US20140030895A1 - Methods and system for generating a three-dimensional holographic mask - Google Patents

Methods and system for generating a three-dimensional holographic mask Download PDF

Info

Publication number
US20140030895A1
US20140030895A1 US13/954,437 US201313954437A US2014030895A1 US 20140030895 A1 US20140030895 A1 US 20140030895A1 US 201313954437 A US201313954437 A US 201313954437A US 2014030895 A1 US2014030895 A1 US 2014030895A1
Authority
US
United States
Prior art keywords
pattern
semiconductor substrate
holographic mask
metric
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/954,437
Inventor
Rajesh Menon
Peng Wang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Utah Research Foundation UURF
Original Assignee
University of Utah Research Foundation UURF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Utah Research Foundation UURF filed Critical University of Utah Research Foundation UURF
Priority to US13/954,437 priority Critical patent/US20140030895A1/en
Assigned to UNIVERSITY OF UTAH reassignment UNIVERSITY OF UTAH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WANG, PENG, MENON, RAJESH
Assigned to UNIVERSITY OF UTAH RESEARCH FOUNDATION reassignment UNIVERSITY OF UTAH RESEARCH FOUNDATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF UTAH
Publication of US20140030895A1 publication Critical patent/US20140030895A1/en
Priority to US15/274,993 priority patent/US10571861B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/32Holograms used as optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0094Adaptation of holography to specific applications for patterning or machining using the holobject as input light distribution
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0808Methods of numerical synthesis, e.g. coherent ray tracing [CRT], diffraction specific
    • G03H2001/0816Iterative algorithms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/2213Diffusing screen revealing the real holobject, e.g. container filed with gel to reveal the 3D holobject
    • G03H2001/2221Screen having complex surface, e.g. a structured object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/303D object

Definitions

  • FIG. 5 illustrates patterning a transparent roller stamp with a single exposure in accordance with an example of the present technology
  • Suitable image metrics can include, but are not limited to, diffraction efficiency, image fidelity, exposure latitude, line-edge roughness, manufacturability, normalized inverse image slope, robustness, throughput, and the like.
  • the image metric can be a composite function of multiple metrics (e.g. a linear or non-linear combination).
  • several metric functions could be used to drive the iterations, a few particular examples are shown below. These are for illustration and do not in any way limit the scope of the invention. Those skilled in the art will appreciate application of modified metric functions to achieve the desired effect.
  • our metric is comprised of two parts, expressed with a linear combination of diffraction efficiency and image fidelity as below:
  • FIG. 11A The target image is shown in FIG. 11A .
  • Each square-shaped ring is in a different plane separated from the one next to it by 1 mm along the optical axis.
  • the optimized holomask is shown in FIG. 11B .
  • the corresponding convergence plot of diffractive efficiency is shown in FIG. 11C .
  • the corresponding resulting images in each of the three planes are shown in FIGS. 11D-11F , respectively.

Abstract

A system for surface patterning using a three dimensional holographic mask includes a light source configured to emit a light beam toward the holographic mask. The holographic mask can be formed as a topographical pattern on a transparent mask substrate. A semiconductor substrate can be positioned on an opposite site of the holographic mask as the light source and can be spaced apart from the holographic mask. The system can also include a base for supporting the semiconductor substrate.

