intuitive Surgical Operations, Inc. System and method for breakaway clutching in an articulated arm
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10045827B2 (en) 2016-08-16 2018-08-14 Ethicon Llc Methods, systems, and devices for limiting torque in robotic surgical tools
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
JP2018526119A (en) * 2015-09-02 2018-09-13 エシコン エルエルシーEthicon LLC Surgical staple cartridge with driver configuration to establish a herringbone staple pattern
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10080622B2 (en) 2016-08-16 2018-09-25 Ethicon Llc Robotics tool bailouts
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10111719B2 (en) 2016-08-16 2018-10-30 Ethicon Llc Control of the rate of actuation of tool mechanism based on inherent parameters
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US10149727B2 (en) 2016-12-09 2018-12-11 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10149732B2 (en) 2016-12-09 2018-12-11 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10166060B2 (en) 2011-08-30 2019-01-01 Ethicon Llc Surgical instruments comprising a trigger assembly
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10182875B2 (en) 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US20190029766A1 (en) * 2014-03-17 2019-01-31 Intuitive Surgical Operations, Inc. Automated structure with pre-established arm positions in a teleoperated medical system
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US20190059888A1 (en) * 2017-08-29 2019-02-28 Ethicon Llc Electrically-powered surgical box staplers
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US10231775B2 (en) 2016-08-16 2019-03-19 Ethicon Llc Robotic surgical system with tool lift control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US20190125463A1 (en) * 2017-10-26 2019-05-02 Ethicon Llc Auto cable tensioning system
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10363035B2 (en) 2016-08-16 2019-07-30 Ethicon Llc Stapler tool with rotary drive lockout
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10433920B2 (en) 2016-12-09 2019-10-08 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10433925B2 (en) 2016-08-16 2019-10-08 Ethicon Llc Sterile barrier for robotic surgical system
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10470758B2 (en) 2017-08-29 2019-11-12 Ethicon Llc Suturing device
US10485527B2 (en) 2017-08-29 2019-11-26 Ethicon Llc Control system for clip applier
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US10500000B2 (en) 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10531929B2 (en) 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10537399B2 (en) 2016-08-16 2020-01-21 Ethicon Llc Surgical tool positioning based on sensed parameters
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
US10548601B2 (en) 2017-08-29 2020-02-04 Ethicon Llc Control system for clip applier
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US10588704B2 (en) * 2016-12-09 2020-03-17 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10624709B2 (en) * 2017-10-26 2020-04-21 Ethicon Llc Robotic surgical tool with manual release lever
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667856B2 (en) * 2016-03-07 2020-06-02 Ethicon Llc Robotic bi-polar instruments
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10675082B2 (en) 2017-08-29 2020-06-09 Ethicon Llc Control of surgical field irrigation by electrosurgical tool
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
US10695060B2 (en) 2017-09-01 2020-06-30 RevMedica, Inc. Loadable power pack for surgical instruments
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10709511B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of jaw or clamp arm closure in concert with advancement of device
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10736702B2 (en) 2016-08-16 2020-08-11 Ethicon Llc Activating and rotating surgical end effectors
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10772677B2 (en) 2017-08-29 2020-09-15 Ethicon Llc Electrically-powered surgical systems
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10779876B2 (en) 2011-10-24 2020-09-22 Ethicon Llc Battery powered surgical instrument
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US10813703B2 (en) 2016-08-16 2020-10-27 Ethicon Llc Robotic surgical system with energy application controls
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10849698B2 (en) 2016-08-16 2020-12-01 Ethicon Llc Robotics tool bailouts
US10856928B2 (en) 2017-08-29 2020-12-08 Ethicon Llc Electrically-powered surgical systems
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US10874393B2 (en) 2017-09-01 2020-12-29 RevMedia, Inc. Proximal loaded disposable loading unit for surgical stapler
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881403B2 (en) 2017-08-29 2021-01-05 Ethicon Llc Endocutter control system
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10888370B2 (en) 2017-08-29 2021-01-12 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10898219B2 (en) 2017-08-29 2021-01-26 Ethicon Llc Electrically-powered surgical systems for cutting and welding solid organs
US10905417B2 (en) 2017-08-29 2021-02-02 Ethicon Llc Circular stapler
US10905493B2 (en) 2017-08-29 2021-02-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10912581B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Electrically-powered surgical systems with articulation-compensated ultrasonic energy delivery
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10912567B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Circular stapler
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US10925602B2 (en) 2017-08-29 2021-02-23 Ethicon Llc Endocutter control system
US10925682B2 (en) 2017-08-29 2021-02-23 Ethicon Llc Electrically-powered surgical systems employing variable compression during treatment
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10932808B2 (en) 2017-08-29 2021-03-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11013528B2 (en) 2017-08-29 2021-05-25 Ethicon Llc Electrically-powered surgical systems providing fine clamping control during energy delivery
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US20210251705A1 (en) * 2016-08-24 2021-08-19 Intuitive Surgical Operations, Inc. Computer-assisted tele-operated surgery systems and methods
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US11154374B2 (en) 2014-03-17 2021-10-26 Intuitive Surgical Operations, Inc. Guided setup for teleoperated medical device
CN113558768A (en) * 2021-06-30 2021-10-29 极限人工智能有限公司 Operation mechanical arm and operation device
US11160602B2 (en) 2017-08-29 2021-11-02 Cilag Gmbh International Control of surgical field irrigation
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US11202686B2 (en) * 2019-08-21 2021-12-21 Ethicon LLC. Manual knife bailout monitoring using inductive coupling
US20210393348A1 (en) * 2020-06-22 2021-12-23 Auris Health, Inc. Robotic surgical tool with pivotable transmission linkage on translating carriage
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11246670B2 (en) 2016-08-16 2022-02-15 Cilag Gmbh International Modular surgical robotic tool
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11266473B2 (en) * 2014-01-24 2022-03-08 Koninklijke Philips N.V. Sensorless force control for transesophageal echocardiography probe
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11331099B2 (en) 2017-09-01 2022-05-17 Rev Medica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US20220346784A1 (en) * 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US20220361975A1 (en) * 2014-03-17 2022-11-17 Intuitive Surgical Operations, Inc. Latch release for surgical instrument
US11504126B2 (en) 2017-08-29 2022-11-22 Cilag Gmbh International Control system for clip applier
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11523859B2 (en) 2012-06-28 2022-12-13 Cilag Gmbh International Surgical instrument assembly including a removably attachable end effector
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11628020B2 (en) 2019-06-19 2023-04-18 Virtuoso Surgical, Inc. Insertable robot for minimally invasive surgery
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11627963B2 (en) * 2017-10-30 2023-04-18 Covidien Lp Apparatus for endoscopic procedures
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11786237B2 (en) 2015-06-18 2023-10-17 Cilag Gmbh International Stapling assembly comprising a supported firing bar
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11918208B2 (en) 2022-04-12 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments

Families Citing this family (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US10271844B2 (en) * 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
US9339342B2 (en) 2008-09-30 2016-05-17 Intuitive Surgical Operations, Inc. Instrument interface
DE102011001973A1 (en) * 2011-04-12 2012-10-18 Aesculap Ag control device
JP6106169B2 (en) 2011-07-11 2017-03-29 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ Surgical robot system
EP2844181B1 (en) 2012-05-01 2021-03-10 Board of Regents of the University of Nebraska Single site robotic device and related systems
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
WO2014025399A1 (en) 2012-08-08 2014-02-13 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
EP2974682B1 (en) 2013-03-15 2017-08-30 Gyrus ACMI, Inc. Combination electrosurgical device
EP2967732B1 (en) 2013-03-15 2017-11-29 Gyrus Acmi Inc. Combination electrosurgical device
CN105246425B (en) 2013-03-15 2018-03-09 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Bias surgical clamp
CN105208955B (en) 2013-03-15 2018-11-06 捷锐士阿希迈公司(以奥林巴斯美国外科技术名义) Combined electrical surgical device
JP2016510633A (en) 2013-03-15 2016-04-11 ジャイラス エーシーエムアイ インク Electrosurgical instrument
KR20140129702A (en) * 2013-04-30 2014-11-07 삼성전자주식회사 Surgical robot system and method for controlling the same
US10085746B2 (en) * 2013-06-28 2018-10-02 Covidien Lp Surgical instrument including rotating end effector and rotation-limiting structure
US10966700B2 (en) 2013-07-17 2021-04-06 Virtual Incision Corporation Robotic surgical devices, systems and related methods
KR102384055B1 (en) 2013-08-15 2022-04-07 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Preloaded surgical instrument interface
CN113274137A (en) 2013-08-15 2021-08-20 直观外科手术操作公司 Instrument sterile adapter drive interface
US10550918B2 (en) 2013-08-15 2020-02-04 Intuitive Surgical Operations, Inc. Lever actuated gimbal plate
DE102013110216A1 (en) * 2013-09-17 2015-03-19 gomtec GmbH End effector for a surgical instrument and surgical instrument with an end effector
US10080552B2 (en) * 2014-04-21 2018-09-25 Covidien Lp Adapter assembly with gimbal for interconnecting electromechanical surgical devices and surgical loading units, and surgical systems thereof
US9730694B2 (en) * 2014-07-01 2017-08-15 Covidien Lp Loading unit including shipping assembly
EP3134019A1 (en) 2014-08-20 2017-03-01 Gyrus ACMI, Inc. (D.B.A. Olympus Surgical Technologies America) Reconfigurable electrosurgical device
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
KR101700613B1 (en) * 2014-12-22 2017-01-31 이메드 주식회사 Elastic Member Having Multi Compression-Resistance Section and Ultrasonic Wave Surgery Apparatus Having the Same
GB2534147B (en) * 2015-01-14 2018-11-14 Gyrus Medical Ltd Manufacturing electrosurgical instruments
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
WO2017024081A1 (en) 2015-08-03 2017-02-09 Board Of Regents Of The University Of Nebraska Robotic surgical devices systems and related methods
US10463366B2 (en) * 2015-08-31 2019-11-05 Ethicon Llc Adjunct materials for delivery to liver tissue
US10271831B2 (en) * 2015-10-06 2019-04-30 Boston Scientific Scimed, Inc. Control assemblies for medical devices and related methods of use
US10542992B2 (en) * 2015-10-19 2020-01-28 Covidien Lp Loading unit with stretchable bushing
US10398439B2 (en) * 2016-02-10 2019-09-03 Covidien Lp Adapter, extension, and connector assemblies for surgical devices
CN109219404B (en) * 2016-04-01 2021-08-13 伊西康有限责任公司 Interchangeable surgical tool assembly having a surgical end effector selectively rotatable about a shaft axis
JP7176757B2 (en) 2016-05-18 2022-11-22 バーチャル インシジョン コーポレイション ROBOTIC SURGICAL DEVICES, SYSTEMS AND RELATED METHODS
US20170340325A1 (en) * 2016-05-31 2017-11-30 Covidien Lp Endoscopic reposable surgical clip applier
US20190231451A1 (en) 2016-07-14 2019-08-01 Intuitive Surgical Operations, Inc. Geared roll drive for medical instrument
US11207145B2 (en) * 2016-07-14 2021-12-28 Intuitive Surgical Operations, Inc. Multi-cable medical instrument
WO2018013314A1 (en) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Instrument flushing system
US11007024B2 (en) 2016-07-14 2021-05-18 Intuitive Surgical Operations, Inc. Geared grip actuation for medical instruments
US11890070B2 (en) 2016-07-14 2024-02-06 Intuitive Surgical Operations, Inc. Instrument release
JP6917372B2 (en) * 2016-07-20 2021-08-11 テルモ株式会社 Medical long body
EP3541315A4 (en) 2016-11-21 2020-07-01 Intuitive Surgical Operations Inc. Cable length conserving medical instrument
US10987177B2 (en) 2016-12-20 2021-04-27 Ethicon Llc Robotic endocutter drivetrain with bailout and manual opening
US10398460B2 (en) 2016-12-20 2019-09-03 Ethicon Llc Robotic endocutter drivetrain with bailout and manual opening
CN110114004B (en) * 2016-12-21 2022-08-09 爱惜康有限责任公司 Surgical end effector and firing member therefor
CN110099618B (en) * 2016-12-21 2022-08-09 爱惜康有限责任公司 Articulatable surgical stapling instrument
CN110099620B (en) * 2016-12-21 2022-07-29 爱惜康有限责任公司 Closure member arrangement for a surgical instrument
US10357321B2 (en) 2017-02-24 2019-07-23 Intuitive Surgical Operations, Inc. Splayed cable guide for a medical instrument
US11076926B2 (en) 2017-03-21 2021-08-03 Intuitive Surgical Operations, Inc. Manual release for medical device drive system
WO2018216204A1 (en) * 2017-05-26 2018-11-29 オリンパス株式会社 Master-slave manipulator and method for controlling same
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10925630B2 (en) 2018-06-19 2021-02-23 Ethicon Llc Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
US11033293B2 (en) 2017-07-19 2021-06-15 Cilag Gmbh International Ultrasonic transducer to blade acoustic coupling, connections, and configurations
US10582945B2 (en) * 2018-03-20 2020-03-10 Ethicon Llc Surgical devices and systems with rotating end effector assemblies having an ultrasonic blade
US11026712B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Surgical instruments comprising a shifting mechanism
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11406390B2 (en) 2017-10-30 2022-08-09 Cilag Gmbh International Clip applier comprising interchangeable clip reloads
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11298801B2 (en) 2017-11-02 2022-04-12 Gyrus Acmi, Inc. Bias device for biasing a gripping device including a central body and shuttles on the working arms
US10667834B2 (en) 2017-11-02 2020-06-02 Gyrus Acmi, Inc. Bias device for biasing a gripping device with a shuttle on a central body
US11383373B2 (en) 2017-11-02 2022-07-12 Gyms Acmi, Inc. Bias device for biasing a gripping device by biasing working arms apart
US10675107B2 (en) 2017-11-15 2020-06-09 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG
KR102332121B1 (en) 2017-12-14 2021-12-01 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 medical instrument with tension band
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US10595887B2 (en) 2017-12-28 2020-03-24 Ethicon Llc Systems for adjusting end effector parameters based on perioperative information
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11612408B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Determining tissue composition via an ultrasonic system
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US20190201118A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Display arrangements for robot-assisted surgical platforms
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11013564B2 (en) * 2018-01-05 2021-05-25 Board Of Regents Of The University Of Nebraska Single-arm robotic device with compact joint design and related systems and methods
US11497567B2 (en) 2018-02-08 2022-11-15 Intuitive Surgical Operations, Inc. Jointed control platform
US11118661B2 (en) 2018-02-12 2021-09-14 Intuitive Surgical Operations, Inc. Instrument transmission converting roll to linear actuation
US20200390512A1 (en) * 2018-02-21 2020-12-17 Intuitive Surgical Operations, Inc. Systems and methods for automatic grip adjustment during energy delivery
US11439376B2 (en) 2018-03-07 2022-09-13 Intuitive Surgical Operations, Inc. Low-friction, small profile medical tools having easy-to-assemble components
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11457944B2 (en) 2018-03-08 2022-10-04 Cilag Gmbh International Adaptive advanced tissue treatment pad saver mode
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
US20190298353A1 (en) * 2018-03-28 2019-10-03 Ethicon Llc Surgical stapling devices with asymmetric closure features
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
US11304703B2 (en) * 2018-05-25 2022-04-19 Covidien Lp Ligation clip removal device
US11259798B2 (en) 2018-07-16 2022-03-01 Intuitive Surgical Operations, Inc. Medical devices having tissue grasping surfaces and features for manipulating surgical needles
KR20210032998A (en) * 2018-07-17 2021-03-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Surgical Instruments, Related Devices, and Related Methods with Reduced Capacitance
US11612447B2 (en) 2018-07-19 2023-03-28 Intuitive Surgical Operations, Inc. Medical devices having three tool members
US11291514B2 (en) 2018-11-15 2022-04-05 Intuitive Surgical Operations, Inc. Medical devices having multiple blades and methods of use
US11213287B2 (en) 2018-11-15 2022-01-04 Intuitive Surgical Operations, Inc. Support apparatus for a medical retractor device
CA3125742A1 (en) 2019-01-07 2020-07-16 Virtual Incision Corporation Robotically assisted surgical system and related devices and methods
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
CN110772329B (en) * 2019-04-25 2021-06-01 深圳市精锋医疗科技有限公司 Surgical instrument
CN110772335B (en) * 2019-04-25 2021-06-01 深圳市精锋医疗科技有限公司 Surgical instrument
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
US11376083B2 (en) 2019-06-27 2022-07-05 Cilag Gmbh International Determining robotic surgical assembly coupling status
US11369443B2 (en) 2019-06-27 2022-06-28 Cilag Gmbh International Method of using a surgical modular robotic assembly
US11376082B2 (en) 2019-06-27 2022-07-05 Cilag Gmbh International Robotic surgical system with local sensing of functional parameters based on measurements of multiple physical inputs
US11207146B2 (en) 2019-06-27 2021-12-28 Cilag Gmbh International Surgical instrument drive systems with cable-tightening system
US11399906B2 (en) 2019-06-27 2022-08-02 Cilag Gmbh International Robotic surgical system for controlling close operation of end-effectors
US11013569B2 (en) 2019-06-27 2021-05-25 Cilag Gmbh International Surgical systems with interchangeable motor packs
US11278362B2 (en) 2019-06-27 2022-03-22 Cilag Gmbh International Surgical instrument drive systems
US11344309B2 (en) 2019-07-05 2022-05-31 Covidien Lp Circular stapling instruments
CN110379218B (en) * 2019-07-19 2021-12-21 闪创(山东)教育科技有限公司 Auxiliary teaching robot with reed plate head protection
CN111134740B (en) * 2020-01-07 2022-02-22 深圳市精锋医疗科技股份有限公司 Method for connecting surgical instrument and driving device, slave operation device, and surgical robot
WO2022049644A1 (en) * 2020-09-01 2022-03-10 オリンパス株式会社 Treatment tool and treatment system
US11857184B2 (en) 2021-04-30 2024-01-02 Cilag Gmbh International Surgical instrument comprising a rotation-driven and translation-driven tissue cutting knife
GB2617395A (en) * 2022-04-08 2023-10-11 Cmr Surgical Ltd Robotic surgical instrument

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503396A (en) * 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
US4815460A (en) * 1984-09-26 1989-03-28 Michael Porat Gripper teeth for medical instruments
US5549627A (en) * 1994-10-21 1996-08-27 Kieturakis; Maciej J. Surgical instruments and method for applying progressive intracorporeal traction
US5599279A (en) * 1994-03-16 1997-02-04 Gus J. Slotman Surgical instruments and method useful for endoscopic spinal procedures
US5658307A (en) * 1990-11-07 1997-08-19 Exconde; Primo D. Method of using a surgical dissector instrument
US5893878A (en) * 1997-04-24 1999-04-13 Pierce; Javin Micro traumatic tissue manipulator apparatus
US5904647A (en) * 1996-10-08 1999-05-18 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
US6077280A (en) * 1995-06-29 2000-06-20 Thomas Jefferson University Surgical clamp
US6206904B1 (en) * 1998-06-12 2001-03-27 Ashai Kogaku Kogyo Kabushiki Kaisha Foreign body-recovering instrument for endoscope
US20010021861A1 (en) * 2000-02-21 2001-09-13 Richard Wolf Gmbh Forceps for dissecting free tissue in body cavities
US6613069B2 (en) * 1993-02-22 2003-09-02 Heartport, Inc. Tunneling instrument for port access multivessel coronary artery bypass surgery
US8262655B2 (en) * 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps
US8281446B2 (en) * 2004-07-14 2012-10-09 Colgate-Palmolive Company Oral care implement