Description

    RELATED APPLICATION
  • This application claims the benefit of U.S. Provisional Patent Application No. 61/677,386, filed Jul. 30, 2012, which is incorporated herein by reference.
  • FIELD OF THE INVENTION
  • This invention relates generally to masks and methods of making such masks for purposes of patterning structures on various substrates. Accordingly, the invention involves the fields of physics, semiconductor processing, and holographic patterning.
  • BACKGROUND
  • Patterning of microscale and nanoscale structures in three dimensions can be difficult for a variety of reasons. In the conventional sense, such patterning is achieved by performing a layer-by-layer patterning of 2D (two dimensional) planes. This can be tedious, time consuming and expensive. Challenges may also exist for aligning one layer on top of another.
  • Another approach to 3D (three dimensional) patterning is via the use of two-photon lithography. In this approach, a laser beam is focused into a small diffraction-limited spot inside a photosensitive material. This material is designed so as to undergo a two-photon reaction. Typically, this reaction results in polymerization. Since the two-photon reaction is sensitive to the intensity of light, the reaction only occurs substantially in a narrow 3D region at the center of the focal spot.
  • Conventional lithography is performed on flat (planar) surfaces and materials and layers are built up via multiple patterned layers each formed by deposition of a layer followed by substractive processing. Therefore, patterning non-planar surfaces using such approaches presents additional challenges and is generally more difficult or impossible depending on surface geometry and desired patterns.
  • SUMMARY
  • An iterative pixelated perturbation method for generating a three dimensional holographic mask based on a predetermined three dimensional pattern can include providing a starting pattern for the holographic mask and computing resulting images at multiple planes parallel to the holographic mask using a processor. A metric representing a combination of diffraction efficiency of the holographic mask and/or fidelity of a resulting image compared with the predetermined pattern for the images at the multiple planes can be computed using the processor. An optic height of a first pixel in the starting pattern can be perturbed to create an intermediate pattern. Resulting images and the metric can be computed for the intermediate pattern. A determination can be made as to whether the metric for the intermediate pattern is an improvement over the metric for the starting pattern.
  • Perturbation of the optic height of the first pixel may include increasing or decreasing the optic height by a predetermined height unit. The method can also include perturbing the optic height of the first pixel in an opposite increasing or decreasing optic height direction when the metric for the intermediate pattern is not an improvement over the metric for the starting pattern to create a second intermediate pattern. The images and the metric can be computed for the second intermediate pattern and a determination can be made as to whether the metric for the second intermediate pattern is an improvement over the metric for the starting pattern. Perturbation of the optic height of the first pixel may be discarded when the metric for the second intermediate pattern is not an improvement over the metric for the starting pattern. The steps of perturbing, computing, and determining for a second pixel and additional pixels can also subsequently be performed.
  • The method can include the steps of perturbing, computing, and determining for a second pixel when the metric for the intermediate pattern is an improvement over the metric for the starting pattern.
  • Computing images at multiple planes parallel to the holographic mask can include computing images corresponding to image slices from the predetermined three dimensional pattern. The images may be one-dimensional, two dimensional or three dimensional.
  • The method may also include fabricating the holographic mask as a topographical pattern on a transparent substrate.
  • A system for surface patterning using a three dimensional holographic mask includes a light source configured to emit a light beam toward the holographic mask. The holographic mask can be formed as a topographical pattern on a transparent mask substrate. A semiconductor substrate can be positioned on an opposite side of the holographic mask from the light source and can be spaced apart from the holographic mask. The system can also include a base for supporting the semiconductor substrate. Notably, the semiconductor substrate can be a planar or a non-planar surface.
  • The system can include a beam expander positioned between the light source and the holographic mask. The beam expander can be configured to expand the light beam.
  • The base can be a mobile base configured to move the semiconductor substrate in one or more of a linear or rotational x, y, or z dimension.
  • The holographic mask can enable patterning of the semiconductor substrate in both step-wise patterns (i.e. digital patterns) and angled patterns (i.e. analog patterns).
  • A method of patterning a resist using a three dimensional holographic mask is also provided in accordance with an example of the present technology. The method can include positioning the holographic mask between a light source and a semiconductor substrate and which is spaced apart from the semiconductor substrate. The holographic mask can be formed as a topographical pattern on a transparent mask substrate. The holographic mask can be illuminated with the light source to project a predetermined pattern in three spatial dimensions onto the semiconductor substrate.
  • The method can also include rotationally moving the semiconductor substrate in at least one of x, y, or z dimensions and illuminating the holographic mask with the light source to project the predetermined pattern in three spatial dimensions onto a second portion of the semiconductor substrate.
  • Illuminating the holographic mask to project the predetermined pattern onto the semiconductor substrate may include illuminating the holographic mask to project the predetermined pattern onto a first portion of the semiconductor substrate. The method may further include linearly moving the semiconductor substrate in one of x, y, or z dimensions and illuminating the holographic mask with the light source to project the predetermined pattern in three spatial dimensions onto a second portion of the semiconductor substrate.
  • The second portion of the semiconductor substrate may be at a different elevation than the first portion of the semiconductor substrate. The transparent mask substrate can be a substantially planar surface with the topographical pattern thereon and the semiconductor substrate can be a planar or a non-planar surface. The predetermined pattern can be a combination of analog, binary, and multi-level patterns.
  • The semiconductor substrate can include a resist layer thereon. The method can further include exposing the resist layer to create a resist layer pattern and etching the predetermined pattern into the semiconductor substrate using the resist layer pattern to create a three dimensional topography in the semiconductor substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A-1B illustrate examples of different types of patterns on planar and non-planar substrates in accordance with examples of the present technology;
  • FIG. 2 illustrates an exposure system for patterning a substrate using a holographic mask in accordance with an example of the present technology;
  • FIG. 3A-3C illustrates a process of scanning a substrate in three dimensions for repeated patterning in accordance with an example of the present technology;
  • FIG. 4 illustrates patterning a roller stamp rotated on an axis in accordance with an example of the present technology;
  • FIG. 5 illustrates patterning a transparent roller stamp with a single exposure in accordance with an example of the present technology;
  • FIG. 6 is a block diagram of a method for designing a holographic mask in accordance with an example of the present technology;
  • FIG. 7A-7C are a series of two dimensional target image slices for a mask showing pyramid, inverted pyramid, and offset pyramid designs in accordance with three examples of the present technology;
  • FIGS. 8A-8F include graphs representing results of various holographic mask design examples in accordance with the present technology;
  • FIGS. 9A-9F include graphs representing results of various holographic mask design examples in accordance with the present technology;
  • FIGS. 10A-10F include graphs representing results of various holographic mask design examples in accordance with the present technology; and
  • FIG. 11A-11F includes graphs representing results of a 3D holographic mask design example in accordance with the present technology.
  • DETAILED DESCRIPTION
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the technology is thereby intended. Additional features and advantages of the technology will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the technology.
  • As used herein, the terms “light”, “illumination” and “electromagnetic radiation” can be used interchangeably and can refer to light or electromagnetic radiation in the ultraviolet, visible, near infrared and infrared spectra. The terms can further more broadly include electromagnetic radiation such as radio waves, microwaves, x-rays, and gamma rays. Thus, the term “light” is not limited to electromagnetic radiation in the visible spectrum.
  • As used herein, a “substrate” can refer to any of a variety of materials, layers, etc. For example, in terms of a semiconductor, the “substrate” may refer to a silicon wafer, or may refer to any of a variety of dielectric, conductive, or other layers in the semiconductor. Other materials can be used as a substrate as well. In some cases, the substrate may be rigid. However, flexible substrates can also be used. For purposes of this disclosure, the substrate can generically refer to a layer or material capable of supporting another layer or material thereon.
  • It is noted that, as used in this specification and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to “a layer” includes one or more of such features, reference to “a pixel” includes reference to one or more of such elements, and reference to “processing” includes reference to one or more of such steps.
  • As used herein, the terms “about” and “approximately” are used to provide flexibility, such as to indicate, for example, that a given value in a numerical range endpoint may be “a little above” or “a little below” the endpoint. The degree of flexibility for a particular variable can be readily determined by one skilled in the art based on the context.
  • As used herein, the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, the nearness of completion will generally be so as to have the same overall result as if absolute and total completion were obtained. The use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
  • As used herein, a plurality of components may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
  • As used herein, a plurality of items, structural elements, compositional elements, and/or materials may be presented in a common list for convenience. However, these lists should be construed as though each member of the list is individually identified as a separate and unique member. Thus, no individual member of such list should be construed as a de facto equivalent of any other member of the same list solely based on their presentation in a common group without indications to the contrary.
  • Concentrations, amounts, and other numerical data may be expressed or presented herein in a range format. It is to be understood that such a range format is used merely for convenience and brevity and thus should be interpreted flexibly to include not only the numerical values explicitly recited as the limits of the range, but also to include all the individual numerical values or sub-ranges encompassed within that range as if each numerical value and sub-range is explicitly recited. As an illustration, a numerical range of “about 1 to about 5” should be interpreted to include not only the explicitly recited values of about 1 to about 5, but also include individual values and sub-ranges within the indicated range. Thus, included in this numerical range are individual values such as 2, 3, and 4 and sub-ranges such as from 1-3, from 2-4, and from 3-5, etc., as well as 1, 2, 3, 4, and 5, individually.
  • Reference will now be made to the exemplary embodiments illustrated, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the technology is thereby intended. Additional features and advantages of the technology will be apparent from the detailed description which follows, taken in conjunction with the accompanying drawings, which together illustrate, by way of example, features of the technology.
  • With the general examples set forth in the Summary above, it is noted in the present disclosure that when describing the system, or the related devices or methods, individual or separate descriptions are considered applicable to one other, whether or not explicitly discussed in the context of a particular example or embodiment. For example, in discussing a device per se, other device, system, and/or method embodiments are also included in such discussions, and vice versa.
  • Furthermore, various modifications and combinations can be derived from the present disclosure and illustrations, and as such, the following figures should not be considered limiting.
  • FIG. 1A shows multiple example three dimensional pattern types which can be produced. The substrate 10 can be nominally planar (or flat). The patterns can be composed of discrete multiple levels as illustrated by digital pattern 12. Such digital patterns are characterized by stepped variations in height which can be extended in multiple dimensions. However, each digital pattern can be subdivided into an array of pixels which each have a stepped height independent of adjacent pixels. These digital patterns can be distinct from analog patterns 14. Such analog patterns can have a continuous profile which can be angled or curved. Hybrid patterns 16 can include aspects of both digital and analog type patterns. For example, discrete sections of the pattern can have varying angles.
  • A non-planar substrate 20 is shown in FIG. 1B as a partial sphere. In this case, various patterns can be generated on a surface of the sphere. The patterns may be digital patterns 22 or multi-level digital patterns 24 or continuous-tone (i.e. analog patterns 26) in nature. Accordingly, the substrate can be any non-flat surface such as but not limited to, undulating, spherical, ellipsoid, arcuate, dimpled, or the like.
  • Such complex patterns can be obtained by utilizing optical patterning constructing and using a holographic mask. The holographic mask can be designed so as to project the desired pattern in three spatial dimensions when illuminated. The design method is described in more detail below. However, by illuminating the holographic mask, for example with a uniform plane wave (i e uniform within the field of interest), and setting a gap between the mask and the substrate accurately, 3D light-intensity distributions can be recorded in a conventional photoresist. After this exposure, the photoresist can be developed as is common in photolithographic processes, resulting in pattern types similar to those illustrated in FIG. 1. The illumination may be other wavefronts as well such as but not limited to Gaussian waves, spherical waves, cylindrical waves, wavefronts formed using monopole or quad-pole or annular illumination, and the like. However, the illumination to be used is taken into account when designing the holographic mask. As such, different illumination sources can result in different corresponding holographic masks even for a common target desired pattern. It is also possible to utilize multiple wavelengths for illumination, which may be accounted for in the design process and with source mask optimization considerations.
  • FIG. 2 illustrates an example of an exposure system 30 which incorporates a holographic mask 32. The holographic mask is illuminated by a light source 34. A spatial filter (not shown) can optionally be used to remove high-frequency noise from the beam. A beam expander 36 can be oriented within the light path 38 to ensure that a sufficient area of the holographic mask is illuminated. Patterned light passing through the holographic mask is then directed to a substrate 38 set on a scanning stage 40. The gap distance between the mask and the substrate is set based on the design which also accounts for distance of the photoresist layer (not shown) placed on the substrate and diffraction limits.
  • The substrate may be mounted on a scanning stage to allow movement during or after exposure to the patterned light. If the substrate is moved in between exposures, it is possible to repeat the patterns on the substrate in a cost-effective and rapid manner. The substrate may also be scanned along the optical axis, which will allow for the patterns to be repeated in three dimensions. Optionally, different patterns can be exposed at different depths in the photoresist.
  • The holographic mask can be formed of an optically transmissive material which provides sufficient phase shift as required by the holographic mask design at the wavelengths of interest, also is readily fabricated using conventional patterning process. Non-limiting examples of suitable materials for the mask can include photoresists, transparent polymers, glass, transparent plastics, fused silica, quartz, and the like. Although dimensions can vary, thickness of the holographic mask can often be from about 0.5 μm to about 10 μm.