Family Cites Families (4655)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US60052A (en) 1866-11-27 Dewey phillips
US1306107A (en) 1919-06-10 Assigotob to amebxcak
US1314601A (en) 1919-09-02 Flexible shaft
US2001A (en) * 1841-03-12 Sawmill
US66052A (en) 1867-06-25 smith
DE273689C (en) 1913-08-07 1914-05-08
US662587A (en) 1900-05-18 1900-11-27 Charles Chandler Blake Insulated support for electric conductors.
US670748A (en) 1900-10-25 1901-03-26 Paul Weddeler Flexible shafting.
US719487A (en) 1901-09-16 1903-02-03 William E Minor Dilator.
US804229A (en) 1904-07-27 1905-11-14 Thomas C Hutchinson Forceps and the like.
US951393A (en) 1909-04-06 1910-03-08 John N Hahn Staple.
FR459743A (en) 1912-09-14 1913-11-12 Bariquant Et Marre Des Atel Flexible transmission
US1188721A (en) 1915-05-05 1916-06-27 Frank Bittner Pipe-wrench.
US1677337A (en) 1924-09-27 1928-07-17 Thomas E Grove Antrum drill
US1849427A (en) 1927-10-17 1932-03-15 Westminster Tool And Electric Handle of tools driven by flexible shafts
US1794907A (en) 1929-07-19 1931-03-03 Joseph N Kelly Worm and gear
US1944116A (en) 1930-05-26 1934-01-16 Edward A Stratman Lever locking device
US1954048A (en) 1931-01-06 1934-04-10 Jeffrey Mfg Co Tool holder
US2037727A (en) 1934-12-27 1936-04-21 United Shoe Machinery Corp Fastening
US2132295A (en) 1937-05-05 1938-10-04 Hawkins Earl Stapling device
US2211117A (en) 1937-09-06 1940-08-13 Rieter Joh Jacob & Cie Ag Device for drawing rovings in speeders and spinning machines
US2161632A (en) 1937-12-20 1939-06-06 Martin L Nattenheimer Fastening device
US2214870A (en) 1938-08-10 1940-09-17 William J West Siding cutter
US2224882A (en) 1939-08-01 1940-12-17 Herbert G Peck Umbrella
US2329440A (en) 1941-04-02 1943-09-14 Bocjl Corp Fastener
US2318379A (en) 1941-04-17 1943-05-04 Walter S Davis Suture package
US2406389A (en) 1942-11-30 1946-08-27 Lee Engineering Res Corp Electric motor
US2377581A (en) 1944-03-09 1945-06-05 Matthew J Shaffrey Divided nut construction
US2441096A (en) 1944-09-04 1948-05-04 Singer Mfg Co Control means for portable electric tools
US2448741A (en) 1945-04-25 1948-09-07 American Cystoscope Makers Inc Endoscopic surgical instrument
US2578686A (en) 1945-04-27 1951-12-18 Tubing Appliance Co Inc Open-sided-socket ratchet wrench
US2450527A (en) 1945-10-27 1948-10-05 P & V Quicklocking Co Semiautomatic coupling
US2507872A (en) 1946-01-18 1950-05-16 Unsinger Ap Corp Implement or toolholder
US2526902A (en) 1947-07-31 1950-10-24 Norman C Rublee Insulating staple
US2527256A (en) 1947-11-07 1950-10-24 Earle R Jackson Connector for brushes, brooms, and the like
FR999646A (en) 1949-11-16 1952-02-04 Cable clamp device
US2742955A (en) 1951-01-13 1956-04-24 Richard A Dominguez Collapsible seat structure
US2638901A (en) 1951-07-30 1953-05-19 Everett D Sugarbaker Surgical clamp
US2701489A (en) 1951-09-12 1955-02-08 Leonard C Osborn Cam-actuated slidable jaw wrench
US2674149A (en) 1952-03-01 1954-04-06 Jerry S Benson Multiple pronged fastener device with spreading means
US2711461A (en) 1953-12-24 1955-06-21 Singer Mfg Co Portable electric tool handle assemblies
US2804848A (en) 1954-09-30 1957-09-03 Chicago Pneumatic Tool Co Drilling apparatus
FR1112936A (en) 1954-10-20 1956-03-20 Electric motor and three-speed control enclosed in a sheath
US2887004A (en) 1954-11-04 1959-05-19 William H Stewart Staple having flat depressed head with reinforcing ridge
US2808482A (en) 1956-04-12 1957-10-01 Miniature Switch Corp Toggle switch construction
US2853074A (en) 1956-06-15 1958-09-23 Edward A Olson Stapling instrument for surgical purposes
US3060972A (en) 1957-08-22 1962-10-30 Bausch & Lomb Flexible tube structures
US3972734A (en) 1957-12-27 1976-08-03 Catalyst Research Corporation Thermal deferred action battery
US2959974A (en) 1958-05-28 1960-11-15 Melvin H Emrick Forward and reverse friction drive tapping attachment
DE1775926U (en) 1958-06-11 1958-10-16 Rudolf W Dipl Ing Ihmig BALLPOINT REFILL.
US2957353A (en) 1958-08-26 1960-10-25 Teleflex Inc Connector
US3032769A (en) 1959-08-18 1962-05-08 John R Palmer Method of making a bracket
US3078465A (en) 1959-09-09 1963-02-26 Bobrov Boris Sergueevitch Instrument for stitching gastric stump
US3080564A (en) 1959-09-10 1963-03-12 Strekopitov Alexey Alexeevich Instrument for stitching hollow organs
GB939929A (en) 1959-10-30 1963-10-16 Vasilii Fedotovich Goodov Instrument for stitching blood vessels, intestines, bronchi and other soft tissues
US3079606A (en) 1960-01-04 1963-03-05 Bobrov Boris Sergeevich Instrument for placing lateral gastrointestinal anastomoses
US3075062A (en) 1960-02-02 1963-01-22 J B T Instr Inc Toggle switch
US4034143A (en) 1960-02-24 1977-07-05 Catalyst Research Corporation Thermal deferred action battery with interconnecting, foldable electrodes
SU143738A1 (en) 1960-06-15 1960-11-30 А.А. Стрекопытов Method of suturing lung tissue by double-sided immersion sutures
US3204731A (en) 1961-05-26 1965-09-07 Gardner Denver Co Positive engaging jaw clutch or brake
US3196869A (en) 1962-06-13 1965-07-27 William M Scholl Buttress pad and method of making the same
US3166072A (en) 1962-10-22 1965-01-19 Jr John T Sullivan Barbed clips
US3180236A (en) 1962-12-20 1965-04-27 Beckett Harcum Co Fluid motor construction
US3266494A (en) 1963-08-26 1966-08-16 Possis Machine Corp Powered forceps
US3317105A (en) 1964-03-25 1967-05-02 Niiex Khirurgicheskoi Apparatu Instrument for placing lateral intestinal anastomoses
US3269630A (en) 1964-04-30 1966-08-30 Fleischer Harry Stapling instrument
US3269631A (en) 1964-06-19 1966-08-30 Takaro Timothy Surgical stapler
US3359978A (en) 1964-10-26 1967-12-26 Jr Raymond M Smith Guide needle for flexible catheters
US3317103A (en) 1965-05-03 1967-05-02 Cullen Apparatus for handling hose or similar elongate members
US3275211A (en) 1965-05-10 1966-09-27 United States Surgical Corp Surgical stapler with replaceable cartridge
US3357296A (en) 1965-05-14 1967-12-12 Keuneth W Lefever Staple fastener
US3726755A (en) 1966-09-29 1973-04-10 Owens Corning Fiberglass Corp High-strength foam material
US3509629A (en) 1966-10-01 1970-05-05 Mitsubishi Electric Corp Portable and adjustable contra-angle dental instrument
US3494533A (en) 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3490675A (en) 1966-10-10 1970-01-20 United States Surgical Corp Instrument for placing lateral gastrointestinal anastomoses
GB1210522A (en) 1966-10-10 1970-10-28 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3377893A (en) 1967-03-06 1968-04-16 John A. Shorb Wrench having pivoted jaws adjustable by a lockable exterior camming sleeve
US3499591A (en) 1967-06-23 1970-03-10 United States Surgical Corp Instrument for placing lateral gastro-intestinal anastomoses
US3480193A (en) 1967-09-15 1969-11-25 Robert E Ralston Power-operable fastener applying device
DE1791114B1 (en) 1967-09-19 1971-12-02 Vnii Chirurgitscheskoj Apparat Surgical device for stapling tissues
GB1217159A (en) 1967-12-05 1970-12-31 Coventry Gauge & Tool Co Ltd Torque limiting device
US3583393A (en) 1967-12-26 1971-06-08 Olympus Optical Co Bendable tube assembly
JPS4711908Y1 (en) 1968-01-18 1972-05-02
DE1775926A1 (en) 1968-08-28 1972-01-27 Ver Deutsche Metallwerke Ag Verfaerkungen for plastic Bowden cable guide hoses without wire reinforcement
US3568675A (en) 1968-08-30 1971-03-09 Clyde B Harvey Fistula and penetrating wound dressing
US3551987A (en) 1968-09-12 1971-01-05 Jack E Wilkinson Stapling clamp for gastrointestinal surgery
US3640317A (en) 1969-03-21 1972-02-08 Jack Panfili Clip for closing fragile stuffed casings
US3572159A (en) 1969-06-12 1971-03-23 Teleflex Inc Motion transmitting remote control assembly
US3643851A (en) 1969-08-25 1972-02-22 United States Surgical Corp Skin stapler
US3688966A (en) 1969-11-10 1972-09-05 Spotnails Magazine and feed assembly for a fastener-driving tool
US3709221A (en) 1969-11-21 1973-01-09 Pall Corp Microporous nonadherent surgical dressing
US3598943A (en) 1969-12-01 1971-08-10 Illinois Tool Works Actuator assembly for toggle switch
US3744495A (en) 1970-01-02 1973-07-10 M Johnson Method of securing prolapsed vagina in cattle
US3608549A (en) 1970-01-15 1971-09-28 Merrill Edward Wilson Method of administering drugs and capsule therefor
US3662939A (en) 1970-02-26 1972-05-16 United States Surgical Corp Surgical stapler for skin and fascia
FR2084475A5 (en) 1970-03-16 1971-12-17 Brumlik George
US3618842A (en) 1970-03-20 1971-11-09 United States Surgical Corp Surgical stapling cartridge with cylindrical driving cams
US3902247A (en) 1970-05-15 1975-09-02 Siemens Ag Device for operating dental hand pieces
US3638652A (en) 1970-06-01 1972-02-01 James L Kelley Surgical instrument for intraluminal anastomosis
US3695646A (en) 1970-06-18 1972-10-03 Metal Matic Inc Ball and socket pipe joint with clip spring
US3661666A (en) 1970-08-06 1972-05-09 Philip Morris Inc Method for making swab applicators
US3650453A (en) 1970-08-13 1972-03-21 United States Surgical Corp Staple cartridge with drive belt
US3740994A (en) 1970-10-13 1973-06-26 Surgical Corp Three stage medical instrument
US3837555A (en) 1970-12-14 1974-09-24 Surgical Corp Powering instrument for stapling skin and fascia
US3717294A (en) 1970-12-14 1973-02-20 Surgical Corp Cartridge and powering instrument for stapling skin and fascia
US3799151A (en) 1970-12-21 1974-03-26 Olympus Optical Co Controllably bendable tube of an endoscope
US3727904A (en) 1971-03-12 1973-04-17 E Gabbey Concentricity coil for screw threads
US3746002A (en) 1971-04-29 1973-07-17 J Haller Atraumatic surgical clamp
US3836171A (en) 1971-07-07 1974-09-17 Tokai Rika Co Ltd Safety belt locking device
CA960189A (en) 1971-07-12 1974-12-31 Hilti Aktiengesellschaft Nail holder assembly
US3752161A (en) 1971-08-02 1973-08-14 Minnesota Mining & Mfg Fluid operated surgical tool
US3747692A (en) 1971-08-30 1973-07-24 Parrott Bell Seltzer Park & Gi Stonesetter{40 s hand tool
US3851196A (en) 1971-09-08 1974-11-26 Xynetics Inc Plural axis linear motor structure
US3747603A (en) 1971-11-03 1973-07-24 B Adler Cervical dilators
US3883624A (en) 1971-11-18 1975-05-13 Grandview Ind Limited Recovery and utilization of scrap in production of foamed thermoplastic polymeric products
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3940844A (en) 1972-02-22 1976-03-02 Pci Group, Inc. Method of installing an insulating sleeve on a staple
US3751902A (en) 1972-02-22 1973-08-14 Emhart Corp Apparatus for installing insulation on a staple
US4198734A (en) 1972-04-04 1980-04-22 Brumlik George C Self-gripping devices with flexible self-gripping means and method
GB1339394A (en) 1972-04-06 1973-12-05 Vnii Khirurgicheskoi Apparatur Dies for surgical stapling instruments
US3819100A (en) 1972-09-29 1974-06-25 United States Surgical Corp Surgical stapling instrument
USRE28932E (en) 1972-09-29 1976-08-17 United States Surgical Corporation Surgical stapling instrument
US3892228A (en) 1972-10-06 1975-07-01 Olympus Optical Co Apparatus for adjusting the flexing of the bending section of an endoscope
US3821919A (en) 1972-11-10 1974-07-02 Illinois Tool Works Staple
US3959879A (en) 1973-02-26 1976-06-01 Rockwell International Corporation Electrically powered grass trimmer
US3944163A (en) 1973-03-24 1976-03-16 Kabushiki Kaisha Tokai Rika Denki Seisakusho Seat belt retractor
US3808452A (en) 1973-06-04 1974-04-30 Gte Automatic Electric Lab Inc Power supply system having redundant d. c. power supplies
SU511939A1 (en) 1973-07-13 1976-04-30 Центральная Научно-Исследовательская Лаборатория При 4-М Главном Управлении Apparatus for imposing arcuate suture on the greater curvature of the stomach
JPS5033988U (en) 1973-07-21 1975-04-11
US3885491A (en) 1973-12-21 1975-05-27 Illinois Tool Works Locking staple
JPS543B2 (en) 1974-02-28 1979-01-05
US3952747A (en) 1974-03-28 1976-04-27 Kimmell Jr Garman O Filter and filter insertion instrument
US3863639A (en) 1974-04-04 1975-02-04 Richard N Kleaveland Disposable visceral retainer
CA1015829A (en) 1974-05-23 1977-08-16 Kurt Pokrandt Current sensing circuitry
US4169990A (en) 1974-06-24 1979-10-02 General Electric Company Electronically commutated motor
US3894174A (en) 1974-07-03 1975-07-08 Emhart Corp Insulated staple and method of making the same
DE2442260A1 (en) 1974-09-04 1976-03-18 Bosch Gmbh Robert CRAFT MACHINE
US3955581A (en) 1974-10-18 1976-05-11 United States Surgical Corporation Three-stage surgical instrument
DE2530261C2 (en) 1974-10-22 1986-10-23 Asea S.p.A., Mailand/Milano Programming device for a manipulator
US4129059A (en) 1974-11-07 1978-12-12 Eck William F Van Staple-type fastener
US3950686A (en) 1974-12-11 1976-04-13 Trw Inc. Series redundant drive system
GB1491083A (en) 1975-03-19 1977-11-09 Newage Kitchens Ltd Joint assemblies
US4108211A (en) 1975-04-28 1978-08-22 Fuji Photo Optical Co., Ltd. Articulated, four-way bendable tube structure
SU566574A1 (en) 1975-05-04 1977-07-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for applying linear agraffe suture on organs and tissue
US4185701A (en) 1975-05-19 1980-01-29 Sps Technologies, Inc. Tightening apparatus
US4060089A (en) 1975-09-03 1977-11-29 United States Surgical Corporation Surgical fastening method and device therefor
US4027746A (en) 1975-09-05 1977-06-07 Shimano Industrial Company, Limited Center-pull type caliper brake for a bicycle
US4085337A (en) 1975-10-07 1978-04-18 Moeller Wolfgang W Electric drill multi-functional apparatus
DE2628508A1 (en) 1976-06-25 1977-12-29 Hilti Ag SWIVEL NUT WITH TWO U-SHAPED DISCS
US4054108A (en) 1976-08-02 1977-10-18 General Motors Corporation Internal combustion engine
US4100820A (en) 1976-09-13 1978-07-18 Joel Evett Shift lever and integral handbrake apparatus
AU518664B2 (en) 1976-10-08 1981-10-15 K. Jarvik Robert Surgical' clip applicator
US4127227A (en) 1976-10-08 1978-11-28 United States Surgical Corporation Wide fascia staple cartridge
US4226242A (en) 1977-09-13 1980-10-07 United States Surgical Corporation Repeating hemostatic clip applying instruments and multi-clip cartridges therefor
SU674747A1 (en) 1976-11-24 1979-07-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for mechanical suturing of tissues
FR2446509A1 (en) 1977-04-29 1980-08-08 Garret Roger PROGRAMMER
SU728848A1 (en) 1977-05-24 1980-04-25 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing arrangement
US4573468A (en) 1977-05-26 1986-03-04 United States Surgical Corporation Hollow body organ stapling instrument and disposable cartridge employing relief vents
US4304236A (en) 1977-05-26 1981-12-08 United States Surgical Corporation Stapling instrument having an anvil-carrying part of particular geometric shape
US4135517A (en) 1977-07-21 1979-01-23 Minnesota Mining And Manufacturing Company Femoral prosthesis trial fitting device
CA1124605A (en) 1977-08-05 1982-06-01 Charles H. Klieman Surgical stapler
US4452376A (en) 1977-08-05 1984-06-05 Charles H. Klieman Hemostatic clip applicator
USD261356S (en) 1977-09-07 1981-10-20 Ofrex Group Limited Strip of insulated cable clips
US5133727A (en) 1990-05-10 1992-07-28 Symbiosis Corporation Radial jaw biopsy forceps
US6264617B1 (en) 1977-09-12 2001-07-24 Symbiosis Corporation Radial jaw biopsy forceps
US4154122A (en) 1977-09-16 1979-05-15 Severin Hubert J Hand-powered tool
US4106620A (en) 1977-10-03 1978-08-15 Brimmer Frances M Surgical blade dispenser
US4241861A (en) 1977-12-20 1980-12-30 Fleischer Harry N Scissor-type surgical stapler
US4900303A (en) 1978-03-10 1990-02-13 Lemelson Jerome H Dispensing catheter and method
US4190042A (en) 1978-03-16 1980-02-26 Manfred Sinnreich Surgical retractor for endoscopes
US4321002A (en) 1978-03-27 1982-03-23 Minnesota Mining And Manufacturing Company Medical stapling device
US4207898A (en) 1978-03-27 1980-06-17 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4274304A (en) 1978-03-29 1981-06-23 Cooper Industries, Inc. In-line reversing mechanism
SU1036324A1 (en) 1978-03-31 1983-08-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing device
US4198982A (en) 1978-03-31 1980-04-22 Memorial Hospital For Cancer And Allied Diseases Surgical stapling instrument and method
GB2024012B (en) 1978-04-10 1982-07-28 Johnson & Johnson Oxygen-generating surgical dressing
US4180285A (en) 1978-05-11 1979-12-25 Reneau Bobby J Articulated ball connector for use with pipeline
DE2839990C2 (en) 1978-09-14 1980-05-14 Audi Nsu Auto Union Ag, 7107 Neckarsulm Method for remelt hardening the surface of a workpiece rotating about its axis of rotation, which surface is at a different distance from the axis of rotation
US4321746A (en) 1978-11-01 1982-03-30 White Consolidated Industries, Inc. Tool changer for vertical boring machine
SU886897A1 (en) 1978-12-25 1981-12-07 Всесоюзный Научно-Исследовательский Институт Медицинской Техники Surgical apparatus for applying side gastroenterostomy
SE419421B (en) 1979-03-16 1981-08-03 Ove Larson RESIDENTIAL ARM IN SPECIAL ROBOT ARM
SU886900A1 (en) 1979-03-26 1981-12-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying line sutures
US4340331A (en) 1979-03-26 1982-07-20 Savino Dominick J Staple and anviless stapling apparatus therefor
JPS55138634A (en) 1979-04-16 1980-10-29 Kansai Electric Power Co Inc:The Fault diagnosis apparatus of apparatus
US4512038A (en) 1979-04-27 1985-04-23 University Of Medicine And Dentistry Of New Jersey Bio-absorbable composite tissue scaffold
US4274398A (en) 1979-05-14 1981-06-23 Scott Jr Frank B Surgical retractor utilizing elastic tubes frictionally held in spaced notches
US4261244A (en) 1979-05-14 1981-04-14 Senco Products, Inc. Surgical staple
US4289131A (en) 1979-05-17 1981-09-15 Ergo Instruments, Inc. Surgical power tool
US4272662A (en) 1979-05-21 1981-06-09 C & K Components, Inc. Toggle switch with shaped wire spring contact
US4275813A (en) 1979-06-04 1981-06-30 United States Surgical Corporation Coherent surgical staple array
US4272002A (en) 1979-07-23 1981-06-09 Lawrence M. Smith Internal surgical stapler
US4296654A (en) 1979-08-20 1981-10-27 Mercer Albert E Adjustable angled socket wrench extension
US4250436A (en) 1979-09-24 1981-02-10 The Singer Company Motor braking arrangement and method
US4357940A (en) 1979-12-13 1982-11-09 Detroit Neurosurgical Foundation Tissue pneumatic separator structure
SU1022703A1 (en) 1979-12-20 1983-06-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Device for correcting and fixing vertebral column of patients ill with scoliosis surgical apparatus for applying compression sutures
US4278091A (en) 1980-02-01 1981-07-14 Howmedica, Inc. Soft tissue retainer for use with bone implants, especially bone staples
CA1205525A (en) 1980-02-01 1986-06-03 Russell H. Taggart Current detector
US4429695A (en) 1980-02-05 1984-02-07 United States Surgical Corporation Surgical instruments
AU534210B2 (en) 1980-02-05 1984-01-12 United States Surgical Corporation Surgical staples
US4376380A (en) 1980-02-05 1983-03-15 John D. Brush & Co., Inc. Combination lock
JPS56112235A (en) 1980-02-07 1981-09-04 Vnii Ispytatel Med Tech Surgical suturing implement for suturing staple
US4368731A (en) 1980-02-12 1983-01-18 Schramm Heinrich W Pistol-type syringe
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4319576A (en) 1980-02-26 1982-03-16 Senco Products, Inc. Intralumenal anastomosis surgical stapling instrument
US4312363A (en) 1980-02-26 1982-01-26 Senco Products, Inc. Surgical tissue thickness measuring instrument
US4289133A (en) 1980-02-28 1981-09-15 Senco Products, Inc. Cut-through backup washer for the scalpel of an intraluminal surgical stapling instrument
US4361057A (en) 1980-02-28 1982-11-30 John Sigan Handlebar adjusting device
US4296881A (en) 1980-04-03 1981-10-27 Sukoo Lee Surgical stapler using cartridge
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
US4331277A (en) 1980-05-23 1982-05-25 United States Surgical Corporation Self-contained gas powered surgical stapler
US5445604A (en) 1980-05-22 1995-08-29 Smith & Nephew Associated Companies, Ltd. Wound dressing with conformable elastomeric wound contact layer
US4380312A (en) 1980-07-17 1983-04-19 Minnesota Mining And Manufacturing Company Stapling tool
US4606343A (en) * 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4328839A (en) * 1980-09-19 1982-05-11 Drilling Development, Inc. Flexible drill pipe
US4353371A (en) 1980-09-24 1982-10-12 Cosman Eric R Longitudinally, side-biting, bipolar coagulating, surgical instrument
DE3036217C2 (en) 1980-09-25 1986-12-18 Siemens AG, 1000 Berlin und 8000 München Remote-controlled medical device
US4349028A (en) 1980-10-03 1982-09-14 United States Surgical Corporation Surgical stapling apparatus having self-contained pneumatic system for completing manually initiated motion sequence
AU542936B2 (en) 1980-10-17 1985-03-28 United States Surgical Corporation Self centering staple
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
US4500024A (en) 1980-11-19 1985-02-19 Ethicon, Inc. Multiple clip applier
US4430997A (en) 1980-11-19 1984-02-14 Ethicon, Inc. Multiple clip applier
US4347450A (en) 1980-12-10 1982-08-31 Colligan Wallace M Portable power tool
SU1235495A1 (en) 1980-12-29 1986-06-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Apparatus for placing compression anastomoses
US4451743A (en) 1980-12-29 1984-05-29 Citizen Watch Company Limited DC-to-DC Voltage converter
US4382326A (en) 1981-01-19 1983-05-10 Minnesota Mining & Manufacturing Company Staple supporting and staple removing strip
US4409057A (en) 1981-01-19 1983-10-11 Minnesota Mining & Manufacturing Company Staple supporting and removing strip
US4348603A (en) 1981-01-29 1982-09-07 Black & Decker Inc. Printed-circuit board and trigger-switch arrangement for a portable electric tool
FR2499395A1 (en) 1981-02-10 1982-08-13 Amphoux Andre DEFORMABLE CONDUIT SUCH AS GAS FLUID SUCTION ARM
FR2499782A1 (en) 1981-02-11 1982-08-13 Faiveley Sa METHOD FOR ADJUSTING THE POWER SUPPLY OF A DC MOTOR AND DEVICE FOR IMPLEMENTING SAID METHOD
US4379457A (en) 1981-02-17 1983-04-12 United States Surgical Corporation Indicator for surgical stapler
US4350151A (en) 1981-03-12 1982-09-21 Lone Star Medical Products, Inc. Expanding dilator
SU1009439A1 (en) 1981-03-24 1983-04-07 Предприятие П/Я Р-6094 Surgical suturing device for application of anastomosis on digestive tract
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
SU982676A1 (en) 1981-04-07 1982-12-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical cramp
DE3115192C2 (en) 1981-04-15 1983-05-19 Christian Prof. Dr.med. 2400 Lübeck Krüger Medical instrument
US4406621A (en) 1981-05-04 1983-09-27 Young Dental Manufacturing Company, Inc. Coupling ensemble for dental handpiece
US4383634A (en) 1981-05-26 1983-05-17 United States Surgical Corporation Surgical stapler apparatus with pivotally mounted actuator assemblies
JPS57211361A (en) 1981-06-23 1982-12-25 Terumo Corp Liquid injecting apparatus
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4486928A (en) 1981-07-09 1984-12-11 Magnavox Government And Industrial Electronics Company Apparatus for tool storage and selection
FR2509490B1 (en) 1981-07-09 1985-02-22 Tractel Sa RELEASE MECHANISM FOR TRACTION EQUIPMENT ACTING ON A CABLE THROUGH IT
US4373147A (en) 1981-07-23 1983-02-08 General Signal Corporation Torque compensated electric motor
US4475679A (en) 1981-08-07 1984-10-09 Fleury Jr George J Multi-staple cartridge for surgical staplers
US4632290A (en) 1981-08-17 1986-12-30 United States Surgical Corporation Surgical stapler apparatus
US4417890A (en) 1981-08-17 1983-11-29 Baxter Travenol Laboratories, Inc. Antibacterial closure
US4576167A (en) 1981-09-03 1986-03-18 United States Surgical Corporation Surgical stapler apparatus with curved shaft
US4461305A (en) 1981-09-04 1984-07-24 Cibley Leonard J Automated biopsy device
JPS5844033A (en) 1981-09-11 1983-03-14 富士写真光機株式会社 Adaptor type treating tool introducing apparatus for endoscope
JPS5861747A (en) 1981-10-08 1983-04-12 馬渕 健一 Beauty tool
AU548370B2 (en) 1981-10-08 1985-12-05 United States Surgical Corporation Surgical fastener
DE3277287D1 (en) 1981-10-15 1987-10-22 Olympus Optical Co Endoscope system with an electric bending mechanism
US4809695A (en) 1981-10-21 1989-03-07 Owen M. Gwathmey Suturing assembly and method
US4416276A (en) 1981-10-26 1983-11-22 Valleylab, Inc. Adaptive, return electrode monitoring system
US4415112A (en) 1981-10-27 1983-11-15 United States Surgical Corporation Surgical stapling assembly having resiliently mounted anvil
JPS5878639A (en) 1981-11-04 1983-05-12 オリンパス光学工業株式会社 Endoscope
US4423456A (en) 1981-11-13 1983-12-27 Medtronic, Inc. Battery reversal protection
JPS5887494U (en) 1981-12-05 1983-06-14 株式会社モリタ製作所 Speed control device for small medical motors
US4442964A (en) 1981-12-07 1984-04-17 Senco Products, Inc. Pressure sensitive and working-gap controlled surgical stapling instrument
US4724840A (en) 1982-02-03 1988-02-16 Ethicon, Inc. Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
US4448194A (en) 1982-02-03 1984-05-15 Ethicon, Inc. Full stroke compelling mechanism for surgical instrument with drum drive
US4586502A (en) 1982-02-03 1986-05-06 Ethicon, Inc. Surgical instrument actuator with non-collinear hydraulic pistons
US4471781A (en) 1982-02-03 1984-09-18 Ethicon, Inc. Surgical instrument with rotatable front housing and latch mechanism
US4471780A (en) 1982-02-05 1984-09-18 Ethicon, Inc. Multiple ligating clip applier instrument
US4480641A (en) 1982-02-05 1984-11-06 Ethicon, Inc. Tip configuration for a ligating clip applier
US4478220A (en) 1982-02-05 1984-10-23 Ethicon, Inc. Ligating clip cartridge
DE3204532C2 (en) 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen Surgical skin staple
SU1114405A1 (en) 1982-02-23 1984-09-23 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus for placing compression anastomoses on the organs of digestive tract
DE3210466A1 (en) 1982-03-22 1983-09-29 Peter Dipl.-Kfm. Dr. 6230 Frankfurt Gschaider Method and device for carrying out handling processes
USD278081S (en) 1982-04-02 1985-03-19 United States Surgical Corporation Linear anastomosis surgical staple cartridge
US4408692A (en) 1982-04-12 1983-10-11 The Kendall Company Sterile cover for instrument
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
US4485817A (en) 1982-05-28 1984-12-04 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4473077A (en) 1982-05-28 1984-09-25 United States Surgical Corporation Surgical stapler apparatus with flexible shaft
US4467805A (en) 1982-08-25 1984-08-28 Mamoru Fukuda Skin closure stapling device for surgical procedures
US4488523A (en) 1982-09-24 1984-12-18 United States Surgical Corporation Flexible, hydraulically actuated device for applying surgical fasteners
FR2534801A1 (en) 1982-10-21 1984-04-27 Claracq Michel DEVICE FOR PARTIALLY OCCLUDING A VESSEL, PARTICULARLY OF THE CAUDAL CAVE VEIN, AND CONSTITUENT PART THEREOF
US4604786A (en) 1982-11-05 1986-08-12 The Grigoleit Company Method of making a composite article including a body having a decorative metal plate attached thereto
US4790225A (en) 1982-11-24 1988-12-13 Panduit Corp. Dispenser of discrete cable ties provided on a continuous ribbon of cable ties
US4676245A (en) 1983-02-09 1987-06-30 Mamoru Fukuda Interlocking surgical staple assembly
JPS59163608A (en) 1983-03-08 1984-09-14 Hitachi Koki Co Ltd Jigsaw
JPS59168848A (en) 1983-03-11 1984-09-22 エチコン・インコ−ポレ−テツド Antiseptic surgical apparatus made of nonmetal having affinity to organism
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
US4556058A (en) 1983-08-17 1985-12-03 United States Surgical Corporation Apparatus for ligation and division with fixed jaws
US4569346A (en) 1983-03-30 1986-02-11 United States Surgical Corporation Safety apparatus for surgical occluding and cutting device
US4506671A (en) 1983-03-30 1985-03-26 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US4530357A (en) 1983-04-18 1985-07-23 Pawloski James A Fluid actuated orthopedic tool
GB2138298B (en) 1983-04-21 1986-11-05 Hundon Forge Ltd Pellet implanter
US4522327A (en) 1983-05-18 1985-06-11 United States Surgical Corporation Surgical fastener applying apparatus
US4527724A (en) 1983-06-10 1985-07-09 Senmed, Inc. Disposable linear surgical stapling instrument
GR81919B (en) 1983-06-20 1984-12-12 Ethicon Inc
US4693248A (en) 1983-06-20 1987-09-15 Ethicon, Inc. Two-piece tissue fastener with deformable retaining receiver
US4532927A (en) 1983-06-20 1985-08-06 Ethicon, Inc. Two-piece tissue fastener with non-reentry bent leg staple and retaining receiver
US4531522A (en) 1983-06-20 1985-07-30 Ethicon, Inc. Two-piece tissue fastener with locking top and method for applying same
US4573469A (en) 1983-06-20 1986-03-04 Ethicon, Inc. Two-piece tissue fastener with coinable leg staple and retaining receiver and method and instrument for applying same
US4548202A (en) 1983-06-20 1985-10-22 Ethicon, Inc. Mesh tissue fasteners
DE3325282C2 (en) 1983-07-13 1986-09-25 Howmedica International, Inc., 2301 Schönkirchen Procedure for charging an accumulator
SU1175891A1 (en) 1983-08-16 1985-08-30 Предприятие П/Я А-7840 Device for moulding articles
US4944443A (en) 1988-04-22 1990-07-31 Innovative Surgical Devices, Inc. Surgical suturing instrument and method
US4669647A (en) 1983-08-26 1987-06-02 Technalytics, Inc. Surgical stapler
US4589416A (en) 1983-10-04 1986-05-20 United States Surgical Corporation Surgical fastener retainer member assembly
US4530453A (en) 1983-10-04 1985-07-23 United States Surgical Corporation Surgical fastener applying apparatus
US4667674A (en) 1983-10-04 1987-05-26 United States Surgical Corporation Surgical fastener exhibiting improved hemostasis
US4505414A (en) 1983-10-12 1985-03-19 Filipi Charles J Expandable anvil surgical stapler
US4610383A (en) 1983-10-14 1986-09-09 Senmed, Inc. Disposable linear surgical stapler
US4571213A (en) 1983-11-17 1986-02-18 Nikko Co., Ltd. Direction-converting device for a toy car
US4565109A (en) 1983-12-27 1986-01-21 Tsay Chi Chour Instantaneous direction changing rotation mechanism
US4576165A (en) 1984-01-23 1986-03-18 United States Surgical Corporation Surgical ligation and cutting device with safety means
US4635638A (en) 1984-02-07 1987-01-13 Galil Advanced Technologies Ltd. Power-driven gripping tool particularly useful as a suturing device
US4589870A (en) 1984-02-21 1986-05-20 Indicon, Inc. Incremental actuator for syringe
USD287278S (en) 1984-02-21 1986-12-16 Senmed, Inc. Flexible surgical stapler
JPS60137406U (en) 1984-02-24 1985-09-11 シ−アイ化成株式会社 magnetic sheet
US4600037A (en) * 1984-03-19 1986-07-15 Texas Eastern Drilling Systems, Inc. Flexible drill pipe
US4612933A (en) 1984-03-30 1986-09-23 Senmed, Inc. Multiple-load cartridge assembly for a linear surgical stapling instrument
US4619391A (en) 1984-04-18 1986-10-28 Acme United Corporation Surgical stapling instrument
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
JPS60232124A (en) 1984-05-04 1985-11-18 旭光学工業株式会社 Curving operation apparatus of endoscope
US4894051A (en) 1984-05-14 1990-01-16 Surgical Systems & Instruments, Inc. Atherectomy system with a biasing sleeve and method of using the same
US5002553A (en) 1984-05-14 1991-03-26 Surgical Systems & Instruments, Inc. Atherectomy system with a clutch
US4628636A (en) 1984-05-18 1986-12-16 Holmes-Hally Industries, Inc. Garage door operator mechanism
US5464013A (en) 1984-05-25 1995-11-07 Lemelson; Jerome H. Medical scanning and treatment system and method
US4781186A (en) 1984-05-30 1988-11-01 Devices For Vascular Intervention, Inc. Atherectomy device having a flexible housing
GB8417562D0 (en) 1984-07-10 1984-08-15 Surgical Design Services Fasteners
US4591085A (en) 1984-07-16 1986-05-27 Ethicon, Inc. Surgical instrument for applying fasteners, said instrument having an improved trigger interlocking mechanism (Case VI)
US4607636A (en) 1984-07-16 1986-08-26 Ethicon, Inc. Surgical instrument for applying fasteners having tissue locking means for maintaining the tissue in the instrument while applying the fasteners (case I)
IN165375B (en) 1984-07-16 1989-10-07 Ethicon Inc
US4741336A (en) 1984-07-16 1988-05-03 Ethicon, Inc. Shaped staples and slotted receivers (case VII)
US4585153A (en) 1984-07-16 1986-04-29 Ethicon, Inc. Surgical instrument for applying two-piece fasteners comprising frictionally held U-shaped staples and receivers (Case III)
US4605004A (en) 1984-07-16 1986-08-12 Ethicon, Inc. Surgical instrument for applying fasteners said instrument including force supporting means (case IV)
DE3427329A1 (en) 1984-07-25 1986-01-30 Mannesmann Kienzle GmbH, 7730 Villingen-Schwenningen METHOD FOR POSITIONING A SWITCH ASSOCIATED WITH A SPEED LIMITER
US4655222A (en) 1984-07-30 1987-04-07 Ethicon, Inc. Coated surgical staple
US4754909A (en) 1984-08-09 1988-07-05 Barker John M Flexible stapler
US4671445A (en) 1984-08-09 1987-06-09 Baxter Travenol Laboratories, Inc. Flexible surgical stapler assembly
US4560915A (en) 1984-08-23 1985-12-24 Wen Products, Inc. Electronic charging circuit for battery operated appliances
US4589582A (en) 1984-08-23 1986-05-20 Senmed, Inc. Cartridge and driver assembly for a surgical stapling instrument
USD286180S (en) 1984-10-16 1986-10-14 United States Surgical Corporation Surgical fastener
US4633861A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw clamping mechanism
US4573622A (en) 1984-10-19 1986-03-04 United States Surgical Corporation Surgical fastener applying apparatus with variable fastener arrays
US4566620A (en) 1984-10-19 1986-01-28 United States Surgical Corporation Articulated surgical fastener applying apparatus
US4767044A (en) 1984-10-19 1988-08-30 United States Surgical Corporation Surgical fastener applying apparatus
US4580712A (en) 1984-10-19 1986-04-08 United States Surgical Corporation Surgical fastener applying apparatus with progressive application of fastener
US4633874A (en) 1984-10-19 1987-01-06 Senmed, Inc. Surgical stapling instrument with jaw latching mechanism and disposable staple cartridge
US4608981A (en) 1984-10-19 1986-09-02 Senmed, Inc. Surgical stapling instrument with staple height adjusting mechanism
US4605001A (en) 1984-10-19 1986-08-12 Senmed, Inc. Surgical stapling instrument with dual staple height mechanism
US4787387A (en) 1984-11-08 1988-11-29 American Cyanamid Company Surgical closure element
US4949707A (en) 1984-11-08 1990-08-21 Minnesota Scientific, Inc. Retractor apparatus
US4646722A (en) 1984-12-10 1987-03-03 Opielab, Inc. Protective endoscope sheath and method of installing same
US4828542A (en) 1986-08-29 1989-05-09 Twin Rivers Engineering Foam substrate and micropackaged active ingredient particle composite dispensing materials
SU1271497A1 (en) 1985-01-07 1986-11-23 Научно-производственное объединение "Мединструмент" Apparatus for bringing together the wound edges
US4671278A (en) 1985-01-14 1987-06-09 Thomas J. Fogarty Scalp hemostatic clip and dispenser therefor
US4641076A (en) 1985-01-23 1987-02-03 Hall Surgical-Division Of Zimmer, Inc. Method and apparatus for sterilizing and charging batteries
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4643173A (en) 1985-01-29 1987-02-17 Bell John H Heated traction belt
JPS61129692U (en) 1985-02-02 1986-08-14
US4569469A (en) 1985-02-15 1986-02-11 Minnesota Mining And Manufacturing Company Bone stapler cartridge
JPS61209647A (en) 1985-03-14 1986-09-17 須广 久善 Incision opening retractor for connecting blood vessel
JPS635697Y2 (en) 1985-04-04 1988-02-17
JPS61235446A (en) 1985-04-11 1986-10-20 Karupu Kogyo Kk Jacket tube for industrial robot
SU1377052A1 (en) 1985-04-17 1988-02-28 Всесоюзный онкологический научный центр Arrangement for connecting hollow organs
US4833937A (en) 1985-04-22 1989-05-30 Shimano Industrial Company Limited Adjusting device for a control cable for a bicycle
US4807628A (en) 1985-04-26 1989-02-28 Edward Weck & Company, Inc. Method and apparatus for storing, dispensing, and applying surgical staples
DE3515659C1 (en) 1985-05-02 1986-08-28 Goetze Ag, 5093 Burscheid Piston ring
US4671280A (en) 1985-05-13 1987-06-09 Ethicon, Inc. Surgical fastening device and method for manufacture
US4642618A (en) 1985-07-23 1987-02-10 Ibm Corporation Tool failure detector
US5012411A (en) 1985-07-23 1991-04-30 Charles J. Policastro Apparatus for monitoring, storing and transmitting detected physiological information
US4665916A (en) 1985-08-09 1987-05-19 United States Surgical Corporation Surgical stapler apparatus
US4643731A (en) 1985-08-16 1987-02-17 Alza Corporation Means for providing instant agent from agent dispensing system
US4750902A (en) 1985-08-28 1988-06-14 Sonomed Technology, Inc. Endoscopic ultrasonic aspirators
US4750488A (en) 1986-05-19 1988-06-14 Sonomed Technology, Inc. Vibration apparatus preferably for endoscopic ultrasonic aspirator
US4728020A (en) 1985-08-30 1988-03-01 United States Surgical Corporation Articulated surgical fastener applying apparatus
CH670753A5 (en) 1985-09-10 1989-07-14 Vnii Ispytatel Med Tech
SU1377053A1 (en) 1985-10-02 1988-02-28 В. Г. Сахаутдинов, Р. А. Талипов, Р. М. Халиков и 3. X. Гарифуллин Surgical suturing apparatus
US4610250A (en) 1985-10-08 1986-09-09 United States Surgical Corporation Two-part surgical fastener for fascia wound approximation
US4715520A (en) 1985-10-10 1987-12-29 United States Surgical Corporation Surgical fastener applying apparatus with tissue edge control
US4721099A (en) 1985-10-30 1988-01-26 Kabushiki Kaisha Machida Seisakusho Operating mechanism for bendable section of endoscope
DE3671185D1 (en) 1985-12-06 1990-06-21 Desoutter Ltd TWO-SPEED TRANSMISSION.
SU1333319A2 (en) 1985-12-10 1987-08-30 Петрозаводский государственный университет им.О.В.Куусинена Suture appliance for hollow organs
US4634419A (en) 1985-12-13 1987-01-06 Cooper Lasersonics, Inc. Angulated ultrasonic surgical handpieces and method for their production
USD297764S (en) 1985-12-18 1988-09-20 Ethicon, Inc. Surgical staple cartridge
US4679719A (en) 1985-12-27 1987-07-14 Senco Products, Inc. Electronic control for a pneumatic fastener driving tool
USD286442S (en) 1985-12-31 1986-10-28 United States Surgical Corporation Surgical fastener
US4763669A (en) 1986-01-09 1988-08-16 Jaeger John C Surgical instrument with adjustable angle of operation
US4728876A (en) 1986-02-19 1988-03-01 Minnesota Mining And Manufacturing Company Orthopedic drive assembly
US4672964A (en) 1986-02-21 1987-06-16 Dee Robert N Scalpel with universally adjustable blade
US4662555A (en) 1986-03-11 1987-05-05 Edward Weck & Company, Inc. Surgical stapler
US4675944A (en) 1986-03-17 1987-06-30 Wells Daryl F Pneumatic meat saw
US4903697A (en) 1986-03-27 1990-02-27 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4700703A (en) 1986-03-27 1987-10-20 Semion Resnick Cartridge assembly for a surgical stapling instrument
US4909789A (en) 1986-03-28 1990-03-20 Olympus Optical Co., Ltd. Observation assisting forceps
US4827911A (en) 1986-04-02 1989-05-09 Cooper Lasersonics, Inc. Method and apparatus for ultrasonic surgical fragmentation and removal of tissue
US4747820A (en) 1986-04-09 1988-05-31 Cooper Lasersonics, Inc. Irrigation/aspiration manifold and fittings for ultrasonic surgical aspiration system
US4988334A (en) 1986-04-09 1991-01-29 Valleylab, Inc. Ultrasonic surgical system with aspiration tubulation connector
JPS62170011U (en) 1986-04-16 1987-10-28
ATE96633T1 (en) 1986-04-21 1993-11-15 Globe Control Finanz Aktienges DEVICE FOR MAKING AN ANASTOMOSE.
SU1561964A1 (en) 1986-04-24 1990-05-07 Благовещенский государственный медицинский институт Surgical suturing apparatus
US4688555A (en) 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US4691703A (en) 1986-04-25 1987-09-08 Board Of Regents, University Of Washington Thermal cautery system
FR2598905B1 (en) 1986-05-22 1993-08-13 Chevalier Jean Michel DEVICE FOR INTERRUPTING THE CIRCULATION OF A FLUID IN A FLEXIBLE WALL CONDUIT, IN PARTICULAR A HOLLOW VISCERE AND CLIP ASSEMBLY COMPRISING THIS DEVICE
US4709120A (en) 1986-06-06 1987-11-24 Pearson Dean C Underground utility equipment vault
USD298967S (en) 1986-06-09 1988-12-13 Ethicon, Inc. Surgical staple cartridge
US5190544A (en) 1986-06-23 1993-03-02 Pfizer Hospital Products Group, Inc. Modular femoral fixation system
US4744363A (en) 1986-07-07 1988-05-17 Hasson Harrith M Intra-abdominal organ stabilizer, retractor and tissue manipulator
DE8620714U1 (en) 1986-08-01 1986-11-20 C. & E. Fein Gmbh & Co, 7000 Stuttgart, De
US4727308A (en) 1986-08-28 1988-02-23 International Business Machines Corporation FET power converter with reduced switching loss
US4743214A (en) 1986-09-03 1988-05-10 Tai Cheng Yang Steering control for toy electric vehicles
US4875486A (en) 1986-09-04 1989-10-24 Advanced Techtronics, Inc. Instrument and method for non-invasive in vivo testing for body fluid constituents
US4890613A (en) 1986-09-19 1990-01-02 Ethicon, Inc. Two piece internal organ fastener
US4893622A (en) 1986-10-17 1990-01-16 United States Surgical Corporation Method of stapling tubular body organs
US4752024A (en) 1986-10-17 1988-06-21 Green David T Surgical fastener and surgical stapling apparatus
CH674058A5 (en) 1986-10-22 1990-04-30 Festo Kg
US4933843A (en) 1986-11-06 1990-06-12 Storz Instrument Company Control system for ophthalmic surgical instruments
JPH0418209Y2 (en) 1986-11-14 1992-04-23
JPS63147749A (en) 1986-12-10 1988-06-20 Fuji Xerox Co Ltd Paper feeding device for electronic copying machine
JPH0755222B2 (en) 1986-12-12 1995-06-14 オリンパス光学工業株式会社 Treatment tool
SE457680B (en) 1987-01-15 1989-01-16 Toecksfors Verkstads Ab ELECTRONIC SWITCH INCLUDING ONE IN A MUCH MOVABLE MANUAL
US4832158A (en) 1987-01-20 1989-05-23 Delaware Capital Formation, Inc. Elevator system having microprocessor-based door operator
US4865030A (en) 1987-01-21 1989-09-12 American Medical Systems, Inc. Apparatus for removal of objects from body passages
JP2553390B2 (en) 1987-02-10 1996-11-13 ヴァーソ プロダクツ オーストラリア ピーティワイ.リミテッド IV cuff mount
US4873977A (en) 1987-02-11 1989-10-17 Odis L. Avant Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
US5217478A (en) 1987-02-18 1993-06-08 Linvatec Corporation Arthroscopic surgical instrument drive system
DE3807004A1 (en) 1987-03-02 1988-09-15 Olympus Optical Co ULTRASONIC TREATMENT DEVICE
DE3709067A1 (en) 1987-03-19 1988-09-29 Ewald Hensler Medical, especially surgical, instrument
US4777780A (en) 1987-04-21 1988-10-18 United States Surgical Corporation Method for forming a sealed sterile package
US4730726A (en) 1987-04-21 1988-03-15 United States Surgical Corporation Sealed sterile package
SU1443874A1 (en) 1987-04-23 1988-12-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for applying compression anastomoses
JPS63270040A (en) 1987-04-28 1988-11-08 Haruo Takase Suturing method and device in surgical operation
US4941623A (en) 1987-05-12 1990-07-17 United States Surgical Corporation Stapling process and device for use on the mesentery of the abdomen
US5542949A (en) 1987-05-14 1996-08-06 Yoon; Inbae Multifunctional clip applier instrument
US4928699A (en) 1987-05-18 1990-05-29 Olympus Optical Co., Ltd. Ultrasonic diagnosis device
US4838859A (en) 1987-05-19 1989-06-13 Steve Strassmann Steerable catheter
US5285944A (en) 1987-05-26 1994-02-15 United States Surgical Corporation Surgical stapler apparatus
USD309350S (en) 1987-06-01 1990-07-17 Pfizer Hospital Products Group, Inc. Surgical sternotomy band tightening instrument
US4844068A (en) 1987-06-05 1989-07-04 Ethicon, Inc. Bariatric surgical instrument
US4761326A (en) 1987-06-09 1988-08-02 Precision Fabrics Group, Inc. Foam coated CSR/surgical instrument wrap fabric
SU1475611A1 (en) 1987-06-10 1989-04-30 Предприятие П/Я А-3697 Device for joining tubular organs
US4848637A (en) 1987-06-11 1989-07-18 Pruitt J Crayton Staple device for use on the mesenteries of the abdomen
US4930503A (en) 1987-06-11 1990-06-05 Pruitt J Crayton Stapling process and device for use on the mesenteries of the abdomen
US5027834A (en) 1987-06-11 1991-07-02 United States Surgical Corporation Stapling process for use on the mesenteries of the abdomen
US4773420A (en) 1987-06-22 1988-09-27 U.S. Surgical Corporation Purse string applicator
DE3723310A1 (en) 1987-07-15 1989-01-26 John Urquhart PHARMACEUTICAL PREPARATION AND METHOD FOR THE PRODUCTION THEREOF
US4817643A (en) 1987-07-30 1989-04-04 Olson Mary Lou C Chinese finger cuff dental floss
US5158567A (en) 1987-09-02 1992-10-27 United States Surgical Corporation One-piece surgical staple
US4821939A (en) 1987-09-02 1989-04-18 United States Surgical Corporation Staple cartridge and an anvilless surgical stapler
SU1509051A1 (en) 1987-09-14 1989-09-23 Институт прикладной физики АН СССР Appliance for suturing organs
GB2209673B (en) 1987-09-15 1991-06-12 Wallace Ltd H G Catheter and cannula assembly
US5025559A (en) 1987-09-29 1991-06-25 Food Industry Equipment International, Inc. Pneumatic control system for meat trimming knife
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
US5015227A (en) 1987-09-30 1991-05-14 Valleylab Inc. Apparatus for providing enhanced tissue fragmentation and/or hemostasis
US4921479A (en) 1987-10-02 1990-05-01 Joseph Grayzel Catheter sheath with longitudinal seam
US4805617A (en) 1987-11-05 1989-02-21 Ethicon, Inc. Surgical fastening systems made from polymeric materials
US4830855A (en) 1987-11-13 1989-05-16 Landec Labs, Inc. Temperature-controlled active agent dispenser
FR2622429A1 (en) 1987-11-16 1989-05-05 Blagoveschensky G SURGICAL SUTURE APPARATUS
US5106627A (en) 1987-11-17 1992-04-21 Brown University Research Foundation Neurological therapy devices
US5018515A (en) 1987-12-14 1991-05-28 The Kendall Company See through absorbent dressing
US5062491A (en) 1987-12-23 1991-11-05 Honda Giken Kogyo Kabushiki Kaisha Apparatus for controlling nut runner
US4834720A (en) 1987-12-24 1989-05-30 Becton, Dickinson And Company Implantable port septum
US4951860A (en) 1987-12-28 1990-08-28 Edward Weck & Co. Method and apparatus for storing, dispensing and applying surgical staples
US4819853A (en) 1987-12-31 1989-04-11 United States Surgical Corporation Surgical fastener cartridge
US5030226A (en) 1988-01-15 1991-07-09 United States Surgical Corporation Surgical clip applicator
US5100420A (en) 1989-07-18 1992-03-31 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
GB8800909D0 (en) 1988-01-15 1988-02-17 Ethicon Inc Gas powered surgical stapler
US5197970A (en) 1988-01-15 1993-03-30 United States Surgical Corporation Surgical clip applicator
US5084057A (en) 1989-07-18 1992-01-28 United States Surgical Corporation Apparatus and method for applying surgical clips in laparoscopic or endoscopic procedures
US5383881A (en) 1989-07-18 1995-01-24 United States Surgical Corporation Safety device for use with endoscopic instrumentation
JPH01182196A (en) 1988-01-18 1989-07-20 Sanshin Ind Co Ltd Auxiliary shift device
DE3805179A1 (en) 1988-02-19 1989-08-31 Wolf Gmbh Richard DEVICE WITH A ROTATING DRIVEN SURGICAL INSTRUMENT
US4860644A (en) 1988-02-29 1989-08-29 Donaldson Company, Inc. Articulatable fume exhauster trunk
FR2628488B1 (en) 1988-03-14 1990-12-28 Ecia Equip Composants Ind Auto QUICK ATTACHMENT OF THE IMPROVED BAYONET TYPE
US4862891A (en) 1988-03-14 1989-09-05 Canyon Medical Products Device for sequential percutaneous dilation
US4790314A (en) 1988-03-16 1988-12-13 Kenneth Weaver Orifice dilator
US4805823A (en) 1988-03-18 1989-02-21 Ethicon, Inc. Pocket configuration for internal organ staplers
US4856078A (en) 1988-03-23 1989-08-08 Zenith Electronics Corporation DC fan speed control
US4933800A (en) 1988-06-03 1990-06-12 Yang Tai Her Motor overload detection with predetermined rotation reversal
US4880015A (en) 1988-06-03 1989-11-14 Nierman David M Biopsy forceps
JPH01313783A (en) 1988-06-14 1989-12-19 Philips Kk Measuring circuit for capacity of battery
KR920001244Y1 (en) 1988-07-06 1992-02-20 이재희 Stapler
US5185717A (en) 1988-08-05 1993-02-09 Ryoichi Mori Tamper resistant module having logical elements arranged in multiple layers on the outer surface of a substrate to protect stored information
US5444113A (en) 1988-08-08 1995-08-22 Ecopol, Llc End use applications of biodegradable polymers
ES2011110A6 (en) 1988-09-02 1989-12-16 Lopez Hervas Pedro Hydraulic device with flexible body for surgical anastomosts
CA1327424C (en) 1988-09-16 1994-03-08 James C. Armour Compact tampon applicator
DE3831607A1 (en) 1988-09-17 1990-03-22 Haubold Kihlberg Gmbh STRIKE DEVICE OPERATED BY COMPRESSED AIR WITH BLEEDING VALVE FOR THE MAIN VALVE
US5024671A (en) 1988-09-19 1991-06-18 Baxter International Inc. Microporous vascular graft
US5071052A (en) 1988-09-22 1991-12-10 United States Surgical Corporation Surgical fastening apparatus with activation lockout
US5024652A (en) 1988-09-23 1991-06-18 Dumenek Vladimir A Ophthalmological device
DE3832528C1 (en) 1988-09-24 1989-11-16 Fresenius Ag, 6380 Bad Homburg, De
US4869415A (en) 1988-09-26 1989-09-26 Ethicon, Inc. Energy storage means for a surgical stapler
US4948327A (en) 1988-09-28 1990-08-14 Crupi Jr Theodore P Towing apparatus for coupling to towed vehicle undercarriage
CA1308782C (en) 1988-10-13 1992-10-13 Gyrus Medical Limited Screening and monitoring instrument
US4892244A (en) 1988-11-07 1990-01-09 Ethicon, Inc. Surgical stapler cartridge lockout device
ES2078231T3 (en) 1988-11-11 1995-12-16 United States Surgical Corp SURGERY INSTRUMENT.
US5197648A (en) 1988-11-29 1993-03-30 Gingold Bruce S Surgical stapling apparatus
US4915100A (en) 1988-12-19 1990-04-10 United States Surgical Corporation Surgical stapler apparatus with tissue shield
US4978333A (en) 1988-12-20 1990-12-18 Valleylab, Inc. Resonator for surgical handpiece
US4986808A (en) 1988-12-20 1991-01-22 Valleylab, Inc. Magnetostrictive transducer
US5098360A (en) 1988-12-26 1992-03-24 Tochigifujisangyo Kabushiki Kaisha Differential gear with limited slip and locking mechanism
US5108368A (en) 1990-01-04 1992-04-28 Pilot Cardiovascular System, Inc. Steerable medical device
US5111987A (en) 1989-01-23 1992-05-12 Moeinzadeh Manssour H Semi-disposable surgical stapler
US5089606A (en) 1989-01-24 1992-02-18 Minnesota Mining And Manufacturing Company Water-insoluble polysaccharide hydrogel foam for medical applications
US4919679A (en) 1989-01-31 1990-04-24 Osteonics Corp. Femoral stem surgical instrument system
US5077506A (en) 1989-02-03 1991-12-31 Dyonics, Inc. Microprocessor controlled arthroscopic surgical system
US5061269A (en) 1989-02-07 1991-10-29 Joseph J. Berke Surgical rongeur power grip structure and method
DE69019213T2 (en) 1989-02-22 1995-10-26 United States Surgical Corp Skin clip.
US4930674A (en) 1989-02-24 1990-06-05 Abiomed, Inc. Surgical stapler
US5186711A (en) 1989-03-07 1993-02-16 Albert Einstein College Of Medicine Of Yeshiva University Hemostasis apparatus and method
US5522817A (en) 1989-03-31 1996-06-04 United States Surgical Corporation Absorbable surgical fastener with bone penetrating elements
US5062563A (en) 1989-04-10 1991-11-05 United States Surgical Corporation Fascia stapler
US5104397A (en) 1989-04-14 1992-04-14 Codman & Shurtleff, Inc. Multi-position latching mechanism for forceps
US5038247A (en) 1989-04-17 1991-08-06 Delco Electronics Corporation Method and apparatus for inductive load control with current simulation
US5119009A (en) 1989-04-20 1992-06-02 Motorola, Inc. Lithium battery deactivator
US5009661A (en) 1989-04-24 1991-04-23 Michelson Gary K Protective mechanism for surgical rongeurs
EP0471764B1 (en) 1989-05-03 1996-07-03 ENTERPRISE MEDICAL TECHNOLOGIES, Inc. Instrument for intraluminally relieving stenosis
US5222976A (en) 1989-05-16 1993-06-29 Inbae Yoon Suture devices particularly useful in endoscopic surgery
SU1708312A1 (en) 1989-05-16 1992-01-30 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical apparatus for suturing bone tissue
US5031814A (en) 1989-05-26 1991-07-16 United States Surgical Corporation Locking mechanism for surgical fastening apparatus
US5505363A (en) 1989-05-26 1996-04-09 United States Surgical Corporation Surgical staples with plated anvils
US4955959A (en) 1989-05-26 1990-09-11 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5104400A (en) 1989-05-26 1992-04-14 Impra, Inc. Blood vessel patch
US4978049A (en) 1989-05-26 1990-12-18 United States Surgical Corporation Three staple drive member
US5106008A (en) 1989-05-26 1992-04-21 United States Surgical Corporation Locking mechanism for a surgical fastening apparatus
US5318221A (en) 1989-05-26 1994-06-07 United States Surgical Corporation Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5413268A (en) 1989-05-26 1995-05-09 United States Surgical Corporation Apparatus and method for placing stables in laparoscopic or endoscopic procedures
US5040715B1 (en) 1989-05-26 1994-04-05 United States Surgical Corp Apparatus and method for placing staples in laparoscopic or endoscopic procedures
US5035040A (en) 1989-05-30 1991-07-30 Duo-Fast Corporation Hog ring fastener, tool and methods
FR2647683B1 (en) * 1989-05-31 1993-02-12 Kyocera Corp BLOOD WATERPROOFING / COAGULATION DEVICE OUTSIDE BLOOD VESSELS
JPH034831A (en) 1989-06-01 1991-01-10 Toshiba Corp Endoscope device
US4946067A (en) 1989-06-07 1990-08-07 Wickes Manufacturing Company Inflation valve with actuating lever interlock
US4987049A (en) 1989-07-21 1991-01-22 Konica Corporation Image-receiving element for heat transfer type dye image
USD327323S (en) 1989-08-02 1992-06-23 Ethicon,Inc. Combination skin stapler and rotating head
US6004330A (en) 1989-08-16 1999-12-21 Medtronic, Inc. Device or apparatus for manipulating matter
US4932960A (en) 1989-09-01 1990-06-12 United States Surgical Corporation Absorbable surgical fastener
DE3929575A1 (en) 1989-09-06 1991-03-07 Vascomed Kathetertech DILATATION CATHETER FOR EXTENDING BLOOD VESSELS WITH MOTOR DRIVE
US5155941A (en) 1989-09-18 1992-10-20 Olympus Optical Co., Ltd. Industrial endoscope system having a rotary treatment member
US4965709A (en) 1989-09-25 1990-10-23 General Electric Company Switching converter with pseudo-resonant DC link
US4984564A (en) 1989-09-27 1991-01-15 Frank Yuen Surgical retractor device
CH677728A5 (en) 1989-10-17 1991-06-28 Bieffe Medital Sa
US5264218A (en) 1989-10-25 1993-11-23 C. R. Bard, Inc. Modifiable, semi-permeable, wound dressing
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5239981A (en) 1989-11-16 1993-08-31 Effner Biomet Gmbh Film covering to protect a surgical instrument and an endoscope to be used with the film covering
US5176677A (en) 1989-11-17 1993-01-05 Sonokinetics Group Endoscopic ultrasonic rotary electro-cauterizing aspirator
JPH0737603Y2 (en) 1989-11-30 1995-08-30 晴夫 高瀬 Surgical suture instrument
JPH0527929Y2 (en) 1989-12-19 1993-07-16
US5098004A (en) 1989-12-19 1992-03-24 Duo-Fast Corporation Fastener driving tool
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5109722A (en) 1990-01-12 1992-05-05 The Toro Company Self-detenting transmission shift key
US6033378A (en) 1990-02-02 2000-03-07 Ep Technologies, Inc. Catheter steering mechanism
US5195968A (en) 1990-02-02 1993-03-23 Ingemar Lundquist Catheter steering mechanism
AU7082091A (en) 1990-02-13 1991-08-15 Ethicon Inc. Rotating head skin stapler
US5100042A (en) 1990-03-05 1992-03-31 United States Surgical Corporation Surgical fastener apparatus
US5217457A (en) 1990-03-15 1993-06-08 Valleylab Inc. Enhanced electrosurgical apparatus
US5244462A (en) 1990-03-15 1993-09-14 Valleylab Inc. Electrosurgical apparatus
US5088997A (en) 1990-03-15 1992-02-18 Valleylab, Inc. Gas coagulation device
US5014899A (en) 1990-03-30 1991-05-14 United States Surgical Corporation Surgical stapling apparatus
SU1722476A1 (en) 1990-04-02 1992-03-30 Свердловский Филиал Научно-Производственного Объединения "Фтизиопульмонология" Appliance for temporary occlusion of tubular organs
US5005754A (en) 1990-04-04 1991-04-09 Ethicon, Inc. Bladder and mandrel for use with surgical stapler
US5002543A (en) 1990-04-09 1991-03-26 Bradshaw Anthony J Steerable intramedullary fracture reduction device
US5343391A (en) 1990-04-10 1994-08-30 Mushabac David R Device for obtaining three dimensional contour data and for operating on a patient and related method
US5124990A (en) 1990-05-08 1992-06-23 Caterpillar Inc. Diagnostic hardware for serial datalink
US5613499A (en) 1990-05-10 1997-03-25 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5454378A (en) 1993-02-11 1995-10-03 Symbiosis Corporation Biopsy forceps having a detachable proximal handle and distal jaws
US5331971A (en) 1990-05-10 1994-07-26 Symbiosis Corporation Endoscopic surgical instruments
CA2042006C (en) 1990-05-11 1995-08-29 Morito Idemoto Surgical ultrasonic horn
US5086401A (en) 1990-05-11 1992-02-04 International Business Machines Corporation Image-directed robotic system for precise robotic surgery including redundant consistency checking
US5290271A (en) 1990-05-14 1994-03-01 Jernberg Gary R Surgical implant and method for controlled release of chemotherapeutic agents
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5396635A (en) 1990-06-01 1995-03-07 Vadem Corporation Power conservation apparatus having multiple power reduction levels dependent upon the activity of the computer system
US5074454A (en) 1990-06-04 1991-12-24 Peters Ronald L Surgical stapler
US5342395A (en) 1990-07-06 1994-08-30 American Cyanamid Co. Absorbable surgical repair devices
NL9001564A (en) 1990-07-09 1992-02-03 Optische Ind De Oude Delft Nv BODY CONTAINABLE TUBE EQUIPPED WITH A MANIPULATOR.
SU1752361A1 (en) 1990-07-10 1992-08-07 Производственное Объединение "Челябинский Тракторный Завод Им.В.И.Ленина" Surgical sutural material
RU2008830C1 (en) 1990-07-13 1994-03-15 Константин Алексеевич Додонов Electrosurgical apparatus
US5163598A (en) 1990-07-23 1992-11-17 Rudolph Peters Sternum stapling apparatus
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5094247A (en) 1990-08-31 1992-03-10 Cordis Corporation Biopsy forceps with handle having a flexible coupling
US5389102A (en) 1990-09-13 1995-02-14 United States Surgical Corporation Apparatus and method for subcuticular stapling of body tissue
US5156315A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5156614A (en) 1990-09-17 1992-10-20 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5253793A (en) 1990-09-17 1993-10-19 United States Surgical Corporation Apparatus for applying two-part surgical fasteners
US5653373A (en) 1990-09-17 1997-08-05 United States Surgical Corporation Arcuate apparatus for applying two-part surgical fasteners
US5104025A (en) 1990-09-28 1992-04-14 Ethicon, Inc. Intraluminal anastomotic surgical stapler with detached anvil
US5080556A (en) 1990-09-28 1992-01-14 General Electric Company Thermal seal for a gas turbine spacer disc
DE9117288U1 (en) 1990-10-05 1999-10-21 United States Surgical Corp Surgical stapling instrument
US5088979A (en) 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
USD330699S (en) 1990-10-19 1992-11-03 W. W. Cross, Inc. Insulated staple
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
US5344454A (en) 1991-07-24 1994-09-06 Baxter International Inc. Closed porous chambers for implanting tissue in a host
GB9025131D0 (en) 1990-11-19 1991-01-02 Ofrex Group Holdings Plc Improvements in or relating to a stapling machine
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
CA2055943C (en) 1990-12-06 2003-09-23 Daniel P. Rodak Surgical fastening apparatus with locking mechanism
US5470009A (en) 1990-12-06 1995-11-28 United States Surgical Corporation Surgical fastening apparatus with locking mechanism
US5209747A (en) 1990-12-13 1993-05-11 Knoepfler Dennis J Adjustable angle medical forceps
USRE36720E (en) 1990-12-13 2000-05-30 United States Surgical Corporation Apparatus and method for applying latchless surgical clips
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US7384417B2 (en) 1990-12-14 2008-06-10 Cucin Robert L Air-powered tissue-aspiration instrument system employing curved bipolar-type electro-cauterizing dual cannula assembly
US5083695A (en) 1990-12-18 1992-01-28 Minnesota Mining And Manufacturing Company Stapler and firing device
ES2087510T3 (en) 1990-12-18 1996-07-16 United States Surgical Corp SAFETY DEVICE FOR A SURGICAL STAPLER.
US5141144A (en) 1990-12-18 1992-08-25 Minnesota Mining And Manufacturing Company Stapler and firing device
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5195505A (en) 1990-12-27 1993-03-23 United States Surgical Corporation Surgical retractor
WO1992011816A2 (en) 1991-01-09 1992-07-23 Endomedix Corporation Method and device for intracorporeal liquidization of tissue and/or intracorporeal fragmentation of calculi during endoscopic surgical procedures
US5354303A (en) 1991-01-09 1994-10-11 Endomedix Corporation Devices for enclosing, manipulating, debulking and removing tissue through minimal incisions
US5222963A (en) 1991-01-17 1993-06-29 Ethicon, Inc. Pull-through circular anastomosic intraluminal stapler with absorbable fastener means
US5188111A (en) 1991-01-18 1993-02-23 Catheter Research, Inc. Device for seeking an area of interest within a body
US5342385A (en) 1991-02-05 1994-08-30 Norelli Robert A Fluid-expandable surgical retractor
CA2060635A1 (en) 1991-02-12 1992-08-13 Keith D'alessio Bioabsorbable medical implants
DE4104755A1 (en) 1991-02-15 1992-08-20 Heidmueller Harald SURGICAL INSTRUMENT
US5329923A (en) 1991-02-15 1994-07-19 Lundquist Ingemar H Torquable catheter
US5168605A (en) 1991-02-15 1992-12-08 Russell Bartlett Method and apparatus for securing a tarp
CA2061319A1 (en) 1991-02-19 1992-08-20 Hector Chow Surgical staple for insertion into tissue
US5571285A (en) 1991-02-19 1996-11-05 Ethicon, Inc. Surgical staple for insertion into tissue
US5219111A (en) 1991-03-11 1993-06-15 Ethicon, Inc. Pneumatically actuated linear stapling device
US5438997A (en) 1991-03-13 1995-08-08 Sieben; Wayne Intravascular imaging apparatus and methods for use and manufacture
US5445155A (en) 1991-03-13 1995-08-29 Scimed Life Systems Incorporated Intravascular imaging apparatus and methods for use and manufacture
US5336232A (en) 1991-03-14 1994-08-09 United States Surgical Corporation Approximating apparatus for surgical jaw structure and method of using the same
CA2061885A1 (en) 1991-03-14 1992-09-15 David T. Green Approximating apparatus for surgical jaw structure
US5170925A (en) 1991-03-18 1992-12-15 Ethicon, Inc. Laparoscopic stapler with knife means
US5217453A (en) 1991-03-18 1993-06-08 Wilk Peter J Automated surgical system and apparatus
SU1814161A1 (en) 1991-03-19 1993-05-07 Penzen Nii Elektronno Mekh Pri Electric motor
US5171253A (en) 1991-03-22 1992-12-15 Klieman Charles H Velcro-like closure system with absorbable suture materials for absorbable hemostatic clips and surgical strips
USD338729S (en) 1991-03-22 1993-08-24 Ethicon, Inc. Linear surgical stapler
US5065929A (en) 1991-04-01 1991-11-19 Ethicon, Inc. Surgical stapler with locking means
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5359993A (en) 1992-12-31 1994-11-01 Symbiosis Corporation Apparatus for counting the number of times a medical instrument has been used
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5171247A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier with rotating shaft
JPH05226945A (en) 1991-04-09 1993-09-03 Olympus Optical Co Ltd Voltage current conversion circuit and differential amplifier circuit having same circuit
JPH05208014A (en) 1991-04-10 1993-08-20 Olympus Optical Co Ltd Treating tool
US5297714A (en) 1991-04-17 1994-03-29 Ethicon, Inc. Surgical staple with modified "B" shaped configuration
US5339799A (en) 1991-04-23 1994-08-23 Olympus Optical Co., Ltd. Medical system for reproducing a state of contact of the treatment section in the operation unit
US5257713A (en) 1991-05-07 1993-11-02 United States Surgical Corporation Surgical fastening device
AU671685B2 (en) 1991-05-14 1996-09-05 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5137198A (en) 1991-05-16 1992-08-11 Ethicon, Inc. Fast closure device for linear surgical stapling instrument
DE4116343A1 (en) 1991-05-18 1992-11-19 Bosch Gmbh Robert HAND-MADE ELECTRIC TOOL, ESPECIALLY DRILLING MACHINE
JP2581082Y2 (en) 1991-05-24 1998-09-17 三洋電機株式会社 Battery device
FI93607C (en) 1991-05-24 1995-05-10 John Koivukangas Cutting Remedy
US5527264A (en) 1991-05-29 1996-06-18 Origin Medsystem, Inc. Methods of using endoscopic inflatable retraction devices
US5361752A (en) 1991-05-29 1994-11-08 Origin Medsystems, Inc. Retraction apparatus and methods for endoscopic surgery
US5370134A (en) 1991-05-29 1994-12-06 Orgin Medsystems, Inc. Method and apparatus for body structure manipulation and dissection
US5258010A (en) 1991-05-30 1993-11-02 United States Surgical Corporation Anvilless surgical apparatus for applying surgical fasteners
US5190517A (en) 1991-06-06 1993-03-02 Valleylab Inc. Electrosurgical and ultrasonic surgical system
US5221036A (en) 1991-06-11 1993-06-22 Haruo Takase Surgical stapler
US5190560A (en) 1991-06-20 1993-03-02 Woods John B Instrument for ligation and castration
US5262678A (en) 1991-06-21 1993-11-16 Lutron Electronics Co., Inc. Wallbox-mountable switch and dimmer
US5268622A (en) 1991-06-27 1993-12-07 Stryker Corporation DC powered surgical handpiece having a motor control circuit
US5207697A (en) 1991-06-27 1993-05-04 Stryker Corporation Battery powered surgical handpiece
US5176688A (en) 1991-07-17 1993-01-05 Perinchery Narayan Stone extractor and method
US5190657A (en) 1991-07-22 1993-03-02 Lydall, Inc. Blood filter and method of filtration
US5261877A (en) 1991-07-22 1993-11-16 Dow Corning Wright Method of performing a thrombectomy procedure
US5173133A (en) 1991-07-23 1992-12-22 United States Surgical Corporation Method for annealing stapler anvils
US5187422A (en) 1991-07-31 1993-02-16 Stryker Corporation Charger for batteries of different type
US5391180A (en) 1991-08-05 1995-02-21 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5383888A (en) 1992-02-12 1995-01-24 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5490819A (en) 1991-08-05 1996-02-13 United States Surgical Corporation Articulating endoscopic surgical apparatus
AU2063592A (en) 1991-08-09 1993-02-11 Emerson Electric Co. Cordless power tool
US5282829A (en) 1991-08-15 1994-02-01 United States Surgical Corporation Hollow body implants
US5350104A (en) 1991-08-23 1994-09-27 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
US5333773A (en) 1991-08-23 1994-08-02 Ethicon, Inc. Sealing means for endoscopic surgical anastomosis stapling instrument
GR920100358A (en) 1991-08-23 1993-06-07 Ethicon Inc Surgical anastomosis stapling instrument.
US5259835A (en) 1991-08-29 1993-11-09 Tri-Point Medical L.P. Wound closure means and method using flowable adhesive
US5263973A (en) 1991-08-30 1993-11-23 Cook Melvin S Surgical stapling method
US5142932A (en) 1991-09-04 1992-09-01 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Flexible robotic arm
US5200280A (en) 1991-09-05 1993-04-06 Black & Decker Inc. Terminal cover for a battery pack
IT1251206B (en) 1991-09-18 1995-05-04 Magneti Marelli Spa ELECTRICAL SYSTEM OF A MOTOR VEHICLE, INCLUDING AT LEAST A SUPER CAPACITOR.
US5476479A (en) 1991-09-26 1995-12-19 United States Surgical Corporation Handle for endoscopic surgical instruments and jaw structure
CA2075319C (en) 1991-09-26 1998-06-30 Ernie Aranyi Handle for surgical instruments
US5431654A (en) 1991-09-30 1995-07-11 Stryker Corporation Bone cement injector
US5220269A (en) 1991-10-04 1993-06-15 Innova Electronics Corporation Power supply unit
US5369565A (en) 1991-10-04 1994-11-29 Innova Electronics Corp. Modular power supply system
JP2817749B2 (en) 1991-10-07 1998-10-30 三菱電機株式会社 Laser processing equipment
US5697909A (en) 1992-01-07 1997-12-16 Arthrocare Corporation Methods and apparatus for surgical cutting
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
USD347474S (en) 1991-10-11 1994-05-31 Ethicon, Inc. Endoscopic stapler
US5275608A (en) 1991-10-16 1994-01-04 Implemed, Inc. Generic endoscopic instrument
CA2075141C (en) 1991-10-17 1998-06-30 Donald A. Morin Anvil for surgical staplers
US6250532B1 (en) 1991-10-18 2001-06-26 United States Surgical Corporation Surgical stapling apparatus
US5356064A (en) 1991-10-18 1994-10-18 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5474223A (en) 1991-10-18 1995-12-12 United States Surgical Corporation Surgical fastener applying apparatus
DE537571T1 (en) 1991-10-18 1993-10-14 United States Surgical Corp Device for attaching surgical fasteners.
US5366134A (en) 1991-10-18 1994-11-22 United States Surgical Corporation Surgical fastening apparatus
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5579978A (en) 1991-10-18 1996-12-03 United States Surgical Corporation Apparatus for applying surgical fasteners
AU657364B2 (en) 1991-10-18 1995-03-09 United States Surgical Corporation Self contained gas powered surgical apparatus
US5397046A (en) 1991-10-18 1995-03-14 United States Surgical Corporation Lockout mechanism for surgical apparatus
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
AU660712B2 (en) 1991-10-18 1995-07-06 United States Surgical Corporation Apparatus for applying surgical fasteners
US5395312A (en) 1991-10-18 1995-03-07 Desai; Ashvin Surgical tool
US5307976A (en) 1991-10-18 1994-05-03 Ethicon, Inc. Linear stapling mechanism with cutting means
US5308576A (en) 1991-10-18 1994-05-03 United States Surgical Corporation Injection molded anvils
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5711472A (en) 1991-10-18 1998-01-27 United States Surgical Corporation Self contained gas powered surgical apparatus
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
CA2075227C (en) 1991-10-18 2004-02-10 Robert J. Geiste Surgical fastening apparatus with shipping interlock
US5332142A (en) 1991-10-18 1994-07-26 Ethicon, Inc. Linear stapling mechanism with cutting means
US5431322A (en) 1991-10-18 1995-07-11 United States Surgical Corporation Self contained gas powered surgical apparatus
US5364001A (en) 1991-10-18 1994-11-15 United States Surgical Corporation Self contained gas powered surgical apparatus
US5443198A (en) 1991-10-18 1995-08-22 United States Surgical Corporation Surgical fastener applying apparatus
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
CA2078794C (en) 1991-10-18 1998-10-06 Frank J. Viola Locking device for an apparatus for applying surgical fasteners
EP0540461A1 (en) 1991-10-29 1993-05-05 SULZER Medizinaltechnik AG Sterile puncturing apparatus for blood vessels with non-sterile ultrasound probe and device for preparing the apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5350400A (en) 1991-10-30 1994-09-27 American Cyanamid Company Malleable, bioabsorbable, plastic staple; and method and apparatus for deforming such staple
ES2217252T3 (en) 1991-10-30 2004-11-01 Sherwood Services Ag MALEABLE, BIOABSORBIBLE AND METHOD PASSIVE STAPLE AND APPARATUS TO DEFORM A CLIP OF THIS TYPE.
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
US5240163A (en) 1991-10-30 1993-08-31 American Cyanamid Company Linear surgical stapling instrument
JPH05123325A (en) 1991-11-01 1993-05-21 Olympus Optical Co Ltd Treating tool
US5531744A (en) 1991-11-01 1996-07-02 Medical Scientific, Inc. Alternative current pathways for bipolar surgical cutting tool
US5713896A (en) 1991-11-01 1998-02-03 Medical Scientific, Inc. Impedance feedback electrosurgical system
US5665085A (en) 1991-11-01 1997-09-09 Medical Scientific, Inc. Electrosurgical cutting tool
US5741271A (en) 1991-11-05 1998-04-21 Nakao; Naomi L. Surgical retrieval assembly and associated method
US5395034A (en) 1991-11-07 1995-03-07 American Cyanamid Co. Linear surgical stapling instrument
JP3530528B2 (en) 1991-11-08 2004-05-24 ボストン サイエンティフィック リミテッド Ablation electrode with insulated temperature sensing element
RU2069981C1 (en) 1991-11-15 1996-12-10 Ялмар Яковлевич Татти Surgical suture appliance
WO1993009843A1 (en) 1991-11-15 1993-05-27 Schoendorf Erhard Electrotherapy apparatus
US5173053A (en) 1991-11-26 1992-12-22 Caterpillar Inc. Electrical connector for an electromechanical device
US5439467A (en) 1991-12-03 1995-08-08 Vesica Medical, Inc. Suture passer
US5458579A (en) 1991-12-31 1995-10-17 Technalytics, Inc. Mechanical trocar insertion apparatus
WO1993013704A1 (en) 1992-01-09 1993-07-22 Endomedix Corporation Bi-directional miniscope
US5433721A (en) * 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) * 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
ATE155059T1 (en) 1992-01-21 1997-07-15 Stanford Res Inst Int TELEOPERATOR SYSTEM AND TELEPRESENCE METHOD
US6963792B1 (en) 1992-01-21 2005-11-08 Sri International Surgical method
JP2547520B2 (en) 1992-01-21 1996-10-23 ヴァリーラブ・インコーポレーテッド Electrosurgical controller for trocar
US5284128A (en) 1992-01-24 1994-02-08 Applied Medical Resources Corporation Surgical manipulator
KR950700131A (en) 1992-02-07 1995-01-16 알렌 제이. 스피겔 Ultrasonic Piezoelectric Crystal Transducer Control Systems for Monitoring Electrical and Electronic Control Loops and Their Combination Systems (ULTRASONIC SURGICAL APPARATUS)
US5271543A (en) 1992-02-07 1993-12-21 Ethicon, Inc. Surgical anastomosis stapling instrument with flexible support shaft and anvil adjusting mechanism
WO1993015648A1 (en) 1992-02-07 1993-08-19 Wilk Peter J Endoscope with disposable insertion member
US5348259A (en) 1992-02-10 1994-09-20 Massachusetts Institute Of Technology Flexible, articulable column
US5514157A (en) 1992-02-12 1996-05-07 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5626595A (en) 1992-02-14 1997-05-06 Automated Medical Instruments, Inc. Automated surgical instrument
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
DE69307299T2 (en) 1992-02-14 1997-04-30 Univ Texas MULTI-PHASE, BIODEGRADABLE IMPLANT / CARRIER AND METHOD FOR THE PRODUCTION THEREOF
US5261922A (en) 1992-02-20 1993-11-16 Hood Larry L Improved ultrasonic knife
US5282806A (en) 1992-08-21 1994-02-01 Habley Medical Technology Corporation Endoscopic surgical instrument having a removable, rotatable, end effector assembly
CA2089999A1 (en) 1992-02-24 1993-08-25 H. Jonathan Tovey Resilient arm mesh deployer
US5658238A (en) 1992-02-25 1997-08-19 Olympus Optical Co., Ltd. Endoscope apparatus capable of being switched to a mode in which a curvature operating lever is returned and to a mode in which the curvature operating lever is not returned
US5352235A (en) 1992-03-16 1994-10-04 Tibor Koros Laparoscopic grasper and cutter
GR1002537B (en) 1992-03-30 1997-01-27 Ethicon Inc. Surgical staple for insertion into tissue.
US5281216A (en) 1992-03-31 1994-01-25 Valleylab, Inc. Electrosurgical bipolar treating apparatus
US5484095A (en) 1992-03-31 1996-01-16 United States Surgical Corporation Apparatus for endoscopically applying staples individually to body tissue
US5223675A (en) 1992-04-02 1993-06-29 Taft Anthony W Cable fastener
DE4211230C2 (en) 1992-04-03 1997-06-26 Ivoclar Ag Rechargeable light curing device
US5314424A (en) 1992-04-06 1994-05-24 United States Surgical Corporation Surgical instrument locking mechanism
US5411481A (en) 1992-04-08 1995-05-02 American Cyanamid Co. Surgical purse string suturing instrument and method
US5563481A (en) 1992-04-13 1996-10-08 Smith & Nephew Endoscopy, Inc. Brushless motor
US5602449A (en) 1992-04-13 1997-02-11 Smith & Nephew Endoscopy, Inc. Motor controlled surgical system and method having positional control
US5314466A (en) 1992-04-13 1994-05-24 Ep Technologies, Inc. Articulated unidirectional microwave antenna systems for cardiac ablation
WO1993020886A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Articulated systems for cardiac ablation
FR2689749B1 (en) 1992-04-13 1994-07-22 Toledano Haviv FLEXIBLE SURGICAL STAPLING INSTRUMENT FOR CIRCULAR ANASTOMOSES.
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
DK50592A (en) 1992-04-15 1993-10-16 Jane Noeglebaek Christensen BACENTIAL TRAINING APPARATUS
US5355897A (en) 1992-04-16 1994-10-18 Ethicon, Inc. Method of performing a pyloroplasty/pylorectomy using a stapler having a shield
US5417203A (en) 1992-04-23 1995-05-23 United States Surgical Corporation Articulating endoscopic surgical apparatus
US5443463A (en) 1992-05-01 1995-08-22 Vesta Medical, Inc. Coagulating forceps
AU662407B2 (en) 1992-05-06 1995-08-31 Ethicon Inc. Endoscopic ligation and division instrument
US5484451A (en) 1992-05-08 1996-01-16 Ethicon, Inc. Endoscopic surgical instrument and staples for applying purse string sutures
US5211655A (en) 1992-05-08 1993-05-18 Hasson Harrith M Multiple use forceps for endoscopy
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
US5258007A (en) 1992-05-14 1993-11-02 Robert F. Spetzler Powered surgical instrument
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
JPH0630945A (en) 1992-05-19 1994-02-08 Olympus Optical Co Ltd Suturing apparatus
US5344059A (en) 1992-05-19 1994-09-06 United States Surgical Corporation Surgical apparatus and anvil delivery system therefor
US5197966A (en) 1992-05-22 1993-03-30 Sommerkamp T Greg Radiodorsal buttress blade plate implant for repairing distal radius fractures
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
US5906625A (en) 1992-06-04 1999-05-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissue
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
JP3442423B2 (en) 1992-06-05 2003-09-02 積水化学工業株式会社 Simple corset and simple corset stuck body
US5279416A (en) 1992-06-05 1994-01-18 Edward Weck Incorporated Ligating device cartridge with separable retainer
US5236424A (en) 1992-06-05 1993-08-17 Cardiac Pathways Corporation Catheter with retractable cannula for delivering a plurality of chemicals
US5361902A (en) 1992-06-05 1994-11-08 Leonard Bloom Surgical blade dispenser and disposal system for use during an operating procedure and method thereof
US7928281B2 (en) 1992-06-19 2011-04-19 Arizant Technologies Llc Wound covering
US5263629A (en) 1992-06-29 1993-11-23 Ethicon, Inc. Method and apparatus for achieving hemostasis along a staple line
US5258009A (en) 1992-06-30 1993-11-02 American Cyanamid Company Malleable, bioabsorbable,plastic staple having a knotted configuration; and method and apparatus for deforming such staple
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5221281A (en) 1992-06-30 1993-06-22 Valleylab Inc. Electrosurgical tubular trocar
US5258012A (en) 1992-06-30 1993-11-02 Ethicon, Inc. Surgical fasteners
US5368606A (en) 1992-07-02 1994-11-29 Marlow Surgical Technologies, Inc. Endoscopic instrument system
US5222975A (en) 1992-07-13 1993-06-29 Lawrence Crainich Surgical staples
US5360428A (en) 1992-07-22 1994-11-01 Hutchinson Jr William B Laparoscopic instrument with electrical cutting wires
US5313967A (en) 1992-07-24 1994-05-24 Medtronic, Inc. Helical guidewire
US5258008A (en) 1992-07-29 1993-11-02 Wilk Peter J Surgical stapling device and associated method
US5511564A (en) 1992-07-29 1996-04-30 Valleylab Inc. Laparoscopic stretching instrument and associated method
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5657429A (en) 1992-08-10 1997-08-12 Computer Motion, Inc. Automated endoscope system optimal positioning
US5375588A (en) 1992-08-17 1994-12-27 Yoon; Inbae Method and apparatus for use in endoscopic procedures
DE4228909C2 (en) 1992-08-28 1994-06-09 Ethicon Gmbh Endoscopic instrument for the application of ligature binders and ligature binders
WO1994005200A1 (en) 1992-09-01 1994-03-17 Adair Edwin Lloyd Sterilizable endoscope with separable disposable tube assembly
US5630782A (en) 1992-09-01 1997-05-20 Adair; Edwin L. Sterilizable endoscope with separable auxiliary assembly
CA2104345A1 (en) 1992-09-02 1994-03-03 David T. Green Surgical clamp apparatus
US5368215A (en) 1992-09-08 1994-11-29 United States Surgical Corporation Surgical apparatus and detachable anvil rod therefor
US5285381A (en) 1992-09-09 1994-02-08 Vanderbilt University Multiple control-point control system and method of use
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
CA2100532C (en) 1992-09-21 2004-04-20 David T. Green Device for applying a meniscal staple
US5485952A (en) 1992-09-23 1996-01-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5465819A (en) 1992-09-29 1995-11-14 Borg-Warner Automotive, Inc. Power transmitting assembly
US5573169A (en) 1992-10-02 1996-11-12 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5423471A (en) 1992-10-02 1995-06-13 United States Surgical Corporation Apparatus for applying two-part surgical fasteners in laparoscopic or endoscopic procedures
US5383460A (en) 1992-10-05 1995-01-24 Cardiovascular Imaging Systems, Inc. Method and apparatus for ultrasound imaging and atherectomy
US5569161A (en) 1992-10-08 1996-10-29 Wendell V. Ebling Endoscope with sterile sleeve
US5431323A (en) 1992-10-09 1995-07-11 Ethicon, Inc. Endoscopic surgical instrument with pivotable and rotatable staple cartridge
US5601224A (en) 1992-10-09 1997-02-11 Ethicon, Inc. Surgical instrument
US5381943A (en) 1992-10-09 1995-01-17 Ethicon, Inc. Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge
US5662662A (en) 1992-10-09 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical instrument and method
US5374277A (en) 1992-10-09 1994-12-20 Ethicon, Inc. Surgical instrument
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5286253A (en) 1992-10-09 1994-02-15 Linvatec Corporation Angled rotating surgical instrument
US5330502A (en) 1992-10-09 1994-07-19 Ethicon, Inc. Rotational endoscopic mechanism with jointed drive mechanism
US5222945A (en) 1992-10-13 1993-06-29 Basnight Robert W Hypodermic syringe with protective shield
US5350391A (en) 1992-10-19 1994-09-27 Benedetto Iacovelli Laparoscopic instruments
US5718548A (en) 1992-10-20 1998-02-17 Clipmaster Corporation Pty Ltd Staple assembly
CA2108605A1 (en) 1992-10-21 1994-04-22 Nagabhushanam Totakura Bioabsorbable foam pledget
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5578052A (en) 1992-10-27 1996-11-26 Koros; Tibor Insulated laparoscopic grasper with removable shaft
US5259366A (en) 1992-11-03 1993-11-09 Boris Reydel Method of using a catheter-sleeve assembly for an endoscope
US5409498A (en) 1992-11-05 1995-04-25 Ethicon, Inc. Rotatable articulating endoscopic fastening instrument
GB2272159A (en) 1992-11-10 1994-05-11 Andreas G Constantinides Surgical/diagnostic aid
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5441483A (en) 1992-11-16 1995-08-15 Avitall; Boaz Catheter deflection control
US5389104A (en) 1992-11-18 1995-02-14 Symbiosis Corporation Arthroscopic surgical instruments
US5346504A (en) 1992-11-19 1994-09-13 Ethicon, Inc. Intraluminal manipulator with a head having articulating links
ES2168278T3 (en) 1992-11-30 2002-06-16 Sherwood Serv Ag CIRCUIT SET FOR AN ULTRASONIC SURGERY INSTRUMENT WITH AN ENERGY INITIATOR TO MAINTAIN VIBRATION AND LINEAR DYNAMIC PARAMETERS.
US5372602A (en) 1992-11-30 1994-12-13 Device For Vascular Intervention, Inc. Method of removing plaque using catheter cutter with torque control
US5333422A (en) 1992-12-02 1994-08-02 The United States Of America As Represented By The United States Department Of Energy Lightweight extendable and retractable pole
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5356006A (en) 1992-12-16 1994-10-18 Ethicon, Inc. Sterile package for surgical devices
US5330487A (en) 1992-12-17 1994-07-19 Tfi Acquistion Corp. Drive mechanism for surgical instruments
JP3042816B2 (en) 1992-12-18 2000-05-22 矢崎総業株式会社 Power supply connector
US5403312A (en) 1993-07-22 1995-04-04 Ethicon, Inc. Electrosurgical hemostatic device
US5558671A (en) 1993-07-22 1996-09-24 Yates; David C. Impedance feedback monitor for electrosurgical instrument
US5807393A (en) 1992-12-22 1998-09-15 Ethicon Endo-Surgery, Inc. Surgical tissue treating device with locking mechanism
FR2699806B1 (en) 1992-12-30 1995-03-24 Duthoit Francois Instrument, intended in particular to allow the extraction of pathological venous sections such as varicose veins.
EP0604789A1 (en) 1992-12-31 1994-07-06 K. Widmann Ag Surgical clamping element for making a purse string
US5313935A (en) 1992-12-31 1994-05-24 Symbiosis Corporation Apparatus for counting the number of times a surgical instrument has been used
US5236269A (en) 1993-01-14 1993-08-17 Mattel, Inc. Battery-powered dispenser for hot melt adhesive
US5468253A (en) 1993-01-21 1995-11-21 Ethicon, Inc. Elastomeric medical device
US5358510A (en) 1993-01-26 1994-10-25 Ethicon, Inc. Two part surgical fastener
JP2857555B2 (en) 1993-01-27 1999-02-17 三菱電機株式会社 Electric power steering device
CA2114282A1 (en) 1993-01-28 1994-07-29 Lothar Schilder Multi-layered implant
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5336229A (en) 1993-02-09 1994-08-09 Laparomed Corporation Dual ligating and dividing apparatus
US5383895A (en) 1993-02-10 1995-01-24 Unisurge, Inc. Endoscopic surgical grasper and method
US5342381A (en) 1993-02-11 1994-08-30 Everest Medical Corporation Combination bipolar scissors and forceps instrument
US5553624A (en) 1993-02-11 1996-09-10 Symbiosis Corporation Endoscopic biopsy forceps jaws and instruments incorporating same
US5263937A (en) 1993-02-11 1993-11-23 Shipp John I Trocar with profile to reduce insertion force
JPH06237937A (en) 1993-02-12 1994-08-30 Olympus Optical Co Ltd Suturing device for surgery
US5403276A (en) 1993-02-16 1995-04-04 Danek Medical, Inc. Apparatus for minimally invasive tissue removal
KR960700656A (en) 1993-02-22 1996-02-24 알렌 제이. 스피겔 Laparoscopic dissection tension retractor device and method (A LAPAROSCOPIC DISSECTION TENSION RETRACTOR DEVICE AND METHOD)
US5613937A (en) 1993-02-22 1997-03-25 Heartport, Inc. Method of retracting heart tissue in closed-chest heart surgery using endo-scopic retraction
US5643294A (en) 1993-03-01 1997-07-01 United States Surgical Corporation Surgical apparatus having an increased range of operability
US5749968A (en) 1993-03-01 1998-05-12 Focal, Inc. Device for priming for improved adherence of gels to substrates
WO1994020030A1 (en) 1993-03-02 1994-09-15 Cook Melvin S Improved staples
US5342396A (en) 1993-03-02 1994-08-30 Cook Melvin S Staples
US5336130A (en) 1993-03-04 1994-08-09 Metal-Fab, Inc. Adjustable exhauster arm assembly
DE4306786C1 (en) 1993-03-04 1994-02-10 Wolfgang Daum Hand-type surgical manipulator for areas hard to reach - has distal components actuated by fingers via Bowden cables
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
US5397324A (en) 1993-03-10 1995-03-14 Carroll; Brendan J. Surgical stapler instrument and method for vascular hemostasis
DE4308454A1 (en) 1993-03-17 1994-09-22 Ferdinand Dr Koeckerling Surgical suture clip, in particular tobacco pouch suture clip
US5360305A (en) 1993-03-19 1994-11-01 Duo-Fast Corporation Clinch staples and method of manufacturing and applying clinch staples
US5343382A (en) 1993-04-05 1994-08-30 Delco Electronics Corp. Adaptive current control
US5312329A (en) 1993-04-07 1994-05-17 Valleylab Inc. Piezo ultrasonic and electrosurgical handpiece
US5456917A (en) 1993-04-12 1995-10-10 Cambridge Scientific, Inc. Method for making a bioerodible material for the sustained release of a medicament and the material made from the method
USD352780S (en) 1993-04-19 1994-11-22 Valleylab Inc. Combined suction, irrigation and electrosurgical handle
US5370645A (en) 1993-04-19 1994-12-06 Valleylab Inc. Electrosurgical processor and method of use
ES2109539T3 (en) 1993-04-20 1998-01-16 United States Surgical Corp SURGICAL STAPLER.
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
CA2121861A1 (en) 1993-04-23 1994-10-24 William D. Fox Mechanical morcellator
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
DE69403271T2 (en) 1993-04-27 1997-09-18 American Cyanamid Co Automatic laparoscopic applicator for ligation clips
US5431668A (en) 1993-04-29 1995-07-11 Ethicon, Inc. Ligating clip applier
US5407293A (en) 1993-04-29 1995-04-18 Crainich; Lawrence Coupling apparatus for medical instrument
US5464300A (en) 1993-04-29 1995-11-07 Crainich; Lawrence Medical instrument and coupling apparatus for same
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
US6716232B1 (en) 1993-04-30 2004-04-06 United States Surgical Corporation Surgical instrument having an articulated jaw structure and a detachable knife
WO1994024947A1 (en) 1993-04-30 1994-11-10 Minnesota Mining And Manufacturing Company Surgical instrument having an articulated jaw structure and a detachable knife
GB9309151D0 (en) 1993-05-04 1993-06-16 Zeneca Ltd Syringes and syringe pumps
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
US5415334A (en) 1993-05-05 1995-05-16 Ethicon Endo-Surgery Surgical stapler and staple cartridge
US5364003A (en) 1993-05-05 1994-11-15 Ethicon Endo-Surgery Staple cartridge for a surgical stapler
US5449370A (en) 1993-05-12 1995-09-12 Ethicon, Inc. Blunt tipped ultrasonic trocar
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5549621A (en) 1993-05-14 1996-08-27 Byron C. Sutherland Apparatus and method for performing vertical banded gastroplasty
US6406472B1 (en) 1993-05-14 2002-06-18 Sri International, Inc. Remote center positioner
JP2665052B2 (en) 1993-05-14 1997-10-22 エスアールアイ インターナショナル Remote center positioning device
US5791231A (en) 1993-05-17 1998-08-11 Endorobotics Corporation Surgical robotic system and hydraulic actuator therefor
JPH06327684A (en) 1993-05-19 1994-11-29 Olympus Optical Co Ltd Surgical suture instrument
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
JP3172977B2 (en) 1993-05-26 2001-06-04 富士重工業株式会社 In-vehicle battery capacity meter
US5601604A (en) 1993-05-27 1997-02-11 Inamed Development Co. Universal gastric band
US5489290A (en) 1993-05-28 1996-02-06 Snowden-Pencer, Inc. Flush port for endoscopic surgical instruments
US5404870A (en) 1993-05-28 1995-04-11 Ethicon, Inc. Method of using a transanal inserter
US5381649A (en) 1993-06-04 1995-01-17 Webb; Stephen A. Medical staple forming die and punch
US5443197A (en) 1993-06-16 1995-08-22 United States Surgical Corporation Locking mechanism for a skin stapler cartridge
RU2066128C1 (en) 1993-06-21 1996-09-10 Иван Александрович Корольков Surgical suture appliance
US5409703A (en) 1993-06-24 1995-04-25 Carrington Laboratories, Inc. Dried hydrogel from hydrophilic-hygroscopic polymer
US5341724A (en) 1993-06-28 1994-08-30 Bronislav Vatel Pneumatic telescoping cylinder and method
US5651762A (en) 1993-07-09 1997-07-29 Bridges; Doye R. Apparatus for holding intestines out of an operative field
US6063025A (en) 1993-07-09 2000-05-16 Bioenterics Corporation Apparatus for holding intestines out of an operative field
GB9314391D0 (en) 1993-07-12 1993-08-25 Gyrus Medical Ltd A radio frequency oscillator and an electrosurgical generator incorporating such an oscillator
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
DE9310601U1 (en) 1993-07-15 1993-09-02 Siemens Ag Cassette for holding medical, in particular dental, instruments
DE4323815C2 (en) 1993-07-15 1997-09-25 Siemens Ag Method and device for the hygienic preparation of medical, in particular dental, instruments
US5501654A (en) 1993-07-15 1996-03-26 Ethicon, Inc. Endoscopic instrument having articulating element
US5805140A (en) 1993-07-16 1998-09-08 Immersion Corporation High bandwidth force feedback interface using voice coils and flexures
US5582617A (en) 1993-07-21 1996-12-10 Charles H. Klieman Surgical instrument for endoscopic and general surgery
JPH09501333A (en) 1993-07-21 1997-02-10 エイチ. クリーマン,チャールズ Surgical instruments for endoscopy and surgery
US5792165A (en) 1993-07-21 1998-08-11 Charles H. Klieman Endoscopic instrument with detachable end effector
US5693051A (en) 1993-07-22 1997-12-02 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device with adaptive electrodes
US5810811A (en) 1993-07-22 1998-09-22 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5817093A (en) 1993-07-22 1998-10-06 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5709680A (en) 1993-07-22 1998-01-20 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic device
US5688270A (en) 1993-07-22 1997-11-18 Ethicon Endo-Surgery,Inc. Electrosurgical hemostatic device with recessed and/or offset electrodes
GR940100335A (en) 1993-07-22 1996-05-22 Ethicon Inc. Electrosurgical device for placing staples.
JPH079622U (en) 1993-07-27 1995-02-10 和光化成工業株式会社 Vehicle sun visor holder structure