  • FIGS. 3A-3C illustrate scanning the substrate in three dimensions which allows for stepped and repeated patterning. In FIG. 3A, the substrate 50 includes multiple physical first, second and third steps 54, 56 and 58, respectively, or multiple levels at different elevations with respect to the holographic mask 52. In one exposure stage, illumination 60 can be passed through the holographic mask to produce a patterned light 62 which selectively exposes portions of a first photoresist layer 64.
  • By moving the substrate relative to the holographic mask in the X and the Z directions (it can optionally be moved in Y as well), the pattern created by the holographic mask can be repeated. Either or both of the illumination and halographic mask, and the substrate can be moved to expose different locations on the substrate. FIG. 3B illustrates a second exposure stage where the illumination 60 is oriented over second step 56. In this second stage, photoresist layer 66 is patterned according to a pattern in the photographic mask. Similarly, FIG. 3C illustrates a third exposure stage in which illumination 60 and photographic mask 52 are oriented over third step 58 in which photoresist layer 68 is patterned. Although the exposure pattern is illustrated as a common pattern across each of the multiple exposure stages, the holographic mask can optionally be changed or modified to produce different patterns at one or more locations as the holographic mask is translated with respect to the substrate. Furthermore, any number of exposure stages can be performed in X, Y and Z directions depending on the desired patterns and accompanying substrate. For example, if the substrate has steps in the Z direction (along the optical axis) as shown, then this can allow for 3D patterning on non-flat surfaces.
  • Consistent with the above discussion, FIG. 4 illustrates an example of patterning a roller stamp 70 having a curved substrate surface 72. Such a stamp may be used in roll-to-roll nanoimprint lithography and is typically cylindrical. An illumination 74 can pass through a corresponding holographic mask 76. The holographic mask can be configured to expose a photoresist layer 78 in the substrate surface to form a patterned layer 80. The roller can be rotated in between exposures to provide full surface coverage as required. In this case, the scanning stage will be replaced by a rotating axis, which holds the roller. In this case, the roller may be mounted on a rotating axle instead of a stage. The roller can be rotated by a specific angle such that the same or different pattern is repeated on its surface at a second location on the substrate surface. If different patterns are desired, the holographic mask may be replaced or varied in between the rotations. A combination of translation from a stage and rotation may be used for more complicated substrate geometries.
  • Furthermore, an entire roller surface may be patterned with a single exposure. This is possible if the roller is formed of material that is transparent to the illuminating wavelength. FIG. 5 illustrates a single exposure of patterned illumination 82 onto a transparent roller 84. In this case, the holographic mask 86 is designed to image the desired pattern on both the front and back surfaces of the roller. Therefore, a single exposure of illumination 88 can be passed through the holographic mask to pattern the entire surface of interest. The design process takes into account any reflections off the surface of the roller (e.g. incorporating Fresnel reflection coefficients to determine amount of light reflected from the surface). In this case, no rotation is performed while patterning and the patterning can be more rapid. However, the design of the holographic mask is more complicated. The patterns are created simultaneously such that the design algorithm forms an image on any non-planar surface such as a 3D spherical surface. So the patterns on each side are taken into account. Absorption in the photoresist can often be minimal, but such effects can be taken into account into the design as needed.
  • The design method for the holographic mask is based on a modified version of a direct-binary search algorithm, which can be referred to as an iterative pixelated perturbation algorithm (IPPA). The holographic mask (holomask) is represented as a matrix of height values. This arises from the fact that in most practical cases, the mask will be fabricated as a topographical (height) pattern of transparent polymer, photoresist, plastic, glass or fused silica, quartz, or other suitable material on a transparent substrate such as glass. The pixel-sizes and the discrete height levels are determined by the fabrication technology and result in varying diffraction patterns which affect a resulting image within the photoresist and at the substrate. For example, the pixel sizes can in the tens of nanometers if the fabrication is done with scanning-electron-beam lithography or focused ion-beam lithography, or in the hundreds of nanometers and microns range with optical patterning, diamond turning, or 3D printing. Height levels can be anywhere from a few nm to many microns. Again, the above mentioned fabrication techniques can be used. Although pixel sizes and height levels can vary considerably, in one example, the pixel size can range from about 10 nm to about 500 μm while the height levels can range from about 10 nm to about 500 micrometer. The design algorithm is based on a direct nonlinear optimization method.
  • A suitable algorithm which applies this IPPA is illustrated in FIG. 6. The iteration 90 begins with a starting design 92, which can be generated by a variety of means. In one example, a random design may be used as the starting design or the starting design may be generated using a modified-error reduction (MER) approach. Any other starting point could also be used, either by heuristic models, uniform design, or the like. The design includes an array of pixels in two dimensions where each pixel has an initial height determined by the starting design.
  • Subsequently, the optic-height of the first pixel is perturbed by increasing this height by a pre-defined unit-height 94. Next, resulting images produced at various planes parallel to the holomask are computed 96 using a simple diffraction-based propagation method (such as angular-plane wave spectrum method). Note that the three dimensional desired image is discretized into multiple two dimensional planes. This can be done for computational convenience since two dimensional images are significantly more efficient to compute. However, the three dimensional image can also be directly calculated.
  • A figure-of-merit (or metric) for each of the resulting images are computed 98. Typically, this metric is a combination of the diffraction efficiency of the holomask and the fidelity of the resulting image. Details of particular metric functions are described later.
  • Next, if the computed metric is improved 100 from the previous iteration, then the perturbation is kept and steps 94-100 are repeated with another pixel 102. Each subsequent pixel perturbation can be performed in an ordered fashion such as by scanning across the pixel array, although any pattern of pixel perturbation could be utilized. If the consolidated metric is not improved, then steps 96-100 are repeated with the same pixel, but in step 104, the optic-height is reduced by the unit-height as compared to an original iteration height. Finally, if both perturbations have not improved the metric 106, the perturbations are discarded 108 and steps 94-100 are repeated with the next pixel in the pixel array. Once all pixels are considered, the iteration continues with the first pixel again. The iteration stops when all the pixels are considered and there is no change in the metric or the change in metric is within a predetermined range. The direction of scan of the pixel may be changed to improve the results. For instance, one can choose the pixels randomly to achieve a more global search. Furthermore, the IPAA process can be repeated multiple times with varying starting patterns and/or pixel perturbation orders in order to avoid convergence on a local minimum rather than a globally optimized design.
  • Suitable image metrics can include, but are not limited to, diffraction efficiency, image fidelity, exposure latitude, line-edge roughness, manufacturability, normalized inverse image slope, robustness, throughput, and the like. In some cases, the image metric can be a composite function of multiple metrics (e.g. a linear or non-linear combination). Although several metric functions could be used to drive the iterations, a few particular examples are shown below. These are for illustration and do not in any way limit the scope of the invention. Those skilled in the art will appreciate application of modified metric functions to achieve the desired effect. In the examples shown below, our metric is comprised of two parts, expressed with a linear combination of diffraction efficiency and image fidelity as below:

  • σ=f 1 ·η+f 2·ε,
  • where f1 and f2 are weighting factors of efficiency (η) and root-mean-square (RMS) error (ε), respectively. The first term (f1·η) represents the optical efficiency, defined as ratio of the light power within the volume delimited by the desired 3D image or sum of the multiple 2D planes representing slices through the desired 3D image to the power incident on the holomask. The second term (f2·ε) represents the root-mean-square (RMS) error of the light field distribution compared to the desired image. The calculated image dose is dependent on the substrate surface and the local direction of the image field. The local direction is determined by the wave vector of the field at that location. The calculated image field can be defined as φ(x, y, z)=A(x, y, z)ei{right arrow over (k)}{right arrow over (r)}, where A is the field amplitude and {right arrow over (k)} is the wave-vector. The effective image or the dose that the photoresist sees is then given by
  • D ( x , y , z ) = A ( x , y , z ) 2 k n ^ k D ,
  • where {circumflex over (n)}̂ is the unit surface normal to the photoresist. The RMS error is then defined as ε=√{square root over (∫∫∫|(D(x, y, z)−Id(x, y, z))|2dxdydz)}{square root over (∫∫∫|(D(x, y, z)−Id(x, y, z))|2dxdydz)}, where Id(x, y, z) is the desired image. Since η is increased and ε is decreased, the signs for f1 will be positive and f2 negative.
  • Design Examples
  • Three examples of two dimensional (one transverse plane and one plane along the light-propagation direction) images are presented in FIG. 7A-7C to demonstrate the effectiveness of the design method. FIG. 7A-7C shows three target images, each of which is composed of strips (infinitely long into the plane of the paper) of length that varies with gap or propagation distance. The design parameters are listed in Table 1.
  • TABLE 1
    Parameters for 2D Field Generation
    Design
    1 2 3
    Pixel Size (μm) 5 5 5
    Number of Levels 64 64 64
    Thickness (μm) 2 2 2
    Number of Pixels 100 100 100
    Material s1813 s1813 s1813
    Propagation Distance (m) 0.03 0.03 0.03
    Gap (m) 1 1 1
    Wavelength (nm) 532 532 532
    Number of Slices 4 4 4
  • FIG. 7A, Design 1 is a pyramid; FIG. 7B, Design 2 is an inverted pyramid; and FIG. 7C, Design 3 is a tilted pyramid. The distance between each slice is 1 mm (1000 μm) and each element has 64 discrete possible height levels.
  • The results for Design 1 are shown in FIGS. 8A-8F. The optimized holomask is described by the 1-D (one dimensional) height distribution shown in FIG. 8A. The change in the metric as a function of iteration number is shown in the convergence plot of FIG. 8B. In this example, the metric was diffraction efficiency, and hence increases with each iteration. The images corresponding to the four planes are shown in FIGS. 8C-F. The desired image in FIGS. 8C-8F is shown as the trapezoidal shape overlayed near the bottom of the intensity distribution. Note that all the images are within the bounds of the desired image, even though the uniformity of the image is not excellent. This non-uniformity is not problematic for lithography since the photoresist will act as a nonlinear recording material and smooth out these spatial variations.
  • Similar results for Designs 2 and 3 are shown in FIGS. 9A-9F and 10A-10F, respectively. FIG. 9A shows an optimized holomask for Design 2, while FIG. 9B shows the corresponding a convergence plot of diffraction efficiency. FIGS. 9C-9F show resulting images at four planes which are exposed simultaneously, including the desired image represented by the trapezoidal shape near the base of the distribution. FIG. 10A shows the optimized holomask for Design 3. FIG. 10B is a corresponding convergence plot for diffraction efficiency as the metric. FIG. 10C-10F show the resulting images at four planes, including the desired image represented by the trapezoidal shape near the base of the distribution.
  • Next, a full 3-D image design example is provided, where multiple planes along the optical axis have different 2-D images. For illustration, a simple pyramid composed of 3 slices along the optical axis was used. Each stripe in the image was 20 μm wide and the distance between stripes was also 20 μm. Note that care must be taken to choose the gap between the first image plane and the holomask such that light has enough distance to propagate and diffract into the appropriate areas. This can be readily determined using the simple grating equation: sin θ=λ/P, where θ is diffraction angle and P is local period of the grating. The design parameters are shown in Table 2.
  • TABLE 2
    Parameters for 3D Field Generation
    Number of Number of
    Design Pixel Size (μm) Levels Thickness (μm) Pixels
    1 5 64 2 50 × 50
    Propagation Wavelength Number of
    Material Distance (m) Gap (mm) (nm) Slices
    s1813 0.03 1 532 3
  • The target image is shown in FIG. 11A. Each square-shaped ring is in a different plane separated from the one next to it by 1 mm along the optical axis. The optimized holomask is shown in FIG. 11B. The corresponding convergence plot of diffractive efficiency is shown in FIG. 11C. The corresponding resulting images in each of the three planes are shown in FIGS. 11D-11F, respectively.
  • While the forgoing examples are illustrative of the principles of the present technology in one or more particular applications, it will be apparent to those of ordinary skill in the art that numerous modifications in form, usage and details of implementation can be made without the exercise of inventive faculty, and without departing from the principles and concepts of the technology. Accordingly, it is not intended that the technology be limited, except as by the claims set forth below.