US5372596A (en) 1993-07-27 1994-12-13 Valleylab Inc. Apparatus for leakage control and method for its use
US5441494A (en) 1993-07-29 1995-08-15 Ethicon, Inc. Manipulable hand for laparoscopy
US5503320A (en) 1993-08-19 1996-04-02 United States Surgical Corporation Surgical apparatus with indicator
US5447417A (en) 1993-08-31 1995-09-05 Valleylab Inc. Self-adjusting pump head and safety manifold cartridge for a peristaltic pump
USD357981S (en) 1993-09-01 1995-05-02 United States Surgical Corporation Surgical stapler
CH689906A5 (en) 1993-09-16 2000-01-14 Whitaker Corp Module-like electrical contact arrangement.
US5441193A (en) 1993-09-23 1995-08-15 United States Surgical Corporation Surgical fastener applying apparatus with resilient film
US5419766A (en) 1993-09-28 1995-05-30 Critikon, Inc. Catheter with stick protection
US5405344A (en) 1993-09-30 1995-04-11 Ethicon, Inc. Articulable socket joint assembly for an endoscopic instrument for surgical fastner track therefor
CA2133159A1 (en) 1993-09-30 1995-03-31 Eric J. Butterfield Surgical instrument having improved manipulating means
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
CA2132917C (en) 1993-10-07 2004-12-14 John Charles Robertson Circular anastomosis device
US5439155A (en) 1993-10-07 1995-08-08 United States Surgical Corporation Cartridge for surgical fastener applying apparatus
US5496312A (en) 1993-10-07 1996-03-05 Valleylab Inc. Impedance and temperature generator control
US6210403B1 (en) 1993-10-07 2001-04-03 Sherwood Services Ag Automatic control for energy from an electrosurgical generator
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
US5562682A (en) 1993-10-08 1996-10-08 Richard-Allan Medical Industries, Inc. Surgical Instrument with adjustable arms
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
RU2098025C1 (en) 1993-10-11 1997-12-10 Аркадий Вениаминович Дубровский Rotary device
US5556416A (en) 1993-10-12 1996-09-17 Valleylab, Inc. Endoscopic instrument
US5724025A (en) 1993-10-21 1998-03-03 Tavori; Itzchak Portable vital signs monitor
US5427298A (en) 1993-10-28 1995-06-27 Tegtmeier; C. Allen Method and apparatus for indicating quantity of fasteners in a fastening device
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
US5571100B1 (en) 1993-11-01 1998-01-06 Gyrus Medical Ltd Electrosurgical apparatus
JP3414455B2 (en) 1993-11-02 2003-06-09 オリンパス光学工業株式会社 Suture device
US5376095A (en) 1993-11-04 1994-12-27 Ethicon Endo-Surgery Endoscopic multi-fire flat stapler with low profile
US5531305A (en) 1993-11-05 1996-07-02 Borg-Warner Automotive, Inc. Synchronizer clutch assembly for multiple ratio gearing
US5658298A (en) 1993-11-09 1997-08-19 Inamed Development Company Laparoscopic tool
US5562690A (en) 1993-11-12 1996-10-08 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
US5633374A (en) 1993-11-26 1997-05-27 The Upjohn Company Pyrimidine, cyanoguanidines as K-channel blockers
DE4340707C2 (en) 1993-11-30 1997-03-27 Wolf Gmbh Richard manipulator
US5514129A (en) 1993-12-03 1996-05-07 Valleylab Inc. Automatic bipolar control for an electrosurgical generator
US5405073A (en) 1993-12-06 1995-04-11 Ethicon, Inc. Flexible support shaft assembly
US5465894A (en) 1993-12-06 1995-11-14 Ethicon, Inc. Surgical stapling instrument with articulated stapling head assembly on rotatable and flexible support shaft
US5543695A (en) 1993-12-15 1996-08-06 Stryker Corporation Medical instrument with programmable torque control
US5743456A (en) 1993-12-16 1998-04-28 Stryker Corporation Hand actuable surgical handpiece
US5470008A (en) 1993-12-20 1995-11-28 United States Surgical Corporation Apparatus for applying surgical fasteners
US5422567A (en) 1993-12-27 1995-06-06 Valleylab Inc. High frequency power measurement
US5564658A (en) 1993-12-29 1996-10-15 B-Line Systems, Inc. Support system for data transmission lines
DE9490469U1 (en) 1993-12-30 1996-08-29 Valleylab Inc Bipolar ultrasound surgery
US5441191A (en) 1993-12-30 1995-08-15 Linden; Gerald E. Indicating "staples low" in a paper stapler
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5437681A (en) 1994-01-13 1995-08-01 Suturtek Inc. Suturing instrument with thread management
US5382247A (en) 1994-01-21 1995-01-17 Valleylab Inc. Technique for electrosurgical tips and method of manufacture and use
US5452837A (en) 1994-01-21 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapler with tissue gripping ridge
WO1995020360A1 (en) 1994-01-31 1995-08-03 Valleylab, Inc. Telescoping bipolar electrode for non-invasive medical procedures
US5597107A (en) 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5487500A (en) 1994-02-03 1996-01-30 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5465895A (en) 1994-02-03 1995-11-14 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
US5452836A (en) 1994-02-07 1995-09-26 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved jaw closure and staple firing actuator mechanism
US5527320A (en) 1994-02-10 1996-06-18 Pilling Weck Inc. Surgical clip applying instrument
US5503638A (en) 1994-02-10 1996-04-02 Bio-Vascular, Inc. Soft tissue stapling buttress
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
US5507773A (en) 1994-02-18 1996-04-16 Ethicon Endo-Surgery Cable-actuated jaw assembly for surgical instruments
JPH0833642A (en) 1994-02-25 1996-02-06 Ethicon Endo Surgery Inc Improved anvil receiving port for surgical stapler
WO1995023557A1 (en) 1994-03-01 1995-09-08 United States Surgical Corporation Surgical stapler with anvil sensor and lockout
CA2143560C (en) 1994-03-02 2007-01-16 Mark Fogelberg Sterile occlusion fasteners and instrument and method for their placement
DE9404459U1 (en) 1994-03-16 1994-07-14 Renz Chr Gmbh & Co Device for packaging binding elements
JP3421117B2 (en) 1994-03-17 2003-06-30 テルモ株式会社 Surgical instruments
US5484398A (en) 1994-03-17 1996-01-16 Valleylab Inc. Methods of making and using ultrasonic handpiece
US5561881A (en) 1994-03-22 1996-10-08 U.S. Philips Corporation Electric toothbrush
RU2052979C1 (en) 1994-03-22 1996-01-27 Товарищество с ограниченной ответственностью "Дипы" ЛТД Apparatus for application of clamping clips and magazine for suturing staples or clamping clips
US5472442A (en) 1994-03-23 1995-12-05 Valleylab Inc. Moveable switchable electrosurgical handpiece
US5860581A (en) 1994-03-24 1999-01-19 United States Surgical Corporation Anvil for circular stapler
US5541376A (en) 1994-03-28 1996-07-30 Valleylab Inc Switch and connector
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
US5715987A (en) 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
CA2144818C (en) 1994-04-07 2006-07-11 Henry Bolanos Graduated anvil for surgical stapling instruments
US5415335A (en) 1994-04-07 1995-05-16 Ethicon Endo-Surgery Surgical stapler cartridge containing lockout mechanism
US5653677A (en) 1994-04-12 1997-08-05 Fuji Photo Optical Co. Ltd Electronic endoscope apparatus with imaging unit separable therefrom
JPH07285089A (en) 1994-04-14 1995-10-31 Mitsubishi Heavy Ind Ltd Pentadactylic hand arm mechanism
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
US5470007A (en) 1994-05-02 1995-11-28 Minnesota Mining And Manufacturing Company Laparoscopic stapler with overload sensor and interlock
US5489058A (en) 1994-05-02 1996-02-06 Minnesota Mining And Manufacturing Company Surgical stapler with mechanisms for reducing the firing force
US5474566A (en) 1994-05-05 1995-12-12 United States Surgical Corporation Self-contained powered surgical apparatus
CA2148667A1 (en) 1994-05-05 1995-11-06 Carlo A. Mililli Self-contained powered surgical apparatus
US5628446A (en) 1994-05-05 1997-05-13 United States Surgical Corporation Self-contained powered surgical apparatus
US5843021A (en) 1994-05-09 1998-12-01 Somnus Medical Technologies, Inc. Cell necrosis apparatus
US5782749A (en) 1994-05-10 1998-07-21 Riza; Erol D. Laparoscopic surgical instrument with adjustable grip
US5480409A (en) 1994-05-10 1996-01-02 Riza; Erol D. Laparoscopic surgical instrument
US6704210B1 (en) 1994-05-20 2004-03-09 Medtronic, Inc. Bioprothesis film strip for surgical stapler and method of attaching the same
US5454827A (en) 1994-05-24 1995-10-03 Aust; Gilbert M. Surgical instrument
USRE38335E1 (en) 1994-05-24 2003-11-25 Endius Incorporated Surgical instrument
CA2150507C (en) 1994-05-30 1999-05-18 Soichiro Kawakami Rechargeable batteries
US5814057A (en) 1994-06-03 1998-09-29 Gunze Limited Supporting element for staple region
GB9411429D0 (en) 1994-06-08 1994-07-27 Seton Healthcare Group Plc Wound dressings
US5553675A (en) 1994-06-10 1996-09-10 Minnesota Mining And Manufacturing Company Orthopedic surgical device
US5522831A (en) 1994-06-13 1996-06-04 Dennis R. Sleister Incising trocar and cannula assembly
US5473204A (en) 1994-06-16 1995-12-05 Temple; Thomas D. Time delay switch
CA2192819A1 (en) 1994-06-17 1995-12-28 Christopher Francis Heck Surgical stapling instrument and method thereof
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US5558665A (en) 1994-06-24 1996-09-24 Archimedes Surgical, Inc. Surgical instrument and method for intraluminal retraction of an anatomic structure
US5807376A (en) 1994-06-24 1998-09-15 United States Surgical Corporation Apparatus and method for performing surgical tasks during laparoscopic procedures
US5746224A (en) 1994-06-24 1998-05-05 Somnus Medical Technologies, Inc. Method for ablating turbinates
US5651821A (en) 1994-06-27 1997-07-29 Ricoh Company, Ltd. Battery disposal and collection apparatus
DE4422621C1 (en) 1994-06-28 1995-08-31 Aesculap Ag Surgical instrument for gripping, transporting or fixing objects
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
US5551622A (en) 1994-07-13 1996-09-03 Yoon; Inbae Surgical stapler
US5833695A (en) 1994-07-13 1998-11-10 Yoon; Inbae Surgical stapling system and method of applying staples from multiple staple cartridges
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5533521A (en) 1994-07-15 1996-07-09 United States Surgical Corporation Interchangeable tissue measuring device
US5629577A (en) 1994-07-15 1997-05-13 Micro Medical Devices Miniature linear motion actuator
US5712460A (en) 1994-07-19 1998-01-27 Linvatec Corporation Multi-function surgical device control system
US5583114A (en) 1994-07-27 1996-12-10 Minnesota Mining And Manufacturing Company Adhesive sealant composition
US5544802A (en) 1994-07-27 1996-08-13 Crainich; Lawrence Surgical staple and stapler device therefor
US5582907A (en) 1994-07-28 1996-12-10 Pall Corporation Melt-blown fibrous web
DE9412228U1 (en) 1994-07-28 1994-09-22 Loctite Europa Eeig Peristaltic pump for precise dosing of small amounts of liquid
AU694225B2 (en) 1994-08-02 1998-07-16 Ethicon Endo-Surgery, Inc. Ultrasonic hemostatic and cutting instrument
RU2104671C1 (en) 1994-08-03 1998-02-20 Виктор Алексеевич Липатов Surgical suturing device
US5507426A (en) 1994-08-05 1996-04-16 United States Surgical Corporation Apparatus for applying surgical fasteners
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
US5509916A (en) 1994-08-12 1996-04-23 Valleylab Inc. Laser-assisted electrosurgery system
US5480089A (en) 1994-08-19 1996-01-02 United States Surgical Corporation Surgical stapler apparatus with improved staple pockets
CA2146508C (en) 1994-08-25 2006-11-14 Robert H. Schnut Anvil for circular stapler
US6120433A (en) 1994-09-01 2000-09-19 Olympus Optical Co., Ltd. Surgical manipulator system
JPH08136626A (en) 1994-09-16 1996-05-31 Seiko Epson Corp Residual capacity meter for battery, and method for calculating residual capacity of battery
US5609601A (en) 1994-09-23 1997-03-11 United States Surgical Corporation Endoscopic surgical apparatus with rotation lock
US5569284A (en) 1994-09-23 1996-10-29 United States Surgical Corporation Morcellator
US5916225A (en) 1994-09-29 1999-06-29 Surgical Sense, Inc. Hernia mesh patch
DE4434864C2 (en) 1994-09-29 1997-06-19 United States Surgical Corp Surgical staple applicator with interchangeable staple magazine
US5571116A (en) 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5685474A (en) 1994-10-04 1997-11-11 United States Surgical Corporation Tactile indicator for surgical instrument
US5901895A (en) 1994-10-05 1999-05-11 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5797538A (en) 1994-10-05 1998-08-25 United States Surgical Corporation Articulating apparatus for applying surgical fasteners to body tissue
US5540374A (en) 1994-10-06 1996-07-30 Minnesota Mining And Manufacturing Company Bone stapler cartridge
US5575805A (en) 1994-10-07 1996-11-19 Li Medical Technologies, Inc. Variable tip-pressure surgical grasper
CA2157744C (en) 1994-10-07 2005-08-23 Charles R. Sherts Endoscopic vascular suturing apparatus
US5571090A (en) 1994-10-07 1996-11-05 United States Surgical Corporation Vascular suturing apparatus
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5718714A (en) 1994-10-11 1998-02-17 Circon Corporation Surgical instrument with removable shaft assembly
CN1163558A (en) * 1994-10-11 1997-10-29 查尔斯·H·克利曼 Endoscopic instrument with detachable end effector
US5591170A (en) 1994-10-14 1997-01-07 Genesis Orthopedics Intramedullary bone cutting saw
US5599852A (en) 1994-10-18 1997-02-04 Ethicon, Inc. Injectable microdispersions for soft tissue repair and augmentation
AU706434B2 (en) 1994-10-18 1999-06-17 Ethicon Inc. Injectable liquid copolymers for soft tissue repair and augmentation
US5620454A (en) 1994-10-25 1997-04-15 Becton, Dickinson And Company Guarded surgical scalpel
USD381077S (en) 1994-10-25 1997-07-15 Ethicon Endo-Surgery Multifunctional surgical stapling instrument
US5575789A (en) 1994-10-27 1996-11-19 Valleylab Inc. Energizable surgical tool safety device and method
US5549637A (en) 1994-11-10 1996-08-27 Crainich; Lawrence Articulated medical instrument
JPH08136628A (en) 1994-11-11 1996-05-31 Fujitsu Ltd Device for monitoring capacity of battery
US5989244A (en) 1994-11-15 1999-11-23 Gregory; Kenton W. Method of use of a sheet of elastin or elastin-based material
US5891558A (en) 1994-11-22 1999-04-06 Tissue Engineering, Inc. Biopolymer foams for use in tissue repair and reconstruction
US5709934A (en) 1994-11-22 1998-01-20 Tissue Engineering, Inc. Bipolymer foams having extracellular matrix particulates
US6206897B1 (en) 1994-12-02 2001-03-27 Ethicon, Inc. Enhanced visualization of the latching mechanism of latching surgical devices
US7235089B1 (en) 1994-12-07 2007-06-26 Boston Scientific Corporation Surgical apparatus and method
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
JPH08164141A (en) 1994-12-13 1996-06-25 Olympus Optical Co Ltd Treating tool
US5636779A (en) 1994-12-13 1997-06-10 United States Surgical Corporation Apparatus for applying surgical fasteners
US5569270A (en) 1994-12-13 1996-10-29 Weng; Edward E. Laparoscopic surgical instrument
US5988479A (en) 1994-12-13 1999-11-23 United States Surgical Corporation Apparatus for applying surgical fasteners
US5541489A (en) 1994-12-15 1996-07-30 Intel Corporation Smart battery power availability feature based on battery-specific characteristics
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5492671A (en) 1994-12-20 1996-02-20 Zimmer, Inc. Sterilization case and method of sterilization
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
US5613966A (en) 1994-12-21 1997-03-25 Valleylab Inc System and method for accessory rate control
US5628743A (en) 1994-12-21 1997-05-13 Valleylab Inc. Dual mode ultrasonic surgical apparatus
AU701320B2 (en) 1994-12-22 1999-01-28 Ethicon Endo-Surgery, Inc. Impedance feedback monitor with query electrode for electrosurgical instrument
US5695494A (en) 1994-12-22 1997-12-09 Valleylab Inc Rem output stage topology
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5713895A (en) 1994-12-30 1998-02-03 Valleylab Inc Partially coated electrodes
US5466020A (en) 1994-12-30 1995-11-14 Valleylab Inc. Bayonet connector for surgical handpiece
US6430298B1 (en) 1995-01-13 2002-08-06 Lonnie Joe Kettl Microphone mounting structure for a sound amplifying respirator and/or bubble suit
CA2168404C (en) 1995-02-01 2007-07-10 Dale Schulze Surgical instrument with expandable cutting element
DE69615343T2 (en) 1995-02-03 2002-05-16 Sherwood Serv Ag ELECTROSURGICAL EXTRACTOR COMBINED WITH A HANDPIECE
USD372086S (en) 1995-02-03 1996-07-23 Valleylab Inc. Aspirator attachment for a surgical device
WO1996023536A1 (en) 1995-02-03 1996-08-08 Inbae Yoon Cannula with distal end valve
US5669907A (en) 1995-02-10 1997-09-23 Valleylab Inc. Plasma enhanced bipolar electrosurgical system
DE69610723T2 (en) 1995-02-10 2001-10-18 Raymond Corp Industrial truck with internal temperature monitoring
US6110187A (en) 1995-02-24 2000-08-29 Heartport, Inc. Device and method for minimizing heart displacements during a beating heart surgical procedure
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5669904A (en) 1995-03-07 1997-09-23 Valleylab Inc. Surgical gas plasma ignition apparatus and method
US6213999B1 (en) 1995-03-07 2001-04-10 Sherwood Services Ag Surgical gas plasma ignition apparatus and method
US5735445A (en) 1995-03-07 1998-04-07 United States Surgical Corporation Surgical stapler
US5681341A (en) 1995-03-14 1997-10-28 Origin Medsystems, Inc. Flexible lifting apparatus
DE19509116C2 (en) 1995-03-16 2000-01-05 Deutsch Zentr Luft & Raumfahrt Flexible structure
DE19509115C2 (en) 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt Surgical device for preparing an anastomosis using minimally invasive surgical techniques
US5575799A (en) 1995-03-30 1996-11-19 United States Surgical Corporation Articulating surgical apparatus
US5618307A (en) 1995-04-03 1997-04-08 Heartport, Inc. Clamp assembly and method of use
US5599350A (en) 1995-04-03 1997-02-04 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with coagulation feedback
US6669690B1 (en) 1995-04-06 2003-12-30 Olympus Optical Co., Ltd. Ultrasound treatment system
US5619992A (en) 1995-04-06 1997-04-15 Guthrie; Robert B. Methods and apparatus for inhibiting contamination of reusable pulse oximetry sensors
US6056735A (en) 1996-04-04 2000-05-02 Olympus Optical Co., Ltd. Ultrasound treatment system
US5624452A (en) 1995-04-07 1997-04-29 Ethicon Endo-Surgery, Inc. Hemostatic surgical cutting or stapling instrument
AU5561196A (en) 1995-04-21 1996-11-07 W.L. Gore & Associates, Inc. A surgical pledget dispensing system
JPH08289895A (en) 1995-04-21 1996-11-05 Olympus Optical Co Ltd Suture device
US5553765A (en) 1995-04-28 1996-09-10 Ethicon Endo-Surgery, Inc. Surgical stapler with improved operating lever mounting arrangement
US5657417A (en) 1995-05-02 1997-08-12 Burndy Corporation Control for battery powered tool
US5773991A (en) 1995-05-02 1998-06-30 Texas Instruments Incorporated Motor current sense circuit using H bridge circuits
JP3526487B2 (en) 1995-05-08 2004-05-17 株式会社伊垣医療設計 Medical sutures
JP3795100B2 (en) 1995-05-08 2006-07-12 株式会社伊垣医療設計 Medical suture material
WO1996035464A1 (en) 1995-05-12 1996-11-14 Perkins Rodney C Translumenal circumferential injector
US5540705A (en) 1995-05-19 1996-07-30 Suturtek, Inc. Suturing instrument with thread management
US6123241A (en) 1995-05-23 2000-09-26 Applied Tool Development Corporation Internal combustion powered tool
US5678748A (en) 1995-05-24 1997-10-21 Vir Engineering Surgical stapler with improved safety mechanism
US5630540A (en) 1995-05-24 1997-05-20 United States Surgical Corporation Surgical staple and staple drive member
US5628745A (en) 1995-06-06 1997-05-13 Bek; Robin B. Exit spark control for an electrosurgical generator
US5720744A (en) 1995-06-06 1998-02-24 Valleylab Inc Control system for neurosurgery
WO1996039086A1 (en) 1995-06-06 1996-12-12 Valleylab Inc. Power control for an electrosurgical generator
US5599344A (en) 1995-06-06 1997-02-04 Valleylab Inc. Control apparatus for electrosurgical generator power output
EP0836433A1 (en) 1995-06-06 1998-04-22 Valleylab, Inc. Digital waveform generation for electrosurgical generators
US5614887A (en) 1995-06-07 1997-03-25 Buchbinder; Dale Patient monitoring system and method thereof
US5814038A (en) 1995-06-07 1998-09-29 Sri International Surgical manipulator for a telerobotic system
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US5620326A (en) 1995-06-09 1997-04-15 Simulab Corporation Anatomical simulator for videoendoscopic surgical training
DE19521257C2 (en) 1995-06-10 1999-01-28 Winter & Ibe Olympus Surgical forceps
FR2735350B1 (en) 1995-06-15 1997-12-26 Maurice Lanzoni DEVICE FOR DEVELOPING EFFORTS OF A CUTTER
US5849011A (en) 1995-06-19 1998-12-15 Vidamed, Inc. Medical device with trigger actuation assembly
ES2154824T5 (en) 1995-06-23 2005-04-01 Gyrus Medical Limited ELECTROCHIRURGICAL INSTRUMENT.
DE69634014T2 (en) 1995-06-23 2006-03-02 Gyrus Medical Ltd. Electrosurgical device
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
GB9604770D0 (en) 1995-06-23 1996-05-08 Gyrus Medical Ltd An electrosurgical generator and system
US6780180B1 (en) 1995-06-23 2004-08-24 Gyrus Medical Limited Electrosurgical instrument
GB9600377D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US6015406A (en) 1996-01-09 2000-01-18 Gyrus Medical Limited Electrosurgical instrument
GB9526627D0 (en) 1995-12-29 1996-02-28 Gyrus Medical Ltd An electrosurgical instrument and an electrosurgical electrode assembly
US6185356B1 (en) 1995-06-27 2001-02-06 Lumitex, Inc. Protective cover for a lighting device
WO1997001989A1 (en) 1995-07-03 1997-01-23 Frater Dirk A System for mounting bolster material on tissue staplers
US5878607A (en) 1995-07-06 1999-03-09 Johnson & Johnson Professional, Inc. Surgical cast cutter
USRE38708E1 (en) 1995-07-11 2005-03-01 United States Surgical Corporation Disposable loading unit for surgical stapler
US5752644A (en) 1995-07-11 1998-05-19 United States Surgical Corporation Disposable loading unit for surgical stapler
US5591187A (en) 1995-07-14 1997-01-07 Dekel; Moshe Laparoscopic tissue retrieval device and method
US5706998A (en) 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
US5749896A (en) 1995-07-18 1998-05-12 Cook; Melvin S. Staple overlap
WO1997003611A1 (en) 1995-07-18 1997-02-06 Edwards, Garland, U. Flexible shaft
US6447518B1 (en) * 1995-07-18 2002-09-10 William R. Krause Flexible shaft components
US5556020A (en) 1995-07-21 1996-09-17 Hou; Chang F. Power staple gun
US5702409A (en) 1995-07-21 1997-12-30 W. L. Gore & Associates, Inc. Device and method for reinforcing surgical staples
US5810855A (en) 1995-07-21 1998-09-22 Gore Enterprise Holdings, Inc. Endoscopic device and method for reinforcing surgical staples
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
JP3264607B2 (en) 1995-07-28 2002-03-11 株式会社モリタ製作所 Motor control device for dental handpiece
RU2110965C1 (en) 1995-08-03 1998-05-20 Ярослав Петрович Кулик Apparatus for laparoscopic interventions
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
US5549583A (en) 1995-08-04 1996-08-27 Adam Spence Corporation Surgical connector
US5611709A (en) 1995-08-10 1997-03-18 Valleylab Inc Method and assembly of member and terminal
US5718359A (en) 1995-08-14 1998-02-17 United States Of America Surgical Corporation Surgical stapler with lockout mechanism
US5715988A (en) 1995-08-14 1998-02-10 United States Surgical Corporation Surgical stapler with lockout mechanism
US5839639A (en) 1995-08-17 1998-11-24 Lasersurge, Inc. Collapsible anvil assembly and applicator instrument
US5931853A (en) 1995-08-25 1999-08-03 Mcewen; James A. Physiologic tourniquet with safety circuit
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US5574431A (en) 1995-08-29 1996-11-12 Checkpoint Systems, Inc. Deactivateable security tag
US5667526A (en) 1995-09-07 1997-09-16 Levin; John M. Tissue retaining clamp
US5891094A (en) 1995-09-07 1999-04-06 Innerdyne, Inc. System for direct heating of fluid solution in a hollow body organ and methods
DE19534112A1 (en) 1995-09-14 1997-03-20 Wolf Gmbh Richard Endoscopic instrument with steerable distal end
DE19534043A1 (en) 1995-09-14 1997-03-20 Carisius Christensen Gmbh Dr Surgical machine with inductively stored electric energy driven electric motor
US5776130A (en) 1995-09-19 1998-07-07 Valleylab, Inc. Vascular tissue sealing pressure control
US5814055A (en) 1995-09-19 1998-09-29 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5704087A (en) 1995-09-19 1998-01-06 Strub; Richard Dental care apparatus and technique
US5827271A (en) 1995-09-19 1998-10-27 Valleylab Energy delivery system for vessel sealing
US5662667A (en) 1995-09-19 1997-09-02 Ethicon Endo-Surgery, Inc. Surgical clamping mechanism
US5797959A (en) 1995-09-21 1998-08-25 United States Surgical Corporation Surgical apparatus with articulating jaw structure
US5797927A (en) 1995-09-22 1998-08-25 Yoon; Inbae Combined tissue clamping and suturing instrument
US5772659A (en) 1995-09-26 1998-06-30 Valleylab Inc. Electrosurgical generator power control circuit and method
US5702387A (en) 1995-09-27 1997-12-30 Valleylab Inc Coated electrosurgical electrode
US5732821A (en) 1995-09-28 1998-03-31 Biomet, Inc. System for sterilizing medical devices
US5707392A (en) 1995-09-29 1998-01-13 Symbiosis Corporation Hermaphroditic stamped forceps jaw for disposable endoscopic biopsy forceps and method of making the same
US5796188A (en) 1995-10-05 1998-08-18 Xomed Surgical Products, Inc. Battery-powered medical instrument with power booster
US5804726A (en) 1995-10-16 1998-09-08 Mtd Products Inc. Acoustic signature analysis for a noisy enviroment
US5697542A (en) 1995-10-19 1997-12-16 Ethicon Endo-Surgery, Inc. Endoscopic surgical stapler with compact profile
US5809441A (en) 1995-10-19 1998-09-15 Case Corporation Apparatus and method of neutral start control of a power transmission
US5653721A (en) 1995-10-19 1997-08-05 Ethicon Endo-Surgery, Inc. Override mechanism for an actuator on a surgical instrument
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5997552A (en) 1995-10-20 1999-12-07 United States Surgical Corporation Meniscal fastener applying device
US5839369A (en) 1995-10-20 1998-11-24 Eastman Kodak Company Method of controlled laser imaging of zirconia alloy ceramic lithographic member to provide localized melting in exposed areas
GB9521772D0 (en) 1995-10-24 1996-01-03 Gyrus Medical Ltd An electrosurgical instrument
CA2188738A1 (en) 1995-10-27 1997-04-28 Lisa W. Heaton Surgical stapler having interchangeable loading units
US5651491A (en) 1995-10-27 1997-07-29 United States Surgical Corporation Surgical stapler having interchangeable loading units
US5941442A (en) 1995-10-27 1999-08-24 United States Surgical Surgical stapler
US5804936A (en) 1995-10-31 1998-09-08 Smith & Nephew, Inc. Motor controlled surgical system
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US5860953A (en) 1995-11-21 1999-01-19 Catheter Imaging Systems, Inc. Steerable catheter having disposable module and sterilizable handle and method of connecting same
JPH09149941A (en) 1995-12-01 1997-06-10 Tokai Rika Co Ltd Sensor for intra-corporeal medical instrument
US5658281A (en) 1995-12-04 1997-08-19 Valleylab Inc Bipolar electrosurgical scissors and method of manufacture
US5865638A (en) 1995-12-21 1999-02-02 Alcoa Fujikura Ltd. Electrical connector
US5971916A (en) 1995-12-27 1999-10-26 Koren; Arie Video camera cover
BR9612395A (en) 1995-12-29 1999-07-13 Gyrus Medical Ltd Electrosurgical instrument and an electrosurgical electrode set
US6090106A (en) 1996-01-09 2000-07-18 Gyrus Medical Limited Electrosurgical instrument
GB9600354D0 (en) 1996-01-09 1996-03-13 Gyrus Medical Ltd Electrosurgical instrument
US6013076A (en) 1996-01-09 2000-01-11 Gyrus Medical Limited Electrosurgical instrument
US5755717A (en) 1996-01-16 1998-05-26 Ethicon Endo-Surgery, Inc. Electrosurgical clamping device with improved coagulation feedback
US5738648A (en) 1996-01-23 1998-04-14 Valleylab Inc Method and apparatus for a valve and irrigator
US6015417A (en) 1996-01-25 2000-01-18 Reynolds, Jr.; Walker Surgical fastener
DE19603889C2 (en) 1996-02-03 1999-05-06 Aesculap Ag & Co Kg Surgical application device
US5624398A (en) 1996-02-08 1997-04-29 Symbiosis Corporation Endoscopic robotic surgical tools and methods
GB9602580D0 (en) 1996-02-08 1996-04-10 Dual Voltage Ltd Plastics flexible core
US5620289A (en) 1996-02-09 1997-04-15 Curry; Rinda M. Colored staples
JP2000507119A (en) 1996-02-13 2000-06-13 イマジン メディカル インコーポレイティド Surgical access device and method of configuring a surgical access device
US5749889A (en) 1996-02-13 1998-05-12 Imagyn Medical, Inc. Method and apparatus for performing biopsy
US5713128A (en) 1996-02-16 1998-02-03 Valleylab Inc Electrosurgical pad apparatus and method of manufacture
US5725536A (en) 1996-02-20 1998-03-10 Richard-Allen Medical Industries, Inc. Articulated surgical instrument with improved articulation control mechanism
CA2197614C (en) 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US5894843A (en) 1996-02-20 1999-04-20 Cardiothoracic Systems, Inc. Surgical method for stabilizing the beating heart during coronary artery bypass graft surgery
US5762255A (en) 1996-02-20 1998-06-09 Richard-Allan Medical Industries, Inc. Surgical instrument with improvement safety lockout mechanisms
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5797537A (en) 1996-02-20 1998-08-25 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved firing mechanism
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5891160A (en) 1996-02-23 1999-04-06 Cardiovascular Technologies, Llc Fastener delivery and deployment mechanism and method for placing the fastener in minimally invasive surgery
US5800379A (en) 1996-02-23 1998-09-01 Sommus Medical Technologies, Inc. Method for ablating interior sections of the tongue
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
DE29603447U1 (en) 1996-02-26 1996-04-18 Aesculap Ag Drilling machine for surgical purposes
US6099537A (en) 1996-02-26 2000-08-08 Olympus Optical Co., Ltd. Medical treatment instrument
US5951575A (en) 1996-03-01 1999-09-14 Heartport, Inc. Apparatus and methods for rotationally deploying needles
US5810721A (en) 1996-03-04 1998-09-22 Heartport, Inc. Soft tissue retractor and method for providing surgical access
US5673842A (en) 1996-03-05 1997-10-07 Ethicon Endo-Surgery Surgical stapler with locking mechanism
US5697543A (en) 1996-03-12 1997-12-16 Ethicon Endo-Surgery, Inc. Linear stapler with improved firing stroke
US5605272A (en) 1996-03-12 1997-02-25 Ethicon Endo-Surgery, Inc. Trigger mechanism for surgical instruments
US5810240A (en) 1996-03-15 1998-09-22 United States Surgical Corporation Surgical fastener applying device
IL117607A0 (en) 1996-03-21 1996-07-23 Dev Of Advanced Medical Produc Surgical stapler and method of surgical fastening
WO1997035533A1 (en) 1996-03-25 1997-10-02 Enrico Nicolo Surgical mesh prosthetic material and methods of use
US5747953A (en) 1996-03-29 1998-05-05 Stryker Corporation Cordless, battery operated surical tool
USD416089S (en) 1996-04-08 1999-11-02 Richard-Allan Medical Industries, Inc. Endoscopic linear stapling and dividing surgical instrument
US5785232A (en) 1996-04-17 1998-07-28 Vir Engineering Surgical stapler
US5728121A (en) 1996-04-17 1998-03-17 Teleflex Medical, Inc. Surgical grasper devices
US5836503A (en) 1996-04-22 1998-11-17 United States Surgical Corporation Insertion device for surgical apparatus
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US6050472A (en) 1996-04-26 2000-04-18 Olympus Optical Co., Ltd. Surgical anastomosis stapler
JP3791856B2 (en) 1996-04-26 2006-06-28 オリンパス株式会社 Medical suture device
US6221007B1 (en) 1996-05-03 2001-04-24 Philip S. Green System and method for endoscopic imaging and endosurgery
US5928137A (en) 1996-05-03 1999-07-27 Green; Philip S. System and method for endoscopic imaging and endosurgery
US5741305A (en) 1996-05-06 1998-04-21 Physio-Control Corporation Keyed self-latching battery pack for a portable defibrillator
DE19618291A1 (en) 1996-05-07 1998-01-29 Storz Karl Gmbh & Co Instrument with a bendable handle
US5823066A (en) 1996-05-13 1998-10-20 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US5797900A (en) * 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
WO1999050721A1 (en) 1997-09-19 1999-10-07 Massachusetts Institute Of Technology Robotic apparatus
US5772379A (en) 1996-05-24 1998-06-30 Evensen; Kenneth Self-filling staple fastener
JPH09323068A (en) 1996-06-07 1997-12-16 Chowa Kogyo Kk Method for controlling phase difference of eccentric weight for excitation and mechanism for controlling the same phase
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
GB2314274A (en) 1996-06-20 1997-12-24 Gyrus Medical Ltd Electrode construction for an electrosurgical instrument
US5735874A (en) 1996-06-21 1998-04-07 Ethicon Endo-Surgery, Inc. Variable position handle locking mechanism
US6911916B1 (en) 1996-06-24 2005-06-28 The Cleveland Clinic Foundation Method and apparatus for accessing medical data over a network
US5853366A (en) 1996-07-08 1998-12-29 Kelsey, Inc. Marker element for interstitial treatment and localizing device and method using same
US5782748A (en) 1996-07-10 1998-07-21 Symbiosis Corporation Endoscopic surgical instruments having detachable proximal and distal portions
US5702408A (en) 1996-07-17 1997-12-30 Ethicon Endo-Surgery, Inc. Articulating surgical instrument
US6024748A (en) 1996-07-23 2000-02-15 United States Surgical Corporation Singleshot anastomosis instrument with detachable loading unit and method
US6440146B2 (en) 1996-07-23 2002-08-27 United States Surgical Corporation Anastomosis instrument and method
US6083234A (en) 1996-07-23 2000-07-04 Surgical Dynamics, Inc. Anastomosis instrument and method
US5785647A (en) 1996-07-31 1998-07-28 United States Surgical Corporation Surgical instruments useful for spinal surgery
US6054142A (en) 1996-08-01 2000-04-25 Cyto Therapeutics, Inc. Biocompatible devices with foam scaffolds
US5830598A (en) 1996-08-15 1998-11-03 Ericsson Inc. Battery pack incorporating battery pack contact assembly and method
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
USD393067S (en) 1996-08-27 1998-03-31 Valleylab Inc. Electrosurgical pencil
US5873885A (en) 1996-08-29 1999-02-23 Storz Instrument Company Surgical handpiece
US5997528A (en) 1996-08-29 1999-12-07 Bausch & Lomb Surgical, Inc. Surgical system providing automatic reconfiguration
US6065679A (en) 1996-09-06 2000-05-23 Ivi Checkmate Inc. Modular transaction terminal
US6364888B1 (en) 1996-09-09 2002-04-02 Intuitive Surgical, Inc. Alignment of master and slave in a minimally invasive surgical apparatus
US5730758A (en) 1996-09-12 1998-03-24 Allgeyer; Dean O. Staple and staple applicator for use in skin fixation of catheters
US20050143769A1 (en) 2002-08-19 2005-06-30 White Jeffrey S. Ultrasonic dissector
US5833696A (en) 1996-10-03 1998-11-10 United States Surgical Corporation Apparatus for applying surgical clips
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US6109500A (en) 1996-10-04 2000-08-29 United States Surgical Corporation Lockout mechanism for a surgical stapler
US5843132A (en) 1996-10-07 1998-12-01 Ilvento; Joseph P. Self-contained, self-powered temporary intravenous pacing catheter assembly
US5851179A (en) 1996-10-10 1998-12-22 Nellcor Puritan Bennett Incorporated Pulse oximeter sensor with articulating head
JP3091420B2 (en) 1996-10-18 2000-09-25 株式会社貝印刃物開発センター Endoscope treatment tool
US5752965A (en) 1996-10-21 1998-05-19 Bio-Vascular, Inc. Apparatus and method for producing a reinforced surgical fastener suture line
US5769892A (en) 1996-10-22 1998-06-23 Mitroflow International Inc. Surgical stapler sleeve for reinforcing staple lines
US6043626A (en) 1996-10-29 2000-03-28 Ericsson Inc. Auxiliary battery holder with multicharger functionality
US6162537A (en) 1996-11-12 2000-12-19 Solutia Inc. Implantable fibers and medical articles
US6033105A (en) 1996-11-15 2000-03-07 Barker; Donald Integrated bone cement mixing and dispensing system
US6165184A (en) 1996-11-18 2000-12-26 Smith & Nephew, Inc. Systems methods and instruments for minimally invasive surgery
ATE320217T1 (en) 1996-11-18 2006-04-15 Univ Massachusetts SYSTEMS AND INSTRUMENTS FOR MINIMALLY INVASIVE SURGERY
US6159224A (en) 1996-11-27 2000-12-12 Yoon; Inbae Multiple needle suturing instrument and method
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
FR2756574B1 (en) 1996-11-29 1999-01-08 Staubli Lyon SELECTION DEVICE, THREE POSITION WEAPON MECHANICS AND WEAVING MACHINE EQUIPPED WITH SUCH WEAPON MECHANICS
US6165188A (en) 1996-12-02 2000-12-26 Angiotrax, Inc. Apparatus for percutaneously performing myocardial revascularization having controlled cutting depth and methods of use
US5899915A (en) 1996-12-02 1999-05-04 Angiotrax, Inc. Apparatus and method for intraoperatively performing surgery
US6162211A (en) 1996-12-05 2000-12-19 Thermolase Corporation Skin enhancement using laser light
CA2224366C (en) 1996-12-11 2006-10-31 Ethicon, Inc. Meniscal repair device
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US9050119B2 (en) 2005-12-20 2015-06-09 Intuitive Surgical Operations, Inc. Cable tensioning in a robotic surgical system
US6132368A (en) 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US8206406B2 (en) 1996-12-12 2012-06-26 Intuitive Surgical Operations, Inc. Disposable sterile surgical adaptor
GB9626512D0 (en) 1996-12-20 1997-02-05 Gyrus Medical Ltd An improved electrosurgical generator and system
US5966126A (en) 1996-12-23 1999-10-12 Szabo; Andrew J. Graphic user interface for database system
US6063098A (en) 1996-12-23 2000-05-16 Houser; Kevin Articulable ultrasonic surgical apparatus
US5849023A (en) 1996-12-27 1998-12-15 Mericle; Robert William Disposable remote flexible drive cutting apparatus
US6007521A (en) 1997-01-07 1999-12-28 Bidwell; Robert E. Drainage catheter system
DE19700402C2 (en) 1997-01-08 1999-12-30 Ferdinand Peer Instrument to compensate for hand tremors when manipulating fine structures
US6074401A (en) 1997-01-09 2000-06-13 Coalescent Surgical, Inc. Pinned retainer surgical fasteners, instruments and methods for minimally invasive vascular and endoscopic surgery
US5931847A (en) 1997-01-09 1999-08-03 Ethicon Endo-Surgery, Inc. Surgical cutting instrument with improved cutting edge
JPH10200699A (en) 1997-01-16 1998-07-31 Ricoh Co Ltd Servo controller in scanner of image formation device
US5769748A (en) 1997-01-16 1998-06-23 Hughes Electronics Corporation Gimbal employing differential combination of offset drives
US6485667B1 (en) 1997-01-17 2002-11-26 Rayonier Products And Financial Services Company Process for making a soft, strong, absorbent material for use in absorbent articles
GB2323744B (en) 1997-01-17 1999-03-24 Connell Anne O Method of supporting unknown addresses in an interface for data transmission in an asynchronous transfer mode
US5784934A (en) 1997-01-30 1998-07-28 Shinano Pneumatic Industries, Inc. Ratchet wrench with pivotable head
US5908402A (en) 1997-02-03 1999-06-01 Valleylab Method and apparatus for detecting tube occlusion in argon electrosurgery system
US6376971B1 (en) 1997-02-07 2002-04-23 Sri International Electroactive polymer electrodes
US6545384B1 (en) 1997-02-07 2003-04-08 Sri International Electroactive polymer devices
US5899824A (en) 1997-02-12 1999-05-04 Accudart Corporation Snap-fit dart and adapter
US5797637A (en) 1997-02-21 1998-08-25 Ervin; Scott P. Roll mover and method of using
DE19707373C1 (en) 1997-02-25 1998-02-05 Storz Karl Gmbh & Co Releasable connection of two tube shaft instruments or instrument parts
US5907211A (en) 1997-02-28 1999-05-25 Massachusetts Institute Of Technology High-efficiency, large stroke electromechanical actuator
IT1291164B1 (en) 1997-03-04 1998-12-29 Coral Spa UNIVERSAL DUCT FOR THE CONVEYANCE OF HARMFUL SMOKES OR GAS FROM A WORKING PLACE.
CA2666051A1 (en) 1997-03-05 1998-09-11 The Trustees Of Columbia University In The City Of New York Electrothermal device for sealing and joining or cutting tissue
US5810821A (en) 1997-03-28 1998-09-22 Biomet Inc. Bone fixation screw system
PT922435E (en) 1997-03-31 2007-11-02 Igaki Iryo Sekkei Kk Suture retaining member for use in medical treatment
US6050172A (en) 1997-04-04 2000-04-18 Emhart Glass S.A. Pneumatically operated mechanism
US5846254A (en) 1997-04-08 1998-12-08 Ethicon Endo-Surgery, Inc. Surgical instrument for forming a knot
US5843169A (en) 1997-04-08 1998-12-01 Taheri; Syde A. Apparatus and method for stapling graft material to a blood vessel wall while preserving the patency of orifices
US6033399A (en) 1997-04-09 2000-03-07 Valleylab, Inc. Electrosurgical generator with adaptive power control
US6270916B1 (en) 1997-04-10 2001-08-07 Alcatel Complete discharge device for lithium battery
USD462758S1 (en) 1997-04-14 2002-09-10 Baxter International Inc. Pistol grip manually operable irrigation surgical instrument
RU2144791C1 (en) 1997-04-14 2000-01-27 Дубровский Аркадий Вениаминович Gently sloping turning device
TW473600B (en) 1997-04-15 2002-01-21 Swagelok Co Tube fitting, rear ferrule for a two ferrule tube fitting and ferrule for a tube fitting and a non-flared tube fitting
US5919198A (en) 1997-04-17 1999-07-06 Ethicon Endo-Surgery, Inc. Disposable cartridge with drivers
DE29720616U1 (en) 1997-04-18 1998-08-20 Kaltenbach & Voigt Handpiece for medical purposes, in particular for a medical or dental treatment facility, preferably for machining a tooth root canal
GB9708268D0 (en) 1997-04-24 1997-06-18 Gyrus Medical Ltd An electrosurgical instrument
JPH10296660A (en) 1997-04-25 1998-11-10 Hitachi Koki Co Ltd Battery type portable tool
US6157169A (en) 1997-04-30 2000-12-05 Samsung Electronics Co., Ltd. Monitoring technique for accurately determining residual capacity of a battery
US5906577A (en) 1997-04-30 1999-05-25 University Of Massachusetts Device, surgical access port, and method of retracting an incision into an opening and providing a channel through the incision
US6017358A (en) 1997-05-01 2000-01-25 Inbae Yoon Surgical instrument with multiple rotatably mounted offset end effectors
US6037724A (en) 1997-05-01 2000-03-14 Osteomed Corporation Electronic controlled surgical power tool
US6867248B1 (en) 1997-05-12 2005-03-15 Metabolix, Inc. Polyhydroxyalkanoate compositions having controlled degradation rates
USH1904H (en) 1997-05-14 2000-10-03 Ethicon Endo-Surgery, Inc. Electrosurgical hemostatic method and device
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
DE19721076A1 (en) 1997-05-20 1998-11-26 Trw Repa Gmbh Method for producing a rope section with a fastening element for a vehicle occupant restraint system, and rope section produced with this method
US5817091A (en) 1997-05-20 1998-10-06 Medical Scientific, Inc. Electrosurgical device having a visible indicator
US5997952A (en) 1997-05-23 1999-12-07 The Dow Chemical Company Fast-setting latex coating and formulations
US5899914A (en) 1997-06-11 1999-05-04 Endius Incorporated Surgical instrument
US5851212A (en) 1997-06-11 1998-12-22 Endius Incorporated Surgical instrument
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US5947996A (en) 1997-06-23 1999-09-07 Medicor Corporation Yoke for surgical instrument
US5849020A (en) 1997-06-30 1998-12-15 Ethicon Endo-Surgery, Inc. Inductively coupled electrosurgical instrument
US5951552A (en) 1997-06-30 1999-09-14 Ethicon Endo-Surgery, Inc. Capacitively coupled cordless electrosurgical instrument
US7021878B1 (en) 1997-07-03 2006-04-04 Trackers Company Categorizing fasteners and construction connectors using visual identifiers
US6049145A (en) 1997-07-07 2000-04-11 Motorola, Inc. Tamper proof safety circuit
FR2765794B1 (en) 1997-07-11 1999-09-03 Joel Bardeau DRAINAGE DEVICE, PARTICULARLY FOR COVERING
US6338737B1 (en) 1997-07-17 2002-01-15 Haviv Toledano Flexible annular stapler for closed surgery of hollow organs
JP2001510066A (en) 1997-07-18 2001-07-31 ガイラス・メディカル・リミテッド Electrosurgical instrument
US7278994B2 (en) 1997-07-18 2007-10-09 Gyrus Medical Limited Electrosurgical instrument
GB9900964D0 (en) 1999-01-15 1999-03-10 Gyrus Medical Ltd An electrosurgical system
US5937951A (en) 1997-07-18 1999-08-17 Ethicon Endo-Surgery, Inc. Skin stapler with rack and pinion staple feed mechanism
US6491690B1 (en) 1997-07-18 2002-12-10 Gyrus Medical Limited Electrosurgical instrument
JP2001510068A (en) 1997-07-18 2001-07-31 ガイラス・メディカル・リミテッド Electrosurgical instrument
GB2327352A (en) 1997-07-18 1999-01-27 Gyrus Medical Ltd Electrosurgical instrument
US6923803B2 (en) 1999-01-15 2005-08-02 Gyrus Medical Limited Electrosurgical system and method
AU8572598A (en) 1997-07-24 1999-02-16 James F. Mcguckin Jr. Stationary central tunnel dialysis catheter with optional separable sheath
AU8586298A (en) 1997-07-25 1999-02-16 University Of Massachusetts Designed protein pores as components for biosensors
EP1579883A3 (en) 1997-07-25 2005-10-12 Minnesota Innovative Technologies & Instruments Corporation (MITI) Control device for supplying supplemental respiratory oxygen
US6532958B1 (en) 1997-07-25 2003-03-18 Minnesota Innovative Technologies & Instruments Corporation Automated control and conservation of supplemental respiratory oxygen
US6371114B1 (en) 1998-07-24 2002-04-16 Minnesota Innovative Technologies & Instruments Corporation Control device for supplying supplemental respiratory oxygen
US5948030A (en) 1997-07-25 1999-09-07 General Motors Corporation Steering angle determaination method and apparatus
AU728803B2 (en) 1997-07-29 2001-01-18 Thomas & Betts International, Inc. Improved cable tie dispensing apparatus
JP3811291B2 (en) 1998-07-02 2006-08-16 オリンパス株式会社 Endoscope system
US5878938A (en) 1997-08-11 1999-03-09 Ethicon Endo-Surgery, Inc. Surgical stapler with improved locking mechanism
US5904702A (en) 1997-08-14 1999-05-18 University Of Massachusetts Instrument for thoracic surgical procedures
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6024764A (en) 1997-08-19 2000-02-15 Intermedics, Inc. Apparatus for imparting physician-determined shapes to implantable tubular devices
US6083223A (en) 1997-08-28 2000-07-04 Baker; James A. Methods and apparatus for welding blood vessels
AUPO889497A0 (en) 1997-09-01 1997-09-25 N.J. Phillips Pty. Limited An applicator
US6267761B1 (en) 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
ES2335760T3 (en) 1997-09-10 2010-04-05 Covidien Ag BIPOLAR ELECTRODE INSTRUMENT.
WO1999012483A1 (en) 1997-09-11 1999-03-18 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
US6017356A (en) 1997-09-19 2000-01-25 Ethicon Endo-Surgery Inc. Method for using a trocar for penetration and skin incision
US6214001B1 (en) 1997-09-19 2001-04-10 Oratec Interventions, Inc. Electrocauterizing tool for orthopedic shave devices
US20040236352A1 (en) 1997-09-22 2004-11-25 Yulun Wang Method and apparatus for performing minimally invasive cardiac procedures
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5921956A (en) 1997-09-24 1999-07-13 Smith & Nephew, Inc. Surgical instrument
US6173074B1 (en) 1997-09-30 2001-01-09 Lucent Technologies, Inc. Acoustic signature recognition and identification
US6174318B1 (en) 1998-04-23 2001-01-16 Scimed Life Systems, Inc. Basket with one or more moveable legs
EP1018949B1 (en) 1997-10-02 2005-08-24 Boston Scientific Limited Device for delivering fiber material into a body
GB2329840C (en) 1997-10-03 2007-10-05 Johnson & Johnson Medical Biopolymer sponge tubes
US5944172A (en) 1997-10-06 1999-08-31 Allen-Bradley Company, Llc Biasing assembly for a switching device
US6165173A (en) 1997-10-06 2000-12-26 Somnus Medical Technologies, Inc. Memory for regulating device utilization and behavior
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
US7030904B2 (en) 1997-10-06 2006-04-18 Micro-Medical Devices, Inc. Reduced area imaging device incorporated within wireless endoscopic devices
EP1027000A4 (en) 1997-10-09 2001-09-12 Camran Nezhat Methods and systems for organ resection
US6206894B1 (en) 1997-10-09 2001-03-27 Ethicon Endo-Surgery, Inc. Electrically powered needle holder to assist in suturing
US6171316B1 (en) 1997-10-10 2001-01-09 Origin Medsystems, Inc. Endoscopic surgical instrument for rotational manipulation
US5947984A (en) 1997-10-10 1999-09-07 Ethicon Endo-Surger, Inc. Ultrasonic clamp coagulator apparatus having force limiting clamping mechanism
US5893835A (en) 1997-10-10 1999-04-13 Ethicon Endo-Surgery, Inc. Ultrasonic clamp coagulator apparatus having dual rotational positioning
US6241723B1 (en) 1997-10-15 2001-06-05 Team Medical Llc Electrosurgical system
US6117148A (en) 1997-10-17 2000-09-12 Ravo; Biagio Intraluminal anastomotic device
US6224617B1 (en) 1997-10-17 2001-05-01 Angiotrax, Inc. Methods and apparatus for defibrillating a heart refractory to electrical stimuli
US6511468B1 (en) 1997-10-17 2003-01-28 Micro Therapeutics, Inc. Device and method for controlling injection of liquid embolic composition
US6142149A (en) 1997-10-23 2000-11-07 Steen; Scot Kenneth Oximetry device, open oxygen delivery system oximetry device and method of controlling oxygen saturation
US5903117A (en) 1997-10-28 1999-05-11 Xomed Surgical Products, Inc. Method and adaptor for connecting a powered surgical instrument to a medical console
JP4121615B2 (en) 1997-10-31 2008-07-23 オリンパス株式会社 Endoscope
US6086600A (en) 1997-11-03 2000-07-11 Symbiosis Corporation Flexible endoscopic surgical instrument for invagination and fundoplication
US6050996A (en) 1997-11-12 2000-04-18 Sherwood Services Ag Bipolar electrosurgical instrument with replaceable electrodes
US6187003B1 (en) 1997-11-12 2001-02-13 Sherwood Services Ag Bipolar electrosurgical instrument for sealing vessels
US7435249B2 (en) 1997-11-12 2008-10-14 Covidien Ag Electrosurgical instruments which reduces collateral damage to adjacent tissue
US5946978A (en) 1997-11-13 1999-09-07 Shimano Inc. Cable adjustment device
US6228083B1 (en) 1997-11-14 2001-05-08 Sherwood Services Ag Laparoscopic bipolar electrosurgical instrument
FR2771145B1 (en) 1997-11-19 2000-02-25 Car X FLEXIBLE SHEATH WITH BELLOWS FOR ARTICULATED JOINT AND TOOLS FOR PLACING THIS SHEATH
US6010513A (en) 1997-11-26 2000-01-04 Bionx Implants Oy Device for installing a tissue fastener
US6273876B1 (en) * 1997-12-05 2001-08-14 Intratherapeutics, Inc. Catheter segments having circumferential supports with axial projection
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6068627A (en) 1997-12-10 2000-05-30 Valleylab, Inc. Smart recognition apparatus and method
US6171330B1 (en) 1997-12-15 2001-01-09 Sofradim Production Pneumatic surgical instrument for the distribution and placement of connecting or fastening means
US6472784B2 (en) 1997-12-16 2002-10-29 Fred N. Miekka Methods and apparatus for increasing power of permanent magnet motors
DE69826110T2 (en) 1997-12-16 2005-01-20 B. Braun Celsa MEDICAL DEVICE FOR TREATING DAMAGE TO AN ANATOMICAL LINE
US6228089B1 (en) 1997-12-19 2001-05-08 Depuy International Limited Device for positioning and guiding a surgical instrument during orthopaedic interventions
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
JPH11178833A (en) 1997-12-24 1999-07-06 Olympus Optical Co Ltd Ultrasonic treatment implement
US6033427A (en) 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6245081B1 (en) 1998-01-09 2001-06-12 Steven M. Bowman Suture buttress
US6620166B1 (en) 1998-01-09 2003-09-16 Ethicon, Inc. Suture buttress system
US6156056A (en) 1998-01-09 2000-12-05 Ethicon, Inc. Suture buttress
GB2336214A (en) 1998-01-16 1999-10-13 David William Taylor Preventionof multiple use of limited use devices
US6096074A (en) 1998-01-27 2000-08-01 United States Surgical Stapling apparatus and method for heart valve replacement
US6228454B1 (en) 1998-02-02 2001-05-08 Fort James Corporation Sheet material having weakness zones and a system for dispensing the material
US6296640B1 (en) 1998-02-06 2001-10-02 Ethicon Endo-Surgery, Inc. RF bipolar end effector for use in electrosurgical instruments
US6165175A (en) 1999-02-02 2000-12-26 Ethicon Endo-Surgery, Inc. RF bipolar mesentery takedown device including improved bipolar end effector
US7052499B2 (en) 1998-02-18 2006-05-30 Walter Lorenz Surgical, Inc. Method and apparatus for bone fracture fixation
US6645201B1 (en) 1998-02-19 2003-11-11 Curon Medical, Inc. Systems and methods for treating dysfunctions in the intestines and rectum
US20020087048A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US7775972B2 (en) 1998-02-24 2010-08-17 Hansen Medical, Inc. Flexible instrument
US20020087148A1 (en) 1998-02-24 2002-07-04 Brock David L. Flexible instrument
US8414598B2 (en) 1998-02-24 2013-04-09 Hansen Medical, Inc. Flexible instrument
US7090683B2 (en) 1998-02-24 2006-08-15 Hansen Medical, Inc. Flexible instrument
US20020128662A1 (en) 1998-02-24 2002-09-12 Brock David L. Surgical instrument
US7713190B2 (en) 1998-02-24 2010-05-11 Hansen Medical, Inc. Flexible instrument
US7789875B2 (en) 1998-02-24 2010-09-07 Hansen Medical, Inc. Surgical instruments
US7371210B2 (en) 1998-02-24 2008-05-13 Hansen Medical, Inc. Flexible instrument
US6183442B1 (en) 1998-03-02 2001-02-06 Board Of Regents Of The University Of Texas System Tissue penetrating device and methods for using same
US5909062A (en) 1998-03-10 1999-06-01 Krietzman; Mark Howard Secondary power supply for use with handheld illumination devices
RU2141279C1 (en) 1998-03-11 1999-11-20 Кондратюк Георгий Константинович Multipurpose attachment
US6099551A (en) 1998-03-12 2000-08-08 Shelhigh, Inc. Pericardial strip and stapler assembly for dividing and sealing visceral tissues and method of use thereof
US7491232B2 (en) 1998-09-18 2009-02-17 Aptus Endosystems, Inc. Catheter-based fastener implantation apparatus and methods with implantation force resolution
US6042601A (en) 1998-03-18 2000-03-28 United States Surgical Corporation Apparatus for vascular hole closure
US6592538B1 (en) 1998-03-20 2003-07-15 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Dynamic orthopedic braces
US20020025921A1 (en) 1999-07-26 2002-02-28 Petito George D. Composition and method for growing, protecting, and healing tissues and cells
AU3157599A (en) 1998-03-26 1999-10-18 Gyrus Medical Limited An electrosurgical instrument
GB9807303D0 (en) 1998-04-03 1998-06-03 Gyrus Medical Ltd An electrode assembly for an electrosurgical instrument
GB2335858A (en) 1998-04-03 1999-10-06 Gyrus Medical Ltd Resectoscope having pivoting electrode assembly
US6347241B2 (en) 1999-02-02 2002-02-12 Senorx, Inc. Ultrasonic and x-ray detectable biopsy site marker and apparatus for applying it
US6482217B1 (en) 1998-04-10 2002-11-19 Endicor Medical, Inc. Neuro thrombectomy catheter
US6249076B1 (en) 1998-04-14 2001-06-19 Massachusetts Institute Of Technology Conducting polymer actuator
US6047861A (en) 1998-04-15 2000-04-11 Vir Engineering, Inc. Two component fluid dispenser
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US6023641A (en) 1998-04-29 2000-02-08 Medtronic, Inc. Power consumption reduction in medical devices employing multiple digital signal processors
US6003517A (en) 1998-04-30 1999-12-21 Ethicon Endo-Surgery, Inc. Method for using an electrosurgical device on lung tissue
US6010520A (en) 1998-05-01 2000-01-04 Pattison; C. Phillip Double tapered esophageal dilator
US6030384A (en) 1998-05-01 2000-02-29 Nezhat; Camran Bipolar surgical instruments having focused electrical fields
US6514252B2 (en) 1998-05-01 2003-02-04 Perfect Surgical Techniques, Inc. Bipolar surgical instruments having focused electrical fields
US6171305B1 (en) 1998-05-05 2001-01-09 Cardiac Pacemakers, Inc. RF ablation apparatus and method having high output impedance drivers
US6558378B2 (en) 1998-05-05 2003-05-06 Cardiac Pacemakers, Inc. RF ablation system and method having automatic temperature control
US6517566B1 (en) 1998-05-11 2003-02-11 Surgical Connections, Inc. Devices and methods for treating e.g. urinary stress incontinence
US6062360A (en) 1998-05-13 2000-05-16 Brunswick Corporation Synchronizer for a gear shift mechanism for a marine propulsion system
US6165929A (en) 1998-05-18 2000-12-26 Phillips Petroleum Company Compositions that can produce polymers
US6261679B1 (en) 1998-05-22 2001-07-17 Kimberly-Clark Worldwide, Inc. Fibrous absorbent material and methods of making the same
US20050283188A1 (en) 1998-05-29 2005-12-22 By-Pass, Inc. Vascular closure device
EP1083835A4 (en) 1998-05-29 2004-06-02 By Pass Inc Methods and devices for vascular surgery
US6309403B1 (en) 1998-06-01 2001-10-30 Board Of Trustees Operating Michigan State University Dexterous articulated linkage for surgical applications
US6361559B1 (en) 1998-06-10 2002-03-26 Converge Medical, Inc. Thermal securing anastomosis systems
JP2000002228A (en) 1998-06-12 2000-01-07 Chuo Spring Co Ltd Terminal end structure of pull cable
US6478210B2 (en) 2000-10-25 2002-11-12 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6601749B2 (en) 1998-06-19 2003-08-05 Scimed Life Systems, Inc. Multi fire full thickness resectioning device
US6126058A (en) 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6585144B2 (en) 1998-06-19 2003-07-01 Acimed Life Systems, Inc. Integrated surgical staple retainer for a full thickness resectioning device
US6629630B2 (en) 1998-06-19 2003-10-07 Scimed Life Systems, Inc. Non-circular resection device and endoscope
US6018227A (en) 1998-06-22 2000-01-25 Stryker Corporation Battery charger especially useful with sterilizable, rechargeable battery packs
US5941890A (en) 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
CA2276313C (en) 1998-06-29 2008-01-29 Ethicon Endo-Surgery, Inc. Balanced ultrasonic blade including a plurality of balance asymmetries
CA2276316C (en) 1998-06-29 2008-02-12 Ethicon Endo-Surgery, Inc. Method of balancing asymmetric ultrasonic surgical blades
US6309400B2 (en) 1998-06-29 2001-10-30 Ethicon Endo-Surgery, Inc. Curved ultrasonic blade having a trapezoidal cross section
US6066132A (en) 1998-06-30 2000-05-23 Ethicon, Inc. Articulating endometrial ablation device
US6228098B1 (en) 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6352503B1 (en) 1998-07-17 2002-03-05 Olympus Optical Co., Ltd. Endoscopic surgery apparatus
JP3806518B2 (en) 1998-07-17 2006-08-09 オリンパス株式会社 Endoscopic treatment device
US5977746A (en) 1998-07-21 1999-11-02 Stryker Corporation Rechargeable battery pack and method for manufacturing same
JP2000055752A (en) 1998-08-03 2000-02-25 Kayaba Ind Co Ltd Torque detecting device
DE69940850D1 (en) 1998-08-04 2009-06-18 Intuitive Surgical Inc Articular device for positioning a manipulator for robotic surgery
US6818018B1 (en) 1998-08-14 2004-11-16 Incept Llc In situ polymerizable hydrogels
DE19836950B4 (en) 1998-08-17 2004-09-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Surgical instrument in the form of a suturing device
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6050989A (en) 1998-08-24 2000-04-18 Linvatec Corporation Angularly adjustable powered surgical handpiece
US6458147B1 (en) 1998-11-06 2002-10-01 Neomend, Inc. Compositions, systems, and methods for arresting or controlling bleeding or fluid leakage in body tissue
USH2086H1 (en) 1998-08-31 2003-10-07 Kimberly-Clark Worldwide Fine particle liquid filtration media
US6131790A (en) 1998-09-02 2000-10-17 Piraka; Hadi A. Surgical stapler and cartridge
DE19840163A1 (en) 1998-09-03 2000-03-16 Webasto Karosseriesysteme Drive device and method for adjusting a vehicle part
US6924781B1 (en) 1998-09-11 2005-08-02 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
FR2783429B1 (en) 1998-09-18 2002-04-12 Imedex Biomateriaux BICOMPOSITE COLLAGENIC MATERIAL, ITS OBTAINING PROCESS AND ITS THERAPEUTIC APPLICATIONS
US6445530B1 (en) 1998-09-25 2002-09-03 Seagate Technology Llc Class AB H-bridge using current sensing MOSFETs
JP3766552B2 (en) 1998-10-01 2006-04-12 富士写真フイルム株式会社 Film unit with lens with data imprinting device
US6262216B1 (en) 1998-10-13 2001-07-17 Affymetrix, Inc. Functionalized silicon compounds and methods for their synthesis and use
US6245084B1 (en) 1998-10-20 2001-06-12 Promex, Inc. System for controlling a motor driven surgical cutting instrument
US7137980B2 (en) 1998-10-23 2006-11-21 Sherwood Services Ag Method and system for controlling output of RF medical generator
CA2347633C (en) 1998-10-23 2011-01-04 Sherwood Services Ag Endoscopic bipolar electrosurgical forceps
US5951574A (en) 1998-10-23 1999-09-14 Ethicon Endo-Surgery, Inc. Multiple clip applier having a split feeding mechanism
EP1123051A4 (en) 1998-10-23 2003-01-02 Applied Med Resources Surgical grasper with inserts and method of using same
US7267677B2 (en) 1998-10-23 2007-09-11 Sherwood Services Ag Vessel sealing instrument
US6398779B1 (en) 1998-10-23 2002-06-04 Sherwood Services Ag Vessel sealing system
ES2251260T3 (en) 1998-10-23 2006-04-16 Sherwood Services Ag FORCEPS OF OBTURATION OF OPEN GLASSES WITH MEMBER OF BUMPER.
US6270508B1 (en) 1998-10-26 2001-08-07 Charles H. Klieman End effector and instrument for endoscopic and general surgery needle control
DE19851291A1 (en) 1998-11-06 2000-01-05 Siemens Ag Data input unit suitable for use in operating theatre
US6249105B1 (en) 1998-11-13 2001-06-19 Neal Andrews System and method for detecting performance components of a battery pack
US6887710B2 (en) 1998-11-13 2005-05-03 Mesosystems Technology, Inc. Robust system for screening mail for biological agents
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6398726B1 (en) 1998-11-20 2002-06-04 Intuitive Surgical, Inc. Stabilizer for robotic beating-heart surgery
US6102271A (en) 1998-11-23 2000-08-15 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US6142933A (en) 1998-11-23 2000-11-07 Ethicon Endo-Surgery, Inc. Anoscope for hemorrhoidal surgery
US6167185A (en) 1998-11-24 2000-12-26 Jds Fitel Inc. Adjustable optical attenuator
US7537564B2 (en) 1998-12-01 2009-05-26 Atropos Limited Wound retractor device
US6309397B1 (en) 1999-12-02 2001-10-30 Sri International Accessories for minimally invasive robotic surgery and methods
JP2000171730A (en) 1998-12-08 2000-06-23 Olympus Optical Co Ltd Battery type portable endoscopic device
US7125403B2 (en) 1998-12-08 2006-10-24 Intuitive Surgical In vivo accessories for minimally invasive robotic surgery
JP4233656B2 (en) 1998-12-11 2009-03-04 ジョンソン・エンド・ジョンソン株式会社 Automatic anastomosis instrument and guide balloon attachable to the anastomosis instrument
US6828902B2 (en) 1998-12-14 2004-12-07 Soundcraft, Inc. Wireless data input to RFID reader
US6126670A (en) 1998-12-16 2000-10-03 Medtronic, Inc. Cordless surgical handpiece with disposable battery; and method
DE19858512C1 (en) 1998-12-18 2000-05-25 Storz Karl Gmbh & Co Kg Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts
DE19860611C1 (en) 1998-12-29 2000-03-23 Fraunhofer Ges Forschung Particulate polymer foam product molding process for impact resisting cushions, models, prototypes, involving shaping and microwave fusing of foam particles in evacuated bag
US6147135A (en) 1998-12-31 2000-11-14 Ethicon, Inc. Fabrication of biocompatible polymeric composites
US6113618A (en) 1999-01-13 2000-09-05 Stryker Corporation Surgical saw with spring-loaded, low-noise cutting blade
US20040030333A1 (en) 1999-01-15 2004-02-12 Gyrus Medical Ltd. Electrosurgical system and method
US7001380B2 (en) 1999-01-15 2006-02-21 Gyrus Medical Limited Electrosurgical system and method
US6554861B2 (en) 1999-01-19 2003-04-29 Gyrus Ent L.L.C. Otologic prosthesis
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US8529588B2 (en) 1999-01-25 2013-09-10 Applied Medical Resources Corporation Multiple clip applier apparatus and method
DE19905085A1 (en) 1999-01-29 2000-08-03 Black & Decker Inc N D Ges D S Battery operated, hand-held power tool
US6387113B1 (en) 1999-02-02 2002-05-14 Biomet, Inc. Method and apparatus for repairing a torn meniscus
US6174309B1 (en) 1999-02-11 2001-01-16 Medical Scientific, Inc. Seal & cut electrosurgical instrument
DE19906191A1 (en) 1999-02-15 2000-08-17 Ingo F Herrmann Mouldable endoscope for transmitting light and images with supplementary device has non-round cross section along longitudinal section for inserting in human or animal body opening
US6295888B1 (en) 1999-02-16 2001-10-02 Shimano Inc. Gear indicator for a bicycle
US6083242A (en) 1999-02-17 2000-07-04 Holobeam, Inc. Surgical staples with deformation zones of non-uniform cross section
US6065919A (en) 1999-02-18 2000-05-23 Peck; Philip D. Self-tapping screw with an improved thread design
US6806808B1 (en) 1999-02-26 2004-10-19 Sri International Wireless event-recording device with identification codes
US6582427B1 (en) 1999-03-05 2003-06-24 Gyrus Medical Limited Electrosurgery system
GB9905211D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system and instrument
GB9905210D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgical system
US20020022836A1 (en) 1999-03-05 2002-02-21 Gyrus Medical Limited Electrosurgery system
US6666875B1 (en) 1999-03-05 2003-12-23 Olympus Optical Co., Ltd. Surgical apparatus permitting recharge of battery-driven surgical instrument in noncontact state
US6398781B1 (en) 1999-03-05 2002-06-04 Gyrus Medical Limited Electrosurgery system
GB9905209D0 (en) 1999-03-05 1999-04-28 Gyrus Medical Ltd Electrosurgery system
US6190386B1 (en) 1999-03-09 2001-02-20 Everest Medical Corporation Electrosurgical forceps with needle electrodes
US6179776B1 (en) 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6159146A (en) 1999-03-12 2000-12-12 El Gazayerli; Mohamed Mounir Method and apparatus for minimally-invasive fundoplication
US6512360B1 (en) 1999-03-15 2003-01-28 Amiteq Co., Ltd Self-induction-type stroke sensor
DE19912038C1 (en) 1999-03-17 2001-01-25 Storz Karl Gmbh & Co Kg Handle for a medical instrument
JP2000271141A (en) 1999-03-23 2000-10-03 Olympus Optical Co Ltd Operation device
EP2305324B1 (en) 1999-03-25 2014-09-17 Metabolix, Inc. Medical devices and applications of polyhydroxyalkanoate polymers
US6416486B1 (en) 1999-03-31 2002-07-09 Ethicon Endo-Surgery, Inc. Ultrasonic surgical device having an embedding surface and a coagulating surface
AU4187800A (en) 1999-03-31 2000-10-16 Peter L. Rosenblatt Systems and methods for soft tissue reconstruction
US6086544A (en) 1999-03-31 2000-07-11 Ethicon Endo-Surgery, Inc. Control apparatus for an automated surgical biopsy device
US6120462A (en) 1999-03-31 2000-09-19 Ethicon Endo-Surgery, Inc. Control method for an automated surgical biopsy device
JP2000287987A (en) 1999-04-01 2000-10-17 Olympus Optical Co Ltd Chargeable battery type medical treatment apparatus
DE19915291A1 (en) 1999-04-03 2000-10-05 Gardena Kress & Kastner Gmbh Pipe connector comprises two connecting sections and locking sleeve which can be slid back to undo joint, sleeve and one part of the coupling having stops which fit into sockets on other part to lock connector together
US6228084B1 (en) 1999-04-06 2001-05-08 Kirwan Surgical Products, Inc. Electro-surgical forceps having recessed irrigation channel
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US6182673B1 (en) 1999-04-12 2001-02-06 Mike Kindermann Marketing/Vertriebs Gmbh Dump facility for cassette sewage tanks
US6308089B1 (en) 1999-04-14 2001-10-23 O.B. Scientific, Inc. Limited use medical probe
US6248117B1 (en) 1999-04-16 2001-06-19 Vital Access Corp Anastomosis apparatus for use in intraluminally directed vascular anastomosis
US6689153B1 (en) 1999-04-16 2004-02-10 Orthopaedic Biosystems Ltd, Inc. Methods and apparatus for a coated anchoring device and/or suture
JP2000304153A (en) 1999-04-19 2000-11-02 Honda Motor Co Ltd Electromagnet actuator driving device
US6319510B1 (en) 1999-04-20 2001-11-20 Alayne Yates Gum pad for delivery of medication to mucosal tissues
US6325805B1 (en) 1999-04-23 2001-12-04 Sdgi Holdings, Inc. Shape memory alloy staple
US20050222665A1 (en) 1999-04-23 2005-10-06 Ernest Aranyi Endovascular fastener applicator
US6181105B1 (en) 1999-04-26 2001-01-30 Exonix Corporation Self contained transportable power source maintenance and charge
TNSN00086A1 (en) 1999-04-26 2002-05-30 Int Paper Co INDUCTION SEALING JAW
US6383201B1 (en) 1999-05-14 2002-05-07 Tennison S. Dong Surgical prosthesis for repairing a hernia
JP4503725B2 (en) 1999-05-17 2010-07-14 オリンパス株式会社 Endoscopic treatment device
AU5150600A (en) 1999-05-18 2000-12-05 Vascular Innovations, Inc. Tissue punch
US6921412B1 (en) 1999-05-18 2005-07-26 Cryolife, Inc. Self-supporting, shaped, three-dimensional biopolymeric materials and methods
US6762339B1 (en) 1999-05-21 2004-07-13 3M Innovative Properties Company Hydrophilic polypropylene fibers having antimicrobial activity
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
US6547786B1 (en) 1999-05-21 2003-04-15 Gyrus Medical Electrosurgery system and instrument
US6454781B1 (en) 1999-05-26 2002-09-24 Ethicon Endo-Surgery, Inc. Feedback control in an ultrasonic surgical instrument for improved tissue effects
DE19924311A1 (en) 1999-05-27 2000-11-30 Walter A Rau Clip cutting device to cut body tissue and place staple on at least one side of cut line; has clamp head with staples and pressure plate part, with collagen and fibrin fleece underlay covering staples
US6409724B1 (en) 1999-05-28 2002-06-25 Gyrus Medical Limited Electrosurgical instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
US8229549B2 (en) 2004-07-09 2012-07-24 Tyco Healthcare Group Lp Surgical imaging device
US6981941B2 (en) 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7751870B2 (en) 2002-01-30 2010-07-06 Power Medical Interventions, Llc Surgical imaging device
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6517565B1 (en) 1999-06-02 2003-02-11 Power Medical Interventions, Inc. Carriage assembly for controlling a steering wire steering mechanism within a flexible shaft
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6491201B1 (en) 2000-02-22 2002-12-10 Power Medical Interventions, Inc. Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US7695485B2 (en) 2001-11-30 2010-04-13 Power Medical Interventions, Llc Surgical device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US6223833B1 (en) 1999-06-03 2001-05-01 One World Technologies, Inc. Spindle lock and chipping mechanism for hammer drill
EP1058177A1 (en) 1999-06-04 2000-12-06 Alps Electric Co., Ltd. Input device for game machine
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
SE519023C2 (en) 1999-06-21 2002-12-23 Micromuscle Ab Catheter-borne microsurgical tool kit
US7637905B2 (en) 2003-01-15 2009-12-29 Usgi Medical, Inc. Endoluminal tool deployment system
FR2795301B1 (en) 1999-06-25 2001-08-31 Prec ENDOSCOPIC SURGERY INSTRUMENT
US6257351B1 (en) 1999-06-29 2001-07-10 Microaire Surgical Instruments, Inc. Powered surgical instrument having locking systems and a clutch mechanism
US6488196B1 (en) 1999-06-30 2002-12-03 Axya Medical, Inc. Surgical stapler and method of applying plastic staples to body tissue
US6333029B1 (en) 1999-06-30 2001-12-25 Ethicon, Inc. Porous tissue scaffoldings for the repair of regeneration of tissue
US6325810B1 (en) 1999-06-30 2001-12-04 Ethicon, Inc. Foam buttress for stapling apparatus
US6355699B1 (en) 1999-06-30 2002-03-12 Ethicon, Inc. Process for manufacturing biomedical foams
US6175290B1 (en) 1999-06-30 2001-01-16 Gt Development Corporation Contactless stalk mounted control switch
US6306424B1 (en) 1999-06-30 2001-10-23 Ethicon, Inc. Foam composite for the repair or regeneration of tissue
US6104304A (en) 1999-07-06 2000-08-15 Conexant Systems, Inc. Self-test and status reporting system for microcontroller-controlled devices
US6117158A (en) 1999-07-07 2000-09-12 Ethicon Endo-Surgery, Inc. Ratchet release mechanism for hand held instruments
JP3293802B2 (en) 1999-07-07 2002-06-17 エスエムシー株式会社 Chuck with position detection function
US6168605B1 (en) 1999-07-08 2001-01-02 Ethicon Endo-Surgery, Inc. Curved laparoscopic scissor having arcs of curvature
JP2001035827A (en) 1999-07-16 2001-02-09 Memc Kk High concentration ozone water, preparation method thereof and cleaning method using the same
RU2161450C1 (en) 1999-07-22 2001-01-10 Каншин Николай Николаевич Surgical suturing device
US6436110B2 (en) 1999-07-23 2002-08-20 Ethicon, Inc. Method of securing a graft using a graft fixation device
US6402766B2 (en) 1999-07-23 2002-06-11 Ethicon, Inc. Graft fixation device combination
US7682368B1 (en) 1999-07-28 2010-03-23 Cardica, Inc. Anastomosis tool actuated with stored energy
US7766924B1 (en) 1999-07-28 2010-08-03 Cardica, Inc. System for performing anastomosis
US6391038B2 (en) 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
US7303570B2 (en) 1999-07-28 2007-12-04 Cardica, Inc. Anastomosis tool having a connector holder
US7285131B1 (en) 1999-07-28 2007-10-23 Cardica, Inc. System for performing anastomosis
DE19935725C2 (en) 1999-07-29 2003-11-13 Wolf Gmbh Richard Medical instrument, especially a rectoscope
DE19935904C1 (en) 1999-07-30 2001-07-12 Karlsruhe Forschzent Applicator tip of a surgical applicator for placing clips / clips for the connection of tissue
US6788018B1 (en) 1999-08-03 2004-09-07 Intuitive Surgical, Inc. Ceiling and floor mounted surgical robot set-up arms
JP2003508185A (en) 1999-08-03 2003-03-04 スミス アンド ネフュー インコーポレーテッド Implantable controlled release device
US6527785B2 (en) 1999-08-03 2003-03-04 Onux Medical, Inc. Surgical suturing instrument and method of use
IT1307263B1 (en) 1999-08-05 2001-10-30 Sorin Biomedica Cardio Spa ANGIOPLASTIC STENT WITH RESTENOSIS ANTAGONIST ACTION, RELATED KIT AND COMPONENTS.
WO2001010482A1 (en) 1999-08-05 2001-02-15 Biocardia, Inc. A system and method for delivering thermally sensitive and reverse-thermal gelation matrials
EP1206254A1 (en) 1999-08-06 2002-05-22 The Board Of Regents, The University Of Texas System Drug releasing biodegradable fiber implant
US6358197B1 (en) 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
DE19941859C2 (en) 1999-09-02 2002-06-13 Siemens Audiologische Technik Digital hearing aid
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6237604B1 (en) 1999-09-07 2001-05-29 Scimed Life Systems, Inc. Systems and methods for preventing automatic identification of re-used single use devices
US6387092B1 (en) 1999-09-07 2002-05-14 Scimed Life Systems, Inc. Systems and methods to identify and disable re-used single use devices based on time elapsed from first therapeutic use
ATE363235T1 (en) 1999-09-09 2007-06-15 Tuebingen Scient Medical Gmbh SURGICAL INSTRUMENT FOR MINIMALLY INVASIVE PROCEDURES
US6077290A (en) 1999-09-10 2000-06-20 Tnco, Incorporated Endoscopic instrument with removable front end
US6104162A (en) 1999-09-11 2000-08-15 Sainsbury; Simon R. Method and apparatus for multi-power source for power tools
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US7662161B2 (en) 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US6636412B2 (en) 1999-09-17 2003-10-21 Taser International, Inc. Hand-held stun gun for incapacitating a human target
US7075770B1 (en) 1999-09-17 2006-07-11 Taser International, Inc. Less lethal weapons and methods for halting locomotion
US6356072B1 (en) 1999-09-24 2002-03-12 Jacob Chass Hall effect sensor of displacement of magnetic core
JP2001087272A (en) 1999-09-24 2001-04-03 Motoko Iwabuchi Automatic suturing unit for excising living body tissue
US6358224B1 (en) 1999-09-24 2002-03-19 Tyco Healthcare Group Lp Irrigation system for endoscopic surgery
US6325811B1 (en) 1999-10-05 2001-12-04 Ethicon Endo-Surgery, Inc. Blades with functional balance asymmetries for use with ultrasonic surgical instruments
CA2322061A1 (en) 1999-10-05 2001-04-05 Anil K. Nalagatla Stapling instrument having two staple forming surfaces
US6312435B1 (en) 1999-10-08 2001-11-06 Intuitive Surgical, Inc. Surgical instrument with extended reach for use in minimally invasive surgery
CA2385835C (en) 1999-10-14 2009-01-27 Atropos Limited A wound retractor
US7887535B2 (en) 1999-10-18 2011-02-15 Covidien Ag Vessel sealing wave jaw
US6320123B1 (en) 1999-10-20 2001-11-20 Steven S. Reimers System and method for shielding electrical components from electromagnetic waves
US6749560B1 (en) 1999-10-26 2004-06-15 Circon Corporation Endoscope shaft with slotted tube
US6780151B2 (en) 1999-10-26 2004-08-24 Acmi Corporation Flexible ureteropyeloscope
US6471659B2 (en) 1999-12-27 2002-10-29 Neothermia Corporation Minimally invasive intact recovery of tissue
EP1095627A1 (en) 1999-10-27 2001-05-02 Everest Medical Corporation Electrosurgical probe for surface treatment
DE19951940C2 (en) 1999-10-28 2001-11-29 Karlsruhe Forschzent Clamping device that can be used endoscopically
SE515391C2 (en) 1999-11-08 2001-07-23 Tagmaster Ab Identification tag and reader with interference protection
DE19954497C1 (en) 1999-11-11 2001-04-19 Norbert Lemke Electrical apparatus operating device for use in sterile area uses magnetic field device within sterile device cooperating with magnetic field sensor outside sterile area
US6666846B1 (en) 1999-11-12 2003-12-23 Edwards Lifesciences Corporation Medical device introducer and obturator and methods of use
DE19955412A1 (en) 1999-11-18 2001-05-23 Hilti Ag Drilling and chiseling device
US6558379B1 (en) 1999-11-18 2003-05-06 Gyrus Medical Limited Electrosurgical system
US7347849B2 (en) 2001-05-24 2008-03-25 Nxstage Medical, Inc. Modular medical treatment replaceable component
US6324339B1 (en) 1999-11-29 2001-11-27 Eveready Battery Company, Inc. Battery pack including input and output waveform modification capability
US6494896B1 (en) 1999-11-30 2002-12-17 Closure Medical Corporation Applicator for laparoscopic or endoscopic surgery
US20020022810A1 (en) 1999-12-07 2002-02-21 Alex Urich Non-linear flow restrictor for a medical aspiration system
US6184655B1 (en) 1999-12-10 2001-02-06 Stryker Corporation Battery charging system with internal power manager
US6352532B1 (en) 1999-12-14 2002-03-05 Ethicon Endo-Surgery, Inc. Active load control of ultrasonic surgical instruments
US6736825B2 (en) 1999-12-14 2004-05-18 Integrated Vascular Interventional Technologies, L C (Ivit Lc) Paired expandable anastomosis devices and related methods
US6428487B1 (en) 1999-12-17 2002-08-06 Ethicon Endo-Surgery, Inc. Surgical biopsy system with remote control for selecting an operational mode
TW429637B (en) 1999-12-17 2001-04-11 Synergy Scientech Corp Electrical energy storage device
US6432065B1 (en) 1999-12-17 2002-08-13 Ethicon Endo-Surgery, Inc. Method for using a surgical biopsy system with remote control for selecting and operational mode
US6254619B1 (en) 1999-12-28 2001-07-03 Antoine Garabet Microkeratome
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
RU2181566C2 (en) 2000-01-10 2002-04-27 Дубровский Аркадий Вениаминович Controllable pivoting mechanism
US6361546B1 (en) 2000-01-13 2002-03-26 Endotex Interventional Systems, Inc. Deployable recoverable vascular filter and methods for use
US6699214B2 (en) 2000-01-19 2004-03-02 Scimed Life Systems, Inc. Shear-sensitive injectable delivery system
CA2397949C (en) 2000-01-20 2009-04-21 Bioaccess, Inc. A method and apparatus for introducing a non-sterile component into a sterile device
HU225908B1 (en) 2000-01-24 2007-12-28 Ethicon Endo Surgery Europe Surgical circular stapling head
US6193129B1 (en) 2000-01-24 2001-02-27 Ethicon Endo-Surgery, Inc. Cutting blade for a surgical anastomosis stapling instrument
DE10003020C2 (en) 2000-01-25 2001-12-06 Aesculap Ag & Co Kg Bipolar barrel instrument
US6377011B1 (en) 2000-01-26 2002-04-23 Massachusetts Institute Of Technology Force feedback user interface for minimally invasive surgical simulator and teleoperator and other similar apparatus
US6429611B1 (en) 2000-01-28 2002-08-06 Hui Li Rotary and linear motor
DE10004264C2 (en) 2000-02-01 2002-06-13 Storz Karl Gmbh & Co Kg Device for the intracorporeal, minimally invasive treatment of a patient
US6520972B2 (en) 2000-02-04 2003-02-18 Stephen F. Peters Surgical clip applier
US20040068307A1 (en) 2000-02-08 2004-04-08 Gyrus Medical Limited Surgical instrument
GB0223348D0 (en) 2002-10-08 2002-11-13 Gyrus Medical Ltd A surgical instrument
US20040181219A1 (en) 2000-02-08 2004-09-16 Gyrus Medical Limited Electrosurgical instrument and an electrosugery system including such an instrument
US6758846B2 (en) 2000-02-08 2004-07-06 Gyrus Medical Limited Electrosurgical instrument and an electrosurgery system including such an instrument
GB0002849D0 (en) 2000-02-08 2000-03-29 Gyrus Medical Ltd An electrosurgical instrument and an electosurgery system including such an instrument
US6756705B2 (en) 2000-02-10 2004-06-29 Tri-Tech., Inc Linear stepper motor
US7963964B2 (en) 2000-02-10 2011-06-21 Santilli Albert N Surgical clamp assembly with electrodes
US6911033B2 (en) 2001-08-21 2005-06-28 Microline Pentax Inc. Medical clip applying device
US6569171B2 (en) 2001-02-28 2003-05-27 Microline, Inc. Safety locking mechanism for a medical clip device
US6589164B1 (en) 2000-02-15 2003-07-08 Transvascular, Inc. Sterility barriers for insertion of non-sterile apparatus into catheters or other medical devices
US6306149B1 (en) 2000-02-15 2001-10-23 Microline, Inc. Medical clip device with cyclical pusher mechanism
GB0004179D0 (en) 2000-02-22 2000-04-12 Gyrus Medical Ltd Tissue resurfacing
US6629974B2 (en) 2000-02-22 2003-10-07 Gyrus Medical Limited Tissue treatment method
US6488197B1 (en) 2000-02-22 2002-12-03 Power Medical Interventions, Inc. Fluid delivery device for use with anastomosing resecting and stapling instruments
US7335199B2 (en) 2000-02-22 2008-02-26 Rhytec Limited Tissue resurfacing
JP4447196B2 (en) 2000-02-22 2010-04-07 パワー メディカル インターベンションズ, エルエルシー Telesurgical instrument attachment with electromechanical driver and computer control capability
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6723091B2 (en) 2000-02-22 2004-04-20 Gyrus Medical Limited Tissue resurfacing
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
US6533157B1 (en) 2000-02-22 2003-03-18 Power Medical Interventions, Inc. Tissue stapling attachment for use with an electromechanical driver device
US6348061B1 (en) 2000-02-22 2002-02-19 Powermed, Inc. Vessel and lumen expander attachment for use with an electromechanical driver device
US6603050B2 (en) 2000-02-23 2003-08-05 Uxb International, Inc. Destruction of energetic materials
US6582441B1 (en) 2000-02-24 2003-06-24 Advanced Bionics Corporation Surgical insertion tool
US20010025183A1 (en) 2000-02-25 2001-09-27 Ramin Shahidi Methods and apparatuses for maintaining a trajectory in sterotaxi for tracking a target inside a body
US6273897B1 (en) 2000-02-29 2001-08-14 Ethicon, Inc. Surgical bettress and surgical stapling apparatus
US20030070683A1 (en) 2000-03-04 2003-04-17 Deem Mark E. Methods and devices for use in performing pulmonary procedures
CA2718633C (en) 2000-03-06 2013-01-08 Tyco Healthcare Group Lp Apparatus and method for performing a bypass procedure in a digestive system
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
US6423079B1 (en) 2000-03-07 2002-07-23 Blake, Iii Joseph W Repeating multi-clip applier
US6663623B1 (en) 2000-03-13 2003-12-16 Olympus Optical Co., Ltd. Electric surgical operation apparatus
US6525499B2 (en) 2000-03-15 2003-02-25 Keihin Corporation System for controlling vehicle power sliding door
EP1452125A3 (en) 2000-03-16 2004-10-13 Medigus Ltd Fundoplication apparatus and method
US7819799B2 (en) 2000-03-16 2010-10-26 Immersion Medical, Inc. System and method for controlling force applied to and manipulation of medical instruments
IL139788A (en) 2000-11-20 2006-10-05 Minelu Zonnenschein Stapler for endoscopes
US6510854B2 (en) 2000-03-16 2003-01-28 Gyrus Medical Limited Method of treatment of prostatic adenoma
US6770070B1 (en) 2000-03-17 2004-08-03 Rita Medical Systems, Inc. Lung treatment apparatus and method
DE10015398A1 (en) 2000-03-28 2001-10-11 Bosch Gmbh Robert Electrical device, especially hand-held tool, has connection point for transfer of information via information link for evaluation in power supply unit
JP2001276091A (en) 2000-03-29 2001-10-09 Toshiba Corp Medical manipulator
EP1272117A2 (en) 2000-03-31 2003-01-08 Rita Medical Systems, Inc. Tissue biopsy and treatment apparatus and method
US6802822B1 (en) 2000-03-31 2004-10-12 3M Innovative Properties Company Dispenser for an adhesive tissue sealant having a flexible link
US8888688B2 (en) 2000-04-03 2014-11-18 Intuitive Surgical Operations, Inc. Connector device for a controllable instrument
US6984203B2 (en) 2000-04-03 2006-01-10 Neoguide Systems, Inc. Endoscope with adjacently positioned guiding apparatus
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
US20050085693A1 (en) 2000-04-03 2005-04-21 Amir Belson Activated polymer articulated instruments and methods of insertion
IL135571A0 (en) 2000-04-10 2001-05-20 Doron Adler Minimal invasive surgery imaging system
US6517528B1 (en) 2000-04-13 2003-02-11 Scimed Life Systems, Inc. Magnetic catheter drive shaft clutch
JP4716594B2 (en) 2000-04-17 2011-07-06 オリンパス株式会社 Endoscope
USD445745S1 (en) 2000-04-18 2001-07-31 Honda Giken Kogyo Kabushiki Kaisha Indicator icon for a vehicle display screen
AU2001253654A1 (en) 2000-04-27 2001-11-12 Medtronic, Inc. Vibration sensitive ablation apparatus and method
RU2187249C2 (en) 2000-04-27 2002-08-20 Общество с ограниченной ответственностью "ЭНДОМЕДИУМ+" Surgical instrument
US6905498B2 (en) 2000-04-27 2005-06-14 Atricure Inc. Transmural ablation device with EKG sensor and pacing electrode
US6412639B1 (en) 2000-04-28 2002-07-02 Closure Medical Corporation Medical procedure kit having medical adhesive
US6387114B2 (en) 2000-04-28 2002-05-14 Scimed Life Systems, Inc. Gastrointestinal compression clips
DE10058796A1 (en) 2000-05-09 2001-11-15 Heidelberger Druckmasch Ag Saddle stitcher with separate drives
FR2808674B1 (en) 2000-05-12 2002-08-02 Cie Euro Etude Rech Paroscopie GASTROPLASTY RING WITH GRIPPED LEGS
US6305891B1 (en) 2000-05-15 2001-10-23 Mark S. Burlingame Fastening device and a spacer, and a method of using the same
US7510566B2 (en) 2000-05-19 2009-03-31 Coapt Systems, Inc. Multi-point tissue tension distribution device and method, a chin lift variation
US7172615B2 (en) 2000-05-19 2007-02-06 Coapt Systems, Inc. Remotely anchored tissue fixation device
US6485503B2 (en) 2000-05-19 2002-11-26 Coapt Systems, Inc. Multi-point tissue tension distribution device, a brow and face lift variation, and a method of tissue approximation using the device
US6419695B1 (en) 2000-05-22 2002-07-16 Shlomo Gabbay Cardiac prosthesis for helping improve operation of a heart valve
US6805273B2 (en) 2002-11-04 2004-10-19 Federico Bilotti Surgical stapling instrument
DE10026683C2 (en) 2000-05-30 2003-07-10 Ethicon Endo Surgery Europe Surgical stapling device
US6602262B2 (en) 2000-06-02 2003-08-05 Scimed Life Systems, Inc. Medical device having linear to rotation control
WO2001093766A1 (en) 2000-06-07 2001-12-13 Stereotaxis, Inc. Guide for medical devices
US6492785B1 (en) 2000-06-27 2002-12-10 Deere & Company Variable current limit control for vehicle electric drive system
DE10031436A1 (en) 2000-06-28 2002-01-10 Alexander Von Fuchs Anti-slip protection for a housing head of medical instruments
US6863694B1 (en) 2000-07-03 2005-03-08 Osteotech, Inc. Osteogenic implants derived from bone
JP3789733B2 (en) 2000-07-06 2006-06-28 アルプス電気株式会社 Compound operation switch
DE10033344B4 (en) 2000-07-08 2011-04-07 Robert Bosch Gmbh Method and device for evaluating a sensor signal
US6660008B1 (en) 2001-06-07 2003-12-09 Opus Medical, Inc. Method and apparatus for attaching connective tissues to bone using a suture anchoring device
JP3897962B2 (en) 2000-07-19 2007-03-28 株式会社モリタ製作所 Identification-type instrument body, identification-type adapter, identification-type tube, and medical device using these
US20100241137A1 (en) 2000-07-20 2010-09-23 Mark Doyle Hand-actuated articulating surgical tool
AU8063501A (en) 2000-07-20 2002-02-05 Tiva Medical Inc Hand-actuated articulating surgical tool
AU2002224520A1 (en) 2000-07-21 2002-02-05 Atropos Limited A cannula
US6447799B1 (en) 2000-07-24 2002-09-10 Joseph M. Ullman Thromboplastic system
US6494882B1 (en) 2000-07-25 2002-12-17 Verimetra, Inc. Cutting instrument having integrated sensors
AU2001279026B2 (en) 2000-07-25 2005-12-22 Angiodynamics, Inc. Apparatus for detecting and treating tumors using localized impedance measurement
US6746443B1 (en) 2000-07-27 2004-06-08 Intuitive Surgical Inc. Roll-pitch-roll surgical tool
US6392854B1 (en) 2000-07-27 2002-05-21 Motorola, Inc. Method and system for testing continuity of a motor and associated drive circuitry
US6902560B1 (en) 2000-07-27 2005-06-07 Intuitive Surgical, Inc. Roll-pitch-roll surgical tool
US6585664B2 (en) 2000-08-02 2003-07-01 Ethicon Endo-Surgery, Inc. Calibration method for an automated surgical biopsy device
US8366787B2 (en) 2000-08-04 2013-02-05 Depuy Products, Inc. Hybrid biologic-synthetic bioabsorbable scaffolds
JP5162782B2 (en) 2000-08-07 2013-03-13 株式会社小松製作所 Work machine display
JP2002054903A (en) 2000-08-10 2002-02-20 Nippon Densan Corp Displacement detecting device
JP2002051974A (en) 2000-08-14 2002-02-19 Fuji Photo Optical Co Ltd Endoscope manipulator
GB0020461D0 (en) 2000-08-18 2000-10-11 Oliver Crispin Consulting Ltd Improvements in and relating to the robotic positioning of a work tool to a sensor
US6533723B1 (en) 2000-08-25 2003-03-18 Ge Marquette Medical Systems, Inc. Multiple-link cable management apparatus
EP1313401A4 (en) 2000-08-30 2006-09-20 Cerebral Vascular Applic Inc Medical instrument
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
US20040093024A1 (en) 2000-09-01 2004-05-13 James Lousararian Advanced wound site management systems and methods
GB0021799D0 (en) 2000-09-05 2000-10-18 Gyrus Medical Ltd Electrosurgery system
US20020029032A1 (en) 2000-09-07 2002-03-07 Eva Arkin Fluorescent surgical hardware and surgical supplies for improved visualization
US6582452B2 (en) 2000-09-08 2003-06-24 James Coleman Surgical stapler
JP2002078674A (en) 2000-09-08 2002-03-19 Fuji Photo Optical Co Ltd Curved surface structure of endoscope
US6712773B1 (en) 2000-09-11 2004-03-30 Tyco Healthcare Group Lp Biopsy system
JP4297603B2 (en) 2000-09-19 2009-07-15 株式会社トップ Surgical stapler
JP4993839B2 (en) 2000-09-24 2012-08-08 メドトロニック,インコーポレイテッド Surgical handpiece motor control system
WO2002026143A1 (en) 2000-09-27 2002-04-04 Applied Medical Resources Surgical apparatus with detachable handle assembly
JP4014792B2 (en) 2000-09-29 2007-11-28 株式会社東芝 manipulator
US6755843B2 (en) 2000-09-29 2004-06-29 Olympus Optical Co., Ltd. Endoscopic suturing device
WO2002028301A1 (en) 2000-10-04 2002-04-11 Synthes Ag Chur Device for supplying an electro-pen with electrical energy
US7007176B2 (en) 2000-10-10 2006-02-28 Primarion, Inc. System and method for highly phased power regulation using adaptive compensation control
US6817508B1 (en) 2000-10-13 2004-11-16 Tyco Healthcare Group, Lp Surgical stapling device
WO2003079909A2 (en) 2002-03-19 2003-10-02 Tyco Healthcare Group, Lp Surgical fastener applying apparatus
US7334717B2 (en) 2001-10-05 2008-02-26 Tyco Healthcare Group Lp Surgical fastener applying apparatus
DE60135920D1 (en) 2000-10-13 2008-11-06 Tyco Healthcare SURGICAL INSTRUMENT FOR PUTTING BRACES
US7407076B2 (en) 2000-10-13 2008-08-05 Tyco Healthcare Group Lp Surgical stapling device
US7485124B2 (en) 2000-10-19 2009-02-03 Ethicon Endo-Surgery, Inc. Surgical instrument having a fastener delivery mechanism
EP1326524B1 (en) 2000-10-19 2010-09-01 Applied Medical Resources Corporation Surgical access apparatus and method
US6551333B2 (en) 2000-10-19 2003-04-22 Ethicon Endo-Surgery, Inc. Method for attaching hernia mesh
US6773438B1 (en) 2000-10-19 2004-08-10 Ethicon Endo-Surgery Surgical instrument having a rotary lockout mechanism
US7273483B2 (en) 2000-10-20 2007-09-25 Ethicon Endo-Surgery, Inc. Apparatus and method for alerting generator functions in an ultrasonic surgical system
US6908472B2 (en) 2000-10-20 2005-06-21 Ethicon Endo-Surgery, Inc. Apparatus and method for altering generator functions in an ultrasonic surgical system
AU2002234140A1 (en) 2000-10-20 2002-05-06 Onux Medical, Inc. Surgical suturing instrument and method of use
US20040267310A1 (en) 2000-10-20 2004-12-30 Racenet David C Directionally biased staple and anvil assembly for forming the staple
US6945981B2 (en) 2000-10-20 2005-09-20 Ethicon-Endo Surgery, Inc. Finger operated switch for controlling a surgical handpiece