Claims (20)

What is claimed is:
1. An iterative pixelated perturbation method of generating a three dimensional holographic mask based on a predetermined three dimensional pattern, comprising:
providing a starting pattern for the holographic mask;
computing images at multiple planes parallel to the holographic mask using a processor;
computing an image metric representing a combination of diffraction efficiency of the holographic mask and fidelity of a resulting image compared with the predetermined pattern for the images at the multiple planes using the processor;
perturbing an optic height of a first pixel in the starting pattern to create an intermediate pattern;
computing the resulting intermediate images and computing an intermediate metric for the intermediate pattern; and
determining whether the intermediate metric for the intermediate pattern is an improvement over the metric for the starting pattern.
2. The method of claim 1, wherein the image metric includes at least one of diffraction efficiency, image fidelity, exposure latitude, line-edge roughness, manufacturability, normalized inverse image slope, robustness, and throughput.
3. The method of claim 2, wherein the image metric includes diffraction efficiency and image fidelity.
4. The method of claim 1, wherein perturbing the optic height of the first pixel comprises at least one of increasing or decreasing the optic height by a predetermined height unit.
5. The method of claim 4, the method further comprising:
perturbing the optic height of the first pixel in an opposite increasing or decreasing optic height direction when the metric for the intermediate pattern is not an improvement over the metric for the starting pattern to create a second intermediate pattern;
computing the images and computing the metric for the second intermediate pattern; and
determining whether the metric for the second intermediate pattern is an improvement over the metric for the starting pattern.
6. The method of claim 5, further comprising discarding perturbation of the optic height of the first pixel when the metric for the second intermediate pattern is not an improvement over the metric for the starting pattern, and performing the steps of perturbing, computing, and determining for a second pixel.
7. The method of claim 1, further comprising performing the steps of perturbing, computing, and determining for a second pixel when the metric for the intermediate pattern is an improvement over the metric for the starting pattern.
8. The method of claim 1, wherein computing images at multiple planes parallel to the holographic mask comprises computing images corresponding to image slices from the predetermined three dimensional pattern.
9. The method of claim 6, wherein the images are two dimensional or three dimensional images.
10. The method of claim 1, further comprising fabricating the holographic mask as a topographical pattern on a transparent substrate.
11. A system for surface patterning using a three dimensional holographic mask, comprising:
a light source configured to emit a light beam toward the holographic mask;
the holographic mask formed as a topographical pattern on a transparent mask substrate;
a semiconductor substrate on an opposite site of the holographic mask as the light source, the semiconductor substrate being spaced apart from the holographic mask; and
a base for supporting the semiconductor substrate.
12. The system of claim 11, further comprising a beam expander positioned between the light source and the holographic mask, the beam expander being configured to expand the light beam.
13. The system of claim 11, wherein the base comprises a mobile base configured to move the semiconductor substrate in an x, y, or z dimension.
14. The system of claim 11, wherein the semiconductor substrate is a non-planar surface.
15. The system of claim 11, wherein the holographic mask enables patterning of the semiconductor substrate in both step-wise patterns and angled patterns.
16. A method of patterning a resist using a three dimensional holographic mask, comprising:
positioning the holographic mask between a light source and a semiconductor substrate, and spaced apart from the semiconductor substrate, the holographic mask being formed as a topographical pattern on a transparent mask substrate; and
illuminating the holographic mask with the light source to project a predetermined pattern in three spatial dimensions onto the semiconductor substrate.
17. The method of claim 16, further comprising:
rotationally moving the semiconductor substrate in one of x, y, or z dimensions; and
illuminating the holographic mask with the light source to project the predetermined pattern in three spatial dimensions onto a second portion of the semiconductor substrate.
18. The method of claim 16, wherein illuminating the holographic mask to project the predetermined pattern onto the semiconductor substrate comprises illuminating the holographic mask to project the predetermined pattern onto a first portion of the semiconductor substrate, the method further comprising:
linearly moving the semiconductor substrate in one of x, y, or z dimensions; and
illuminating the holographic mask with the light source to project the predetermined pattern in three spatial dimensions onto a second portion of the semiconductor substrate.
19. The method of claim 18, wherein the second portion of the semiconductor substrate is at a different elevation than the first portion of the semiconductor substrate.
20. The method of claim 16, wherein the semiconductor substrate comprises a resist layer thereon, the method further comprising:
exposing the resist layer to create a resist layer pattern;
etching the predetermined pattern into the semiconductor substrate using the resist layer pattern to create a three dimensional topography in the semiconductor substrate.
US13/954,437 2012-07-30 2013-07-30 Methods and system for generating a three-dimensional holographic mask Abandoned US20140030895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/954,437 US20140030895A1 (en) 2012-07-30 2013-07-30 Methods and system for generating a three-dimensional holographic mask
US15/274,993 US10571861B2 (en) 2012-07-30 2016-09-23 Methods and systems for generating a three-dimensional holographic mask having topographical pattern with more than two discrete levels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261677386P 2012-07-30 2012-07-30
US13/954,437 US20140030895A1 (en) 2012-07-30 2013-07-30 Methods and system for generating a three-dimensional holographic mask

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/274,993 Division US10571861B2 (en) 2012-07-30 2016-09-23 Methods and systems for generating a three-dimensional holographic mask having topographical pattern with more than two discrete levels

Publications (1)

Publication Number Publication Date
US20140030895A1 true US20140030895A1 (en) 2014-01-30

Family

ID=49995302

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/954,437 Abandoned US20140030895A1 (en) 2012-07-30 2013-07-30 Methods and system for generating a three-dimensional holographic mask
US15/274,993 Active 2034-07-29 US10571861B2 (en) 2012-07-30 2016-09-23 Methods and systems for generating a three-dimensional holographic mask having topographical pattern with more than two discrete levels

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/274,993 Active 2034-07-29 US10571861B2 (en) 2012-07-30 2016-09-23 Methods and systems for generating a three-dimensional holographic mask having topographical pattern with more than two discrete levels

Country Status (1)

Country Link
US (2) US20140030895A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160291542A1 (en) * 2013-11-22 2016-10-06 Wasatch Photonics, Inc. System and method for holography-based fabrication
US20180239305A1 (en) * 2017-02-23 2018-08-23 Boe Technology Group Co., Ltd. Method and system for generating computer-generated hologram
CN111007664A (en) * 2019-12-18 2020-04-14 中国科学院光电技术研究所 Design method of diffractive optical element with high diffraction efficiency and low speckle noise
US11822110B2 (en) 2018-02-21 2023-11-21 University Of Utah Research Foundation Diffractive optic for holographic projection

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11101205B2 (en) 2019-09-09 2021-08-24 Intel Corporation Interconnection structure fabrication using grayscale lithography

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582176A (en) * 1968-12-26 1971-06-01 Ibm Holographic optical method and system for photoprinting three-dimensional patterns on three-dimensional objects
GB2221353A (en) * 1988-07-25 1990-01-31 Gen Hybrid Limited Manufacturing electrical circuits
US5393634A (en) * 1993-05-27 1995-02-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Continuous phase and amplitude holographic elements
US5695894A (en) * 1993-05-24 1997-12-09 Holtronic Technologies Ltd. Method and apparatus for changing the scale of a pattern printed from a total internal reflection hologram
US5949557A (en) * 1998-06-15 1999-09-07 Ball Semiconductor, Inc. Total internal reflection holography method and apparatus for lithography on 3-D spherical shaped integrated circuit
US5955221A (en) * 1997-11-21 1999-09-21 The Regents Of The University Of California Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart
US6052517A (en) * 1998-06-30 2000-04-18 Ball Semiconductor, Inc. Spherical cell design for VLSI circuit design on a spherical semiconductor
US6097472A (en) * 1997-04-17 2000-08-01 Canon Kabushiki Kaisha Apparatus and method for exposing a pattern on a ball-like device material
US6120950A (en) * 1996-10-03 2000-09-19 Canon Kabushiki Kaisha Optical element manufacturing method
US20060121357A1 (en) * 2004-12-02 2006-06-08 Holtronic Technologies Plc. Large pattern printing
US20060232838A1 (en) * 2005-04-13 2006-10-19 Holoptics Sa Method and apparatus for forming a surface-relief hologram mask
US7145633B2 (en) * 2003-01-09 2006-12-05 Yamatake Corporation Apparatus and method of exposing light to a semiconductor device having a curved surface
US20060291024A1 (en) * 1996-11-15 2006-12-28 Parker William P In-line holographic mask for micromachining
US20080094674A1 (en) * 2004-08-24 2008-04-24 University Of Durham Holographic Lithography
US20110243463A1 (en) * 2010-03-30 2011-10-06 Takayoshi Suganuma Optical apparatus
US20110292363A1 (en) * 2008-07-30 2011-12-01 Peter Anthony Ivey Exposure apparatus and methods
US20120266937A1 (en) * 2010-10-15 2012-10-25 Rajesh Menon Diffractive optic

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144484A (en) * 1990-10-15 1992-09-01 Rockwell International Corporation Binary optic lens design using flip-flop optimization
US5705298A (en) 1994-12-23 1998-01-06 Lucent Technologies Inc. Holographic method for generating three dimensional conformal photo lithographic masks
WO2000003341A1 (en) 1998-07-10 2000-01-20 Ball Semiconductor, Inc. A method and system for generating a flat mask onto a three-dimensional surface
US6391502B1 (en) 1998-09-23 2002-05-21 Pemstar, Inc. Photolithographic process for producing etched patterns on the surface of fine tubes, wires or other three dimensional structures
US6893800B2 (en) 2002-09-24 2005-05-17 Agere Systems, Inc. Substrate topography compensation at mask design: 3D OPC topography anchored
US7499149B2 (en) 2003-06-24 2009-03-03 Asml Netherlands B.V. Holographic mask for lithographic apparatus and device manufacturing method
US7325223B2 (en) 2005-03-31 2008-01-29 Intel Corporation Modification of pixelated photolithography masks based on electric fields
US7523435B2 (en) 2005-12-01 2009-04-21 Intel Corporation Pixelated masks for high resolution photolithography
JP2008209664A (en) 2007-02-27 2008-09-11 Advanced Mask Inspection Technology Kk Pattern inspection device
US7703069B1 (en) 2007-08-14 2010-04-20 Brion Technologies, Inc. Three-dimensional mask model for photolithography simulation
JP5101343B2 (en) * 2008-03-03 2012-12-19 株式会社ダイセル Manufacturing method of fine structure
CN102317873A (en) * 2008-12-10 2012-01-11 赫勒拉德有限责任公司 The system and method that is used for colored motion holography

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3582176A (en) * 1968-12-26 1971-06-01 Ibm Holographic optical method and system for photoprinting three-dimensional patterns on three-dimensional objects
GB2221353A (en) * 1988-07-25 1990-01-31 Gen Hybrid Limited Manufacturing electrical circuits
US5695894A (en) * 1993-05-24 1997-12-09 Holtronic Technologies Ltd. Method and apparatus for changing the scale of a pattern printed from a total internal reflection hologram
US5393634A (en) * 1993-05-27 1995-02-28 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Continuous phase and amplitude holographic elements
US6120950A (en) * 1996-10-03 2000-09-19 Canon Kabushiki Kaisha Optical element manufacturing method
US20060291024A1 (en) * 1996-11-15 2006-12-28 Parker William P In-line holographic mask for micromachining
US6097472A (en) * 1997-04-17 2000-08-01 Canon Kabushiki Kaisha Apparatus and method for exposing a pattern on a ball-like device material
US5955221A (en) * 1997-11-21 1999-09-21 The Regents Of The University Of California Method and apparatus for fabrication of high gradient insulators with parallel surface conductors spaced less than one millimeter apart
US5949557A (en) * 1998-06-15 1999-09-07 Ball Semiconductor, Inc. Total internal reflection holography method and apparatus for lithography on 3-D spherical shaped integrated circuit
US6052517A (en) * 1998-06-30 2000-04-18 Ball Semiconductor, Inc. Spherical cell design for VLSI circuit design on a spherical semiconductor
US7145633B2 (en) * 2003-01-09 2006-12-05 Yamatake Corporation Apparatus and method of exposing light to a semiconductor device having a curved surface
US20080094674A1 (en) * 2004-08-24 2008-04-24 University Of Durham Holographic Lithography
US20060121357A1 (en) * 2004-12-02 2006-06-08 Holtronic Technologies Plc. Large pattern printing
US20060232838A1 (en) * 2005-04-13 2006-10-19 Holoptics Sa Method and apparatus for forming a surface-relief hologram mask
US20110292363A1 (en) * 2008-07-30 2011-12-01 Peter Anthony Ivey Exposure apparatus and methods
US20130120813A1 (en) * 2008-07-30 2013-05-16 Joshua James Cowling Holography
US20110243463A1 (en) * 2010-03-30 2011-10-06 Takayoshi Suganuma Optical apparatus
US20120266937A1 (en) * 2010-10-15 2012-10-25 Rajesh Menon Diffractive optic