US6913608B2 (en) 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US7665995B2 (en) 2000-10-23 2010-02-23 Toly Christopher C Medical training simulator including contact-less sensors
US6656177B2 (en) 2000-10-23 2003-12-02 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US6500176B1 (en) 2000-10-23 2002-12-31 Csaba Truckai Electrosurgical systems and techniques for sealing tissue
US20020188287A1 (en) 2001-05-21 2002-12-12 Roni Zvuloni Apparatus and method for cryosurgery within a body cavity
US6605090B1 (en) 2000-10-25 2003-08-12 Sdgi Holdings, Inc. Non-metallic implant devices and intra-operative methods for assembly and fixation
US6793661B2 (en) 2000-10-30 2004-09-21 Vision Sciences, Inc. Endoscopic sheath assemblies having longitudinal expansion inhibiting mechanisms
US20030139741A1 (en) 2000-10-31 2003-07-24 Gyrus Medical Limited Surgical instrument
FR2815842B1 (en) 2000-10-31 2003-05-09 Assist Publ Hopitaux De Paris MECHANICAL STAPLER FOR RECTUM SURGERY
GB0026586D0 (en) 2000-10-31 2000-12-13 Gyrus Medical Ltd An electrosurgical system
US6893435B2 (en) 2000-10-31 2005-05-17 Gyrus Medical Limited Electrosurgical system
US6843789B2 (en) 2000-10-31 2005-01-18 Gyrus Medical Limited Electrosurgical system
JP2002149860A (en) 2000-11-07 2002-05-24 Japan Institute Of Plant Maintenance Maintenance and management method for facility in manufacturing business and maintenance and management support system
JP2002143078A (en) 2000-11-08 2002-05-21 Olympus Optical Co Ltd Outside tube for endoscope
US6749600B1 (en) 2000-11-15 2004-06-15 Impulse Dynamics N.V. Braided splittable catheter sheath
US6506197B1 (en) 2000-11-15 2003-01-14 Ethicon, Inc. Surgical method for affixing a valve to a heart using a looped suture combination
US6498480B1 (en) 2000-11-22 2002-12-24 Wabash Technologies, Inc. Magnetic non-contacting rotary transducer
US6821282B2 (en) 2000-11-27 2004-11-23 Scimed Life Systems, Inc. Full thickness resection device control handle
US6520971B1 (en) 2000-11-27 2003-02-18 Scimed Life Systems, Inc. Full thickness resection device control handle
US8286845B2 (en) 2000-11-27 2012-10-16 Boston Scientific Scimed, Inc. Full thickness resection device control handle
JP2002159500A (en) 2000-11-28 2002-06-04 Koseki Ika Kk Ligament fixing system
US7081114B2 (en) 2000-11-29 2006-07-25 St. Jude Medical, Atrial Fibrillation Division, Inc. Electrophysiology/ablation catheter having lariat configuration of variable radius
US6398795B1 (en) 2000-11-30 2002-06-04 Scimed Life Systems, Inc. Stapling and cutting in resectioning for full thickness resection devices
JP2002170622A (en) 2000-11-30 2002-06-14 Sumitomo Wiring Syst Ltd Connector
US6439446B1 (en) 2000-12-01 2002-08-27 Stephen J. Perry Safety lockout for actuator shaft
US6569085B2 (en) 2001-08-16 2003-05-27 Syntheon, Llc Methods and apparatus for delivering a medical instrument over an endoscope while the endoscope is in a body lumen
US6588931B2 (en) 2000-12-07 2003-07-08 Delphi Technologies, Inc. Temperature sensor with flexible circuit substrate
CA2430744C (en) 2000-12-08 2009-11-10 Osteotech, Inc. Implant for orthopedic applications
US20020127265A1 (en) 2000-12-21 2002-09-12 Bowman Steven M. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
CA2365376C (en) 2000-12-21 2006-03-28 Ethicon, Inc. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US6599323B2 (en) 2000-12-21 2003-07-29 Ethicon, Inc. Reinforced tissue implants and methods of manufacture and use
US6406440B1 (en) 2000-12-21 2002-06-18 Ethicon Endo-Surgery, Inc. Specimen retrieval bag
US6852330B2 (en) 2000-12-21 2005-02-08 Depuy Mitek, Inc. Reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20020185514A1 (en) 2000-12-22 2002-12-12 Shane Adams Control module for flywheel operated hand tool
US6503259B2 (en) 2000-12-27 2003-01-07 Ethicon, Inc. Expandable anastomotic device
KR100498302B1 (en) 2000-12-27 2005-07-01 엘지전자 주식회사 Copacity variable motor for linear compressor
US6840938B1 (en) * 2000-12-29 2005-01-11 Intuitive Surgical, Inc. Bipolar cauterizing instrument
US7041868B2 (en) 2000-12-29 2006-05-09 Kimberly-Clark Worldwide, Inc. Bioabsorbable wound dressing
DE60218814T2 (en) 2001-01-03 2007-12-06 Santa Fe Science and Technology, Inc., Santa Fe STABLE, CONJUGATED POLYMER-CONTAINING ELECTROCHROMIC DEVICES WITH IONIC LIQUIDS
US6482200B2 (en) 2001-01-03 2002-11-19 Ronald D. Shippert Cautery apparatus and method
AU2002251732A1 (en) 2001-01-04 2002-08-28 Becomm Corporation Universal media bar for controlling different types of media
US7037314B2 (en) 2001-01-09 2006-05-02 Armstrong David N Multiple band ligator and anoscope system and method for using same
US20020133131A1 (en) 2001-01-09 2002-09-19 Krishnakumar Rangachari Absorbent material incorporating synthetic fibers and process for making the material
AU2002225304A1 (en) 2001-01-11 2002-07-24 Given Imaging Ltd. Device and system for in-vivo procedures
US6439439B1 (en) 2001-01-12 2002-08-27 Telios Orthopedic Systems, Inc. Bone cement delivery apparatus and hand-held fluent material dispensing apparatus
US6494885B1 (en) 2001-01-17 2002-12-17 Avtar S. Dhindsa Endoscopic stone extraction device with rotatable basket
US6695774B2 (en) 2001-01-19 2004-02-24 Endactive, Inc. Apparatus and method for controlling endoscopic instruments
JP4121730B2 (en) 2001-01-19 2008-07-23 富士通コンポーネント株式会社 Pointing device and portable information device
JP4130584B2 (en) 2001-01-24 2008-08-06 タイコ ヘルスケア グループ リミテッド パートナーシップ Anastomosis instrument and method for performing anastomosis
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
ATE394719T1 (en) 2001-01-29 2008-05-15 Acrobot Company Ltd ROBOTS WITH ACTIVE LIMITATIONS
US20020134811A1 (en) 2001-01-29 2002-09-26 Senco Products, Inc. Multi-mode power tool utilizing attachment
US20020103494A1 (en) 2001-01-31 2002-08-01 Pacey John Allen Percutaneous cannula delvery system for hernia patch
JP4202138B2 (en) 2001-01-31 2008-12-24 レックス メディカル インコーポレイテッド Apparatus and method for stapling and ablating gastroesophageal tissue
US6997931B2 (en) 2001-02-02 2006-02-14 Lsi Solutions, Inc. System for endoscopic suturing
US8313496B2 (en) 2001-02-02 2012-11-20 Lsi Solutions, Inc. System for endoscopic suturing
JP3939158B2 (en) 2001-02-06 2007-07-04 オリンパス株式会社 Endoscope device
US6723109B2 (en) 2001-02-07 2004-04-20 Karl Storz Endoscopy-America, Inc. Deployable surgical clamp with delivery/retrieval device and actuator
US6302743B1 (en) 2001-02-09 2001-10-16 Pen-Li Chiu Electric outlet assembly with rotary receptacles
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
EP1303228B1 (en) 2001-02-15 2012-09-26 Hansen Medical, Inc. Flexible surgical instrument
AU2002251958A1 (en) 2001-02-15 2002-09-04 Brock Rogers Surgical, Inc. Surgical master/slave system
US7008433B2 (en) 2001-02-15 2006-03-07 Depuy Acromed, Inc. Vertebroplasty injection device
US20030135204A1 (en) 2001-02-15 2003-07-17 Endo Via Medical, Inc. Robotically controlled medical instrument with a flexible section
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
DE10108732A1 (en) 2001-02-23 2002-09-05 Philips Corp Intellectual Pty Device with a magnetic position sensor
US6533784B2 (en) 2001-02-24 2003-03-18 Csaba Truckai Electrosurgical working end for transecting and sealing tissue
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
DE60115192T2 (en) 2001-02-26 2006-08-10 Ethicon, Inc. Biocompatible composite foam
USD454951S1 (en) 2001-02-27 2002-03-26 Visionary Biomedical, Inc. Steerable catheter
WO2002067785A2 (en) 2001-02-27 2002-09-06 Tyco Healthcare Group Lp External mixer assembly
US7139016B2 (en) 2001-02-28 2006-11-21 Eastman Kodak Company Intra-oral camera system with chair-mounted display
US6682527B2 (en) 2001-03-13 2004-01-27 Perfect Surgical Techniques, Inc. Method and system for heating tissue with a bipolar instrument
US6582387B2 (en) 2001-03-20 2003-06-24 Therox, Inc. System for enriching a bodily fluid with a gas
US20020135474A1 (en) 2001-03-21 2002-09-26 Sylliassen Douglas G. Method and device for sensor-based power management of a consumer electronic device
US6802844B2 (en) 2001-03-26 2004-10-12 Nuvasive, Inc Spinal alignment apparatus and methods
JP2002282269A (en) 2001-03-28 2002-10-02 Gc Corp Pin for fixing dental tissue regenerated membrane
US6861954B2 (en) 2001-03-30 2005-03-01 Bruce H. Levin Tracking medical products with integrated circuits
US20030181900A1 (en) 2002-03-25 2003-09-25 Long Gary L. Endoscopic ablation system with a plurality of electrodes
US7097644B2 (en) 2001-03-30 2006-08-29 Ethicon Endo-Surgery, Inc. Medical device with improved wall construction
US6769590B2 (en) 2001-04-02 2004-08-03 Susan E. Vresh Luminal anastomotic device and method
EP2392267B1 (en) 2001-04-03 2018-07-11 Covidien LP Surgical stapling device for performing circular anastomoses
US6605669B2 (en) 2001-04-03 2003-08-12 E. I. Du Pont De Nemours And Company Radiation-curable coating compounds
WO2002080802A2 (en) 2001-04-05 2002-10-17 John Martin Heasley General field isolation rubber dam
US7090673B2 (en) 2001-04-06 2006-08-15 Sherwood Services Ag Vessel sealer and divider
JP4499992B2 (en) 2001-04-06 2010-07-14 コヴィディエン アクチェンゲゼルシャフト Vascular sealing machine and splitting machine having non-conductive stop member
US7101371B2 (en) 2001-04-06 2006-09-05 Dycus Sean T Vessel sealer and divider
DE10117597C1 (en) 2001-04-07 2002-11-28 Itt Mfg Enterprises Inc Switch
US6638285B2 (en) 2001-04-16 2003-10-28 Shlomo Gabbay Biological tissue strip and system and method to seal tissue
JP2002314298A (en) 2001-04-18 2002-10-25 Matsushita Electric Ind Co Ltd Device for packaging electronic component
US6994708B2 (en) 2001-04-19 2006-02-07 Intuitive Surgical Robotic tool with monopolar electro-surgical scissors
US6783524B2 (en) 2001-04-19 2004-08-31 Intuitive Surgical, Inc. Robotic surgical tool with ultrasound cauterizing and cutting instrument
US7824401B2 (en) 2004-10-08 2010-11-02 Intuitive Surgical Operations, Inc. Robotic tool with wristed monopolar electrosurgical end effectors
US6620111B2 (en) 2001-04-20 2003-09-16 Ethicon Endo-Surgery, Inc. Surgical biopsy device having automatic rotation of the probe for taking multiple samples
ES2307745T3 (en) 2001-04-20 2008-12-01 Power Medical Interventions, Inc. IMAGE FORMATION DEVICE.
US7351258B2 (en) 2001-04-20 2008-04-01 The Research Foundation Of State University Of New York At Stony Brook Apparatus and method for fixation of vascular grafts
AU2002254712A1 (en) 2001-04-20 2002-11-05 Power Medical Interventions, Inc. Bipolar or ultrasonic surgical device
US20040110439A1 (en) 2001-04-20 2004-06-10 Chaikof Elliot L Native protein mimetic fibers, fiber networks and fabrics for medical use
EP1383504A1 (en) 2001-04-26 2004-01-28 Control Delivery Systems, Inc. Sustained release drug delivery system containing codrugs
US6994714B2 (en) 2001-04-27 2006-02-07 Cardica, Inc. Anastomosis system
US20020188170A1 (en) 2001-04-27 2002-12-12 Santamore William P. Prevention of myocardial infarction induced ventricular expansion and remodeling
US20020158593A1 (en) 2001-04-27 2002-10-31 Henderson Jeffery L. Circuit for controlling dynamic braking of a motor shaft in a power tool
US7225959B2 (en) 2001-04-30 2007-06-05 Black & Decker, Inc. Portable, battery-powered air compressor for a pneumatic tool system
US6913579B2 (en) 2001-05-01 2005-07-05 Surgrx, Inc. Electrosurgical working end and method for obtaining tissue samples for biopsy
US6586898B2 (en) 2001-05-01 2003-07-01 Magnon Engineering, Inc. Systems and methods of electric motor control
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
DE10121305A1 (en) 2001-05-02 2002-12-12 Ethicon Endo Surgery Europe Surgical instrument
ATE412372T1 (en) 2001-05-06 2008-11-15 Stereotaxis Inc CATHETER ADVANCEMENT SYSTEM
US6656193B2 (en) 2001-05-07 2003-12-02 Ethicon Endo-Surgery, Inc. Device for attachment of buttress material to a surgical fastening device
US6503257B2 (en) 2001-05-07 2003-01-07 Ethicon Endo-Surgery, Inc. Method for releasing buttress material attached to a surgical fastening device
CA2445392C (en) 2001-05-10 2011-04-26 Rita Medical Systems, Inc. Rf tissue ablation apparatus and method
US6827725B2 (en) 2001-05-10 2004-12-07 Gyrus Medical Limited Surgical instrument
US6630047B2 (en) 2001-05-21 2003-10-07 3M Innovative Properties Company Fluoropolymer bonding composition and method
US6588277B2 (en) 2001-05-21 2003-07-08 Ethicon Endo-Surgery Method for detecting transverse mode vibrations in an ultrasonic hand piece/blade
US6766957B2 (en) 2001-05-25 2004-07-27 Sony Corporation Optical device for bar-code reading, method for manufacturing an optical device, and light projection/receiving package
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
WO2002098315A2 (en) 2001-06-07 2002-12-12 Kaltenbach & Voigt Gmbh & Co. Kg Dental instrument, supply unit, care unit and system for the dental instrument
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
EP1406545B1 (en) 2001-06-14 2015-10-28 Endoevolution, Llc Apparatus and method for surgical suturing with thread management
US7371403B2 (en) 2002-06-14 2008-05-13 Providence Health System-Oregon Wound dressing and method for controlling severe, life-threatening bleeding
DE20121753U1 (en) 2001-06-15 2003-04-17 Bema Gmbh & Co Kg Endochirurgi Handle for a surgical instrument comprises a locking device having a sliding element attached to one handle part and axially moving in a clamping housing attached to the other handle part
CN103065025A (en) 2001-06-20 2013-04-24 柯惠Lp公司 Method and system for integrated medical tracking
CN100337596C (en) 2001-06-22 2007-09-19 机能医疗干预公司 Electro-mechanical surgical device
US7000911B2 (en) 2001-06-22 2006-02-21 Delaware Capital Formation, Inc. Motor pack for automated machinery
US6726706B2 (en) 2001-06-26 2004-04-27 Steven Dominguez Suture tape and method for use
US6817974B2 (en) 2001-06-29 2004-11-16 Intuitive Surgical, Inc. Surgical tool having positively positionable tendon-actuated multi-disk wrist joint
WO2003001987A2 (en) 2001-06-29 2003-01-09 Intuitive Surgical, Inc. Platform link wrist mechanism
US20050182298A1 (en) 2002-12-06 2005-08-18 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
US20060178556A1 (en) 2001-06-29 2006-08-10 Intuitive Surgical, Inc. Articulate and swapable endoscope for a surgical robot
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
CN2488482Y (en) 2001-07-05 2002-05-01 天津市华志计算机应用有限公司 Joint locking mechanism for mechanical arm
ES2393918T3 (en) 2001-07-09 2013-01-02 Covidien Lp Clip or clip applier at right angles
US6696814B2 (en) 2001-07-09 2004-02-24 Tyco Electronics Corporation Microprocessor for controlling the speed and frequency of a motor shaft in a power tool
US7361195B2 (en) 2001-07-16 2008-04-22 Depuy Products, Inc. Cartilage repair apparatus and method
US8025896B2 (en) 2001-07-16 2011-09-27 Depuy Products, Inc. Porous extracellular matrix scaffold and method
EP1416879A4 (en) 2001-07-16 2007-04-25 Depuy Products Inc Unitary surgical device and method
IL144446A0 (en) 2001-07-19 2002-05-23 Prochon Biotech Ltd Plasma protein matrices and methods for their preparation
EP1277548B1 (en) 2001-07-19 2006-05-17 HILTI Aktiengesellschaft Bolt driving tool with setting depth control
US7510534B2 (en) 2001-07-20 2009-03-31 Ethicon Endo-Surgery, Inc. Method for operating biopsy device
JP3646163B2 (en) 2001-07-31 2005-05-11 国立大学法人 東京大学 Active forceps
DE20112837U1 (en) 2001-08-02 2001-10-04 Aesculap Ag & Co Kg Forceps or tweezers shaped surgical instrument
US7208005B2 (en) 2001-08-06 2007-04-24 The Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
ATE347862T1 (en) 2001-08-07 2007-01-15 Univ Medisch Centrum Utrecht DEVICE FOR CONNECTING A SURGICAL DEVICE TO A STABLE BASE
WO2003016829A1 (en) 2001-08-07 2003-02-27 Namiki Seimitsu Houseki Kabushiki Kaisha Magnetic micro encoder and micro motor
WO2003013372A2 (en) 2001-08-08 2003-02-20 Stryker Corporation Surgical tool system with components that perform inductive data transfer
IES20010748A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device and Method
US6592608B2 (en) 2001-12-07 2003-07-15 Biopsy Sciences, Llc Bioabsorbable sealant
DE10139153A1 (en) 2001-08-09 2003-02-27 Ingo F Herrmann Disposable endoscope sheath
JP3926119B2 (en) 2001-08-10 2007-06-06 株式会社東芝 Medical manipulator
US6705503B1 (en) 2001-08-20 2004-03-16 Tricord Solutions, Inc. Electrical motor driven nail gun
US6692507B2 (en) 2001-08-23 2004-02-17 Scimed Life Systems, Inc. Impermanent biocompatible fastener
US7563862B2 (en) 2001-08-24 2009-07-21 Neuren Pharmaceuticals Limited Neural regeneration peptides and methods for their use in treatment of brain damage
US6929641B2 (en) 2001-08-27 2005-08-16 Gyrus Medical Limited Electrosurgical system
US6808525B2 (en) 2001-08-27 2004-10-26 Gyrus Medical, Inc. Bipolar electrosurgical hook probe for cutting and coagulating tissue
US6966907B2 (en) 2001-08-27 2005-11-22 Gyrus Medical Limited Electrosurgical generator and system
US7282048B2 (en) 2001-08-27 2007-10-16 Gyrus Medical Limited Electrosurgical generator and system
EP1287788B1 (en) 2001-08-27 2011-04-20 Gyrus Medical Limited Electrosurgical system
US7344532B2 (en) 2001-08-27 2008-03-18 Gyrus Medical Limited Electrosurgical generator and system
WO2004078051A2 (en) 2001-08-27 2004-09-16 Gyrus Medial Limited Electrosurgical system
GB0425051D0 (en) 2004-11-12 2004-12-15 Gyrus Medical Ltd Electrosurgical generator and system
US6629988B2 (en) 2001-08-28 2003-10-07 Ethicon, Inc. Composite staple for completing an anastomosis
US6755338B2 (en) 2001-08-29 2004-06-29 Cerebral Vascular Applications, Inc. Medical instrument
NL1018874C2 (en) 2001-09-03 2003-03-05 Michel Petronella Hub Vleugels Surgical instrument.
US6747121B2 (en) 2001-09-05 2004-06-08 Synthes (Usa) Poly(L-lactide-co-glycolide) copolymers, methods for making and using same, and devices containing same
JP2003070804A (en) 2001-09-05 2003-03-11 Olympus Optical Co Ltd Remote medical support system
US6802843B2 (en) 2001-09-13 2004-10-12 Csaba Truckai Electrosurgical working end with resistive gradient electrodes
US6799669B2 (en) 2001-09-13 2004-10-05 Siemens Vdo Automotive Corporation Dynamic clutch control
US6773409B2 (en) 2001-09-19 2004-08-10 Surgrx Llc Surgical system for applying ultrasonic energy to tissue
GB2379878B (en) 2001-09-21 2004-11-10 Gyrus Medical Ltd Electrosurgical system and method
DE10147145C2 (en) 2001-09-25 2003-12-18 Kunz Reiner Multi-function instrument for micro-invasive surgery
US6587750B2 (en) 2001-09-25 2003-07-01 Intuitive Surgical, Inc. Removable infinite roll master grip handle and touch sensor for robotic surgery
JP3557186B2 (en) 2001-09-26 2004-08-25 三洋電機株式会社 DC-DC converter
US6578751B2 (en) 2001-09-26 2003-06-17 Scimed Life Systems, Inc. Method of sequentially firing staples using springs and a rotary or linear shutter
CN100450456C (en) 2001-09-28 2009-01-14 锐达医疗系统公司 Impedance controlled tissue ablation apparatus and method
US7108701B2 (en) 2001-09-28 2006-09-19 Ethicon, Inc. Drug releasing anastomosis devices and methods for treating anastomotic sites
SE523684C2 (en) 2001-10-04 2004-05-11 Isaberg Rapid Ab Control device for a drive motor in a stapler
EP2550920B1 (en) 2001-10-05 2015-01-28 Covidien LP Surgical stapling apparatus adjustment method
JP4346439B2 (en) 2001-10-05 2009-10-21 タイコ ヘルスケア グループ エルピー Inclined top anvil for surgical fastener devices
US8158106B2 (en) 2001-10-05 2012-04-17 Surmodics, Inc. Particle immobilized coatings and uses thereof
US6835173B2 (en) 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
US6770027B2 (en) 2001-10-05 2004-08-03 Scimed Life Systems, Inc. Robotic endoscope with wireless interface
AU2002362750B2 (en) 2001-10-05 2008-07-10 Covidien Lp Surgical stapling device
US6929644B2 (en) 2001-10-22 2005-08-16 Surgrx Inc. Electrosurgical jaw structure for controlled energy delivery
US7070597B2 (en) 2001-10-18 2006-07-04 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7052454B2 (en) 2001-10-20 2006-05-30 Applied Medical Resources Corporation Sealed surgical access device
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US6905497B2 (en) 2001-10-22 2005-06-14 Surgrx, Inc. Jaw structure for electrosurgical instrument
US7041102B2 (en) 2001-10-22 2006-05-09 Surgrx, Inc. Electrosurgical working end with replaceable cartridges
US7083619B2 (en) 2001-10-22 2006-08-01 Surgrx, Inc. Electrosurgical instrument and method of use
US7125409B2 (en) 2001-10-22 2006-10-24 Surgrx, Inc. Electrosurgical working end for controlled energy delivery
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US6926716B2 (en) 2001-11-09 2005-08-09 Surgrx Inc. Electrosurgical instrument
US6770072B1 (en) 2001-10-22 2004-08-03 Surgrx, Inc. Electrosurgical jaw structure for controlled energy delivery
US20030216732A1 (en) 2002-05-20 2003-11-20 Csaba Truckai Medical instrument with thermochromic or piezochromic surface indicators
US20060020336A1 (en) 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
KR20100057903A (en) 2001-10-23 2010-06-01 임머숀 코퍼레이션 Method of using tactile feedback to deliver silent status information to a user of an electronic device
US6677687B2 (en) 2001-10-23 2004-01-13 Sun Microsystems, Inc. System for distributing power in CPCI computer architecture
FR2831417B1 (en) 2001-10-30 2004-08-06 Eurosurgical SURGICAL INSTRUMENT
JP2003135473A (en) 2001-11-01 2003-05-13 Mizuho Co Ltd Active forceps for endoscopic surgery
AUPR865901A0 (en) 2001-11-02 2002-01-24 Poly Systems Pty Ltd Projectile firing device
US6716223B2 (en) 2001-11-09 2004-04-06 Micrus Corporation Reloadable sheath for catheter system for deploying vasoocclusive devices
US8089509B2 (en) 2001-11-09 2012-01-03 Karl Storz Imaging, Inc. Programmable camera control unit with updatable program
FR2832262A1 (en) 2001-11-09 2003-05-16 France Telecom METHOD AND DEVICE FOR SUPPLYING ELECTRICAL ENERGY TO AN APPARATUS
US6471106B1 (en) 2001-11-15 2002-10-29 Intellectual Property Llc Apparatus and method for restricting the discharge of fasteners from a tool
GB2382226A (en) 2001-11-20 2003-05-21 Black & Decker Inc Switch mechanism for a power tool
US6997935B2 (en) 2001-11-20 2006-02-14 Advanced Medical Optics, Inc. Resonant converter tuning for maintaining substantially constant phaco handpiece power under increased load
US6993200B2 (en) 2001-11-20 2006-01-31 Sony Corporation System and method for effectively rendering high dynamic range images
JP2003164066A (en) 2001-11-21 2003-06-06 Hitachi Koki Co Ltd Battery pack
US6605078B2 (en) 2001-11-26 2003-08-12 Scimed Life Systems, Inc. Full thickness resection device
DE10158246C1 (en) 2001-11-28 2003-08-21 Ethicon Endo Surgery Europe Surgical stapling instrument
US6671185B2 (en) 2001-11-28 2003-12-30 Landon Duval Intelligent fasteners
US20070073389A1 (en) 2001-11-28 2007-03-29 Aptus Endosystems, Inc. Endovascular aneurysm devices, systems, and methods
EP2116344B1 (en) 2001-11-29 2010-11-17 Max Co., Ltd. Electric stapler
US7591818B2 (en) 2001-12-04 2009-09-22 Endoscopic Technologies, Inc. Cardiac ablation devices and methods
US7542807B2 (en) 2001-12-04 2009-06-02 Endoscopic Technologies, Inc. Conduction block verification probe and method of use
ES2388729T3 (en) 2001-12-04 2012-10-18 Tyco Healthcare Group Lp System and method to calibrate a surgical instrument
US7357806B2 (en) 2001-12-06 2008-04-15 Ethicon Endo-Surgery, Inc. Clip ejector for endoscopic clip applier
US7918867B2 (en) 2001-12-07 2011-04-05 Abbott Laboratories Suture trimmer
GB2383006A (en) 2001-12-13 2003-06-18 Black & Decker Inc Mechanism for use in a power tool and a power tool including such a mechanism
US20030114851A1 (en) 2001-12-13 2003-06-19 Csaba Truckai Electrosurgical jaws for controlled application of clamping pressure
US6723087B2 (en) 2001-12-14 2004-04-20 Medtronic, Inc. Apparatus and method for performing surgery on a patient
US6974462B2 (en) 2001-12-19 2005-12-13 Boston Scientific Scimed, Inc. Surgical anchor implantation device
US7122028B2 (en) 2001-12-19 2006-10-17 Allegiance Corporation Reconfiguration surgical apparatus
US6939358B2 (en) 2001-12-20 2005-09-06 Gore Enterprise Holdings, Inc. Apparatus and method for applying reinforcement material to a surgical stapler
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
JP4230915B2 (en) 2001-12-21 2009-02-25 シムチャ ミロ Annuloplasty ring transplantation system
RU2225170C2 (en) 2001-12-25 2004-03-10 Дубровский Аркадий Вениаминович Instrument having rotation device
GB0425842D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
GB0130975D0 (en) 2001-12-27 2002-02-13 Gyrus Group Plc A surgical instrument
US6942662B2 (en) 2001-12-27 2005-09-13 Gyrus Group Plc Surgical Instrument
US20060264929A1 (en) 2001-12-27 2006-11-23 Gyrus Group Plc Surgical system
WO2003055402A1 (en) 2001-12-27 2003-07-10 Gyrus Group Plc A surgical instrument
US6729119B2 (en) 2001-12-28 2004-05-04 The Schnipke Family Limited Liability Company Robotic loader for surgical stapling cartridge
US6913594B2 (en) 2001-12-31 2005-07-05 Biosense Webster, Inc. Dual-function catheter handle
US6602252B2 (en) 2002-01-03 2003-08-05 Starion Instruments Corporation Combined dissecting, cauterizing, and stapling device
US6740030B2 (en) 2002-01-04 2004-05-25 Vision Sciences, Inc. Endoscope assemblies having working channels with reduced bending and stretching resistance
CA2472207A1 (en) 2002-01-09 2003-07-24 Neoguide Systems, Inc. Apparatus and method for endoscopic colectomy
US7199537B2 (en) 2002-01-16 2007-04-03 Toyota Jidosha Kabushiki Kaisha Voltage converter control apparatus, and method
AU2003205148A1 (en) 2002-01-16 2003-09-02 Eva Corporation Catheter hand-piece apparatus and method of using the same
US6869435B2 (en) 2002-01-17 2005-03-22 Blake, Iii John W Repeating multi-clip applier
US7091412B2 (en) 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US6676660B2 (en) 2002-01-23 2004-01-13 Ethicon Endo-Surgery, Inc. Feedback light apparatus and method for use with an electrosurgical instrument
DE10203282A1 (en) 2002-01-29 2003-08-21 Behrens Ag Friedrich Joh Fasteners and process for its manufacture
US7530985B2 (en) 2002-01-30 2009-05-12 Olympus Corporation Endoscopic suturing system
US7501198B2 (en) 2002-02-07 2009-03-10 Linvatec Corporation Sterile transfer battery container
JP2005516714A (en) 2002-02-13 2005-06-09 アプライド メディカル リソーシーズ コーポレイション Tissue melting / welding apparatus and method
EP1336392A1 (en) 2002-02-14 2003-08-20 John S. Geis Body vessel support and catheter system
US7494499B2 (en) 2002-02-15 2009-02-24 Olympus Corporation Surgical therapeutic instrument
US6524180B1 (en) 2002-02-19 2003-02-25 Maury Simms Adjustable duct assembly for fume and dust removal
CN1635853B (en) 2002-02-20 2010-05-12 21世纪国际新技术株式会社 Fine powder drug administration apparatus
US6646307B1 (en) 2002-02-21 2003-11-11 Advanced Micro Devices, Inc. MOSFET having a double gate
US7400752B2 (en) 2002-02-21 2008-07-15 Alcon Manufacturing, Ltd. Video overlay system for surgical apparatus
US7337690B1 (en) * 2002-02-26 2008-03-04 Raytheon Company Leadscrew assembly with a wire-wound leadscrew and a spring-pin engagement of a drive nut to the leadscrew
US6847190B2 (en) 2002-02-26 2005-01-25 Linvatec Corporation Method and apparatus for charging sterilizable rechargeable batteries
US6747300B2 (en) 2002-03-04 2004-06-08 Ternational Rectifier Corporation H-bridge drive utilizing a pair of high and low side MOSFETs in a common insulation housing
US7831292B2 (en) 2002-03-06 2010-11-09 Mako Surgical Corp. Guidance system and method for surgical procedures with improved feedback
USD473239S1 (en) 2002-03-08 2003-04-15 Dca Design International Limited Portion of a display panel with a computer icon image
US7289139B2 (en) 2002-03-12 2007-10-30 Karl Storz Imaging, Inc. Endoscope reader
GB0206208D0 (en) 2002-03-15 2002-05-01 Gyrus Medical Ltd A surgical instrument
EP2322078A1 (en) 2002-03-18 2011-05-18 Optim, Inc. Method of sterilising an endoscope
US7247161B2 (en) 2002-03-22 2007-07-24 Gyrus Ent L.L.C. Powered surgical apparatus, method of manufacturing powered surgical apparatus, and method of using powered surgical apparatus
USD484977S1 (en) 2002-03-22 2004-01-06 Gyrus Ent L.L.C. Surgical tool blade holder
USD484595S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
USD478986S1 (en) 2002-03-22 2003-08-26 Gyrus Ent L.L.C. Surgical tool
USD484243S1 (en) 2002-03-22 2003-12-23 Gyrus Ent L.L.C. Surgical tool blade holder
USD484596S1 (en) 2002-03-22 2003-12-30 Gyrus Ent L.L.C. Surgical tool blade holder
USD478665S1 (en) 2002-03-22 2003-08-19 Gyrus Ent L.L.C. Disposable trigger
US7137981B2 (en) 2002-03-25 2006-11-21 Ethicon Endo-Surgery, Inc. Endoscopic ablation system with a distally mounted image sensor
JP4071642B2 (en) 2002-03-25 2008-04-02 株式会社リコー Paper processing apparatus and image forming system
US7128748B2 (en) 2002-03-26 2006-10-31 Synovis Life Technologies, Inc. Circular stapler buttress combination
MXPA04001335A (en) 2002-04-09 2004-05-05 Kim Jae-Hwang Indwelling fecal diverting device.
JP2003300416A (en) 2002-04-10 2003-10-21 Kyowa Sangyo Kk Vehicle sunvisor
AU2003226050A1 (en) 2002-04-11 2003-10-27 Tyco Healthcare Group, Lp Surgical stapling apparatus including an anvil and cartridge each having cooperating mating surfaces
AU2003234718A1 (en) 2002-04-15 2003-11-03 Tyco Healthcare Group, Lp Instrument introducer
CA2479765C (en) 2002-04-15 2009-01-27 Cook Biotech Incorporated Apparatus and method for producing a reinforced surgical staple line
JP4350529B2 (en) 2002-04-16 2009-10-21 タイコ ヘルスケア グループ エルピー Surgical stapler and surgical method
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
AU2003272191B2 (en) 2002-04-22 2008-07-03 Abreu, Marcio Marc Aurelio Martins Apparatus and method for measuring biologic parameters
US6846811B2 (en) 2002-04-22 2005-01-25 Wisconsin Alumni Research Foundation (20S) 1α-hydroxy-2α-methyl and 2β-methyl-19-nor-vitamin D3 and their uses
US8241308B2 (en) 2002-04-24 2012-08-14 Boston Scientific Scimed, Inc. Tissue fastening devices and processes that promote tissue adhesion
WO2003090631A1 (en) 2002-04-24 2003-11-06 Surgical Connections, Inc. Resection and anastomosis devices and methods
US20050131390A1 (en) 2002-04-25 2005-06-16 Russell Heinrich Surgical instruments including mems devices
US8603110B2 (en) 2002-04-25 2013-12-10 Terumo Kabushiki Kaisha Organism tissue suturing apparatus
US7161580B2 (en) 2002-04-25 2007-01-09 Immersion Corporation Haptic feedback using rotary harmonic moving mass
US6692692B2 (en) 2002-04-29 2004-02-17 Eric J. Stetzel Dental drill sterilization through application of high amperage current
US6969385B2 (en) 2002-05-01 2005-11-29 Manuel Ricardo Moreyra Wrist with decoupled motion transmission
AU2003228858A1 (en) 2002-05-02 2003-11-17 Scimed Life Systems, Inc. Energetically-controlled delivery of biologically active material from an implanted medical device
US7674270B2 (en) 2002-05-02 2010-03-09 Laparocision, Inc Apparatus for positioning a medical instrument
US7215517B2 (en) 2002-05-08 2007-05-08 Seiko Epson Corporation Constant-voltage switching power supply provided with overvoltage output protecting circuit, and electronic apparatus provided with overvoltage protecting circuit
WO2003094740A1 (en) 2002-05-08 2003-11-20 Radi Medical Systems Ab Dissolvable medical sealing device
US7044350B2 (en) 2002-05-09 2006-05-16 Toshiyuki Kameyama Cartridge for stapler and stapler
CA2484635C (en) 2002-05-10 2011-01-04 Tyco Healthcare Group Lp Electrosurgical stapling apparatus
US6736854B2 (en) 2002-05-10 2004-05-18 C. R. Bard, Inc. Prosthetic repair fabric with erosion resistant edge
JP4316491B2 (en) 2002-05-10 2009-08-19 タイコ ヘルスケア グループ エルピー Wound closure material applicator and stapler
DE60335360D1 (en) 2002-05-10 2011-01-27 Tyco Healthcare SURGICAL CLAMP DEVICE WITH AN ARRANGEMENT FOR APPLYING A WOUND SEALING MATERIAL
AU2003234551A1 (en) 2002-05-13 2003-11-11 Tyco Healthcare Group, Lp Surgical stapler and disposable loading unit having different size staples
TWI237916B (en) 2002-05-13 2005-08-11 Sun Bridge Corp Cordless device system
US20040254455A1 (en) 2002-05-15 2004-12-16 Iddan Gavriel J. Magneic switch for use in a system that includes an in-vivo device, and method of use thereof
US20040158261A1 (en) 2002-05-15 2004-08-12 Vu Dinh Q. Endoscopic device for spill-proof laparoscopic ovarian cystectomy
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US6638297B1 (en) 2002-05-30 2003-10-28 Ethicon Endo-Surgery, Inc. Surgical staple
US7056330B2 (en) 2002-05-31 2006-06-06 Ethicon Endo-Surgery, Inc. Method for applying tissue fastener
US6989034B2 (en) 2002-05-31 2006-01-24 Ethicon, Inc. Attachment of absorbable tissue scaffolds to fixation devices
US6543456B1 (en) 2002-05-31 2003-04-08 Ethicon Endo-Surgery, Inc. Method for minimally invasive surgery in the digestive system
US7004174B2 (en) 2002-05-31 2006-02-28 Neothermia Corporation Electrosurgery with infiltration anesthesia
US6769594B2 (en) 2002-05-31 2004-08-03 Tyco Healthcare Group, Lp End-to-end anastomosis instrument and method for performing same
US6861142B1 (en) 2002-06-06 2005-03-01 Hills, Inc. Controlling the dissolution of dissolvable polymer components in plural component fibers
EP1369208B1 (en) 2002-06-07 2008-04-23 Black & Decker Inc. A power tool provided with a locking mechanism
US6783491B2 (en) 2002-06-13 2004-08-31 Vahid Saadat Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
US7166133B2 (en) 2002-06-13 2007-01-23 Kensey Nash Corporation Devices and methods for treating defects in the tissue of a living being
US20050137454A1 (en) 2002-06-13 2005-06-23 Usgi Medical Corp. Shape lockable apparatus and method for advancing an instrument through unsupported anatomy
EP1515651B1 (en) 2002-06-14 2006-12-06 Power Medical Interventions, Inc. Device for clamping, cutting, and stapling tissue
US7717873B2 (en) 2002-06-14 2010-05-18 Mcneil-Ppc, Inc. Applicator device for suppositories and the like
EP1719461B1 (en) 2002-06-17 2009-06-03 Tyco Healthcare Group Lp Annular support structures
EP1515645B1 (en) 2002-06-17 2006-08-16 Tyco Healthcare Group Lp Annular support structures
US7063671B2 (en) 2002-06-21 2006-06-20 Boston Scientific Scimed, Inc. Electronically activated capture device
RU2284160C2 (en) 2002-06-24 2006-09-27 Аркадий Вениаминович Дубровский Device for rotating remote control instrument
US6635838B1 (en) 2002-06-24 2003-10-21 Brent A. Kornelson Switch actuating device and method of mounting same
US7112214B2 (en) 2002-06-25 2006-09-26 Incisive Surgical, Inc. Dynamic bioabsorbable fastener for use in wound closure
US7220260B2 (en) 2002-06-27 2007-05-22 Gyrus Medical Limited Electrosurgical system
US9126317B2 (en) 2002-06-27 2015-09-08 Snap-On Incorporated Tool apparatus system and method of use
GB2390024B (en) 2002-06-27 2005-09-21 Gyrus Medical Ltd Electrosurgical system
US7699856B2 (en) 2002-06-27 2010-04-20 Van Wyk Robert A Method, apparatus, and kit for thermal suture cutting
AUPS322702A0 (en) 2002-06-28 2002-07-18 Cochlear Limited Cochlear implant electrode array
US8287561B2 (en) 2002-06-28 2012-10-16 Boston Scientific Scimed, Inc. Balloon-type actuator for surgical applications
US20040006340A1 (en) 2002-07-02 2004-01-08 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting, desiccating and sealing tissue
US7033356B2 (en) 2002-07-02 2006-04-25 Gyrus Medical, Inc. Bipolar electrosurgical instrument for cutting desiccating and sealing tissue
US6932218B2 (en) 2002-07-03 2005-08-23 Monica Rich Kosann Photography Llc Folding photo case
DE60326397D1 (en) 2002-07-03 2009-04-09 Abbott Vascular Inc Surgical stapling device
US20040006335A1 (en) 2002-07-08 2004-01-08 Garrison Lawrence L. Cauterizing surgical saw
US7029439B2 (en) 2002-07-09 2006-04-18 Welch Allyn, Inc. Medical diagnostic instrument
US7035762B2 (en) 2002-07-11 2006-04-25 Alcatel Canada Inc. System and method for tracking utilization data for an electronic device
AU2003237588A1 (en) 2002-07-11 2004-02-02 Sightline Technologies Ltd. Piston-actuated endoscopic steering system
US20040006860A1 (en) 2002-07-15 2004-01-15 Haytayan Harry M. Method and apparatus for attaching structural components with fasteners
US20040166169A1 (en) 2002-07-15 2004-08-26 Prasanna Malaviya Porous extracellular matrix scaffold and method
US7769427B2 (en) 2002-07-16 2010-08-03 Magnetics, Inc. Apparatus and method for catheter guidance control and imaging
US7054696B2 (en) 2002-07-18 2006-05-30 Black & Decker Inc. System and method for data retrieval in AC power tools via an AC line cord
IL150853A0 (en) 2002-07-22 2003-02-12 Niti Medical Technologies Ltd Imppoved intussusception and anastomosis apparatus
DK1523512T3 (en) 2002-07-22 2020-03-30 Aspen Aerogels Inc POLYIMIDE AEROGELS, CARBON AEROGELS, AND METALCAR BIDEROGELS AND METHODS FOR PRODUCING THE SAME
JP4046569B2 (en) 2002-07-30 2008-02-13 オリンパス株式会社 Surgical instrument
DE60336923D1 (en) 2002-07-31 2011-06-09 Tyco Healthcare Cover for a tool element and actuator for the cover
US8016881B2 (en) 2002-07-31 2011-09-13 Icon Interventional Systems, Inc. Sutures and surgical staples for anastamoses, wound closures, and surgical closures
US7179223B2 (en) 2002-08-06 2007-02-20 Olympus Optical Co., Ltd. Endoscope apparatus having an internal channel
US6969395B2 (en) 2002-08-07 2005-11-29 Boston Scientific Scimed, Inc. Electroactive polymer actuated medical devices
US9271753B2 (en) 2002-08-08 2016-03-01 Atropos Limited Surgical device
US6720734B2 (en) 2002-08-08 2004-04-13 Datex-Ohmeda, Inc. Oximeter with nulled op-amp current feedback
WO2004014244A2 (en) 2002-08-13 2004-02-19 Microbotics Corporation Microsurgical robot system
US6863668B2 (en) 2002-08-16 2005-03-08 Edwards Lifesciences Corporation Articulation mechanism for medical devices
US20040044295A1 (en) 2002-08-19 2004-03-04 Orthosoft Inc. Graphical user interface for computer-assisted surgery
WO2004019803A1 (en) 2002-08-28 2004-03-11 Heribert Schmid Dental treatment system
US20040044364A1 (en) 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US6981978B2 (en) 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7174636B2 (en) 2002-09-04 2007-02-13 Scimed Life Systems, Inc. Method of making an embolic filter
US20040049121A1 (en) 2002-09-06 2004-03-11 Uri Yaron Positioning system for neurological procedures in the brain
WO2004021868A2 (en) 2002-09-06 2004-03-18 C.R. Bard, Inc. External endoscopic accessory control system
US6925849B2 (en) 2002-09-10 2005-08-09 Acco Brands, Inc. Stapler anvil
US8298161B2 (en) 2002-09-12 2012-10-30 Intuitive Surgical Operations, Inc. Shape-transferring cannula system and method of use
US6895176B2 (en) 2002-09-12 2005-05-17 General Electric Company Method and apparatus for controlling electronically commutated motor operating characteristics
US7096972B2 (en) 2002-09-17 2006-08-29 Orozco Jr Efrem Hammer drill attachment
GB0221707D0 (en) 2002-09-18 2002-10-30 Gyrus Medical Ltd Electrical system
JP3680050B2 (en) 2002-09-18 2005-08-10 株式会社東芝 Medical manipulator and control method thereof
US8454628B2 (en) 2002-09-20 2013-06-04 Syntheon, Llc Surgical fastener aligning instrument particularly for transoral treatment of gastroesophageal reflux disease
US7001408B2 (en) 2002-09-20 2006-02-21 Ethicon Endo-Surgery,Inc. Surgical device with expandable member
US7256695B2 (en) 2002-09-23 2007-08-14 Microstrain, Inc. Remotely powered and remotely interrogated wireless digital sensor telemetry system
US6814154B2 (en) 2002-09-23 2004-11-09 Wen San Chou Power tool having automatically selective driving direction
EP1549226A4 (en) 2002-09-26 2006-05-10 Bioaccess Inc Orthopedic medical device with unitary components
WO2004032783A1 (en) 2002-09-27 2004-04-22 Aesculap Ag & Co. Kg Set of instruments for performing a surgical operation
US7326203B2 (en) 2002-09-30 2008-02-05 Depuy Acromed, Inc. Device for advancing a functional element through tissue
EP1549200A4 (en) 2002-09-30 2008-05-07 Sightline Techn Ltd Piston-actuated endoscopic tool
US7087054B2 (en) 2002-10-01 2006-08-08 Surgrx, Inc. Electrosurgical instrument and method of use
JP4049217B2 (en) 2002-10-02 2008-02-20 イーメックス株式会社 Conductive polymer molded article and apparatus using laminate
US20040068224A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Electroactive polymer actuated medication infusion pumps
US20040068161A1 (en) 2002-10-02 2004-04-08 Couvillon Lucien Alfred Thrombolysis catheter
US6836611B2 (en) 2002-10-03 2004-12-28 J. W. Speaker Corporation Light guide and lateral illuminator
US7276068B2 (en) 2002-10-04 2007-10-02 Sherwood Services Ag Vessel sealing instrument with electrical cutting mechanism
US7135027B2 (en) 2002-10-04 2006-11-14 Baxter International, Inc. Devices and methods for mixing and extruding medically useful compositions
US7588177B2 (en) 2002-10-04 2009-09-15 Tyco Healthcare Group Lp Tool assembly for surgical stapling device
EP3085315B1 (en) 2002-10-04 2019-03-13 Covidien LP Surgical stapler with tissue pre-clamp
CA2500785C (en) 2002-10-04 2011-04-26 Philip C. Roy Pneumatic powered surgical stapling device
DE60327227D1 (en) 2002-10-04 2009-05-28 Tyco Healthcare SURGICAL CLIP REPLACEMENT
US7083626B2 (en) 2002-10-04 2006-08-01 Applied Medical Resources Corporation Surgical access device with pendent valve
JP4448449B2 (en) 2002-10-04 2010-04-07 タイコ ヘルスケア グループ エルピー Tool assembly for a surgical stapling device
US20040070369A1 (en) 2002-10-11 2004-04-15 Makita Corporation Adapters for battery chargers
US7041088B2 (en) 2002-10-11 2006-05-09 Ethicon, Inc. Medical devices having durable and lubricious polymeric coating
US6958035B2 (en) 2002-10-15 2005-10-25 Dusa Pharmaceuticals, Inc Medical device sheath apparatus and method of making and using same
US7023159B2 (en) 2002-10-18 2006-04-04 Black & Decker Inc. Method and device for braking a motor
US8100872B2 (en) 2002-10-23 2012-01-24 Tyco Healthcare Group Lp Medical dressing containing antimicrobial agent
JP4086621B2 (en) 2002-10-28 2008-05-14 株式会社トップ Surgical instrument handle structure
US6894140B2 (en) 2002-10-28 2005-05-17 Tyco Healthecare Gropu Lp Fast curing compositions
US6923093B2 (en) 2002-10-29 2005-08-02 Rizwan Ullah Tool drive system
US7083620B2 (en) 2002-10-30 2006-08-01 Medtronic, Inc. Electrosurgical hemostat
US20040085180A1 (en) 2002-10-30 2004-05-06 Cyntec Co., Ltd. Current sensor, its production substrate, and its production process
US7037344B2 (en) 2002-11-01 2006-05-02 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US20090149871A9 (en) 2002-11-01 2009-06-11 Jonathan Kagan Devices and methods for treating morbid obesity
US8142515B2 (en) 2002-11-04 2012-03-27 Sofradim Production Prosthesis for reinforcement of tissue structures
US20040218451A1 (en) 2002-11-05 2004-11-04 Said Joe P. Accessible user interface and navigation system and method
US6884392B2 (en) 2002-11-12 2005-04-26 Minntech Corporation Apparatus and method for steam reprocessing flexible endoscopes
US6951562B2 (en) 2002-11-13 2005-10-04 Ralph Fritz Zwirnmann Adjustable length tap and method for drilling and tapping a bore in bone
US20040133095A1 (en) 2002-11-14 2004-07-08 Dunki-Jacobs Robert J. Methods and devices for detecting abnormal tissue cells
DE10253572A1 (en) 2002-11-15 2004-07-29 Vega Grieshaber Kg Wireless communication
US20050256452A1 (en) 2002-11-15 2005-11-17 Demarchi Thomas Steerable vascular sheath
US7211092B2 (en) 2002-11-19 2007-05-01 Pilling Weck Incorporated Automated-feed surgical clip applier and related methods
CN1486667A (en) 2002-11-22 2004-04-07 Endoscope system with disposable sheath
US7896897B2 (en) 2002-11-22 2011-03-01 Tyco Healthcare Group Lp Sheath introduction apparatus and method
US20040101822A1 (en) 2002-11-26 2004-05-27 Ulrich Wiesner Fluorescent silica-based nanoparticles
DE10257760A1 (en) 2002-11-26 2004-06-17 Stefan Koscher Surgical instrument
US20040102783A1 (en) 2002-11-27 2004-05-27 Sutterlin Chester E. Powered Kerrison-like Rongeur system
AU2003293191B2 (en) 2002-11-29 2008-08-07 William E. Cohn Apparatus and method for manipulating tissue
KR100486596B1 (en) 2002-12-06 2005-05-03 엘지전자 주식회사 Apparatus and control method for driving of reciprocating compressor
US7386365B2 (en) 2004-05-04 2008-06-10 Intuitive Surgical, Inc. Tool grip calibration for robotic surgery
CA2509622C (en) 2002-12-16 2012-02-21 Gunze Limited Medical film comprising gelatin and reinforcing material
WO2004058079A2 (en) 2002-12-17 2004-07-15 Applied Medical Resources Corporation Surgical staple-clip and applier
US20040122419A1 (en) 2002-12-18 2004-06-24 Ceramoptec Industries, Inc. Medical device recognition system with write-back feature
JP2006510879A (en) 2002-12-18 2006-03-30 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Magnetic position sensor
US7348763B1 (en) 2002-12-20 2008-03-25 Linvatec Corporation Method for utilizing temperature to determine a battery state
US7343920B2 (en) 2002-12-20 2008-03-18 Toby E Bruce Connective tissue repair system
US7682686B2 (en) 2002-12-20 2010-03-23 The Procter & Gamble Company Tufted fibrous web
US20040147909A1 (en) 2002-12-20 2004-07-29 Gyrus Ent L.L.C. Surgical instrument
US7249267B2 (en) 2002-12-21 2007-07-24 Power-One, Inc. Method and system for communicating filter compensation coefficients for a digital power control system
US6931830B2 (en) 2002-12-23 2005-08-23 Chase Liao Method of forming a wire package
US7131445B2 (en) 2002-12-23 2006-11-07 Gyrus Medical Limited Electrosurgical method and apparatus
GB0230055D0 (en) 2002-12-23 2003-01-29 Gyrus Medical Ltd Electrosurgical method and apparatus
US20040119185A1 (en) 2002-12-23 2004-06-24 Chen Ching Hsi Method for manufacturing opened-cell plastic foams
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
JP4160381B2 (en) 2002-12-27 2008-10-01 ローム株式会社 Electronic device having audio output device
JP2004208922A (en) 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
US7914561B2 (en) 2002-12-31 2011-03-29 Depuy Spine, Inc. Resilient bone plate and screw system allowing bi-directional assembly
JP2004209042A (en) 2003-01-06 2004-07-29 Olympus Corp Ultrasonic treatment apparatus
US7195627B2 (en) 2003-01-09 2007-03-27 Gyrus Medical Limited Electrosurgical generator
CA2512904C (en) 2003-01-09 2011-06-14 Gyrus Medical Limited An electrosurgical generator
GB0426648D0 (en) 2004-12-03 2005-01-05 Gyrus Medical Ltd An electrosurgical generator
US7287682B1 (en) 2003-01-20 2007-10-30 Hazem Ezzat Surgical device and method
US20040143297A1 (en) 2003-01-21 2004-07-22 Maynard Ramsey Advanced automatic external defibrillator powered by alternative and optionally multiple electrical power sources and a new business method for single use AED distribution and refurbishment
US7028570B2 (en) 2003-01-21 2006-04-18 Honda Motor Co., Ltd. Transmission
US6960220B2 (en) 2003-01-22 2005-11-01 Cardia, Inc. Hoop design for occlusion device
US6821284B2 (en) 2003-01-22 2004-11-23 Novare Surgical Systems, Inc. Surgical clamp inserts with micro-tractive surfaces
US6852122B2 (en) 2003-01-23 2005-02-08 Cordis Corporation Coated endovascular AAA device
US20040225186A1 (en) 2003-01-29 2004-11-11 Horne Guy E. Composite flexible endoscope insertion shaft with tubular substructure
US7341591B2 (en) 2003-01-30 2008-03-11 Depuy Spine, Inc. Anterior buttress staple
JP2004229976A (en) 2003-01-31 2004-08-19 Nippon Zeon Co Ltd Forceps type electrical operative instrument
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
EP1447177B1 (en) 2003-02-05 2011-04-20 Makita Corporation Power tool with a torque limiter using only rotational angle detecting means
US20090318557A1 (en) 2003-12-22 2009-12-24 Stockel Richard F Dermatological compositions
US7067038B2 (en) 2003-02-06 2006-06-27 The Procter & Gamble Company Process for making unitary fibrous structure comprising randomly distributed cellulosic fibers and non-randomly distributed synthetic fibers
US7045026B2 (en) 2003-02-06 2006-05-16 The Procter & Gamble Company Process for making a fibrous structure comprising cellulosic and synthetic fibers
ATE534492T1 (en) 2003-02-07 2011-12-15 Max Co Ltd STAPLE REFILLING DEVICE, STAPLE DEVICE
EP1593337B1 (en) 2003-02-11 2008-08-13 Olympus Corporation Overtube
US7133601B2 (en) 2003-02-18 2006-11-07 Black & Decker Inc. Amperage control for protection of battery over current in power tools
US20040167572A1 (en) 2003-02-20 2004-08-26 Roth Noah M. Coated medical devices
US7235072B2 (en) 2003-02-20 2007-06-26 Sherwood Services Ag Motion detector for controlling electrosurgical output
US7083615B2 (en) 2003-02-24 2006-08-01 Intuitive Surgical Inc Surgical tool having electrocautery energy supply conductor with inhibited current leakage
US7252641B2 (en) 2003-02-25 2007-08-07 Ethicon Endo-Surgery, Inc. Method of operating a biopsy device
ES2570987T3 (en) 2003-02-25 2016-05-23 Tria Beauty Inc Dermatological treatment device, based on diode laser and autonomous
EP2604215B1 (en) 2003-02-25 2017-10-11 Tria Beauty, Inc. Eye-safe dermatologic treatment apparatus and method
JP4231707B2 (en) 2003-02-25 2009-03-04 オリンパス株式会社 Capsule medical device
WO2004075728A2 (en) 2003-02-25 2004-09-10 Ethicon Endo-Surgery, Inc. Biopsy device with variable speed cutter advance
US7476237B2 (en) 2003-02-27 2009-01-13 Olympus Corporation Surgical instrument
MXPA05009485A (en) 2003-03-04 2005-10-26 Norton Healthcare Ltd Medicament dispensing device with a display indicative of the state of an internal medicament reservoir.
EP1599146B1 (en) 2003-03-05 2007-10-03 Gyrus Medical Limited Electrosurgical generator and system
US7368124B2 (en) 2003-03-07 2008-05-06 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
US8197837B2 (en) 2003-03-07 2012-06-12 Depuy Mitek, Inc. Method of preparation of bioabsorbable porous reinforced tissue implants and implants thereof
IL154814A0 (en) 2003-03-09 2003-10-31 Edward G Shifrin Sternal closure system, method and apparatus therefor
US7126879B2 (en) 2003-03-10 2006-10-24 Healthtrac Systems, Inc. Medication package and method
US20060064086A1 (en) 2003-03-13 2006-03-23 Darren Odom Bipolar forceps with multiple electrode array end effector assembly
AU2004222288B2 (en) 2003-03-17 2009-12-10 Covidien Lp Endoscopic tissue removal apparatus and method
CA2433205A1 (en) 2003-03-18 2004-09-18 James Alexander Keenan Drug delivery, bodily fluid drainage, and biopsy device with enhanced ultrasonic visibility
US6928902B1 (en) 2003-03-20 2005-08-16 Luis P. Eyssallenne Air powered wrench device with pivotable head and method of using
US20060041188A1 (en) 2003-03-25 2006-02-23 Dirusso Carlo A Flexible endoscope
US20040193189A1 (en) 2003-03-25 2004-09-30 Kortenbach Juergen A. Passive surgical clip
CA2519461C (en) 2003-03-26 2012-05-29 Tyco Healthcare Group Lp Energy stored in spring with controlled release
US7014640B2 (en) 2003-03-28 2006-03-21 Depuy Products, Inc. Bone graft delivery device and method of use
DE10314072B4 (en) 2003-03-28 2009-01-15 Aesculap Ag Surgical instrument
US7295893B2 (en) 2003-03-31 2007-11-13 Kabushiki Kaisha Toshiba Manipulator and its control apparatus and method
US7527632B2 (en) 2003-03-31 2009-05-05 Cordis Corporation Modified delivery device for coated medical devices
JP3944108B2 (en) 2003-03-31 2007-07-11 株式会社東芝 Power transmission mechanism and manipulator for medical manipulator
JP3752494B2 (en) 2003-03-31 2006-03-08 株式会社東芝 Master-slave manipulator, control device and control method thereof
DE10314827B3 (en) 2003-04-01 2004-04-22 Tuebingen Scientific Surgical Products Gmbh Surgical instrument used in minimal invasive surgery comprises an effector-operating gear train having a push bar displaceably arranged in a tubular shaft and lying in contact with a push bolt interacting with an engaging element
US7591783B2 (en) 2003-04-01 2009-09-22 Boston Scientific Scimed, Inc. Articulation joint for video endoscope
DE10330604A1 (en) 2003-04-01 2004-10-28 Tuebingen Scientific Surgical Products Gmbh Surgical instrument
DE10324844A1 (en) 2003-04-01 2004-12-23 Tuebingen Scientific Surgical Products Gmbh Surgical instrument with instrument handle and zero point adjustment
US20040199181A1 (en) 2003-04-02 2004-10-07 Knodel Bryan D. Surgical device for anastomosis
US20040197375A1 (en) 2003-04-02 2004-10-07 Alireza Rezania Composite scaffolds seeded with mammalian cells
US20040243163A1 (en) 2003-04-02 2004-12-02 Gyrus Ent L.L.C Surgical instrument
US20070010702A1 (en) 2003-04-08 2007-01-11 Xingwu Wang Medical device with low magnetic susceptibility
US20040204735A1 (en) 2003-04-11 2004-10-14 Shiroff Jason Alan Subcutaneous dissection tool incorporating pharmacological agent delivery
US6754959B1 (en) 2003-04-15 2004-06-29 Guiette, Iii William E. Hand-held, cartridge-actuated cutter
US20050116673A1 (en) 2003-04-18 2005-06-02 Rensselaer Polytechnic Institute Methods and systems for controlling the operation of a tool
PT1616549E (en) 2003-04-23 2012-11-12 Otsuka Pharma Co Ltd Drug solution filling plastic ampoule and process for producing the same
WO2004096015A2 (en) 2003-04-25 2004-11-11 Applied Medical Resources Corporation Steerable kink-resistant sheath
US20040243151A1 (en) 2003-04-29 2004-12-02 Demmy Todd L. Surgical stapling device with dissecting tip
US8714429B2 (en) 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
TWI231076B (en) 2003-04-29 2005-04-11 Univ Nat Chiao Tung Evanescent-field optical amplifiers and lasers
RU32984U1 (en) 2003-04-30 2003-10-10 Институт экспериментальной ветеринарии Сибири и Дальнего Востока СО РАСХН CUTIMETER
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
US8128624B2 (en) 2003-05-01 2012-03-06 Covidien Ag Electrosurgical instrument that directs energy delivery and protects adjacent tissue
CA2522372C (en) 2003-05-06 2012-08-07 Enpath Medical, Inc. Rotatable lead introducer
JP4391762B2 (en) 2003-05-08 2009-12-24 オリンパス株式会社 Surgical instrument
US6722550B1 (en) 2003-05-09 2004-04-20 Illinois Tool Works Inc. Fuel level indicator for combustion tools
AU2003243219B2 (en) 2003-05-09 2009-10-29 Covidien Lp Anastomotic staple with fluid dispensing capillary
US7404449B2 (en) 2003-05-12 2008-07-29 Bermingham Construction Limited Pile driving control apparatus and pile driving system
US7025775B2 (en) 2003-05-15 2006-04-11 Applied Medical Resources Corporation Surgical instrument with removable shaft apparatus and method
US7615005B2 (en) 2003-05-16 2009-11-10 Ethicon Endo-Surgery, Inc. Medical apparatus for use with an endoscope
US7815565B2 (en) 2003-05-16 2010-10-19 Ethicon Endo-Surgery, Inc. Endcap for use with an endoscope
US7615003B2 (en) 2005-05-13 2009-11-10 Ethicon Endo-Surgery, Inc. Track for medical devices
JP4444961B2 (en) 2003-05-19 2010-03-31 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Determining the channel rating of a transmission channel
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070010838A1 (en) 2003-05-20 2007-01-11 Shelton Frederick E Iv Surgical stapling instrument having a firing lockout for an unclosed anvil
US7286850B2 (en) 2003-05-20 2007-10-23 Agere Systems Inc. Wireless communication module system and method for performing a wireless communication
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7000818B2 (en) 2003-05-20 2006-02-21 Ethicon, Endo-Surger, Inc. Surgical stapling instrument having separate distinct closing and firing systems
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
USD502994S1 (en) 2003-05-21 2005-03-15 Blake, Iii Joseph W Repeating multi-clip applier
US8727961B2 (en) 2003-05-22 2014-05-20 Kimberly-Clark Worldwide, Inc. Apparatus for the prevention of urinary incontinence in females
US7410483B2 (en) 2003-05-23 2008-08-12 Novare Surgical Systems, Inc. Hand-actuated device for remote manipulation of a grasping tool
US7090637B2 (en) 2003-05-23 2006-08-15 Novare Surgical Systems, Inc. Articulating mechanism for remote manipulation of a surgical or diagnostic tool
US8100824B2 (en) 2003-05-23 2012-01-24 Intuitive Surgical Operations, Inc. Tool with articulation lock
NL1023532C2 (en) 2003-05-26 2004-11-29 Innosource B V Speed control for a brushless DC motor.
US7583063B2 (en) 2003-05-27 2009-09-01 Pratt & Whitney Canada Corp. Architecture for electric machine
US6965183B2 (en) 2003-05-27 2005-11-15 Pratt & Whitney Canada Corp. Architecture for electric machine
US6921397B2 (en) * 2003-05-27 2005-07-26 Cardia, Inc. Flexible delivery device
US7413563B2 (en) * 2003-05-27 2008-08-19 Cardia, Inc. Flexible medical device
DE10325393B3 (en) 2003-05-28 2005-01-05 Karl Storz Gmbh & Co. Kg retractor
US7430772B2 (en) 2003-05-28 2008-10-07 Koninklijke Philips Electronics N.V. Device including moveable support for examining persons
JP3521910B1 (en) 2003-05-29 2004-04-26 清輝 司馬 External forceps channel device for endoscope
US7346344B2 (en) 2003-05-30 2008-03-18 Aol Llc, A Delaware Limited Liability Company Identity-based wireless device configuration
US6796921B1 (en) 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool
US20040247415A1 (en) 2003-06-04 2004-12-09 Mangone Peter G. Slotted fastener and fastening method
US8007511B2 (en) 2003-06-06 2011-08-30 Hansen Medical, Inc. Surgical instrument design
WO2004109223A1 (en) 2003-06-09 2004-12-16 Mitutoyo Corporation Measuring instrument
WO2004110553A1 (en) 2003-06-09 2004-12-23 The University Of Cincinnati Actuation mechanisms for a heart actuation device
US20060241666A1 (en) 2003-06-11 2006-10-26 Briggs Barry D Method and apparatus for body fluid sampling and analyte sensing
DE10326677A1 (en) 2003-06-13 2005-01-20 Zf Friedrichshafen Ag planetary gear
US7597693B2 (en) 2003-06-13 2009-10-06 Covidien Ag Vessel sealer and divider for use with small trocars and cannulas
US20060052824A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant
US7905902B2 (en) 2003-06-16 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical implant with preferential corrosion zone
US7862546B2 (en) 2003-06-16 2011-01-04 Ethicon Endo-Surgery, Inc. Subcutaneous self attaching injection port with integral moveable retention members
US20040254590A1 (en) 2003-06-16 2004-12-16 Hoffman Gary H. Method and instrument for the performance of stapled anastamoses
US20060052825A1 (en) 2003-06-16 2006-03-09 Ransick Mark H Surgical implant alloy
EP2474272B1 (en) 2003-06-17 2020-11-04 Covidien LP Surgical stapling device
US20040260315A1 (en) 2003-06-17 2004-12-23 Dell Jeffrey R. Expandable tissue support member and method of forming the support member
US7494039B2 (en) 2003-06-17 2009-02-24 Tyco Healthcare Group Lp Surgical stapling device
CA2529446C (en) 2003-06-20 2012-12-18 Tyco Healthcare Group, Lp Surgical stapling device
JP4665432B2 (en) 2003-06-20 2011-04-06 日立工機株式会社 Combustion power tool
WO2004112652A2 (en) 2003-06-20 2004-12-29 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
US20060154546A1 (en) 2003-06-25 2006-07-13 Andover Coated Products, Inc. Air permeable pressure-sensitive adhesive tapes
GB0314863D0 (en) 2003-06-26 2003-07-30 Univ Dundee Medical apparatus and method
SE526852C2 (en) 2003-06-26 2005-11-08 Kongsberg Automotive Ab Method and arrangement for controlling DC motor
JP2005013573A (en) 2003-06-27 2005-01-20 Olympus Corp Electronic endoscope system
DE10328934B4 (en) 2003-06-27 2005-06-02 Christoph Zepf Motor drive for surgical instruments
US6998816B2 (en) 2003-06-30 2006-02-14 Sony Electronics Inc. System and method for reducing external battery capacity requirement for a wireless card
DE102004063606B4 (en) 2004-02-20 2015-10-22 Carl Zeiss Meditec Ag Holding device, in particular for a medical-optical instrument, with a device for active vibration damping
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US8226715B2 (en) 2003-06-30 2012-07-24 Depuy Mitek, Inc. Scaffold for connective tissue repair
US7126303B2 (en) 2003-07-08 2006-10-24 Board Of Regents Of The University Of Nebraska Robot for surgical applications
US20050010213A1 (en) 2003-07-08 2005-01-13 Depuy Spine, Inc. Attachment mechanism for surgical instrument
US7147648B2 (en) 2003-07-08 2006-12-12 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Device for cutting and holding a cornea during a transplant procedure
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
US6786382B1 (en) 2003-07-09 2004-09-07 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an articulation joint for a firing bar track
US7213736B2 (en) 2003-07-09 2007-05-08 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an electroactive polymer actuated firing bar track through an articulation joint
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US7066879B2 (en) 2003-07-15 2006-06-27 The Trustees Of Columbia University In The City Of New York Insertable device and system for minimal access procedure
EP1498077B8 (en) 2003-07-15 2005-12-28 University Of Dundee Medical gripping and/or cutting instrument
US7931695B2 (en) 2003-07-15 2011-04-26 Kensey Nash Corporation Compliant osteosynthesis fixation plate
KR100582697B1 (en) 2003-07-16 2006-05-23 동경 엘렉트론 주식회사 Transportation apparatus and drive mechanism
EP1643914B1 (en) 2003-07-16 2015-09-23 Covidien LP Surgical stapling device with tissue tensioner
PT1647286E (en) 2003-07-17 2010-11-30 Gunze Kk Stitching reinforcement material for automatic stitching device
US7183737B2 (en) 2003-07-17 2007-02-27 Asmo Co., Ltd. Motor control device and motor control method
JP4124041B2 (en) 2003-07-18 2008-07-23 日立工機株式会社 DC power supply with charging function
US7712182B2 (en) 2003-07-25 2010-05-11 Milwaukee Electric Tool Corporation Air flow-producing device, such as a vacuum cleaner or a blower
US7121773B2 (en) 2003-08-01 2006-10-17 Nitto Kohki Co., Ltd. Electric drill apparatus
US20050032511A1 (en) 2003-08-07 2005-02-10 Cardiac Pacemakers, Inc. Wireless firmware download to an external device
FI120333B (en) 2003-08-20 2009-09-30 Bioretec Oy A porous medical device and a method of making it
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
JP3853807B2 (en) 2003-08-28 2006-12-06 本田技研工業株式会社 Sound vibration analysis apparatus, sound vibration analysis method, computer-readable recording medium recording sound vibration analysis program, and program for sound vibration analysis
US7686201B2 (en) 2003-09-01 2010-03-30 Tyco Healthcare Group Lp Circular stapler for hemorrhoid operations
JP4190983B2 (en) 2003-09-04 2008-12-03 ジョンソン・エンド・ジョンソン株式会社 Staple device
CA2439536A1 (en) 2003-09-04 2005-03-04 Jacek Krzyzanowski Variations of biopsy jaw and clevis and method of manufacture
JP4722849B2 (en) 2003-09-12 2011-07-13 マイルストーン サイアンティフィック インク Drug injection device that identifies tissue using pressure sensing
US20050058890A1 (en) 2003-09-15 2005-03-17 Kenneth Brazell Removable battery pack for a portable electric power tool
EP1662971B2 (en) 2003-09-15 2017-02-15 Apollo Endosurgery, Inc. Implantable device fastening system
US20050059997A1 (en) 2003-09-17 2005-03-17 Bauman Ann M. Circular stapler buttress
US7547312B2 (en) 2003-09-17 2009-06-16 Gore Enterprise Holdings, Inc. Circular stapler buttress
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US7000819B2 (en) 2003-09-29 2006-02-21 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing incorporating a traction-biased ratcheting mechanism
US7083075B2 (en) 2003-09-29 2006-08-01 Ethicon Endo-Surgery, Inc. Multi-stroke mechanism with automatic end of stroke retraction
US7434715B2 (en) 2003-09-29 2008-10-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having multistroke firing with opening lockout
US7094202B2 (en) 2003-09-29 2006-08-22 Ethicon Endo-Surgery, Inc. Method of operating an endoscopic device with one hand
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
US7303108B2 (en) 2003-09-29 2007-12-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with a flexible rack
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
DE20321117U1 (en) 2003-09-29 2005-12-22 Robert Bosch Gmbh Cordless drill/driver, comprising spring supported switch extending across full front of handle
US20050070929A1 (en) 2003-09-30 2005-03-31 Dalessandro David A. Apparatus and method for attaching a surgical buttress to a stapling apparatus
US20050075561A1 (en) 2003-10-01 2005-04-07 Lucent Medical Systems, Inc. Method and apparatus for indicating an encountered obstacle during insertion of a medical device
US7202576B1 (en) 2003-10-03 2007-04-10 American Power Conversion Corporation Uninterruptible power supply systems and enclosures
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
US7914543B2 (en) 2003-10-14 2011-03-29 Satiety, Inc. Single fold device for tissue fixation
US7097650B2 (en) 2003-10-14 2006-08-29 Satiety, Inc. System for tissue approximation and fixation
US7533906B2 (en) 2003-10-14 2009-05-19 Water Pik, Inc. Rotatable and pivotable connector
US20060161050A1 (en) 2003-10-15 2006-07-20 John Butler A surgical sealing device
US7029435B2 (en) 2003-10-16 2006-04-18 Granit Medical Innovation, Llc Endoscope having multiple working segments
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
ES2387016T3 (en) 2003-10-17 2012-09-11 Tyco Healthcare Group Lp Surgical stapling device
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
US10041822B2 (en) 2007-10-05 2018-08-07 Covidien Lp Methods to shorten calibration times for powered devices
US8806973B2 (en) * 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
USD509589S1 (en) 2003-10-17 2005-09-13 Tyco Healthcare Group, Lp Handle for surgical instrument
CA2542532C (en) 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
US7296722B2 (en) 2003-10-17 2007-11-20 Tyco Healthcare Group Lp Surgical fastener applying apparatus with controlled beam deflection
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US20050090817A1 (en) 2003-10-22 2005-04-28 Scimed Life Systems, Inc. Bendable endoscopic bipolar device
EP2258294B1 (en) 2003-10-23 2013-01-09 Covidien AG Redundant temperature monitoring in electrosurgical systems for safety mitigation
US7786288B2 (en) 2003-10-23 2010-08-31 Karp Nelson M Immunizing compositions encoding an epitope obtained from the HIV-1 capsid protein cyclophilin A binding site
US7190147B2 (en) 2003-10-24 2007-03-13 Eagle-Picher Technologies, Llc Battery with complete discharge device
NZ547208A (en) 2003-10-28 2009-10-30 Ibex Ind Ltd Powered hand tool
US7147650B2 (en) 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
JP2007519615A (en) 2003-10-30 2007-07-19 マクニール−ピーピーシー・インコーポレイテッド Composites containing metal-loaded nanoparticles
US7338513B2 (en) 2003-10-30 2008-03-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7842028B2 (en) 2005-04-14 2010-11-30 Cambridge Endoscopic Devices, Inc. Surgical instrument guide device
US7686826B2 (en) 2003-10-30 2010-03-30 Cambridge Endoscopic Devices, Inc. Surgical instrument
JP2005131164A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131212A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope and endoscope device
JP2005131211A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
JP2005131163A (en) 2003-10-31 2005-05-26 Olympus Corp External channel for endoscope
JP2005131173A (en) 2003-10-31 2005-05-26 Olympus Corp Externally mounted channel for endoscope
US20050096683A1 (en) 2003-11-01 2005-05-05 Medtronic, Inc. Using thinner laminations to reduce operating temperature in a high speed hand-held surgical power tool
JP2005137423A (en) 2003-11-04 2005-06-02 Olympus Corp External channel for endoscope and branch member for external channel
US7397364B2 (en) 2003-11-11 2008-07-08 Biosense Webster, Inc. Digital wireless position sensor
JP4614965B2 (en) 2003-11-12 2011-01-19 アプライド メディカル リソーシーズ コーポレイション Overmold gripping jaw
DE10353846A1 (en) 2003-11-18 2005-06-16 Maquet Gmbh & Co. Kg Method of preparation of equipment intended for the performance of medical or surgical procedures
EP1695229A4 (en) 2003-11-18 2007-05-09 Robert M Ii Burke System for regulating access to and distributing content in a network
US6899593B1 (en) 2003-11-18 2005-05-31 Dieter Moeller Grinding apparatus for blending defects on turbine blades and associated method of use
JP4594612B2 (en) 2003-11-27 2010-12-08 オリンパス株式会社 Insertion aid
GB0327904D0 (en) 2003-12-02 2004-01-07 Qinetiq Ltd Gear change mechanism
US8257393B2 (en) 2003-12-04 2012-09-04 Ethicon, Inc. Active suture for the delivery of therapeutic fluids
US8389588B2 (en) 2003-12-04 2013-03-05 Kensey Nash Corporation Bi-phasic compressed porous reinforcement materials suitable for implant
GB2408936B (en) 2003-12-09 2007-07-18 Gyrus Group Plc A surgical instrument
US7439354B2 (en) 2003-12-11 2008-10-21 E.I. Du Pont De Nemours And Company Process for preparing amide acetals
MXPA06006362A (en) 2003-12-12 2006-08-23 Automated Merchandising System Adjustable storage rack for a vending machine.
US20050131457A1 (en) 2003-12-15 2005-06-16 Ethicon, Inc. Variable stiffness shaft
US7604118B2 (en) 2003-12-15 2009-10-20 Panasonic Corporation Puncture needle cartridge and lancet for blood collection
US8221424B2 (en) 2004-12-20 2012-07-17 Spinascope, Inc. Surgical instrument for orthopedic surgery
CA2550431A1 (en) 2003-12-19 2005-07-14 Osteotech, Inc. Tissue-derived mesh for orthopedic regeneration
US7742036B2 (en) 2003-12-22 2010-06-22 Immersion Corporation System and method for controlling haptic devices having multiple operational modes
JP4552435B2 (en) 2003-12-22 2010-09-29 住友化学株式会社 Oxime production method
JP4398716B2 (en) 2003-12-24 2010-01-13 呉羽テック株式会社 Highly stretchable nonwoven fabric provided with a clear embossed pattern and method for producing the same
US8590764B2 (en) 2003-12-24 2013-11-26 Boston Scientific Scimed, Inc. Circumferential full thickness resectioning device
CN1634601A (en) 2003-12-26 2005-07-06 吉林省中立实业有限公司 Method for sterilizing medical appliance
US20050143759A1 (en) 2003-12-30 2005-06-30 Kelly William D. Curved cutter stapler shaped for male pelvis
US7549563B2 (en) 2003-12-30 2009-06-23 Ethicon Endo-Surgery, Inc. Rotating curved cutter stapler
US6988650B2 (en) 2003-12-30 2006-01-24 Ethicon Endo-Surgery, Inc. Retaining pin lever advancement mechanism for a curved cutter stapler
US7147140B2 (en) 2003-12-30 2006-12-12 Ethicon Endo - Surgery, Inc. Cartridge retainer for a curved cutter stapler
US20050139636A1 (en) 2003-12-30 2005-06-30 Schwemberger Richard F. Replaceable cartridge module for a surgical stapling and cutting instrument
US7147139B2 (en) 2003-12-30 2006-12-12 Ethicon Endo-Surgery, Inc Closure plate lockout for a curved cutter stapler
US7207472B2 (en) 2003-12-30 2007-04-24 Ethicon Endo-Surgery, Inc. Cartridge with locking knife for a curved cutter stapler
US7766207B2 (en) 2003-12-30 2010-08-03 Ethicon Endo-Surgery, Inc. Articulating curved cutter stapler
US7204404B2 (en) 2003-12-30 2007-04-17 Ethicon Endo-Surgery, Inc. Slotted pins guiding knife in a curved cutter stapler
US7134587B2 (en) 2003-12-30 2006-11-14 Ethicon Endo-Surgery, Inc. Knife retraction arm for a curved cutter stapler
US6995729B2 (en) 2004-01-09 2006-02-07 Biosense Webster, Inc. Transponder with overlapping coil antennas on a common core
TWI228850B (en) 2004-01-14 2005-03-01 Asia Optical Co Inc Laser driver circuit for burst mode and making method thereof
US7146191B2 (en) 2004-01-16 2006-12-05 United States Thermoelectric Consortium Wireless communications apparatus and method
GB2410161B (en) 2004-01-16 2008-09-03 Btg Int Ltd Method and system for calculating and verifying the integrity of data in data transmission system
US7219980B2 (en) 2004-01-21 2007-05-22 Silverbrook Research Pty Ltd Printhead assembly with removable cover
DE602005025075D1 (en) 2004-01-23 2011-01-13 Allergan Inc MOUNTING SYSTEM FOR AN IMPLANTABLE DEVICE AND APPLICATION METHOD
US20050171522A1 (en) 2004-01-30 2005-08-04 Christopherson Mark A. Transurethral needle ablation system with needle position indicator
US7204835B2 (en) 2004-02-02 2007-04-17 Gyrus Medical, Inc. Surgical instrument
US20050177176A1 (en) 2004-02-05 2005-08-11 Craig Gerbi Single-fold system for tissue approximation and fixation
DE102004005709A1 (en) 2004-02-05 2005-08-25 Polydiagnost Gmbh Endoscope with a flexible probe
US11395865B2 (en) 2004-02-09 2022-07-26 DePuy Synthes Products, Inc. Scaffolds with viable tissue
AU2005212341B2 (en) 2004-02-10 2011-11-24 Synecor, Llc. Intravascular delivery system for therapeutic agents
GB0403020D0 (en) 2004-02-11 2004-03-17 Pa Consulting Services Portable charging device
US7979137B2 (en) 2004-02-11 2011-07-12 Ethicon, Inc. System and method for nerve stimulation
EP1720606B1 (en) 2004-02-12 2011-08-17 Ndi Medical, LLC Portable assemblies and systems for providing functional or therapeutic neuromuscular stimulation
EP2253277B1 (en) 2004-02-17 2012-09-19 Tyco Healthcare Group LP Surgical Stapling Apparatus With Locking Mechanism
GB2429651C (en) 2004-02-17 2009-03-25 Cook Biotech Inc Medical devices and methods useful for applying bolster material
DE602005000891T2 (en) 2004-02-17 2008-01-17 Tyco Healthcare Group Lp, Norwalk Surgical stapler with locking mechanism
US20100191292A1 (en) 2004-02-17 2010-07-29 Demeo Joseph Oriented polymer implantable device and process for making same
US7886952B2 (en) 2004-02-17 2011-02-15 Tyco Healthcare Group Lp Surgical stapling apparatus with locking mechanism
US7172104B2 (en) 2004-02-17 2007-02-06 Tyco Healthcare Group Lp Surgical stapling apparatus
ES2282940T3 (en) 2004-02-17 2007-10-16 Tyco Healthcare Group Lp APPLICATION FOR THE APPLICATION OF SURGICAL STAPLES WITH BLOCKING MECHANISM.
US7086267B2 (en) 2004-02-18 2006-08-08 Frank W. Dworak Metal-forming die and method for manufacturing same
US6953138B1 (en) 2004-02-18 2005-10-11 Frank W. Dworak Surgical stapler anvil with nested staple forming pockets
US20050187545A1 (en) 2004-02-20 2005-08-25 Hooven Michael D. Magnetic catheter ablation device and method
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US20050186240A1 (en) 2004-02-23 2005-08-25 Ringeisen Timothy A. Gel suitable for implantation and delivery system
GB2411527B (en) 2004-02-26 2006-06-28 Itt Mfg Enterprises Inc Electrical connector
JP2005279253A (en) 2004-03-02 2005-10-13 Olympus Corp Endoscope
US20050209614A1 (en) 2004-03-04 2005-09-22 Fenter Felix W Anastomosis apparatus and methods with computer-aided, automated features
JP4755638B2 (en) 2004-03-05 2011-08-24 ハンセン メディカル,インク. Robotic guide catheter system
US20060100610A1 (en) 2004-03-05 2006-05-11 Wallace Daniel T Methods using a robotic catheter system
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
JP4610934B2 (en) 2004-06-03 2011-01-12 オリンパス株式会社 Surgical instrument
WO2005084556A1 (en) 2004-03-10 2005-09-15 Olympus Corporation Treatment tool for surgery
EP1722705A2 (en) 2004-03-10 2006-11-22 Depuy International Limited Orthopaedic operating systems, methods, implants and instruments
US20050203550A1 (en) 2004-03-11 2005-09-15 Laufer Michael D. Surgical fastener
GB2412232A (en) 2004-03-15 2005-09-21 Ims Nanofabrication Gmbh Particle-optical projection system
US7118528B1 (en) 2004-03-16 2006-10-10 Gregory Piskun Hemorrhoids treatment method and associated instrument assembly including anoscope and cofunctioning tissue occlusion device
US7093492B2 (en) 2004-03-19 2006-08-22 Mechworks Systems Inc. Configurable vibration sensor
ES2400050T3 (en) 2004-03-19 2013-04-05 Covidien Lp Anvil set with improved cutting ring
US8181840B2 (en) 2004-03-19 2012-05-22 Tyco Healthcare Group Lp Tissue tensioner assembly and approximation mechanism for surgical stapling device
JP5051767B2 (en) 2004-03-22 2012-10-17 ボディーメディア インコーポレイテッド Device for monitoring human condition parameters
JP4727158B2 (en) 2004-03-23 2011-07-20 オリンパス株式会社 Endoscope system
DE102004014011A1 (en) 2004-03-23 2005-10-20 Airtec Pneumatic Gmbh Multifunctional therapy device for shock wave or massage therapy comprises a module with a housing containing a rear and a front cylinder head and a cylinder tube, a piston, a control unit, a piston rod, and an adaptable treatment head
TWI234339B (en) 2004-03-25 2005-06-11 Richtek Techohnology Corp High-efficiency voltage transformer
EP1584300A3 (en) 2004-03-30 2006-07-05 Kabushiki Kaisha Toshiba Manipulator apparatus
DE102004015667B3 (en) 2004-03-31 2006-01-19 Sutter Medizintechnik Gmbh Bipolar double jointed instrument
US7331403B2 (en) 2004-04-02 2008-02-19 Black & Decker Inc. Lock-out for activation arm mechanism in a power tool
ATE394200T1 (en) 2004-04-02 2008-05-15 Black & Decker Inc FASTENING TOOL WITH MODE SELECTION SWITCH
US7036680B1 (en) 2004-04-07 2006-05-02 Avery Dennison Corporation Device for dispensing plastic fasteners
JP2005296412A (en) 2004-04-13 2005-10-27 Olympus Corp Endoscopic treatment apparatus
EP1740084A2 (en) 2004-04-15 2007-01-10 Wilson-Cook Medical Inc. Endoscopic surgical access devices and methods of articulating an external accessory channel
US6960107B1 (en) 2004-04-16 2005-11-01 Brunswick Corporation Marine transmission with a cone clutch used for direct transfer of torque
WO2005102193A2 (en) 2004-04-19 2005-11-03 Acumed, Llc Placement of fasteners into bone
US7361168B2 (en) 2004-04-21 2008-04-22 Acclarent, Inc. Implantable device and methods for delivering drugs and other substances to treat sinusitis and other disorders
US7758612B2 (en) 2004-04-27 2010-07-20 Tyco Healthcare Group Lp Surgery delivery device and mesh anchor
US7377918B2 (en) 2004-04-28 2008-05-27 Gyrus Medical Limited Electrosurgical method and apparatus
US7098794B2 (en) 2004-04-30 2006-08-29 Kimberly-Clark Worldwide, Inc. Deactivating a data tag for user privacy or tamper-evident packaging
BRPI0510550A (en) 2004-05-03 2007-11-20 Ams Res Corp surgical implant, surgical kit, method for forming or assembling a surgical implant, insertion mold, apparatus, and method for producing a surgical implant
US7348875B2 (en) 2004-05-04 2008-03-25 Battelle Memorial Institute Semi-passive radio frequency identification (RFID) tag with active beacon
EP2422751A3 (en) 2004-05-05 2013-01-02 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US7736374B2 (en) 2004-05-07 2010-06-15 Usgi Medical, Inc. Tissue manipulation and securement system
US20050251063A1 (en) 2004-05-07 2005-11-10 Raghuveer Basude Safety device for sampling tissue
EP1750595A4 (en) 2004-05-07 2008-10-22 Valentx Inc Devices and methods for attaching an endolumenal gastrointestinal implant
US8333764B2 (en) 2004-05-12 2012-12-18 Medtronic, Inc. Device and method for determining tissue thickness and creating cardiac ablation lesions
US8251891B2 (en) 2004-05-14 2012-08-28 Nathan Moskowitz Totally wireless electronically embedded action-ended endoscope utilizing differential directional illumination with digitally controlled mirrors and/or prisms
JP2005328882A (en) 2004-05-18 2005-12-02 Olympus Corp Treatment instrument for endoscope, and endoscopic system
GB2414185A (en) 2004-05-20 2005-11-23 Gyrus Medical Ltd Morcellating device using cutting electrodes on end-face of tube
US7260431B2 (en) 2004-05-20 2007-08-21 Cardiac Pacemakers, Inc. Combined remodeling control therapy and anti-remodeling therapy by implantable cardiac device
JP2005335432A (en) 2004-05-24 2005-12-08 Nissan Motor Co Ltd Rear wheel steering control device
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US7828808B2 (en) 2004-06-07 2010-11-09 Novare Surgical Systems, Inc. Link systems and articulation mechanisms for remote manipulation of surgical or diagnostic tools
DE102004027850A1 (en) 2004-06-08 2006-01-05 Henke-Sass Wolf Gmbh Bendable section of an introducer tube of an endoscope and method for its manufacture
US7695493B2 (en) 2004-06-09 2010-04-13 Usgi Medical, Inc. System for optimizing anchoring force
US8663245B2 (en) 2004-06-18 2014-03-04 Medtronic, Inc. Device for occlusion of a left atrial appendage
GB2415140A (en) 2004-06-18 2005-12-21 Gyrus Medical Ltd A surgical instrument
US7331406B2 (en) 2004-06-21 2008-02-19 Duraspin Products Llc Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
US7229408B2 (en) 2004-06-30 2007-06-12 Ethicon, Inc. Low profile surgical retractor
EP1614394A3 (en) 2004-07-02 2006-11-02 Discus Dental Impressions Inc. Support system for dentistry
US7443547B2 (en) 2004-07-03 2008-10-28 Science Forge, Inc. Portable electronic faxing, scanning, copying, and printing device
US7966236B2 (en) 2004-07-07 2011-06-21 Ubs Financial Services Inc. Method and system for real time margin calculation
US7485133B2 (en) 2004-07-14 2009-02-03 Warsaw Orthopedic, Inc. Force diffusion spinal hook
JP4257270B2 (en) 2004-07-14 2009-04-22 オリンパス株式会社 Biological tissue suturing method and biological tissue suturing device
US20060020258A1 (en) 2004-07-20 2006-01-26 Medtronic, Inc. Surgical apparatus with a manually actuatable assembly and a method of operating same
US20090078736A1 (en) 2004-07-26 2009-03-26 Van Lue Stephen J Surgical stapler with magnetically secured components
RU42750U1 (en) 2004-07-26 2004-12-20 Альбертин Сергей Викторович DEVICE FOR DOSED SUBMISSION OF SUBSTANCES
US8075476B2 (en) 2004-07-27 2011-12-13 Intuitive Surgical Operations, Inc. Cannula system and method of use
US7857183B2 (en) 2004-07-28 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
US20060025812A1 (en) 2004-07-28 2006-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated pivoting articulation mechanism
US7354447B2 (en) 2005-11-10 2008-04-08 Ethicon Endo-Surgery, Inc. Disposable loading unit and surgical instruments including same
US8057508B2 (en) 2004-07-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation locking mechanism
US7914551B2 (en) 2004-07-28 2011-03-29 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for multi-fire surgical fastening instrument
US7513408B2 (en) 2004-07-28 2009-04-07 Ethicon Endo-Surgery, Inc. Multiple firing stroke surgical instrument incorporating electroactive polymer anti-backup mechanism
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
CA2512948C (en) 2004-07-28 2013-10-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US7879070B2 (en) 2004-07-28 2011-02-01 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for grasper
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7407077B2 (en) 2004-07-28 2008-08-05 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US8905977B2 (en) 2004-07-28 2014-12-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated medical substance dispenser
US8317074B2 (en) 2004-07-28 2012-11-27 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for circular stapler
US7506790B2 (en) 2004-07-28 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an electrically actuated articulation mechanism
DE102004038414A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for operating a surgical machine
DE202004012389U1 (en) 2004-07-30 2004-09-30 Aesculap Ag & Co. Kg Surgical machine has brushless electric motor with space vector pulse width modulation control using rotor position sensing by reverse EMF during coil disconnection
DE102004038415A1 (en) 2004-07-30 2006-03-23 Aesculap Ag & Co. Kg Surgical machine and method for controlling and / or regulating a surgical machine
US7210609B2 (en) 2004-07-30 2007-05-01 Tools For Surgery, Llc Stapling apparatus having a curved anvil and driver
ES2365037T3 (en) 2004-08-06 2011-09-21 Genentech, Inc. TESTS AND METHODS USING BIOMARKERS.
CN2716900Y (en) 2004-08-09 2005-08-10 陈永 Novel feeling mouse
US7779737B2 (en) 2004-08-12 2010-08-24 The Chisel Works, LLC. Multi-axis panel saw
CA2576441A1 (en) 2004-08-17 2006-03-02 Tyco Healthcare Group Lp Stapling support structures
EP2143740B1 (en) 2004-08-19 2013-06-19 Covidien LP Water-swellable copolymers and articles and coating made therefrom
US7182239B1 (en) 2004-08-27 2007-02-27 Myers Stephan R Segmented introducer device for a circular surgical stapler
US8657808B2 (en) 2004-08-31 2014-02-25 Medtronic, Inc. Surgical apparatus including a hand-activated, cable assembly and method of using same
WO2006026520A2 (en) 2004-08-31 2006-03-09 Surgical Solutions Llc Medical device with articulating shaft
DE102004042886A1 (en) 2004-09-04 2006-03-30 Roche Diagnostics Gmbh Lancet device for creating a puncture wound
WO2006029092A1 (en) 2004-09-05 2006-03-16 Gateway Plastics, Inc. Closure for a container
US7128254B2 (en) 2004-09-07 2006-10-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing mechanism having a rotary slip-clutch transmission
MX2007002841A (en) 2004-09-10 2007-04-30 Ethicon Endo Surgery Inc Surgical stapling instrument.
KR100646762B1 (en) 2004-09-10 2006-11-23 인하대학교 산학협력단 A staple for operation and a stapler for operation provided with the same
US7162758B2 (en) 2004-09-14 2007-01-16 Skinner Lyle J Multipurpose gripping tool
US7391164B2 (en) 2004-09-15 2008-06-24 Research In Motion Limited Visual notification methods for candy-bar type cellphones
US7726171B2 (en) 2004-09-15 2010-06-01 Ao Technology Ag Device and process for calibrating geometrical measurements of surgical tools and orienting the same in space
JP2006081687A (en) 2004-09-15 2006-03-30 Max Co Ltd Medical stapler
US8123764B2 (en) 2004-09-20 2012-02-28 Endoevolution, Llc Apparatus and method for minimally invasive suturing
GB0519252D0 (en) 2005-09-21 2005-10-26 Dezac Ltd Laser hair removal device
US7336184B2 (en) 2004-09-24 2008-02-26 Intel Corporation Inertially controlled switch and RFID tag
US9261172B2 (en) 2004-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Multi-ply strap drive trains for surgical robotic arms
EA012609B1 (en) 2004-09-30 2009-10-30 Ковалон Текнолоджиз Инк. Non-adhesive elastic gelatin matrices
US20120016239A1 (en) 2004-10-06 2012-01-19 Guided Therapy Systems, Llc Systems for cosmetic treatment
FR2876020B1 (en) 2004-10-06 2007-03-09 Sofradim Production Sa APPARATUS FOR STORAGE, DISTRIBUTION AND INSTALLATION OF SURGICAL ATTACHES
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
EP1805849B1 (en) 2004-10-08 2014-12-03 Covidien LP Apparatus for applying surgical clips
US8409222B2 (en) 2004-10-08 2013-04-02 Covidien Lp Endoscopic surgical clip applier
US7819886B2 (en) 2004-10-08 2010-10-26 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US20060079879A1 (en) 2004-10-08 2006-04-13 Faller Craig N Actuation mechanism for use with an ultrasonic surgical instrument
US9763668B2 (en) 2004-10-08 2017-09-19 Covidien Lp Endoscopic surgical clip applier
JP5103183B2 (en) 2004-10-08 2012-12-19 タイコ ヘルスケア グループ リミテッド パートナーシップ Endoscopic surgical clip applier
WO2006044581A2 (en) 2004-10-13 2006-04-27 Medtronic, Inc. Single-use transurethral needle ablation device
US20100331883A1 (en) 2004-10-15 2010-12-30 Schmitz Gregory P Access and tissue modification systems and methods
US8257356B2 (en) 2004-10-15 2012-09-04 Baxano, Inc. Guidewire exchange systems to treat spinal stenosis
US8372094B2 (en) 2004-10-15 2013-02-12 Covidien Lp Seal element for anastomosis
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
EP2441396B1 (en) 2004-10-18 2015-01-21 Covidien LP Annular adhesive structure
US7938307B2 (en) 2004-10-18 2011-05-10 Tyco Healthcare Group Lp Support structures and methods of using the same
EP3095396B1 (en) 2004-10-18 2018-04-18 Covidien LP Extraluminal sealant applicator
US7688028B2 (en) 2004-10-18 2010-03-30 Black & Decker Inc. Cordless power system
US7455682B2 (en) 2004-10-18 2008-11-25 Tyco Healthcare Group Lp Structure containing wound treatment material
CA2584019C (en) 2004-10-18 2014-09-16 Tyco Healthcare Group Lp Structure for applying sprayable wound treatment material
US7717313B2 (en) 2004-10-18 2010-05-18 Tyco Healthcare Group Lp Surgical apparatus and structure for applying sprayable wound treatment material
AU2005295487B2 (en) 2004-10-18 2010-12-02 Covidien Lp Surgical fasteners coated with wound treatment materials
JP4783373B2 (en) 2004-10-18 2011-09-28 タイコ ヘルスケア グループ エルピー Device for applying a wound healing substance using a tissue penetrating needle
DE102004052204A1 (en) 2004-10-19 2006-05-04 Karl Storz Gmbh & Co. Kg Deflectible endoscopic instrument
US8128662B2 (en) 2004-10-20 2012-03-06 Vertiflex, Inc. Minimally invasive tooling for delivery of interspinous spacer
WO2006044881A2 (en) 2004-10-20 2006-04-27 Ethicon, Inc. A reinforced absorbable multilayered fabric for use in medical devices and method of manufacture
US20060087746A1 (en) 2004-10-22 2006-04-27 Kenneth Lipow Remote augmented motor-sensory interface for surgery
US20060086032A1 (en) 2004-10-27 2006-04-27 Joseph Valencic Weapon and input device to record information
EP1845845B1 (en) 2004-11-02 2010-09-01 Medtronic, Inc. Techniques for user-activated data retention in an implantable medical device
US20060097699A1 (en) 2004-11-05 2006-05-11 Mathews Associates, Inc. State of charge indicator for battery
KR20060046933A (en) 2004-11-12 2006-05-18 노틸러스효성 주식회사 Multi-protecting device of personal identification number-pad module
CN2738962Y (en) 2004-11-15 2005-11-09 胡建坤 Electric shaver and electric shaver with charger
US7641671B2 (en) 2004-11-22 2010-01-05 Design Standards Corporation Closing assemblies for clamping device
US7182763B2 (en) 2004-11-23 2007-02-27 Instrasurgical, Llc Wound closure device
EP1838223A2 (en) 2004-11-23 2007-10-03 Novare Surgical Systems, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
US9700334B2 (en) 2004-11-23 2017-07-11 Intuitive Surgical Operations, Inc. Articulating mechanisms and link systems with torque transmission in remote manipulation of instruments and tools
GB0425843D0 (en) 2004-11-24 2004-12-29 Gyrus Group Plc An electrosurgical instrument
US7255012B2 (en) 2004-12-01 2007-08-14 Rosemount Inc. Process fluid flow device with variable orifice
CA2526541C (en) 2004-12-01 2013-09-03 Tyco Healthcare Group Lp Novel biomaterial drug delivery and surface modification compositions
JP2006158525A (en) 2004-12-03 2006-06-22 Olympus Medical Systems Corp Ultrasonic surgical apparatus, and method of driving ultrasonic treatment instrument
US7328829B2 (en) 2004-12-13 2008-02-12 Niti Medical Technologies Ltd. Palm size surgical stapler for single hand operation
US7121446B2 (en) 2004-12-13 2006-10-17 Niti Medical Technologies Ltd. Palm-size surgical stapler for single hand operation
US7568619B2 (en) 2004-12-15 2009-08-04 Alcon, Inc. System and method for identifying and controlling ophthalmic surgical devices and components
US7384403B2 (en) 2004-12-17 2008-06-10 Depuy Products, Inc. Wireless communication system for transmitting information from a medical device
US7896869B2 (en) 2004-12-29 2011-03-01 Depuy Products, Inc. System and method for ensuring proper medical instrument use in an operating room
US7611474B2 (en) 2004-12-29 2009-11-03 Ethicon Endo-Surgery, Inc. Core sampling biopsy device with short coupled MRI-compatible driver
US20060142772A1 (en) 2004-12-29 2006-06-29 Ralph James D Surgical fasteners and related implant devices having bioabsorbable components
US7118020B2 (en) 2005-01-05 2006-10-10 Chung-Heng Lee Stapler
US7419321B2 (en) 2005-01-05 2008-09-02 Misha Tereschouk Hand applicator of encapsulated liquids
US8182422B2 (en) 2005-12-13 2012-05-22 Avantis Medical Systems, Inc. Endoscope having detachable imaging device and method of using
US7686804B2 (en) 2005-01-14 2010-03-30 Covidien Ag Vessel sealer and divider with rotating sealer and cutter
US20060161185A1 (en) 2005-01-14 2006-07-20 Usgi Medical Inc. Methods and apparatus for transmitting force to an end effector over an elongate member
US7770776B2 (en) 2005-01-26 2010-08-10 Suzhou Touchstone International Medical Science Co., Ltd Rotatable stapling head of a surgical stapler
US20060167471A1 (en) 2005-01-27 2006-07-27 Vector Surgical Surgical marker
US20060173470A1 (en) 2005-01-31 2006-08-03 Oray B N Surgical fastener buttress material
US20060176031A1 (en) 2005-02-04 2006-08-10 Ess Technology, Inc. Dual output switching regulator and method of operation
US8007440B2 (en) 2005-02-08 2011-08-30 Volcano Corporation Apparatus and methods for low-cost intravascular ultrasound imaging and for crossing severe vascular occlusions
WO2006085389A1 (en) 2005-02-09 2006-08-17 Johnson & Johnson Kabushiki Kaisha Stapling instrument
EP1690638A1 (en) 2005-02-09 2006-08-16 BLACK & DECKER INC. Power tool gear-train and torque overload clutch therefor
JP2006218129A (en) 2005-02-10 2006-08-24 Olympus Corp Surgery supporting system
GB2423199B (en) 2005-02-11 2009-05-13 Pa Consulting Services Power supply systems for electrical devices
JP2006218228A (en) 2005-02-14 2006-08-24 Olympus Corp Battery unit, battery device having the same, medical instrument and endoscope
US20060180633A1 (en) 2005-02-17 2006-08-17 Tyco Healthcare Group, Lp Surgical staple
US7559452B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument having fluid actuated opposing jaws
US20060289602A1 (en) 2005-06-23 2006-12-28 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with double pivot closure and single pivot frame ground
US7654431B2 (en) * 2005-02-18 2010-02-02 Ethicon Endo-Surgery, Inc. Surgical instrument with guided laterally moving articulation member
US7780054B2 (en) 2005-02-18 2010-08-24 Ethicon Endo-Surgery, Inc. Surgical instrument with laterally moved shaft actuator coupled to pivoting articulation joint
US7784662B2 (en) 2005-02-18 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical instrument with articulating shaft with single pivot closure and double pivot frame ground
US7559450B2 (en) 2005-02-18 2009-07-14 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating a fluid transfer controlled articulation mechanism
GB2423931B (en) 2005-03-03 2009-08-26 Michael John Radley Young Ultrasonic cutting tool
US7699846B2 (en) 2005-03-04 2010-04-20 Gyrus Ent L.L.C. Surgical instrument and method
US7674263B2 (en) 2005-03-04 2010-03-09 Gyrus Ent, L.L.C. Surgical instrument and method
US20060217729A1 (en) 2005-03-09 2006-09-28 Brasseler Usa Medical Llc Surgical apparatus and tools for same
US20060206100A1 (en) 2005-03-09 2006-09-14 Brasseler Usa Medical Llc Surgical apparatus and power module for same, and a method of preparing a surgical apparatus
US20060201989A1 (en) 2005-03-11 2006-09-14 Ojeda Herminio F Surgical anvil and system for deploying the same
US7064509B1 (en) 2005-03-14 2006-06-20 Visteon Global Technologies, Inc. Apparatus for DC motor position detection with capacitive ripple current extraction
US9364229B2 (en) 2005-03-15 2016-06-14 Covidien Lp Circular anastomosis structures
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
AU2012200178B2 (en) 2005-03-15 2013-07-11 Covidien Lp Anastomosis composite gasket
US20070203510A1 (en) 2006-02-28 2007-08-30 Bettuchi Michael J Annular disk for reduction of anastomotic tension and methods of using the same
US7431230B2 (en) 2005-03-16 2008-10-07 Medtronic Ps Medical, Inc. Apparatus and method for bone morselization for surgical grafting
CA2601626C (en) 2005-03-17 2015-05-12 Stryker Corporation Surgical tool arrangement
US7784663B2 (en) 2005-03-17 2010-08-31 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having load sensing control circuitry
US7116100B1 (en) 2005-03-21 2006-10-03 Hr Textron, Inc. Position sensing for moveable mechanical systems and associated methods and apparatus
JP2008534045A (en) 2005-03-22 2008-08-28 アトロポス・リミテッド Surgical instruments
US20060252993A1 (en) 2005-03-23 2006-11-09 Freed David I Medical devices and systems
US7918848B2 (en) 2005-03-25 2011-04-05 Maquet Cardiovascular, Llc Tissue welding and cutting apparatus and method
EP1707153B1 (en) 2005-03-29 2012-02-01 Kabushiki Kaisha Toshiba Manipulator
US9138226B2 (en) 2005-03-30 2015-09-22 Covidien Lp Cartridge assembly for a surgical stapling device
JP4857585B2 (en) 2005-04-04 2012-01-18 日立工機株式会社 Cordless power tool
US7780055B2 (en) 2005-04-06 2010-08-24 Tyco Healthcare Group Lp Loading unit having drive assembly locking mechanism
US7408310B2 (en) 2005-04-08 2008-08-05 Lg Electronics Inc. Apparatus for controlling driving of reciprocating compressor and method thereof
US7211979B2 (en) 2005-04-13 2007-05-01 The Broad Of Trustees Of The Leland Stanford Junior University Torque-position transformer for task control of position controlled robots
US8038686B2 (en) 2005-04-14 2011-10-18 Ethicon Endo-Surgery, Inc. Clip applier configured to prevent clip fallout
US7699860B2 (en) 2005-04-14 2010-04-20 Ethicon Endo-Surgery, Inc. Surgical clip
US7297149B2 (en) 2005-04-14 2007-11-20 Ethicon Endo-Surgery, Inc. Surgical clip applier methods
US7731724B2 (en) 2005-04-14 2010-06-08 Ethicon Endo-Surgery, Inc. Surgical clip advancement and alignment mechanism
EP1868485B1 (en) 2005-04-15 2016-06-08 Surgisense Corporation Surgical instruments with sensors for detecting tissue properties, and systems using such instruments
JP4892546B2 (en) 2005-04-16 2012-03-07 アエスキュラップ アーゲー Surgical machine and method for controlling and / or adjusting surgical machine
US7837694B2 (en) 2005-04-28 2010-11-23 Warsaw Orthopedic, Inc. Method and apparatus for surgical instrument identification
US20060244460A1 (en) 2005-04-29 2006-11-02 Weaver Jeffrey S System and method for battery management
DE102005020377B4 (en) 2005-05-02 2021-08-12 Robert Bosch Gmbh Method for operating an electric machine tool
US8084001B2 (en) 2005-05-02 2011-12-27 Cornell Research Foundation, Inc. Photoluminescent silica-based sensors and methods of use
US20100100124A1 (en) 2005-05-05 2010-04-22 Tyco Healthcare Group Lp Bioabsorbable surgical composition
US20090177226A1 (en) 2005-05-05 2009-07-09 Jon Reinprecht Bioabsorbable Surgical Compositions
US20100016888A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US20100012703A1 (en) 2005-05-05 2010-01-21 Allison Calabrese Surgical Gasket
US7418078B2 (en) 2005-05-06 2008-08-26 Siemens Medical Solutions Usa, Inc. Spot-size effect reduction
US20060252990A1 (en) 2005-05-06 2006-11-09 Melissa Kubach Systems and methods for endoscope integrity testing
US7806871B2 (en) 2005-05-09 2010-10-05 Boston Scientific Scimed, Inc. Method and device for tissue removal and for delivery of a therapeutic agent or bulking agent
JP4339275B2 (en) 2005-05-12 2009-10-07 株式会社エスティック Method and apparatus for controlling impact type screw fastening device
US20060258904A1 (en) 2005-05-13 2006-11-16 David Stefanchik Feeding tube and track
US7648457B2 (en) 2005-05-13 2010-01-19 Ethicon Endo-Surgery, Inc. Method of positioning a device on an endoscope
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
RU2430692C2 (en) 2005-05-17 2011-10-10 Этикон Эндо-Серджери, Инк. Surgical stapler with plastic closing plate
US7557534B2 (en) 2005-05-17 2009-07-07 Milwaukee Electric Tool Corporation Power tool, battery, charger and method of operating the same
DE102005000062A1 (en) 2005-05-18 2006-11-23 Hilti Ag Electrically operated tacker
US7415827B2 (en) 2005-05-18 2008-08-26 United Technologies Corporation Arrangement for controlling fluid jets injected into a fluid stream
US7682561B2 (en) 2005-05-19 2010-03-23 Sage Products, Inc. Needleless hub disinfection device and method
US8840876B2 (en) 2005-05-19 2014-09-23 Ethicon, Inc. Antimicrobial polymer compositions and the use thereof
US20060263444A1 (en) 2005-05-19 2006-11-23 Xintian Ming Antimicrobial composition
US7758594B2 (en) 2005-05-20 2010-07-20 Neotract, Inc. Devices, systems and methods for treating benign prostatic hyperplasia and other conditions
US8157815B2 (en) 2005-05-20 2012-04-17 Neotract, Inc. Integrated handle assembly for anchor delivery system
US20060270916A1 (en) 2005-05-20 2006-11-30 Medtronic, Inc. Portable therapy delivery device with a removable connector board
US20060261763A1 (en) 2005-05-23 2006-11-23 Masco Corporation Brushed motor position control based upon back current detection
WO2006125940A1 (en) 2005-05-25 2006-11-30 Gyrus Medical, Inc. A surgical instrument
US20060271042A1 (en) 2005-05-26 2006-11-30 Gyrus Medical, Inc. Cutting and coagulating electrosurgical forceps having cam controlled jaw closure
JP2006334029A (en) 2005-05-31 2006-12-14 Olympus Medical Systems Corp Surgical operation apparatus
DE202005009061U1 (en) 2005-05-31 2006-10-12 Karl Storz Gmbh & Co. Kg Clip and clip setter for closing blood vessels
CA2549224A1 (en) 2005-06-02 2006-12-02 Tyco Healthcare Group Lp Expandable backspan staple
CA2838528C (en) 2005-06-02 2016-01-05 Tyco Healthcare Group Lp Multiple coil staple and staple applier
US7909191B2 (en) 2005-06-03 2011-03-22 Greatbatch Ltd. Connectable instrument trays for creating a modular case
AU2006344427B2 (en) 2005-06-03 2012-03-01 Covidien Lp Surgical stapler with timer and feedback display
US7717312B2 (en) 2005-06-03 2010-05-18 Tyco Healthcare Group Lp Surgical instruments employing sensors
CA2609970C (en) 2005-06-03 2014-08-12 Tyco Healthcare Group Lp Battery powered surgical instrument
CA2611585C (en) 2005-06-06 2012-08-14 Lutron Electronics Co., Inc. Method and apparatus for quiet variable motor speed control
US7824579B2 (en) 2005-06-07 2010-11-02 E. I. Du Pont De Nemours And Company Aluminum thick film composition(s), electrode(s), semiconductor device(s) and methods of making thereof
TW200642841A (en) 2005-06-08 2006-12-16 Nanoforce Technologies Corp After glow lighting film having UV filtering and explosion-proof
US7265374B2 (en) 2005-06-10 2007-09-04 Arima Computer Corporation Light emitting semiconductor device
US7295907B2 (en) 2005-06-14 2007-11-13 Trw Automotive U.S. Llc Recovery of calibrated center steering position after loss of battery power
EP1736112B1 (en) 2005-06-20 2011-08-17 Heribert Schmid Medical device
KR101525372B1 (en) 2005-06-28 2015-06-09 스트리커 코포레이션 Control assembly for a motorized surgical tool able to operate in a sleep mode or an active mode
KR100846472B1 (en) 2005-06-29 2008-07-17 엘지전자 주식회사 Linear Motor
US7898198B2 (en) 2005-06-29 2011-03-01 Drs Test & Energy Management, Llc Torque controller in an electric motor
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
USD605201S1 (en) 2005-07-01 2009-12-01 Roche Diagnostics Operations, Inc. Image for a risk evaluation system for a portion of a computer screen
JP4879645B2 (en) 2005-07-12 2012-02-22 ローム株式会社 Motor drive device and electric apparatus using the same
US7837685B2 (en) 2005-07-13 2010-11-23 Covidien Ag Switch mechanisms for safe activation of energy on an electrosurgical instrument
US8409175B2 (en) 2005-07-20 2013-04-02 Woojin Lee Surgical instrument guide device
WO2007014215A2 (en) 2005-07-22 2007-02-01 Berg Howard K Ultrasonic scalpel device
US7554343B2 (en) 2005-07-25 2009-06-30 Piezoinnovations Ultrasonic transducer control method and system
US7597699B2 (en) 2005-07-25 2009-10-06 Rogers William G Motorized surgical handpiece
US8123523B2 (en) 2005-07-26 2012-02-28 Angstrom Manufacturing, Inc. Prophy angle and adapter
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
US7479608B2 (en) 2006-05-19 2009-01-20 Ethicon Endo-Surgery, Inc. Force switch
JP4336386B2 (en) 2005-07-26 2009-09-30 エシコン エンド−サージェリー,インク. Surgical stapling and cutting device and method of using the device
US9662116B2 (en) 2006-05-19 2017-05-30 Ethicon, Llc Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US7959050B2 (en) 2005-07-26 2011-06-14 Ethicon Endo-Surgery, Inc Electrically self-powered surgical instrument with manual release
US8627993B2 (en) 2007-02-12 2014-01-14 Ethicon Endo-Surgery, Inc. Active braking electrical surgical instrument and method for braking such an instrument
US8038046B2 (en) 2006-05-19 2011-10-18 Ethicon Endo-Surgery, Inc. Electrical surgical instrument with optimized power supply and drive
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8679154B2 (en) 2007-01-12 2014-03-25 Ethicon Endo-Surgery, Inc. Adjustable compression staple and method for stapling with adjustable compression
EP2799014B1 (en) 2005-07-27 2018-09-05 Covidien LP Surgical stapler with a drive shaft with optical rotation encoding
JP5329956B2 (en) 2005-07-27 2013-10-30 コヴィディエン リミテッド パートナーシップ Surgical stapler staple pocket placement
US7655288B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US7655584B2 (en) 2005-07-29 2010-02-02 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
US20070026039A1 (en) 2005-07-29 2007-02-01 Drumheller Paul D Composite self-cohered web materials
US7604668B2 (en) 2005-07-29 2009-10-20 Gore Enterprise Holdings, Inc. Composite self-cohered web materials
US20070155010A1 (en) 2005-07-29 2007-07-05 Farnsworth Ted R Highly porous self-cohered fibrous tissue engineering scaffold
US8048503B2 (en) 2005-07-29 2011-11-01 Gore Enterprise Holdings, Inc. Highly porous self-cohered web materials
AU2006276044B2 (en) 2005-07-29 2010-02-11 W. L. Gore & Associates, Inc. Highly porous self-cohered web materials having haemostatic properties
US20070027551A1 (en) 2005-07-29 2007-02-01 Farnsworth Ted R Composite self-cohered web materials
US20070026040A1 (en) 2005-07-29 2007-02-01 Crawley Jerald M Composite self-cohered web materials
WO2007014580A1 (en) 2005-08-01 2007-02-08 Laboratorios Miret, S.A. Preservative systems comprising cationic surfactants
US20070027468A1 (en) 2005-08-01 2007-02-01 Wales Kenneth S Surgical instrument with an articulating shaft locking mechanism
JP4675709B2 (en) 2005-08-03 2011-04-27 株式会社リコー Optical scanning apparatus and image forming apparatus
US7641092B2 (en) 2005-08-05 2010-01-05 Ethicon Endo - Surgery, Inc. Swing gate for device lockout in a curved cutter stapler
US7559937B2 (en) 2005-08-09 2009-07-14 Towertech Research Group Surgical fastener apparatus and reinforcing material
US7101187B1 (en) 2005-08-11 2006-09-05 Protex International Corp. Rotatable electrical connector
US7398908B2 (en) 2005-08-15 2008-07-15 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US7407075B2 (en) 2005-08-15 2008-08-05 Tyco Healthcare Group Lp Staple cartridge having multiple staple sizes for a surgical stapling instrument
US7401721B2 (en) 2005-08-15 2008-07-22 Tyco Healthcare Group Lp Surgical stapling instruments including a cartridge having multiple staple sizes
US8579178B2 (en) 2005-08-15 2013-11-12 Covidien Lp Surgical stapling instruments including a cartridge having multiple staples sizes
US7388484B2 (en) 2005-08-16 2008-06-17 Honeywell International Inc. Conductive tamper switch for security devices
DE102005038919A1 (en) 2005-08-17 2007-03-15 BSH Bosch und Siemens Hausgeräte GmbH Electric motor kitchen appliance with electrical or electronic interlock
JP4402629B2 (en) 2005-08-19 2010-01-20 オリンパスメディカルシステムズ株式会社 Ultrasonic coagulation and incision device
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
US20070049950A1 (en) 2005-08-25 2007-03-01 Microline Pentax Inc. Medical clip applying device
US7828794B2 (en) 2005-08-25 2010-11-09 Covidien Ag Handheld electrosurgical apparatus for controlling operating room equipment
US7500979B2 (en) 2005-08-31 2009-03-10 Ethicon Endo-Surgery, Inc. Surgical stapling device with multiple stacked actuator wedge cams for driving staple drivers
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US8800838B2 (en) 2005-08-31 2014-08-12 Ethicon Endo-Surgery, Inc. Robotically-controlled cable-based surgical end effectors
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
CN2815700Y (en) 2005-09-01 2006-09-13 煜日升电子(深圳)有限公司 Electric book binding machine
US20070051375A1 (en) 2005-09-06 2007-03-08 Milliman Keith L Instrument introducer
US7778004B2 (en) 2005-09-13 2010-08-17 Taser International, Inc. Systems and methods for modular electronic weaponry
US20070135803A1 (en) 2005-09-14 2007-06-14 Amir Belson Methods and apparatus for performing transluminal and other procedures
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
CA2520413C (en) 2005-09-21 2016-10-11 Sherwood Services Ag Bipolar forceps with multiple electrode array end effector assembly
US7472815B2 (en) 2005-09-21 2009-01-06 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with collapsible features for controlling staple height
US7772725B2 (en) 2005-09-22 2010-08-10 Eastman Kodak Company Apparatus and method for current control in H-Bridge load drivers
EP1767163A1 (en) 2005-09-22 2007-03-28 Sherwood Services AG Bipolar forceps with multiple electrode array end effector assembly
US7691106B2 (en) 2005-09-23 2010-04-06 Synvasive Technology, Inc. Transverse acting surgical saw blade
US7451904B2 (en) 2005-09-26 2008-11-18 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having end effector gripping surfaces
US8079950B2 (en) 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
US7357287B2 (en) 2005-09-29 2008-04-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having preloaded firing assistance mechanism
EP2308406B1 (en) * 2005-09-30 2012-12-12 Covidien AG Insulating boot for electrosurgical forceps
DE102005047320A1 (en) 2005-09-30 2007-04-05 Biotronik Crm Patent Ag Detector for atrial flicker and flutter
AU2006222753B2 (en) 2005-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Electroactive polymer-based actuation mechanism for linear surgical stapler
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
US20080190989A1 (en) 2005-10-03 2008-08-14 Crews Samuel T Endoscopic plication device and method
US20070078484A1 (en) 2005-10-03 2007-04-05 Joseph Talarico Gentle touch surgical instrument and method of using same
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US7635074B2 (en) 2005-10-04 2009-12-22 Tyco Healthcare Group Lp Staple drive assembly
US8096459B2 (en) 2005-10-11 2012-01-17 Ethicon Endo-Surgery, Inc. Surgical stapler with an end effector support
CA2563147C (en) 2005-10-14 2014-09-23 Tyco Healthcare Group Lp Surgical stapling device
DE602006012518D1 (en) 2005-10-14 2010-04-08 Applied Med Resources WIND HOOK WITH PARTIAL TIRE AND GELPAD
US20080086034A1 (en) 2006-08-29 2008-04-10 Baxano, Inc. Tissue Access Guidewire System and Method
US20070173870A2 (en) 2005-10-18 2007-07-26 Jaime Zacharias Precision Surgical System
US7966269B2 (en) 2005-10-20 2011-06-21 Bauer James D Intelligent human-machine interface
EP2282391B1 (en) 2005-10-21 2012-06-27 Stryker Corporation Battery with an internal microcontroller that draws different currents from the cells internal to the battery based on the temperature of the battery
US20070244471A1 (en) 2005-10-21 2007-10-18 Don Malackowski System and method for managing the operation of a battery powered surgical tool and the battery used to power the tool
US8080004B2 (en) 2005-10-26 2011-12-20 Earl Downey Laparoscopic surgical instrument
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
EP1780867B1 (en) 2005-10-28 2016-11-30 Black & Decker Inc. Battery pack for cordless power tools
US7656131B2 (en) 2005-10-31 2010-02-02 Black & Decker Inc. Methods of charging battery packs for cordless power tool systems
EP1780825B1 (en) 2005-10-31 2018-08-29 Black & Decker, Inc. Battery pack and internal component arrangement within the battery pack for cordless power tool system
CN101030709A (en) 2005-11-01 2007-09-05 布莱克和戴克公司 Recharging battery group and operation system
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US7607557B2 (en) 2005-11-04 2009-10-27 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for pump-assisted delivery of medical agents
US7673783B2 (en) 2005-11-04 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instruments structured for delivery of medical agents
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US8182444B2 (en) 2005-11-04 2012-05-22 Medrad, Inc. Delivery of agents such as cells to tissue
US20070106113A1 (en) 2005-11-07 2007-05-10 Biagio Ravo Combination endoscopic operative delivery system
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
CN2868212Y (en) 2005-11-11 2007-02-14 钟李宽 Random-replaceable laparoscope surgical forceps
JP5276987B2 (en) 2005-11-15 2013-08-28 ザ・ジョンズ・ホプキンス・ユニバーシティー Active cannula for biosensing and surgical procedures
US7272002B2 (en) 2005-11-16 2007-09-18 Adc Dsl Systems, Inc. Auxiliary cooling methods and systems for electrical device housings
US20070118115A1 (en) * 2005-11-22 2007-05-24 Sherwood Services Ag Bipolar electrosurgical sealing instrument having an improved tissue gripping device
US7896895B2 (en) 2005-11-23 2011-03-01 Ethicon Endo-Surgery, Inc. Surgical clip and applier device and method of use
US7651017B2 (en) 2005-11-23 2010-01-26 Ethicon Endo-Surgery, Inc. Surgical stapler with a bendable end effector
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
CN2868208Y (en) 2005-12-14 2007-02-14 苏州天臣国际医疗科技有限公司 Tubular binding instrument having automatic safety unit
US20070135686A1 (en) 2005-12-14 2007-06-14 Pruitt John C Jr Tools and methods for epicardial access
EP1962711B1 (en) 2005-12-20 2012-02-29 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US8672922B2 (en) 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
US7464845B2 (en) 2005-12-22 2008-12-16 Welcome Co., Ltd. Hand-held staple gun having a safety device
RU61114U1 (en) 2005-12-23 2007-02-27 Мирзакарим Санакулович Норбеков DEVICE FOR THE DEVELOPMENT OF BRAIN ACTIVITY
US7936142B2 (en) 2005-12-26 2011-05-03 Nitto Kohki Co., Ltd. Portable drilling device
US20100145146A1 (en) 2005-12-28 2010-06-10 Envisionier Medical Technologies, Inc. Endoscopic digital recording system with removable screen and storage device
WO2007074430A1 (en) 2005-12-28 2007-07-05 Given Imaging Ltd. Device, system and method for activation of an in vivo device
TWI288526B (en) 2005-12-30 2007-10-11 Yen Sun Technology Corp Speed transmission control circuit of a brushless DC motor
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US7553173B2 (en) 2005-12-30 2009-06-30 Click, Inc. Vehicle connector lockout apparatus and method of using same
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
USD552623S1 (en) 2006-01-04 2007-10-09 Microsoft Corporation User interface for a portion of a display screen
US7955257B2 (en) 2006-01-05 2011-06-07 Depuy Spine, Inc. Non-rigid surgical retractor
US7835823B2 (en) 2006-01-05 2010-11-16 Intuitive Surgical Operations, Inc. Method for tracking and reporting usage events to determine when preventive maintenance is due for a medical robotic system
KR100752548B1 (en) 2006-01-10 2007-08-29 (주)이앤아이 Hybrid motor and controlling apparatus and method controlling thereof
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
DE102006001677B3 (en) 2006-01-12 2007-05-03 Gebr. Brasseler Gmbh & Co. Kg Surgical connection device e.g. for removable connection of hand piece to surgical instrument, has recess in which coupling part of instrument can be inserted and at wall on inside of recess resting recess is provided
US20120064483A1 (en) 2010-09-13 2012-03-15 Kevin Lint Hard-wired and wireless system with footswitch for operating a dental or medical treatment apparatus
CA2574934C (en) 2006-01-24 2015-12-29 Sherwood Services Ag System and method for closed loop monitoring of monopolar electrosurgical apparatus
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US20070173813A1 (en) 2006-01-24 2007-07-26 Sherwood Services Ag System and method for tissue sealing
US7705559B2 (en) 2006-01-27 2010-04-27 Stryker Corporation Aseptic battery with a removal cell cluster, the cell cluster configured for charging in a socket that receives a sterilizable battery
CA2640148C (en) 2006-01-27 2014-09-09 Suturtek Incorporated Apparatus and method for tissue closure
US20070198039A1 (en) 2006-01-27 2007-08-23 Wilson-Cook Medical, Inc. Intragastric device for treating obesity
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US7891531B1 (en) 2006-01-31 2011-02-22 Ward Gary L Sub-miniature surgical staple cartridge
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7464849B2 (en) * 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US8763879B2 (en) 2006-01-31 2014-07-01 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of surgical instrument
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7422138B2 (en) 2006-02-01 2008-09-09 Ethicon Endo-Surgery, Inc. Elliptical intraluminal surgical stapler for anastomosis
US9629626B2 (en) 2006-02-02 2017-04-25 Covidien Lp Mechanically tuned buttress material to assist with proper formation of surgical element in diseased tissue
US8062236B2 (en) 2006-02-02 2011-11-22 Tyco Healthcare Group, Lp Method and system to determine an optimal tissue compression time to implant a surgical element
EP1815950A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
EP1837041A1 (en) 2006-03-20 2007-09-26 Tissuemed Limited Tissue-adhesive materials
US20070185545A1 (en) 2006-02-06 2007-08-09 Medtronic Emergency Response Systems, Inc. Post-download patient data protection in a medical device
DE102006005998B4 (en) 2006-02-08 2008-05-08 Schnier, Dietmar, Dr. Nut with at least two parts
WO2007095005A1 (en) 2006-02-10 2007-08-23 Z-Medica Corporation Agents and devices for providing blood clotting functions to wounds
US7854735B2 (en) 2006-02-16 2010-12-21 Ethicon Endo-Surgery, Inc. Energy-based medical treatment system and method
US7893586B2 (en) 2006-02-20 2011-02-22 Black & Decker Inc. DC motor with dual commutator bar set and selectable series and parallel connected coils
US20070208375A1 (en) 2006-02-23 2007-09-06 Kouji Nishizawa Surgical device
JP4910423B2 (en) 2006-02-27 2012-04-04 ソニー株式会社 Battery pack, electronic device, and battery remaining amount detection method
US8500628B2 (en) 2006-02-28 2013-08-06 Olympus Endo Technology America, Inc. Rotate-to-advance catheterization system
US20070208359A1 (en) 2006-03-01 2007-09-06 Hoffman Douglas B Method for stapling tissue
US20070207010A1 (en) 2006-03-03 2007-09-06 Roni Caspi Split nut with magnetic coupling
US7955380B2 (en) 2006-03-17 2011-06-07 Medtronic Vascular, Inc. Prosthesis fixation apparatus and methods
US7771396B2 (en) 2006-03-22 2010-08-10 Ethicon Endo-Surgery, Inc. Intubation device for enteral feeding
US20110163146A1 (en) 2006-03-23 2011-07-07 Ortiz Mark S Surgical Stapling And Cuttting Device
US8348959B2 (en) 2006-03-23 2013-01-08 Symmetry Medical Manufacturing, Inc. Angled surgical driver
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8721630B2 (en) 2006-03-23 2014-05-13 Ethicon Endo-Surgery, Inc. Methods and devices for controlling articulation
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
JP4689511B2 (en) 2006-03-24 2011-05-25 株式会社エヌ・ティ・ティ・ドコモ Portable base station equipment
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
EP2007466A4 (en) 2006-03-31 2012-01-18 Automated Medical Instr Inc System and method for advancing, orienting, and immobilizing on internal body tissue a catheter or other therapeutic device
US7836400B2 (en) 2006-03-31 2010-11-16 Research In Motion Limited Snooze support for event reminders
US20090020958A1 (en) 2006-03-31 2009-01-22 Soul David F Methods and apparatus for operating an internal combustion engine
JP4102409B2 (en) 2006-04-03 2008-06-18 オリンパス株式会社 Suture and ligature applier
US7635922B2 (en) 2006-04-03 2009-12-22 C.E. Niehoff & Co. Power control system and method
US8926506B2 (en) 2009-03-06 2015-01-06 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US9005116B2 (en) 2006-04-05 2015-04-14 Ethicon Endo-Surgery, Inc. Access device
US20100081883A1 (en) 2008-09-30 2010-04-01 Ethicon Endo-Surgery, Inc. Methods and devices for performing gastroplasties using a multiple port access device
US8485970B2 (en) 2008-09-30 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical access device
WO2007119757A1 (en) 2006-04-11 2007-10-25 Nsk Ltd. Electric power steering device and method of assembling the same
ES2394111T3 (en) 2006-04-11 2013-01-21 Tyco Healthcare Group Lp Wound dressings with antimicrobial and zinc-containing agents
US7741273B2 (en) 2006-04-13 2010-06-22 Warsaw Orthopedic, Inc. Drug depot implant designs
US20070243227A1 (en) 2006-04-14 2007-10-18 Michael Gertner Coatings for surgical staplers
US7450010B1 (en) 2006-04-17 2008-11-11 Tc License Ltd. RFID mutual authentication verification session
US8518024B2 (en) 2006-04-24 2013-08-27 Transenterix, Inc. System and method for multi-instrument surgical access using a single access port
US20070246505A1 (en) 2006-04-24 2007-10-25 Medical Ventures Inc. Surgical buttress assemblies and methods of uses thereof
US7650185B2 (en) 2006-04-25 2010-01-19 Cardiac Pacemakers, Inc. System and method for walking an implantable medical device from a sleep state
US7278563B1 (en) 2006-04-25 2007-10-09 Green David T Surgical instrument for progressively stapling and incising tissue
JP4566943B2 (en) 2006-04-26 2010-10-20 株式会社マキタ Charger
MX2008013652A (en) 2006-04-28 2009-01-29 Biomagnesium Systems Ltd Biodegradable magnesium alloys and uses thereof.
EP2012697A4 (en) 2006-04-29 2010-07-21 Univ Texas Devices for use in transluminal and endoluminal surgery
WO2007131110A2 (en) 2006-05-03 2007-11-15 Raptor Ridge, Llc Systems and methods of tissue closure
WO2007129121A1 (en) 2006-05-08 2007-11-15 Tayside Health Board Device and method for improved surgical suturing
US20070262592A1 (en) 2006-05-08 2007-11-15 Shih-Ming Hwang Mounting plate for lock and lock therewith
JP4829005B2 (en) 2006-05-12 2011-11-30 テルモ株式会社 manipulator
EP2023843B1 (en) 2006-05-19 2016-03-09 Mako Surgical Corp. System for verifying calibration of a surgical device
US7552854B2 (en) 2006-05-19 2009-06-30 Applied Medical Resources Corporation Surgical stapler with firing lock mechanism
EP3181063B1 (en) 2006-05-19 2019-09-11 Ethicon Endo-Surgery, Inc. Surgical device
CA2725181C (en) 2006-05-19 2014-07-29 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
EP2486862B1 (en) 2006-05-19 2019-03-27 Ethicon Endo-Surgery, Inc. Electrical surgical instrument
US8105350B2 (en) 2006-05-23 2012-01-31 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7586289B2 (en) 2006-05-23 2009-09-08 Ultralife Corporation Complete discharge device
US20070275035A1 (en) 2006-05-24 2007-11-29 Microchips, Inc. Minimally Invasive Medical Implant Devices for Controlled Drug Delivery
US20070276409A1 (en) 2006-05-25 2007-11-29 Ethicon Endo-Surgery, Inc. Endoscopic gastric restriction methods and devices
US20090188964A1 (en) 2006-06-01 2009-07-30 Boris Orlov Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation
US7615067B2 (en) 2006-06-05 2009-11-10 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7530984B2 (en) 2006-06-05 2009-05-12 Medigus Ltd. Transgastric method for carrying out a partial fundoplication
IL176133A0 (en) 2006-06-05 2006-10-05 Medigus Ltd Stapler
US8083667B2 (en) 2006-06-13 2011-12-27 Intuitive Surgical Operations, Inc. Side looking minimally invasive surgery instrument assembly
US8784435B2 (en) 2006-06-13 2014-07-22 Intuitive Surgical Operations, Inc. Surgical system entry guide
US8551076B2 (en) 2006-06-13 2013-10-08 Intuitive Surgical Operations, Inc. Retrograde instrument
US8419717B2 (en) 2006-06-13 2013-04-16 Intuitive Surgical Operations, Inc. Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
DE202007003114U1 (en) 2006-06-13 2007-06-21 Olympus Winter & Ibe Gmbh Medical forceps has a removable tool that fits into a retaining sleeve that has a snap action element that prevents rotation
US9561045B2 (en) 2006-06-13 2017-02-07 Intuitive Surgical Operations, Inc. Tool with rotation lock
US20070286892A1 (en) 2006-06-13 2007-12-13 Uri Herzberg Compositions and methods for preventing or reducing postoperative ileus and gastric stasis in mammals
WO2007147058A2 (en) 2006-06-14 2007-12-21 Cornova, Inc. Method and apparatus for identifying and treating myocardial infarction
JP2009539509A (en) 2006-06-14 2009-11-19 マクドナルド デットワイラー アンド アソシエイツ インコーポレーテッド Surgical manipulator with right angle pulley drive mechanism
JP2009540952A (en) * 2006-06-20 2009-11-26 エーオーテックス, インコーポレイテッド Torque shaft and torque drive
ATE460897T1 (en) 2006-06-21 2010-04-15 Rudolf Steffen DEVICE FOR INSERTING AND POSITIONING SURGICAL INSTRUMENTS
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080200835A1 (en) 2006-06-30 2008-08-21 Monson Gavin M Energy Biopsy Device for Tissue Penetration and Hemostasis
US9492192B2 (en) 2006-06-30 2016-11-15 Atheromed, Inc. Atherectomy devices, systems, and methods
US20080003196A1 (en) 2006-06-30 2008-01-03 Jonn Jerry Y Absorbable cyanoacrylate compositions
US7391173B2 (en) 2006-06-30 2008-06-24 Intuitive Surgical, Inc Mechanically decoupled capstan drive
JP5039135B2 (en) 2006-07-03 2012-10-03 ノボ・ノルデイスク・エー/エス Connection for injection device
JP4157574B2 (en) 2006-07-04 2008-10-01 オリンパスメディカルシステムズ株式会社 Surgical instrument
ATE450208T1 (en) 2006-07-07 2009-12-15 Ethicon Endo Surgery Inc SURGICAL CLAP SETTING DEVICE
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
CA2592221C (en) 2006-07-11 2014-10-07 Tyco Healthcare Group Lp Skin staples with thermal properties
DE102006031971A1 (en) 2006-07-11 2008-01-17 Karl Storz Gmbh & Co. Kg Medical instrument
US7993360B2 (en) 2006-07-11 2011-08-09 Arthrex, Inc. Rotary shaver with improved connection between flexible and rigid rotatable tubes
RU61122U1 (en) 2006-07-14 2007-02-27 Нина Васильевна Гайгерова SURGICAL STAPER
IL176889A0 (en) 2006-07-16 2006-10-31 Medigus Ltd Devices and methods for treating morbid obesity
US20080021486A1 (en) 2006-07-19 2008-01-24 Boston Scientific Scimed, Inc. Method and apparatus for tissue resection
US7748632B2 (en) 2006-07-25 2010-07-06 Hand Held Products, Inc. Portable data terminal and battery therefor
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US20080029570A1 (en) * 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with improved volume storage
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080030170A1 (en) 2006-08-03 2008-02-07 Bruno Dacquay Safety charging system for surgical hand piece
JP4755047B2 (en) 2006-08-08 2011-08-24 テルモ株式会社 Working mechanism and manipulator
NZ574738A (en) 2006-08-09 2012-02-24 Coherex Medical Inc System for treating a hole in a tissue structure using a frame and wire loops
US20080042861A1 (en) 2006-08-16 2008-02-21 Bruno Dacquay Safety battery meter system for surgical hand piece
US7708758B2 (en) 2006-08-16 2010-05-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
CN200942099Y (en) 2006-08-17 2007-09-05 苏州天臣国际医疗科技有限公司 Insurance mechanism for binding instrument
DE102006038515A1 (en) 2006-08-17 2008-02-21 Karl Storz Gmbh & Co. Kg Medical tubular shaft instrument
US7674253B2 (en) * 2006-08-18 2010-03-09 Kensey Nash Corporation Catheter for conducting a procedure within a lumen, duct or organ of a living being
US20080051833A1 (en) 2006-08-25 2008-02-28 Vincent Gramuglia Suture passer and method of passing suture material
US20080196253A1 (en) 2006-08-28 2008-08-21 Richard Simon Ezra Precision knife and blade dispenser for the same
US20080125749A1 (en) 2006-08-29 2008-05-29 Boston Scientific Scimed, Inc. Self-powered medical devices
DE102006041951B4 (en) 2006-08-30 2022-05-05 Deltatech Controls Usa, Llc Switch
JP4834074B2 (en) 2006-08-30 2011-12-07 ローム株式会社 Motor drive circuit, motor unit, and electronic equipment using the same
US8323789B2 (en) 2006-08-31 2012-12-04 Cambridge Enterprise Limited Nanomaterial polymer compositions and uses thereof
US20080071328A1 (en) 2006-09-06 2008-03-20 Medtronic, Inc. Initiating medical system communications
US8982195B2 (en) 2006-09-07 2015-03-17 Abbott Medical Optics Inc. Digital video capture system and method with customizable graphical overlay
US20080065153A1 (en) 2006-09-08 2008-03-13 Warsaw Orthopedic, Inc. Surgical staple
US8136711B2 (en) 2006-09-08 2012-03-20 Tyco Healthcare Group Lp Dissection tip and introducer for surgical instrument
CN100464715C (en) 2006-09-11 2009-03-04 苏州天臣国际医疗科技有限公司 Surgical binding instrument binding mechanism
US8794496B2 (en) 2006-09-11 2014-08-05 Covidien Lp Rotating knob locking mechanism for surgical stapling device
US7648519B2 (en) 2006-09-13 2010-01-19 Cambridge Endoscopic Devices, Inc. Surgical instrument
US7780663B2 (en) 2006-09-22 2010-08-24 Ethicon Endo-Surgery, Inc. End effector coatings for electrosurgical instruments
US20100133317A1 (en) 2006-09-29 2010-06-03 Shelton Iv Frederick E Motor-Driven Surgical Cutting And Fastening Instrument with Tactile Position Feedback
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US20080082114A1 (en) 2006-09-29 2008-04-03 Mckenna Robert H Adhesive Mechanical Fastener for Lumen Creation Utilizing Tissue Necrosing Means
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
AU2007307024B2 (en) 2006-10-05 2013-06-06 Covidien Lp Flexible endoscopic stitching devices
DE102006047204B4 (en) 2006-10-05 2015-04-23 Erbe Elektromedizin Gmbh Tubular shaft instrument
US8708210B2 (en) 2006-10-05 2014-04-29 Covidien Lp Method and force-limiting handle mechanism for a surgical instrument
US8733614B2 (en) 2006-10-06 2014-05-27 Covidien Lp End effector identification by mechanical features
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
ATE435613T1 (en) 2006-10-06 2009-07-15 Ethicon Endo Surgery Inc IMPROVEMENTS TO AN APPLICATOR FOR APPLYING ANASTOMOTIC RINGS
US7866525B2 (en) 2006-10-06 2011-01-11 Tyco Healthcare Group Lp Surgical instrument having a plastic surface
US7481348B2 (en) 2006-10-06 2009-01-27 Tyco Healthcare Group Lp Surgical instrument with articulating tool assembly
US20080085296A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Methods for reduction of post operative ileus.
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
JP5143840B2 (en) * 2006-10-06 2013-02-13 タイコ ヘルスケア グループ リミテッド パートナーシップ Endoscopic vessel sealer and divider with flexible articulation shaft
US20080086078A1 (en) 2006-10-06 2008-04-10 Powell Darrel M Devices for reduction of post operative ileus
US8608043B2 (en) 2006-10-06 2013-12-17 Covidien Lp Surgical instrument having a multi-layered drive beam
US8807414B2 (en) 2006-10-06 2014-08-19 Covidien Lp System and method for non-contact electronic articulation sensing
DE102006047882B3 (en) 2006-10-10 2007-08-02 Rasmussen Gmbh Pluggable connection arrangement for hose and pipe or tube, uses leaf-spring ring for latching into annular groove
US7736254B2 (en) 2006-10-12 2010-06-15 Intuitive Surgical Operations, Inc. Compact cable tension tender device
ATE534338T1 (en) 2006-10-13 2011-12-15 Terumo Corp MANIPULATOR
CA2605135C (en) 2006-10-17 2014-12-30 Tyco Healthcare Group Lp Apparatus for applying surgical clips
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US8226635B2 (en) 2006-10-23 2012-07-24 Boston Scientific Scimed, Inc. Device for circulating heated fluid
JP5198014B2 (en) 2006-10-25 2013-05-15 テルモ株式会社 Medical manipulator
JP5085996B2 (en) 2006-10-25 2012-11-28 テルモ株式会社 Manipulator system
US8157793B2 (en) 2006-10-25 2012-04-17 Terumo Kabushiki Kaisha Manipulator for medical use
EP1915963A1 (en) 2006-10-25 2008-04-30 The European Atomic Energy Community (EURATOM), represented by the European Commission Force estimation for a minimally invasive robotic surgery system
US7845533B2 (en) 2007-06-22 2010-12-07 Tyco Healthcare Group Lp Detachable buttress material retention systems for use with a surgical stapling device
JP5528112B2 (en) 2006-10-26 2014-06-25 コヴィディエン リミテッド パートナーシップ How to use shape memory alloys in buttress attachments
US7828854B2 (en) 2006-10-31 2010-11-09 Ethicon, Inc. Implantable repair device
US20080129253A1 (en) 2006-11-03 2008-06-05 Advanced Desalination Inc. Battery energy reclamation apparatus and method thereby
US8822934B2 (en) 2006-11-03 2014-09-02 Accuray Incorporated Collimator changer
JP2008114339A (en) 2006-11-06 2008-05-22 Terumo Corp Manipulator
US7946453B2 (en) 2006-11-09 2011-05-24 Ethicon Endo-Surgery, Inc. Surgical band fluid media dispenser
US7780685B2 (en) 2006-11-09 2010-08-24 Ethicon Endo-Surgery, Inc. Adhesive and mechanical fastener
US7708180B2 (en) 2006-11-09 2010-05-04 Ethicon Endo-Surgery, Inc. Surgical fastening device with initiator impregnation of a matrix or buttress to improve adhesive application
US20080114251A1 (en) 2006-11-10 2008-05-15 Penrith Corporation Transducer array imaging system
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
US8834498B2 (en) 2006-11-10 2014-09-16 Ethicon Endo-Surgery, Inc. Method and device for effecting anastomosis of hollow organ structures using adhesive and fasteners
US9011439B2 (en) 2006-11-20 2015-04-21 Poly-Med, Inc. Selectively absorbable/biodegradable, fibrous composite constructs and applications thereof
WO2008061566A1 (en) 2006-11-23 2008-05-29 Tte Germany Gmbh Power failure detection circuit
US8114100B2 (en) 2006-12-06 2012-02-14 Ethicon Endo-Surgery, Inc. Safety fastener for tissue apposition
US20080140159A1 (en) 2006-12-06 2008-06-12 Transoma Medical, Inc. Implantable device for monitoring biological signals
US20080154299A1 (en) 2006-12-08 2008-06-26 Steve Livneh Forceps for performing endoscopic surgery
US7871440B2 (en) 2006-12-11 2011-01-18 Depuy Products, Inc. Unitary surgical device and method
CN200991269Y (en) 2006-12-20 2007-12-19 张红 Reload-unit structure of alimentary tract stapler
US7434716B2 (en) 2006-12-21 2008-10-14 Tyco Healthcare Group Lp Staple driver for articulating surgical stapler
PL2094173T3 (en) 2006-12-21 2016-09-30 Disposable vitrectomy handpiece
US8292801B2 (en) 2006-12-22 2012-10-23 Olympus Medical Systems Corp. Surgical treatment apparatus
CN201001747Y (en) 2006-12-25 2008-01-09 苏州天臣国际医疗科技有限公司 Illuminable round tubular surgical operation binding instrument
CN201029899Y (en) 2007-01-05 2008-03-05 苏州天臣国际医疗科技有限公司 Micro-wound surgery side stitching apparatus
US7721936B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Interlock and surgical instrument including same
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US20110174861A1 (en) 2007-01-10 2011-07-21 Shelton Iv Frederick E Surgical Instrument With Wireless Communication Between Control Unit and Remote Sensor
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US8459520B2 (en) 2007-01-10 2013-06-11 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7434717B2 (en) 2007-01-11 2008-10-14 Ethicon Endo-Surgery, Inc. Apparatus for closing a curved anvil of a surgical stapling device
US20080169328A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Buttress material for use with a surgical stapler
AU2011218702B2 (en) 2007-01-12 2013-06-06 Ethicon Endo-Surgery, Inc Adjustable compression staple and method for stapling with adjustable compression
WO2008089404A2 (en) 2007-01-19 2008-07-24 Synovis Life Technologies, Inc. Circular stapler anvil introducer
US7753246B2 (en) 2007-01-31 2010-07-13 Tyco Healthcare Group Lp Surgical instrument with replaceable loading unit
US7789883B2 (en) 2007-02-14 2010-09-07 Olympus Medical Systems Corp. Curative treatment system, curative treatment device, and treatment method for living tissue using energy
US20080200911A1 (en) 2007-02-15 2008-08-21 Long Gary L Electrical ablation apparatus, system, and method
US7655004B2 (en) 2007-02-15 2010-02-02 Ethicon Endo-Surgery, Inc. Electroporation ablation apparatus, system, and method
US20080200933A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Surgical devices and methods for forming an anastomosis between organs by gaining access thereto through a natural orifice in the body
US20080200934A1 (en) 2007-02-15 2008-08-21 Fox William D Surgical devices and methods using magnetic force to form an anastomosis
US20080200755A1 (en) 2007-02-15 2008-08-21 Bakos Gregory J Method and device for retrieving suture tags
DE602008003536D1 (en) 2007-02-15 2010-12-30 Hansen Medical Inc MEDICAL ROBOT INSTRUMENT SYSTEM
US20080196419A1 (en) 2007-02-16 2008-08-21 Serge Dube Build-up monitoring system for refrigerated enclosures
US20080200762A1 (en) 2007-02-16 2008-08-21 Stokes Michael J Flexible endoscope shapelock
US9265559B2 (en) 2007-02-25 2016-02-23 Avent, Inc. Electrosurgical method
US7682367B2 (en) 2007-02-28 2010-03-23 Tyco Healthcare Group Lp Surgical stapling apparatus
JP5096020B2 (en) 2007-03-02 2012-12-12 オリエンタルモーター株式会社 Inductance load control device
EP1983312B1 (en) 2007-03-05 2018-02-28 LG Electronics Inc. Automatic Liquid Dispenser And Refrigerator With The Same
US20100076489A1 (en) 2007-03-06 2010-03-25 Joshua Stopek Wound closure material
AU2008223387B2 (en) 2007-03-06 2014-03-06 Covidien Lp Wound closure material
US8011555B2 (en) 2007-03-06 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US9888924B2 (en) 2007-03-06 2018-02-13 Covidien Lp Wound closure material
EP2131749B1 (en) 2007-03-06 2016-11-02 Covidien LP Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
US7815662B2 (en) 2007-03-08 2010-10-19 Ethicon Endo-Surgery, Inc. Surgical suture anchors and deployment device
US20100318085A1 (en) 2007-03-13 2010-12-16 Smith & Nephew, Inc. Internal fixation devices
US20110016960A1 (en) 2007-03-13 2011-01-27 Franck Debrailly Device For Detecting Angular Position, Electric Motor, Steering Column And Reduction Gear
EP1969919B1 (en) 2007-03-14 2012-01-18 Robert Bosch Gmbh Hedge cutting or trimming apparatus
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
US7431188B1 (en) 2007-03-15 2008-10-07 Tyco Healthcare Group Lp Surgical stapling apparatus with powered articulation
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8308725B2 (en) 2007-03-20 2012-11-13 Minos Medical Reverse sealing and dissection instrument
US7776065B2 (en) 2007-03-20 2010-08-17 Symmetry Medical New Bedford Inc End effector mechanism for a surgical instrument
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US20080234709A1 (en) 2007-03-22 2008-09-25 Houser Kevin L Ultrasonic surgical instrument and cartilage and bone shaping blades therefor
WO2008118728A1 (en) 2007-03-22 2008-10-02 Tyco Healthcare Group Lp Apparatus for forming variable height surgical fasteners
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
CA2868909A1 (en) 2007-03-26 2008-10-02 Tyco Healthcare Group Lp Endoscopic surgical clip applier
US8608745B2 (en) 2007-03-26 2013-12-17 DePuy Synthes Products, LLC System, apparatus, and method for cutting bone during an orthopaedic surgical procedure
US8142200B2 (en) 2007-03-26 2012-03-27 Liposonix, Inc. Slip ring spacer and method for its use
US7490749B2 (en) 2007-03-28 2009-02-17 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with manually retractable firing member
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US8056787B2 (en) 2007-03-28 2011-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with travel-indicating retraction member
US8496153B2 (en) 2007-03-29 2013-07-30 Covidien Lp Anvil-mounted dissecting tip for surgical stapling device
US7630841B2 (en) 2007-03-30 2009-12-08 Texas Instruments Incorporated Supervising and sequencing commonly driven power supplies with digital information
AU2008233166B2 (en) 2007-03-30 2013-05-16 Covidien Lp Laparoscopic port assembly
US8377044B2 (en) 2007-03-30 2013-02-19 Ethicon Endo-Surgery, Inc. Detachable end effectors
US7923144B2 (en) 2007-03-31 2011-04-12 Tesla Motors, Inc. Tunable frangible battery pack system
US20080242939A1 (en) 2007-04-02 2008-10-02 William Johnston Retractor system for internal in-situ assembly during laparoscopic surgery
JP5090045B2 (en) 2007-04-03 2012-12-05 テルモ株式会社 Manipulator and control method thereof
JP5006093B2 (en) 2007-04-03 2012-08-22 テルモ株式会社 Manipulator system and control device
US20080249608A1 (en) 2007-04-04 2008-10-09 Vipul Dave Bioabsorbable Polymer, Bioabsorbable Composite Stents
FR2914554B1 (en) 2007-04-05 2009-07-17 Germitec Soc Par Actions Simpl METHOD OF MONITORING THE USE OF A MEDICAL DEVICE.
US20090270895A1 (en) 2007-04-06 2009-10-29 Interlace Medical, Inc. Low advance ratio, high reciprocation rate tissue removal device
US8006885B2 (en) 2007-04-09 2011-08-30 Tyco Healthcare Group Lp Surgical stapling apparatus with powered retraction
WO2008124748A1 (en) 2007-04-09 2008-10-16 Adrian Edward Park Frame device
JP5329526B2 (en) 2007-04-11 2013-10-30 コヴィディエン リミテッド パートナーシップ Surgical clip applier
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US7950560B2 (en) 2007-04-13 2011-05-31 Tyco Healthcare Group Lp Powered surgical instrument
JP5756289B2 (en) 2007-04-16 2015-07-29 スミス アンド ネフュー インコーポレーテッドSmith & Nephew,Inc. Electric surgical system
US7708182B2 (en) * 2007-04-17 2010-05-04 Tyco Healthcare Group Lp Flexible endoluminal surgical instrument
US7839109B2 (en) 2007-04-17 2010-11-23 Lutron Electronics Co., Inc. Method of controlling a motorized window treatment
ES2400538T3 (en) 2007-04-20 2013-04-10 Doheny Eye Institute Independent surgical center
DE102007019409B3 (en) 2007-04-23 2008-11-13 Lösomat Schraubtechnik Neef Gmbh power wrench
JP4668946B2 (en) 2007-04-25 2011-04-13 株式会社デンソー On-vehicle air conditioner operation unit and on-vehicle air conditioner control apparatus using the same
EP1986123A1 (en) 2007-04-27 2008-10-29 Italdata Ingegneria Dell'Idea S.p.A. Data survey device, integrated with an anti-tamper system
US7823760B2 (en) 2007-05-01 2010-11-02 Tyco Healthcare Group Lp Powered surgical stapling device platform
US8028882B2 (en) 2007-05-01 2011-10-04 Tyco Healthcare Group Anvil position detector for a surgical stapler
EP2146649A4 (en) 2007-05-07 2013-08-07 Covidien Lp Variable size-uniform compression staple assembly
US20080281171A1 (en) 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
JP4348714B2 (en) 2007-05-10 2009-10-21 シャープ株式会社 Data transmission system and data transmission method
US7931660B2 (en) * 2007-05-10 2011-04-26 Tyco Healthcare Group Lp Powered tacker instrument
AU2008251300B2 (en) 2007-05-12 2014-05-29 Boston Scientific Scimed, Inc. Devices and methods for stomach partitioning
US7810691B2 (en) 2007-05-16 2010-10-12 The Invention Science Fund I, Llc Gentle touch surgical stapler
US7832611B2 (en) 2007-05-16 2010-11-16 The Invention Science Fund I, Llc Steerable surgical stapler
US7823761B2 (en) 2007-05-16 2010-11-02 The Invention Science Fund I, Llc Maneuverable surgical stapler
US8910846B2 (en) 2007-05-17 2014-12-16 Covidien Lp Gear driven knife drive mechanism
US9545258B2 (en) 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
US20080293910A1 (en) 2007-05-24 2008-11-27 Tyco Healthcare Group Lp Adhesive formulatiions
US8038045B2 (en) 2007-05-25 2011-10-18 Tyco Healthcare Group Lp Staple buttress retention system
US20080297287A1 (en) 2007-05-30 2008-12-04 Magnetecs, Inc. Magnetic linear actuator for deployable catheter tools
US7798386B2 (en) 2007-05-30 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument articulation joint cover
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US7810693B2 (en) 2007-05-30 2010-10-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting instrument with articulatable end effector
US20080296346A1 (en) 2007-05-31 2008-12-04 Shelton Iv Frederick E Pneumatically powered surgical cutting and fastening instrument with electrical control and recording mechanisms
US8157145B2 (en) 2007-05-31 2012-04-17 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with electrical feedback
US7819299B2 (en) 2007-06-04 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical instrument having a common trigger for actuating an end effector closing system and a staple firing system
US8534528B2 (en) 2007-06-04 2013-09-17 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US7832408B2 (en) 2007-06-04 2010-11-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a directional switching mechanism
US7905380B2 (en) 2007-06-04 2011-03-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a multiple rate directional switching mechanism
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7780309B2 (en) 2007-06-05 2010-08-24 Eveready Battery Company, Inc. Preparedness flashlight
JP2008307383A (en) 2007-06-12 2008-12-25 Tyco Healthcare Group Lp Surgical fastener
US8899460B2 (en) 2007-06-12 2014-12-02 Black & Decker Inc. Magazine assembly for nailer
US20080308603A1 (en) 2007-06-18 2008-12-18 Shelton Frederick E Cable driven surgical stapling and cutting instrument with improved cable attachment arrangements
US7950561B2 (en) 2007-06-18 2011-05-31 Tyco Healthcare Group Lp Structure for attachment of buttress material to anvils and cartridges of surgical staplers
US7665646B2 (en) 2007-06-18 2010-02-23 Tyco Healthcare Group Lp Interlocking buttress material retention system
USD578644S1 (en) 2007-06-20 2008-10-14 Abbott Laboratories Medical device delivery handle
AU2008268632B2 (en) 2007-06-22 2013-10-17 Medical Components, Inc. Tearaway sheath assembly with hemostasis valve
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US7441685B1 (en) 2007-06-22 2008-10-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a return mechanism
US7658311B2 (en) 2007-06-22 2010-02-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with a geared return mechanism
US7597229B2 (en) 2007-06-22 2009-10-06 Ethicon Endo-Surgery, Inc. End effector closure system for a surgical stapling instrument
US8408439B2 (en) 2007-06-22 2013-04-02 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7604150B2 (en) 2007-06-22 2009-10-20 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an anti-back up mechanism
US8062330B2 (en) 2007-06-27 2011-11-22 Tyco Healthcare Group Lp Buttress and surgical stapling apparatus
US20090004455A1 (en) 2007-06-27 2009-01-01 Philippe Gravagna Reinforced composite implant
CN101873834B (en) 2007-06-29 2012-12-05 伊西康内外科公司 Washer for use with a surgical stapling instrument
US10219832B2 (en) 2007-06-29 2019-03-05 Actuated Medical, Inc. Device and method for less forceful tissue puncture
US8093572B2 (en) 2007-06-29 2012-01-10 Accuray Incorporated Integrated variable-aperture collimator and fixed-aperture collimator
DE102007031008A1 (en) 2007-07-04 2009-01-08 Braun Gmbh Device with electrical device and charging station
US7600663B2 (en) 2007-07-05 2009-10-13 Green David T Apparatus for stapling and incising tissue
US8758366B2 (en) 2007-07-09 2014-06-24 Neotract, Inc. Multi-actuating trigger anchor delivery system
US9358113B2 (en) 2007-07-10 2016-06-07 Warsaw Orthopedic, Inc. Delivery system
US8348972B2 (en) 2007-07-11 2013-01-08 Covidien Lp Surgical staple with augmented compression area
US7967791B2 (en) 2007-07-23 2011-06-28 Ethicon Endo-Surgery, Inc. Surgical access device
JP2009028157A (en) 2007-07-25 2009-02-12 Terumo Corp Medical manipulator system
AU2008280755B9 (en) 2007-07-26 2014-09-25 Sanofi Pasteur Limited Antigen-adjuvant compositions and methods
JP5042738B2 (en) 2007-07-30 2012-10-03 テルモ株式会社 Working mechanism and cleaning method of medical manipulator
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US7747146B2 (en) 2007-08-08 2010-06-29 Allegro Microsystems, Inc. Motor controller having a multifunction port
US7787256B2 (en) 2007-08-10 2010-08-31 Gore Enterprise Holdings, Inc. Tamper respondent system
WO2009023745A1 (en) 2007-08-14 2009-02-19 The Regents Of The University Of California Mesocellular oxide foams as hemostatic compositions and methods of use
EP2626030A3 (en) 2007-08-14 2017-03-08 Koninklijke Philips N.V. Robotic instrument systems and methods utilizing optical fiber sensors
US20090048589A1 (en) 2007-08-14 2009-02-19 Tomoyuki Takashino Treatment device and treatment method for living tissue
US7556185B2 (en) 2007-08-15 2009-07-07 Tyco Healthcare Group Lp Surgical instrument with flexible drive mechanism
CA2695619C (en) 2007-08-15 2015-11-24 Board Of Regents Of The University Of Nebraska Modular and cooperative medical devices and related systems and methods
US7714334B2 (en) 2007-08-16 2010-05-11 Lin Peter P W Polarless surface mounting light emitting diode
JP2009050288A (en) 2007-08-23 2009-03-12 Terumo Corp Work mechanism of medical manipulator
US9005238B2 (en) 2007-08-23 2015-04-14 Covidien Lp Endoscopic surgical devices
US7967181B2 (en) 2007-08-29 2011-06-28 Tyco Healthcare Group Lp Rotary knife cutting systems
US8465515B2 (en) 2007-08-29 2013-06-18 Ethicon Endo-Surgery, Inc. Tissue retractors
KR101387404B1 (en) 2007-08-30 2014-04-21 삼성전자주식회사 Apparatus of controlling digital image processing apparatus and method thereof
US8579897B2 (en) * 2007-11-21 2013-11-12 Ethicon Endo-Surgery, Inc. Bipolar forceps
US7624902B2 (en) 2007-08-31 2009-12-01 Tyco Healthcare Group Lp Surgical stapling apparatus
JP2009056164A (en) 2007-08-31 2009-03-19 Terumo Corp Medical manipulator system
US8061576B2 (en) 2007-08-31 2011-11-22 Tyco Healthcare Group Lp Surgical instrument
FR2920683B1 (en) 2007-09-06 2010-02-12 Pellenc Sa MULTIPURPOSE ELECTROPORTATIVE DEVICES.
US9168039B1 (en) 2007-09-06 2015-10-27 Cardica, Inc. Surgical stapler with staples of different sizes
US7988026B2 (en) 2007-09-06 2011-08-02 Cardica, Inc. Endocutter with staple feed
US8257386B2 (en) 2007-09-11 2012-09-04 Cambridge Endoscopic Devices, Inc. Surgical instrument
US8556151B2 (en) * 2007-09-11 2013-10-15 Covidien Lp Articulating joint for surgical instruments
US8317790B2 (en) 2007-09-14 2012-11-27 W. L. Gore & Associates, Inc. Surgical staple line reinforcements
JP2009084281A (en) 2007-09-18 2009-04-23 Ethicon Endo Surgery Inc Method for reduction of post-operative ileus
US20090076506A1 (en) 2007-09-18 2009-03-19 Surgrx, Inc. Electrosurgical instrument and method
US7513407B1 (en) 2007-09-20 2009-04-07 Acuman Power Tools Corp. Counterforce-counteracting device for a nailer
EP3097869B1 (en) 2007-09-21 2020-03-11 Covidien LP Surgical device
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
EP2197363B1 (en) 2007-09-21 2016-11-02 Covidien LP Surgical device
US8678263B2 (en) 2007-09-24 2014-03-25 Covidien Lp Materials delivery system for stapling device
US9597080B2 (en) 2007-09-24 2017-03-21 Covidien Lp Insertion shroud for surgical instrument
US8721666B2 (en) 2007-09-26 2014-05-13 Ethicon, Inc. Method of facial reconstructive surgery using a self-anchoring tissue lifting device
US20090088659A1 (en) 2007-09-27 2009-04-02 Immersion Corporation Biological Sensing With Haptic Feedback
US20090132400A1 (en) 2007-09-28 2009-05-21 Verizon Services Organization Inc. Data metering
US7703653B2 (en) 2007-09-28 2010-04-27 Tyco Healthcare Group Lp Articulation mechanism for surgical instrument
US8224484B2 (en) 2007-09-30 2012-07-17 Intuitive Surgical Operations, Inc. Methods of user interface with alternate tool mode for robotic surgical tools
US8084969B2 (en) 2007-10-01 2011-12-27 Allegro Microsystems, Inc. Hall-effect based linear motor controller
US7945798B2 (en) 2007-10-03 2011-05-17 Lenovo (Singapore) Pte. Ltd. Battery pack for portable computer
US8285367B2 (en) 2007-10-05 2012-10-09 The Invention Science Fund I, Llc Vasculature and lymphatic system imaging and ablation associated with a reservoir
US10500309B2 (en) 2007-10-05 2019-12-10 Cook Biotech Incorporated Absorbable adhesives and their formulation for use in medical applications
US10271844B2 (en) 2009-04-27 2019-04-30 Covidien Lp Surgical stapling apparatus employing a predictive stapling algorithm
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US20110022032A1 (en) 2007-10-05 2011-01-27 Tyco Healthcare Group Lp Battery ejection design for a surgical device
US10779818B2 (en) 2007-10-05 2020-09-22 Covidien Lp Powered surgical stapling device
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
EP2428166A1 (en) 2007-10-05 2012-03-14 Tyco Healthcare Group LP Surgical stapler having a nutating gear drive
US8012170B2 (en) 2009-04-27 2011-09-06 Tyco Healthcare Group Lp Device and method for controlling compression of tissue
JP5426558B2 (en) 2007-10-08 2014-02-26 ゴア エンタープライズ ホールディングス,インコーポレイティド Apparatus for supplying surgical stapling line reinforcement
US20120289979A1 (en) 2007-10-08 2012-11-15 Sherif Eskaros Apparatus for Supplying Surgical Staple Line Reinforcement
US8044536B2 (en) 2007-10-10 2011-10-25 Ams Research Corporation Powering devices having low and high voltage circuits
US8992409B2 (en) 2007-10-11 2015-03-31 Peter Forsell Method for controlling flow in a bodily organ
US20090099579A1 (en) 2007-10-16 2009-04-16 Tyco Healthcare Group Lp Self-adherent implants and methods of preparation
ES2477879T3 (en) 2007-10-17 2014-07-18 Davol, Inc. Immobilization means between a mesh and mesh deployment means especially useful for hernia repair surgeries
US7945792B2 (en) 2007-10-17 2011-05-17 Spansion Llc Tamper reactive memory device to secure data from tamper attacks
US8142425B2 (en) 2007-10-30 2012-03-27 Hemostatix Medical Techs, LLC Hemostatic surgical blade, system and method of blade manufacture
US8790684B2 (en) 2007-10-31 2014-07-29 Cordis Corporation Vascular closure device
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
JP5364255B2 (en) 2007-10-31 2013-12-11 テルモ株式会社 Medical manipulator
US7954687B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Coated surgical staples and an illuminated staple cartridge for a surgical stapling instrument
US7954685B2 (en) 2007-11-06 2011-06-07 Tyco Healthcare Group Lp Articulation and firing force mechanisms
JP2009115640A (en) 2007-11-07 2009-05-28 Honda Motor Co Ltd Navigation apparatus
CA2704380A1 (en) 2007-11-08 2009-05-14 Ceapro Inc. Avenanthramide-containing compositions
US8425600B2 (en) 2007-11-14 2013-04-23 G. Patrick Maxwell Interfaced medical implant assembly
US8125168B2 (en) 2007-11-19 2012-02-28 Honeywell International Inc. Motor having controllable torque
US20090131819A1 (en) 2007-11-20 2009-05-21 Ritchie Paul G User Interface On Biopsy Device
CA2705898C (en) 2007-11-21 2020-08-25 Smith & Nephew Plc Wound dressing
WO2009067649A2 (en) 2007-11-21 2009-05-28 Ethicon Endo-Surgery, Inc. Bipolar forceps having a cutting element
JP5613566B2 (en) 2007-11-21 2014-10-22 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Wound dressing
GB0722820D0 (en) 2007-11-21 2008-01-02 Smith & Nephew Vacuum assisted wound dressing
US8457757B2 (en) 2007-11-26 2013-06-04 Micro Transponder, Inc. Implantable transponder systems and methods
DE102007057033A1 (en) 2007-11-27 2009-05-28 Robert Bosch Gmbh Electrically drivable hand tool machine
US20090143855A1 (en) 2007-11-29 2009-06-04 Boston Scientific Scimed, Inc. Medical Device Including Drug-Loaded Fibers
JP5377944B2 (en) 2007-11-30 2013-12-25 住友ベークライト株式会社 Gastrostomy sheath, sheathed dilator, gastrostomy sheath with insertion aid, gastrostomy catheter kit
US9017355B2 (en) 2007-12-03 2015-04-28 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8061014B2 (en) 2007-12-03 2011-11-22 Covidien Ag Method of assembling a cordless hand-held ultrasonic cautery cutting device
US8419757B2 (en) 2007-12-03 2013-04-16 Covidien Ag Cordless hand-held ultrasonic cautery cutting device
US8334468B2 (en) 2008-11-06 2012-12-18 Covidien Ag Method of switching a cordless hand-held ultrasonic cautery cutting device
US9107690B2 (en) 2007-12-03 2015-08-18 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8663262B2 (en) 2007-12-03 2014-03-04 Covidien Ag Battery assembly for battery-powered surgical instruments
US9314261B2 (en) 2007-12-03 2016-04-19 Covidien Ag Battery-powered hand-held ultrasonic surgical cautery cutting device
US8425545B2 (en) 2007-12-03 2013-04-23 Covidien Ag Cordless hand-held ultrasonic cautery cutting device and method
US7772720B2 (en) 2007-12-03 2010-08-10 Spx Corporation Supercapacitor and charger for secondary power
US8319002B2 (en) 2007-12-06 2012-11-27 Nanosys, Inc. Nanostructure-enhanced platelet binding and hemostatic structures
JP5235394B2 (en) 2007-12-06 2013-07-10 株式会社ハーモニック・エイディ Switchable rotary drive
US8511308B2 (en) 2007-12-06 2013-08-20 Cpair, Inc. CPR system with feed back instruction
US8180458B2 (en) 2007-12-17 2012-05-15 Thermage, Inc. Method and apparatus for digital signal processing for radio frequency surgery measurements
US8352004B2 (en) 2007-12-21 2013-01-08 Covidien Lp Medical sensor and technique for using the same
US8840604B2 (en) 2007-12-21 2014-09-23 Smith & Nephew, Inc. Surgical aimer
US20090171147A1 (en) 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
TWI348086B (en) 2008-01-02 2011-09-01 Mstar Semiconductor Inc Dc power converter and mode-switching method
US8727199B2 (en) 2008-01-03 2014-05-20 Covidien Lp Surgical stapler
WO2009089539A1 (en) 2008-01-10 2009-07-16 Power Medical Interventions, Inc. Imaging system for a surgical device
US8647258B2 (en) 2008-01-10 2014-02-11 Covidien Lp Apparatus for endoscopic procedures
US20090181290A1 (en) 2008-01-14 2009-07-16 Travis Baldwin System and Method for an Automated Battery Arrangement
US8031069B2 (en) 2008-01-14 2011-10-04 Oded Yair Cohn Electronic security seal and system
US8490851B2 (en) 2008-01-15 2013-07-23 Covidien Lp Surgical stapling apparatus
WO2009091497A2 (en) * 2008-01-16 2009-07-23 John Hyoung Kim Minimally invasive surgical instrument
CA2713132C (en) 2008-01-25 2017-01-03 Smith & Nephew Plc Multilayer scaffold with different pore sizes
US8192350B2 (en) 2008-01-28 2012-06-05 Ethicon Endo-Surgery, Inc. Methods and devices for measuring impedance in a gastric restriction system
US20090192534A1 (en) 2008-01-29 2009-07-30 Ethicon Endo-Surgery, Inc. Sensor trigger
WO2009097468A2 (en) 2008-01-29 2009-08-06 Kliman Gilbert H Drug delivery devices, kits and methods therefor
US8006365B2 (en) 2008-01-30 2011-08-30 Easylap Ltd. Device and method for applying rotary tacks
CN101219648B (en) 2008-01-31 2010-12-08 北京经纬恒润科技有限公司 Car lamp steering driving mechanism
US20090198272A1 (en) 2008-02-06 2009-08-06 Lawrence Kerver Method and apparatus for articulating the wrist of a laparoscopic grasping instrument
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8540133B2 (en) 2008-09-19 2013-09-24 Ethicon Endo-Surgery, Inc. Staple cartridge
US8453908B2 (en) 2008-02-13 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7766209B2 (en) 2008-02-13 2010-08-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with improved firing trigger arrangement
US7819297B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with reprocessible handle assembly
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8584919B2 (en) 2008-02-14 2013-11-19 Ethicon Endo-Sugery, Inc. Surgical stapling apparatus with load-sensitive firing mechanism
US7819296B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with retractable firing systems
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7913891B2 (en) 2008-02-14 2011-03-29 Ethicon Endo-Surgery, Inc. Disposable loading unit with user feedback features and surgical instrument for use therewith
US8459525B2 (en) 2008-02-14 2013-06-11 Ethicon Endo-Sugery, Inc. Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7861906B2 (en) 2008-02-14 2011-01-04 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with articulatable components
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
JP5496520B2 (en) 2008-02-14 2014-05-21 エシコン・エンド−サージェリィ・インコーポレイテッド Motorized cutting and fastening device with control circuit to optimize battery use
US8622274B2 (en) 2008-02-14 2014-01-07 Ethicon Endo-Surgery, Inc. Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US7810692B2 (en) 2008-02-14 2010-10-12 Ethicon Endo-Surgery, Inc. Disposable loading unit with firing indicator
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US20090206133A1 (en) 2008-02-14 2009-08-20 Ethicon Endo-Surgery, Inc. Articulatable loading units for surgical stapling and cutting instruments
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US7980443B2 (en) 2008-02-15 2011-07-19 Ethicon Endo-Surgery, Inc. End effectors for a surgical cutting and stapling instrument
US20090206125A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Packaging for attaching buttress material to a surgical stapling instrument
US8398673B2 (en) 2008-02-15 2013-03-19 Surgical Innovations V.O.F. Surgical instrument for grasping and cutting tissue
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US8608044B2 (en) 2008-02-15 2013-12-17 Ethicon Endo-Surgery, Inc. Feedback and lockout mechanism for surgical instrument
US20090206137A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. Disposable loading units for a surgical cutting and stapling instrument
JP5507093B2 (en) 2008-02-15 2014-05-28 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical end effector with support retention feature
JP5377991B2 (en) 2008-02-26 2013-12-25 テルモ株式会社 manipulator
JP2009207260A (en) 2008-02-27 2009-09-10 Denso Corp Motor controller
US8118206B2 (en) 2008-03-15 2012-02-21 Surgisense Corporation Sensing adjunct for surgical staplers
US20090234273A1 (en) 2008-03-17 2009-09-17 Alfred Intoccia Surgical trocar with feedback
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
US8491581B2 (en) 2008-03-19 2013-07-23 Covidien Ag Method for powering a surgical instrument
US8328802B2 (en) 2008-03-19 2012-12-11 Covidien Ag Cordless medical cauterization and cutting device
US8197501B2 (en) 2008-03-20 2012-06-12 Medtronic Xomed, Inc. Control for a powered surgical instrument
JP2009226028A (en) 2008-03-24 2009-10-08 Terumo Corp Manipulator
US20090247901A1 (en) 2008-03-25 2009-10-01 Brian Zimmer Latching side removal spacer
WO2009117844A1 (en) 2008-03-25 2009-10-01 Alcatel Shanghai Bell Co., Ltd. Methods and entities using ipsec esp to support security functionality for udp-based oma enablers
US8136713B2 (en) 2008-03-25 2012-03-20 Tyco Healthcare Group Lp Surgical stapling instrument having transducer effecting vibrations
US20090242610A1 (en) 2008-03-26 2009-10-01 Shelton Iv Frederick E Disposable loading unit and surgical instruments including same
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
US8808164B2 (en) 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US10368838B2 (en) 2008-03-31 2019-08-06 Intuitive Surgical Operations, Inc. Surgical tools for laser marking and laser cutting
WO2009124097A1 (en) 2008-03-31 2009-10-08 Applied Medical Resources Corporation Electrosurgical system
US7843158B2 (en) 2008-03-31 2010-11-30 Intuitive Surgical Operations, Inc. Medical robotic system adapted to inhibit motions resulting in excessive end effector forces
US9895813B2 (en) 2008-03-31 2018-02-20 Intuitive Surgical Operations, Inc. Force and torque sensing in a surgical robot setup arm
US20090247368A1 (en) 2008-03-31 2009-10-01 Boson Technology Co., Ltd. Sports health care apparatus with physiological monitoring function
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
US8534527B2 (en) 2008-04-03 2013-09-17 Black & Decker Inc. Cordless framing nailer
JP5301867B2 (en) 2008-04-07 2013-09-25 オリンパスメディカルシステムズ株式会社 Medical manipulator system
JP5145103B2 (en) 2008-04-08 2013-02-13 ローム株式会社 Inverter, control circuit thereof, control method, and liquid crystal display device using the same
DE102008018158A1 (en) 2008-04-10 2009-10-15 Aesculap Ag Ligature clip magazine and bearing body for use in this
US8100310B2 (en) 2008-04-14 2012-01-24 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
US20090255974A1 (en) 2008-04-14 2009-10-15 Tyco Healthcare Group Lp Single loop surgical fastener apparatus for applying variable compression
US7926691B2 (en) 2008-04-14 2011-04-19 Tyco Healthcare Group, L.P. Variable compression surgical fastener cartridge
US8231041B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US8231040B2 (en) 2008-04-14 2012-07-31 Tyco Healthcare Group Lp Variable compression surgical fastener cartridge
US8170241B2 (en) 2008-04-17 2012-05-01 Intouch Technologies, Inc. Mobile tele-presence system with a microphone system
US20090262078A1 (en) 2008-04-21 2009-10-22 David Pizzi Cellular phone with special sensor functions
US8021375B2 (en) 2008-04-21 2011-09-20 Conmed Corporation Surgical clip applicator
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8028884B2 (en) 2008-04-22 2011-10-04 Tyco Healthcare Group Lp Cartridge for applying varying amounts of tissue compression
CA2665017A1 (en) 2008-05-05 2009-11-05 Tyco Healthcare Group Lp Surgical instrument with sequential clamping and cutting
WO2009137421A1 (en) 2008-05-05 2009-11-12 Stryker Corporation Surgical tool system including a tool and a console, the console capable of reading data from a memory integral with the tool over the conductors over which power is sourced to the tool
US7997468B2 (en) 2008-05-05 2011-08-16 Tyco Healthcare Group Lp Surgical instrument with clamp
US8186556B2 (en) 2008-05-09 2012-05-29 Tyco Healthcare Group Lp Variable compression surgical fastener apparatus
WO2009137761A2 (en) 2008-05-09 2009-11-12 Elmer Valin Laparoscopic gastric and intestinal trocar
US8091756B2 (en) 2008-05-09 2012-01-10 Tyco Healthcare Group Lp Varying tissue compression using take-up component
US9016541B2 (en) 2008-05-09 2015-04-28 Covidien Lp Varying tissue compression with an anvil configuration
US8967446B2 (en) 2008-05-09 2015-03-03 Covidien Lp Variable compression surgical fastener cartridge
JP5145113B2 (en) 2008-05-09 2013-02-13 Hoya株式会社 Endoscope operation part
US8464922B2 (en) 2008-05-09 2013-06-18 Covidien Lp Variable compression surgical fastener cartridge
US8308659B2 (en) 2008-05-09 2012-11-13 Greatbatch Ltd. Bi-directional sheath deflection mechanism
US8409079B2 (en) 2008-05-14 2013-04-02 Olympus Medical Systems Corp. Electric bending operation device and medical treatment system including electric bending operation device
US8273404B2 (en) 2008-05-19 2012-09-25 Cordis Corporation Extraction of solvents from drug containing polymer reservoirs
US20090290016A1 (en) 2008-05-20 2009-11-26 Hoya Corporation Endoscope system
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
WO2009143331A1 (en) 2008-05-21 2009-11-26 Cook Biotech Incorporated Devices and methods for applying bolster materials to surgical fastening apparatuses
US8179705B2 (en) 2008-05-27 2012-05-15 Power-One, Inc. Apparatus and method of optimizing power system efficiency using a power loss model
BRPI0909610B1 (en) 2008-05-30 2022-07-12 Janssen Biotech, Inc PURIFIED HUMAN IGG1 MAB THAT SPECIFICALLY BINDS TO HUMAN IL-1A, ISOLATED NUCLEIC ACIDS SET, METHOD FOR KILLING A CELL THAT EXPRESSES HUMAN IL-1A, METHOD OF INHIBITING THE MIGRATION OF A CELL THROUGH A BASEMENT MEMBRANE ARRAY, METHOD OF INHIBITION OF AN IL-1A-INDUCED INCREASE IN E-SELECTIN EXPRESSION ON THE SURFACE OF A HUMAN Endothelial CELL AND METHOD OF SCREENING INFLAMMATION IN HUMAN PATIENTS
US8771260B2 (en) 2008-05-30 2014-07-08 Ethicon Endo-Surgery, Inc. Actuating and articulating surgical device
US8016176B2 (en) 2008-06-04 2011-09-13 Tyco Healthcare Group, Lp Surgical stapling instrument with independent sequential firing
US7942303B2 (en) 2008-06-06 2011-05-17 Tyco Healthcare Group Lp Knife lockout mechanisms for surgical instrument
US8701959B2 (en) 2008-06-06 2014-04-22 Covidien Lp Mechanically pivoting cartridge channel for surgical instrument
US7789283B2 (en) 2008-06-06 2010-09-07 Tyco Healthcare Group Lp Knife/firing rod connection for surgical instrument
US20090306639A1 (en) 2008-06-06 2009-12-10 Galil Medical Ltd. Cryoprobe incorporating electronic module, and system utilizing same
WO2009151064A1 (en) 2008-06-10 2009-12-17 株式会社マキタ Circular saw
WO2009150650A2 (en) 2008-06-12 2009-12-17 Ramot At Tel Aviv University Ltd. Drug-eluting medical devices
US8007513B2 (en) 2008-06-12 2011-08-30 Ethicon Endo-Surgery, Inc. Partially reusable surgical stapler
JP5512663B2 (en) 2008-06-12 2014-06-04 エシコン・エンド−サージェリィ・インコーポレイテッド Partially reusable surgical stapler
US8267951B2 (en) 2008-06-12 2012-09-18 Ncontact Surgical, Inc. Dissecting cannula and methods of use thereof
US8628545B2 (en) 2008-06-13 2014-01-14 Covidien Lp Endoscopic stitching devices
US20140100558A1 (en) 2012-10-05 2014-04-10 Gregory P. Schmitz Micro-articulated surgical instruments using micro gear actuation
US7543730B1 (en) 2008-06-24 2009-06-09 Tyco Healthcare Group Lp Segmented drive member for surgical instruments
DE102008002641A1 (en) 2008-06-25 2009-12-31 Biotronik Vi Patent Ag Fiber strand and implantable support body with a fiber strand
US8011551B2 (en) 2008-07-01 2011-09-06 Tyco Healthcare Group Lp Retraction mechanism with clutch-less drive for use with a surgical apparatus
DE102008040061A1 (en) 2008-07-02 2010-01-07 Robert Bosch Gmbh Power tool
US20100005035A1 (en) 2008-07-02 2010-01-07 Cake Financial Corporation Systems and Methods for a Cross-Linked Investment Trading Platform
WO2010006057A1 (en) 2008-07-08 2010-01-14 Power Medical Interventions, Inc. Surgical attachment for use with a robotic surgical system
US8888792B2 (en) 2008-07-14 2014-11-18 Ethicon Endo-Surgery, Inc. Tissue apposition clip application devices and methods
US9186221B2 (en) 2008-07-16 2015-11-17 Intuitive Surgical Operations Inc. Backend mechanism for four-cable wrist
US9204923B2 (en) 2008-07-16 2015-12-08 Intuitive Surgical Operations, Inc. Medical instrument electronically energized using drive cables
US8074858B2 (en) 2008-07-17 2011-12-13 Tyco Healthcare Group Lp Surgical retraction mechanism
US20110101794A1 (en) 2008-07-21 2011-05-05 Kirk Schroeder Portable Power Supply Device
US20100022824A1 (en) 2008-07-22 2010-01-28 Cybulski James S Tissue modification devices and methods of using the same
US20110088921A1 (en) 2008-07-25 2011-04-21 Sylvain Forgues Pneumatic hand tool rotational speed control method and portable apparatus
US9061392B2 (en) 2008-07-25 2015-06-23 Sylvain Forgues Controlled electro-pneumatic power tools and interactive consumable
US20100023024A1 (en) 2008-07-25 2010-01-28 Zeiner Mark S Reloadable laparoscopic fastener deploying device with disposable cartridge for use in a gastric volume reduction procedure
US8317437B2 (en) 2008-08-01 2012-11-27 The Boeing Company Adaptive positive feed drilling system
US8801752B2 (en) 2008-08-04 2014-08-12 Covidien Lp Articulating surgical device
US8968355B2 (en) 2008-08-04 2015-03-03 Covidien Lp Articulating surgical device
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US20100036370A1 (en) 2008-08-07 2010-02-11 Al Mirel Electrosurgical instrument jaw structure with cutting tip
US8109426B2 (en) 2008-08-12 2012-02-07 Tyco Healthcare Group Lp Surgical tilt anvil assembly
US8413661B2 (en) 2008-08-14 2013-04-09 Ethicon, Inc. Methods and devices for treatment of obstructive sleep apnea
US8211125B2 (en) 2008-08-15 2012-07-03 Ethicon Endo-Surgery, Inc. Sterile appliance delivery device for endoscopic procedures
US8465475B2 (en) 2008-08-18 2013-06-18 Intuitive Surgical Operations, Inc. Instrument with multiple articulation locks
US8532747B2 (en) 2008-08-22 2013-09-10 Devicor Medical Products, Inc. Biopsy marker delivery device
US8465502B2 (en) 2008-08-25 2013-06-18 Covidien Lp Surgical clip applier and method of assembly
JP2010054718A (en) 2008-08-27 2010-03-11 Sony Corp Display device
US8409223B2 (en) 2008-08-29 2013-04-02 Covidien Lp Endoscopic surgical clip applier with clip retention
US9358015B2 (en) 2008-08-29 2016-06-07 Covidien Lp Endoscopic surgical clip applier with wedge plate
US8834353B2 (en) 2008-09-02 2014-09-16 Olympus Medical Systems Corp. Medical manipulator, treatment system, and treatment method
US20100051668A1 (en) 2008-09-03 2010-03-04 Milliman Keith L Surgical instrument with indicator
US8113405B2 (en) 2008-09-03 2012-02-14 Tyco Healthcare Group, Lp Surgical instrument with indicator
US20100057118A1 (en) 2008-09-03 2010-03-04 Dietz Timothy G Ultrasonic surgical blade
US20120125792A1 (en) 2008-09-08 2012-05-24 Mayo Foundation For Medical Education And Research Devices, kits and methods for surgical fastening
US8808294B2 (en) 2008-09-09 2014-08-19 William Casey Fox Method and apparatus for a multiple transition temperature implant
US20110230713A1 (en) 2008-09-09 2011-09-22 Olympus Winter & Ibe Gmbh Laparoscope with adjustable shaft
CN101669833A (en) 2008-09-11 2010-03-17 苏州天臣国际医疗科技有限公司 Automatic purse-string device
WO2010030850A2 (en) 2008-09-12 2010-03-18 Ethicon Endo-Surgery, Inc. Ultrasonic device for fingertip control
US8047236B2 (en) 2008-09-12 2011-11-01 Boston Scientific Scimed, Inc. Flexible conduit with locking element
EP2163209A1 (en) 2008-09-15 2010-03-17 Zhiqiang Weng Lockout mechanism for a surgical stapler
US8083120B2 (en) 2008-09-18 2011-12-27 Ethicon Endo-Surgery, Inc. End effector for use with a surgical cutting and stapling instrument
US7837080B2 (en) 2008-09-18 2010-11-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with device for indicating when the instrument has cut through tissue
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
JP5631568B2 (en) 2008-09-19 2014-11-26 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical stapling instrument with cutting member structure
BRPI0904975B1 (en) 2008-09-19 2019-09-10 Ethicon Endo Surgery Inc surgical stapler
US7954686B2 (en) 2008-09-19 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical stapler with apparatus for adjusting staple height
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8215532B2 (en) 2008-09-23 2012-07-10 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US7988028B2 (en) 2008-09-23 2011-08-02 Tyco Healthcare Group Lp Surgical instrument having an asymmetric dynamic clamping member
US8360298B2 (en) 2008-09-23 2013-01-29 Covidien Lp Surgical instrument and loading unit for use therewith
US7896214B2 (en) 2008-09-23 2011-03-01 Tyco Healthcare Group Lp Tissue stop for surgical instrument
US9050083B2 (en) 2008-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
JP2010075242A (en) 2008-09-24 2010-04-08 Terumo Corp Medical manipulator
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
JP5475262B2 (en) 2008-10-01 2014-04-16 テルモ株式会社 Medical manipulator
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8808308B2 (en) 2008-10-13 2014-08-19 Alcon Research, Ltd. Automated intraocular lens injector device
US8287487B2 (en) 2008-10-15 2012-10-16 Asante Solutions, Inc. Infusion pump system and methods
US8020743B2 (en) * 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
US20100094340A1 (en) 2008-10-15 2010-04-15 Tyco Healthcare Group Lp Coating compositions
JP2010098844A (en) 2008-10-16 2010-04-30 Toyota Motor Corp Power supply system of vehicle
US7918377B2 (en) 2008-10-16 2011-04-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with apparatus for providing anvil position feedback
US9889230B2 (en) 2008-10-17 2018-02-13 Covidien Lp Hemostatic implant
US8063619B2 (en) 2008-10-20 2011-11-22 Dell Products L.P. System and method for powering an information handling system in multiple power states
US8996165B2 (en) 2008-10-21 2015-03-31 Intouch Technologies, Inc. Telepresence robot with a camera boom
US9370341B2 (en) 2008-10-23 2016-06-21 Covidien Lp Surgical retrieval apparatus
CN101721236A (en) 2008-10-29 2010-06-09 苏州天臣国际医疗科技有限公司 Surgical cutting and binding apparatus
US8561617B2 (en) 2008-10-30 2013-10-22 Ethicon, Inc. Implant systems and methods for treating obstructive sleep apnea
KR101075363B1 (en) 2008-10-31 2011-10-19 정창욱 Surgical Robot System Having Tool for Minimally Invasive Surgery
US8231042B2 (en) 2008-11-06 2012-07-31 Tyco Healthcare Group Lp Surgical stapler
AU2009312482A1 (en) 2008-11-07 2010-05-14 Sofradim Production Medical implant including a 3D mesh of oxidized cellulose and a collagen sponge
US7934631B2 (en) 2008-11-10 2011-05-03 Barosense, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
EP2355720A4 (en) 2008-11-14 2015-11-11 Cole Isolation Tech Llc Follicular dissection device and method
US8657821B2 (en) 2008-11-14 2014-02-25 Revascular Therapeutics Inc. Method and system for reversibly controlled drilling of luminal occlusions
TWI414713B (en) 2008-11-24 2013-11-11 Everlight Electronics Co Ltd Led lamp device manufacturing method
US7886951B2 (en) 2008-11-24 2011-02-15 Tyco Healthcare Group Lp Pouch used to deliver medication when ruptured
USD600712S1 (en) 2008-12-02 2009-09-22 Microsoft Corporation Icon for a display screen
GB0822110D0 (en) 2008-12-03 2009-01-07 Angiomed Ag Catheter sheath for implant delivery
GB2466180B (en) 2008-12-05 2013-07-10 Surgical Innovations Ltd Surgical instrument, handle for a surgical instrument and surgical instrument system
US8348837B2 (en) 2008-12-09 2013-01-08 Covidien Lp Anoscope
US8034363B2 (en) 2008-12-11 2011-10-11 Advanced Technologies And Regenerative Medicine, Llc. Sustained release systems of ascorbic acid phosphate
USD607010S1 (en) 2008-12-12 2009-12-29 Microsoft Corporation Icon for a portion of a display screen
US20100331856A1 (en) 2008-12-12 2010-12-30 Hansen Medical Inc. Multiple flexible and steerable elongate instruments for minimally invasive operations
US8060250B2 (en) 2008-12-15 2011-11-15 GM Global Technology Operations LLC Joint-space impedance control for tendon-driven manipulators
US20100147921A1 (en) 2008-12-16 2010-06-17 Lee Olson Surgical Apparatus Including Surgical Buttress
US8770460B2 (en) 2008-12-23 2014-07-08 George E. Belzer Shield for surgical stapler and method of use
US8245594B2 (en) 2008-12-23 2012-08-21 Intuitive Surgical Operations, Inc. Roll joint and method for a surgical apparatus
US8281974B2 (en) 2009-01-14 2012-10-09 Tyco Healthcare, Group LP Surgical stapler with suture locator
WO2010083110A1 (en) 2009-01-16 2010-07-22 Rhaphis Medical, Inc. Surgical suturing latch
US20100180711A1 (en) 2009-01-19 2010-07-22 Comau, Inc. Robotic end effector system and method
US9713468B2 (en) 2009-01-26 2017-07-25 Ethicon Endo-Surgery, Inc. Surgical stapler for applying a large staple through a small delivery port and a method of using the stapler to secure a tissue fold
US20100191262A1 (en) 2009-01-26 2010-07-29 Harris Jason L Surgical stapler for applying a large staple through small delivery port and a method of using the stapler to secure a tissue fold
US8833219B2 (en) 2009-01-26 2014-09-16 Illinois Tool Works Inc. Wire saw
US20110278343A1 (en) 2009-01-29 2011-11-17 Cardica, Inc. Clamping of Hybrid Surgical Instrument
US8228048B2 (en) 2009-01-30 2012-07-24 Hewlett-Packard Development Company, L.P. Method and system of regulating voltages
US8037591B2 (en) * 2009-02-02 2011-10-18 Ethicon Endo-Surgery, Inc. Surgical scissors
US8523900B2 (en) 2009-02-03 2013-09-03 Terumo Kabushiki Kaisha Medical manipulator
US20100193566A1 (en) 2009-02-05 2010-08-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US8397971B2 (en) 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8414577B2 (en) 2009-02-05 2013-04-09 Ethicon Endo-Surgery, Inc. Surgical instruments and components for use in sterile environments
US8485413B2 (en) 2009-02-05 2013-07-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising an articulation joint
US20120007442A1 (en) 2009-02-06 2012-01-12 Mark Rhodes Rotary data and power transfer system
US20110024478A1 (en) 2009-02-06 2011-02-03 Shelton Iv Frederick E Driven Surgical Stapler Improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8245899B2 (en) 2009-02-06 2012-08-21 Ethicon Endo-Surgery, Inc. Driven surgical stapler improvements
CN102316823B (en) 2009-02-11 2016-06-08 新加坡南洋理工大学 Multi-layered surgical prosthesis
US9011537B2 (en) 2009-02-12 2015-04-21 Warsaw Orthopedic, Inc. Delivery system cartridge
US20100204717A1 (en) 2009-02-12 2010-08-12 Cardica, Inc. Surgical Device for Multiple Clip Application
US8708211B2 (en) 2009-02-12 2014-04-29 Covidien Lp Powered surgical instrument with secondary circuit board
US20100298636A1 (en) 2009-02-19 2010-11-25 Salvatore Castro Flexible rigidizing instruments
US8349987B2 (en) 2009-02-19 2013-01-08 Covidien Lp Adhesive formulations
JP2010193994A (en) 2009-02-24 2010-09-09 Fujifilm Corp Clip package, multiple clip system, and mechanism for preventing mismatch of the multiple clip system
US8393516B2 (en) 2009-02-26 2013-03-12 Covidien Lp Surgical stapling apparatus with curved cartridge and anvil assemblies
EP2442735B1 (en) 2009-02-27 2020-09-02 Amir Belson Improved apparatus for hybrid endoscopic and laparoscopic surgery
US9030169B2 (en) 2009-03-03 2015-05-12 Robert Bosch Gmbh Battery system and method for system state of charge determination
JP5431749B2 (en) 2009-03-04 2014-03-05 テルモ株式会社 Medical manipulator
US8317071B1 (en) 2009-03-09 2012-11-27 Cardica, Inc. Endocutter with auto-feed buttress
US8397973B1 (en) 2009-03-09 2013-03-19 Cardica, Inc. Wide handle for true multi-fire surgical stapler
US7918376B1 (en) 2009-03-09 2011-04-05 Cardica, Inc. Articulated surgical instrument
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8356740B1 (en) 2009-03-09 2013-01-22 Cardica, Inc. Controlling compression applied to tissue by surgical tool
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
US8418073B2 (en) 2009-03-09 2013-04-09 Intuitive Surgical Operations, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US8007370B2 (en) 2009-03-10 2011-08-30 Cobra Golf, Inc. Metal injection molded putter
JP5177683B2 (en) 2009-03-12 2013-04-03 株式会社リコー Image reading apparatus and copying machine
DE102009013034B4 (en) 2009-03-16 2015-11-19 Olympus Winter & Ibe Gmbh Autoclavable charging device for an energy store of a surgical instrument and method for charging a rechargeable energy store in an autoclaved surgical instrument or for an autoclaved surgical instrument
US8366719B2 (en) 2009-03-18 2013-02-05 Integrated Spinal Concepts, Inc. Image-guided minimal-step placement of screw into bone
US8066167B2 (en) 2009-03-23 2011-11-29 Ethicon Endo-Surgery, Inc. Circular surgical stapling instrument with anvil locking system
JP5292155B2 (en) 2009-03-27 2013-09-18 Tdkラムダ株式会社 Power supply control device, power supply device, and power supply control method
US8110208B1 (en) 2009-03-30 2012-02-07 Biolife, L.L.C. Hemostatic compositions for arresting blood flow from an open wound or surgical site
US8092443B2 (en) 2009-03-30 2012-01-10 Medtronic, Inc. Element for implantation with medical device
US20100249497A1 (en) 2009-03-30 2010-09-30 Peine William J Surgical instrument
US7988027B2 (en) 2009-03-31 2011-08-02 Tyco Healthcare Group Lp Crimp and release of suture holding buttress material
US8348126B2 (en) 2009-03-31 2013-01-08 Covidien Lp Crimp and release of suture holding buttress material
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8945163B2 (en) 2009-04-01 2015-02-03 Ethicon Endo-Surgery, Inc. Methods and devices for cutting and fastening tissue
KR101132659B1 (en) 2009-04-02 2012-04-02 한국과학기술원 A Laparoscopic Surgical Instrument with 4 Degree of Freedom
MX345296B (en) 2009-04-03 2017-01-24 Univ Leland Stanford Junior Surgical device and method.
US8801801B2 (en) 2009-04-03 2014-08-12 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
US9050176B2 (en) 2009-04-03 2015-06-09 Biomerix Corporation At least partially resorbable reticulated elastomeric matrix elements and methods of making same
WO2010114635A2 (en) 2009-04-03 2010-10-07 Romans Matthew L Absorbable surgical staple
US8257251B2 (en) 2009-04-08 2012-09-04 Ethicon Endo-Surgery, Inc. Methods and devices for providing access into a body cavity
US8419635B2 (en) 2009-04-08 2013-04-16 Ethicon Endo-Surgery, Inc. Surgical access device having removable and replaceable components
US8444549B2 (en) 2009-04-16 2013-05-21 Covidien Lp Self-steering endoscopic device
US8523850B2 (en) 2009-04-17 2013-09-03 Domain Surgical, Inc. Method for heating a surgical implement
US9131977B2 (en) 2009-04-17 2015-09-15 Domain Surgical, Inc. Layered ferromagnetic coated conductor thermal surgical tool
US20100274160A1 (en) 2009-04-22 2010-10-28 Chie Yachi Switching structure and surgical equipment
US8922163B2 (en) 2009-04-24 2014-12-30 Murray MacDonald Automated battery and data delivery system
US8663192B2 (en) 2009-04-27 2014-03-04 Intersect Ent, Inc. Devices and methods for treating pain associated with tonsillectomies
WO2010126129A1 (en) 2009-04-30 2010-11-04 テルモ株式会社 Medical manipulator
US9192430B2 (en) 2009-05-01 2015-11-24 Covidien Lp Electrosurgical instrument with time limit circuit
US8631992B1 (en) 2009-05-03 2014-01-21 Cardica, Inc. Feeder belt with padded staples for true multi-fire surgical stapler
US8167898B1 (en) 2009-05-05 2012-05-01 Cardica, Inc. Flexible cutter for surgical stapler
US8365975B1 (en) 2009-05-05 2013-02-05 Cardica, Inc. Cam-controlled knife for surgical instrument
US9038881B1 (en) 2009-05-05 2015-05-26 Cardica, Inc. Feeder belt actuation mechanism for true multi-fire surgical stapler
US8328064B2 (en) 2009-05-06 2012-12-11 Covidien Lp Pin locking mechanism for a surgical instrument
US8523881B2 (en) * 2010-07-26 2013-09-03 Valtech Cardio, Ltd. Multiple anchor delivery tool
US8127976B2 (en) 2009-05-08 2012-03-06 Tyco Healthcare Group Lp Stapler cartridge and channel interlock
US8728099B2 (en) 2009-05-12 2014-05-20 Ethicon, Inc. Surgical fasteners, applicator instruments, and methods for deploying surgical fasteners
US20100292540A1 (en) 2009-05-12 2010-11-18 Hess Christopher J Surgical retractor and method
JP5428515B2 (en) 2009-05-15 2014-02-26 マックス株式会社 Electric stapler and motor driving method of electric stapler
US9023069B2 (en) 2009-05-18 2015-05-05 Covidien Lp Attachable clamp for use with surgical instruments
US8308043B2 (en) 2009-05-19 2012-11-13 Covidien Lp Recognition of interchangeable component of a device
WO2010134913A1 (en) 2009-05-20 2010-11-25 California Institute Of Technology Endoscope and system and method of operation thereof
US9004339B1 (en) 2009-05-26 2015-04-14 Cardica, Inc. Cartridgizable feeder belt for surgical stapler
WO2010138538A1 (en) 2009-05-26 2010-12-02 Zimmer, Inc. Handheld tool for driving a bone pin into a fractured bone
US8070034B1 (en) 2009-05-29 2011-12-06 Cardica, Inc. Surgical stapler with angled staple bays
US8418909B2 (en) 2009-06-02 2013-04-16 Covidien Lp Surgical instrument and method for performing a resection
US8056789B1 (en) 2009-06-03 2011-11-15 Cardica, Inc. Staple and feeder belt configurations for surgical stapler
US8132706B2 (en) 2009-06-05 2012-03-13 Tyco Healthcare Group Lp Surgical stapling apparatus having articulation mechanism
US9086875B2 (en) 2009-06-05 2015-07-21 Qualcomm Incorporated Controlling power consumption of a mobile device based on gesture recognition
CH701320B1 (en) 2009-06-16 2013-10-15 Frii S A A device for resection treatments / endoscopic tissue removal.
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8701960B1 (en) 2009-06-22 2014-04-22 Cardica, Inc. Surgical stapler with reduced clamp gap for insertion
USD604325S1 (en) 2009-06-26 2009-11-17 Microsoft Corporation Animated image for a portion of a display screen
US8784404B2 (en) 2009-06-29 2014-07-22 Carefusion 2200, Inc. Flexible wrist-type element and methods of manufacture and use thereof
US9463260B2 (en) 2009-06-29 2016-10-11 Covidien Lp Self-sealing compositions
CN101940844A (en) 2009-07-03 2011-01-12 林翠琼 Analog dog tail oscillator
KR101180665B1 (en) 2009-07-03 2012-09-07 주식회사 이턴 Hybrid surgical robot system and control method thereof
EP2451367B1 (en) 2009-07-08 2020-01-22 Edge Systems Corporation Devices for treating the skin using time-release substances
US8276802B2 (en) 2009-07-11 2012-10-02 Tyco Healthcare Group Lp Surgical instrument with double cartridge and anvil assemblies
US8146790B2 (en) 2009-07-11 2012-04-03 Tyco Healthcare Group Lp Surgical instrument with safety mechanism
US8343150B2 (en) 2009-07-15 2013-01-01 Covidien Lp Mechanical cycling of seal pressure coupled with energy for tissue fusion
CN102497827B (en) 2009-07-15 2016-06-01 伊西康内外科公司 Electrosurgical generator for ultrasonic surgical instrument
US20110011916A1 (en) 2009-07-16 2011-01-20 New York University Anastomosis device
US8328062B2 (en) 2009-07-21 2012-12-11 Covidien Lp Surgical instrument with curvilinear tissue-contacting surfaces
US8143520B2 (en) 2009-07-22 2012-03-27 Paul Cutler Universal wall plate thermometer
US8205779B2 (en) 2009-07-23 2012-06-26 Tyco Healthcare Group Lp Surgical stapler with tactile feedback system
US9339226B2 (en) 2010-01-21 2016-05-17 OrthAlign, Inc. Systems and methods for joint replacement
US20110021871A1 (en) 2009-07-27 2011-01-27 Gerry Berkelaar Laparoscopic surgical instrument
US9314908B2 (en) 2009-07-29 2016-04-19 Hitachi Koki Co., Ltd. Impact tool
JP5440766B2 (en) 2009-07-29 2014-03-12 日立工機株式会社 Impact tools
US20110025311A1 (en) 2009-07-29 2011-02-03 Logitech Europe S.A. Magnetic rotary system for input devices
FR2948594B1 (en) 2009-07-31 2012-07-20 Dexterite Surgical ERGONOMIC AND SEMI-AUTOMATIC MANIPULATOR AND INSTRUMENT APPLICATIONS FOR MINI-INVASIVE SURGERY
EP2281506B1 (en) 2009-08-03 2013-01-16 Fico Mirrors, S.A. Method and system for determining an individual's state of attention
US8968358B2 (en) 2009-08-05 2015-03-03 Covidien Lp Blunt tissue dissection surgical instrument jaw designs
US8172004B2 (en) 2009-08-05 2012-05-08 Techtronic Power Tools Technology Limited Automatic transmission for a power tool
US10383629B2 (en) 2009-08-10 2019-08-20 Covidien Lp System and method for preventing reprocessing of a powered surgical instrument
US8955732B2 (en) 2009-08-11 2015-02-17 Covidien Lp Surgical stapling apparatus
DE202009011312U1 (en) 2009-08-11 2010-12-23 C. & E. Fein Gmbh Hand tool with an oscillation drive
US8276801B2 (en) 2011-02-01 2012-10-02 Tyco Healthcare Group Lp Surgical stapling apparatus
US8360299B2 (en) 2009-08-11 2013-01-29 Covidien Lp Surgical stapling apparatus
US20110036891A1 (en) 2009-08-11 2011-02-17 Tyco Healthcare Group Lp Surgical stapler with visual positional indicator
US8459524B2 (en) 2009-08-14 2013-06-11 Covidien Lp Tissue fastening system for a medical device
EP2467314A1 (en) 2009-08-17 2012-06-27 Culligan, Patrick John Apparatus for housing a plurality of needles and method of use therefor
US8733612B2 (en) 2009-08-17 2014-05-27 Covidien Lp Safety method for powered surgical instruments
US8342378B2 (en) 2009-08-17 2013-01-01 Covidien Lp One handed stapler
US9271718B2 (en) 2009-08-18 2016-03-01 Karl Storz Gmbh & Co. Kg Suturing and ligating method
US9265500B2 (en) 2009-08-19 2016-02-23 Covidien Lp Surgical staple
US8387848B2 (en) 2009-08-20 2013-03-05 Covidien Lp Surgical staple
US8162965B2 (en) 2009-09-09 2012-04-24 Tyco Healthcare Group Lp Low profile cutting assembly with a return spring
US8258745B2 (en) 2009-09-10 2012-09-04 Syntheon, Llc Surgical sterilizer with integrated battery charging device
JP2011079510A (en) 2009-09-10 2011-04-21 Makita Corp Electric vehicle
TWI394362B (en) 2009-09-11 2013-04-21 Anpec Electronics Corp Method of driving dc motor and related circuit for avoiding reverse current
US9168144B2 (en) 2009-09-14 2015-10-27 Evgeny Rivin Prosthesis for replacement of cartilage
US20110066156A1 (en) 2009-09-14 2011-03-17 Warsaw Orthopedic, Inc. Surgical Tool
US8974932B2 (en) 2009-09-14 2015-03-10 Warsaw Orthopedic, Inc. Battery powered surgical tool with guide wire
DE102009041329A1 (en) 2009-09-15 2011-03-24 Celon Ag Medical Instruments Combined Ultrasonic and HF Surgical System
DE102009042411A1 (en) 2009-09-21 2011-03-31 Richard Wolf Gmbh Medical instrument
JP2011072574A (en) 2009-09-30 2011-04-14 Terumo Corp Medical manipulator
US9198683B2 (en) 2009-09-30 2015-12-01 Aegis Medical Innovations, Inc. Tissue capture and occlusion systems and methods
US8470355B2 (en) 2009-10-01 2013-06-25 Covidien Lp Mesh implant
WO2011041571A2 (en) 2009-10-01 2011-04-07 Kardium Inc. Medical device, kit and method for constricting tissue or a bodily orifice, for example, a mitral valve
US8970507B2 (en) 2009-10-02 2015-03-03 Blackberry Limited Method of waking up and a portable electronic device configured to perform the same
US8430892B2 (en) 2009-10-06 2013-04-30 Covidien Lp Surgical clip applier having a wireless clip counter
US8257634B2 (en) 2009-10-06 2012-09-04 Tyco Healthcare Group Lp Actuation sled having a curved guide member and method
US9474540B2 (en) 2009-10-08 2016-10-25 Ethicon-Endo-Surgery, Inc. Laparoscopic device with compound angulation
US8496154B2 (en) 2009-10-08 2013-07-30 Covidien Lp Pair of double staple pusher in triple row stapler
US10194904B2 (en) 2009-10-08 2019-02-05 Covidien Lp Surgical staple and method of use
US8951248B2 (en) 2009-10-09 2015-02-10 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
EP2485661B1 (en) 2009-10-09 2013-10-02 Ethicon Endo-Surgery, Inc. Surgical instrument
US8141762B2 (en) 2009-10-09 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical stapler comprising a staple pocket
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US8152041B2 (en) 2009-10-14 2012-04-10 Tyco Healthcare Group Lp Varying tissue compression aided by elastic members
US9610080B2 (en) 2009-10-15 2017-04-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US9693772B2 (en) 2009-10-15 2017-07-04 Covidien Lp Staple line reinforcement for anvil and cartridge
US20150231409A1 (en) 2009-10-15 2015-08-20 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US10293553B2 (en) 2009-10-15 2019-05-21 Covidien Lp Buttress brachytherapy and integrated staple line markers for margin identification
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
US8038693B2 (en) 2009-10-21 2011-10-18 Tyco Healthcare Group Ip Methods for ultrasonic tissue sensing and feedback
US20110095064A1 (en) 2009-10-22 2011-04-28 Taylor Walter J Fuel level monitoring system for combustion-powered tools
US8430292B2 (en) 2009-10-28 2013-04-30 Covidien Lp Surgical fastening apparatus
CN102378601B (en) 2009-10-28 2014-04-30 奥林巴斯医疗株式会社 High-frequency surgery device and medical device control method
US8413872B2 (en) 2009-10-28 2013-04-09 Covidien Lp Surgical fastening apparatus
WO2011052391A1 (en) 2009-10-28 2011-05-05 オリンパスメディカルシステムズ株式会社 Medical device
US8322590B2 (en) 2009-10-28 2012-12-04 Covidien Lp Surgical stapling instrument
EP2493424A4 (en) 2009-10-29 2014-04-30 Prosidyan Inc Bone graft material
US8657175B2 (en) 2009-10-29 2014-02-25 Medigus Ltd. Medical device comprising alignment systems for bringing two portions into alignment
US8357161B2 (en) 2009-10-30 2013-01-22 Covidien Lp Coaxial drive
US8225979B2 (en) 2009-10-30 2012-07-24 Tyco Healthcare Group Lp Locking shipping wedge
US8398633B2 (en) 2009-10-30 2013-03-19 Covidien Lp Jaw roll joint
US20110112517A1 (en) 2009-11-06 2011-05-12 Peine Willliam J Surgical instrument
US20110112530A1 (en) 2009-11-06 2011-05-12 Keller Craig A Battery Powered Electrosurgery
US8162138B2 (en) 2009-11-09 2012-04-24 Containmed, Inc. Universal surgical fastener sterilization caddy
US8186558B2 (en) 2009-11-10 2012-05-29 Tyco Healthcare Group Lp Locking mechanism for use with loading units
KR101924394B1 (en) 2009-11-13 2018-12-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Motor interface for parallel drive shafts within an independently rotating member
JP5764137B2 (en) 2009-11-13 2015-08-12 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Surgical tool with a small list
JP5774019B2 (en) 2009-11-13 2015-09-02 インテュイティブ サージカル オペレーションズ, インコーポレイテッド End effector with redundant closure mechanism
US8353439B2 (en) 2009-11-19 2013-01-15 Ethicon Endo-Surgery, Inc. Circular stapler introducer with radially-openable distal end portion
US8235272B2 (en) 2009-11-20 2012-08-07 Tyco Healthcare Group Lp Surgical stapling device with captive anvil
JP5073733B2 (en) 2009-11-30 2012-11-14 シャープ株式会社 Storage battery forced discharge mechanism and safety switch device
JP5211022B2 (en) 2009-11-30 2013-06-12 株式会社日立製作所 Lithium ion secondary battery
US8167622B2 (en) 2009-12-02 2012-05-01 Mig Technology Inc. Power plug with a freely rotatable delivery point
US8136712B2 (en) 2009-12-10 2012-03-20 Ethicon Endo-Surgery, Inc. Surgical stapler with discrete staple height adjustment and tactile feedback
FR2953752B1 (en) 2009-12-11 2012-01-20 Prospection & Inventions INTERNAL COMBUSTION ENGINE FIXING TOOL WITH SINGLE CHAMBER OPENING AND CLOSING
GB2476461A (en) 2009-12-22 2011-06-29 Neosurgical Ltd Laparoscopic surgical device with jaws biased closed
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8267300B2 (en) 2009-12-30 2012-09-18 Ethicon Endo-Surgery, Inc. Dampening device for endoscopic surgical stapler
US8714430B2 (en) 2009-12-31 2014-05-06 Covidien Lp Indicator for surgical stapler
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
WO2011085194A1 (en) 2010-01-07 2011-07-14 Black & Decker Inc. Power screwdriver having rotary input control
US8313509B2 (en) 2010-01-19 2012-11-20 Covidien Lp Suture and retainer assembly and SULU
EP2526883A4 (en) 2010-01-22 2017-07-12 Olympus Corporation Treatment tool, treatment device, and treatment method
US8469254B2 (en) 2010-01-22 2013-06-25 Covidien Lp Surgical instrument having a drive assembly
US10911515B2 (en) 2012-05-24 2021-02-02 Deka Products Limited Partnership System, method, and apparatus for electronic patient care
CA2786480C (en) 2010-01-26 2018-01-16 Novolap Medical Ltd. Articulating medical instrument
US8322901B2 (en) 2010-01-28 2012-12-04 Michelotti William M Illuminated vehicle wheel with bearing seal slip ring assembly
US8858553B2 (en) * 2010-01-29 2014-10-14 Covidien Lp Dielectric jaw insert for electrosurgical end effector
US9510925B2 (en) 2010-02-02 2016-12-06 Covidien Lp Surgical meshes
US8328061B2 (en) 2010-02-02 2012-12-11 Covidien Lp Surgical instrument for joining tissue
AU2011213616B2 (en) 2010-02-08 2013-08-15 Microchips, Inc. Low-permeability, laser-activated drug delivery device
JP5432761B2 (en) 2010-02-12 2014-03-05 株式会社マキタ Electric tool powered by multiple battery packs
US20110199225A1 (en) 2010-02-15 2011-08-18 Honeywell International Inc. Use of token switch to indicate unauthorized manipulation of a protected device
CN101779977B (en) 2010-02-25 2011-12-14 上海创亿医疗器械技术有限公司 Nail bin for surgical linear cut stapler
US8403945B2 (en) 2010-02-25 2013-03-26 Covidien Lp Articulating endoscopic surgical clip applier
US8403832B2 (en) 2010-02-26 2013-03-26 Covidien Lp Drive mechanism for articulation of a surgical instrument
US20110218400A1 (en) 2010-03-05 2011-09-08 Tyco Healthcare Group Lp Surgical instrument with integrated wireless camera
US20110218550A1 (en) 2010-03-08 2011-09-08 Tyco Healthcare Group Lp System and method for determining and adjusting positioning and orientation of a surgical device
AU2011200961B2 (en) 2010-03-12 2014-05-29 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
CN102802554B (en) 2010-03-15 2015-12-16 卡尔·施托尔茨两合公司 Manipulator for medical use
US8575880B2 (en) 2010-03-17 2013-11-05 Alan Lyndon Grantz Direct current motor with independently driven and switchable stators
US20110172495A1 (en) 2010-03-26 2011-07-14 Armstrong David N Surgical retractor
US8696665B2 (en) 2010-03-26 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical cutting and sealing instrument with reduced firing force
DE102010013150A1 (en) 2010-03-27 2011-09-29 Volkswagen Ag Device for thermal insulation of e.g. lead acid battery utilized in engine component of hybrid car, has battery arranged at distance from inner surfaces of base part, side panel and upper part of housing
CN102834064B (en) 2010-03-30 2016-01-27 卡尔·施托尔茨两合公司 Medical manipulator system
US20110241597A1 (en) 2010-03-30 2011-10-06 Lin Engineering H-bridge drive circuit for step motor control
WO2011123703A1 (en) 2010-03-31 2011-10-06 Smart Medical Devices, Inc. Depth controllable and measurable medical driver devices
US8074859B2 (en) 2010-03-31 2011-12-13 Tyco Healthcare Group Lp Surgical instrument
CN201719298U (en) 2010-04-01 2011-01-26 江苏瑞安贝医疗器械有限公司 Free handle anti-dropping mechanism for straight line cutting anastomat
US20120265220A1 (en) 2010-04-06 2012-10-18 Pavel Menn Articulating Steerable Clip Applier for Laparoscopic Procedures
US8348127B2 (en) 2010-04-07 2013-01-08 Covidien Lp Surgical fastener applying apparatus
US8662370B2 (en) 2010-04-08 2014-03-04 Hidehisa Thomas Takei Introducer system and assembly for surgical staplers
US8961504B2 (en) 2010-04-09 2015-02-24 Covidien Lp Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US8834518B2 (en) 2010-04-12 2014-09-16 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instruments with cam-actuated jaws
ES2387255T3 (en) * 2010-04-14 2012-09-19 Tuebingen Scientific Medical Gmbh Surgical instrument with elastically movable instrument head
JP5823498B2 (en) 2010-04-29 2015-11-25 エシコン・エルエルシーEthicon, LLC High density self-holding suture, manufacturing apparatus and method thereof
US20110275901A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Laparoscopic devices with articulating end effectors
US20110276083A1 (en) 2010-05-07 2011-11-10 Ethicon Endo-Surgery, Inc. Bendable shaft for handle positioning
US8464925B2 (en) 2010-05-11 2013-06-18 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
US8646674B2 (en) 2010-05-11 2014-02-11 Ethicon Endo-Surgery, Inc. Methods and apparatus for delivering tissue treatment compositions to stapled tissue
CN101828940A (en) 2010-05-12 2010-09-15 苏州天臣国际医疗科技有限公司 Flexural linear closed cutter
US8603077B2 (en) 2010-05-14 2013-12-10 Intuitive Surgical Operations, Inc. Force transmission for robotic surgical instrument
US8958860B2 (en) 2010-05-17 2015-02-17 Covidien Lp Optical sensors for intraoperative procedures
US8685020B2 (en) 2010-05-17 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instruments and end effectors therefor
DE102010029100A1 (en) 2010-05-19 2011-11-24 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one discharge lamp and at least one LED
JP5534327B2 (en) 2010-05-19 2014-06-25 日立工機株式会社 Electric tool
US20110293690A1 (en) 2010-05-27 2011-12-01 Tyco Healthcare Group Lp Biodegradable Polymer Encapsulated Microsphere Particulate Film and Method of Making Thereof
US9091588B2 (en) 2010-05-28 2015-07-28 Prognost Systems Gmbh System and method of mechanical fault detection based on signature detection
USD666209S1 (en) 2010-06-05 2012-08-28 Apple Inc. Display screen or portion thereof with graphical user interface
US9144455B2 (en) 2010-06-07 2015-09-29 Just Right Surgical, Llc Low power tissue sealing device and method
KR101095099B1 (en) 2010-06-07 2011-12-16 삼성전기주식회사 Flat type vibration motor
US8795276B2 (en) 2010-06-09 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument employing a plurality of electrodes
WO2011156776A2 (en) 2010-06-10 2011-12-15 The Regents Of The University Of California Smart electric vehicle (ev) charging and grid integration apparatus and methods
US8825164B2 (en) 2010-06-11 2014-09-02 Enteromedics Inc. Neural modulation devices and methods
US20120130217A1 (en) 2010-11-23 2012-05-24 Kauphusman James V Medical devices having electrodes mounted thereon and methods of manufacturing therefor
US8596515B2 (en) 2010-06-18 2013-12-03 Covidien Lp Staple position sensor system
US20110313894A1 (en) 2010-06-18 2011-12-22 Dye Alan W System and Method for Surgical Pack Manufacture, Monitoring, and Tracking
US8302323B2 (en) 2010-06-21 2012-11-06 Confluent Surgical, Inc. Hemostatic patch
EP2397309A1 (en) 2010-06-21 2011-12-21 Envision Energy (Denmark) ApS A Wind Turbine and a Shaft for a Wind Turbine
US8366559B2 (en) * 2010-06-23 2013-02-05 Lenkbar, Llc Cannulated flexible drive shaft
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
US20110315413A1 (en) 2010-06-25 2011-12-29 Mako Surgical Corp. Kit-Of Parts for Multi-Functional Tool, Drive Unit, and Operating Members
US20120004636A1 (en) 2010-07-02 2012-01-05 Denny Lo Hemostatic fibrous material
KR101143469B1 (en) 2010-07-02 2012-05-08 에스케이하이닉스 주식회사 Output enable signal generation circuit of semiconductor memory
EP2405439B1 (en) 2010-07-07 2013-01-23 Crocus Technology S.A. Magnetic device with optimized heat confinement
US9149324B2 (en) 2010-07-08 2015-10-06 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012006306A2 (en) 2010-07-08 2012-01-12 Ethicon Endo-Surgery, Inc. Surgical instrument comprising an articulatable end effector
WO2012149480A2 (en) 2011-04-29 2012-11-01 University Of Southern California Systems and methods for in vitro and in vivo imaging of cells on a substrate
US8613383B2 (en) 2010-07-14 2013-12-24 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8453906B2 (en) 2010-07-14 2013-06-04 Ethicon Endo-Surgery, Inc. Surgical instruments with electrodes
US8439246B1 (en) 2010-07-20 2013-05-14 Cardica, Inc. Surgical stapler with cartridge-adjustable clamp gap
US8979843B2 (en) 2010-07-23 2015-03-17 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8663270B2 (en) 2010-07-23 2014-03-04 Conmed Corporation Jaw movement mechanism and method for a surgical tool
US8840609B2 (en) 2010-07-23 2014-09-23 Conmed Corporation Tissue fusion system and method of performing a functional verification test
WO2012013577A1 (en) 2010-07-26 2012-02-02 Laboratorios Miret, S.A. Composition for coating medical devices containing lae and a polycationic amphoteric polymer
US8968337B2 (en) 2010-07-28 2015-03-03 Covidien Lp Articulating clip applier
US8403946B2 (en) 2010-07-28 2013-03-26 Covidien Lp Articulating clip applier cartridge
US8801735B2 (en) 2010-07-30 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical circular stapler with tissue retention arrangements
US8789740B2 (en) 2010-07-30 2014-07-29 Ethicon Endo-Surgery, Inc. Linear cutting and stapling device with selectively disengageable cutting member
JP5686236B2 (en) 2010-07-30 2015-03-18 日立工機株式会社 Electric tools and electric tools for screw tightening
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8900267B2 (en) 2010-08-05 2014-12-02 Microline Surgical, Inc. Articulable surgical instrument
CN102378503A (en) 2010-08-06 2012-03-14 鸿富锦精密工业(深圳)有限公司 Electronic device combination
US8852199B2 (en) 2010-08-06 2014-10-07 Abyrx, Inc. Method and device for handling bone adhesives
US8675820B2 (en) 2010-08-10 2014-03-18 Varian Medical Systems, Inc. Electronic conical collimator verification
CN101912284B (en) 2010-08-13 2012-07-18 李东瑞 Arc-shaped cutting anastomat
US8298233B2 (en) 2010-08-20 2012-10-30 Tyco Healthcare Group Lp Surgical instrument configured for use with interchangeable hand grips
US20120059286A1 (en) 2010-09-07 2012-03-08 Roger Hastings Self-Powered Ablation Catheter for Renal Denervation
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US20130131651A1 (en) 2010-09-24 2013-05-23 Ethicon Endo-Surgery, Inc. Features providing linear actuation through articulation joint in surgical instrument
US9220559B2 (en) 2010-09-24 2015-12-29 Ethicon Endo-Surgery, Inc. Articulation joint features for articulating surgical device
US20120078244A1 (en) 2010-09-24 2012-03-29 Worrell Barry C Control features for articulating surgical device
EP2621339B1 (en) 2010-09-29 2020-01-15 Dexcom, Inc. Advanced continuous analyte monitoring system
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US8474677B2 (en) 2010-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Fastener system comprising a retention matrix and a cover
US20120248169A1 (en) 2010-09-30 2012-10-04 Ethicon Endo-Surgery, Inc. Methods for forming tissue thickness compensator arrangements for surgical staplers
RU2013119928A (en) 2010-09-30 2014-11-10 Этикон Эндо-Серджери, Инк. A STAPLING SYSTEM CONTAINING A RETAINING MATRIX AND A LEVELING MATRIX
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
CN102440813B (en) 2010-09-30 2013-05-08 上海创亿医疗器械技术有限公司 Endoscopic surgical cutting anastomat with chain joints
US8888809B2 (en) 2010-10-01 2014-11-18 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9750502B2 (en) 2010-10-01 2017-09-05 Covidien Lp Surgical stapling device for performing circular anastomosis and surgical staples for use therewith
US8899461B2 (en) 2010-10-01 2014-12-02 Covidien Lp Tissue stop for surgical instrument
CA2813389C (en) 2010-10-01 2020-01-14 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
USD650074S1 (en) 2010-10-01 2011-12-06 Ethicon Endo-Surgery, Inc. Surgical instrument
US8998061B2 (en) 2010-10-01 2015-04-07 Covidien Lp Surgical fastener applying apparatus
US8979890B2 (en) 2010-10-01 2015-03-17 Ethicon Endo-Surgery, Inc. Surgical instrument with jaw member
JP5636247B2 (en) 2010-10-06 2014-12-03 Hoya株式会社 Electronic endoscope processor and electronic endoscope apparatus
DE112010005877T5 (en) 2010-10-12 2013-07-11 Hewlett-Packard Development Company, L.P. Supplying power to an electronic device using multiple power sources
US9039694B2 (en) 2010-10-22 2015-05-26 Just Right Surgical, Llc RF generator system for surgical vessel sealing
US20120109186A1 (en) 2010-10-29 2012-05-03 Parrott David A Articulating laparoscopic surgical instruments
US8568425B2 (en) 2010-11-01 2013-10-29 Covidien Lp Wire spool for passing of wire through a rotational coupling
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US9375255B2 (en) 2010-11-05 2016-06-28 Ethicon Endo-Surgery, Llc Surgical instrument handpiece with resiliently biased coupling to modular shaft and end effector
US9782214B2 (en) 2010-11-05 2017-10-10 Ethicon Llc Surgical instrument with sensor and powered control
US9011471B2 (en) 2010-11-05 2015-04-21 Ethicon Endo-Surgery, Inc. Surgical instrument with pivoting coupling to modular shaft and end effector
US9597143B2 (en) 2010-11-05 2017-03-21 Ethicon Endo-Surgery, Llc Sterile medical instrument charging device
US20120116261A1 (en) 2010-11-05 2012-05-10 Mumaw Daniel J Surgical instrument with slip ring assembly to power ultrasonic transducer
US9161803B2 (en) 2010-11-05 2015-10-20 Ethicon Endo-Surgery, Inc. Motor driven electrosurgical device with mechanical and electrical feedback
US20120116265A1 (en) 2010-11-05 2012-05-10 Houser Kevin L Surgical instrument with charging devices
US9072523B2 (en) 2010-11-05 2015-07-07 Ethicon Endo-Surgery, Inc. Medical device with feature for sterile acceptance of non-sterile reusable component
US9381058B2 (en) 2010-11-05 2016-07-05 Ethicon Endo-Surgery, Llc Recharge system for medical devices
US9039720B2 (en) 2010-11-05 2015-05-26 Ethicon Endo-Surgery, Inc. Surgical instrument with ratcheting rotatable shaft
US9421062B2 (en) 2010-11-05 2016-08-23 Ethicon Endo-Surgery, Llc Surgical instrument shaft with resiliently biased coupling to handpiece
US9510895B2 (en) 2010-11-05 2016-12-06 Ethicon Endo-Surgery, Llc Surgical instrument with modular shaft and end effector
US8308041B2 (en) 2010-11-10 2012-11-13 Tyco Healthcare Group Lp Staple formed over the wire wound closure procedure
US20120123463A1 (en) 2010-11-11 2012-05-17 Moises Jacobs Mechanically-guided transoral bougie
KR101854707B1 (en) 2010-11-15 2018-05-04 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Decoupling instrument shaft roll and end effector actuation in a surgical instrument
US8480703B2 (en) 2010-11-19 2013-07-09 Covidien Lp Surgical device
US20120175398A1 (en) 2010-11-22 2012-07-12 Mayo Foundation For Medical Education And Research Stapling apparatus and methods of assembling or operating the same
US8679093B2 (en) 2010-11-23 2014-03-25 Microchips, Inc. Multi-dose drug delivery device and method
KR20120059105A (en) 2010-11-30 2012-06-08 현대자동차주식회사 Water drain apparatus of mounting high voltage battery pack in vehicle
US9731410B2 (en) 2010-12-02 2017-08-15 Makita Corporation Power tool
US8801710B2 (en) 2010-12-07 2014-08-12 Immersion Corporation Electrosurgical sealing tool having haptic feedback
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
CN102038532A (en) 2010-12-07 2011-05-04 苏州天臣国际医疗科技有限公司 Nail bin assembly
DE102010053811A1 (en) 2010-12-08 2012-06-14 Moog Gmbh Fault-proof actuation system
CN201949071U (en) 2010-12-10 2011-08-31 苏州天臣国际医疗科技有限公司 Linear type cutting suturing device
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US20120239068A1 (en) 2010-12-10 2012-09-20 Morris James R Surgical instrument
US8714352B2 (en) 2010-12-10 2014-05-06 Covidien Lp Cartridge shipping aid
FR2968564B1 (en) 2010-12-13 2013-06-21 Perouse Medical MEDICAL DEVICE FOR INPUT IN CONTACT WITH TISSUE OF A PATIENT AND ASSOCIATED MANUFACTURING METHOD.
US8736212B2 (en) 2010-12-16 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method of automatic detection and prevention of motor runaway
US8540735B2 (en) 2010-12-16 2013-09-24 Apollo Endosurgery, Inc. Endoscopic suture cinch system
CN201879759U (en) 2010-12-21 2011-06-29 南京迈迪欣医疗器械有限公司 Cartridge device of disposable rotary cutting anastomat capable of controlling tissue thickness
US9124097B2 (en) 2010-12-29 2015-09-01 International Safety And Development, Inc. Polarity correcting device
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
DE102011002404A1 (en) 2011-01-03 2012-07-05 Robert Bosch Gmbh Hand machine tool power supply unit
DE102012100086A1 (en) 2011-01-07 2012-08-02 Z-Medical Gmbh & Co. Kg Surgical instrument
JP6046635B2 (en) 2011-01-14 2016-12-21 ニュー ホープ ベンチャーズ Surgical stapling device and method
US8603089B2 (en) 2011-01-19 2013-12-10 Covidien Lp Surgical instrument including inductively coupled accessory
KR20120114308A (en) 2011-01-25 2012-10-16 파나소닉 주식회사 Battery module and battery assembly for use therein
US9084602B2 (en) 2011-01-26 2015-07-21 Covidien Lp Buttress film with hemostatic action for surgical stapling apparatus
EP4268877A3 (en) 2011-01-31 2023-11-29 Boston Scientific Scimed, Inc. Medical devices having releasable coupling
US9730717B2 (en) 2011-02-03 2017-08-15 Karl Storz Gmbh & Co. Kg Medical manipulator system
US8336754B2 (en) 2011-02-04 2012-12-25 Covidien Lp Locking articulation mechanism for surgical stapler
US8348124B2 (en) 2011-02-08 2013-01-08 Covidien Lp Knife bar with geared overdrive
CN103338715B (en) 2011-02-15 2016-02-10 捷迈手术股份公司 The battery case of power type Surigical tool
KR102182874B1 (en) 2011-02-15 2020-11-25 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Systems for indicating a clamping prediction
KR102107720B1 (en) 2011-02-15 2020-05-07 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Seals and sealing methods for a surgical instrument having an articulated end effector actuated by a drive shaft
EP4186444A1 (en) 2011-02-15 2023-05-31 Intuitive Surgical Operations, Inc. Systems for detecting clamping or firing failure
US9393017B2 (en) 2011-02-15 2016-07-19 Intuitive Surgical Operations, Inc. Methods and systems for detecting staple cartridge misfire or failure
KR102184421B1 (en) 2011-02-18 2020-12-01 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Fusing and cutting surgical instrument and related methods
JP6138699B2 (en) 2011-02-18 2017-05-31 デピュイ・シンセス・プロダクツ・インコーポレイテッド Tool with integrated navigation and guidance system and associated apparatus and method
US8968340B2 (en) 2011-02-23 2015-03-03 Covidien Lp Single actuating jaw flexible endolumenal stitching device
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
US9585672B2 (en) 2011-02-25 2017-03-07 Thd S.P.A. Device for implanting a prosthesis in a tissue
US8479968B2 (en) 2011-03-10 2013-07-09 Covidien Lp Surgical instrument buttress attachment
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
US8926598B2 (en) 2011-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable and rotatable end effector
US8540131B2 (en) 2011-03-15 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical staple cartridges with tissue tethers for manipulating divided tissue and methods of using same
US8800841B2 (en) 2011-03-15 2014-08-12 Ethicon Endo-Surgery, Inc. Surgical staple cartridges
US9044229B2 (en) 2011-03-15 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical fastener instruments
US8556935B1 (en) 2011-03-15 2013-10-15 Cardica, Inc. Method of manufacturing surgical staples
US20120234895A1 (en) 2011-03-15 2012-09-20 Ethicon Endo-Surgery, Inc. Surgical staple cartridges and end effectors with vessel measurement arrangements
US8857693B2 (en) 2011-03-15 2014-10-14 Ethicon Endo-Surgery, Inc. Surgical instruments with lockable articulating end effector
WO2012127462A1 (en) 2011-03-22 2012-09-27 Human Extensions Ltd. Motorized surgical instruments
US20120253328A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Combined presentation unit for reposable battery operated surgical system
WO2012135705A1 (en) 2011-03-30 2012-10-04 Tyco Healthcare Group Lp Ultrasonic surgical instruments
US20140330579A1 (en) 2011-03-31 2014-11-06 Healthspot, Inc. Medical Kiosk and Method of Use
US20120251861A1 (en) 2011-03-31 2012-10-04 De Poan Pneumatic Corp. Shock proof structure of battery pack for receiving battery cell
DE102011007121A1 (en) 2011-04-11 2012-10-11 Karl Storz Gmbh & Co. Kg Handling device for a micro-invasive-surgical instrument
WO2012141679A1 (en) 2011-04-11 2012-10-18 Hassan Chandra Surgical technique(s) and/or device(s)
CA3022252C (en) 2011-04-15 2020-09-22 Covidien Ag Battery powered hand-held ultrasonic surgical cautery cutting device
US9131950B2 (en) 2011-04-15 2015-09-15 Endoplus, Inc. Laparoscopic instrument
CN102754245B (en) 2011-04-18 2014-02-19 华为终端有限公司 Battery, battery component and subscriber equipment
US9021684B2 (en) 2011-04-19 2015-05-05 Tyco Electronics Corporation Method of fabricating a slip ring component
US9655615B2 (en) 2011-04-19 2017-05-23 Dextera Surgical Inc. Active wedge and I-beam for surgical stapler
WO2012143913A2 (en) 2011-04-21 2012-10-26 Novogate Medical Ltd Tissue closure device and method of delivery and uses thereof
US8789737B2 (en) 2011-04-27 2014-07-29 Covidien Lp Circular stapler and staple line reinforcement material
US9901412B2 (en) 2011-04-29 2018-02-27 Vanderbilt University Dexterous surgical manipulator and method of use
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
AU2012201645B2 (en) 2011-04-29 2015-04-16 Covidien Lp Surgical stapling apparatus
EP2709513A4 (en) 2011-05-03 2015-04-22 Endosee Corp Method and apparatus for hysteroscopy and endometrial biopsy
US9820741B2 (en) 2011-05-12 2017-11-21 Covidien Lp Replaceable staple cartridge
JP5816457B2 (en) 2011-05-12 2015-11-18 オリンパス株式会社 Surgical device
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
FR2975534B1 (en) 2011-05-19 2013-06-28 Electricite De France METAL-AIR ACCUMULATOR WITH PROTECTION DEVICE FOR THE AIR ELECTRODE
US9161807B2 (en) 2011-05-23 2015-10-20 Covidien Lp Apparatus for performing an electrosurgical procedure
EP2714152B1 (en) 2011-05-25 2017-12-20 Sanofi-Aventis Deutschland GmbH Medicament delivery device with cap
US10542978B2 (en) 2011-05-27 2020-01-28 Covidien Lp Method of internally potting or sealing a handheld medical device
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
WO2012166806A1 (en) * 2011-05-31 2012-12-06 Intuitive Surgical Operations, Inc. Grip force control in a robotic surgical instrument
KR101991034B1 (en) 2011-05-31 2019-06-19 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Positive control of robotic surgical instrument end effector
WO2012166817A2 (en) * 2011-05-31 2012-12-06 Intuitive Surgical Operations, Inc. Surgical instrument with single drive input for two end effector mechanisms
US9289209B2 (en) 2011-06-09 2016-03-22 Covidien Lp Surgical fastener applying apparatus
WO2012171423A1 (en) 2011-06-14 2012-12-20 常州市康迪医用吻合器有限公司 Kidney-shaped surgical stapler nail and shaping groove therefor
US8715302B2 (en) 2011-06-17 2014-05-06 Estech, Inc. (Endoscopic Technologies, Inc.) Left atrial appendage treatment systems and methods
CN102835977A (en) 2011-06-21 2012-12-26 达华国际股份有限公司 Minimal invasion medical device
US8963714B2 (en) 2011-06-24 2015-02-24 Abbvie Inc. Tamper-evident packaging
US20130012983A1 (en) 2011-07-08 2013-01-10 Tyco Healthcare Group Lp Surgical Instrument with Flexible Shaft
EP2734121A2 (en) 2011-07-11 2014-05-28 Agile Endosurgery, Inc. Articulated surgical tool
EP2731517A2 (en) 2011-07-11 2014-05-21 Medical Vision Research & Development AB Status control for electrically powered surgical tool systems
WO2013010107A2 (en) 2011-07-13 2013-01-17 Cook Medical Technologies Llc Surgical retractor device
WO2013009795A1 (en) 2011-07-13 2013-01-17 Cook Medical Technologies Llc Foldable surgical retractor
US8960521B2 (en) 2011-07-15 2015-02-24 Covidien Lp Loose staples removal system
US8574263B2 (en) 2011-07-20 2013-11-05 Covidien Lp Coaxial coil lock
US8603135B2 (en) 2011-07-20 2013-12-10 Covidien Lp Articulating surgical apparatus
US20130023910A1 (en) 2011-07-21 2013-01-24 Solomon Clifford T Tissue-identifying surgical instrument
CN103891089B (en) 2011-07-26 2016-10-12 睿能创意公司 The device of certification, safety and control, method and article for the power storage device such as battery etc
TWI485572B (en) 2011-07-26 2015-05-21 睿能創意公司 Apparatus, method and article for physical security of power storage devices in vehicles
US9017331B2 (en) 2011-07-27 2015-04-28 William Casey Fox Bone staple, instrument and method of use and manufacturing
US8998059B2 (en) 2011-08-01 2015-04-07 Ethicon Endo-Surgery, Inc. Adjunct therapy device having driver with cavity for hemostatic agent
JP5841451B2 (en) 2011-08-04 2016-01-13 オリンパス株式会社 Surgical instrument and control method thereof
US20130041292A1 (en) 2011-08-09 2013-02-14 Tyco Healthcare Group Lp Customizable Haptic Assisted Robot Procedure System with Catalog of Specialized Diagnostic Tips
US9492170B2 (en) 2011-08-10 2016-11-15 Ethicon Endo-Surgery, Inc. Device for applying adjunct in endoscopic procedure
KR20130017624A (en) 2011-08-11 2013-02-20 주식회사 모바수 Apparatus for holding articulative structure
EP2747676B1 (en) 2011-08-25 2016-09-21 Endocontrol Actuating knob for a surgical instrument
US8956342B1 (en) 2011-09-01 2015-02-17 Microaire Surgical Instruments Llc Method and device for ergonomically and ambidextrously operable surgical device
CA2847182C (en) 2011-09-02 2020-02-11 Stryker Corporation Surgical instrument including a cutting accessory extending from a housing and actuators that establish the position of the cutting accessory relative to the housing
US9107663B2 (en) 2011-09-06 2015-08-18 Ethicon Endo-Surgery, Inc. Stapling instrument comprising resettable staple drivers
US9099863B2 (en) 2011-09-09 2015-08-04 Covidien Lp Surgical generator and related method for mitigating overcurrent conditions
USD677273S1 (en) 2011-09-12 2013-03-05 Microsoft Corporation Display screen with icon
US8998060B2 (en) 2011-09-13 2015-04-07 Ethicon Endo-Surgery, Inc. Resistive heated surgical staple cartridge with phase change sealant
EP2755549A1 (en) 2011-09-13 2014-07-23 Dose Medical Corporation Intraocular physiological sensor
US8679098B2 (en) 2011-09-13 2014-03-25 Covidien Lp Rotation knobs for surgical instruments
US9999408B2 (en) 2011-09-14 2018-06-19 Ethicon Endo-Surgery, Inc. Surgical instrument with fluid fillable buttress
DE102011113127B4 (en) 2011-09-14 2015-05-13 Olaf Storz Medical handset and power unit
DE102011113126B4 (en) 2011-09-14 2015-05-13 Olaf Storz Power unit and medical hand-held device
US8814025B2 (en) 2011-09-15 2014-08-26 Ethicon Endo-Surgery, Inc. Fibrin pad matrix with suspended heat activated beads of adhesive
US20130068816A1 (en) 2011-09-15 2013-03-21 Venkataramanan Mandakolathur Vasudevan Surgical instrument and buttress material
WO2013042118A1 (en) 2011-09-20 2013-03-28 A.A. Cash Technology Ltd Methods and devices for occluding blood flow to an organ
US9393018B2 (en) 2011-09-22 2016-07-19 Ethicon Endo-Surgery, Inc. Surgical staple assembly with hemostatic feature
US9198644B2 (en) 2011-09-22 2015-12-01 Ethicon Endo-Surgery, Inc. Anvil cartridge for surgical fastening device
US8985429B2 (en) 2011-09-23 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with adjunct material application feature
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US8911448B2 (en) 2011-09-23 2014-12-16 Orthosensor, Inc Device and method for enabling an orthopedic tool for parameter measurement
JP2014528796A (en) 2011-09-30 2014-10-30 コヴィディエン リミテッド パートナーシップ Implantable device having a swellable gripping member
US8899464B2 (en) 2011-10-03 2014-12-02 Ethicon Endo-Surgery, Inc. Attachment of surgical staple buttress to cartridge
US9089326B2 (en) 2011-10-07 2015-07-28 Ethicon Endo-Surgery, Inc. Dual staple cartridge for surgical stapler
US9629652B2 (en) 2011-10-10 2017-04-25 Ethicon Endo-Surgery, Llc Surgical instrument with clutching slip ring assembly to power ultrasonic transducer
US8585721B2 (en) 2011-10-12 2013-11-19 Covidien Lp Mesh fixation system
US9153994B2 (en) 2011-10-14 2015-10-06 Welch Allyn, Inc. Motion sensitive and capacitor powered handheld device
DE102011084499A1 (en) 2011-10-14 2013-04-18 Robert Bosch Gmbh tool attachment
US8931679B2 (en) 2011-10-17 2015-01-13 Covidien Lp Surgical stapling apparatus
US20130096568A1 (en) 2011-10-18 2013-04-18 Warsaw Orthopedic, Inc. Modular tool apparatus and method
US9060794B2 (en) 2011-10-18 2015-06-23 Mako Surgical Corp. System and method for robotic surgery
US9314292B2 (en) 2011-10-24 2016-04-19 Ethicon Endo-Surgery, Llc Trigger lockout mechanism
US20130098970A1 (en) * 2011-10-25 2013-04-25 David Racenet Surgical Apparatus and Method for Endoluminal Surgery
US9016539B2 (en) 2011-10-25 2015-04-28 Covidien Lp Multi-use loading unit
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US8418908B1 (en) 2011-10-26 2013-04-16 Covidien Lp Staple feeding and forming apparatus
US9675351B2 (en) 2011-10-26 2017-06-13 Covidien Lp Buttress release from surgical stapler by knife pushing
CN104066398B (en) 2011-10-26 2016-10-26 直观外科手术操作公司 For nail bin state and the method and system of existence detection
US9364231B2 (en) 2011-10-27 2016-06-14 Covidien Lp System and method of using simulation reload to optimize staple formation
US8584920B2 (en) 2011-11-04 2013-11-19 Covidien Lp Surgical stapling apparatus including releasable buttress
WO2013063674A1 (en) 2011-11-04 2013-05-10 Titan Medical Inc. Apparatus and method for controlling an end-effector assembly
CN202313537U (en) 2011-11-07 2012-07-11 苏州天臣国际医疗科技有限公司 Staple cartridge component for linear stapling and cutting device
US20130123816A1 (en) 2011-11-10 2013-05-16 Gerald Hodgkinson Hydrophilic medical devices
US9486213B2 (en) * 2011-11-14 2016-11-08 Thd Lap Ltd. Drive mechanism for articulating tacker
US8992042B2 (en) 2011-11-14 2015-03-31 Halma Holdings, Inc. Illumination devices using natural light LEDs
KR102111471B1 (en) 2011-11-15 2020-05-19 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Surgical instrument with stowing knife blade
US20130131476A1 (en) 2011-11-15 2013-05-23 Oneeros, Inc. Oximetric plethysmography
EP2781195B1 (en) 2011-11-16 2016-10-26 Olympus Corporation Medical instrument
US8968312B2 (en) 2011-11-16 2015-03-03 Covidien Lp Surgical device with powered articulation wrist rotation
DE102011086826A1 (en) 2011-11-22 2013-05-23 Robert Bosch Gmbh System with a hand tool battery and at least one hand tool battery charger
US9486186B2 (en) 2011-12-05 2016-11-08 Devicor Medical Products, Inc. Biopsy device with slide-in probe
US9113885B2 (en) 2011-12-14 2015-08-25 Covidien Lp Buttress assembly for use with surgical stapling device
US8967448B2 (en) 2011-12-14 2015-03-03 Covidien Lp Surgical stapling apparatus including buttress attachment via tabs
US9237892B2 (en) 2011-12-14 2016-01-19 Covidien Lp Buttress attachment to the cartridge surface
US9010608B2 (en) 2011-12-14 2015-04-21 Covidien Lp Releasable buttress retention on a surgical stapler
US9351731B2 (en) 2011-12-14 2016-05-31 Covidien Lp Surgical stapling apparatus including releasable surgical buttress
US9351732B2 (en) 2011-12-14 2016-05-31 Covidien Lp Buttress attachment to degradable polymer zones
US9113879B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9119615B2 (en) 2011-12-15 2015-09-01 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9603599B2 (en) 2011-12-16 2017-03-28 Ethicon Endo-Surgery, Llc Feature to reengage safety switch of tissue stapler
CN103169493A (en) 2011-12-20 2013-06-26 通用电气公司 Device and method for guiding ultraphonic probe and ultraphonic system
CN202426586U (en) 2011-12-22 2012-09-12 苏州天臣国际医疗科技有限公司 Nail cabinet for surgical suture cutter
CA2796525A1 (en) 2011-12-23 2013-06-23 Covidien Lp Apparatus for endoscopic procedures
JP5361983B2 (en) 2011-12-27 2013-12-04 株式会社東芝 Information processing apparatus and control method
US9220502B2 (en) 2011-12-28 2015-12-29 Covidien Lp Staple formation recognition for a surgical device
WO2013101485A1 (en) 2011-12-29 2013-07-04 Boston Scientific Scimed, Inc. Device and methods for renal nerve modulation monitoring
CN202397539U (en) 2011-12-29 2012-08-29 瑞奇外科器械(中国)有限公司 Surgical suturing machine and suturing nail drive thereof
CN202489990U (en) 2011-12-30 2012-10-17 苏州天臣国际医疗科技有限公司 Linear sewing and cutting device for surgery
US9186148B2 (en) 2012-01-05 2015-11-17 Ethicon Endo-Surgery, Inc. Tissue stapler anvil feature to prevent premature jaw opening
US9168042B2 (en) 2012-01-12 2015-10-27 Covidien Lp Circular stapling instruments
US8894647B2 (en) 2012-01-13 2014-11-25 Covidien Lp System and method for performing surgical procedures with a reusable instrument module
USD736792S1 (en) 2012-01-13 2015-08-18 Htc Corporation Display screen with graphical user interface
US8864010B2 (en) 2012-01-20 2014-10-21 Covidien Lp Curved guide member for articulating instruments
US9326812B2 (en) 2012-01-25 2016-05-03 Covidien Lp Portable surgical instrument
WO2013116869A1 (en) 2012-02-02 2013-08-08 Transenterix, Inc. Mechanized multi-instrument surgical system
WO2013119545A1 (en) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Robotically controlled surgical instrument
US9931116B2 (en) 2012-02-10 2018-04-03 Covidien Lp Buttress composition
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
USD725674S1 (en) 2012-02-24 2015-03-31 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
US8820606B2 (en) 2012-02-24 2014-09-02 Covidien Lp Buttress retention system for linear endostaplers
US20130231661A1 (en) 2012-03-01 2013-09-05 Hasan M. Sh. Sh. Alshemari Electrosurgical midline clamping scissors
KR101965892B1 (en) 2012-03-05 2019-04-08 삼성디스플레이 주식회사 DC-DC Converter and Organic Light Emitting Display Device Using the same
ES2422332B1 (en) 2012-03-05 2014-07-01 Iv�n Jes�s ARTEAGA GONZ�LEZ Surgical device
US8752264B2 (en) 2012-03-06 2014-06-17 Covidien Lp Surgical tissue sealer
EP2822484A4 (en) 2012-03-06 2015-11-18 Briteseed Llc Surgical tool with integrated sensor
JP2013188812A (en) 2012-03-13 2013-09-26 Hitachi Koki Co Ltd Impact tool
EP2825105B1 (en) 2012-03-13 2022-05-04 Medtronic Xomed, Inc. Surgical system including powered rotary-type handpiece
US9113881B2 (en) 2012-03-16 2015-08-25 Covidien Lp Travel clip for surgical staple cartridge
US20130253480A1 (en) 2012-03-22 2013-09-26 Cory G. Kimball Surgical instrument usage data management
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
MX358135B (en) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Tissue thickness compensator comprising a plurality of layers.
US20130256373A1 (en) 2012-03-28 2013-10-03 Ethicon Endo-Surgery, Inc. Devices and methods for attaching tissue thickness compensating materials to surgical stapling instruments
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
EP2833802A4 (en) 2012-04-04 2015-11-18 Cardica Inc Surgical staple cartridge with bendable tip
US9526563B2 (en) 2012-04-06 2016-12-27 Covidien Lp Spindle assembly with mechanical fuse for surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
WO2013155052A1 (en) 2012-04-09 2013-10-17 Facet Technologies, Llc Push-to-charge lancing device
AU2013201737B2 (en) 2012-04-09 2014-07-10 Covidien Lp Surgical fastener applying apparatus
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US9113887B2 (en) 2012-04-10 2015-08-25 Covidien Lp Electrosurgical generator
EP3066991B1 (en) 2012-04-11 2018-09-19 Covidien LP Apparatus for endoscopic procedures
US20130277410A1 (en) 2012-04-18 2013-10-24 Cardica, Inc. Safety lockout for surgical stapler
US9788851B2 (en) 2012-04-18 2017-10-17 Ethicon Llc Surgical instrument with tissue density sensing
US9539726B2 (en) 2012-04-20 2017-01-10 Vanderbilt University Systems and methods for safe compliant insertion and hybrid force/motion telemanipulation of continuum robots
US8818523B2 (en) 2012-04-25 2014-08-26 Medtronic, Inc. Recharge of an implantable device in the presence of other conductive objects
KR101800189B1 (en) 2012-04-30 2017-11-23 삼성전자주식회사 Apparatus and method for controlling power of surgical robot
US9668807B2 (en) 2012-05-01 2017-06-06 Covidien Lp Simplified spring load mechanism for delivering shaft force of a surgical instrument
EP2846710B1 (en) 2012-05-09 2016-07-13 Boston Scientific Scimed, Inc. Bushing arm deformation mechanism
DE102012207707A1 (en) 2012-05-09 2013-11-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Minimally invasive instrument for robotic surgery
US8973805B2 (en) 2012-05-25 2015-03-10 Covidien Lp Surgical fastener applying apparatus including a knife guard
US9681884B2 (en) 2012-05-31 2017-06-20 Ethicon Endo-Surgery, Llc Surgical instrument with stress sensor
US9572592B2 (en) 2012-05-31 2017-02-21 Ethicon Endo-Surgery, Llc Surgical instrument with orientation sensing
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US20130327552A1 (en) 2012-06-08 2013-12-12 Black & Decker Inc. Power tool having multiple operating modes
US10039440B2 (en) 2012-06-11 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for cleaning a minimally invasive instrument
US20130334280A1 (en) 2012-06-14 2013-12-19 Covidien Lp Sliding Anvil/Retracting Cartridge Reload
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
USD692916S1 (en) 2012-06-22 2013-11-05 Mako Surgical Corp. Display device or portion thereof with graphical user interface
US9641122B2 (en) 2012-06-26 2017-05-02 Johnson Controls Technology Company HVAC actuator with automatic end stop recalibration
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US20140005640A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical end effector jaw and electrode configurations
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US8747238B2 (en) 2012-06-28 2014-06-10 Ethicon Endo-Surgery, Inc. Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
US9039691B2 (en) 2012-06-29 2015-05-26 Covidien Lp Surgical forceps
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US9220570B2 (en) 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
WO2014003848A1 (en) 2012-06-29 2014-01-03 Gyrus Acmi, Inc. Blade retention mechanism for surgical instrument
CN104394779B (en) 2012-07-02 2017-04-12 波士顿科学西美德公司 Stapler for forming multiple tissue plications
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9955965B2 (en) 2012-07-09 2018-05-01 Covidien Lp Switch block control assembly of a medical device
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10624630B2 (en) 2012-07-10 2020-04-21 Edwards Lifesciences Ag Multiple-firing securing device and methods for using and manufacturing same
EP2872981A4 (en) 2012-07-13 2016-10-19 Samsung Electronics Co Ltd Method for transmitting and receiving data between memo layer and application and electronic device using the same
WO2014014965A1 (en) 2012-07-16 2014-01-23 Mirabilis Medica, Inc. Human interface and device for ultrasound guided treatment
US8939975B2 (en) 2012-07-17 2015-01-27 Covidien Lp Gap control via overmold teeth and hard stops
US9554796B2 (en) 2012-07-18 2017-01-31 Covidien Lp Multi-fire surgical stapling apparatus including safety lockout and visual indicator
AU2013206807A1 (en) 2012-07-18 2014-02-06 Covidien Lp Apparatus for endoscopic procedures
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
EP2877105A1 (en) 2012-07-26 2015-06-03 Smith&Nephew, Inc. Knotless anchor for instability repair
US9161769B2 (en) 2012-07-30 2015-10-20 Covidien Lp Endoscopic instrument
US9629632B2 (en) 2012-07-30 2017-04-25 Conextions, Inc. Soft tissue repair devices, systems, and methods
US9468447B2 (en) 2012-08-14 2016-10-18 Insurgical, LLC Limited-use tool system and method of reprocessing
KR101359053B1 (en) 2012-08-14 2014-02-06 정창욱 Apparatus for holding articulative structure
US8690893B2 (en) 2012-08-16 2014-04-08 Coloplast A/S Vaginal manipulator head with tissue index and head extender
CN102783741B (en) 2012-08-16 2014-10-15 东华大学 Multistage-spreading heat-dissipation fire-proof heat-insulation composite fabric, preparation method and application
US20140048580A1 (en) 2012-08-20 2014-02-20 Covidien Lp Buttress attachment features for surgical stapling apparatus
US9131957B2 (en) 2012-09-12 2015-09-15 Gyrus Acmi, Inc. Automatic tool marking
US9713474B2 (en) 2012-09-17 2017-07-25 The Cleveland Clinic Foundation Endoscopic stapler
CN102885641B (en) 2012-09-18 2015-04-01 上海逸思医疗科技有限公司 Improved performer for surgical instruments
JP6082553B2 (en) 2012-09-26 2017-02-15 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Brake release mechanism and medical manipulator having the same
JP2014069252A (en) 2012-09-28 2014-04-21 Hitachi Koki Co Ltd Power tool
US20140094681A1 (en) 2012-10-02 2014-04-03 Covidien Lp System for navigating surgical instruments adjacent tissue of interest
US9526564B2 (en) 2012-10-08 2016-12-27 Covidien Lp Electric stapler device
US9161753B2 (en) 2012-10-10 2015-10-20 Covidien Lp Buttress fixation for a circular stapler
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9364217B2 (en) 2012-10-16 2016-06-14 Covidien Lp In-situ loaded stapler
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US10478182B2 (en) 2012-10-18 2019-11-19 Covidien Lp Surgical device identification
US20140115229A1 (en) 2012-10-19 2014-04-24 Lsi Corporation Method and system to reduce system boot loader download time for spi based flash memories
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US9265585B2 (en) 2012-10-23 2016-02-23 Covidien Lp Surgical instrument with rapid post event detection
USD686240S1 (en) 2012-10-25 2013-07-16 Advanced Mediwatch Co., Ltd. Display screen with graphical user interface for a sports device
WO2014070831A1 (en) 2012-10-30 2014-05-08 Board Of Trustees Of The University Of Alabama Distributed battery power electronics architecture and control
JP5154710B1 (en) 2012-11-01 2013-02-27 株式会社テクノプロジェクト Medical image exchange system, image relay server, medical image transmission system, and medical image reception system
KR102210036B1 (en) 2012-11-02 2021-02-02 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 Self-antagonistic drive for medical instruments
US9192384B2 (en) 2012-11-09 2015-11-24 Covidien Lp Recessed groove for better suture retention
US20140131418A1 (en) 2012-11-09 2014-05-15 Covidien Lp Surgical Stapling Apparatus Including Buttress Attachment
CN104334097B (en) 2012-11-20 2017-02-22 奥林巴斯株式会社 Tissue ablation apparatus
USD748668S1 (en) 2012-11-23 2016-02-02 Samsung Electronics Co., Ltd. Display screen or portion thereof with transitional graphical user interface
US9289207B2 (en) 2012-11-29 2016-03-22 Ethicon Endo-Surgery, Llc Surgical staple with integral pledget for tip deflection
US9295466B2 (en) 2012-11-30 2016-03-29 Covidien Lp Surgical apparatus including surgical buttress
US9566062B2 (en) 2012-12-03 2017-02-14 Ethicon Endo-Surgery, Llc Surgical instrument with secondary jaw closure feature
AU2013355725A1 (en) 2012-12-05 2015-07-23 Kenji Yoshida Facility-management-system control interface
US20140158747A1 (en) 2012-12-06 2014-06-12 Ethicon Endo-Surgery, Inc. Surgical stapler with varying staple widths along different circumferences
US9050100B2 (en) 2012-12-10 2015-06-09 Ethicon Endo-Surgery, Inc. Surgical instrument with feedback at end effector
US9445808B2 (en) 2012-12-11 2016-09-20 Ethicon Endo-Surgery, Llc Electrosurgical end effector with tissue tacking features
CN102973300B (en) 2012-12-13 2014-10-15 常州市新能源吻合器总厂有限公司 Tissue clamping member of linear cutting anastomat and nail granary of tissue clamping member
US9402627B2 (en) 2012-12-13 2016-08-02 Covidien Lp Folded buttress for use with a surgical apparatus
KR101484208B1 (en) 2012-12-14 2015-01-21 현대자동차 주식회사 The motor velocity compensating device of the fuel cell vehicle and sensor, the motor velocity compensating method thereof
WO2014096989A1 (en) 2012-12-17 2014-06-26 Koninklijke Philips N.V. A device and method for preparing extrudable food products
US9532783B2 (en) 2012-12-17 2017-01-03 Ethicon Endo-Surgery, Llc Circular stapler with selectable motorized and manual control, including a control ring
USD741895S1 (en) 2012-12-18 2015-10-27 2236008 Ontario Inc. Display screen or portion thereof with graphical user interface
CN103860225B (en) 2012-12-18 2016-03-09 苏州天臣国际医疗科技有限公司 Linear seam cutting device
AU2013266989A1 (en) 2012-12-19 2014-07-03 Covidien Lp Buttress attachment to the cartridge surface
US9470297B2 (en) 2012-12-19 2016-10-18 Covidien Lp Lower anterior resection 90 degree instrument
US9566065B2 (en) 2012-12-21 2017-02-14 Cardica, Inc. Apparatus and methods for surgical stapler clamping and deployment
JP6024446B2 (en) 2012-12-22 2016-11-16 日立工機株式会社 Impact tools
DE102012025393A1 (en) 2012-12-24 2014-06-26 Festool Group Gmbh & Co. Kg Electric device in the form of a hand-held machine tool or a suction device
US20140181710A1 (en) 2012-12-26 2014-06-26 Harman International Industries, Incorporated Proximity location system
US9614258B2 (en) 2012-12-28 2017-04-04 Semiconductor Energy Laboratory Co., Ltd. Power storage device and power storage system
CN103908313A (en) 2012-12-29 2014-07-09 苏州天臣国际医疗科技有限公司 Surgical operating instrument
GB2509523A (en) 2013-01-07 2014-07-09 Anish Kumar Mampetta Surgical instrument with flexible members and a motor
USD750129S1 (en) 2013-01-09 2016-02-23 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US10265090B2 (en) 2013-01-16 2019-04-23 Covidien Lp Hand held electromechanical surgical system including battery compartment diagnostic display
MX364730B (en) 2013-01-18 2019-05-06 Ethicon Endo Surgery Inc Motorized surgical instrument.
US9345480B2 (en) 2013-01-18 2016-05-24 Covidien Lp Surgical instrument and cartridge members for use therewith
US20140207124A1 (en) 2013-01-23 2014-07-24 Ethicon Endo-Surgery, Inc. Surgical instrument with selectable integral or external power source
US9433420B2 (en) 2013-01-23 2016-09-06 Covidien Lp Surgical apparatus including surgical buttress
US20150352699A1 (en) 2013-01-24 2015-12-10 Hitachi Koki Co., Ltd. Power Tool
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9149325B2 (en) 2013-01-25 2015-10-06 Ethicon Endo-Surgery, Inc. End effector with compliant clamping jaw
US20140209658A1 (en) 2013-01-25 2014-07-31 Covidien Lp Foam application to stapling device
US9610114B2 (en) * 2013-01-29 2017-04-04 Ethicon Endo-Surgery, Llc Bipolar electrosurgical hand shears
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
RU2661143C2 (en) 2013-02-08 2018-07-11 Этикон Эндо-Серджери, Инк. Releasable layer of material and surgical end effector having the same
CA2900330C (en) 2013-02-08 2020-12-22 Ethicon Endo-Surgery, Inc. Multiple thickness implantable layers for surgical stapling devices
US20140224857A1 (en) 2013-02-08 2014-08-14 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a compressible portion
JP5733332B2 (en) 2013-02-13 2015-06-10 株式会社豊田自動織機 Battery module
USD759063S1 (en) 2013-02-14 2016-06-14 Healthmate International, LLC Display screen with graphical user interface for an electrotherapy device
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US10092292B2 (en) 2013-02-28 2018-10-09 Ethicon Llc Staple forming features for surgical stapling instrument
US9717497B2 (en) 2013-02-28 2017-08-01 Ethicon Llc Lockout feature for movable cutting member of surgical instrument
US9795379B2 (en) 2013-02-28 2017-10-24 Ethicon Llc Surgical instrument with multi-diameter shaft
US9186142B2 (en) 2013-02-28 2015-11-17 Ethicon Endo-Surgery, Inc. Surgical instrument end effector articulation drive with pinion and opposing racks
US20140239047A1 (en) 2013-02-28 2014-08-28 Covidien Lp Adherence concepts for non-woven absorbable felt buttresses
US9839421B2 (en) 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
MX2015011343A (en) 2013-03-01 2016-04-20 Ethicon Endo Surgery Inc Rotary powered surgical instruments with multiple degrees of freedom.
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP2014194211A (en) 2013-03-01 2014-10-09 Aisan Ind Co Ltd Electric vacuum pump
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9483095B2 (en) 2013-03-04 2016-11-01 Abbott Medical Optics Inc. Apparatus and method for providing a modular power supply with multiple adjustable output voltages
AU2014200501B2 (en) 2013-03-07 2017-08-24 Covidien Lp Powered surgical stapling device
US9706993B2 (en) 2013-03-08 2017-07-18 Covidien Lp Staple cartridge with shipping wedge
US9936951B2 (en) 2013-03-12 2018-04-10 Covidien Lp Interchangeable tip reload
USD711905S1 (en) 2013-03-12 2014-08-26 Arthrocare Corporation Display screen for electrosurgical controller with graphical user interface
CN104042267A (en) 2013-03-12 2014-09-17 伊西康内外科公司 Powered Surgical Instruments With Firing System Lockout Arrangements
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9629628B2 (en) 2013-03-13 2017-04-25 Covidien Lp Surgical stapling apparatus
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9717498B2 (en) 2013-03-13 2017-08-01 Covidien Lp Surgical stapling apparatus
US9289211B2 (en) 2013-03-13 2016-03-22 Covidien Lp Surgical stapling apparatus
US9592056B2 (en) 2013-03-14 2017-03-14 Covidien Lp Powered stapling apparatus
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9655613B2 (en) 2013-03-14 2017-05-23 Dextera Surgical Inc. Beltless staple chain for cartridge and cartridgeless surgical staplers
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9867620B2 (en) 2013-03-14 2018-01-16 Covidien Lp Articulation joint for apparatus for endoscopic procedures
US9872683B2 (en) 2013-03-14 2018-01-23 Applied Medical Resources Corporation Surgical stapler with partial pockets
US20140276730A1 (en) 2013-03-14 2014-09-18 Ethicon Endo-Surgery, Inc. Surgical instrument with reinforced articulation section
JP6114583B2 (en) * 2013-03-14 2017-04-12 カール シュトルツ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Medical manipulator
ES2863993T3 (en) 2013-03-15 2021-10-13 Applied Med Resources Surgical Stapler with Rotary Shaft Drive Mechanism
US8961191B2 (en) 2013-03-15 2015-02-24 Garmin Switzerland Gmbh Electrical connector for pedal spindle
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US20140263558A1 (en) 2013-03-15 2014-09-18 Cardica, Inc. Extended curved tip for surgical apparatus
US9722236B2 (en) 2013-03-15 2017-08-01 General Atomics Apparatus and method for use in storing energy
US9420967B2 (en) 2013-03-19 2016-08-23 Surgisense Corporation Apparatus, systems and methods for determining tissue oxygenation
FR3003660B1 (en) 2013-03-22 2016-06-24 Schneider Electric Ind Sas MAN-MACHINE DIALOGUE SYSTEM
US9510827B2 (en) 2013-03-25 2016-12-06 Covidien Lp Micro surgical instrument and loading unit for use therewith
US20140291379A1 (en) 2013-03-27 2014-10-02 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a cutting member path
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US20140303660A1 (en) 2013-04-04 2014-10-09 Elwha Llc Active tremor control in surgical instruments
US9775610B2 (en) 2013-04-09 2017-10-03 Covidien Lp Apparatus for endoscopic procedures
US9700318B2 (en) 2013-04-09 2017-07-11 Covidien Lp Apparatus for endoscopic procedures
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
CN105491963B (en) 2013-04-17 2019-07-30 马鲁霍医药有限公司 Method and apparatus for passing a suture through
USD741882S1 (en) 2013-05-01 2015-10-27 Viber Media S.A.R.L. Display screen or a portion thereof with graphical user interface
US9687233B2 (en) 2013-05-09 2017-06-27 Dextera Surgical Inc. Surgical stapling and cutting apparatus—deployment mechanisms, systems and methods
WO2014186632A1 (en) 2013-05-15 2014-11-20 Cardica, Inc. Surgical stapling and cutting apparatus, clamp mechanisms, systems and methods
US9240740B2 (en) 2013-05-30 2016-01-19 The Boeing Company Active voltage controller for an electric motor
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
WO2014194317A1 (en) 2013-05-31 2014-12-04 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
USD742893S1 (en) 2013-06-09 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
USD740851S1 (en) 2013-06-10 2015-10-13 Apple Inc. Display screen or portion thereof with icon
USD742894S1 (en) 2013-06-10 2015-11-10 Apple Inc. Display screen or portion thereof with graphical user interface
US20140367445A1 (en) 2013-06-18 2014-12-18 Covidien Lp Emergency retraction for electro-mechanical surgical devices and systems
US10117654B2 (en) 2013-06-18 2018-11-06 Covidien Lp Method of emergency retraction for electro-mechanical surgical devices and systems
TWM473838U (en) 2013-06-19 2014-03-11 Mouldex Co Ltd Rotary medical connector
US9797486B2 (en) 2013-06-20 2017-10-24 Covidien Lp Adapter direct drive with manual retraction, lockout and connection mechanisms
US9351728B2 (en) 2013-06-28 2016-05-31 Covidien Lp Articulating apparatus for endoscopic procedures
US9757129B2 (en) 2013-07-08 2017-09-12 Covidien Lp Coupling member configured for use with surgical devices
KR101550600B1 (en) 2013-07-10 2015-09-07 현대자동차 주식회사 Hydraulic circuit for automatic transmission
JP6157258B2 (en) 2013-07-26 2017-07-05 オリンパス株式会社 Manipulator and manipulator system
USD757028S1 (en) 2013-08-01 2016-05-24 Palantir Technologies Inc. Display screen or portion thereof with graphical user interface
USD749623S1 (en) 2013-08-07 2016-02-16 Robert Bosch Gmbh Display screen with an animated graphical user interface
CN104337556B (en) 2013-08-09 2016-07-13 瑞奇外科器械(中国)有限公司 Curved rotation control apparatus and surgical operating instrument
JP6090576B2 (en) 2013-08-19 2017-03-08 日立工機株式会社 Electric tool
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
JP6278968B2 (en) 2013-08-23 2018-02-14 日本電産コパル電子株式会社 Gear motor with reduction mechanism
US9662108B2 (en) 2013-08-30 2017-05-30 Covidien Lp Surgical stapling apparatus
US9295514B2 (en) 2013-08-30 2016-03-29 Ethicon Endo-Surgery, Llc Surgical devices with close quarter articulation features
WO2015032797A1 (en) 2013-09-03 2015-03-12 Frank Wenger Intraluminal stapler
US9220508B2 (en) 2013-09-06 2015-12-29 Ethicon Endo-Surgery, Inc. Surgical clip applier with articulation section
EP3041427A4 (en) 2013-09-06 2017-05-31 Brigham and Women's Hospital, Inc. System and method for a tissue resection margin measurement device
US20140018832A1 (en) 2013-09-13 2014-01-16 Ethicon Endo-Surgery, Inc. Method For Applying A Surgical Clip Having A Compliant Portion
USD751082S1 (en) 2013-09-13 2016-03-08 Airwatch Llc Display screen with a graphical user interface for an email application
US9955966B2 (en) 2013-09-17 2018-05-01 Covidien Lp Adapter direct drive with manual retraction, lockout, and connection mechanisms for improper use prevention
US10172636B2 (en) 2013-09-17 2019-01-08 Ethicon Llc Articulation features for ultrasonic surgical instrument
USD768152S1 (en) 2013-09-20 2016-10-04 ACCO Brands Corporation Display screen including a graphical user interface
US20150088547A1 (en) 2013-09-22 2015-03-26 Ricoh Company, Ltd. Mobile Information Gateway for Home Healthcare
US9936949B2 (en) 2013-09-23 2018-04-10 Ethicon Llc Surgical stapling instrument with drive assembly having toggle features
CN203564287U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string forceps
US10478189B2 (en) 2015-06-26 2019-11-19 Ethicon Llc Method of applying an annular array of staples to tissue
CN203564285U (en) 2013-09-23 2014-04-30 瑞奇外科器械(中国)有限公司 End effector, surgical operating instrument and purse-string clamp
US20140175150A1 (en) 2013-10-01 2014-06-26 Ethicon Endo-Surgery, Inc. Providing Near Real Time Feedback To A User of A Surgical Instrument
CN104580654B (en) 2013-10-09 2019-05-10 中兴通讯股份有限公司 A kind of method of terminal and electronics waterproof
EP2884913B1 (en) 2013-10-10 2018-11-07 Gyrus Acmi, Inc. Laparoscopic forceps assembly
CN203597997U (en) 2013-10-31 2014-05-21 山东威瑞外科医用制品有限公司 Nail bin of anastomat and anastomat
US9295522B2 (en) 2013-11-08 2016-03-29 Covidien Lp Medical device adapter with wrist mechanism
US9936950B2 (en) 2013-11-08 2018-04-10 Ethicon Llc Hybrid adjunct materials for use in surgical stapling
US20150134077A1 (en) 2013-11-08 2015-05-14 Ethicon Endo-Surgery, Inc. Sealing materials for use in surgical stapling
US10368892B2 (en) 2013-11-22 2019-08-06 Ethicon Llc Features for coupling surgical instrument shaft assembly with instrument body
USD750122S1 (en) 2013-12-04 2016-02-23 Medtronic, Inc. Display screen or portion thereof with graphical user interface
USD746854S1 (en) 2013-12-04 2016-01-05 Medtronic, Inc. Display screen or portion thereof with graphical user interface
ES2755485T3 (en) 2013-12-09 2020-04-22 Covidien Lp Adapter assembly for the interconnection of electromechanical surgical devices and surgical load units, and surgical systems thereof
US9937626B2 (en) 2013-12-11 2018-04-10 Covidien Lp Wrist and jaw assemblies for robotic surgical systems
US10220522B2 (en) 2013-12-12 2019-03-05 Covidien Lp Gear train assemblies for robotic surgical systems
WO2015095333A1 (en) 2013-12-17 2015-06-25 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
USD769930S1 (en) 2013-12-18 2016-10-25 Aliphcom Display screen or portion thereof with animated graphical user interface
USD744528S1 (en) 2013-12-18 2015-12-01 Aliphcom Display screen or portion thereof with animated graphical user interface
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
USD775336S1 (en) 2013-12-23 2016-12-27 Ethicon Endo-Surgery, Llc Surgical fastener
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US20150173789A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical instruments with articulatable shaft arrangements
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
WO2015099067A1 (en) 2013-12-27 2015-07-02 オリンパス株式会社 Treatment tool handle and treatment tool
CN203736251U (en) 2013-12-30 2014-07-30 瑞奇外科器械(中国)有限公司 Support of flexible driving element, end effector and surgical operating instrument
CN103750872B (en) 2013-12-31 2016-05-11 苏州天臣国际医疗科技有限公司 Straight line stitching instrument cutter sweep
US20150201918A1 (en) 2014-01-02 2015-07-23 Osseodyne Surgical Solutions, Llc Surgical Handpiece
US9655616B2 (en) 2014-01-22 2017-05-23 Covidien Lp Apparatus for endoscopic procedures
US9802033B2 (en) 2014-01-28 2017-10-31 Ethicon Llc Surgical devices having controlled tissue cutting and sealing
US9700312B2 (en) 2014-01-28 2017-07-11 Covidien Lp Surgical apparatus
CN203815517U (en) 2014-01-29 2014-09-10 上海创亿医疗器械技术有限公司 Surgical anastomotic nail forming groove with nail bending groove
USD787548S1 (en) 2014-02-10 2017-05-23 What Watch Ag Display screen or portion thereof with animated graphical user interface
USD758433S1 (en) 2014-02-11 2016-06-07 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US11090109B2 (en) 2014-02-11 2021-08-17 Covidien Lp Temperature-sensing electrically-conductive tissue-contacting plate configured for use in an electrosurgical jaw member, electrosurgical system including same, and methods of controlling vessel sealing using same
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9974541B2 (en) 2014-02-14 2018-05-22 Covidien Lp End stop detection
US9707005B2 (en) 2014-02-14 2017-07-18 Ethicon Llc Lockout mechanisms for surgical devices
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes
USD756373S1 (en) 2014-02-21 2016-05-17 Aliphcom Display screen or portion thereof with graphical user interface
US20140166726A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
USD755196S1 (en) 2014-02-24 2016-05-03 Kennedy-Wilson, Inc. Display screen or portion thereof with graphical user interface
JP6542267B2 (en) 2014-02-24 2019-07-10 エシコン エルエルシーEthicon LLC Embedded layer including pressed area
US20150238118A1 (en) 2014-02-27 2015-08-27 Biorasis, Inc. Detection of the spatial location of an implantable biosensing platform and method thereof
US9325516B2 (en) 2014-03-07 2016-04-26 Ubiquiti Networks, Inc. Power receptacle wireless access point devices for networked living and work spaces
CN103829983A (en) 2014-03-07 2014-06-04 常州威克医疗器械有限公司 Anti-skid cartridge with different staple heights
US10342623B2 (en) 2014-03-12 2019-07-09 Proximed, Llc Surgical guidance systems, devices, and methods
WO2015139012A1 (en) 2014-03-14 2015-09-17 Hrayr Karnig Shahinian Endoscope system and method of operation thereof
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US20180132850A1 (en) 2014-03-26 2018-05-17 Ethicon Llc Surgical instrument comprising a sensor system
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US11266465B2 (en) 2014-03-28 2022-03-08 Intuitive Surgical Operations, Inc. Quantitative three-dimensional visualization of instruments in a field of view
CA2944383C (en) 2014-03-29 2019-09-17 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10420577B2 (en) 2014-03-31 2019-09-24 Covidien Lp Apparatus and method for tissue thickness sensing
WO2015153642A1 (en) 2014-03-31 2015-10-08 Intuitive Surgical Operations, Inc. Surgical instrument with shiftable transmission
US9757126B2 (en) 2014-03-31 2017-09-12 Covidien Lp Surgical stapling apparatus with firing lockout mechanism
US11116383B2 (en) 2014-04-02 2021-09-14 Asensus Surgical Europe S.à.R.L. Articulated structured light based-laparoscope
US9675405B2 (en) 2014-04-08 2017-06-13 Ethicon Llc Methods and devices for controlling motorized surgical devices
US9980769B2 (en) 2014-04-08 2018-05-29 Ethicon Llc Methods and devices for controlling motorized surgical devices
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10636104B2 (en) 2014-04-16 2020-04-28 Vios Medical, Inc. Patient care and health information management systems and methods
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
DE102015201574A1 (en) 2014-04-17 2015-10-22 Robert Bosch Gmbh battery device
USD756377S1 (en) 2014-04-17 2016-05-17 Google Inc. Portion of a display panel with an animated computer icon
US20150297200A1 (en) 2014-04-17 2015-10-22 Covidien Lp End of life transmission system for surgical instruments
US9668733B2 (en) 2014-04-21 2017-06-06 Covidien Lp Stapling device with features to prevent inadvertent firing of staples
US10133248B2 (en) 2014-04-28 2018-11-20 Covidien Lp Systems and methods for determining an end of life state for surgical devices
USD786280S1 (en) 2014-05-01 2017-05-09 Beijing Qihoo Technology Company Limited Display screen with a graphical user interface
US10175127B2 (en) 2014-05-05 2019-01-08 Covidien Lp End-effector force measurement drive circuit
US20150324317A1 (en) 2014-05-07 2015-11-12 Covidien Lp Authentication and information system for reusable surgical instruments
USD754679S1 (en) 2014-05-08 2016-04-26 Express Scripts, Inc. Display screen with a graphical user interface
CN103981635B (en) 2014-05-09 2017-01-11 浙江省纺织测试研究院 Preparation method of porous fiber non-woven fabric
US9901341B2 (en) 2014-05-16 2018-02-27 Covidien Lp Surgical instrument
USD771112S1 (en) 2014-06-01 2016-11-08 Apple Inc. Display screen or portion thereof with graphical user interface
WO2015187107A1 (en) 2014-06-05 2015-12-10 Eae Elektri̇k Asansör Endüstri̇si̇ İnşaat Sanayi̇ Ve Ti̇caret Anoni̇m Şi̇rketi̇ Rotary connection mechanism carrying cable in the wind turbines
US10251725B2 (en) 2014-06-09 2019-04-09 Covidien Lp Authentication and information system for reusable surgical instruments
US9848871B2 (en) 2014-06-10 2017-12-26 Ethicon Llc Woven and fibrous materials for reinforcing a staple line
US10172611B2 (en) 2014-06-10 2019-01-08 Ethicon Llc Adjunct materials and methods of using same in surgical methods for tissue sealing
US9913646B2 (en) 2014-06-10 2018-03-13 Ethicon Llc Devices for sealing staples in tissue
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9918714B2 (en) 2014-06-13 2018-03-20 Cook Medical Technologies Llc Stapling device and method
WO2015192241A1 (en) 2014-06-18 2015-12-23 The University Of Ottawa Tension-limiting temporary epicardial pacing wire extraction device
US9987099B2 (en) 2014-06-18 2018-06-05 Covidien Lp Disposable housings for encasing handle assemblies
US9471969B2 (en) 2014-06-23 2016-10-18 Exxonmobil Upstream Research Company Methods for differential image quality enhancement for a multiple detector system, systems and use thereof
US9693774B2 (en) 2014-06-25 2017-07-04 Ethicon Llc Pivotable articulation joint unlocking feature for surgical stapler
US9999423B2 (en) 2014-06-25 2018-06-19 Ethicon Llc Translatable articulation joint unlocking feature for surgical stapler
US10456132B2 (en) 2014-06-25 2019-10-29 Ethicon Llc Jaw opening feature for surgical stapler
US10064620B2 (en) 2014-06-25 2018-09-04 Ethicon Llc Method of unlocking articulation joint in surgical stapler
US10292701B2 (en) 2014-06-25 2019-05-21 Ethicon Llc Articulation drive features for surgical stapler
US10163589B2 (en) 2014-06-26 2018-12-25 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US10561418B2 (en) 2014-06-26 2020-02-18 Covidien Lp Adapter assemblies for interconnecting surgical loading units and handle assemblies
US9987095B2 (en) 2014-06-26 2018-06-05 Covidien Lp Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
US20150374372A1 (en) 2014-06-26 2015-12-31 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
DE102014009893B4 (en) 2014-07-04 2016-04-28 gomtec GmbH End effector for an instrument
US10064649B2 (en) 2014-07-07 2018-09-04 Covidien Lp Pleated seal for surgical hand or instrument access
JP6265859B2 (en) 2014-07-28 2018-01-24 オリンパス株式会社 Treatment instrument drive
US10717179B2 (en) 2014-07-28 2020-07-21 Black & Decker Inc. Sound damping for power tools
US10058395B2 (en) 2014-08-01 2018-08-28 Intuitive Surgical Operations, Inc. Active and semi-active damping in a telesurgical system
WO2016026021A1 (en) 2014-08-20 2016-02-25 Synaptive Medical (Barbados) Inc. Intra-operative determination of dimensions for fabrication of artificial bone flap
USD762659S1 (en) 2014-09-02 2016-08-02 Apple Inc. Display screen or portion thereof with graphical user interface
US9795380B2 (en) 2014-09-02 2017-10-24 Ethicon Llc Devices and methods for facilitating closing and clamping of an end effector of a surgical device
US9943312B2 (en) 2014-09-02 2018-04-17 Ethicon Llc Methods and devices for locking a surgical device based on loading of a fastener cartridge in the surgical device
US9848877B2 (en) 2014-09-02 2017-12-26 Ethicon Llc Methods and devices for adjusting a tissue gap of an end effector of a surgical device
US10004500B2 (en) 2014-09-02 2018-06-26 Ethicon Llc Devices and methods for manually retracting a drive shaft, drive beam, and associated components of a surgical fastening device
US9788835B2 (en) 2014-09-02 2017-10-17 Ethicon Llc Devices and methods for facilitating ejection of surgical fasteners from cartridges
US9413128B2 (en) 2014-09-04 2016-08-09 Htc Corporation Connector module having a rotating element disposed within and rotatable relative to a case
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US20160069449A1 (en) 2014-09-08 2016-03-10 Nidec Copal Electronics Corporation Thin-type gear motor and muscle force assisting device using thin-type gear motor
US10820939B2 (en) 2014-09-15 2020-11-03 Covidien Lp Vessel-sealing device including force-balance interface and electrosurgical system including same
CN204158441U (en) 2014-09-26 2015-02-18 重庆康美唯外科器械有限公司 Pin chamber of straight anastomat structure
US10603128B2 (en) 2014-10-07 2020-03-31 Covidien Lp Handheld electromechanical surgical system
USD766261S1 (en) 2014-10-10 2016-09-13 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9833239B2 (en) 2014-10-15 2017-12-05 Ethicon Llc Surgical instrument battery pack with power profile emulation
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
USD780803S1 (en) 2014-10-16 2017-03-07 Orange Research, Inc. Display panel portion with icon
USD761309S1 (en) 2014-10-17 2016-07-12 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
JP5945653B1 (en) 2014-10-20 2016-07-05 オリンパス株式会社 Solid-state imaging device and electronic endoscope provided with the solid-state imaging device
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
USD772905S1 (en) 2014-11-14 2016-11-29 Volvo Car Corporation Display screen with graphical user interface
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
USD777773S1 (en) 2014-12-11 2017-01-31 Lenovo (Beijing) Co., Ltd. Display screen or portion thereof with graphical user interface
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
ES2949098T3 (en) 2014-12-30 2023-09-25 Touchstone Int Medical Science Co Ltd Stapler Head Assembly and Suturing and Cutting Apparatus for Endoscopic Surgery
US9775611B2 (en) 2015-01-06 2017-10-03 Covidien Lp Clam shell surgical stapling loading unit
AU2016200084B2 (en) 2015-01-16 2020-01-16 Covidien Lp Powered surgical stapling device
USD798319S1 (en) 2015-02-02 2017-09-26 Scanmaskin Sverige Ab Portion of an electronic display panel with changeable computer-generated screens and icons
US10034668B2 (en) 2015-02-19 2018-07-31 Covidien Lp Circular knife blade for linear staplers
US10039545B2 (en) 2015-02-23 2018-08-07 Covidien Lp Double fire stapling
USD767624S1 (en) 2015-02-26 2016-09-27 Samsung Electronics Co., Ltd. Display screen or portion thereof with animated graphical user interface
US10285698B2 (en) 2015-02-26 2019-05-14 Covidien Lp Surgical apparatus
US10085749B2 (en) 2015-02-26 2018-10-02 Covidien Lp Surgical apparatus with conductor strain relief
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US20160256159A1 (en) 2015-03-05 2016-09-08 Covidien Lp Jaw members and methods of manufacture
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
CN204636451U (en) 2015-03-12 2015-09-16 葛益飞 Arteriovenous is cut and stapling apparatus
US9883843B2 (en) 2015-03-19 2018-02-06 Medtronic Navigation, Inc. Apparatus and method of counterbalancing axes and maintaining a user selected position of a X-Ray scanner gantry
US10349939B2 (en) 2015-03-25 2019-07-16 Ethicon Llc Method of applying a buttress to a surgical stapler
US10568621B2 (en) 2015-03-25 2020-02-25 Ethicon Llc Surgical staple buttress with integral adhesive for releasably attaching to a surgical stapler
US10172617B2 (en) 2015-03-25 2019-01-08 Ethicon Llc Malleable bioabsorbable polymer adhesive for releasably attaching a staple buttress to a surgical stapler
USD832301S1 (en) 2015-03-30 2018-10-30 Creed Smith Display screen or portion thereof with animated graphical user interface
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
US10029125B2 (en) 2015-04-16 2018-07-24 Ethicon Llc Ultrasonic surgical instrument with articulation joint having integral stiffening members
US10383628B2 (en) 2015-04-20 2019-08-20 Medi Tulip Co., Ltd Surgical linear stapler
US10039532B2 (en) 2015-05-06 2018-08-07 Covidien Lp Surgical instrument with articulation assembly
US10143474B2 (en) 2015-05-08 2018-12-04 Just Right Surgical, Llc Surgical stapler
US10172615B2 (en) 2015-05-27 2019-01-08 Covidien Lp Multi-fire push rod stapling device
US10722293B2 (en) 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
USD772269S1 (en) 2015-06-05 2016-11-22 Apple Inc. Display screen or portion thereof with graphical user interface
US10201381B2 (en) 2015-06-11 2019-02-12 Conmed Corporation Hand instruments with shaped shafts for use in laparoscopic surgery
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
USD769315S1 (en) 2015-07-09 2016-10-18 Monthly Gift Inc. Display screen or portion thereof with graphical user interface
US11154300B2 (en) 2015-07-30 2021-10-26 Cilag Gmbh International Surgical instrument comprising separate tissue securing and tissue cutting systems
US10420558B2 (en) 2015-07-30 2019-09-24 Ethicon Llc Surgical instrument comprising a system for bypassing an operational step of the surgical instrument
USD763277S1 (en) 2015-08-06 2016-08-09 Fore Support Services, Llc Display screen with an insurance authorization/preauthorization dashboard graphical user interface
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
USD803234S1 (en) 2015-08-26 2017-11-21 General Electric Company Display screen or portion thereof with graphical user interface
USD770476S1 (en) 2015-08-27 2016-11-01 Google Inc. Display screen with animated graphical user interface
US10569071B2 (en) 2015-08-31 2020-02-25 Ethicon Llc Medicant eluting adjuncts and methods of using medicant eluting adjuncts
US10245034B2 (en) 2015-08-31 2019-04-02 Ethicon Llc Inducing tissue adhesions using surgical adjuncts and medicants
US9829698B2 (en) 2015-08-31 2017-11-28 Panasonic Corporation Endoscope
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
EP3349783B1 (en) 2015-09-15 2024-01-17 ILC Therapeutics Ltd Compositions and methods relating to the treatment of diseases
US20170079642A1 (en) 2015-09-23 2017-03-23 Ethicon Endo-Surgery, Llc Surgical stapler having magnetic field-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10182813B2 (en) 2015-09-29 2019-01-22 Ethicon Llc Surgical stapling instrument with shaft release, powered firing, and powered articulation
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10085810B2 (en) 2015-10-02 2018-10-02 Ethicon Llc User input device for robotic surgical system
USD788140S1 (en) 2015-10-16 2017-05-30 Nasdaq, Inc. Display screen or portion thereof with animated graphical user interface
USD788123S1 (en) 2015-10-20 2017-05-30 23Andme, Inc. Display screen or portion thereof with a graphical user interface for conveying genetic information
USD788792S1 (en) 2015-10-28 2017-06-06 Technogym S.P.A. Portion of a display screen with a graphical user interface
US10357248B2 (en) 2015-10-29 2019-07-23 Ethicon Llc Extensible buttress assembly for surgical stapler
US10499918B2 (en) 2015-10-29 2019-12-10 Ethicon Llc Surgical stapler buttress assembly with features to interact with movable end effector components
US10314588B2 (en) 2015-10-29 2019-06-11 Ethicon Llc Fluid penetrable buttress assembly for a surgical stapler
US10441286B2 (en) 2015-10-29 2019-10-15 Ethicon Llc Multi-layer surgical stapler buttress assembly
US10433839B2 (en) 2015-10-29 2019-10-08 Ethicon Llc Surgical stapler buttress assembly with gel adhesive retainer
US10765430B2 (en) 2015-11-06 2020-09-08 Intuitive Surgical Operations, Inc. Knife with mechanical fuse
JP6682627B2 (en) 2015-12-03 2020-04-15 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Electrocautery hemostatic clip
USD803235S1 (en) 2015-12-04 2017-11-21 Capital One Services, Llc Display screen with a graphical user interface
USD789384S1 (en) 2015-12-09 2017-06-13 Facebook, Inc. Display screen with animated graphical user interface
GB201521809D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Symmetrically arranged surgical instrument articulation
USD800766S1 (en) 2015-12-11 2017-10-24 Samsung Electronics Co., Ltd. Display screen or portion thereof with graphical user interface
US10624616B2 (en) 2015-12-18 2020-04-21 Covidien Lp Surgical instruments including sensors
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10695123B2 (en) 2016-01-29 2020-06-30 Covidien Lp Surgical instrument with sensor
EP4233759A3 (en) 2016-01-29 2023-10-04 Intuitive Surgical Operations, Inc. System for variable velocity surgical instrument
USD782530S1 (en) 2016-02-01 2017-03-28 Microsoft Corporation Display screen with animated graphical user interface
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US20170231628A1 (en) 2016-02-12 2017-08-17 Ethicon Endo-Surgery, Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10315566B2 (en) 2016-03-07 2019-06-11 Lg Electronics Inc. Vehicle control device mounted on vehicle and method for controlling the vehicle
USD800904S1 (en) 2016-03-09 2017-10-24 Ethicon Endo-Surgery, Llc Surgical stapling instrument
USD800742S1 (en) 2016-03-25 2017-10-24 Illumina, Inc. Display screen or portion thereof with graphical user interface
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
KR20230074625A (en) 2016-04-12 2023-05-30 어플라이드 메디컬 리소시스 코포레이션 Reload shaft assembly for surgical stapler
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
USD786896S1 (en) 2016-04-29 2017-05-16 Salesforce.Com, Inc. Display screen or portion thereof with animated graphical user interface
US11076908B2 (en) 2016-06-02 2021-08-03 Gyrus Acmi, Inc. Two-stage electrosurgical device for vessel sealing
US20170348010A1 (en) 2016-06-03 2017-12-07 Orion Biotech Inc. Surgical drill and method of controlling the automatic stop thereof
US10959731B2 (en) 2016-06-14 2021-03-30 Covidien Lp Buttress attachment for surgical stapling instrument
US20170360441A1 (en) 2016-06-15 2017-12-21 Covidien Lp Tool assembly for leak resistant tissue dissection
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD819682S1 (en) 2016-06-29 2018-06-05 Rockwell Collins, Inc. Ground system display screen portion with transitional graphical user interface
USD813899S1 (en) 2016-07-20 2018-03-27 Facebook, Inc. Display screen with animated graphical user interface
USD844667S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
USD845342S1 (en) 2016-08-02 2019-04-09 Smule, Inc. Display screen or portion thereof with graphical user interface
USD844666S1 (en) 2016-08-02 2019-04-02 Smule, Inc. Display screen or portion thereof with graphical user interface
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
USD806108S1 (en) 2016-10-07 2017-12-26 General Electric Company Display screen portion with graphical user interface for a healthcare command center computing system
JP7300795B2 (en) 2016-10-26 2023-06-30 メッドレスポンド インコーポレイテッド Systems and methods for synthetic interaction with users and devices
USD819684S1 (en) 2016-11-04 2018-06-05 Microsoft Corporation Display screen with graphical user interface
US11642126B2 (en) 2016-11-04 2023-05-09 Covidien Lp Surgical stapling apparatus with tissue pockets
USD820307S1 (en) 2016-11-16 2018-06-12 Airbnb, Inc. Display screen with graphical user interface for a video pagination indicator
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US10952767B2 (en) 2017-02-06 2021-03-23 Covidien Lp Connector clip for securing an introducer to a surgical fastener applying apparatus
US10758231B2 (en) 2017-02-17 2020-09-01 Ethicon Llc Surgical stapler with bent anvil tip, angled staple cartridge tip, and tissue gripping features
USD837244S1 (en) 2017-03-27 2019-01-01 Vudu, Inc. Display screen or portion thereof with interactive graphical user interface
JP6557274B2 (en) 2017-03-31 2019-08-07 ファナック株式会社 Component mounting position guidance device, component mounting position guidance system, and component mounting position guidance method
US10524784B2 (en) 2017-05-05 2020-01-07 Covidien Lp Surgical staples with expandable backspan
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US20180360456A1 (en) 2017-06-20 2018-12-20 Ethicon Llc Surgical instrument having controllable articulation velocity
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10639018B2 (en) 2017-06-27 2020-05-05 Ethicon Llc Battery pack with integrated circuit providing sleep mode to battery pack and associated surgical instrument
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US10888325B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Cartridge arrangements for surgical cutting and fastening instruments with lockout disablement features
US10888369B2 (en) 2017-06-28 2021-01-12 Ethicon Llc Systems and methods for controlling control circuits for independent energy delivery over segmented sections
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US11129666B2 (en) 2017-06-28 2021-09-28 Cilag Gmbh International Shaft module circuitry arrangements
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11298128B2 (en) 2017-06-28 2022-04-12 Cilag Gmbh International Surgical system couplable with staple cartridge and radio frequency cartridge, and method of using same
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US20190038281A1 (en) 2017-08-03 2019-02-07 Ethicon Llc Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US20190038283A1 (en) 2017-08-03 2019-02-07 Ethicon Llc Surgical system comprising an articulation bailout
USD831209S1 (en) 2017-09-14 2018-10-16 Ethicon Llc Surgical stapler cartridge
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
USD848473S1 (en) 2017-11-01 2019-05-14 General Electric Company Display screen with transitional graphical user interface
USD839900S1 (en) 2017-11-06 2019-02-05 Shenzhen Valuelink E-Commerce Co., Ltd. Display screen with graphical user interface
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US20190183502A1 (en) 2017-12-15 2019-06-20 Ethicon Llc Systems and methods of controlling a clamping member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3503396A (en) * 1967-09-21 1970-03-31 American Hospital Supply Corp Atraumatic surgical clamp
US4815460A (en) * 1984-09-26 1989-03-28 Michael Porat Gripper teeth for medical instruments
US5658307A (en) * 1990-11-07 1997-08-19 Exconde; Primo D. Method of using a surgical dissector instrument
US6613069B2 (en) * 1993-02-22 2003-09-02 Heartport, Inc. Tunneling instrument for port access multivessel coronary artery bypass surgery
US5599279A (en) * 1994-03-16 1997-02-04 Gus J. Slotman Surgical instruments and method useful for endoscopic spinal procedures
US5549627A (en) * 1994-10-21 1996-08-27 Kieturakis; Maciej J. Surgical instruments and method for applying progressive intracorporeal traction
US6077280A (en) * 1995-06-29 2000-06-20 Thomas Jefferson University Surgical clamp
US5904647A (en) * 1996-10-08 1999-05-18 Asahi Kogyo Kabushiki Kaisha Treatment accessories for an endoscope
US5893878A (en) * 1997-04-24 1999-04-13 Pierce; Javin Micro traumatic tissue manipulator apparatus
US6206904B1 (en) * 1998-06-12 2001-03-27 Ashai Kogaku Kogyo Kabushiki Kaisha Foreign body-recovering instrument for endoscope
US20010021861A1 (en) * 2000-02-21 2001-09-13 Richard Wolf Gmbh Forceps for dissecting free tissue in body cavities
US8281446B2 (en) * 2004-07-14 2012-10-09 Colgate-Palmolive Company Oral care implement
US8262655B2 (en) * 2007-11-21 2012-09-11 Ethicon Endo-Surgery, Inc. Bipolar forceps

Cited By (1743)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US11229472B2 (en) 2001-06-12 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with multiple magnetic position sensors
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11730507B2 (en) 2004-02-27 2023-08-22 Cilag Gmbh International Ultrasonic surgical shears and method for sealing a blood vessel using same
US10874418B2 (en) 2004-02-27 2020-12-29 Ethicon Llc Ultrasonic surgical shears and method for sealing a blood vessel using same
US11116502B2 (en) 2004-07-28 2021-09-14 Cilag Gmbh International Surgical stapling instrument incorporating a two-piece firing mechanism
US10293100B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Surgical stapling instrument having a medical substance dispenser
US9737303B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US11083456B2 (en) 2004-07-28 2021-08-10 Cilag Gmbh International Articulating surgical instrument incorporating a two-piece firing mechanism
US9737302B2 (en) 2004-07-28 2017-08-22 Ethicon Llc Surgical stapling instrument having a restraining member
US10485547B2 (en) 2004-07-28 2019-11-26 Ethicon Llc Surgical staple cartridges
US10383634B2 (en) 2004-07-28 2019-08-20 Ethicon Llc Stapling system incorporating a firing lockout
US11882987B2 (en) 2004-07-28 2024-01-30 Cilag Gmbh International Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US10568629B2 (en) 2004-07-28 2020-02-25 Ethicon Llc Articulating surgical stapling instrument
US10314590B2 (en) 2004-07-28 2019-06-11 Ethicon Llc Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9844379B2 (en) 2004-07-28 2017-12-19 Ethicon Llc Surgical stapling instrument having a clearanced opening
US9585663B2 (en) 2004-07-28 2017-03-07 Ethicon Endo-Surgery, Llc Surgical stapling instrument configured to apply a compressive pressure to tissue
US9282966B2 (en) 2004-07-28 2016-03-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US10292707B2 (en) 2004-07-28 2019-05-21 Ethicon Llc Articulating surgical stapling instrument incorporating a firing mechanism
US11135352B2 (en) 2004-07-28 2021-10-05 Cilag Gmbh International End effector including a gradually releasable medical adjunct
US11684365B2 (en) 2004-07-28 2023-06-27 Cilag Gmbh International Replaceable staple cartridges for surgical instruments
US10687817B2 (en) 2004-07-28 2020-06-23 Ethicon Llc Stapling device comprising a firing member lockout
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US9510830B2 (en) 2004-07-28 2016-12-06 Ethicon Endo-Surgery, Llc Staple cartridge
US9603991B2 (en) 2004-07-28 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling instrument having a medical substance dispenser
US11812960B2 (en) 2004-07-28 2023-11-14 Cilag Gmbh International Method of segmenting the operation of a surgical stapling instrument
US10716563B2 (en) 2004-07-28 2020-07-21 Ethicon Llc Stapling system comprising an instrument assembly including a lockout
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US10278702B2 (en) 2004-07-28 2019-05-07 Ethicon Llc Stapling system comprising a firing bar and a lockout
US10799240B2 (en) 2004-07-28 2020-10-13 Ethicon Llc Surgical instrument comprising a staple firing lockout
US11006971B2 (en) 2004-10-08 2021-05-18 Ethicon Llc Actuation mechanism for use with an ultrasonic surgical instrument
US10537352B2 (en) 2004-10-08 2020-01-21 Ethicon Llc Tissue pads for use with surgical instruments
US11134947B2 (en) 2005-08-31 2021-10-05 Cilag Gmbh International Fastener cartridge assembly comprising a camming sled with variable cam arrangements
US11399828B2 (en) 2005-08-31 2022-08-02 Cilag Gmbh International Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US10245035B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Stapling assembly configured to produce different formed staple heights
US10245032B2 (en) 2005-08-31 2019-04-02 Ethicon Llc Staple cartridges for forming staples having differing formed staple heights
US11839375B2 (en) 2005-08-31 2023-12-12 Cilag Gmbh International Fastener cartridge assembly comprising an anvil and different staple heights
US10842489B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US11272928B2 (en) 2005-08-31 2022-03-15 Cilag GmbH Intemational Staple cartridges for forming staples having differing formed staple heights
US10271846B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Staple cartridge for use with a surgical stapler
US10271845B2 (en) 2005-08-31 2019-04-30 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US10842488B2 (en) 2005-08-31 2020-11-24 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US10278697B2 (en) 2005-08-31 2019-05-07 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10729436B2 (en) 2005-08-31 2020-08-04 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9326768B2 (en) 2005-08-31 2016-05-03 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US9561032B2 (en) 2005-08-31 2017-02-07 Ethicon Endo-Surgery, Llc Staple cartridge comprising a staple driver arrangement
US11179153B2 (en) 2005-08-31 2021-11-23 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US11172927B2 (en) 2005-08-31 2021-11-16 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10869664B2 (en) 2005-08-31 2020-12-22 Ethicon Llc End effector for use with a surgical stapling instrument
US10070863B2 (en) 2005-08-31 2018-09-11 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil
US9848873B2 (en) 2005-08-31 2017-12-26 Ethicon Llc Fastener cartridge assembly comprising a driver and staple cavity arrangement
US11793512B2 (en) 2005-08-31 2023-10-24 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US9844373B2 (en) 2005-08-31 2017-12-19 Ethicon Llc Fastener cartridge assembly comprising a driver row arrangement
US9307988B2 (en) 2005-08-31 2016-04-12 Ethicon Endo-Surgery, Llc Staple cartridges for forming staples having differing formed staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US11484311B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10932774B2 (en) 2005-08-31 2021-03-02 Ethicon Llc Surgical end effector for forming staples to different heights
US11576673B2 (en) 2005-08-31 2023-02-14 Cilag Gmbh International Stapling assembly for forming staples to different heights
US11090045B2 (en) 2005-08-31 2021-08-17 Cilag Gmbh International Staple cartridges for forming staples having differing formed staple heights
US10321909B2 (en) 2005-08-31 2019-06-18 Ethicon Llc Staple cartridge comprising a staple including deformable members
US11771425B2 (en) 2005-08-31 2023-10-03 Cilag Gmbh International Stapling assembly for forming staples to different formed heights
US9839427B2 (en) 2005-08-31 2017-12-12 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and a staple driver arrangement
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US9795382B2 (en) 2005-08-31 2017-10-24 Ethicon Llc Fastener cartridge assembly comprising a cam and driver arrangement
US9592052B2 (en) 2005-08-31 2017-03-14 Ethicon Endo-Surgery, Llc Stapling assembly for forming different formed staple heights
US11730474B2 (en) 2005-08-31 2023-08-22 Cilag Gmbh International Fastener cartridge assembly comprising a movable cartridge and a staple driver arrangement
US10420553B2 (en) 2005-08-31 2019-09-24 Ethicon Llc Staple cartridge comprising a staple driver arrangement
US10463369B2 (en) 2005-08-31 2019-11-05 Ethicon Llc Disposable end effector for use with a surgical instrument
US10856896B2 (en) 2005-10-14 2020-12-08 Ethicon Llc Ultrasonic device for cutting and coagulating
US10149679B2 (en) 2005-11-09 2018-12-11 Ethicon Llc Surgical instrument comprising drive systems
US11793511B2 (en) 2005-11-09 2023-10-24 Cilag Gmbh International Surgical instruments
US10993713B2 (en) 2005-11-09 2021-05-04 Ethicon Llc Surgical instruments
US9895147B2 (en) 2005-11-09 2018-02-20 Ethicon Llc End effectors for surgical staplers
US9968356B2 (en) 2005-11-09 2018-05-15 Ethicon Llc Surgical instrument drive systems
US10028742B2 (en) 2005-11-09 2018-07-24 Ethicon Llc Staple cartridge comprising staples with different unformed heights
US10806449B2 (en) 2005-11-09 2020-10-20 Ethicon Llc End effectors for surgical staplers
US10779848B2 (en) 2006-01-20 2020-09-22 Ethicon Llc Ultrasound medical instrument having a medical ultrasonic blade
US11246616B2 (en) 2006-01-31 2022-02-15 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10499890B2 (en) 2006-01-31 2019-12-10 Ethicon Llc Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10342533B2 (en) 2006-01-31 2019-07-09 Ethicon Llc Surgical instrument
US11000275B2 (en) 2006-01-31 2021-05-11 Ethicon Llc Surgical instrument
US10335144B2 (en) 2006-01-31 2019-07-02 Ethicon Llc Surgical instrument
US11224454B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10653417B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Surgical instrument
US10653435B2 (en) 2006-01-31 2020-05-19 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10485539B2 (en) 2006-01-31 2019-11-26 Ethicon Llc Surgical instrument with firing lockout
US11051813B2 (en) 2006-01-31 2021-07-06 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11660110B2 (en) 2006-01-31 2023-05-30 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11801051B2 (en) 2006-01-31 2023-10-31 Cilag Gmbh International Accessing data stored in a memory of a surgical instrument
US10299817B2 (en) 2006-01-31 2019-05-28 Ethicon Llc Motor-driven fastening assembly
US11020113B2 (en) 2006-01-31 2021-06-01 Cilag Gmbh International Surgical instrument having force feedback capabilities
US10993717B2 (en) 2006-01-31 2021-05-04 Ethicon Llc Surgical stapling system comprising a control system
US9320520B2 (en) 2006-01-31 2016-04-26 Ethicon Endo-Surgery, Inc. Surgical instrument system
US9326770B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US10709468B2 (en) 2006-01-31 2020-07-14 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US9326769B2 (en) 2006-01-31 2016-05-03 Ethicon Endo-Surgery, Llc Surgical instrument
US11364046B2 (en) 2006-01-31 2022-06-21 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US11350916B2 (en) 2006-01-31 2022-06-07 Cilag Gmbh International Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US10743849B2 (en) 2006-01-31 2020-08-18 Ethicon Llc Stapling system including an articulation system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US10278722B2 (en) 2006-01-31 2019-05-07 Ethicon Llc Motor-driven surgical cutting and fastening instrument
US11648024B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with position feedback
US11051811B2 (en) 2006-01-31 2021-07-06 Ethicon Llc End effector for use with a surgical instrument
US10806479B2 (en) 2006-01-31 2020-10-20 Ethicon Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10463383B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling instrument including a sensing system
US10098636B2 (en) 2006-01-31 2018-10-16 Ethicon Llc Surgical instrument having force feedback capabilities
US11058420B2 (en) 2006-01-31 2021-07-13 Cilag Gmbh International Surgical stapling apparatus comprising a lockout system
US10201363B2 (en) 2006-01-31 2019-02-12 Ethicon Llc Motor-driven surgical instrument
US10426463B2 (en) 2006-01-31 2019-10-01 Ehticon LLC Surgical instrument having a feedback system
US9517068B2 (en) 2006-01-31 2016-12-13 Ethicon Endo-Surgery, Llc Surgical instrument with automatically-returned firing member
US9113874B2 (en) 2006-01-31 2015-08-25 Ethicon Endo-Surgery, Inc. Surgical instrument system
US11612393B2 (en) 2006-01-31 2023-03-28 Cilag Gmbh International Robotically-controlled end effector
US10675028B2 (en) 2006-01-31 2020-06-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10058963B2 (en) 2006-01-31 2018-08-28 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US9370358B2 (en) 2006-01-31 2016-06-21 Ethicon Endo-Surgery, Llc Motor-driven surgical cutting and fastening instrument with tactile position feedback
US10052100B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system configured to detect resistive forces experienced by a tissue cutting implement
US10052099B2 (en) 2006-01-31 2018-08-21 Ethicon Llc Surgical instrument system comprising a firing system including a rotatable shaft and first and second actuation ramps
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US10959722B2 (en) 2006-01-31 2021-03-30 Ethicon Llc Surgical instrument for deploying fasteners by way of rotational motion
US10010322B2 (en) 2006-01-31 2018-07-03 Ethicon Llc Surgical instrument
US11883020B2 (en) 2006-01-31 2024-01-30 Cilag Gmbh International Surgical instrument having a feedback system
US9743928B2 (en) 2006-01-31 2017-08-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US10004498B2 (en) 2006-01-31 2018-06-26 Ethicon Llc Surgical instrument comprising a plurality of articulation joints
US11890008B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Surgical instrument with firing lockout
US10463384B2 (en) 2006-01-31 2019-11-05 Ethicon Llc Stapling assembly
US10842491B2 (en) 2006-01-31 2020-11-24 Ethicon Llc Surgical system with an actuation console
US11890029B2 (en) 2006-01-31 2024-02-06 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument
US11166717B2 (en) 2006-01-31 2021-11-09 Cilag Gmbh International Surgical instrument with firing lockout
US11648008B2 (en) 2006-01-31 2023-05-16 Cilag Gmbh International Surgical instrument having force feedback capabilities
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US10893853B2 (en) 2006-01-31 2021-01-19 Ethicon Llc Stapling assembly including motor drive systems
US9439649B2 (en) 2006-01-31 2016-09-13 Ethicon Endo-Surgery, Llc Surgical instrument having force feedback capabilities
US10918380B2 (en) 2006-01-31 2021-02-16 Ethicon Llc Surgical instrument system including a control system
US11103269B2 (en) 2006-01-31 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting and fastening instrument with tactile position feedback
US9451958B2 (en) 2006-01-31 2016-09-27 Ethicon Endo-Surgery, Llc Surgical instrument with firing actuator lockout
US10952728B2 (en) 2006-01-31 2021-03-23 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8911471B2 (en) 2006-03-23 2014-12-16 Ethicon Endo-Surgery, Inc. Articulatable surgical device
US9402626B2 (en) 2006-03-23 2016-08-02 Ethicon Endo-Surgery, Llc Rotary actuatable surgical fastener and cutter
US10213262B2 (en) 2006-03-23 2019-02-26 Ethicon Llc Manipulatable surgical systems with selectively articulatable fastening device
US9492167B2 (en) 2006-03-23 2016-11-15 Ethicon Endo-Surgery, Llc Articulatable surgical device with rotary driven cutting member
US10070861B2 (en) 2006-03-23 2018-09-11 Ethicon Llc Articulatable surgical device
US9301759B2 (en) 2006-03-23 2016-04-05 Ethicon Endo-Surgery, Llc Robotically-controlled surgical instrument with selectively articulatable end effector
US10420560B2 (en) 2006-06-27 2019-09-24 Ethicon Llc Manually driven surgical cutting and fastening instrument
US11272938B2 (en) 2006-06-27 2022-03-15 Cilag Gmbh International Surgical instrument including dedicated firing and retraction assemblies
US9320521B2 (en) 2006-06-27 2016-04-26 Ethicon Endo-Surgery, Llc Surgical instrument
US10314589B2 (en) 2006-06-27 2019-06-11 Ethicon Llc Surgical instrument including a shifting assembly
US11406379B2 (en) 2006-09-29 2022-08-09 Cilag Gmbh International Surgical end effectors with staple cartridges
US9408604B2 (en) 2006-09-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instrument comprising a firing system including a compliant portion
US11622785B2 (en) 2006-09-29 2023-04-11 Cilag Gmbh International Surgical staples having attached drivers and stapling instruments for deploying the same
US11633182B2 (en) 2006-09-29 2023-04-25 Cilag Gmbh International Surgical stapling assemblies
US8973804B2 (en) 2006-09-29 2015-03-10 Ethicon Endo-Surgery, Inc. Cartridge assembly having a buttressing member
US10695053B2 (en) 2006-09-29 2020-06-30 Ethicon Llc Surgical end effectors with staple cartridges
US11571231B2 (en) 2006-09-29 2023-02-07 Cilag Gmbh International Staple cartridge having a driver for driving multiple staples
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US9179911B2 (en) 2006-09-29 2015-11-10 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US10172616B2 (en) 2006-09-29 2019-01-08 Ethicon Llc Surgical staple cartridge
US10448952B2 (en) 2006-09-29 2019-10-22 Ethicon Llc End effector for use with a surgical fastening instrument
US11678876B2 (en) 2006-09-29 2023-06-20 Cilag Gmbh International Powered surgical instrument
US8763875B2 (en) 2006-09-29 2014-07-01 Ethicon Endo-Surgery, Inc. End effector for use with a surgical fastening instrument
US10595862B2 (en) 2006-09-29 2020-03-24 Ethicon Llc Staple cartridge including a compressible member
US9603595B2 (en) 2006-09-29 2017-03-28 Ethicon Endo-Surgery, Llc Surgical instrument comprising an adjustable system configured to accommodate different jaw heights
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
US9706991B2 (en) 2006-09-29 2017-07-18 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples including a lateral base
US11877748B2 (en) 2006-10-03 2024-01-23 Cilag Gmbh International Robotically-driven surgical instrument with E-beam driver
US10342541B2 (en) 2006-10-03 2019-07-09 Ethicon Llc Surgical instruments with E-beam driver and rotary drive arrangements
US11382626B2 (en) 2006-10-03 2022-07-12 Cilag Gmbh International Surgical system including a knife bar supported for rotational and axial travel
US10206678B2 (en) 2006-10-03 2019-02-19 Ethicon Llc Surgical stapling instrument with lockout features to prevent advancement of a firing assembly unless an unfired surgical staple cartridge is operably mounted in an end effector portion of the instrument
US11666332B2 (en) 2007-01-10 2023-06-06 Cilag Gmbh International Surgical instrument comprising a control circuit configured to adjust the operation of a motor
US11844521B2 (en) 2007-01-10 2023-12-19 Cilag Gmbh International Surgical instrument for use with a robotic system
US10517682B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US11849947B2 (en) 2007-01-10 2023-12-26 Cilag Gmbh International Surgical system including a control circuit and a passively-powered transponder
US11350929B2 (en) 2007-01-10 2022-06-07 Cilag Gmbh International Surgical instrument with wireless communication between control unit and sensor transponders
US9757123B2 (en) 2007-01-10 2017-09-12 Ethicon Llc Powered surgical instrument having a transmission system
US10433918B2 (en) 2007-01-10 2019-10-08 Ethicon Llc Surgical instrument system configured to evaluate the load applied to a firing member at the initiation of a firing stroke
US10945729B2 (en) 2007-01-10 2021-03-16 Ethicon Llc Interlock and surgical instrument including same
US10517590B2 (en) 2007-01-10 2019-12-31 Ethicon Llc Powered surgical instrument having a transmission system
US10441369B2 (en) 2007-01-10 2019-10-15 Ethicon Llc Articulatable surgical instrument configured for detachable use with a robotic system
US10952727B2 (en) 2007-01-10 2021-03-23 Ethicon Llc Surgical instrument for assessing the state of a staple cartridge
US11006951B2 (en) 2007-01-10 2021-05-18 Ethicon Llc Surgical instrument with wireless communication between control unit and sensor transponders
US11771426B2 (en) 2007-01-10 2023-10-03 Cilag Gmbh International Surgical instrument with wireless communication
US11134943B2 (en) 2007-01-10 2021-10-05 Cilag Gmbh International Powered surgical instrument including a control unit and sensor
US11166720B2 (en) 2007-01-10 2021-11-09 Cilag Gmbh International Surgical instrument including a control module for assessing an end effector
US10751138B2 (en) 2007-01-10 2020-08-25 Ethicon Llc Surgical instrument for use with a robotic system
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8746530B2 (en) 2007-01-10 2014-06-10 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and remote sensor
US11064998B2 (en) 2007-01-10 2021-07-20 Cilag Gmbh International Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US10918386B2 (en) 2007-01-10 2021-02-16 Ethicon Llc Interlock and surgical instrument including same
US11812961B2 (en) 2007-01-10 2023-11-14 Cilag Gmbh International Surgical instrument including a motor control system
US10278780B2 (en) 2007-01-10 2019-05-07 Ethicon Llc Surgical instrument for use with robotic system
US11000277B2 (en) 2007-01-10 2021-05-11 Ethicon Llc Surgical instrument with wireless communication between control unit and remote sensor
US9655624B2 (en) 2007-01-11 2017-05-23 Ethicon Llc Surgical stapling device with a curved end effector
US9750501B2 (en) 2007-01-11 2017-09-05 Ethicon Endo-Surgery, Llc Surgical stapling devices having laterally movable anvils
US9775613B2 (en) 2007-01-11 2017-10-03 Ethicon Llc Surgical stapling device with a curved end effector
US9730692B2 (en) 2007-01-11 2017-08-15 Ethicon Llc Surgical stapling device with a curved staple cartridge
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US11839352B2 (en) 2007-01-11 2023-12-12 Cilag Gmbh International Surgical stapling device with an end effector
US10912575B2 (en) 2007-01-11 2021-02-09 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9724091B2 (en) 2007-01-11 2017-08-08 Ethicon Llc Surgical stapling device
US9700321B2 (en) 2007-01-11 2017-07-11 Ethicon Llc Surgical stapling device having supports for a flexible drive mechanism
US9675355B2 (en) 2007-01-11 2017-06-13 Ethicon Llc Surgical stapling device with a curved end effector
US9999431B2 (en) 2007-01-11 2018-06-19 Ethicon Endo-Surgery, Llc Surgical stapling device having supports for a flexible drive mechanism
US9603598B2 (en) 2007-01-11 2017-03-28 Ethicon Endo-Surgery, Llc Surgical stapling device with a curved end effector
US9757130B2 (en) 2007-02-28 2017-09-12 Ethicon Llc Stapling assembly for forming different formed staple heights
US11337693B2 (en) 2007-03-15 2022-05-24 Cilag Gmbh International Surgical stapling instrument having a releasable buttress material
US8925788B2 (en) 2007-03-15 2015-01-06 Ethicon Endo-Surgery, Inc. End effectors for surgical stapling instruments
US9289206B2 (en) 2007-03-15 2016-03-22 Ethicon Endo-Surgery, Llc Lateral securement members for surgical staple cartridges
US9872682B2 (en) 2007-03-15 2018-01-23 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10702267B2 (en) 2007-03-15 2020-07-07 Ethicon Llc Surgical stapling instrument having a releasable buttress material
US10722261B2 (en) 2007-03-22 2020-07-28 Ethicon Llc Surgical instruments
US9883884B2 (en) 2007-03-22 2018-02-06 Ethicon Llc Ultrasonic surgical instruments
US9987033B2 (en) 2007-03-22 2018-06-05 Ethicon Llc Ultrasonic surgical instruments
US9504483B2 (en) 2007-03-22 2016-11-29 Ethicon Endo-Surgery, Llc Surgical instruments
US9801648B2 (en) 2007-03-22 2017-10-31 Ethicon Llc Surgical instruments
US10828057B2 (en) 2007-03-22 2020-11-10 Ethicon Llc Ultrasonic surgical instruments
US10398433B2 (en) 2007-03-28 2019-09-03 Ethicon Llc Laparoscopic clamp load measuring devices
US10363033B2 (en) 2007-06-04 2019-07-30 Ethicon Llc Robotically-controlled surgical instruments
US9987003B2 (en) 2007-06-04 2018-06-05 Ethicon Llc Robotic actuator assembly
US11154298B2 (en) 2007-06-04 2021-10-26 Cilag Gmbh International Stapling system for use with a robotic surgical system
US11911028B2 (en) 2007-06-04 2024-02-27 Cilag Gmbh International Surgical instruments for use with a robotic surgical system
US9585658B2 (en) 2007-06-04 2017-03-07 Ethicon Endo-Surgery, Llc Stapling systems
US11648006B2 (en) 2007-06-04 2023-05-16 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en) 2007-06-04 2023-01-31 Cilag Gmbh International Surgical stapler device
US11559302B2 (en) 2007-06-04 2023-01-24 Cilag Gmbh International Surgical instrument including a firing member movable at different speeds
US10327765B2 (en) 2007-06-04 2019-06-25 Ethicon Llc Drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11147549B2 (en) 2007-06-04 2021-10-19 Cilag Gmbh International Stapling instrument including a firing system and a closure system
US9186143B2 (en) 2007-06-04 2015-11-17 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US11134938B2 (en) 2007-06-04 2021-10-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US10299787B2 (en) 2007-06-04 2019-05-28 Ethicon Llc Stapling system comprising rotary inputs
US9750498B2 (en) 2007-06-04 2017-09-05 Ethicon Endo Surgery, Llc Drive systems for surgical instruments
US10441280B2 (en) 2007-06-04 2019-10-15 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US10368863B2 (en) 2007-06-04 2019-08-06 Ethicon Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US9795381B2 (en) 2007-06-04 2017-10-24 Ethicon Endo-Surgery, Llc Robotically-controlled shaft based rotary drive systems for surgical instruments
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11013511B2 (en) 2007-06-22 2021-05-25 Ethicon Llc Surgical stapling instrument with an articulatable end effector
US9138225B2 (en) 2007-06-22 2015-09-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US9662110B2 (en) 2007-06-22 2017-05-30 Ethicon Endo-Surgery, Llc Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9636135B2 (en) 2007-07-27 2017-05-02 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US10531910B2 (en) 2007-07-27 2020-01-14 Ethicon Llc Surgical instruments
US9707004B2 (en) 2007-07-27 2017-07-18 Ethicon Llc Surgical instruments
US9414853B2 (en) 2007-07-27 2016-08-16 Ethicon Endo-Surgery, Llc Ultrasonic end effectors with increased active length
US11690641B2 (en) 2007-07-27 2023-07-04 Cilag Gmbh International Ultrasonic end effectors with increased active length
US10398466B2 (en) 2007-07-27 2019-09-03 Ethicon Llc Ultrasonic end effectors with increased active length
US9642644B2 (en) 2007-07-27 2017-05-09 Ethicon Endo-Surgery, Llc Surgical instruments
US9220527B2 (en) 2007-07-27 2015-12-29 Ethicon Endo-Surgery, Llc Surgical instruments
US11607268B2 (en) 2007-07-27 2023-03-21 Cilag Gmbh International Surgical instruments
US9913656B2 (en) 2007-07-27 2018-03-13 Ethicon Llc Ultrasonic surgical instruments
US10426507B2 (en) 2007-07-31 2019-10-01 Ethicon Llc Ultrasonic surgical instruments
US11877734B2 (en) 2007-07-31 2024-01-23 Cilag Gmbh International Ultrasonic surgical instruments
US10420579B2 (en) 2007-07-31 2019-09-24 Ethicon Llc Surgical instruments
US11058447B2 (en) 2007-07-31 2021-07-13 Cilag Gmbh International Temperature controlled ultrasonic surgical instruments
US11666784B2 (en) 2007-07-31 2023-06-06 Cilag Gmbh International Surgical instruments
US9439669B2 (en) 2007-07-31 2016-09-13 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9445832B2 (en) 2007-07-31 2016-09-20 Ethicon Endo-Surgery, Llc Surgical instruments
US10828059B2 (en) 2007-10-05 2020-11-10 Ethicon Llc Ergonomic surgical instruments
US9848902B2 (en) 2007-10-05 2017-12-26 Ethicon Llc Ergonomic surgical instruments
US11439426B2 (en) 2007-11-30 2022-09-13 Cilag Gmbh International Ultrasonic surgical blades
US11253288B2 (en) 2007-11-30 2022-02-22 Cilag Gmbh International Ultrasonic surgical instrument blades
US10463887B2 (en) 2007-11-30 2019-11-05 Ethicon Llc Ultrasonic surgical blades
US10888347B2 (en) 2007-11-30 2021-01-12 Ethicon Llc Ultrasonic surgical blades
US11766276B2 (en) 2007-11-30 2023-09-26 Cilag Gmbh International Ultrasonic surgical blades
US10441308B2 (en) 2007-11-30 2019-10-15 Ethicon Llc Ultrasonic surgical instrument blades
US10433866B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US11266433B2 (en) 2007-11-30 2022-03-08 Cilag Gmbh International Ultrasonic surgical instrument blades
US9339289B2 (en) 2007-11-30 2016-05-17 Ehticon Endo-Surgery, LLC Ultrasonic surgical instrument blades
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US10265094B2 (en) 2007-11-30 2019-04-23 Ethicon Llc Ultrasonic surgical blades
US9066747B2 (en) 2007-11-30 2015-06-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US10245065B2 (en) 2007-11-30 2019-04-02 Ethicon Llc Ultrasonic surgical blades
US11690643B2 (en) 2007-11-30 2023-07-04 Cilag Gmbh International Ultrasonic surgical blades
US10433865B2 (en) 2007-11-30 2019-10-08 Ethicon Llc Ultrasonic surgical blades
US10045794B2 (en) 2007-11-30 2018-08-14 Ethicon Llc Ultrasonic surgical blades
US9687231B2 (en) 2008-02-13 2017-06-27 Ethicon Llc Surgical stapling instrument
US10765424B2 (en) 2008-02-13 2020-09-08 Ethicon Llc Surgical stapling instrument
US9204878B2 (en) 2008-02-14 2015-12-08 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US11612395B2 (en) 2008-02-14 2023-03-28 Cilag Gmbh International Surgical system including a control system having an RFID tag reader
US9522029B2 (en) 2008-02-14 2016-12-20 Ethicon Endo-Surgery, Llc Motorized surgical cutting and fastening instrument having handle based power source
US9211121B2 (en) 2008-02-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US10682141B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical device including a control system
US10682142B2 (en) 2008-02-14 2020-06-16 Ethicon Llc Surgical stapling apparatus including an articulation system
US11446034B2 (en) 2008-02-14 2022-09-20 Cilag Gmbh International Surgical stapling assembly comprising first and second actuation systems configured to perform different functions
US9072515B2 (en) 2008-02-14 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus
US11717285B2 (en) 2008-02-14 2023-08-08 Cilag Gmbh International Surgical cutting and fastening instrument having RF electrodes
US11464514B2 (en) 2008-02-14 2022-10-11 Cilag Gmbh International Motorized surgical stapling system including a sensing array
US10716568B2 (en) 2008-02-14 2020-07-21 Ethicon Llc Surgical stapling apparatus with control features operable with one hand
US10660640B2 (en) 2008-02-14 2020-05-26 Ethicon Llc Motorized surgical cutting and fastening instrument
US9084601B2 (en) 2008-02-14 2015-07-21 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10722232B2 (en) 2008-02-14 2020-07-28 Ethicon Llc Surgical instrument for use with different cartridges
US10898195B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10905426B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Detachable motor powered surgical instrument
US10905427B2 (en) 2008-02-14 2021-02-02 Ethicon Llc Surgical System
US10004505B2 (en) 2008-02-14 2018-06-26 Ethicon Llc Detachable motor powered surgical instrument
US9095339B2 (en) 2008-02-14 2015-08-04 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US8998058B2 (en) 2008-02-14 2015-04-07 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10743870B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Surgical stapling apparatus with interlockable firing system
US10639036B2 (en) 2008-02-14 2020-05-05 Ethicon Llc Robotically-controlled motorized surgical cutting and fastening instrument
US9498219B2 (en) 2008-02-14 2016-11-22 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US10898194B2 (en) 2008-02-14 2021-01-26 Ethicon Llc Detachable motor powered surgical instrument
US10307163B2 (en) 2008-02-14 2019-06-04 Ethicon Llc Detachable motor powered surgical instrument
US9867618B2 (en) 2008-02-14 2018-01-16 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9999426B2 (en) 2008-02-14 2018-06-19 Ethicon Llc Detachable motor powered surgical instrument
US10874396B2 (en) 2008-02-14 2020-12-29 Ethicon Llc Stapling instrument for use with a surgical robot
US9872684B2 (en) 2008-02-14 2018-01-23 Ethicon Llc Surgical stapling apparatus including firing force regulation
US9877723B2 (en) 2008-02-14 2018-01-30 Ethicon Llc Surgical stapling assembly comprising a selector arrangement
US11801047B2 (en) 2008-02-14 2023-10-31 Cilag Gmbh International Surgical stapling system comprising a control circuit configured to selectively monitor tissue impedance and adjust control of a motor
US10743851B2 (en) 2008-02-14 2020-08-18 Ethicon Llc Interchangeable tools for surgical instruments
US10463370B2 (en) 2008-02-14 2019-11-05 Ethicon Llc Motorized surgical instrument
US10806450B2 (en) 2008-02-14 2020-10-20 Ethicon Llc Surgical cutting and fastening instrument having a control system
US11484307B2 (en) 2008-02-14 2022-11-01 Cilag Gmbh International Loading unit coupleable to a surgical stapling system
US9980729B2 (en) 2008-02-14 2018-05-29 Ethicon Endo-Surgery, Llc Detachable motor powered surgical instrument
US8991677B2 (en) 2008-02-14 2015-03-31 Ethicon Endo-Surgery, Inc. Detachable motor powered surgical instrument
US10925605B2 (en) 2008-02-14 2021-02-23 Ethicon Llc Surgical stapling system
US10470763B2 (en) 2008-02-14 2019-11-12 Ethicon Llc Surgical cutting and fastening instrument including a sensing system
US11571212B2 (en) 2008-02-14 2023-02-07 Cilag Gmbh International Surgical stapling system including an impedance sensor
US10265067B2 (en) 2008-02-14 2019-04-23 Ethicon Llc Surgical instrument including a regulator and a control system
US11638583B2 (en) 2008-02-14 2023-05-02 Cilag Gmbh International Motorized surgical system having a plurality of power sources
US9962158B2 (en) 2008-02-14 2018-05-08 Ethicon Llc Surgical stapling apparatuses with lockable end effector positioning systems
US9901345B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10888330B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Surgical system
US9901344B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US9901346B2 (en) 2008-02-14 2018-02-27 Ethicon Llc Stapling assembly
US10765432B2 (en) 2008-02-14 2020-09-08 Ethicon Llc Surgical device including a control system
US10542974B2 (en) 2008-02-14 2020-01-28 Ethicon Llc Surgical instrument including a control system
US10206676B2 (en) 2008-02-14 2019-02-19 Ethicon Llc Surgical cutting and fastening instrument
US10888329B2 (en) 2008-02-14 2021-01-12 Ethicon Llc Detachable motor powered surgical instrument
US10779822B2 (en) 2008-02-14 2020-09-22 Ethicon Llc System including a surgical cutting and fastening instrument
US10238387B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument comprising a control system
US10238385B2 (en) 2008-02-14 2019-03-26 Ethicon Llc Surgical instrument system for evaluating tissue impedance
US11154297B2 (en) 2008-02-15 2021-10-26 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US9839429B2 (en) 2008-02-15 2017-12-12 Ethicon Endo-Surgery, Llc Stapling system comprising a lockout
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
US10835250B2 (en) 2008-02-15 2020-11-17 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US9913647B2 (en) 2008-02-15 2018-03-13 Ethicon Llc Disposable loading unit for use with a surgical instrument
US10058327B2 (en) 2008-02-15 2018-08-28 Ethicon Llc End effector coupling arrangements for a surgical cutting and stapling instrument
US10856866B2 (en) 2008-02-15 2020-12-08 Ethicon Llc Surgical end effector having buttress retention features
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11058418B2 (en) 2008-02-15 2021-07-13 Cilag Gmbh International Surgical end effector having buttress retention features
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8779648B2 (en) 2008-08-06 2014-07-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9504855B2 (en) 2008-08-06 2016-11-29 Ethicon Surgery, LLC Devices and techniques for cutting and coagulating tissue
US10022568B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10022567B2 (en) 2008-08-06 2018-07-17 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US11890491B2 (en) 2008-08-06 2024-02-06 Cilag Gmbh International Devices and techniques for cutting and coagulating tissue
US9795808B2 (en) 2008-08-06 2017-10-24 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US10335614B2 (en) 2008-08-06 2019-07-02 Ethicon Llc Devices and techniques for cutting and coagulating tissue
US11123071B2 (en) 2008-09-19 2021-09-21 Cilag Gmbh International Staple cartridge for us with a surgical instrument
US10258336B2 (en) 2008-09-19 2019-04-16 Ethicon Llc Stapling system configured to produce different formed staple heights
US9289210B2 (en) 2008-09-19 2016-03-22 Ethicon Endo-Surgery, Llc Surgical stapler with apparatus for adjusting staple height
US10105136B2 (en) 2008-09-23 2018-10-23 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11517304B2 (en) 2008-09-23 2022-12-06 Cilag Gmbh International Motor-driven surgical cutting instrument
US11871923B2 (en) 2008-09-23 2024-01-16 Cilag Gmbh International Motorized surgical instrument
US10130361B2 (en) 2008-09-23 2018-11-20 Ethicon Llc Robotically-controller motorized surgical tool with an end effector
US9655614B2 (en) 2008-09-23 2017-05-23 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument with an end effector
US10485537B2 (en) 2008-09-23 2019-11-26 Ethicon Llc Motorized surgical instrument
US10456133B2 (en) 2008-09-23 2019-10-29 Ethicon Llc Motorized surgical instrument
US10980535B2 (en) 2008-09-23 2021-04-20 Ethicon Llc Motorized surgical instrument with an end effector
US11406380B2 (en) 2008-09-23 2022-08-09 Cilag Gmbh International Motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10898184B2 (en) 2008-09-23 2021-01-26 Ethicon Llc Motor-driven surgical cutting instrument
US11684361B2 (en) 2008-09-23 2023-06-27 Cilag Gmbh International Motor-driven surgical cutting instrument
US10238389B2 (en) 2008-09-23 2019-03-26 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11045189B2 (en) 2008-09-23 2021-06-29 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10736628B2 (en) 2008-09-23 2020-08-11 Ethicon Llc Motor-driven surgical cutting instrument
US11103241B2 (en) 2008-09-23 2021-08-31 Cilag Gmbh International Motor-driven surgical cutting instrument
US11812954B2 (en) 2008-09-23 2023-11-14 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US10420549B2 (en) 2008-09-23 2019-09-24 Ethicon Llc Motorized surgical instrument
US10045778B2 (en) 2008-09-23 2018-08-14 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11617576B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US10765425B2 (en) 2008-09-23 2020-09-08 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US11617575B2 (en) 2008-09-23 2023-04-04 Cilag Gmbh International Motor-driven surgical cutting instrument
US11730477B2 (en) 2008-10-10 2023-08-22 Cilag Gmbh International Powered surgical system with manually retractable firing system
US10932778B2 (en) 2008-10-10 2021-03-02 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US10149683B2 (en) 2008-10-10 2018-12-11 Ethicon Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11583279B2 (en) 2008-10-10 2023-02-21 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US9370364B2 (en) 2008-10-10 2016-06-21 Ethicon Endo-Surgery, Llc Powered surgical cutting and stapling apparatus with manually retractable firing system
US11793521B2 (en) 2008-10-10 2023-10-24 Cilag Gmbh International Powered surgical cutting and stapling apparatus with manually retractable firing system
US10758233B2 (en) 2009-02-05 2020-09-01 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US11129615B2 (en) 2009-02-05 2021-09-28 Cilag Gmbh International Surgical stapling system
US9393015B2 (en) 2009-02-06 2016-07-19 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with cutting member reversing mechanism
US10420550B2 (en) 2009-02-06 2019-09-24 Ethicon Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US9486214B2 (en) 2009-02-06 2016-11-08 Ethicon Endo-Surgery, Llc Motor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US10709906B2 (en) 2009-05-20 2020-07-14 Ethicon Llc Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US9498245B2 (en) 2009-06-24 2016-11-22 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US11717706B2 (en) 2009-07-15 2023-08-08 Cilag Gmbh International Ultrasonic surgical instruments
US9764164B2 (en) 2009-07-15 2017-09-19 Ethicon Llc Ultrasonic surgical instruments
US10688321B2 (en) 2009-07-15 2020-06-23 Ethicon Llc Ultrasonic surgical instruments
US10265117B2 (en) 2009-10-09 2019-04-23 Ethicon Llc Surgical generator method for controlling and ultrasonic transducer waveform for ultrasonic and electrosurgical devices
US9623237B2 (en) 2009-10-09 2017-04-18 Ethicon Endo-Surgery, Llc Surgical generator for ultrasonic and electrosurgical devices
US10201382B2 (en) 2009-10-09 2019-02-12 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10263171B2 (en) 2009-10-09 2019-04-16 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10172669B2 (en) 2009-10-09 2019-01-08 Ethicon Llc Surgical instrument comprising an energy trigger lockout
US11871982B2 (en) 2009-10-09 2024-01-16 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US10751076B2 (en) 2009-12-24 2020-08-25 Ethicon Llc Motor-driven surgical cutting instrument with electric actuator directional control assembly
US11291449B2 (en) 2009-12-24 2022-04-05 Cilag Gmbh International Surgical cutting instrument that analyzes tissue thickness
US9307987B2 (en) 2009-12-24 2016-04-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument that analyzes tissue thickness
US9585660B2 (en) 2010-01-07 2017-03-07 Ethicon Endo-Surgery, Llc Method for testing a surgical tool
US10299810B2 (en) 2010-02-11 2019-05-28 Ethicon Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9510850B2 (en) 2010-02-11 2016-12-06 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments
US9848901B2 (en) 2010-02-11 2017-12-26 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US9962182B2 (en) 2010-02-11 2018-05-08 Ethicon Llc Ultrasonic surgical instruments with moving cutting implement
US10117667B2 (en) 2010-02-11 2018-11-06 Ethicon Llc Control systems for ultrasonically powered surgical instruments
US9649126B2 (en) 2010-02-11 2017-05-16 Ethicon Endo-Surgery, Llc Seal arrangements for ultrasonically powered surgical instruments
US10835768B2 (en) 2010-02-11 2020-11-17 Ethicon Llc Dual purpose surgical instrument for cutting and coagulating tissue
US11382642B2 (en) 2010-02-11 2022-07-12 Cilag Gmbh International Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US9427249B2 (en) 2010-02-11 2016-08-30 Ethicon Endo-Surgery, Llc Rotatable cutting implements with friction reducing material for ultrasonic surgical instruments
US11369402B2 (en) 2010-02-11 2022-06-28 Cilag Gmbh International Control systems for ultrasonically powered surgical instruments
US9107689B2 (en) 2010-02-11 2015-08-18 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US9808308B2 (en) 2010-04-12 2017-11-07 Ethicon Llc Electrosurgical cutting and sealing instruments with cam-actuated jaws
US9456864B2 (en) 2010-05-17 2016-10-04 Ethicon Endo-Surgery, Llc Surgical instruments and end effectors therefor
US9707027B2 (en) 2010-05-21 2017-07-18 Ethicon Endo-Surgery, Llc Medical device
US11090103B2 (en) 2010-05-21 2021-08-17 Cilag Gmbh International Medical device
US10278721B2 (en) 2010-07-22 2019-05-07 Ethicon Llc Electrosurgical instrument with separate closure and cutting members
US10524854B2 (en) 2010-07-23 2020-01-07 Ethicon Llc Surgical instrument
US10470770B2 (en) 2010-07-30 2019-11-12 Ethicon Llc Circular surgical fastening devices with tissue acquisition arrangements
US11478247B2 (en) 2010-07-30 2022-10-25 Cilag Gmbh International Tissue acquisition arrangements and methods for surgical stapling devices
US9597075B2 (en) 2010-07-30 2017-03-21 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9232945B2 (en) 2010-09-09 2016-01-12 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
US10675035B2 (en) 2010-09-09 2020-06-09 Ethicon Llc Surgical stapling head assembly with firing lockout for a surgical stapler
US11471138B2 (en) 2010-09-17 2022-10-18 Cilag Gmbh International Power control arrangements for surgical instruments and batteries
US10188393B2 (en) 2010-09-17 2019-01-29 Ethicon Llc Surgical instrument battery comprising a plurality of cells
US10492787B2 (en) 2010-09-17 2019-12-03 Ethicon Llc Orientable battery for a surgical instrument
US10039529B2 (en) 2010-09-17 2018-08-07 Ethicon Llc Power control arrangements for surgical instruments and batteries
US10595835B2 (en) 2010-09-17 2020-03-24 Ethicon Llc Surgical instrument comprising a removable battery
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US10130363B2 (en) 2010-09-29 2018-11-20 Ethicon Llc Staple cartridge
US11571213B2 (en) 2010-09-29 2023-02-07 Cilag Gmbh International Staple cartridge
US9131940B2 (en) 2010-09-29 2015-09-15 Ethicon Endo-Surgery, Inc. Staple cartridge
US10898191B2 (en) 2010-09-29 2021-01-26 Ethicon Llc Fastener cartridge
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US10213198B2 (en) 2010-09-30 2019-02-26 Ethicon Llc Actuator for releasing a tissue thickness compensator from a fastener cartridge
US10149682B2 (en) 2010-09-30 2018-12-11 Ethicon Llc Stapling system including an actuation system
US10335148B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge including a tissue thickness compensator for a surgical stapler
US10869669B2 (en) 2010-09-30 2020-12-22 Ethicon Llc Surgical instrument assembly
US10136890B2 (en) 2010-09-30 2018-11-27 Ethicon Llc Staple cartridge comprising a variable thickness compressible portion
US11395651B2 (en) 2010-09-30 2022-07-26 Cilag Gmbh International Adhesive film laminate
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US10588623B2 (en) 2010-09-30 2020-03-17 Ethicon Llc Adhesive film laminate
US9358005B2 (en) 2010-09-30 2016-06-07 Ethicon Endo-Surgery, Llc End effector layer including holding features
US9848875B2 (en) 2010-09-30 2017-12-26 Ethicon Llc Anvil layer attached to a proximal end of an end effector
US11540824B2 (en) 2010-09-30 2023-01-03 Cilag Gmbh International Tissue thickness compensator
US10624861B2 (en) 2010-09-30 2020-04-21 Ethicon Llc Tissue thickness compensator configured to redistribute compressive forces
US8978954B2 (en) 2010-09-30 2015-03-17 Ethicon Endo-Surgery, Inc. Staple cartridge comprising an adjustable distal portion
US9592053B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc Staple cartridge comprising multiple regions
US9220500B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising structure to produce a resilient load
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9480476B2 (en) 2010-09-30 2016-11-01 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising resilient members
US11684360B2 (en) 2010-09-30 2023-06-27 Cilag Gmbh International Staple cartridge comprising a variable thickness compressible portion
US11559496B2 (en) 2010-09-30 2023-01-24 Cilag Gmbh International Tissue thickness compensator configured to redistribute compressive forces
US10182819B2 (en) 2010-09-30 2019-01-22 Ethicon Llc Implantable layer assemblies
US9592050B2 (en) 2010-09-30 2017-03-14 Ethicon Endo-Surgery, Llc End effector comprising a distal tissue abutment member
US11672536B2 (en) 2010-09-30 2023-06-13 Cilag Gmbh International Layer of material for a surgical end effector
US11571215B2 (en) 2010-09-30 2023-02-07 Cilag Gmbh International Layer of material for a surgical end effector
US10987102B2 (en) 2010-09-30 2021-04-27 Ethicon Llc Tissue thickness compensator comprising a plurality of layers
US10548600B2 (en) 2010-09-30 2020-02-04 Ethicon Llc Multiple thickness implantable layers for surgical stapling devices
US10743877B2 (en) 2010-09-30 2020-08-18 Ethicon Llc Surgical stapler with floating anvil
US10335150B2 (en) 2010-09-30 2019-07-02 Ethicon Llc Staple cartridge comprising an implantable layer
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10888328B2 (en) 2010-09-30 2021-01-12 Ethicon Llc Surgical end effector
US10194910B2 (en) 2010-09-30 2019-02-05 Ethicon Llc Stapling assemblies comprising a layer
US11583277B2 (en) 2010-09-30 2023-02-21 Cilag Gmbh International Layer of material for a surgical end effector
US9801634B2 (en) 2010-09-30 2017-10-31 Ethicon Llc Tissue thickness compensator for a surgical stapler
US9307965B2 (en) 2010-09-30 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-microbial agent
US9572574B2 (en) 2010-09-30 2017-02-21 Ethicon Endo-Surgery, Llc Tissue thickness compensators comprising therapeutic agents
US9301752B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising a plurality of capsules
US9844372B2 (en) 2010-09-30 2017-12-19 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US10835251B2 (en) 2010-09-30 2020-11-17 Ethicon Llc Surgical instrument assembly including an end effector configurable in different positions
US9924947B2 (en) 2010-09-30 2018-03-27 Ethicon Llc Staple cartridge comprising a compressible portion
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US11911027B2 (en) 2010-09-30 2024-02-27 Cilag Gmbh International Adhesive film laminate
US11602340B2 (en) 2010-09-30 2023-03-14 Cilag Gmbh International Adhesive film laminate
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9795383B2 (en) 2010-09-30 2017-10-24 Ethicon Llc Tissue thickness compensator comprising resilient members
US11857187B2 (en) 2010-09-30 2024-01-02 Cilag Gmbh International Tissue thickness compensator comprising controlled release and expansion
US10405854B2 (en) 2010-09-30 2019-09-10 Ethicon Llc Surgical stapling cartridge with layer retention features
US9615826B2 (en) 2010-09-30 2017-04-11 Ethicon Endo-Surgery, Llc Multiple thickness implantable layers for surgical stapling devices
US10028743B2 (en) 2010-09-30 2018-07-24 Ethicon Llc Staple cartridge assembly comprising an implantable layer
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US9833238B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Retainer assembly including a tissue thickness compensator
US10898193B2 (en) 2010-09-30 2021-01-26 Ethicon Llc End effector for use with a surgical instrument
US10363031B2 (en) 2010-09-30 2019-07-30 Ethicon Llc Tissue thickness compensators for surgical staplers
US11406377B2 (en) 2010-09-30 2022-08-09 Cilag Gmbh International Adhesive film laminate
US10485536B2 (en) 2010-09-30 2019-11-26 Ethicon Llc Tissue stapler having an anti-microbial agent
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9826978B2 (en) 2010-09-30 2017-11-28 Ethicon Llc End effectors with same side closure and firing motions
US11850310B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge including an adjunct
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9320518B2 (en) 2010-09-30 2016-04-26 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an oxygen generating agent
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US11154296B2 (en) 2010-09-30 2021-10-26 Cilag Gmbh International Anvil layer attached to a proximal end of an end effector
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US10398436B2 (en) 2010-09-30 2019-09-03 Ethicon Llc Staple cartridge comprising staples positioned within a compressible portion thereof
US10064624B2 (en) 2010-09-30 2018-09-04 Ethicon Llc End effector with implantable layer
US8893949B2 (en) 2010-09-30 2014-11-25 Ethicon Endo-Surgery, Inc. Surgical stapler with floating anvil
US10258330B2 (en) 2010-09-30 2019-04-16 Ethicon Llc End effector including an implantable arrangement
US10258332B2 (en) 2010-09-30 2019-04-16 Ethicon Llc Stapling system comprising an adjunct and a flowable adhesive
US9833236B2 (en) 2010-09-30 2017-12-05 Ethicon Llc Tissue thickness compensator for surgical staplers
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9345477B2 (en) 2010-09-30 2016-05-24 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US9272406B2 (en) 2010-09-30 2016-03-01 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US11737754B2 (en) 2010-09-30 2023-08-29 Cilag Gmbh International Surgical stapler with floating anvil
US10265074B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Implantable layers for surgical stapling devices
US9808247B2 (en) 2010-09-30 2017-11-07 Ethicon Llc Stapling system comprising implantable layers
US9833242B2 (en) 2010-09-30 2017-12-05 Ethicon Endo-Surgery, Llc Tissue thickness compensators
US10463372B2 (en) 2010-09-30 2019-11-05 Ethicon Llc Staple cartridge comprising multiple regions
US10265072B2 (en) 2010-09-30 2019-04-23 Ethicon Llc Surgical stapling system comprising an end effector including an implantable layer
US11883025B2 (en) 2010-09-30 2024-01-30 Cilag Gmbh International Tissue thickness compensator comprising a plurality of layers
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US11083452B2 (en) 2010-09-30 2021-08-10 Cilag Gmbh International Staple cartridge including a tissue thickness compensator
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9883861B2 (en) 2010-09-30 2018-02-06 Ethicon Llc Retainer assembly including a tissue thickness compensator
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9814462B2 (en) 2010-09-30 2017-11-14 Ethicon Llc Assembly for fastening tissue comprising a compressible layer
US11529142B2 (en) 2010-10-01 2022-12-20 Cilag Gmbh International Surgical instrument having a power control circuit
US10695062B2 (en) 2010-10-01 2020-06-30 Ethicon Llc Surgical instrument including a retractable firing member
US9687236B2 (en) 2010-10-01 2017-06-27 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9707030B2 (en) 2010-10-01 2017-07-18 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US9554846B2 (en) 2010-10-01 2017-01-31 Ethicon Endo-Surgery, Llc Surgical instrument with jaw member
US9125654B2 (en) 2011-03-14 2015-09-08 Ethicon Endo-Surgery, Inc. Multiple part anvil assemblies for circular surgical stapling devices
US9980713B2 (en) 2011-03-14 2018-05-29 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US10045769B2 (en) 2011-03-14 2018-08-14 Ethicon Llc Circular surgical staplers with foldable anvil assemblies
US9033204B2 (en) 2011-03-14 2015-05-19 Ethicon Endo-Surgery, Inc. Circular stapling devices with tissue-puncturing anvil features
US10898177B2 (en) 2011-03-14 2021-01-26 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US9113884B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Modular surgical tool systems
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
US9113883B2 (en) 2011-03-14 2015-08-25 Ethicon Endo-Surgery, Inc. Collapsible anvil plate assemblies for circular surgical stapling devices
US11864747B2 (en) 2011-03-14 2024-01-09 Cilag Gmbh International Anvil assemblies for circular staplers
US11478238B2 (en) 2011-03-14 2022-10-25 Cilag Gmbh International Anvil assemblies with collapsible frames for circular staplers
US10130352B2 (en) 2011-03-14 2018-11-20 Ethicon Llc Surgical bowel retractor devices
US10751040B2 (en) 2011-03-14 2020-08-25 Ethicon Llc Anvil assemblies with collapsible frames for circular staplers
US10588612B2 (en) 2011-03-14 2020-03-17 Ethicon Llc Collapsible anvil plate assemblies for circular surgical stapling devices
US10987094B2 (en) 2011-03-14 2021-04-27 Ethicon Llc Surgical bowel retractor devices
US8978955B2 (en) 2011-03-14 2015-03-17 Ethicon Endo-Surgery, Inc. Anvil assemblies with collapsible frames for circular staplers
US9918704B2 (en) 2011-03-14 2018-03-20 Ethicon Llc Surgical instrument
US9211122B2 (en) 2011-03-14 2015-12-15 Ethicon Endo-Surgery, Inc. Surgical access devices with anvil introduction and specimen retrieval structures
US9974529B2 (en) 2011-03-14 2018-05-22 Ethicon Llc Surgical instrument
US11504116B2 (en) 2011-04-29 2022-11-22 Cilag Gmbh International Layer of material for a surgical end effector
US9351730B2 (en) 2011-04-29 2016-05-31 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising channels
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US10117652B2 (en) 2011-04-29 2018-11-06 Ethicon Llc End effector comprising a tissue thickness compensator and progressively released attachment members
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US10736634B2 (en) 2011-05-27 2020-08-11 Ethicon Llc Robotically-driven surgical instrument including a drive system
US9913648B2 (en) 2011-05-27 2018-03-13 Ethicon Endo-Surgery, Llc Surgical system
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US10524790B2 (en) 2011-05-27 2020-01-07 Ethicon Llc Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10383633B2 (en) 2011-05-27 2019-08-20 Ethicon Llc Robotically-driven surgical assembly
US11612394B2 (en) 2011-05-27 2023-03-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US10231794B2 (en) 2011-05-27 2019-03-19 Ethicon Llc Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9775614B2 (en) 2011-05-27 2017-10-03 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotatable staple deployment arrangements
US10071452B2 (en) 2011-05-27 2018-09-11 Ethicon Llc Automated end effector component reloading system for use with a robotic system
US11266410B2 (en) 2011-05-27 2022-03-08 Cilag Gmbh International Surgical device for use with a robotic system
US11583278B2 (en) 2011-05-27 2023-02-21 Cilag Gmbh International Surgical stapling system having multi-direction articulation
US10813641B2 (en) 2011-05-27 2020-10-27 Ethicon Llc Robotically-driven surgical instrument
US10335151B2 (en) 2011-05-27 2019-07-02 Ethicon Llc Robotically-driven surgical instrument
US10617420B2 (en) 2011-05-27 2020-04-14 Ethicon Llc Surgical system comprising drive systems
US11129616B2 (en) 2011-05-27 2021-09-28 Cilag Gmbh International Surgical stapling system
US10426478B2 (en) 2011-05-27 2019-10-01 Ethicon Llc Surgical stapling systems
US10130366B2 (en) 2011-05-27 2018-11-20 Ethicon Llc Automated reloading devices for replacing used end effectors on robotic surgical systems
US10420561B2 (en) 2011-05-27 2019-09-24 Ethicon Llc Robotically-driven surgical instrument
US10485546B2 (en) 2011-05-27 2019-11-26 Ethicon Llc Robotically-driven surgical assembly
US10980534B2 (en) 2011-05-27 2021-04-20 Ethicon Llc Robotically-controlled motorized surgical instrument with an end effector
US9271799B2 (en) 2011-05-27 2016-03-01 Ethicon Endo-Surgery, Llc Robotic surgical system with removable motor housing
US11439470B2 (en) 2011-05-27 2022-09-13 Cilag Gmbh International Robotically-controlled surgical instrument with selectively articulatable end effector
US10004506B2 (en) 2011-05-27 2018-06-26 Ethicon Llc Surgical system
US10780539B2 (en) 2011-05-27 2020-09-22 Ethicon Llc Stapling instrument for use with a robotic system
US10433900B2 (en) 2011-07-22 2019-10-08 Ethicon Llc Surgical instruments for tensioning tissue
US10166060B2 (en) 2011-08-30 2019-01-01 Ethicon Llc Surgical instruments comprising a trigger assembly
US8789739B2 (en) 2011-09-06 2014-07-29 Ethicon Endo-Surgery, Inc. Continuous stapling instrument
US8833632B2 (en) 2011-09-06 2014-09-16 Ethicon Endo-Surgery, Inc. Firing member displacement system for a stapling instrument
US9592054B2 (en) 2011-09-23 2017-03-14 Ethicon Endo-Surgery, Llc Surgical stapler with stationary staple drivers
US9687237B2 (en) 2011-09-23 2017-06-27 Ethicon Endo-Surgery, Llc Staple cartridge including collapsible deck arrangement
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US10779876B2 (en) 2011-10-24 2020-09-22 Ethicon Llc Battery powered surgical instrument
US9232979B2 (en) 2012-02-10 2016-01-12 Ethicon Endo-Surgery, Inc. Robotically controlled surgical instrument
US10729494B2 (en) 2012-02-10 2020-08-04 Ethicon Llc Robotically controlled surgical instrument
US9925003B2 (en) 2012-02-10 2018-03-27 Ethicon Endo-Surgery, Llc Robotically controlled surgical instrument
US10695063B2 (en) 2012-02-13 2020-06-30 Ethicon Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9730697B2 (en) 2012-02-13 2017-08-15 Ethicon Endo-Surgery, Llc Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US9078653B2 (en) 2012-03-26 2015-07-14 Ethicon Endo-Surgery, Inc. Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US10166025B2 (en) 2012-03-26 2019-01-01 Ethicon Llc Surgical stapling device with lockout system for preventing actuation in the absence of an installed staple cartridge
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9918716B2 (en) 2012-03-28 2018-03-20 Ethicon Llc Staple cartridge comprising implantable layers
US10667808B2 (en) 2012-03-28 2020-06-02 Ethicon Llc Staple cartridge comprising an absorbable adjunct
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11793509B2 (en) 2012-03-28 2023-10-24 Cilag Gmbh International Staple cartridge including an implantable layer
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US11406378B2 (en) 2012-03-28 2022-08-09 Cilag Gmbh International Staple cartridge comprising a compressible tissue thickness compensator
US9724098B2 (en) 2012-03-28 2017-08-08 Ethicon Endo-Surgery, Llc Staple cartridge comprising an implantable layer
US9314247B2 (en) 2012-03-28 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating a hydrophilic agent
US9974538B2 (en) 2012-03-28 2018-05-22 Ethicon Llc Staple cartridge comprising a compressible layer
US10441285B2 (en) 2012-03-28 2019-10-15 Ethicon Llc Tissue thickness compensator comprising tissue ingrowth features
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9700343B2 (en) 2012-04-09 2017-07-11 Ethicon Endo-Surgery, Llc Devices and techniques for cutting and coagulating tissue
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US11419626B2 (en) 2012-04-09 2022-08-23 Cilag Gmbh International Switch arrangements for ultrasonic surgical instruments
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US10517627B2 (en) 2012-04-09 2019-12-31 Ethicon Llc Switch arrangements for ultrasonic surgical instruments
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US10064621B2 (en) 2012-06-15 2018-09-04 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US10959725B2 (en) 2012-06-15 2021-03-30 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US11707273B2 (en) 2012-06-15 2023-07-25 Cilag Gmbh International Articulatable surgical instrument comprising a firing drive
US10390824B2 (en) 2012-06-19 2019-08-27 Covidien Lp Apparatus for endoscopic procedures
US20130334281A1 (en) * 2012-06-19 2013-12-19 Covidien Lp Apparatus for endoscopic procedures
US9364220B2 (en) * 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US11006953B2 (en) 2012-06-19 2021-05-18 Covidien Lp Apparatus for endoscopic procedures
US11523859B2 (en) 2012-06-28 2022-12-13 Cilag Gmbh International Surgical instrument assembly including a removably attachable end effector
US11534162B2 (en) 2012-06-28 2022-12-27 Cilag GmbH Inlernational Robotically powered surgical device with manually-actuatable reversing system
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US11857189B2 (en) 2012-06-28 2024-01-02 Cilag Gmbh International Surgical instrument including first and second articulation joints
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11779420B2 (en) 2012-06-28 2023-10-10 Cilag Gmbh International Robotic surgical attachments having manually-actuated retraction assemblies
US11141156B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Surgical stapling assembly comprising flexible output shaft
US11141155B2 (en) 2012-06-28 2021-10-12 Cilag Gmbh International Drive system for surgical tool
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US10987123B2 (en) 2012-06-28 2021-04-27 Ethicon Llc Surgical instruments with articulating shafts
US10383630B2 (en) 2012-06-28 2019-08-20 Ethicon Llc Surgical stapling device with rotary driven firing member
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US11154299B2 (en) 2012-06-28 2021-10-26 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11058423B2 (en) 2012-06-28 2021-07-13 Cilag Gmbh International Stapling system including first and second closure systems for use with a surgical robot
US11602346B2 (en) 2012-06-28 2023-03-14 Cilag Gmbh International Robotically powered surgical device with manually-actuatable reversing system
US11547465B2 (en) 2012-06-28 2023-01-10 Cilag Gmbh International Surgical end effector jaw and electrode configurations
US10874391B2 (en) 2012-06-28 2020-12-29 Ethicon Llc Surgical instrument system including replaceable end effectors
US10413294B2 (en) 2012-06-28 2019-09-17 Ethicon Llc Shaft assembly arrangements for surgical instruments
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9907620B2 (en) 2012-06-28 2018-03-06 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11540829B2 (en) 2012-06-28 2023-01-03 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10420555B2 (en) 2012-06-28 2019-09-24 Ethicon Llc Hand held rotary powered surgical instruments with end effectors that are articulatable about multiple axes
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
US11109860B2 (en) 2012-06-28 2021-09-07 Cilag Gmbh International Surgical end effectors for use with hand-held and robotically-controlled rotary powered surgical systems
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
US11622766B2 (en) 2012-06-28 2023-04-11 Cilag Gmbh International Empty clip cartridge lockout
US11464513B2 (en) 2012-06-28 2022-10-11 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10687812B2 (en) 2012-06-28 2020-06-23 Ethicon Llc Surgical instrument system including replaceable end effectors
US11039837B2 (en) 2012-06-28 2021-06-22 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
US10485541B2 (en) 2012-06-28 2019-11-26 Ethicon Llc Robotically powered surgical device with manually-actuatable reversing system
US11083457B2 (en) 2012-06-28 2021-08-10 Cilag Gmbh International Surgical instrument system including replaceable end effectors
US10639115B2 (en) 2012-06-28 2020-05-05 Ethicon Llc Surgical end effectors having angled tissue-contacting surfaces
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US10258333B2 (en) 2012-06-28 2019-04-16 Ethicon Llc Surgical fastening apparatus with a rotary end effector drive shaft for selective engagement with a motorized drive system
US11510671B2 (en) 2012-06-28 2022-11-29 Cilag Gmbh International Firing system lockout arrangements for surgical instruments
US11241230B2 (en) 2012-06-28 2022-02-08 Cilag Gmbh International Clip applier tool for use with a robotic surgical system
US11806013B2 (en) 2012-06-28 2023-11-07 Cilag Gmbh International Firing system arrangements for surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US11839420B2 (en) 2012-06-28 2023-12-12 Cilag Gmbh International Stapling assembly comprising a firing member push tube
US10932775B2 (en) 2012-06-28 2021-03-02 Ethicon Llc Firing system lockout arrangements for surgical instruments
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US11007004B2 (en) 2012-06-28 2021-05-18 Ethicon Llc Powered multi-axial articulable electrosurgical device with external dissection features
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9737326B2 (en) 2012-06-29 2017-08-22 Ethicon Endo-Surgery, Llc Haptic feedback devices for surgical robot
US10966747B2 (en) 2012-06-29 2021-04-06 Ethicon Llc Haptic feedback devices for surgical robot
US10993763B2 (en) 2012-06-29 2021-05-04 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US10335183B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Feedback devices for surgical control systems
US10543008B2 (en) 2012-06-29 2020-01-28 Ethicon Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10335182B2 (en) 2012-06-29 2019-07-02 Ethicon Llc Surgical instruments with articulating shafts
US11871955B2 (en) 2012-06-29 2024-01-16 Cilag Gmbh International Surgical instruments with articulating shafts
US10779845B2 (en) 2012-06-29 2020-09-22 Ethicon Llc Ultrasonic surgical instruments with distally positioned transducers
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US11602371B2 (en) 2012-06-29 2023-03-14 Cilag Gmbh International Ultrasonic surgical instruments with control mechanisms
US10842580B2 (en) 2012-06-29 2020-11-24 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US10398497B2 (en) 2012-06-29 2019-09-03 Ethicon Llc Lockout mechanism for use with robotic electrosurgical device
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9713507B2 (en) 2012-06-29 2017-07-25 Ethicon Endo-Surgery, Llc Closed feedback control for electrosurgical device
US11583306B2 (en) 2012-06-29 2023-02-21 Cilag Gmbh International Surgical instruments with articulating shafts
US11096752B2 (en) 2012-06-29 2021-08-24 Cilag Gmbh International Closed feedback control for electrosurgical device
US11717311B2 (en) 2012-06-29 2023-08-08 Cilag Gmbh International Surgical instruments with articulating shafts
US10524872B2 (en) 2012-06-29 2020-01-07 Ethicon Llc Closed feedback control for electrosurgical device
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US10441310B2 (en) 2012-06-29 2019-10-15 Ethicon Llc Surgical instruments with curved section
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US11426191B2 (en) 2012-06-29 2022-08-30 Cilag Gmbh International Ultrasonic surgical instruments with distally positioned jaw assemblies
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
US11373755B2 (en) 2012-08-23 2022-06-28 Cilag Gmbh International Surgical device drive system including a ratchet mechanism
US10881449B2 (en) 2012-09-28 2021-01-05 Ethicon Llc Multi-function bi-polar forceps
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US10201365B2 (en) * 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US11179173B2 (en) 2012-10-22 2021-11-23 Cilag Gmbh International Surgical instrument
US9795405B2 (en) 2012-10-22 2017-10-24 Ethicon Llc Surgical instrument
US20140114327A1 (en) * 2012-10-22 2014-04-24 Ethicon Endo-Surgery, Inc. Surgeon feedback sensing and display methods
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US11324527B2 (en) 2012-11-15 2022-05-10 Cilag Gmbh International Ultrasonic and electrosurgical devices
US11712243B2 (en) 2013-01-14 2023-08-01 Intuitive Surgical Operations, Inc. Clamping instrument
US9522003B2 (en) * 2013-01-14 2016-12-20 Intuitive Surgical Operations, Inc. Clamping instrument
US20140200612A1 (en) * 2013-01-14 2014-07-17 Intuitive Surgical Operations, Inc. Clamping instrument
US10327773B2 (en) 2013-01-14 2019-06-25 Intuitive Surgical Operations, Inc. Clamping instrument
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US10918364B2 (en) 2013-01-24 2021-02-16 Covidien Lp Intelligent adapter assembly for use with an electromechanical surgical system
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10575868B2 (en) 2013-03-01 2020-03-03 Ethicon Llc Surgical instrument with coupler assembly
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
US9782169B2 (en) 2013-03-01 2017-10-10 Ethicon Llc Rotary powered articulation joints for surgical instruments
US9468438B2 (en) 2013-03-01 2016-10-18 Eticon Endo-Surgery, LLC Sensor straightened end effector during removal through trocar
US9358003B2 (en) 2013-03-01 2016-06-07 Ethicon Endo-Surgery, Llc Electromechanical surgical device with signal relay arrangement
US11246618B2 (en) 2013-03-01 2022-02-15 Cilag Gmbh International Surgical instrument soft stop
US9326767B2 (en) 2013-03-01 2016-05-03 Ethicon Endo-Surgery, Llc Joystick switch assemblies for surgical instruments
US11529138B2 (en) 2013-03-01 2022-12-20 Cilag Gmbh International Powered surgical instrument including a rotary drive screw
US9700309B2 (en) 2013-03-01 2017-07-11 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9398911B2 (en) 2013-03-01 2016-07-26 Ethicon Endo-Surgery, Llc Rotary powered surgical instruments with multiple degrees of freedom
US10285695B2 (en) 2013-03-01 2019-05-14 Ethicon Llc Articulatable surgical instruments with conductive pathways
US10226249B2 (en) 2013-03-01 2019-03-12 Ethicon Llc Articulatable surgical instruments with conductive pathways for signal communication
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
US9345481B2 (en) 2013-03-13 2016-05-24 Ethicon Endo-Surgery, Llc Staple cartridge tissue thickness sensor system
US9351727B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Drive train control arrangements for modular surgical instruments
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US10617416B2 (en) 2013-03-14 2020-04-14 Ethicon Llc Control systems for surgical instruments
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US10238391B2 (en) 2013-03-14 2019-03-26 Ethicon Llc Drive train control arrangements for modular surgical instruments
US10470762B2 (en) 2013-03-14 2019-11-12 Ethicon Llc Multi-function motor for a surgical instrument
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US11266406B2 (en) 2013-03-14 2022-03-08 Cilag Gmbh International Control systems for surgical instruments
US10893867B2 (en) 2013-03-14 2021-01-19 Ethicon Llc Drive train control arrangements for modular surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9883860B2 (en) 2013-03-14 2018-02-06 Ethicon Llc Interchangeable shaft assemblies for use with a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9629623B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgery, Llc Drive system lockout arrangements for modular surgical instruments
US11272952B2 (en) 2013-03-14 2022-03-15 Cilag Gmbh International Mechanical fasteners for use with surgical energy devices
US9888919B2 (en) 2013-03-14 2018-02-13 Ethicon Llc Method and system for operating a surgical instrument
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
US9743947B2 (en) 2013-03-15 2017-08-29 Ethicon Endo-Surgery, Llc End effector with a clamp arm assembly and blade
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US11690615B2 (en) 2013-04-16 2023-07-04 Cilag Gmbh International Surgical system including an electric motor and a surgical instrument
US10702266B2 (en) 2013-04-16 2020-07-07 Ethicon Llc Surgical instrument system
US11622763B2 (en) 2013-04-16 2023-04-11 Cilag Gmbh International Stapling assembly comprising a shiftable drive
US9814460B2 (en) 2013-04-16 2017-11-14 Ethicon Llc Modular motor driven surgical instruments with status indication arrangements
US11406381B2 (en) 2013-04-16 2022-08-09 Cilag Gmbh International Powered surgical stapler
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
US10136887B2 (en) 2013-04-16 2018-11-27 Ethicon Llc Drive system decoupling arrangement for a surgical instrument
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US11633183B2 (en) 2013-04-16 2023-04-25 Cilag International GmbH Stapling assembly comprising a retraction drive
US10888318B2 (en) 2013-04-16 2021-01-12 Ethicon Llc Powered surgical stapler
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
US11395652B2 (en) 2013-04-16 2022-07-26 Cilag Gmbh International Powered surgical stapler
US11564679B2 (en) 2013-04-16 2023-01-31 Cilag Gmbh International Powered surgical stapler
US9801626B2 (en) 2013-04-16 2017-10-31 Ethicon Llc Modular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US10149680B2 (en) 2013-04-16 2018-12-11 Ethicon Llc Surgical instrument comprising a gap setting system
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
US11638581B2 (en) 2013-04-16 2023-05-02 Cilag Gmbh International Powered surgical stapler
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
US11000274B2 (en) 2013-08-23 2021-05-11 Ethicon Llc Powered surgical instrument
US11376001B2 (en) 2013-08-23 2022-07-05 Cilag Gmbh International Surgical stapling device with rotary multi-turn retraction mechanism
US11026680B2 (en) 2013-08-23 2021-06-08 Cilag Gmbh International Surgical instrument configured to operate in different states
US11389160B2 (en) 2013-08-23 2022-07-19 Cilag Gmbh International Surgical system comprising a display
US11504119B2 (en) 2013-08-23 2022-11-22 Cilag Gmbh International Surgical instrument including an electronic firing lockout
US9445813B2 (en) 2013-08-23 2016-09-20 Ethicon Endo-Surgery, Llc Closure indicator systems for surgical instruments
US9510828B2 (en) 2013-08-23 2016-12-06 Ethicon Endo-Surgery, Llc Conductor arrangements for electrically powered surgical instruments with rotatable end effectors
US10441281B2 (en) 2013-08-23 2019-10-15 Ethicon Llc surgical instrument including securing and aligning features
US11133106B2 (en) 2013-08-23 2021-09-28 Cilag Gmbh International Surgical instrument assembly comprising a retraction assembly
US11134940B2 (en) 2013-08-23 2021-10-05 Cilag Gmbh International Surgical instrument including a variable speed firing member
US9987006B2 (en) 2013-08-23 2018-06-05 Ethicon Llc Shroud retention arrangement for sterilizable surgical instruments
US10624634B2 (en) 2013-08-23 2020-04-21 Ethicon Llc Firing trigger lockout arrangements for surgical instruments
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
US11701110B2 (en) 2013-08-23 2023-07-18 Cilag Gmbh International Surgical instrument including a drive assembly movable in a non-motorized mode of operation
US10869665B2 (en) 2013-08-23 2020-12-22 Ethicon Llc Surgical instrument system including a control system
US10898190B2 (en) 2013-08-23 2021-01-26 Ethicon Llc Secondary battery arrangements for powered surgical instruments
US10201349B2 (en) 2013-08-23 2019-02-12 Ethicon Llc End effector detection and firing rate modulation systems for surgical instruments
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US11109858B2 (en) 2013-08-23 2021-09-07 Cilag Gmbh International Surgical instrument including a display which displays the position of a firing element
US10828032B2 (en) 2013-08-23 2020-11-10 Ethicon Llc End effector detection systems for surgical instruments
US9924942B2 (en) 2013-08-23 2018-03-27 Ethicon Llc Motor-powered articulatable surgical instruments
US9283054B2 (en) 2013-08-23 2016-03-15 Ethicon Endo-Surgery, Llc Interactive displays
US10925659B2 (en) 2013-09-13 2021-02-23 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
US9949788B2 (en) 2013-11-08 2018-04-24 Ethicon Endo-Surgery, Llc Electrosurgical devices
US10912603B2 (en) 2013-11-08 2021-02-09 Ethicon Llc Electrosurgical devices
US10912580B2 (en) 2013-12-16 2021-02-09 Ethicon Llc Medical device
US11033292B2 (en) 2013-12-16 2021-06-15 Cilag Gmbh International Medical device
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US11020109B2 (en) 2013-12-23 2021-06-01 Ethicon Llc Surgical stapling assembly for use with a powered surgical interface
US11583273B2 (en) 2013-12-23 2023-02-21 Cilag Gmbh International Surgical stapling system including a firing beam extending through an articulation region
US11896223B2 (en) 2013-12-23 2024-02-13 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US11026677B2 (en) 2013-12-23 2021-06-08 Cilag Gmbh International Surgical stapling assembly
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US11364028B2 (en) 2013-12-23 2022-06-21 Cilag Gmbh International Modular surgical system
US10925599B2 (en) 2013-12-23 2021-02-23 Ethicon Llc Modular surgical instruments
US10265065B2 (en) 2013-12-23 2019-04-23 Ethicon Llc Surgical staples and staple cartridges
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US11759201B2 (en) 2013-12-23 2023-09-19 Cilag Gmbh International Surgical stapling system comprising an end effector including an anvil with an anvil cap
US11246587B2 (en) 2013-12-23 2022-02-15 Cilag Gmbh International Surgical cutting and stapling instruments
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9763662B2 (en) 2013-12-23 2017-09-19 Ethicon Llc Fastener cartridge comprising a firing member configured to directly engage and eject fasteners from the fastener cartridge
US9549735B2 (en) 2013-12-23 2017-01-24 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a firing member including fastener transfer surfaces
US11123065B2 (en) 2013-12-23 2021-09-21 Cilag Gmbh International Surgical cutting and stapling instruments with independent jaw control features
US10588624B2 (en) 2013-12-23 2020-03-17 Ethicon Llc Surgical staples, staple cartridges and surgical end effectors
US9585662B2 (en) 2013-12-23 2017-03-07 Ethicon Endo-Surgery, Llc Fastener cartridge comprising an extendable firing member
US11779327B2 (en) 2013-12-23 2023-10-10 Cilag Gmbh International Surgical stapling system including a push bar
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
US10856929B2 (en) 2014-01-07 2020-12-08 Ethicon Llc Harvesting energy from a surgical generator
US11266473B2 (en) * 2014-01-24 2022-03-08 Koninklijke Philips N.V. Sensorless force control for transesophageal echocardiography probe
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US11020115B2 (en) 2014-02-12 2021-06-01 Cilag Gmbh International Deliverable surgical instrument
US10426481B2 (en) 2014-02-24 2019-10-01 Ethicon Llc Implantable layer assemblies
US9775608B2 (en) 2014-02-24 2017-10-03 Ethicon Llc Fastening system comprising a firing member lockout
US9839423B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for modifying the shape of the implantable layers for use with a surgical fastening instrument
US9693777B2 (en) 2014-02-24 2017-07-04 Ethicon Llc Implantable layers comprising a pressed region
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
US9757124B2 (en) 2014-02-24 2017-09-12 Ethicon Llc Implantable layer assemblies
US20190029766A1 (en) * 2014-03-17 2019-01-31 Intuitive Surgical Operations, Inc. Automated structure with pre-established arm positions in a teleoperated medical system
US20220361975A1 (en) * 2014-03-17 2022-11-17 Intuitive Surgical Operations, Inc. Latch release for surgical instrument
US10932873B2 (en) * 2014-03-17 2021-03-02 Intuitive Surgical Operations, Inc. Automated structure with pre-established arm positions in a teleoperated medical system
US11154374B2 (en) 2014-03-17 2021-10-26 Intuitive Surgical Operations, Inc. Guided setup for teleoperated medical device
US10973596B2 (en) 2014-03-17 2021-04-13 Intuitive Surgical Operations, Inc. System and method for breakaway clutching in an articulated arm
US11660154B2 (en) 2014-03-17 2023-05-30 Intuitive Surgical Operations, Inc. System and method for breakaway clutching in an articulated arm
US10034717B2 (en) 2014-03-17 2018-07-31 Intuitive Surgical Operations, Inc. System and method for breakaway clutching in an articulated arm
US11666400B2 (en) 2014-03-17 2023-06-06 Intuitive Surgical Operations, Inc. Automated structure with pre-established arm positions in a teleoperated medical system
US10449008B2 (en) 2014-03-17 2019-10-22 Intuitive Surgical Operations, Inc. System and method for breakaway clutching in an articulated arm
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
US10779879B2 (en) 2014-03-18 2020-09-22 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US10932847B2 (en) 2014-03-18 2021-03-02 Ethicon Llc Detecting short circuits in electrosurgical medical devices
US20170187048A1 (en) * 2014-03-20 2017-06-29 Versa Power Systems Ltd. Systems and methods for preventing chromium contamination of solid oxide fuel cells
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10136889B2 (en) 2014-03-26 2018-11-27 Ethicon Llc Systems and methods for controlling a segmented circuit
US10028761B2 (en) 2014-03-26 2018-07-24 Ethicon Llc Feedback algorithms for manual bailout systems for surgical instruments
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US11497488B2 (en) 2014-03-26 2022-11-15 Cilag Gmbh International Systems and methods for controlling a segmented circuit
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US10898185B2 (en) 2014-03-26 2021-01-26 Ethicon Llc Surgical instrument power management through sleep and wake up control
US10117653B2 (en) 2014-03-26 2018-11-06 Ethicon Llc Systems and methods for controlling a segmented circuit
US11259799B2 (en) 2014-03-26 2022-03-01 Cilag Gmbh International Interface systems for use with surgical instruments
US9690362B2 (en) 2014-03-26 2017-06-27 Ethicon Llc Surgical instrument control circuit having a safety processor
US9730695B2 (en) 2014-03-26 2017-08-15 Ethicon Endo-Surgery, Llc Power management through segmented circuit
US9750499B2 (en) 2014-03-26 2017-09-05 Ethicon Llc Surgical stapling instrument system
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
US9804618B2 (en) 2014-03-26 2017-10-31 Ethicon Llc Systems and methods for controlling a segmented circuit
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10863981B2 (en) 2014-03-26 2020-12-15 Ethicon Llc Interface systems for use with surgical instruments
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
US10588626B2 (en) 2014-03-26 2020-03-17 Ethicon Llc Surgical instrument displaying subsequent step of use
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US11399855B2 (en) 2014-03-27 2022-08-02 Cilag Gmbh International Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US10524852B1 (en) 2014-03-28 2020-01-07 Ethicon Llc Distal sealing end effector with spacers
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US10349999B2 (en) 2014-03-31 2019-07-16 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US11471209B2 (en) 2014-03-31 2022-10-18 Cilag Gmbh International Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
US11337747B2 (en) 2014-04-15 2022-05-24 Cilag Gmbh International Software algorithms for electrosurgical instruments
US11266409B2 (en) 2014-04-16 2022-03-08 Cilag Gmbh International Fastener cartridge comprising a sled including longitudinally-staggered ramps
US11517315B2 (en) 2014-04-16 2022-12-06 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US10010324B2 (en) 2014-04-16 2018-07-03 Ethicon Llc Fastener cartridge compromising fastener cavities including fastener control features
US11382627B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Surgical stapling assembly comprising a firing member including a lateral extension
US9844369B2 (en) 2014-04-16 2017-12-19 Ethicon Llc Surgical end effectors with firing element monitoring arrangements
US9833241B2 (en) 2014-04-16 2017-12-05 Ethicon Llc Surgical fastener cartridges with driver stabilizing arrangements
US9877721B2 (en) 2014-04-16 2018-01-30 Ethicon Llc Fastener cartridge comprising tissue control features
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
US11382625B2 (en) 2014-04-16 2022-07-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US11298134B2 (en) 2014-04-16 2022-04-12 Cilag Gmbh International Fastener cartridge comprising non-uniform fasteners
US11185330B2 (en) 2014-04-16 2021-11-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US11717294B2 (en) 2014-04-16 2023-08-08 Cilag Gmbh International End effector arrangements comprising indicators
US11596406B2 (en) 2014-04-16 2023-03-07 Cilag Gmbh International Fastener cartridges including extensions having different configurations
US11883026B2 (en) 2014-04-16 2024-01-30 Cilag Gmbh International Fastener cartridge assemblies and staple retainer cover arrangements
US10327776B2 (en) 2014-04-16 2019-06-25 Ethicon Llc Surgical stapling buttresses and adjunct materials
US10470768B2 (en) 2014-04-16 2019-11-12 Ethicon Llc Fastener cartridge including a layer attached thereto
US9757186B2 (en) 2014-04-17 2017-09-12 Ethicon Llc Device status feedback for bipolar tissue spacer
US11547410B2 (en) 2014-06-13 2023-01-10 Cilag Gmbh International Closure lockout systems for surgical instruments
US10729441B2 (en) 2014-06-13 2020-08-04 Ethicon Llc Closure lockout systems for surgical instruments
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US9700333B2 (en) 2014-06-30 2017-07-11 Ethicon Llc Surgical instrument with variable tissue compression
DE102014009891B4 (en) 2014-07-04 2022-05-05 Abb Schweiz Ag instrument
DE102014009891A1 (en) * 2014-07-04 2016-01-07 gomtec GmbH instrument
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
US11413060B2 (en) 2014-07-31 2022-08-16 Cilag Gmbh International Actuation mechanisms and load adjustment assemblies for surgical instruments
US9877776B2 (en) 2014-08-25 2018-01-30 Ethicon Llc Simultaneous I-beam and spring driven cam jaw closure mechanism
US10194976B2 (en) 2014-08-25 2019-02-05 Ethicon Llc Lockout disabling mechanism
US10194972B2 (en) 2014-08-26 2019-02-05 Ethicon Llc Managing tissue treatment
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
US11389162B2 (en) 2014-09-05 2022-07-19 Cilag Gmbh International Smart cartridge wake up operation and data retention
US11071545B2 (en) 2014-09-05 2021-07-27 Cilag Gmbh International Smart cartridge wake up operation and data retention
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
US10905423B2 (en) 2014-09-05 2021-02-02 Ethicon Llc Smart cartridge wake up operation and data retention
US9757128B2 (en) 2014-09-05 2017-09-12 Ethicon Llc Multiple sensors with one sensor affecting a second sensor's output or interpretation
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
US11717297B2 (en) 2014-09-05 2023-08-08 Cilag Gmbh International Smart cartridge wake up operation and data retention
US10135242B2 (en) 2014-09-05 2018-11-20 Ethicon Llc Smart cartridge wake up operation and data retention
US11406386B2 (en) 2014-09-05 2022-08-09 Cilag Gmbh International End effector including magnetic and impedance sensors
US11076854B2 (en) 2014-09-05 2021-08-03 Cilag Gmbh International Smart cartridge wake up operation and data retention
US9788836B2 (en) 2014-09-05 2017-10-17 Ethicon Llc Multiple motor control for powered medical device
US11653918B2 (en) 2014-09-05 2023-05-23 Cilag Gmbh International Local display of tissue parameter stabilization
US11284898B2 (en) 2014-09-18 2022-03-29 Cilag Gmbh International Surgical instrument including a deployable knife
US10426477B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Staple cartridge assembly including a ramp
US10751053B2 (en) 2014-09-26 2020-08-25 Ethicon Llc Fastener cartridges for applying expandable fastener lines
US9801627B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Fastener cartridge for creating a flexible staple line
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US11202633B2 (en) 2014-09-26 2021-12-21 Cilag Gmbh International Surgical stapling buttresses and adjunct materials
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10426476B2 (en) 2014-09-26 2019-10-01 Ethicon Llc Circular fastener cartridges for applying radially expandable fastener lines
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US10736630B2 (en) 2014-10-13 2020-08-11 Ethicon Llc Staple cartridge
US10751177B2 (en) * 2014-10-14 2020-08-25 St. Jude Medical, Cardiology Division, Inc. Flexible catheter and methods of forming same
US20160100942A1 (en) * 2014-10-14 2016-04-14 St. Jude Medical, Cardiology Division, Inc. Flexible catheter and methods of forming same
US11701114B2 (en) 2014-10-16 2023-07-18 Cilag Gmbh International Staple cartridge
US10052104B2 (en) 2014-10-16 2018-08-21 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11185325B2 (en) 2014-10-16 2021-11-30 Cilag Gmbh International End effector including different tissue gaps
US10905418B2 (en) 2014-10-16 2021-02-02 Ethicon Llc Staple cartridge comprising a tissue thickness compensator
US11241229B2 (en) 2014-10-29 2022-02-08 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11864760B2 (en) 2014-10-29 2024-01-09 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11457918B2 (en) 2014-10-29 2022-10-04 Cilag Gmbh International Cartridge assemblies for surgical staplers
US10617417B2 (en) 2014-11-06 2020-04-14 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US11337698B2 (en) 2014-11-06 2022-05-24 Cilag Gmbh International Staple cartridge comprising a releasable adjunct material
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US11382628B2 (en) 2014-12-10 2022-07-12 Cilag Gmbh International Articulatable surgical instrument system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US11571207B2 (en) 2014-12-18 2023-02-07 Cilag Gmbh International Surgical system including lateral supports for a flexible drive member
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10806448B2 (en) 2014-12-18 2020-10-20 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US11517311B2 (en) 2014-12-18 2022-12-06 Cilag Gmbh International Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11553911B2 (en) 2014-12-18 2023-01-17 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US11547404B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument assembly comprising a flexible articulation system
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US10743873B2 (en) 2014-12-18 2020-08-18 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11399831B2 (en) 2014-12-18 2022-08-02 Cilag Gmbh International Drive arrangements for articulatable surgical instruments
US11547403B2 (en) 2014-12-18 2023-01-10 Cilag Gmbh International Surgical instrument having a laminate firing actuator and lateral buckling supports
US11812958B2 (en) 2014-12-18 2023-11-14 Cilag Gmbh International Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10945728B2 (en) 2014-12-18 2021-03-16 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US11678877B2 (en) 2014-12-18 2023-06-20 Cilag Gmbh International Surgical instrument including a flexible support configured to support a flexible firing member
US10695058B2 (en) 2014-12-18 2020-06-30 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US11083453B2 (en) 2014-12-18 2021-08-10 Cilag Gmbh International Surgical stapling system including a flexible firing actuator and lateral buckling supports
US10159524B2 (en) 2014-12-22 2018-12-25 Ethicon Llc High power battery powered RF amplifier topology
US10751109B2 (en) 2014-12-22 2020-08-25 Ethicon Llc High power battery powered RF amplifier topology
US10092348B2 (en) 2014-12-22 2018-10-09 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US10111699B2 (en) 2014-12-22 2018-10-30 Ethicon Llc RF tissue sealer, shear grip, trigger lock mechanism and energy activation
US9848937B2 (en) 2014-12-22 2017-12-26 Ethicon Llc End effector with detectable configurations
US11311326B2 (en) 2015-02-06 2022-04-26 Cilag Gmbh International Electrosurgical instrument with rotation and articulation mechanisms
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US11324506B2 (en) 2015-02-27 2022-05-10 Cilag Gmbh International Modular stapling assembly
US11744588B2 (en) 2015-02-27 2023-09-05 Cilag Gmbh International Surgical stapling instrument including a removably attachable battery pack
US10226250B2 (en) 2015-02-27 2019-03-12 Ethicon Llc Modular stapling assembly
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10045779B2 (en) 2015-02-27 2018-08-14 Ethicon Llc Surgical instrument system comprising an inspection station
US9931118B2 (en) 2015-02-27 2018-04-03 Ethicon Endo-Surgery, Llc Reinforced battery for a surgical instrument
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US10159483B2 (en) 2015-02-27 2018-12-25 Ethicon Llc Surgical apparatus configured to track an end-of-life parameter
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10729432B2 (en) 2015-03-06 2020-08-04 Ethicon Llc Methods for operating a powered surgical instrument
US11826132B2 (en) 2015-03-06 2023-11-28 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US11109859B2 (en) 2015-03-06 2021-09-07 Cilag Gmbh International Surgical instrument comprising a lockable battery housing
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10524787B2 (en) 2015-03-06 2020-01-07 Ethicon Llc Powered surgical instrument with parameter-based firing rate
US10772625B2 (en) 2015-03-06 2020-09-15 Ethicon Llc Signal and power communication system positioned on a rotatable shaft
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US11426160B2 (en) 2015-03-06 2022-08-30 Cilag Gmbh International Smart sensors with local signal processing
US10966627B2 (en) 2015-03-06 2021-04-06 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10531887B2 (en) 2015-03-06 2020-01-14 Ethicon Llc Powered surgical instrument including speed display
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11224423B2 (en) 2015-03-06 2022-01-18 Cilag Gmbh International Smart sensors with local signal processing
US10206605B2 (en) 2015-03-06 2019-02-19 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US11350843B2 (en) 2015-03-06 2022-06-07 Cilag Gmbh International Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US10433844B2 (en) 2015-03-31 2019-10-08 Ethicon Llc Surgical instrument with selectively disengageable threaded drive systems
US20160287250A1 (en) * 2015-03-31 2016-10-06 Ethicon Endo-Surgery, Llc Surgical instrument with progressive rotary drive systems
US10390825B2 (en) * 2015-03-31 2019-08-27 Ethicon Llc Surgical instrument with progressive rotary drive systems
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10314638B2 (en) 2015-04-07 2019-06-11 Ethicon Llc Articulating radio frequency (RF) tissue seal with articulating state sensing
US10117702B2 (en) 2015-04-10 2018-11-06 Ethicon Llc Surgical generator systems and related methods
US10130410B2 (en) 2015-04-17 2018-11-20 Ethicon Llc Electrosurgical instrument including a cutting member decouplable from a cutting member trigger
US9872725B2 (en) 2015-04-29 2018-01-23 Ethicon Llc RF tissue sealer with mode selection
US10874465B2 (en) * 2015-05-15 2020-12-29 Intuitive Surgical Operations, Inc. System and method for minimally invasive cutting instrument operation
JP2021074623A (en) * 2015-05-15 2021-05-20 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for minimally invasive cutting instrument operation
JP7022231B2 (en) 2015-05-15 2022-02-17 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Systems and methods for minimally invasive cutting instrument operation
JP7079217B2 (en) 2015-05-15 2022-06-01 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Systems and methods for minimally invasive cutting instrument operation
US11737836B2 (en) 2015-05-15 2023-08-29 Intuitive Surgical Operations, Inc. System and method for minimally invasive cutting instrument operation
JP2019122793A (en) * 2015-05-15 2019-07-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for minimally invasive cutting instrument operation
JP2018519010A (en) * 2015-05-15 2018-07-19 インテュイティブ サージカル オペレーションズ, インコーポレイテッド System and method for minimally invasive cutting instrument operation
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US11801046B2 (en) 2015-06-18 2023-10-31 Cilag Gmbh International Surgical instrument including an end effector with a viewing window
US11497489B2 (en) 2015-06-18 2022-11-15 Cilag Gmbh International Articulatable surgical instruments with proximal and distal shaft supports
US11903580B2 (en) 2015-06-18 2024-02-20 Cilag Gmbh International Surgical end effectors with positive jaw opening arrangements
US11730470B2 (en) 2015-06-18 2023-08-22 Cilag Gmbh International Surgical end effectors with positive jaw opening arrangements
US10182818B2 (en) * 2015-06-18 2019-01-22 Ethicon Llc Surgical end effectors with positive jaw opening arrangements
US11744578B2 (en) 2015-06-18 2023-09-05 Cilag Gmbh International Surgical instrument including a firing member having a plurality of layers
US10178992B2 (en) 2015-06-18 2019-01-15 Ethicon Llc Push/pull articulation drive systems for articulatable surgical instruments
US11576669B2 (en) 2015-06-18 2023-02-14 Cilag Gmbh International Surgical instrument including different length camming members
US11786237B2 (en) 2015-06-18 2023-10-17 Cilag Gmbh International Stapling assembly comprising a supported firing bar
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US20160367256A1 (en) * 2015-06-18 2016-12-22 Ethicon Endo-Surgery, Llc Surgical end effectors with positive jaw opening arrangements
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11331095B2 (en) 2015-06-18 2022-05-17 Cilag Gmbh International Movable firing beam support arrangements for articulatable surgical instruments
US10154841B2 (en) 2015-06-18 2018-12-18 Ethicon Llc Surgical stapling instruments with lockout arrangements for preventing firing system actuation when a cartridge is spent or missing
US11510667B2 (en) 2015-06-18 2022-11-29 Cilag Gmbh International Surgical instrument including cooperative articulation members
US10052102B2 (en) 2015-06-18 2018-08-21 Ethicon Llc Surgical end effectors with dual cam actuated jaw closing features
US11553954B2 (en) 2015-06-30 2023-01-17 Cilag Gmbh International Translatable outer tube for sealing using shielded lap chole dissector
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US11903634B2 (en) 2015-06-30 2024-02-20 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10952788B2 (en) 2015-06-30 2021-03-23 Ethicon Llc Surgical instrument with user adaptable algorithms
US11141213B2 (en) 2015-06-30 2021-10-12 Cilag Gmbh International Surgical instrument with user adaptable techniques
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10617418B2 (en) 2015-08-17 2020-04-14 Ethicon Llc Implantable layers for a surgical instrument
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10966724B2 (en) 2015-08-26 2021-04-06 Ethicon Llc Surgical staples comprising a guide
US10433845B2 (en) 2015-08-26 2019-10-08 Ethicon Llc Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US10098642B2 (en) 2015-08-26 2018-10-16 Ethicon Llc Surgical staples comprising features for improved fastening of tissue
US10980538B2 (en) 2015-08-26 2021-04-20 Ethicon Llc Surgical stapling configurations for curved and circular stapling instruments
US11058426B2 (en) 2015-08-26 2021-07-13 Cilag Gmbh International Staple cartridge assembly comprising various tissue compression gaps and staple forming gaps
US10213203B2 (en) 2015-08-26 2019-02-26 Ethicon Llc Staple cartridge assembly without a bottom cover
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
US10470769B2 (en) 2015-08-26 2019-11-12 Ethicon Llc Staple cartridge assembly comprising staple alignment features on a firing member
US11103248B2 (en) 2015-08-26 2021-08-31 Cilag Gmbh International Surgical staples for minimizing staple roll
US10390829B2 (en) 2015-08-26 2019-08-27 Ethicon Llc Staples comprising a cover
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
US10166026B2 (en) 2015-08-26 2019-01-01 Ethicon Llc Staple cartridge assembly including features for controlling the rotation of staples when being ejected therefrom
US10188394B2 (en) 2015-08-26 2019-01-29 Ethicon Llc Staples configured to support an implantable adjunct
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
US11219456B2 (en) 2015-08-26 2022-01-11 Cilag Gmbh International Surgical staple strips for permitting varying staple properties and enabling easy cartridge loading
US11510675B2 (en) 2015-08-26 2022-11-29 Cilag Gmbh International Surgical end effector assembly including a connector strip interconnecting a plurality of staples
US11051817B2 (en) 2015-08-26 2021-07-06 Cilag Gmbh International Method for forming a staple against an anvil of a surgical stapling instrument
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10251648B2 (en) 2015-09-02 2019-04-09 Ethicon Llc Surgical staple cartridge staple drivers with central support features
US11213295B2 (en) 2015-09-02 2022-01-04 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US11382624B2 (en) 2015-09-02 2022-07-12 Cilag Gmbh International Surgical staple cartridge with improved staple driver configurations
US10314587B2 (en) 2015-09-02 2019-06-11 Ethicon Llc Surgical staple cartridge with improved staple driver configurations
US10357252B2 (en) 2015-09-02 2019-07-23 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples
JP2018526119A (en) * 2015-09-02 2018-09-13 エシコン エルエルシーEthicon LLC Surgical staple cartridge with driver configuration to establish a herringbone staple pattern
US11589868B2 (en) 2015-09-02 2023-02-28 Cilag Gmbh International Surgical staple configurations with camming surfaces located between portions supporting surgical staples
US10172619B2 (en) 2015-09-02 2019-01-08 Ethicon Llc Surgical staple driver arrays
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US11849946B2 (en) 2015-09-23 2023-12-26 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10863986B2 (en) 2015-09-23 2020-12-15 Ethicon Llc Surgical stapler having downstream current-based motor control
US11344299B2 (en) 2015-09-23 2022-05-31 Cilag Gmbh International Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11490889B2 (en) 2015-09-23 2022-11-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US11026678B2 (en) 2015-09-23 2021-06-08 Cilag Gmbh International Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11076929B2 (en) 2015-09-25 2021-08-03 Cilag Gmbh International Implantable adjunct systems for determining adjunct skew
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11766287B2 (en) 2015-09-30 2023-09-26 Cilag Gmbh International Methods for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US11559347B2 (en) 2015-09-30 2023-01-24 Cilag Gmbh International Techniques for circuit topologies for combined generator
US10736685B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Generator for digitally generating combined electrical signal waveforms for ultrasonic surgical instruments
US10932779B2 (en) 2015-09-30 2021-03-02 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11903586B2 (en) 2015-09-30 2024-02-20 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US11712244B2 (en) 2015-09-30 2023-08-01 Cilag Gmbh International Implantable layer with spacer fibers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US11033322B2 (en) 2015-09-30 2021-06-15 Ethicon Llc Circuit topologies for combined generator
US11690623B2 (en) 2015-09-30 2023-07-04 Cilag Gmbh International Method for applying an implantable layer to a fastener cartridge
US10687884B2 (en) 2015-09-30 2020-06-23 Ethicon Llc Circuits for supplying isolated direct current (DC) voltage to surgical instruments
US11793522B2 (en) 2015-09-30 2023-10-24 Cilag Gmbh International Staple cartridge assembly including a compressible adjunct
US10172620B2 (en) 2015-09-30 2019-01-08 Ethicon Llc Compressible adjuncts with bonding nodes
US10307160B2 (en) 2015-09-30 2019-06-04 Ethicon Llc Compressible adjunct assemblies with attachment layers
US10433846B2 (en) 2015-09-30 2019-10-08 Ethicon Llc Compressible adjunct with crossing spacer fibers
US11058475B2 (en) 2015-09-30 2021-07-13 Cilag Gmbh International Method and apparatus for selecting operations of a surgical instrument based on user intention
US10194973B2 (en) 2015-09-30 2019-02-05 Ethicon Llc Generator for digitally generating electrical signal waveforms for electrosurgical and ultrasonic surgical instruments
US10624691B2 (en) 2015-09-30 2020-04-21 Ethicon Llc Techniques for operating generator for digitally generating electrical signal waveforms and surgical instruments
US10561420B2 (en) 2015-09-30 2020-02-18 Ethicon Llc Tubular absorbable constructs
US10610286B2 (en) 2015-09-30 2020-04-07 Ethicon Llc Techniques for circuit topologies for combined generator
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10603039B2 (en) 2015-09-30 2020-03-31 Ethicon Llc Progressively releasable implantable adjunct for use with a surgical stapling instrument
US10271849B2 (en) 2015-09-30 2019-04-30 Ethicon Llc Woven constructs with interlocked standing fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US11553916B2 (en) 2015-09-30 2023-01-17 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10441371B2 (en) * 2015-10-02 2019-10-15 Vanderbilt University Concentric tube robot
US20170095299A1 (en) * 2015-10-02 2017-04-06 Vanderbilt University Concentric tube robot
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US11666375B2 (en) 2015-10-16 2023-06-06 Cilag Gmbh International Electrode wiping surgical device
US10959771B2 (en) 2015-10-16 2021-03-30 Ethicon Llc Suction and irrigation sealing grasper
US11484309B2 (en) 2015-12-30 2022-11-01 Cilag Gmbh International Surgical stapling system comprising a controller configured to cause a motor to reset a firing sequence
US10959806B2 (en) 2015-12-30 2021-03-30 Ethicon Llc Energized medical device with reusable handle
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11759208B2 (en) 2015-12-30 2023-09-19 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US11058422B2 (en) 2015-12-30 2021-07-13 Cilag Gmbh International Mechanisms for compensating for battery pack failure in powered surgical instruments
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11129613B2 (en) 2015-12-30 2021-09-28 Cilag Gmbh International Surgical instruments with separable motors and motor control circuits
US11083454B2 (en) 2015-12-30 2021-08-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
US10251664B2 (en) 2016-01-15 2019-04-09 Ethicon Llc Modular battery powered handheld surgical instrument with multi-function motor via shifting gear assembly
US10709469B2 (en) 2016-01-15 2020-07-14 Ethicon Llc Modular battery powered handheld surgical instrument with energy conservation techniques
US10842523B2 (en) 2016-01-15 2020-11-24 Ethicon Llc Modular battery powered handheld surgical instrument and methods therefor
US11684402B2 (en) 2016-01-15 2023-06-27 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US11051840B2 (en) 2016-01-15 2021-07-06 Ethicon Llc Modular battery powered handheld surgical instrument with reusable asymmetric handle housing
US11229450B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with motor drive
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US11134978B2 (en) 2016-01-15 2021-10-05 Cilag Gmbh International Modular battery powered handheld surgical instrument with self-diagnosing control switches for reusable handle assembly
US10299821B2 (en) 2016-01-15 2019-05-28 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limit profile
US11896280B2 (en) 2016-01-15 2024-02-13 Cilag Gmbh International Clamp arm comprising a circuit
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US11058448B2 (en) 2016-01-15 2021-07-13 Cilag Gmbh International Modular battery powered handheld surgical instrument with multistage generator circuits
US10779849B2 (en) 2016-01-15 2020-09-22 Ethicon Llc Modular battery powered handheld surgical instrument with voltage sag resistant battery pack
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11751929B2 (en) 2016-01-15 2023-09-12 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
US10537351B2 (en) 2016-01-15 2020-01-21 Ethicon Llc Modular battery powered handheld surgical instrument with variable motor control limits
US11523823B2 (en) 2016-02-09 2022-12-13 Cilag Gmbh International Surgical instruments with non-symmetrical articulation arrangements
US10413291B2 (en) 2016-02-09 2019-09-17 Ethicon Llc Surgical instrument articulation mechanism with slotted secondary constraint
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
US10470764B2 (en) 2016-02-09 2019-11-12 Ethicon Llc Surgical instruments with closure stroke reduction arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245030B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instruments with tensioning arrangements for cable driven articulation systems
US11730471B2 (en) 2016-02-09 2023-08-22 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10433837B2 (en) 2016-02-09 2019-10-08 Ethicon Llc Surgical instruments with multiple link articulation arrangements
US10653413B2 (en) 2016-02-09 2020-05-19 Ethicon Llc Surgical instruments with an end effector that is highly articulatable relative to an elongate shaft assembly
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11826045B2 (en) 2016-02-12 2023-11-28 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11779336B2 (en) 2016-02-12 2023-10-10 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11344303B2 (en) 2016-02-12 2022-05-31 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US11202670B2 (en) 2016-02-22 2021-12-21 Cilag Gmbh International Method of manufacturing a flexible circuit electrode for electrosurgical instrument
US10667856B2 (en) * 2016-03-07 2020-06-02 Ethicon Llc Robotic bi-polar instruments
US11439458B2 (en) 2016-03-07 2022-09-13 Cilag Gmbh International Robotic bi-polar instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10675021B2 (en) 2016-04-01 2020-06-09 Ethicon Llc Circular stapling system comprising rotary firing system
EP3636169A3 (en) * 2016-04-01 2020-05-27 Ethicon LLC Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10542991B2 (en) 2016-04-01 2020-01-28 Ethicon Llc Surgical stapling system comprising a jaw attachment lockout
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US10376263B2 (en) 2016-04-01 2019-08-13 Ethicon Llc Anvil modification members for surgical staplers
US10433849B2 (en) 2016-04-01 2019-10-08 Ethicon Llc Surgical stapling system comprising a display including a re-orientable display field
EP3225189A1 (en) * 2016-04-01 2017-10-04 Ethicon LLC Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11045191B2 (en) 2016-04-01 2021-06-29 Cilag Gmbh International Method for operating a surgical stapling system
US10314582B2 (en) 2016-04-01 2019-06-11 Ethicon Llc Surgical instrument comprising a shifting mechanism
WO2017172749A1 (en) * 2016-04-01 2017-10-05 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US10285705B2 (en) 2016-04-01 2019-05-14 Ethicon Llc Surgical stapling system comprising a grooved forming pocket
US10682136B2 (en) 2016-04-01 2020-06-16 Ethicon Llc Circular stapling system comprising load control
US11337694B2 (en) 2016-04-01 2022-05-24 Cilag Gmbh International Surgical cutting and stapling end effector with anvil concentric drive member
US10420552B2 (en) 2016-04-01 2019-09-24 Ethicon Llc Surgical stapling system configured to provide selective cutting of tissue
US10342543B2 (en) 2016-04-01 2019-07-09 Ethicon Llc Surgical stapling system comprising a shiftable transmission
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10478190B2 (en) 2016-04-01 2019-11-19 Ethicon Llc Surgical stapling system comprising a spent cartridge lockout
US11766257B2 (en) 2016-04-01 2023-09-26 Cilag Gmbh International Surgical instrument comprising a display
US10485542B2 (en) 2016-04-01 2019-11-26 Ethicon Llc Surgical stapling instrument comprising multiple lockouts
US11058421B2 (en) 2016-04-01 2021-07-13 Cilag Gmbh International Modular surgical stapling system comprising a display
US10709446B2 (en) 2016-04-01 2020-07-14 Ethicon Llc Staple cartridges with atraumatic features
US10568632B2 (en) 2016-04-01 2020-02-25 Ethicon Llc Surgical stapling system comprising a jaw closure lockout
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10531874B2 (en) 2016-04-01 2020-01-14 Ethicon Llc Surgical cutting and stapling end effector with anvil concentric drive member
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US10856867B2 (en) 2016-04-01 2020-12-08 Ethicon Llc Surgical stapling system comprising a tissue compression lockout
US10413293B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Interchangeable surgical tool assembly with a surgical end effector that is selectively rotatable about a shaft axis
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11350932B2 (en) 2016-04-15 2022-06-07 Cilag Gmbh International Surgical instrument with improved stop/start control during a firing motion
US11284891B2 (en) 2016-04-15 2022-03-29 Cilag Gmbh International Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11311292B2 (en) 2016-04-15 2022-04-26 Cilag Gmbh International Surgical instrument with detection sensors
US11317910B2 (en) 2016-04-15 2022-05-03 Cilag Gmbh International Surgical instrument with detection sensors
US11191545B2 (en) 2016-04-15 2021-12-07 Cilag Gmbh International Staple formation detection mechanisms
US11026684B2 (en) 2016-04-15 2021-06-08 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11771454B2 (en) 2016-04-15 2023-10-03 Cilag Gmbh International Stapling assembly including a controller for monitoring a clamping laod
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11642125B2 (en) 2016-04-15 2023-05-09 Cilag Gmbh International Robotic surgical system including a user interface and a control circuit
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11517306B2 (en) 2016-04-15 2022-12-06 Cilag Gmbh International Surgical instrument with detection sensors
US11051810B2 (en) 2016-04-15 2021-07-06 Cilag Gmbh International Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11350928B2 (en) 2016-04-18 2022-06-07 Cilag Gmbh International Surgical instrument comprising a tissue thickness lockout and speed control system
US11559303B2 (en) 2016-04-18 2023-01-24 Cilag Gmbh International Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US11811253B2 (en) 2016-04-18 2023-11-07 Cilag Gmbh International Surgical robotic system with fault state detection configurations based on motor current draw
US11147554B2 (en) 2016-04-18 2021-10-19 Cilag Gmbh International Surgical instrument system comprising a magnetic lockout
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10478181B2 (en) 2016-04-18 2019-11-19 Ethicon Llc Cartridge lockout arrangements for rotary powered surgical cutting and stapling instruments
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10856934B2 (en) 2016-04-29 2020-12-08 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting and tissue engaging members
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10987156B2 (en) 2016-04-29 2021-04-27 Ethicon Llc Electrosurgical instrument with electrically conductive gap setting member and electrically insulative tissue engaging members
US11864820B2 (en) 2016-05-03 2024-01-09 Cilag Gmbh International Medical device with a bilateral jaw configuration for nerve stimulation
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
USD894389S1 (en) 2016-06-24 2020-08-25 Ethicon Llc Surgical fastener
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
USD822206S1 (en) 2016-06-24 2018-07-03 Ethicon Llc Surgical fastener
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
US11786246B2 (en) 2016-06-24 2023-10-17 Cilag Gmbh International Stapling system for use with wire staples and stamped staples
USD896379S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
US10542979B2 (en) 2016-06-24 2020-01-28 Ethicon Llc Stamped staples and staple cartridges using the same
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US11690619B2 (en) 2016-06-24 2023-07-04 Cilag Gmbh International Staple cartridge comprising staples having different geometries
US10675024B2 (en) 2016-06-24 2020-06-09 Ethicon Llc Staple cartridge comprising overdriven staples
USD948043S1 (en) 2016-06-24 2022-04-05 Cilag Gmbh International Surgical fastener
USD896380S1 (en) 2016-06-24 2020-09-15 Ethicon Llc Surgical fastener cartridge
US10893863B2 (en) 2016-06-24 2021-01-19 Ethicon Llc Staple cartridge comprising offset longitudinal staple rows
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US11883055B2 (en) 2016-07-12 2024-01-30 Cilag Gmbh International Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10966744B2 (en) 2016-07-12 2021-04-06 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
US11344362B2 (en) 2016-08-05 2022-05-31 Cilag Gmbh International Methods and systems for advanced harmonic energy
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
US10390895B2 (en) 2016-08-16 2019-08-27 Ethicon Llc Control of advancement rate and application force based on measured forces
US10531929B2 (en) 2016-08-16 2020-01-14 Ethicon Llc Control of robotic arm motion based on sensed load on cutting tool
US10433925B2 (en) 2016-08-16 2019-10-08 Ethicon Llc Sterile barrier for robotic surgical system
US10485618B2 (en) 2016-08-16 2019-11-26 Ethicon Llc Methods, systems, and devices for limiting torque in robotic surgical tools
US20180049823A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotics communication and control
US10849698B2 (en) 2016-08-16 2020-12-01 Ethicon Llc Robotics tool bailouts
US10736702B2 (en) 2016-08-16 2020-08-11 Ethicon Llc Activating and rotating surgical end effectors
US20180049829A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotic Visualization and Collision Avoidance
US10500000B2 (en) 2016-08-16 2019-12-10 Ethicon Llc Surgical tool with manual control of end effector jaws
US10363035B2 (en) 2016-08-16 2019-07-30 Ethicon Llc Stapler tool with rotary drive lockout
US10413370B2 (en) 2016-08-16 2019-09-17 Ethicon Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10945798B2 (en) 2016-08-16 2021-03-16 Ethicon Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
WO2018034965A1 (en) 2016-08-16 2018-02-22 Ethicon Llc Modular surgical robotic tools
US10709511B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of jaw or clamp arm closure in concert with advancement of device
US20180049835A1 (en) * 2016-08-16 2018-02-22 Ethicon Endo-Surgery, Llc Robotics Tool Bailouts
US11793582B2 (en) 2016-08-16 2023-10-24 Cilag Gmbh International Surgical tool positioning based on sensed parameters
US9943377B2 (en) 2016-08-16 2018-04-17 Ethicon Endo-Surgery, Llc Methods, systems, and devices for causing end effector motion with a robotic surgical system
US10813703B2 (en) 2016-08-16 2020-10-27 Ethicon Llc Robotic surgical system with energy application controls
US9956050B2 (en) 2016-08-16 2018-05-01 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10709513B2 (en) 2016-08-16 2020-07-14 Ethicon Llc Control of the rate of actuation of tool mechanism based on inherent parameters
US9968412B2 (en) 2016-08-16 2018-05-15 Ethicon Endo-Surgery, Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10548673B2 (en) 2016-08-16 2020-02-04 Ethicon Llc Surgical tool with a display
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
US10537399B2 (en) 2016-08-16 2020-01-21 Ethicon Llc Surgical tool positioning based on sensed parameters
US10675103B2 (en) * 2016-08-16 2020-06-09 Ethicon Llc Robotics communication and control
US10478258B2 (en) 2016-08-16 2019-11-19 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US10182875B2 (en) 2016-08-16 2019-01-22 Ethicon Llc Robotic visualization and collision avoidance
US11039896B2 (en) * 2016-08-16 2021-06-22 Ethicon Llc Robotic visualization and collision avoidance
US11246670B2 (en) 2016-08-16 2022-02-15 Cilag Gmbh International Modular surgical robotic tool
US10111719B2 (en) 2016-08-16 2018-10-30 Ethicon Llc Control of the rate of actuation of tool mechanism based on inherent parameters
US10993760B2 (en) 2016-08-16 2021-05-04 Ethicon, Llc Modular surgical robotic tool
US10080622B2 (en) 2016-08-16 2018-09-25 Ethicon Llc Robotics tool bailouts
US10016246B2 (en) 2016-08-16 2018-07-10 Ethicon Llc Methods, systems, and devices for controlling a motor of a robotic surgical system
US11259883B2 (en) 2016-08-16 2022-03-01 Cilag Gmbh In Ternational Robotics tool exchange
US10231775B2 (en) 2016-08-16 2019-03-19 Ethicon Llc Robotic surgical system with tool lift control
US10478256B2 (en) * 2016-08-16 2019-11-19 Ethicon Llc Robotics tool bailouts
USD924400S1 (en) 2016-08-16 2021-07-06 Cilag Gmbh International Surgical instrument
US10413373B2 (en) * 2016-08-16 2019-09-17 Ethicon, Llc Robotic visualization and collision avoidance
US10045827B2 (en) 2016-08-16 2018-08-14 Ethicon Llc Methods, systems, and devices for limiting torque in robotic surgical tools
US10687904B2 (en) 2016-08-16 2020-06-23 Ethicon Llc Robotics tool exchange
US11883122B2 (en) 2016-08-16 2024-01-30 Cilag Gmbh International Robotic visualization and collision avoidance
US11589938B2 (en) * 2016-08-24 2023-02-28 Intuitive Surgical Operations, Inc. Computer-assisted tele-operated surgery systems and methods
US20210251705A1 (en) * 2016-08-24 2021-08-19 Intuitive Surgical Operations, Inc. Computer-assisted tele-operated surgery systems and methods
US10779847B2 (en) 2016-08-25 2020-09-22 Ethicon Llc Ultrasonic transducer to waveguide joining
US10420580B2 (en) 2016-08-25 2019-09-24 Ethicon Llc Ultrasonic transducer for surgical instrument
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
US11839422B2 (en) 2016-09-23 2023-12-12 Cilag Gmbh International Electrosurgical instrument with fluid diverter
US10751117B2 (en) 2016-09-23 2020-08-25 Ethicon Llc Electrosurgical instrument with fluid diverter
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
US10149732B2 (en) 2016-12-09 2018-12-11 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10149727B2 (en) 2016-12-09 2018-12-11 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10433920B2 (en) 2016-12-09 2019-10-08 Ethicon Llc Surgical tool and robotic surgical system interfaces
US10588704B2 (en) * 2016-12-09 2020-03-17 Ethicon Llc Surgical tool and robotic surgical system interfaces
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US10492785B2 (en) 2016-12-21 2019-12-03 Ethicon Llc Shaft assembly comprising a lockout
US11369376B2 (en) 2016-12-21 2022-06-28 Cilag Gmbh International Surgical stapling systems
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US11701115B2 (en) 2016-12-21 2023-07-18 Cilag Gmbh International Methods of stapling tissue
US11096689B2 (en) 2016-12-21 2021-08-24 Cilag Gmbh International Shaft assembly comprising a lockout
US11766259B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10588630B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical tool assemblies with closure stroke reduction features
US11350934B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Staple forming pocket arrangement to accommodate different types of staples
US11350935B2 (en) 2016-12-21 2022-06-07 Cilag Gmbh International Surgical tool assemblies with closure stroke reduction features
US10736629B2 (en) 2016-12-21 2020-08-11 Ethicon Llc Surgical tool assemblies with clutching arrangements for shifting between closure systems with closure stroke reduction features and articulation and firing systems
US11160553B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Surgical stapling systems
US10499914B2 (en) 2016-12-21 2019-12-10 Ethicon Llc Staple forming pocket arrangements
US10517595B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Jaw actuated lock arrangements for preventing advancement of a firing member in a surgical end effector unless an unfired cartridge is installed in the end effector
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
US10517596B2 (en) 2016-12-21 2019-12-31 Ethicon Llc Articulatable surgical instruments with articulation stroke amplification features
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
US10448950B2 (en) 2016-12-21 2019-10-22 Ethicon Llc Surgical staplers with independently actuatable closing and firing systems
US10687809B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Surgical staple cartridge with movable camming member configured to disengage firing member lockout features
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11849948B2 (en) 2016-12-21 2023-12-26 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10835247B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Lockout arrangements for surgical end effectors
US11317913B2 (en) 2016-12-21 2022-05-03 Cilag Gmbh International Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11766260B2 (en) 2016-12-21 2023-09-26 Cilag Gmbh International Methods of stapling tissue
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10905422B2 (en) 2016-12-21 2021-02-02 Ethicon Llc Surgical instrument for use with a robotic surgical system
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10537324B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US11224428B2 (en) 2016-12-21 2022-01-18 Cilag Gmbh International Surgical stapling systems
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10667811B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Surgical stapling instruments and staple-forming anvils
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US11191543B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Assembly comprising a lock
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11000276B2 (en) 2016-12-21 2021-05-11 Ethicon Llc Stepped staple cartridge with asymmetrical staples
US10603036B2 (en) 2016-12-21 2020-03-31 Ethicon Llc Articulatable surgical instrument with independent pivotable linkage distal of an articulation lock
US10542982B2 (en) 2016-12-21 2020-01-28 Ethicon Llc Shaft assembly comprising first and second articulation lockouts
US10779823B2 (en) 2016-12-21 2020-09-22 Ethicon Llc Firing member pin angle
US10610224B2 (en) 2016-12-21 2020-04-07 Ethicon Llc Lockout arrangements for surgical end effectors and replaceable tool assemblies
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US11653917B2 (en) 2016-12-21 2023-05-23 Cilag Gmbh International Surgical stapling systems
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11179155B2 (en) 2016-12-21 2021-11-23 Cilag Gmbh International Anvil arrangements for surgical staplers
US10639034B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical instruments with lockout arrangements for preventing firing system actuation unless an unspent staple cartridge is present
US11571210B2 (en) 2016-12-21 2023-02-07 Cilag Gmbh International Firing assembly comprising a multiple failed-state fuse
US10639035B2 (en) 2016-12-21 2020-05-05 Ethicon Llc Surgical stapling instruments and replaceable tool assemblies thereof
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US11564688B2 (en) 2016-12-21 2023-01-31 Cilag Gmbh International Robotic surgical tool having a retraction mechanism
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US11191539B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Shaft assembly comprising a manually-operable retraction system for use with a motorized surgical instrument system
US10617414B2 (en) 2016-12-21 2020-04-14 Ethicon Llc Closure member arrangements for surgical instruments
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US11191540B2 (en) 2016-12-21 2021-12-07 Cilag Gmbh International Protective cover arrangements for a joint interface between a movable jaw and actuator shaft of a surgical instrument
US11497499B2 (en) 2016-12-21 2022-11-15 Cilag Gmbh International Articulatable surgical stapling instruments
US10624635B2 (en) 2016-12-21 2020-04-21 Ethicon Llc Firing members with non-parallel jaw engagement features for surgical end effectors
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US11033325B2 (en) 2017-02-16 2021-06-15 Cilag Gmbh International Electrosurgical instrument with telescoping suction port and debris cleaner
US10799284B2 (en) 2017-03-15 2020-10-13 Ethicon Llc Electrosurgical instrument with textured jaws
US11497546B2 (en) 2017-03-31 2022-11-15 Cilag Gmbh International Area ratios of patterned coatings on RF electrodes to reduce sticking
US11672532B2 (en) 2017-06-20 2023-06-13 Cilag Gmbh International Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10595882B2 (en) 2017-06-20 2020-03-24 Ethicon Llc Methods for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US11213302B2 (en) 2017-06-20 2022-01-04 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11793513B2 (en) 2017-06-20 2023-10-24 Cilag Gmbh International Systems and methods for controlling motor speed according to user input for a surgical instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US11871939B2 (en) 2017-06-20 2024-01-16 Cilag Gmbh International Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11090049B2 (en) 2017-06-27 2021-08-17 Cilag Gmbh International Staple forming pocket arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US11766258B2 (en) 2017-06-27 2023-09-26 Cilag Gmbh International Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10631859B2 (en) 2017-06-27 2020-04-28 Ethicon Llc Articulation systems for surgical instruments
US10695057B2 (en) 2017-06-28 2020-06-30 Ethicon Llc Surgical instrument lockout arrangement
US10639037B2 (en) 2017-06-28 2020-05-05 Ethicon Llc Surgical instrument with axially movable closure member
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11678880B2 (en) 2017-06-28 2023-06-20 Cilag Gmbh International Surgical instrument comprising a shaft including a housing arrangement
US10779824B2 (en) 2017-06-28 2020-09-22 Ethicon Llc Surgical instrument comprising an articulation system lockable by a closure system
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11529140B2 (en) 2017-06-28 2022-12-20 Cilag Gmbh International Surgical instrument lockout arrangement
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10758232B2 (en) 2017-06-28 2020-09-01 Ethicon Llc Surgical instrument with positive jaw opening features
US10786253B2 (en) 2017-06-28 2020-09-29 Ethicon Llc Surgical end effectors with improved jaw aperture arrangements
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11642128B2 (en) 2017-06-28 2023-05-09 Cilag Gmbh International Method for articulating a surgical instrument
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
US10603117B2 (en) 2017-06-28 2020-03-31 Ethicon Llc Articulation state detection mechanisms
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11083455B2 (en) 2017-06-28 2021-08-10 Cilag Gmbh International Surgical instrument comprising an articulation system ratio
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11696759B2 (en) 2017-06-28 2023-07-11 Cilag Gmbh International Surgical stapling instruments comprising shortened staple cartridge noses
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11000279B2 (en) 2017-06-28 2021-05-11 Ethicon Llc Surgical instrument comprising an articulation system ratio
US11826048B2 (en) 2017-06-28 2023-11-28 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11890005B2 (en) 2017-06-29 2024-02-06 Cilag Gmbh International Methods for closed loop velocity control for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10835310B2 (en) 2017-08-29 2020-11-17 Ethicon Llc Electrically-powered surgical systems
US10856928B2 (en) 2017-08-29 2020-12-08 Ethicon Llc Electrically-powered surgical systems
US11013528B2 (en) 2017-08-29 2021-05-25 Ethicon Llc Electrically-powered surgical systems providing fine clamping control during energy delivery
US10905421B2 (en) * 2017-08-29 2021-02-02 Ethicon Llc Electrically-powered surgical box staplers
US10675082B2 (en) 2017-08-29 2020-06-09 Ethicon Llc Control of surgical field irrigation by electrosurgical tool
US10905417B2 (en) 2017-08-29 2021-02-02 Ethicon Llc Circular stapler
US10888370B2 (en) 2017-08-29 2021-01-12 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10925682B2 (en) 2017-08-29 2021-02-23 Ethicon Llc Electrically-powered surgical systems employing variable compression during treatment
US11504126B2 (en) 2017-08-29 2022-11-22 Cilag Gmbh International Control system for clip applier
US10772677B2 (en) 2017-08-29 2020-09-15 Ethicon Llc Electrically-powered surgical systems
US10932808B2 (en) 2017-08-29 2021-03-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US11160602B2 (en) 2017-08-29 2021-11-02 Cilag Gmbh International Control of surgical field irrigation
US10912567B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Circular stapler
US11172928B2 (en) 2017-08-29 2021-11-16 Cilag Gmbh International Endocutter control system
US10912581B2 (en) 2017-08-29 2021-02-09 Ethicon Llc Electrically-powered surgical systems with articulation-compensated ultrasonic energy delivery
US10470758B2 (en) 2017-08-29 2019-11-12 Ethicon Llc Suturing device
US10881403B2 (en) 2017-08-29 2021-01-05 Ethicon Llc Endocutter control system
US10485527B2 (en) 2017-08-29 2019-11-26 Ethicon Llc Control system for clip applier
US10905493B2 (en) 2017-08-29 2021-02-02 Ethicon Llc Methods, systems, and devices for controlling electrosurgical tools
US10548601B2 (en) 2017-08-29 2020-02-04 Ethicon Llc Control system for clip applier
US10898219B2 (en) 2017-08-29 2021-01-26 Ethicon Llc Electrically-powered surgical systems for cutting and welding solid organs
US10925602B2 (en) 2017-08-29 2021-02-23 Ethicon Llc Endocutter control system
US20190059888A1 (en) * 2017-08-29 2019-02-28 Ethicon Llc Electrically-powered surgical box staplers
US11717296B2 (en) 2017-09-01 2023-08-08 RevMedica, Inc. Surgical stapler with removable power pack
US10966720B2 (en) 2017-09-01 2021-04-06 RevMedica, Inc. Surgical stapler with removable power pack
US10959728B2 (en) 2017-09-01 2021-03-30 RevMedica, Inc. Surgical stapler with removable power pack
US11331099B2 (en) 2017-09-01 2022-05-17 Rev Medica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US11540830B2 (en) 2017-09-01 2023-01-03 RevMedica, Inc. Surgical stapler with removable power pack
US11857186B2 (en) 2017-09-01 2024-01-02 Revmedica, Inc Proximal loaded disposable loading unit for surgical stapler
US10874393B2 (en) 2017-09-01 2020-12-29 RevMedia, Inc. Proximal loaded disposable loading unit for surgical stapler
US11617580B2 (en) 2017-09-01 2023-04-04 RevMedica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
US10695060B2 (en) 2017-09-01 2020-06-30 RevMedica, Inc. Loadable power pack for surgical instruments
US11723659B2 (en) 2017-09-01 2023-08-15 RevMedica, Inc. Surgical stapler with removable power pack and interchangeable battery pack
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11490951B2 (en) 2017-09-29 2022-11-08 Cilag Gmbh International Saline contact with electrodes
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US11033323B2 (en) 2017-09-29 2021-06-15 Cilag Gmbh International Systems and methods for managing fluid and suction in electrosurgical systems
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11484358B2 (en) 2017-09-29 2022-11-01 Cilag Gmbh International Flexible electrosurgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US20190125463A1 (en) * 2017-10-26 2019-05-02 Ethicon Llc Auto cable tensioning system
US10624708B2 (en) * 2017-10-26 2020-04-21 Ethicon Llc Auto cable tensioning system
US10624709B2 (en) * 2017-10-26 2020-04-21 Ethicon Llc Robotic surgical tool with manual release lever
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11627963B2 (en) * 2017-10-30 2023-04-18 Covidien Lp Apparatus for endoscopic procedures
US11478244B2 (en) 2017-10-31 2022-10-25 Cilag Gmbh International Cartridge body design with force reduction based on firing completion
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11918209B2 (en) 2017-11-10 2024-03-05 Cilag Gmbh International Torque optimization for surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11896222B2 (en) 2017-12-15 2024-02-13 Cilag Gmbh International Methods of operating surgical end effectors
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11284953B2 (en) 2017-12-19 2022-03-29 Cilag Gmbh International Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11337691B2 (en) 2017-12-21 2022-05-24 Cilag Gmbh International Surgical instrument configured to determine firing path
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US10743868B2 (en) 2017-12-21 2020-08-18 Ethicon Llc Surgical instrument comprising a pivotable distal head
US11849939B2 (en) 2017-12-21 2023-12-26 Cilag Gmbh International Continuous use self-propelled stapling instrument
US11179151B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a display
US11576668B2 (en) 2017-12-21 2023-02-14 Cilag Gmbh International Staple instrument comprising a firing path display
US11364027B2 (en) 2017-12-21 2022-06-21 Cilag Gmbh International Surgical instrument comprising speed control
US11369368B2 (en) 2017-12-21 2022-06-28 Cilag Gmbh International Surgical instrument comprising synchronized drive systems
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11751867B2 (en) 2017-12-21 2023-09-12 Cilag Gmbh International Surgical instrument comprising sequenced systems
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11918211B2 (en) 2018-12-28 2024-03-05 Cilag Gmbh International Surgical stapling instrument for use with a robotic system
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11628020B2 (en) 2019-06-19 2023-04-18 Virtuoso Surgical, Inc. Insertable robot for minimally invasive surgery
US11413102B2 (en) 2019-06-27 2022-08-16 Cilag Gmbh International Multi-access port for surgical robotic systems
US11612445B2 (en) 2019-06-27 2023-03-28 Cilag Gmbh International Cooperative operation of robotic arms
US11547468B2 (en) 2019-06-27 2023-01-10 Cilag Gmbh International Robotic surgical system with safety and cooperative sensing control
US11607278B2 (en) 2019-06-27 2023-03-21 Cilag Gmbh International Cooperative robotic surgical systems
US11723729B2 (en) 2019-06-27 2023-08-15 Cilag Gmbh International Robotic surgical assembly coupling safety mechanisms
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11684369B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11229437B2 (en) 2019-06-28 2022-01-25 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11744593B2 (en) 2019-06-28 2023-09-05 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11553919B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Method for authenticating the compatibility of a staple cartridge with a surgical instrument
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11564685B2 (en) 2019-07-19 2023-01-31 RevMedica, Inc. Surgical stapler with removable power pack
US11925378B2 (en) 2019-07-31 2024-03-12 Cilag Gmbh International Ultrasonic transducer for surgical instrument
US11918212B2 (en) 2019-08-12 2024-03-05 Cilag Gmbh International Surgical instrument with selectively disengageable drive systems
US11918213B2 (en) 2019-08-20 2024-03-05 Cilag Gmbh International Surgical stapler including couplers for attaching a shaft to an end effector
US11864954B2 (en) * 2019-08-21 2024-01-09 Cilag Gmbh International Manual knife bailout monitoring using inductive coupling
US11202686B2 (en) * 2019-08-21 2021-12-21 Ethicon LLC. Manual knife bailout monitoring using inductive coupling
US20220087769A1 (en) * 2019-08-21 2022-03-24 Ethicon Llc Manual knife bailout monitoring using inductive coupling
US11918220B2 (en) 2019-08-30 2024-03-05 Cilag Gmbh International Tissue thickness compensator comprising tissue ingrowth features
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11786294B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Control program for modular combination energy device
US11744636B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Electrosurgical systems with integrated and external power sources
US11589916B2 (en) 2019-12-30 2023-02-28 Cilag Gmbh International Electrosurgical instruments with electrodes having variable energy densities
US11723716B2 (en) 2019-12-30 2023-08-15 Cilag Gmbh International Electrosurgical instrument with variable control mechanisms
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11707318B2 (en) 2019-12-30 2023-07-25 Cilag Gmbh International Surgical instrument with jaw alignment features
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US11766302B2 (en) * 2020-06-22 2023-09-26 Cilag Gmbh International Robotic surgical tool with pivotable transmission linkage on translating carriage
US20210393348A1 (en) * 2020-06-22 2021-12-23 Auris Health, Inc. Robotic surgical tool with pivotable transmission linkage on translating carriage
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11871925B2 (en) 2020-07-28 2024-01-16 Cilag Gmbh International Surgical instruments with dual spherical articulation joint arrangements
US11826013B2 (en) 2020-07-28 2023-11-28 Cilag Gmbh International Surgical instruments with firing member closure features
US11638582B2 (en) 2020-07-28 2023-05-02 Cilag Gmbh International Surgical instruments with torsion spine drive arrangements
US11857182B2 (en) 2020-07-28 2024-01-02 Cilag Gmbh International Surgical instruments with combination function articulation joint arrangements
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11864756B2 (en) 2020-07-28 2024-01-09 Cilag Gmbh International Surgical instruments with flexible ball chain drive arrangements
US11660090B2 (en) 2020-07-28 2023-05-30 Cllag GmbH International Surgical instruments with segmented flexible drive arrangements
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US20220346784A1 (en) * 2021-04-30 2022-11-03 Cilag Gmbh International Surgical instrument comprising a closure bar and a firing bar
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
CN113558768A (en) * 2021-06-30 2021-10-29 极限人工智能有限公司 Operation mechanical arm and operation device
US11918215B2 (en) 2021-09-27 2024-03-05 Cilag Gmbh International Staple cartridge with array of staple pockets
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11925354B2 (en) 2021-11-22 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11925353B2 (en) 2021-11-22 2024-03-12 Cilag Gmbh International Surgical stapling instrument comprising internal passage between stapling cartridge and elongate channel
US11918222B2 (en) 2022-03-30 2024-03-05 Cilag Gmbh International Stapling assembly having firing member viewing windows
US11918208B2 (en) 2022-04-12 2024-03-05 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US11918217B2 (en) 2022-04-25 2024-03-05 Cilag Gmbh International Stapling instrument comprising a staple cartridge insertion stop
US11925346B2 (en) 2022-05-20 2024-03-12 Cilag Gmbh International Surgical staple cartridge including tissue supporting surfaces
US11918210B2 (en) 2022-06-13 2024-03-05 Cilag Gmbh International Staple cartridge comprising a cartridge body including a plurality of wells

Also Published As

Publication number Publication date
JP6266609B2 (en) 2018-01-24
US11007004B2 (en) 2021-05-18
CN104582601A (en) 2015-04-29
WO2014004236A1 (en) 2014-01-03
EP3574855B1 (en) 2021-05-26
EP2866693A1 (en) 2015-05-06
CN104582600A (en) 2015-04-29
US9204879B2 (en) 2015-12-08
RU2015102669A (en) 2016-08-20
RU2015102539A (en) 2016-08-20
BR112014032754A2 (en) 2017-06-27
JP2015527902A (en) 2015-09-24
US20170196637A1 (en) 2017-07-13
RU2643402C2 (en) 2018-02-01
EP3888571A1 (en) 2021-10-06
EP3888571B1 (en) 2024-02-07
EP2866694A1 (en) 2015-05-06
CN104582601B (en) 2018-05-11
RU2644274C2 (en) 2018-02-08
EP2866693B1 (en) 2019-07-24
CN104582600B (en) 2018-04-13
EP3574855A1 (en) 2019-12-04
WO2014004235A1 (en) 2014-01-03
BR112014032738A2 (en) 2017-06-27
JP6279567B2 (en) 2018-02-14
JP2015525611A (en) 2015-09-07
US20140005708A1 (en) 2014-01-02

Similar Documents

Publication Publication Date Title
US11839420B2 (en) Stapling assembly comprising a firing member push tube
US20200337791A1 (en) Surgical end effectors having angled tissue-contacting surfaces
US11007004B2 (en) Powered multi-axial articulable electrosurgical device with external dissection features
US9028494B2 (en) Interchangeable end effector coupling arrangement
US9125662B2 (en) Multi-axis articulating and rotating surgical tools
US9119657B2 (en) Rotary actuatable closure arrangement for surgical end effector
US9101385B2 (en) Electrode connections for rotary driven surgical tools

Legal Events

Date Code Title Description
AS Assignment

Owner name: ETHICON ENDO-SURGERY, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SHELTON, FREDERICK E., IV;SWAYZE, JEFFREY S.;SCHEIB, CHARLES J.;AND OTHERS;SIGNING DATES FROM 20120703 TO 20120807;REEL/FRAME:028942/0910

AS Assignment

Owner name: ETHICON ENDO-SURGERY, LLC, PUERTO RICO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON ENDO-SURGERY, INC.;REEL/FRAME:037219/0004

Effective date: 20151106

AS Assignment

Owner name: ETHICON LLC, PUERTO RICO

Free format text: CHANGE OF NAME;ASSIGNOR:ETHICON ENDO-SURGERY, LLC;REEL/FRAME:042941/0565

Effective date: 20161230

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: CILAG GMBH INTERNATIONAL, SWITZERLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ETHICON LLC;REEL/FRAME:056601/0339

Effective date: 20210405