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
Arnold, E-beams written computer generated holograms" AFOSR report 90 pages (08-1983) *
Borodovsky et al. "Pixelated phase mask as novel lithographic RET" Proc. SPIE Vol 6924 pp 69240E (14 pages) (2008) *
Clube et al. "Large field high-resolution photolithography", Proc. SPIE Vol. 3099 pp 36-45 (1997) *
Dominguez-Caballero, "Optimization of the holographic process for imaging and Lithography", Thesis MIT, 301 pages, (02/2010) *
Maiden, "Lithography in three dimensions using computer-generated holograms", Thesis, University of Dublin 299 pages (09/2005) *
NanoUtah2010 proceedings 64 pages (2010) *
Park et al. "TIR holographic lithography using surface relief hologram mask", Hankook Kwanghak Heiji Vol. 20(3) 175-181 (08/2009) *
Purvis et al., "Photolithographic patterning of bihelical tracks onto conical substrates", J. Micro/Nanolith., MEMS MOEMS 6(4) pp 043015 (4 pages) (10-12/2007 *
Quentel "multilevel diffractive optical element manufacture by excimer laser ablation and half-tone masks", Proc. SPIE Vol. 4274 pp 420-431 (2001) *
Suzuki et al. "Curved waveguide fabrication using femtosecond laser processing with glass hologram" Proc. SPIE 7589 75890T (10 pages) (2010) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160291542A1 (en) * 2013-11-22 2016-10-06 Wasatch Photonics, Inc. System and method for holography-based fabrication
US20170212472A1 (en) * 2013-11-22 2017-07-27 Wasatch Photonics, Inc. System and method for holography-based fabrication
US20180239305A1 (en) * 2017-02-23 2018-08-23 Boe Technology Group Co., Ltd. Method and system for generating computer-generated hologram
US10698365B2 (en) * 2017-02-23 2020-06-30 Boe Technology Group Co., Ltd. Method and system for generating computer-generated hologram
US11822110B2 (en) 2018-02-21 2023-11-21 University Of Utah Research Foundation Diffractive optic for holographic projection
CN111007664A (en) * 2019-12-18 2020-04-14 中国科学院光电技术研究所 Design method of diffractive optical element with high diffraction efficiency and low speckle noise

Also Published As

Publication number Publication date
US10571861B2 (en) 2020-02-25
US20170010585A1 (en) 2017-01-12

Similar Documents

Publication Publication Date Title
US10571861B2 (en) Methods and systems for generating a three-dimensional holographic mask having topographical pattern with more than two discrete levels
US9280056B2 (en) Method and system for printing high-resolution periodic patterns
US7867692B2 (en) Method for manufacturing a microstructure, exposure device, and electronic apparatus
US8368871B2 (en) Lithographic fabrication of general periodic structures
CN109061887B (en) Diffractive optical element and measuring device
JP5858995B2 (en) Method and apparatus for printing periodic patterns with large depth of focus
JP6218918B2 (en) Method and system for printing periodic patterns
JP5721858B2 (en) System and method for manufacturing nanostructures over a large area
CN101128917B (en) Exposure method and apparatus, and electronic component manufacturing method, illumination optical device
TWI636334B (en) Method and apparatus for using patterning device topography induced phase
KR20020041413A (en) Method of forming optical images, mask for use in this method, method of manufacturing a device using this method, and apparatus for carrying out this method
TW201428418A (en) Method and system for providing a target design displaying high sensitivity to scanner focus change
JP6768067B2 (en) Methods and systems for printing an array of geometric elements
TWI629472B (en) Methods of adjusting a metrology apparatus, measuring a target and fabricating a target and computer program product
JP4417881B2 (en) Manufacturing method of member having fine structure, and exposure method used for manufacturing method thereof
CN107111239A (en) The method and apparatus of the phase introduced using patterning device pattern
TW201640217A (en) Patterning devices for use within a lithographic apparatus, methods of making and using such patterning devices
Wang et al. Optical microlithography on oblique and multiplane surfaces using diffractive phase masks
US9411223B2 (en) On-product focus offset metrology for use in semiconductor chip manufacturing
KR101875771B1 (en) Mask for photolithography, manufacturing method thereof and manufacturing method of substrate using the mask
Lyu et al. Infrared structure light projector design for 3D sensing
JP6882316B2 (en) Wire grid polarizing plate manufacturing method
Lee et al. Hyper NA EUV lithography: an imaging perspective
TWI636317B (en) Method for using patterning device topography induced phase, non-transitory computer program, and method for manufacturing semiconductor devices
Stuerzebecher et al. Wafer scale fabrication of submicron chessboard gratings using phase masks in proximity lithography

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVERSITY OF UTAH RESEARCH FOUNDATION, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:UNIVERSITY OF UTAH;REEL/FRAME:031136/0871

Effective date: 20130828

Owner name: UNIVERSITY OF UTAH, UTAH

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MENON, RAJESH;WANG, PENG;SIGNING DATES FROM 20130826 TO 20130827;REEL/FRAME:031136/0828

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION