US20140100459A1 - Bubble-induced color doppler feedback during histotripsy - Google Patents

Bubble-induced color doppler feedback during histotripsy Download PDF

Info

Publication number
US20140100459A1
US20140100459A1 US14/046,024 US201314046024A US2014100459A1 US 20140100459 A1 US20140100459 A1 US 20140100459A1 US 201314046024 A US201314046024 A US 201314046024A US 2014100459 A1 US2014100459 A1 US 2014100459A1
Authority
US
United States
Prior art keywords
ultrasound
doppler
tissue
histotripsy
pulses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/046,024
Inventor
Zhen Xu
Ryan M. MILLER
Adam Maxwell
Charles A. Cain
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Michigan
Original Assignee
University of Michigan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Michigan filed Critical University of Michigan
Priority to US14/046,024 priority Critical patent/US20140100459A1/en
Priority to PCT/US2013/063520 priority patent/WO2014055906A1/en
Assigned to NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT reassignment NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF HEALTH AND HUMAN SERVICES (DHHS), U.S. GOVERNMENT CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: UNIVERSITY OF MICHIGAN
Assigned to THE REGENTS OF THE UNIVERSITY OF MICHIGAN reassignment THE REGENTS OF THE UNIVERSITY OF MICHIGAN ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MAXWELL, ADAM, CAIN, CHARLES A., MILLER, Ryan M., XU, ZHEN
Publication of US20140100459A1 publication Critical patent/US20140100459A1/en
Priority to US15/713,441 priority patent/US11058399B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B17/22012Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves in direct contact with, or very close to, the obstruction or concrement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/225Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves
    • A61B17/2256Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves with means for locating or checking the concrement, e.g. X-ray apparatus, imaging means
    • A61B17/2258Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for for extracorporeal shock wave lithotripsy [ESWL], e.g. by using ultrasonic waves with means for locating or checking the concrement, e.g. X-ray apparatus, imaging means integrated in a central portion of the shock wave apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/899Combination of imaging systems with ancillary equipment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/54Control of the diagnostic device
    • A61B8/543Control of the diagnostic device involving acquisition triggered by a physiological signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8979Combined Doppler and pulse-echo imaging systems
    • G01S15/8981Discriminating between fixed and moving objects or between objects moving at different speeds, e.g. wall clutter filter

Definitions

  • This disclosure generally relates to applying therapeutic ultrasound to tissue. More specifically, this disclosure relates to real-time Doppler-based feedback during Histotripsy therapy to tissue.
  • Radio frequency ablation is currently the standard local ablation therapy.
  • No imaging feedback is typically used to monitor RFA treatment.
  • the treatment completion is usually determined by calculation of the delivered thermal dose necessary to destroy all cells within a treated volume.
  • accurate dose calculation is nearly impossible to achieve.
  • MRI-based thermometry is being investigated for RFA monitoring, but this technique requires an open magnet MRI system, which is not clinically available.
  • High intensity focused ultrasound (HIFU) thermal therapy is a relatively new and promising non-invasive ablation technology.
  • HIFU systems mostly use MRI thermometry to monitor the thermal dose during treatment, but the use of MRI for such long procedures is expensive.
  • MRI thermometry measures the temperature change in the tissue to derive the treatment tissue effect, but not the direct change in the tissue.
  • ultrasound and MRI elastography and other ultrasound-based feedback have also been investigated to monitor the tissue elasticity increase produced by the HIFU treatment.
  • Histotripsy is a new non-invasive and non-thermal ultrasound ablation technology. It uses high intensity, microsecond-long ultrasound pulses to control cavitating bubble clouds for tissue fractionation.
  • generating Histotripsy pulses comprises generating short ( ⁇ 20 ⁇ sec), high pressure (peak negative pressure >10 MPa) shockwave ultrasound pulses at a duty cycle ⁇ 5%.
  • the Histotripsy-induced cavitation cloud can be monitored through ultrasound imaging and provides an inherent feedback for targeting
  • the tissue fractionation induced by Histotripsy appears as a dark zone on B-mode ultrasound images due to speckle amplitude reduction, although significant speckle reduction is only observed when substantial tissue fractionation is generated. It is also difficult to identify a level of backscatter amplitude reduction corresponding to complete tissue fractionation or a specific fractionation level corresponding to complete tissue death, due to the variation in speckle amplitude across different tissue samples.
  • Ultrasound elastography can detect the elasticity decrease in the fractionated tissue and shows a higher sensitivity to monitor the early stage tissue fractionation compared to speckle amplitude reduction.
  • ultrasound elastography measures the difference in tissue stiffness.
  • the tissue stiffness can be described by an elastic modulus, which can be measured by the tissue's resistance to deformation, in compression/tension (Young's modulus) or in shear (shear modulus). Tissue deformation occurs in response to a stress being applied to the tissue.
  • the stress can be applied by a manual push from the clinician's finger or imaging probe. It can also be applied by acoustic radiation force from an ultrasound pulse.
  • the dynamic displacement response of the soft tissue is typically monitored using cross-correlation between adjacent ultrasound image frames of the displayed tissue. The amplitude and temporal characteristics of the displacement, including peak displacement, time to peak displacement, and tissue velocity, can then be extracted and used to calculate the elastic modulus of the tissue
  • generating Histotripsy pulses comprises generating short ( ⁇ 20 ⁇ sec), high pressure (peak negative pressure >10 MPa) shockwave ultrasound pulses at a duty cycle ⁇ 5%.
  • control system is configured to set specific Doppler parameters to follow the tissue displacement using color Doppler, such as a time delay between a Doppler pulse packet and the Histotripsy pulses, a pulse repetition frequency of the Doppler pulse packet, and a number of frames in the Doppler pulse packet.
  • the ultrasound therapy transducer includes a central hole configured to house an ultrasound imaging transducer of the ultrasound Doppler imaging system so as to align the ultrasound imaging transducer along a propagation path of the Histotripsy pulses.
  • control system is configured to synchronize transmission of the ultrasound imaging pulses with transmission of the Histotripsy pulses by sending a trigger signal from the control system to the ultrasound Doppler imaging system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
  • a pulse repetition frequency (PRF) and a number of frames of Doppler imaging are set by the ultrasound Doppler imaging system so color Doppler flow velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
  • PRF pulse repetition frequency
  • an expansion of a temporal profile of a color Doppler velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
  • a rapid expansion of a temporal profile of a color Doppler velocity corresponds to microscopic cellular damage, while a slow expansion of the temporal profile of the color Doppler velocity corresponds to macroscopic tissue structural damage generated by the Histotripsy pulses.
  • a saturation or decrease of expansion of a temporal profile of a color Doppler velocity indicates complete homogenization and liquefaction of the tissue.
  • a PRF and number of frames of color Doppler imaging is controlled by the ultrasound Doppler imaging system such that a direction of a color Doppler flow changes from towards an imaging transducer to away from the imaging transducer when the tissue is sufficiently fractionated by the Histotripsy pulses.
  • a wall filter value can be set by the ultrasound Doppler imaging system such that a color Doppler flow map matches the tissue when it has been fractionated by the Histotripsy pulses.
  • 2D or 3D images of the tissue can be reconstructed by scanning a focus of the ultrasound therapy transducer and collecting a color Doppler map at a position of the focus.
  • the Doppler imaging can be configured to monitor vessel function and cardiac function during the transmission of Histotripsy pulses.
  • the ultrasound Doppler imaging system can display different colors to distinguish tissue motion from blood flow.
  • a method of monitoring Doppler-based feedback during Histotrispy treatment comprising the steps of transmitting Histotripsy pulses into tissue having a pulse length less than 20 ⁇ sec, a peak negative pressure greater than 10 MPa, and a duty cycle less than 5% with an ultrasound therapy transducer, obtaining color Doppler acquisition of the tissue during transmission of the Histotripsy pulses with an ultrasound imaging system, and synchronizing the color Doppler acquisition with the transmission of Histotripsy pulses with a control system.
  • the method comprises setting specific Doppler parameters to follow tissue displacement using color Doppler acquisition.
  • the method comprises obtaining color Doppler acquisition along a propagation line of the Histotripsy pulses to measure tissue displacement of the tissue.
  • the synchronizing step comprises sending a trigger signal to the ultrasound imaging system from the control system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
  • the method comprises setting a PRF and number of frames for color Doppler acquisition such that a color Doppler flow velocity increases with an increasing degree of tissue fractionation generated by the Histotripsy pulses.
  • the method comprises setting a PRF and number of frames for color Doppler acquisition such that a direction of a color Doppler flow changes from towards the ultrasound imaging system to away from the ultrasound imaging system when the tissue is sufficiently fractionated by the Histotripsy pulses.
  • the method comprises setting a wall filter value such that a color Doppler flow map matches a fractionated tissue region generated by the Histotripsy pulses.
  • the method comprises reconstructing 2D or 3D Doppler imaging of a fractionated tissue by scanning a focus of the ultrasound therapy system and collecting a color Doppler map at a position of the focus.
  • the method comprises monitoring vessel function and cardiac function during transmission of the Histotripsy pulses.
  • the method comprises distinguishing tissue displacement from blood flow with the color Doppler acquisition.
  • the color Doppler acquisition can be used to monitor and indicate microscopic cellular damage versus macroscopic tissue structure homogenization.
  • FIGS. 1A-1B Velocity observed at the therapy focus following Histotripsy pulses of various focal pressures (left), along with a plot of the average peak velocity observed for each of the tested pressures (right) within the focal region in the agarose phantom using particle image velocimetry (PIV). Without cavitation generated by the Histotripsy pulse, no appreciable motion was detected. When cavitation occurred, the peak motion detected by PIV increased with increasing Histotripsy pulse pressure.
  • FIGS. 2A-2D High speed images of the focal region 50 pulses into treatment (therapy applied from the right) with PIV velocity map overlays showing the Histotripsy bubble cloud (top left), chaotic motion immediately after the collapse of the bubble cloud (top right), and finally coherent motion, including a push away from the transducer (bottom left) and subsequent rebound (bottom right).
  • FIG. 3 describes the setup of the Histotripsy system and ultrasound imaging system to perform the bubble-induced color Doppler feedback for Histotripsy treatment.
  • FIG. 4 demonstrates one synchronization scheme to trigger the Doppler pulse transmission and acquisition using a signal sent out from the Histotripsy system at an appropriate delay time (negative or positive) after the transmission of the Histotripsy pulse.
  • FIG. 5 Steered focal locations for the 219 foci with alternating 1 mm spaced grids of 7 ⁇ 7 foci and 6 ⁇ 6 foci.
  • the axial layers are separated by 1 mm, but with the 6 ⁇ 6 grids offset laterally from the 7 ⁇ 7 layers by 0.5 mm
  • FIG. 6 Experimental setup with 500 kHz transducer mounted to the side of a water tank with 5 MHz imaging probe mounted opposite the therapy and aligned along the therapy axis.
  • the Phantom high speed camera was positioned perpendicular to the therapy axis.
  • FIGS. 7A-7B Plots showing the velocity estimates from PIV (top) and Doppler (bottom) after every 10 therapy pulses.
  • FIG. 8 Individual velocity plots for the 19 ms after the therapy pulse after 10 therapy pulses (left), 30 therapy pulses (center), and 290 therapy pulses (right) showing good agreement between PIV and Doppler in measured velocity after the initial chaotic motion.
  • FIG. 9 Doppler velocity progression at a 6 ms delay from therapy pulse without averaging (left) and with a 10 pulse running average (right).
  • FIG. 11 Alternative progression metric, time to peak velocity, shows less variation and captures the same rapid change up to 100 pulses shown in the mean lesion intensity, with a slower continued progression up to 200 pulses.
  • FIG. 12 Plot showing the velocity estimates from Doppler after every therapy pulse in ex vivo porcine liver.
  • FIG. 13 Doppler velocity progression in ex vivo liver without averaging (left) and with a 10 point running average (right).
  • FIG. 14 Histological images of the lesion after 50 therapy pulses. Macroscopic image (left) shows little large-scale homogenization, however widespread mechanical fractionation is visible microscopically (bottom right) compared to control (top right).
  • FIG. 15 Histological images of the lesion after 200 therapy pulses. Macroscopic image (left) shows clear large-scale homogenization, with increased mechanical fractionation visible microscopically (bottom right) compared to control (top right).
  • FIG. 16 Histological images of the lesion after 500 therapy pulses. Macroscopic image (left) shows complete large-scale homogenization, with near complete homogenization visible microscopically as well (bottom right) compared to control (top right).
  • This disclosure introduces new imaging feedback systems and methods using bubble-induced color Doppler to monitor the Histotrispy-induced tissue fractionation in real-time.
  • This novel approach can monitor the level of tissue fractionation generated by Histotripsy with improved sensitivity compared to backscatter speckle amplitude reduction and can be implemented in real-time during Histotripsy treatment. Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • FIGS. 1A-1B show a plot of the average velocity profile after each Histotripsy pulse along with the average peak velocity observed for each of the tested focal pressures.
  • FIG. 1A illustrates the velocity observed at the therapy focus following Histotripsy pulses of various focal pressures
  • FIG. 1B shows a plot of the average peak velocity observed for each of the tested pressures within the focal region in the agarose phantom using particle image velocimetry (PIV).
  • PIV particle image velocimetry
  • a cavitation bubble cloud was generated immediately and collapsed within 300 ⁇ s. Residual bubble nuclei persist for over 100 ms after the cavitation collapse and were clearly visible in high-speed optical images of the focal region after a Histotripsy therapy pulse.
  • PIV velocity maps showed 2 phases of motion during the 19 ms after a Histotripsy therapy pulse.
  • chaotic motion was present, where the motion was pointed in all directions in a random manner through this period.
  • This chaotic motion phase likely resulted from the violent collapse of the Histotripsy bubble cloud.
  • a coherent motion along the direction of the therapy ultrasound beam was visible. The coherent motion was first moving away from the therapy transducer for up to 6 ms, and then rebounding back towards the therapy transducer through the remaining 19 ms.
  • FIGS. 2A-2D show images of an example progression of the focal region PIV velocity map after the tissue had been treated with 50 Histotripsy pulses. The therapy pulse was propagated from right to left.
  • FIGS. 2A-2D high speed images of the focal region are shown approximately 50 pulses into treatment (therapy applied from the right on the page) with PIV velocity map overlays showing the Histotripsy bubble cloud ( FIG. 2A ), chaotic motion immediately after the collapse of the bubble cloud ( FIG. 2B ), and finally coherent motion, including a push away from the transducer ( FIG. 2C ) and subsequent rebound ( FIG. 2D ).
  • the time profile of the resulting velocity of the coherent motion expands as the tissue is fractionated and saturate when the tissue is completely liquefied.
  • the averaged velocity within a specific time window of the coherent motion increases with increasing degree of tissue fractionation, and saturates when the clot is completely liquefied.
  • the velocity resulting from the coherent motion can be detected by ultrasound color Doppler that uses the cross-correlation time/phase lag of adjacent frames to detect the target motion.
  • color Doppler can be used to monitor the coherent motion in the Histotripsy treatment region.
  • color Doppler can be used to monitor the coherent motion phase without the interference from the chaotic motion.
  • the Doppler velocity can be then analyzed to quantitatively predict the level tissue fractionation during the treatment in real-time.
  • the Doppler velocity map can also be displayed it as a colored region overlaid on the gray-scale image, providing real-time imaging feedback to monitor Histotripsy tissue fractionation.
  • B-Flow and M-mode approaches are possible alternatives to color Doppler.
  • FIG. 3 illustrates a Doppler monitoring Histotripsy system 300 including an ultrasound therapy transducer 302 , a Doppler imaging transducer or transducers 304 (shown as 304 a and 304 b ), Histotripsy therapy driving hardware 306 (which can include, for example, a pulse generator, amplifiers, matching networks, and an electronic controller configured to generate Histotripsy pulses in the ultrasound therapy transducer), and imaging hardware 308 which can control Doppler imaging with the Doppler imaging transducer(s) 304 .
  • the Doppler imaging transducers can be disposed within a cut-out or hole within the ultrasound therapy transducer, for example, so as to facilitate imaging of a focus 310 (and thus the bubble cloud) of the therapy transducer.
  • the tissue velocity along the axial direction or the propagation direction of the ultrasound pulse is monitored using color Doppler.
  • This can be achieved by placing the ultrasound imaging transducer in-line with the therapy transducer, for example, the Histotripsy therapy transducer can have a central hole to house the ultrasound imaging transducer to ensure the imaging transducer is monitoring the axial displacement of the tissue along the propagation direction of the Histotripsy pulse.
  • the synchronization of the Histotripsy system and Doppler acquisition of the ultrasound imaging system is essential and can be achieved by triggering Doppler pulse transmission from the Doppler imaging transducer(s) using a signal sent out from the Histotripsy therapy driving hardware 306 at an appropriate delay time (negative or positive) after the transmission of the Histotripsy pulse. It is also possible to trigger the Histotripsy therapy driving hardware with a signal from the imaging hardware 308 .
  • FIG. 4 demonstrates a synchronization scheme according to one embodiment.
  • An appropriate delay needs to be set between the Histotripsy pulse and the Doppler pulse transmission, such that the Doppler velocity measures the coherent motion phase, not the chaotic motion immediately following the Histotrispy pulse.
  • the chaotic motion phase ranges from 300 us to 2 ms, depending on the tissue type and the level of tissue fractionation.
  • the time profile of the Doppler velocity expanded with a very steep slope for the first 50 pulses. After that, the expansion of the temporal profile of the Doppler was much more gradual, until at 900 pulses, the expansion saturates.
  • microscopic cellular damage i.e. cell death
  • macroscopic tissue structure homogenization i.e., tissue liquefaction
  • Current B-mode ultrasound imaging is not sensitive enough to monitor the microscopic cellular damage alone.
  • the bubble-induced color Doppler has improved sensitivity to detect the microscopic cellular death as well as damage to the macroscopic tissue structure. This improved sensitivity can dramatically increase the treatment efficiency.
  • treatment completion can be determined in real-time for different clinical applications. For example, macroscopic tissue liquefaction is needed for clot removal, while cell death may be sufficient for tumor treatment and benign lesions. This feature is innovative and of clinical importance, and is not available for any current feedback techniques.
  • the amplitude of bubble-induced color Doppler changes over the Histotripsy treatment may vary across different organs and patients.
  • Our data suggest that the slope or the rate of Doppler velocity change, either the temporal profile of the velocity within sub-time window of the coherent motion, can be used to monitor the treatment, to detect microscopic cellular damage as well as macroscopic tissue structure homogenization. Therefore, the detection does not depend on the absolute value of the Doppler velocity, but the relative change, and therefore is expected to be consistent and reliable across different organs and patients.
  • the Doppler parameters such as the pulse repetition frequency (PRF) and number of frames for each Doppler acquisition, can be selected appropriately to achieve the desired correlation between the Doppler velocity increase with the increasing degree of tissue fractionation (i.e. Histotripsy treatment progress) in different tissue types.
  • PRF pulse repetition frequency
  • the color Doppler velocity map region can precisely match the fractionation region.
  • Doppler parameters e.g., time window of the Doppler acquisition
  • the average Doppler velocity is towards the transducer prior to treatment completion shown as one color (e.g. blue)
  • the Doppler flow is away from the transducer at the treatment completion viewed as a different color (e.g., red).
  • a definitive indication for treatment completion is apparent to even inexperienced users. This can be achieved because the temporal profiles of the coherent motion away from the transducer and back towards the transducer expand with the degree of tissue fractionation.
  • these residual nuclei provide bright speckle to track the bubble-induced motion in the tissue during Histotripsy treatment. They provide strong speckles for displacement the motion tracking, even with poor imaging quality.
  • Doppler is an essential tool for monitoring cardiovascular function
  • the capability of color Doppler during Histotripsy treatment allows us to monitor the vessel and cardiac function during the treatment, which could have significant clinical implications.
  • Histotripsy can be used to remove blood clots in the vessel and color Doppler can evaluate whether the blood flow is restored or improved during the Histotripsy treatment in a previously completely or partially occluded vessel.
  • Histotripsy has also been studied to create a flow channel through the atrial septum between the two atria in the heart for patients with congenital heart disease.
  • color Doppler can indicate the generation of the flow channel, i.e., treatment completion.
  • color Doppler can be used to ensure no penetration is generated to the vessel during the Histotripsy treatment.
  • Different colors can be used for bubble-induced color Doppler feedback during Histotripsy (e.g., green and yellow) to distinguish from blue and red commonly used in color Doppler for blood flow.
  • the bubble-induced color Doppler cannot be used directly to form an image of a large volume, as the Histotripsy pulse is used to treat one focal volume at a time. It is possible to steer the therapy transducer focus (electronically or mechanically) over the large ablated volume and collect the data to reconstruct the 2D/3D image of the ablated volume.
  • the ablated tissue coagulates quickly after treatment, which may change the elasticity of the treated volume after treatment. If bubble-induced color Doppler will be used for post-treatment lesion evaluation when the tissue is coagulated, we can develop a quick ablation scan sequence to re-fractionate the coagulative tissue prior to the elastography measurement.
  • This phantom was treated with 2-cycle pulses at >50 MPa over a 6 mm cube using the same 500 kHz phased array transducer.
  • This high pressure guaranteed the generation of a cavitation cloud, and the residual bubble nuclei left after its collapse for optical and acoustic contrast at the focal location.
  • 219 focal points at 1 mm separations ( FIG. 5 ) were treated sequentially at 150 Hz with a single pulse applied at each location. This process was repeated every 1.5 seconds until all focal locations had been treated with 960 pulses each.
  • This pulsing strategy guarantees uniform therapy dose over the treatment volume at all times during treatment.
  • FIG. 5 219 focal points at 1 mm separations
  • steered focal locations for the 219 foci are shown with alternating 1 mm spaced grids of 7 ⁇ 7 foci and 6 ⁇ 6 foci.
  • the axial layers are separated by 1 mm, but with the 6 ⁇ 6 grids offset laterally from the 7 ⁇ 7 layers by 0.5 mm.
  • the internal memory of the high-speed camera may not be able to accommodate acquisitions after every pulse, so to facilitate continuous treatment without interruptions for data transfer; images can be captured periodically (e.g., after every 10 th pulse delivered to the center focal location).
  • Ultrasound Doppler acquisitions can be performed after every therapy pulse.
  • the imaging transducer can be positioned opposite the therapy transducer, as described above, aligned along the therapy axis, i.e., the ultrasound imaging beam can be rigidly aligned with the therapy beam to avoid the effect of angle variation on Doppler.
  • FIG. 6 An experimental setup is illustrated in FIG. 6 , which shows a therapy transducer 602 , a Doppler imaging transducer 604 , ultrasound control system 606 , and imaging control system 608 .
  • the experimental setup also shows the tissue phantom disposed in a water tank and a high speed camera and light source for additional imaging capabilities.
  • the experimental setup included a 500 kHz transducer mounted to the side of a water tank with 5 MHz imaging probe mounted opposite the therapy and aligned along the therapy axis.
  • the high speed camera was positioned perpendicular to the therapy axis.
  • a tissue-mimicking agarose gel phantom with an embedded red blood cell (RBC) layer was used to visualize and quantify the development of the lesion.
  • RBC red blood cell
  • These phantoms have been shown to produce reliable estimates of the cavitation-induced damage zone resulting from Histotripsy therapy.
  • the RBC area lysed by Histotripsy changed from opaque red to translucent pink, allowing direct visualization and quantification of the lesion development.
  • the lesions were photographed during treatment after each application of the 219 focal patterns. Simultaneous ultrasound Doppler acquisitions were also performed for direct comparison. The average pixel intensity within the lesion was then computed over the course of the treatment as a direct quantification of the fractionation progression in the tissue phantom and compared to the measured Doppler velocity progression.
  • the liver was treated with 2000 pulses at each of the 219 focal locations, with ultrasound Doppler acquisitions performed after every pulse delivered to the center focal location. High-speed optical imaging for PIV analysis was not possible in the tissue.
  • the high-speed optical images of the focal region were processed to estimate the motion resulting from the Histotripsy therapy pulses.
  • the PIV analysis was performed in a ⁇ 1.7 by 0.85 mm field of view at a resolution of 151 pixels per mm (total 256 ⁇ 128 pixels at 50 kHz frame rate) for the glass bead layer experiments and ⁇ 6.6 by 3.3 mm field of view at a resolution of 116 pixels per mm (total 768 ⁇ 384 pixels at 10 kHz frame rate) for the large lesion treatments.
  • the images were processed in pairs at two subsequent time points using a FFT window deformation algorithm with 3 pass velocity estimation with image block sizes and step sizes of 24/12 pixels for pass 1 , 16/8 pixels for pass 2 , and 8/4 pixels for pass 3 in the glass bead layer experiment and 64/32 pixels for pass 1 , 32/16 pixels for pass 2 , and 16/8 pixels for pass 3 in the larger lesion treatments. Both resulted in velocity field maps of the field of view over the 19 ms after a Histotripsy therapy pulse. The axial components of these PIV velocity maps were then averaged over the bubble cloud area to produce the final average velocity estimate over time.
  • the ultrasound Doppler acquisitions were also processed. To calculate the velocity over the 19 ms after the therapy pulse, the 200 acquisitions were processed in rolling 10 acquisition segments (equivalent to using 10 frames at 10 kHz PRF, with different delay times after the histotrispy pulse). These Doppler velocity maps were then averaged over the 2 ⁇ 4 mm bubble cloud area to produce the final average velocity estimate over time.
  • FIGS. 7A-7B The full velocity profiles over the 960 pulse treatments are shown in FIGS. 7A-7B for both PIV ( FIG. 7A ) and Doppler ( FIG. 7B ) estimation methods.
  • the estimated velocity is shown versus the delay from the therapy pulse (y axis) and the therapy dose (x axis).
  • FIG. 8 shows 3 individual velocity traces after 10, 30, and 290 therapy pulses.
  • PIV and Doppler estimates agree with each other well over the course of treatment. These plots show a time expansion of the velocity profile with increased therapy dose, which is likely due to the elasticity decrease as the phantom when it was gradually fractionated by Histotripsy pulses. The increase in the duration of the coherent push and rebound motion reached a peak after 400 pulses, likely because the phantom was completely liquefied.
  • FIG. 8 shows good agreement between PIV and Doppler in measured velocity after the initial chaotic motion.
  • the velocity progression at any single delay between the Histotrispy pulse and the Doppler pulse packet can be extracted from this dataset, producing the average velocity within a 1 ms window over the course of therapy. These velocity progressions are readily attainable in real-time from color Doppler during Histotripsy therapy, with an average processing frame rate around 30 Hz.
  • the Doppler velocity progression at 6 ms delay from the Histotripsy pulse is shown in FIG. 9 . In this case, the Doppler measurement estimates the average velocity during the time window from 6-7 ms after the therapy pulse.
  • FIG. 9 shows Doppler velocity progression at a 6 ms delay from therapy pulse without averaging (left) and with a 10 pulse running average (right).
  • RBC red blood cell
  • the Doppler velocity continued to change at a slower rate beyond this point before saturating after approximately 200 pulses.
  • This Doppler velocity metric is obtainable in real-time at high frame rates (up to 200 Hz) during Histotripsy therapy, however if high frame rates are not required, alternative metrics are also possible.
  • the time to peak velocity shown in FIG. 11 also captures the same rapid change up to 100 pulses observed in the lesion intensity, and also the continued slow increase up to 200 pulses.
  • an alternative progression metric, time to peak velocity shows less variation and captures the same rapid change up to 100 pulses shown in the mean lesion intensity, with a slower continued progression up to 200 pulses.
  • FIG. 12 shows the full velocity profile over the entire treatment. The estimated velocity is shown versus the delay from the therapy pulse (y axis) and therapy dose (x axis).
  • the Doppler velocity profiles in the ex vivo porcine liver were similar to the agarose phantom, with a brief period of chaotic motion followed by coherent motion. These coherent motions also expanded in time with increased therapy dose very rapidly up to 50 pulses. After 50 pulses, the temporal profile of the Doppler velocity continued to expand at a slower rate until 900 pulses. After that point, the temporal profile of the Doppler velocity decreased slowly with increasing number of therapy pulses.
  • the velocity progression at a single delay of 8 ms was extracted from this dataset, producing the average velocity during the 8-9 ms window over the course of therapy. This is shown in FIG. 13 .
  • the velocity increased quickly for the first 50 pulses, and then steadily at a slower rate up to 900 pulses as the tissue was fractionated. After 900 pulses, the velocity decreased steadily with increased variation from pulse to pulse.
  • Doppler velocity progression in ex vivo liver is shown without averaging (left) and with a 10 point running average (right).
  • FIG. 14 shows the lesion resulting from a 50 pulse treatment, with widespread mechanical disruption of the cellular structures visible microscopically in the entire treatment region. This widespread microscopic cellular damage is sufficient to cause tissue death. No macroscopic homogenization of the tissue structure was visible after 50 pulses.
  • Histological images of the lesion after 50 therapy pulses are shown. The macroscopic image (left) shows little large-scale homogenization, however widespread mechanical fractionation is visible microscopically (bottom right) compared to control (top right).
  • FIG. 15 histological images of the lesion are shown after 200 therapy pulses. Macroscopic image (left) shows clear large-scale homogenization, with increased mechanical fractionation visible microscopically (bottom right) compared to control (top right).
  • the lesion appears homogeneous and completely fractionated, with very few remaining cell nuclei in the homogenous fractionated tissue product.
  • histological images of the lesion are shown after 500 therapy pulses.
  • the macroscopic image shows complete large-scale homogenization, with near complete homogenization visible microscopically as well (bottom right) compared to control (top right).
  • the initial rapid expansion in the temporal profile of the Doppler velocity match well with the microscopic cellular damage to the treated tissue, both were observed at 50 pulses. After that, the temporal profile of the Doppler velocity continues to expand, but the rate is more gradual. Correspondingly, macroscopic damage to the tissue structure is observed. When the tissue is completely liquefied with no tissue or cellular structures remaining, the temporal profile of the Doppler velocity flattens and begins to shrink at a very slow rate.
  • the bubble-induced color Doppler provides a real-time, high sensitivity feedback to monitor Histotripsy tissue fractionation during treatment.
  • the bubble-induced color Doppler feedback can predict microscopic cellular damage, especially at an earlier treatment stage, which cannot be achieved with reduced echogenicity.
  • bubble-induced color Doppler has the potential to predict microscopic cellular damage versus the macroscopic damage to the tissue structure. This level of sensitivity is very important for clinical application to predict the end point for treatment for different clinical applications.
  • the bubble-induced color Doppler can provide consistent and reliable feedback across different tissues and patients.
  • Our data suggest that the slope or the rate of Doppler velocity change, either the temporal profile of the velocity within sub-time window of the coherent motion, can be used to monitor the treatment, to detect microscopic cellular damage as well as macroscopic tissue structure homogenization.
  • the detection does not depend on the absolute value of the Doppler velocity that may vary across patients, but the relative change, and therefore is expected to be consistent and reliable across different organs and patients.
  • the bubble-induced color Doppler can be displayed as color overlaid on gray-scale ultrasound images, providing a high contrast feedback to monitor the degree of tissue fractionation (i.e. treatment progress and completion). Such feedback is unambiguous and easy to use even for inexperienced users.
  • an ultrasound imaging transducer can be placed in-line (or co-axially) with the Histotripsy therapy transducer.
  • such configuration can be achieved by having a small center hole in the therapy transducer to house the imaging probe.
  • the Doppler acquisition on the ultrasound imaging system needs to be synchronized by the Histotripsy therapy pulse such that the first Doppler pulse arrives at the focus at a pre-defined delay time after the arrival of the Histotripsy pulse.
  • the real-time bubble-induced color Doppler should also allow evaluation of the vessel or the heart close to the treatment target during the Histotripsy treatment.
  • Different colors can be used for tissue motion (e.g. green and yellow) to distinguish from the red and blue commonly used in color Doppler for blood flow.
  • the ultrasound gray-scale imaging quality of deep tissue is often degraded significantly due to the attenuation and aberration from the overlying tissue, resulting in coarse tissue speckle and making the accurate tissue motion tracking difficult.
  • the residual nuclei from bubble cloud generated by Histotripsy last over 100 milliseconds after each Histotripsy pulse and moves with the target tissue, providing strong ultrasound speckles for motion tracking during bubble-induced color Doppler.

Abstract

A Histotripsy therapy system is provided that can include any number of features. In some embodiments, the system includes a high voltage power supply, a pulse generator electrically coupled to at least one signal switching amplifier, at least one matching network electrically coupled to the signal switching amplifier(s), and an ultrasound transducer having at least one transducer element. The Histotripsy therapy system can further include an ultrasound Doppler imaging system. The Doppler imaging system and the Histotripsy therapy system can be synchronized to enable color Doppler acquisition of the fractionation of tissue during Histotripsy therapy. Methods of use are also described.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit under 35 U.S.C. 119 of U.S. Provisional Patent Application No. 61/710,172, filed Oct. 5, 2012, titled “Real-Time Elastography-Based Feedback During Histotripsy”, which application is incorporated by reference as if fully set forth herein.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • FIELD
  • This disclosure generally relates to applying therapeutic ultrasound to tissue. More specifically, this disclosure relates to real-time Doppler-based feedback during Histotripsy therapy to tissue.
  • BACKGROUND
  • Imaging feedback during treatment is essential for ensuring high accuracy and safety of minimally invasive and non-invasive ablation therapies. Radio frequency ablation (RFA) is currently the standard local ablation therapy. No imaging feedback is typically used to monitor RFA treatment. The treatment completion is usually determined by calculation of the delivered thermal dose necessary to destroy all cells within a treated volume. However, accurate dose calculation is nearly impossible to achieve. MRI-based thermometry is being investigated for RFA monitoring, but this technique requires an open magnet MRI system, which is not clinically available.
  • High intensity focused ultrasound (HIFU) thermal therapy is a relatively new and promising non-invasive ablation technology. Currently HIFU systems mostly use MRI thermometry to monitor the thermal dose during treatment, but the use of MRI for such long procedures is expensive. As a state of art imaging feedback for HIFU, MRI thermometry measures the temperature change in the tissue to derive the treatment tissue effect, but not the direct change in the tissue. In addition to MR thermometry, ultrasound and MRI elastography and other ultrasound-based feedback have also been investigated to monitor the tissue elasticity increase produced by the HIFU treatment.
  • Histotripsy is a new non-invasive and non-thermal ultrasound ablation technology. It uses high intensity, microsecond-long ultrasound pulses to control cavitating bubble clouds for tissue fractionation. In some embodiments, generating Histotripsy pulses comprises generating short (<20 μsec), high pressure (peak negative pressure >10 MPa) shockwave ultrasound pulses at a duty cycle <5%. The Histotripsy-induced cavitation cloud can be monitored through ultrasound imaging and provides an inherent feedback for targeting The tissue fractionation induced by Histotripsy appears as a dark zone on B-mode ultrasound images due to speckle amplitude reduction, although significant speckle reduction is only observed when substantial tissue fractionation is generated. It is also difficult to identify a level of backscatter amplitude reduction corresponding to complete tissue fractionation or a specific fractionation level corresponding to complete tissue death, due to the variation in speckle amplitude across different tissue samples.
  • As the tissue elasticity decreases with increasing fractionation, Histotripsy tissue fractionation can also be monitored using ultrasound elastography. Ultrasound elastography can detect the elasticity decrease in the fractionated tissue and shows a higher sensitivity to monitor the early stage tissue fractionation compared to speckle amplitude reduction. Unlike conventional ultrasound imaging that portrays the difference in acoustic impedance of the tissue, ultrasound elastography measures the difference in tissue stiffness. The tissue stiffness can be described by an elastic modulus, which can be measured by the tissue's resistance to deformation, in compression/tension (Young's modulus) or in shear (shear modulus). Tissue deformation occurs in response to a stress being applied to the tissue. The stress can be applied by a manual push from the clinician's finger or imaging probe. It can also be applied by acoustic radiation force from an ultrasound pulse. The dynamic displacement response of the soft tissue is typically monitored using cross-correlation between adjacent ultrasound image frames of the displayed tissue. The amplitude and temporal characteristics of the displacement, including peak displacement, time to peak displacement, and tissue velocity, can then be extracted and used to calculate the elastic modulus of the tissue
  • Current elastography methods require relatively large processing times compared to the pulse frequency of ultrasound therapy such as Histotripsy. These processing times can be from a fraction of a second to several seconds in length, which cannot be obtained simultaneously with the application of several to a thousand Histotripsy pulses a second.
  • SUMMARY
  • In some embodiments, generating Histotripsy pulses comprises generating short (<20 μsec), high pressure (peak negative pressure >10 MPa) shockwave ultrasound pulses at a duty cycle <5%.
  • An ultrasound system configured to monitor bubble-induced color Doppler during Histotripsy treatment is provided, comprising a ultrasound therapy transducer configured to transmit Histotripsy pulses into tissue having a pulse length less than 20 μsec, a peak negative pressure greater than 10 MPa, and a duty cycle less than 5%, an ultrasound Doppler imaging system configured to transmit ultrasound imaging pulses along the propagation direction of the Histotripsy pulses and generate color Doppler imaging of the tissue from the transmitted ultrasound imaging pulses, and a control system configured to synchronize transmission of the ultrasound imaging pulses with transmission of the Histotripsy pulses to monitor Histotripsy tissue fractionation in real-time with the Doppler imaging.
  • In some embodiments, the control system is configured to set specific Doppler parameters to follow the tissue displacement using color Doppler, such as a time delay between a Doppler pulse packet and the Histotripsy pulses, a pulse repetition frequency of the Doppler pulse packet, and a number of frames in the Doppler pulse packet.
  • In one embodiment, the ultrasound therapy transducer includes a central hole configured to house an ultrasound imaging transducer of the ultrasound Doppler imaging system so as to align the ultrasound imaging transducer along a propagation path of the Histotripsy pulses.
  • In another embodiment, the control system is configured to synchronize transmission of the ultrasound imaging pulses with transmission of the Histotripsy pulses by sending a trigger signal from the control system to the ultrasound Doppler imaging system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
  • In some embodiments, a pulse repetition frequency (PRF) and a number of frames of Doppler imaging are set by the ultrasound Doppler imaging system so color Doppler flow velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
  • In another embodiment, an expansion of a temporal profile of a color Doppler velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
  • In some embodiments, a rapid expansion of a temporal profile of a color Doppler velocity corresponds to microscopic cellular damage, while a slow expansion of the temporal profile of the color Doppler velocity corresponds to macroscopic tissue structural damage generated by the Histotripsy pulses.
  • In one embodiment, a saturation or decrease of expansion of a temporal profile of a color Doppler velocity indicates complete homogenization and liquefaction of the tissue.
  • In some embodiments, a PRF and number of frames of color Doppler imaging is controlled by the ultrasound Doppler imaging system such that a direction of a color Doppler flow changes from towards an imaging transducer to away from the imaging transducer when the tissue is sufficiently fractionated by the Histotripsy pulses.
  • In one embodiment, a wall filter value can be set by the ultrasound Doppler imaging system such that a color Doppler flow map matches the tissue when it has been fractionated by the Histotripsy pulses.
  • In some embodiments, 2D or 3D images of the tissue can be reconstructed by scanning a focus of the ultrasound therapy transducer and collecting a color Doppler map at a position of the focus.
  • In other embodiments, the Doppler imaging can be configured to monitor vessel function and cardiac function during the transmission of Histotripsy pulses.
  • In some embodiments, the ultrasound Doppler imaging system can display different colors to distinguish tissue motion from blood flow.
  • A method of monitoring Doppler-based feedback during Histotrispy treatment is provided, comprising the steps of transmitting Histotripsy pulses into tissue having a pulse length less than 20 μsec, a peak negative pressure greater than 10 MPa, and a duty cycle less than 5% with an ultrasound therapy transducer, obtaining color Doppler acquisition of the tissue during transmission of the Histotripsy pulses with an ultrasound imaging system, and synchronizing the color Doppler acquisition with the transmission of Histotripsy pulses with a control system.
  • In some embodiments, the method comprises setting specific Doppler parameters to follow tissue displacement using color Doppler acquisition.
  • In other embodiments, the method comprises obtaining color Doppler acquisition along a propagation line of the Histotripsy pulses to measure tissue displacement of the tissue.
  • In one embodiment, the synchronizing step comprises sending a trigger signal to the ultrasound imaging system from the control system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
  • In another embodiment, the method comprises setting a PRF and number of frames for color Doppler acquisition such that a color Doppler flow velocity increases with an increasing degree of tissue fractionation generated by the Histotripsy pulses.
  • In some embodiments, the method comprises setting a PRF and number of frames for color Doppler acquisition such that a direction of a color Doppler flow changes from towards the ultrasound imaging system to away from the ultrasound imaging system when the tissue is sufficiently fractionated by the Histotripsy pulses.
  • In another embodiment, the method comprises setting a wall filter value such that a color Doppler flow map matches a fractionated tissue region generated by the Histotripsy pulses.
  • In some embodiments, the method comprises reconstructing 2D or 3D Doppler imaging of a fractionated tissue by scanning a focus of the ultrasound therapy system and collecting a color Doppler map at a position of the focus.
  • In other embodiments, the method comprises monitoring vessel function and cardiac function during transmission of the Histotripsy pulses.
  • In some embodiments, the method comprises distinguishing tissue displacement from blood flow with the color Doppler acquisition.
  • In other embodiments, the color Doppler acquisition can be used to monitor and indicate microscopic cellular damage versus macroscopic tissue structure homogenization.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • FIGS. 1A-1B: Velocity observed at the therapy focus following Histotripsy pulses of various focal pressures (left), along with a plot of the average peak velocity observed for each of the tested pressures (right) within the focal region in the agarose phantom using particle image velocimetry (PIV). Without cavitation generated by the Histotripsy pulse, no appreciable motion was detected. When cavitation occurred, the peak motion detected by PIV increased with increasing Histotripsy pulse pressure.
  • FIGS. 2A-2D: High speed images of the focal region 50 pulses into treatment (therapy applied from the right) with PIV velocity map overlays showing the Histotripsy bubble cloud (top left), chaotic motion immediately after the collapse of the bubble cloud (top right), and finally coherent motion, including a push away from the transducer (bottom left) and subsequent rebound (bottom right).
  • FIG. 3 describes the setup of the Histotripsy system and ultrasound imaging system to perform the bubble-induced color Doppler feedback for Histotripsy treatment.
  • FIG. 4 demonstrates one synchronization scheme to trigger the Doppler pulse transmission and acquisition using a signal sent out from the Histotripsy system at an appropriate delay time (negative or positive) after the transmission of the Histotripsy pulse.
  • FIG. 5: Steered focal locations for the 219 foci with alternating 1 mm spaced grids of 7×7 foci and 6×6 foci. The axial layers are separated by 1 mm, but with the 6×6 grids offset laterally from the 7×7 layers by 0.5 mm
  • FIG. 6: Experimental setup with 500 kHz transducer mounted to the side of a water tank with 5 MHz imaging probe mounted opposite the therapy and aligned along the therapy axis. The Phantom high speed camera was positioned perpendicular to the therapy axis.
  • FIGS. 7A-7B: Plots showing the velocity estimates from PIV (top) and Doppler (bottom) after every 10 therapy pulses.
  • FIG. 8: Individual velocity plots for the 19 ms after the therapy pulse after 10 therapy pulses (left), 30 therapy pulses (center), and 290 therapy pulses (right) showing good agreement between PIV and Doppler in measured velocity after the initial chaotic motion.
  • FIG. 9: Doppler velocity progression at a 6 ms delay from therapy pulse without averaging (left) and with a 10 pulse running average (right).
  • FIG. 10: A comparison of the Doppler velocity fractionation metric versus the mean lesion intensity metric in the damage indicating RBC layer (N=6). Both Doppler velocity and the lesion progress rapidly increased until ˜100 pulses.
  • FIG. 11: Alternative progression metric, time to peak velocity, shows less variation and captures the same rapid change up to 100 pulses shown in the mean lesion intensity, with a slower continued progression up to 200 pulses.
  • FIG. 12: Plot showing the velocity estimates from Doppler after every therapy pulse in ex vivo porcine liver.
  • FIG. 13: Doppler velocity progression in ex vivo liver without averaging (left) and with a 10 point running average (right).
  • FIG. 14: Histological images of the lesion after 50 therapy pulses. Macroscopic image (left) shows little large-scale homogenization, however widespread mechanical fractionation is visible microscopically (bottom right) compared to control (top right).
  • FIG. 15: Histological images of the lesion after 200 therapy pulses. Macroscopic image (left) shows clear large-scale homogenization, with increased mechanical fractionation visible microscopically (bottom right) compared to control (top right).
  • FIG. 16: Histological images of the lesion after 500 therapy pulses. Macroscopic image (left) shows complete large-scale homogenization, with near complete homogenization visible microscopically as well (bottom right) compared to control (top right).
  • DETAILED DESCRIPTION
  • This disclosure introduces new imaging feedback systems and methods using bubble-induced color Doppler to monitor the Histotrispy-induced tissue fractionation in real-time. This novel approach can monitor the level of tissue fractionation generated by Histotripsy with improved sensitivity compared to backscatter speckle amplitude reduction and can be implemented in real-time during Histotripsy treatment. Further areas of applicability will become apparent from the description provided herein. The description and specific examples in this summary are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings. Embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those who are skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods, to provide a thorough understanding of embodiments of the present disclosure.
  • In some example embodiments, well-known processes, well-known device structures, and well-known technologies are not described in detail.
  • The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting. As used herein, the singular forms “a,” “an,” and “the” may be intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “comprising,” “including,” and “having,” are inclusive and therefore specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof. The method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order of performance. It is also to be understood that additional or alternative steps may be employed.
  • When an element or layer is referred to as being “on,” “engaged to,” “connected to,” or “coupled to” another element or layer, it may be directly on, engaged, connected or coupled to the other element or layer, or intervening elements or layers may be present. In contrast, when an element is referred to as being “directly on,” “directly engaged to,” “directly connected to,” or “directly coupled to” another element or layer, there may be no intervening elements or layers present. Other words used to describe the relationship between elements should be interpreted in a like fashion (e.g., “between” versus “directly between,” “adjacent” versus “directly adjacent,” etc.). As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
  • Although the terms first, second, third, etc. may be used herein to describe various elements, components, regions, layers and/or sections, these elements, components, regions, layers and/or sections should not be limited by these terms. These terms may be only used to distinguish one element, component, region, layer or section from another region, layer or section. Terms such as “first,” “second,” and other numerical terms when used herein do not imply a sequence or order unless clearly indicated by the context. Thus, a first element, component, region, layer or section discussed below could be termed a second element, component, region, layer or section without departing from the teachings of the example embodiments.
  • Spatially relative terms, such as “inner,” “outer,” “beneath,” “below,” “lower,” “above,” “upper,” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. Spatially relative terms may be intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the other elements or features. Thus, the example term “below” can encompass both an orientation of above and below. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly.
  • In this disclosure, an innovative bubble-induced Color Doppler approach is described to monitor Histotripsy fractionation in real-time.
  • When a cavitation cloud is generated in tissue by a Histotripsy pulse, substantial motion is induced in the focal zone and observable on color Doppler synchronized with the Histotripsy pulse. Without cavitation, the motion is negligible.
  • To measure the motion of the focal volume exposed to Histotripsy, an experiment was conducted in transparent agarose hydrogel tissue mimicking phantom with a thin layer (<1 mm) of glass beads with an 8-12 micron mean diameter. The motion in the focal volume exposed to Histotripsy was measured by tracking the motion of the glass beads using high-speed images and particle image velocimetry (PIV). This phantom was treated with 2-cycle pulses at estimated peak negative pressures of 18.9-47.4 MPa using a 500 kHz transducer. This transducer is composed of 32 elements with 50 mm diameter mounted confocally on a 15 cm hemispherical shell. High speed optical images of the focal region were captured for the 20 ms following a single Histotripsy pulse delivered. Measurable motion was detected only when the focal pressure was sufficient to produce a cavitation bubble cloud. FIGS. 1A-1B show a plot of the average velocity profile after each Histotripsy pulse along with the average peak velocity observed for each of the tested focal pressures. FIG. 1A illustrates the velocity observed at the therapy focus following Histotripsy pulses of various focal pressures, and FIG. 1B shows a plot of the average peak velocity observed for each of the tested pressures within the focal region in the agarose phantom using particle image velocimetry (PIV). Without cavitation generated by the Histotripsy pulse, no appreciable motion was detected. When cavitation occurred, the peak motion detected by PIV increased with increasing Histotripsy pulse pressure.
  • Following a Histotripsy pulse, a cavitation bubble cloud was generated immediately and collapsed within 300 μs. Residual bubble nuclei persist for over 100 ms after the cavitation collapse and were clearly visible in high-speed optical images of the focal region after a Histotripsy therapy pulse.
  • In FIGS. 2A-2D, PIV velocity maps showed 2 phases of motion during the 19 ms after a Histotripsy therapy pulse. For up to the first 2 ms, chaotic motion was present, where the motion was pointed in all directions in a random manner through this period. This chaotic motion phase likely resulted from the violent collapse of the Histotripsy bubble cloud. After this chaotic motion subsides, a coherent motion along the direction of the therapy ultrasound beam was visible. The coherent motion was first moving away from the therapy transducer for up to 6 ms, and then rebounding back towards the therapy transducer through the remaining 19 ms. This coherent motion may be due to the bubble cloud being pushed by the radiation force of the Histotripsy pulse against an elastic tissue boundary or the asymmetric collapse of the cavitation cloud against the boundary. FIGS. 2A-2D show images of an example progression of the focal region PIV velocity map after the tissue had been treated with 50 Histotripsy pulses. The therapy pulse was propagated from right to left.
  • In FIGS. 2A-2D, high speed images of the focal region are shown approximately 50 pulses into treatment (therapy applied from the right on the page) with PIV velocity map overlays showing the Histotripsy bubble cloud (FIG. 2A), chaotic motion immediately after the collapse of the bubble cloud (FIG. 2B), and finally coherent motion, including a push away from the transducer (FIG. 2C) and subsequent rebound (FIG. 2D).
  • The time profile of the resulting velocity of the coherent motion expands as the tissue is fractionated and saturate when the tissue is completely liquefied. Similarly, the averaged velocity within a specific time window of the coherent motion increases with increasing degree of tissue fractionation, and saturates when the clot is completely liquefied.
  • The velocity resulting from the coherent motion can be detected by ultrasound color Doppler that uses the cross-correlation time/phase lag of adjacent frames to detect the target motion. By synchronizing Doppler pulses with Histotripsy pulses and choosing appropriate parameters, color Doppler can be used to monitor the coherent motion in the Histotripsy treatment region. By choosing the appropriate delay between the Histotripsy pulse and the color Doppler pulse packet, color Doppler can be used to monitor the coherent motion phase without the interference from the chaotic motion. The Doppler velocity can be then analyzed to quantitatively predict the level tissue fractionation during the treatment in real-time. The Doppler velocity map can also be displayed it as a colored region overlaid on the gray-scale image, providing real-time imaging feedback to monitor Histotripsy tissue fractionation. B-Flow and M-mode approaches are possible alternatives to color Doppler.
  • To perform bubble-induced color Doppler monitoring of Histotripsy, a Histotripsy system (including an ultrasound therapy transducer and associated driving electronics) and an ultrasound imaging system are required. FIG. 3 illustrates a Doppler monitoring Histotripsy system 300 including an ultrasound therapy transducer 302, a Doppler imaging transducer or transducers 304 (shown as 304 a and 304 b), Histotripsy therapy driving hardware 306 (which can include, for example, a pulse generator, amplifiers, matching networks, and an electronic controller configured to generate Histotripsy pulses in the ultrasound therapy transducer), and imaging hardware 308 which can control Doppler imaging with the Doppler imaging transducer(s) 304. As shown in FIG. 3, the Doppler imaging transducers can be disposed within a cut-out or hole within the ultrasound therapy transducer, for example, so as to facilitate imaging of a focus 310 (and thus the bubble cloud) of the therapy transducer.
  • After application of the Histotripsy pulse, the tissue velocity along the axial direction or the propagation direction of the ultrasound pulse is monitored using color Doppler. This can be achieved by placing the ultrasound imaging transducer in-line with the therapy transducer, for example, the Histotripsy therapy transducer can have a central hole to house the ultrasound imaging transducer to ensure the imaging transducer is monitoring the axial displacement of the tissue along the propagation direction of the Histotripsy pulse.
  • The synchronization of the Histotripsy system and Doppler acquisition of the ultrasound imaging system is essential and can be achieved by triggering Doppler pulse transmission from the Doppler imaging transducer(s) using a signal sent out from the Histotripsy therapy driving hardware 306 at an appropriate delay time (negative or positive) after the transmission of the Histotripsy pulse. It is also possible to trigger the Histotripsy therapy driving hardware with a signal from the imaging hardware 308.
  • FIG. 4 demonstrates a synchronization scheme according to one embodiment. An appropriate delay needs to be set between the Histotripsy pulse and the Doppler pulse transmission, such that the Doppler velocity measures the coherent motion phase, not the chaotic motion immediately following the Histotrispy pulse. The chaotic motion phase ranges from 300 us to 2 ms, depending on the tissue type and the level of tissue fractionation.
  • We have treated ex vivo porcine liver tissue using Histotripsy, and compared the bubble-induced color Doppler feedback with the histology of the treated tissue. The histology results show that the temporal profile of the bubble-induced Doppler feedback may be used to predict the microscopic cellular damage versus the macroscopic tissue structure damage. Microscopic cellular damage is sufficient to result in cell death. Microscopic cellular damage to most cells within the treatment region occurs very early on in the Histotrispy treatment, only requiring ˜50 pulses. Complete homogenization of tissue structure takes more than 500 pulses.
  • Correspondingly, the time profile of the Doppler velocity expanded with a very steep slope for the first 50 pulses. After that, the expansion of the temporal profile of the Doppler was much more gradual, until at 900 pulses, the expansion saturates. These results suggest that the bubble-induced color Doppler can be used to monitor and indicate microscopic cellular damage (i.e. cell death) versus macroscopic tissue structure homogenization (i.e., tissue liquefaction). Current B-mode ultrasound imaging is not sensitive enough to monitor the microscopic cellular damage alone. The bubble-induced color Doppler has improved sensitivity to detect the microscopic cellular death as well as damage to the macroscopic tissue structure. This improved sensitivity can dramatically increase the treatment efficiency. Using such increased sensitivity, treatment completion can be determined in real-time for different clinical applications. For example, macroscopic tissue liquefaction is needed for clot removal, while cell death may be sufficient for tumor treatment and benign lesions. This feature is innovative and of clinical importance, and is not available for any current feedback techniques.
  • The amplitude of bubble-induced color Doppler changes over the Histotripsy treatment may vary across different organs and patients. Our data suggest that the slope or the rate of Doppler velocity change, either the temporal profile of the velocity within sub-time window of the coherent motion, can be used to monitor the treatment, to detect microscopic cellular damage as well as macroscopic tissue structure homogenization. Therefore, the detection does not depend on the absolute value of the Doppler velocity, but the relative change, and therefore is expected to be consistent and reliable across different organs and patients.
  • Moreover, the Doppler parameters, such as the pulse repetition frequency (PRF) and number of frames for each Doppler acquisition, can be selected appropriately to achieve the desired correlation between the Doppler velocity increase with the increasing degree of tissue fractionation (i.e. Histotripsy treatment progress) in different tissue types. In addition, by setting the wall filter threshold to exceed the background displacement, the color Doppler velocity map region can precisely match the fractionation region.
  • Further, Doppler parameters (e.g., time window of the Doppler acquisition) can be adjusted, such that the average Doppler velocity is towards the transducer prior to treatment completion shown as one color (e.g. blue), while the Doppler flow is away from the transducer at the treatment completion viewed as a different color (e.g., red). Such a definitive indication for treatment completion is apparent to even inexperienced users. This can be achieved because the temporal profiles of the coherent motion away from the transducer and back towards the transducer expand with the degree of tissue fractionation.
  • As the residual bubble nuclei from the cavitation bubble cloud collapse generated by Histotripsy lasts over a hundred milliseconds after each Histotripsy pulse and moves with the target tissue, these residual nuclei provide bright speckle to track the bubble-induced motion in the tissue during Histotripsy treatment. They provide strong speckles for displacement the motion tracking, even with poor imaging quality.
  • Moreover, since Doppler is an essential tool for monitoring cardiovascular function, the capability of color Doppler during Histotripsy treatment allows us to monitor the vessel and cardiac function during the treatment, which could have significant clinical implications. For example, Histotripsy can be used to remove blood clots in the vessel and color Doppler can evaluate whether the blood flow is restored or improved during the Histotripsy treatment in a previously completely or partially occluded vessel.
  • Histotripsy has also been studied to create a flow channel through the atrial septum between the two atria in the heart for patients with congenital heart disease. In this situation, color Doppler can indicate the generation of the flow channel, i.e., treatment completion. In another example, when treating diseased tissues (such as liver tumor or renal tumor) surrounding major blood vessels, color Doppler can be used to ensure no penetration is generated to the vessel during the Histotripsy treatment. Different colors can be used for bubble-induced color Doppler feedback during Histotripsy (e.g., green and yellow) to distinguish from blue and red commonly used in color Doppler for blood flow.
  • The bubble-induced color Doppler cannot be used directly to form an image of a large volume, as the Histotripsy pulse is used to treat one focal volume at a time. It is possible to steer the therapy transducer focus (electronically or mechanically) over the large ablated volume and collect the data to reconstruct the 2D/3D image of the ablated volume.
  • The ablated tissue coagulates quickly after treatment, which may change the elasticity of the treated volume after treatment. If bubble-induced color Doppler will be used for post-treatment lesion evaluation when the tissue is coagulated, we can develop a quick ablation scan sequence to re-fractionate the coagulative tissue prior to the elastography measurement.
  • To allow simultaneous optical and acoustic interrogation of the focal volume over the course of Histotripsy treatment on a large volume, an experiment was conducted in an acoustically and optically transparent agarose hydrogel tissue mimicking phantom without the addition of any acoustic or optical contrast agents. In this case, a layer of contrast agents would be destroyed or dispersed into the surrounding regions as the focal volume was fractionated by Histotripsy therapy.
  • This phantom was treated with 2-cycle pulses at >50 MPa over a 6mm cube using the same 500 kHz phased array transducer. This high pressure guaranteed the generation of a cavitation cloud, and the residual bubble nuclei left after its collapse for optical and acoustic contrast at the focal location. To ensure uniform fractionation over the target volume, 219 focal points at 1 mm separations (FIG. 5) were treated sequentially at 150 Hz with a single pulse applied at each location. This process was repeated every 1.5 seconds until all focal locations had been treated with 960 pulses each. This pulsing strategy guarantees uniform therapy dose over the treatment volume at all times during treatment. In FIG. 5, steered focal locations for the 219 foci are shown with alternating 1 mm spaced grids of 7×7 foci and 6×6 foci. The axial layers are separated by 1 mm, but with the 6×6 grids offset laterally from the 7×7 layers by 0.5 mm.
  • The internal memory of the high-speed camera may not be able to accommodate acquisitions after every pulse, so to facilitate continuous treatment without interruptions for data transfer; images can be captured periodically (e.g., after every 10th pulse delivered to the center focal location). Ultrasound Doppler acquisitions can be performed after every therapy pulse. The imaging transducer can be positioned opposite the therapy transducer, as described above, aligned along the therapy axis, i.e., the ultrasound imaging beam can be rigidly aligned with the therapy beam to avoid the effect of angle variation on Doppler. An experimental setup is illustrated in FIG. 6, which shows a therapy transducer 602, a Doppler imaging transducer 604, ultrasound control system 606, and imaging control system 608. The experimental setup also shows the tissue phantom disposed in a water tank and a high speed camera and light source for additional imaging capabilities. In one embodiment, the experimental setup included a 500 kHz transducer mounted to the side of a water tank with 5 MHz imaging probe mounted opposite the therapy and aligned along the therapy axis. The high speed camera was positioned perpendicular to the therapy axis.
  • In the experiment, a tissue-mimicking agarose gel phantom with an embedded red blood cell (RBC) layer was used to visualize and quantify the development of the lesion. These phantoms have been shown to produce reliable estimates of the cavitation-induced damage zone resulting from Histotripsy therapy. In this phantom, the RBC area lysed by Histotripsy changed from opaque red to translucent pink, allowing direct visualization and quantification of the lesion development. The lesions were photographed during treatment after each application of the 219 focal patterns. Simultaneous ultrasound Doppler acquisitions were also performed for direct comparison. The average pixel intensity within the lesion was then computed over the course of the treatment as a direct quantification of the fractionation progression in the tissue phantom and compared to the measured Doppler velocity progression.
  • An experiment was conducted in ex vivo porcine liver to analyze the color Doppler monitoring of the Histotripsy fractionation progression in tissue and compare it to the results from the agarose phantom. This experiment used an identical setup as above, with the agarose gel tissue phantom replaced with a freshly harvested piece of porcine liver tissue, degassed and embedded in 1% agarose gel and positioned over the geometric focus.
  • The liver was treated with 2000 pulses at each of the 219 focal locations, with ultrasound Doppler acquisitions performed after every pulse delivered to the center focal location. High-speed optical imaging for PIV analysis was not possible in the tissue.
  • The high-speed optical images of the focal region were processed to estimate the motion resulting from the Histotripsy therapy pulses. The PIV analysis was performed in a ˜1.7 by 0.85 mm field of view at a resolution of 151 pixels per mm (total 256×128 pixels at 50 kHz frame rate) for the glass bead layer experiments and ˜6.6 by 3.3 mm field of view at a resolution of 116 pixels per mm (total 768×384 pixels at 10 kHz frame rate) for the large lesion treatments. The images were processed in pairs at two subsequent time points using a FFT window deformation algorithm with 3 pass velocity estimation with image block sizes and step sizes of 24/12 pixels for pass 1, 16/8 pixels for pass 2, and 8/4 pixels for pass 3 in the glass bead layer experiment and 64/32 pixels for pass 1, 32/16 pixels for pass 2, and 16/8 pixels for pass 3 in the larger lesion treatments. Both resulted in velocity field maps of the field of view over the 19 ms after a Histotripsy therapy pulse. The axial components of these PIV velocity maps were then averaged over the bubble cloud area to produce the final average velocity estimate over time.
  • The ultrasound Doppler acquisitions were also processed. To calculate the velocity over the 19 ms after the therapy pulse, the 200 acquisitions were processed in rolling 10 acquisition segments (equivalent to using 10 frames at 10 kHz PRF, with different delay times after the histotrispy pulse). These Doppler velocity maps were then averaged over the 2×4 mm bubble cloud area to produce the final average velocity estimate over time.
  • The full velocity profiles over the 960 pulse treatments are shown in FIGS. 7A-7B for both PIV (FIG. 7A) and Doppler (FIG. 7B) estimation methods. The estimated velocity is shown versus the delay from the therapy pulse (y axis) and the therapy dose (x axis).
  • FIG. 8 shows 3 individual velocity traces after 10, 30, and 290 therapy pulses. After the chaotic motion phase, PIV and Doppler estimates agree with each other well over the course of treatment. These plots show a time expansion of the velocity profile with increased therapy dose, which is likely due to the elasticity decrease as the phantom when it was gradually fractionated by Histotripsy pulses. The increase in the duration of the coherent push and rebound motion reached a peak after 400 pulses, likely because the phantom was completely liquefied. FIG. 8 shows good agreement between PIV and Doppler in measured velocity after the initial chaotic motion.
  • The velocity progression at any single delay between the Histotrispy pulse and the Doppler pulse packet can be extracted from this dataset, producing the average velocity within a 1 ms window over the course of therapy. These velocity progressions are readily attainable in real-time from color Doppler during Histotripsy therapy, with an average processing frame rate around 30 Hz. The Doppler velocity progression at 6 ms delay from the Histotripsy pulse is shown in FIG. 9. In this case, the Doppler measurement estimates the average velocity during the time window from 6-7 ms after the therapy pulse. During this window, the velocity started at a positive value (first 15 pulses), then changed to a negative value (pulses 15-140), then became positive again (after 140 pulses), and eventually stabilized at a positive velocity after 260 pulses. These changes provide real-time feedback on fractionation progression during Histotripsy therapy, even indicating complete fractionation of the agarose tissue phantom when the velocity measurement peaks. FIG. 9 shows Doppler velocity progression at a 6 ms delay from therapy pulse without averaging (left) and with a 10 pulse running average (right).
  • FIG. 10 shows a comparison of the Doppler velocity fractionation metric versus the mean lesion intensity metric in the damage indicating RBC layer (N=6). Both Doppler velocity and the lesion progress rapidly increased until ˜100 pulses. In the agarose tissue phantom containing the damage indicating red blood cell (RBC) layer, the pixel intensity within the lesion increased with increased therapy dose, saturating after approximately 100 pulses. The Doppler velocity at a 6 ms delay was observed to change rapidly during this time period until 100 pulses.
  • The Doppler velocity continued to change at a slower rate beyond this point before saturating after approximately 200 pulses.
  • This Doppler velocity metric is obtainable in real-time at high frame rates (up to 200 Hz) during Histotripsy therapy, however if high frame rates are not required, alternative metrics are also possible. For example, the time to peak velocity shown in FIG. 11 also captures the same rapid change up to 100 pulses observed in the lesion intensity, and also the continued slow increase up to 200 pulses. In FIG. 11, an alternative progression metric, time to peak velocity, shows less variation and captures the same rapid change up to 100 pulses shown in the mean lesion intensity, with a slower continued progression up to 200 pulses.
  • In the ex vivo porcine liver, velocity profiles were collected after each of 2000 therapy pulses at the center of the treated volume. FIG. 12 shows the full velocity profile over the entire treatment. The estimated velocity is shown versus the delay from the therapy pulse (y axis) and therapy dose (x axis). The Doppler velocity profiles in the ex vivo porcine liver were similar to the agarose phantom, with a brief period of chaotic motion followed by coherent motion. These coherent motions also expanded in time with increased therapy dose very rapidly up to 50 pulses. After 50 pulses, the temporal profile of the Doppler velocity continued to expand at a slower rate until 900 pulses. After that point, the temporal profile of the Doppler velocity decreased slowly with increasing number of therapy pulses.
  • The velocity progression at a single delay of 8 ms was extracted from this dataset, producing the average velocity during the 8-9 ms window over the course of therapy. This is shown in FIG. 13. During this window the velocity increased quickly for the first 50 pulses, and then steadily at a slower rate up to 900 pulses as the tissue was fractionated. After 900 pulses, the velocity decreased steadily with increased variation from pulse to pulse. In FIG. 13, Doppler velocity progression in ex vivo liver is shown without averaging (left) and with a 10 point running average (right).
  • Histological analysis was completed on separate lesions after 50, 200, and 500 pulse treatments to visualize the lesion progression in the tissue resulting from these treatment parameters. FIG. 14 shows the lesion resulting from a 50 pulse treatment, with widespread mechanical disruption of the cellular structures visible microscopically in the entire treatment region. This widespread microscopic cellular damage is sufficient to cause tissue death. No macroscopic homogenization of the tissue structure was visible after 50 pulses. In FIG. 14, Histological images of the lesion after 50 therapy pulses are shown. The macroscopic image (left) shows little large-scale homogenization, however widespread mechanical fractionation is visible microscopically (bottom right) compared to control (top right).
  • After 200 pulses however, fractionation to the macroscopic tissue structure is much more evident, with a nearly homogeneous appearing lesion as shown in FIG. 15. Microscopically, increased fractionation of cellular structure and nuclei is apparent, along with increased homogeneity and mixing of fractionation products. In FIG. 15, histological images of the lesion are shown after 200 therapy pulses. Macroscopic image (left) shows clear large-scale homogenization, with increased mechanical fractionation visible microscopically (bottom right) compared to control (top right).
  • After 500 pulses, as shown in FIG. 16, the lesion appears homogeneous and completely fractionated, with very few remaining cell nuclei in the homogenous fractionated tissue product. In FIG. 16, histological images of the lesion are shown after 500 therapy pulses. The macroscopic image (left) shows complete large-scale homogenization, with near complete homogenization visible microscopically as well (bottom right) compared to control (top right).
  • Comparing the Doppler velocity results and histology results, the initial rapid expansion in the temporal profile of the Doppler velocity match well with the microscopic cellular damage to the treated tissue, both were observed at 50 pulses. After that, the temporal profile of the Doppler velocity continues to expand, but the rate is more gradual. Correspondingly, macroscopic damage to the tissue structure is observed. When the tissue is completely liquefied with no tissue or cellular structures remaining, the temporal profile of the Doppler velocity flattens and begins to shrink at a very slow rate.
  • The bubble-induced color Doppler provides a real-time, high sensitivity feedback to monitor Histotripsy tissue fractionation during treatment. In comparison to the reduced echogenicity in the treatment zone (speckle amplitude reduction) currently used in monitoring Histotripsy tissue fractionation, the bubble-induced color Doppler feedback can predict microscopic cellular damage, especially at an earlier treatment stage, which cannot be achieved with reduced echogenicity. Moreover, bubble-induced color Doppler has the potential to predict microscopic cellular damage versus the macroscopic damage to the tissue structure. This level of sensitivity is very important for clinical application to predict the end point for treatment for different clinical applications.
  • The bubble-induced color Doppler can provide consistent and reliable feedback across different tissues and patients. Our data suggest that the slope or the rate of Doppler velocity change, either the temporal profile of the velocity within sub-time window of the coherent motion, can be used to monitor the treatment, to detect microscopic cellular damage as well as macroscopic tissue structure homogenization. The detection does not depend on the absolute value of the Doppler velocity that may vary across patients, but the relative change, and therefore is expected to be consistent and reliable across different organs and patients.
  • The bubble-induced color Doppler can be displayed as color overlaid on gray-scale ultrasound images, providing a high contrast feedback to monitor the degree of tissue fractionation (i.e. treatment progress and completion). Such feedback is unambiguous and easy to use even for inexperienced users.
  • As described above, an ultrasound imaging transducer can be placed in-line (or co-axially) with the Histotripsy therapy transducer. For example, such configuration can be achieved by having a small center hole in the therapy transducer to house the imaging probe. The Doppler acquisition on the ultrasound imaging system needs to be synchronized by the Histotripsy therapy pulse such that the first Doppler pulse arrives at the focus at a pre-defined delay time after the arrival of the Histotripsy pulse.
  • For the speckle amplitude reduction approach currently used to monitor Histotripsy tissue fractionation, the speckle amplitude has been observed to increase back shortly after treatment likely due to the coagulation of the fractioned region, causing the speckle reduction approach ineffective. However, even with the coagulation, the change in tissue elasticity from tissue fractionation remains substantial and should still be usable in the presence of coagulation.
  • As Doppler is an important tool in evaluating cardiovascular function clinically, the real-time bubble-induced color Doppler should also allow evaluation of the vessel or the heart close to the treatment target during the Histotripsy treatment. Different colors can be used for tissue motion (e.g. green and yellow) to distinguish from the red and blue commonly used in color Doppler for blood flow.
  • The ultrasound gray-scale imaging quality of deep tissue (e.g., deep internal organs) is often degraded significantly due to the attenuation and aberration from the overlying tissue, resulting in coarse tissue speckle and making the accurate tissue motion tracking difficult. However, the residual nuclei from bubble cloud generated by Histotripsy last over 100 milliseconds after each Histotripsy pulse and moves with the target tissue, providing strong ultrasound speckles for motion tracking during bubble-induced color Doppler.
  • As for additional details pertinent to the present invention, materials and manufacturing techniques may be employed as within the level of those with skill in the relevant art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts commonly or logically employed. Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Likewise, reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “and,” “said,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation. Unless defined otherwise herein, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The breadth of the present invention is not to be limited by the subject specification, but rather only by the plain meaning of the claim terms employed.

Claims (27)

What is claimed is:
1. An ultrasound system configured to monitor bubble-induced color Doppler during Histotripsy treatment comprises:
a ultrasound therapy transducer configured to transmit Histotripsy pulses into a treatment region including tissue, the Histotripsy pulses having a pulse length less than 50 μsec, a peak negative pressure greater than 10 MPa, and a duty cycle less than 5%;
an ultrasound Doppler imaging system configured to transmit ultrasound imaging pulses along the propagation direction of the Histotripsy pulses and generate color Doppler imaging of the treatment region from the transmitted ultrasound imaging pulses; and
a control system configured to synchronize transmission of the ultrasound imaging pulses with transmission of the Histotripsy pulses to monitor Histotripsy tissue fractionation in real-time with the Doppler imaging.
2. The ultrasound system of claim 1 wherein the control system is configured to set specific Doppler parameters to follow the tissue displacement using color Doppler.
3. The ultrasound system of claim 2 wherein the specific Doppler parameters are selected from the group consisting of a time delay between a Doppler pulse packet and the Histotripsy pulses, a pulse repetition frequency of the Doppler pulse packet, and a number of frames in the Doppler pulse packet.
4. The ultrasound system of claim 1 wherein the ultrasound therapy transducer includes a hole configured to house an ultrasound imaging transducer of the ultrasound Doppler imaging system so as to align the ultrasound imaging transducer along a propagation path of the Histotripsy pulses.
5. The ultrasound system of claim 1 wherein the control system is configured to synchronize transmission of the ultrasound imaging pulses with transmission of the Histotripsy pulses by sending a trigger signal from the control system to the ultrasound Doppler imaging system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
6. The ultrasound system of claim 1 wherein a pulse repetition frequency (PRF) and a number of frames of Doppler imaging pulse packet are set by the ultrasound Doppler imaging system so color Doppler flow velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
7. The ultrasound system of claim 1 wherein an expansion of a temporal profile of a color Doppler velocity increases as a degree of tissue fractionation generated by the Histotripsy pulses increases.
8. The ultrasound system of claim 1 wherein a rapid expansion of a temporal profile of a color Doppler velocity corresponds to microscopic cellular damage, while a slow expansion of the temporal profile of the color Doppler velocity corresponds to macroscopic tissue structural damage generated by the Histotripsy pulses.
9. The ultrasound system of claim 1 wherein a saturation or decrease of expansion of a temporal profile of a color Doppler velocity indicates complete homogenization and liquefaction of the tissue.
10. The ultrasound system of claim 1 wherein a PRF and number of frames of color Doppler pulse packet is controlled by the ultrasound Doppler imaging system such that a direction of a color Doppler flow changes from towards an imaging transducer to away from the imaging transducer when the tissue is sufficiently fractionated by the Histotripsy pulses.
11. The ultrasound system of claim 1 wherein a wall filter value can be set by the ultrasound Doppler imaging system such that a color Doppler flow map matches the treatment tissue region when it has been fractionated by the Histotripsy pulses.
12. The ultrasound system of claim 1, wherein 2D or 3D images of the tissue can be reconstructed by scanning a focus of the ultrasound therapy transducer and collecting a color Doppler map at each position of the focus.
13. The ultrasound system of claim 1 wherein the Doppler imaging can be configured to monitor vessel function and cardiac function during the transmission of Histotripsy pulses.
14. The ultrasound system of claim 1 wherein the ultrasound Doppler imaging system can display different colors to distinguish tissue motion from blood flow.
15. A method of monitoring Doppler-based feedback during Histotrispy treatment comprising the steps of:
transmitting Histotripsy pulses into tissue having a pulse length less than 50 μsec, a peak negative pressure greater than 10 MPa, and a duty cycle less than 5% with an ultrasound therapy transducer;
obtaining color Doppler acquisition of the tissue during transmission of the Histotripsy pulses with an ultrasound imaging system; and
synchronizing the color Doppler acquisition with the transmission of Histotripsy pulses with a control system.
16. The method of claim 15 further comprising setting specific Doppler parameters to follow tissue displacement using color Doppler acquisition.
17. The method of claim 15 further comprising obtaining color Doppler acquisition along a propagation line of the Histotripsy pulses to measure tissue displacement of the tissue.
18. The method of claim 15 wherein the synchronizing step comprises sending a trigger signal to the ultrasound imaging system from the control system during the transmission of each Histotrispy pulse plus a pre-determined time delay.
19. The method of claim 15 further comprising setting a PRF and number of frames for color Doppler acquisition such that a color Doppler flow velocity increases with an increasing degree of tissue fractionation generated by the Histotripsy pulses.
20. The method of claim 15 further comprising setting a PRF and number of frames for color Doppler acquisition such that a direction of a color Doppler flow changes from towards the ultrasound imaging system to away from the ultrasound imaging system when the tissue is sufficiently fractionated by the Histotripsy pulses.
21. The method of claim 15 further comprising setting a wall filter value such that a color Doppler flow map matches a fractionated tissue region generated by the Histotripsy pulses.
22. The method of claim 15 further comprising reconstructing 2D or 3D Doppler imaging of a fractionated tissue by scanning a focus of the ultrasound therapy system and collecting a color Doppler map at a position of the focus.
23. The method of claim 15 further comprising monitoring vessel function and cardiac function during transmission of the Histotripsy pulses.
24. The method of claim 15 further comprising distinguishing tissue displacement from blood flow with the color Doppler acquisition.
25. The method of claim 15 wherein the color Doppler acquisition can be used to monitor and indicate microscopic cellular damage versus macroscopic tissue structure homogenization.
26. The ultrasound system of claim 4 wherein the hole is concentrically aligned within the ultrasound therapy transducer.
27. The ultrasound system of claim 4 wherein the hole is not concentrically aligned within the ultrasound therapy transducer.
US14/046,024 2012-10-05 2013-10-04 Bubble-induced color doppler feedback during histotripsy Abandoned US20140100459A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/046,024 US20140100459A1 (en) 2012-10-05 2013-10-04 Bubble-induced color doppler feedback during histotripsy
PCT/US2013/063520 WO2014055906A1 (en) 2012-10-05 2013-10-04 Bubble-induced color doppler feedback during histotripsy
US15/713,441 US11058399B2 (en) 2012-10-05 2017-09-22 Bubble-induced color doppler feedback during histotripsy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261710172P 2012-10-05 2012-10-05
US14/046,024 US20140100459A1 (en) 2012-10-05 2013-10-04 Bubble-induced color doppler feedback during histotripsy

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/713,441 Continuation US11058399B2 (en) 2012-10-05 2017-09-22 Bubble-induced color doppler feedback during histotripsy

Publications (1)

Publication Number Publication Date
US20140100459A1 true US20140100459A1 (en) 2014-04-10

Family

ID=50433233

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/046,024 Abandoned US20140100459A1 (en) 2012-10-05 2013-10-04 Bubble-induced color doppler feedback during histotripsy
US15/713,441 Active US11058399B2 (en) 2012-10-05 2017-09-22 Bubble-induced color doppler feedback during histotripsy

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/713,441 Active US11058399B2 (en) 2012-10-05 2017-09-22 Bubble-induced color doppler feedback during histotripsy

Country Status (3)

Country Link
US (2) US20140100459A1 (en)
EP (1) EP2903688A4 (en)
WO (1) WO2014055906A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110040190A1 (en) * 2009-08-17 2011-02-17 Jahnke Russell C Disposable Acoustic Coupling Medium Container
US20150073275A1 (en) * 2013-09-11 2015-03-12 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus and ultrasound imaging method
US20160220393A1 (en) * 2015-02-04 2016-08-04 DePuy Synthes Products, Inc. Non-invasive methods for modifying tissue to facilitate treatment
US20170042521A1 (en) * 2014-02-26 2017-02-16 Koninklijke Philips N.V. System for performing intraluminal coronary and method of operation thereof
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10071266B2 (en) 2011-08-10 2018-09-11 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US10470742B2 (en) 2014-04-28 2019-11-12 Covidien Lp Systems and methods for speckle reduction
WO2020113083A1 (en) * 2018-11-28 2020-06-04 Histosonics, Inc. Histotripsy systems and methods
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
WO2022056394A1 (en) * 2020-09-11 2022-03-17 The Regents Of The University Of Michigan Transcranial mr-guided histotripsy systems and methods
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US11806553B2 (en) 2017-09-01 2023-11-07 Dalhousie University Transducer assembly for generating focused ultrasound
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102124422B1 (en) 2018-06-05 2020-06-18 한국과학기술연구원 High-low intensity focused ultrasound treatment apparatus
RU2692220C1 (en) * 2018-12-13 2019-06-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Тамбовский государственный технический университет" (ФГБОУ ВО "ТГТУ") Method of colour doppler mapping in endoscopic optical coherence tomography

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319356A1 (en) * 2005-09-22 2008-12-25 Cain Charles A Pulsed cavitational ultrasound therapy
US20090177085A1 (en) * 2005-09-22 2009-07-09 Adam Maxwell Histotripsy for thrombolysis
US20100059264A1 (en) * 2008-09-10 2010-03-11 Kabushiki Kaisha Toshiba Electronic apparatus and printed wiring board
US20100305432A1 (en) * 2009-05-28 2010-12-02 Edwards Lifesciences Corporation System and Method for Locating Medical Devices in Vivo Using Ultrasound Doppler Mode
US20110263967A1 (en) * 2010-04-22 2011-10-27 of higher education having a principal place of bussiness Ultrasound based method and apparatus for stone detection and to facilitate clearance thereof
US20120059264A1 (en) * 2009-05-13 2012-03-08 Koninklijke Philips Electronics N.V. Ultrasonic blood flow doppler audio with pitch shifting

Family Cites Families (374)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3243497A (en) 1964-12-11 1966-03-29 Dynapower Systems Corp Of Cali Universal support for electrotherapeutic treatment head
US3679021A (en) 1970-03-25 1972-07-25 Eg & G Inc Acoustic pulse generating system
US4016749A (en) 1973-07-05 1977-04-12 Wachter William J Method and apparatus for inspection of nuclear fuel rods
FR2355288A2 (en) 1974-11-28 1978-01-13 Anvar IMPROVEMENTS IN ULTRA-SOUND SURVEYING METHODS AND DEVICES
US4024501A (en) 1975-09-03 1977-05-17 Standard Oil Company Line driver system
US4051394A (en) 1976-03-15 1977-09-27 The Boeing Company Zero crossing ac relay control circuit
US4277367A (en) 1978-10-23 1981-07-07 Wisconsin Alumni Research Foundation Phantom material and method
GB2045435A (en) 1979-03-20 1980-10-29 Gen Electric Co Ltd Ultrasonic imaging system
US4406153A (en) 1979-05-04 1983-09-27 Acoustic Standards Corporation Ultrasonic beam characterization device
US4269174A (en) 1979-08-06 1981-05-26 Medical Dynamics, Inc. Transcutaneous vasectomy apparatus and method
FR2472753A1 (en) 1979-12-31 1981-07-03 Anvar IMPROVEMENTS IN ULTRA-SOUND SURVEYING DEVICES
US4305296B2 (en) 1980-02-08 1989-05-09 Ultrasonic imaging method and apparatus with electronic beam focusing and scanning
JPS5711648A (en) 1980-06-27 1982-01-21 Matsushita Electric Ind Co Ltd Ultrasonic probe
US4453408A (en) 1981-03-09 1984-06-12 William Clayman Device for testing ultrasonic beam profiles
JPS5826238A (en) 1981-08-08 1983-02-16 Fujitsu Ltd Pressure measurement system by ultrasonic wave
US4622972A (en) 1981-10-05 1986-11-18 Varian Associates, Inc. Ultrasound hyperthermia applicator with variable coherence by multi-spiral focusing
DE3220751A1 (en) 1982-06-02 1983-12-08 Jörg Dr. 8022 Grünwald Schüller Device for crushing concrements, especially renal calculi, in living human or animal bodies
US4550606A (en) 1982-09-28 1985-11-05 Cornell Research Foundation, Inc. Ultrasonic transducer array with controlled excitation pattern
SE442052B (en) 1983-09-21 1985-11-25 Sven Sandell IMITATED LIVING LIGHT WITH LONG-TERM LIGHT BODY
JPS6080779A (en) 1983-10-07 1985-05-08 Matsushita Electric Ind Co Ltd Magnetic field sensor
USRE33590E (en) 1983-12-14 1991-05-21 Edap International, S.A. Method for examining, localizing and treating with ultrasound
US5143074A (en) 1983-12-14 1992-09-01 Edap International Ultrasonic treatment device using a focussing and oscillating piezoelectric element
US5158070A (en) 1983-12-14 1992-10-27 Edap International, S.A. Method for the localized destruction of soft structures using negative pressure elastic waves
US5143073A (en) 1983-12-14 1992-09-01 Edap International, S.A. Wave apparatus system
US5150711A (en) 1983-12-14 1992-09-29 Edap International, S.A. Ultra-high-speed extracorporeal ultrasound hyperthermia treatment device
US4549533A (en) 1984-01-30 1985-10-29 University Of Illinois Apparatus and method for generating and directing ultrasound
US4641378A (en) 1984-06-06 1987-02-03 Raycom Systems, Inc. Fiber optic communication module
DE3425705A1 (en) 1984-07-12 1986-01-16 Siemens AG, 1000 Berlin und 8000 München PHASED ARRAY DEVICE
DE3427001C1 (en) 1984-07-21 1986-02-06 Dornier System Gmbh, 7990 Friedrichshafen Locating and positioning device
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4625731A (en) 1984-10-10 1986-12-02 Picker International, Inc. Ultrasonic image display mounting
US5431621A (en) 1984-11-26 1995-07-11 Edap International Process and device of an anatomic anomaly by means of elastic waves, with tracking of the target and automatic triggering of the shootings
JPS61196718A (en) 1985-02-22 1986-08-30 株式会社日立製作所 Ground-fault protector
US4689986A (en) 1985-03-13 1987-09-01 The University Of Michigan Variable frequency gas-bubble-manipulating apparatus and method
JPS61209643A (en) 1985-03-15 1986-09-17 株式会社東芝 Ultrasonic diagnostic and medical treatment apparatus
US4865042A (en) 1985-08-16 1989-09-12 Hitachi, Ltd. Ultrasonic irradiation system
DE3580848D1 (en) 1985-09-24 1991-01-17 Hewlett Packard Gmbh SWITCHING MATRIX.
DE3544628A1 (en) 1985-12-17 1987-06-19 Eisenmenger Wolfgang DEVICE FOR MECHANICALLY ACOUSTIC CONNECTION OF PRESSURE SHAFTS, ESPECIALLY OF FOCUSED SHOCK WAVES TO THE BODY OF LIVING BEINGS
DE3607949A1 (en) 1986-03-11 1987-09-17 Wolf Gmbh Richard METHOD FOR DETECTING POSSIBLE TISSUE DAMAGE IN THE MEDICAL APPLICATION OF HIGH-ENERGY SOUND
US4791915A (en) 1986-09-29 1988-12-20 Dynawave Corporation Ultrasound therapy device
US4984575A (en) 1987-04-16 1991-01-15 Olympus Optical Co., Ltd. Therapeutical apparatus of extracorporeal type
FR2614747B1 (en) 1987-04-28 1989-07-28 Dory Jacques ELASTIC PULSE GENERATOR HAVING A PREDETERMINED WAVEFORM AND ITS APPLICATION TO TREATMENT OR MEDICAL DIAGNOSIS
FR2614722B1 (en) 1987-04-28 1992-04-17 Dory Jacques ACOUSTIC FILTER FOR SUPPRESSING OR MITIGATING NEGATIVE ALTERNATIONS OF AN ELASTIC WAVE AND ELASTIC WAVE GENERATOR COMPRISING SUCH A FILTER
FR2619448B1 (en) 1987-08-14 1990-01-19 Edap Int METHOD AND DEVICE FOR TISSUE CHARACTERIZATION BY REFLECTION OF ULTRASONIC PULSES WITH BROADBAND FREQUENCIES, TRANSPOSITION OF THE ECHO FREQUENCY SPECTRUM IN AN AUDIBLE RANGE AND LISTENING DIAGNOSIS
US4973980A (en) 1987-09-11 1990-11-27 Dataproducts Corporation Acoustic microstreaming in an ink jet apparatus
DE3732131A1 (en) 1987-09-24 1989-04-06 Wolf Gmbh Richard FOCUSING ULTRASONIC transducer
DE3741201A1 (en) 1987-12-02 1989-06-15 Schering Ag ULTRASONIC PROCESS AND METHOD FOR IMPLEMENTING IT
US4989143A (en) 1987-12-11 1991-01-29 General Electric Company Adaptive coherent energy beam formation using iterative phase conjugation
US5163421A (en) 1988-01-22 1992-11-17 Angiosonics, Inc. In vivo ultrasonic system with angioplasty and ultrasonic contrast imaging
US4957099A (en) 1988-02-10 1990-09-18 Siemens Aktiengesellschaft Shock wave source for extracorporeal lithotripsy
US5209221A (en) 1988-03-01 1993-05-11 Richard Wolf Gmbh Ultrasonic treatment of pathological tissue
DE3808783A1 (en) 1988-03-16 1989-10-05 Dornier Medizintechnik STONE CRUSHING BY COMBINED TREATMENT
DE3817094A1 (en) 1988-04-18 1989-11-30 Schubert Werner Coupling and adhesive device for shock wave treatment units
US4938217A (en) 1988-06-21 1990-07-03 Massachusetts Institute Of Technology Electronically-controlled variable focus ultrasound hyperthermia system
US5158071A (en) 1988-07-01 1992-10-27 Hitachi, Ltd. Ultrasonic apparatus for therapeutical use
EP0548048B1 (en) * 1988-10-26 1996-02-14 Kabushiki Kaisha Toshiba Shock wave treatment apparatus
FR2642640B1 (en) 1989-02-08 1991-05-10 Centre Nat Rech Scient METHOD AND DEVICE FOR FOCUSING ULTRASOUND IN TISSUES
JPH02217000A (en) 1989-02-16 1990-08-29 Hitachi Ltd Ultrasonic wave probe
JP2694992B2 (en) 1989-02-17 1997-12-24 株式会社東芝 Stone crushing equipment
FR2643252B1 (en) 1989-02-21 1991-06-07 Technomed Int Sa APPARATUS FOR THE SELECTIVE DESTRUCTION OF CELLS INCLUDING SOFT TISSUES AND BONES WITHIN THE BODY OF A LIVING BODY BY IMPLOSION OF GAS BUBBLES
US5435311A (en) 1989-06-27 1995-07-25 Hitachi, Ltd. Ultrasound therapeutic system
US5065761A (en) 1989-07-12 1991-11-19 Diasonics, Inc. Lithotripsy system
US5014686A (en) 1989-08-31 1991-05-14 International Sonic Technologies Phantom kidney stone system
US6088613A (en) 1989-12-22 2000-07-11 Imarx Pharmaceutical Corp. Method of magnetic resonance focused surgical and therapeutic ultrasound
US5542935A (en) 1989-12-22 1996-08-06 Imarx Pharmaceutical Corp. Therapeutic delivery systems related applications
US5580575A (en) 1989-12-22 1996-12-03 Imarx Pharmaceutical Corp. Therapeutic drug delivery systems
US5065751A (en) 1990-01-03 1991-11-19 Wolf Gerald L Method and apparatus for reversibly occluding a biological tube
US5165412A (en) 1990-03-05 1992-11-24 Kabushiki Kaisha Toshiba Shock wave medical treatment apparatus with exchangeable imaging ultrasonic wave probe
US5091893A (en) 1990-04-05 1992-02-25 General Electric Company Ultrasonic array with a high density of electrical connections
DE4012760A1 (en) * 1990-04-21 1992-05-07 G M T I Ges Fuer Medizintechni Ultrasonic Doppler method for gallstone lithography - uses analysis of Doppler frequency shift to detect velocity and calculating size of tracked particles
US5215680A (en) 1990-07-10 1993-06-01 Cavitation-Control Technology, Inc. Method for the production of medical-grade lipid-coated microbubbles, paramagnetic labeling of such microbubbles and therapeutic uses of microbubbles
US6344489B1 (en) 1991-02-14 2002-02-05 Wayne State University Stabilized gas-enriched and gas-supersaturated liquids
US5316000A (en) 1991-03-05 1994-05-31 Technomed International (Societe Anonyme) Use of at least one composite piezoelectric transducer in the manufacture of an ultrasonic therapy apparatus for applying therapy, in a body zone, in particular to concretions, to tissue, or to bones, of a living being and method of ultrasonic therapy
US5524620A (en) 1991-11-12 1996-06-11 November Technologies Ltd. Ablation of blood thrombi by means of acoustic energy
JP3533217B2 (en) 1991-12-20 2004-05-31 テクノメド メディカル システム Ultrasound therapy device that outputs ultrasonic waves having thermal effect and cavitation effect
US6436078B1 (en) 1994-12-06 2002-08-20 Pal Svedman Transdermal perfusion of fluids
FR2685872A1 (en) 1992-01-07 1993-07-09 Edap Int APPARATUS OF EXTRACORPOREAL ULTRASONIC HYPERTHERMIA WITH VERY HIGH POWER AND ITS OPERATING METHOD.
DE4207463C2 (en) 1992-03-10 1996-03-28 Siemens Ag Arrangement for the therapy of tissue with ultrasound
WO1993019705A1 (en) 1992-03-31 1993-10-14 Massachusetts Institute Of Technology Apparatus and method for acoustic heat generation and hyperthermia
US5230340A (en) 1992-04-13 1993-07-27 General Electric Company Ultrasound imaging system with improved dynamic focusing
US5295484A (en) 1992-05-19 1994-03-22 Arizona Board Of Regents For And On Behalf Of The University Of Arizona Apparatus and method for intra-cardiac ablation of arrhythmias
US5222806A (en) 1992-06-04 1993-06-29 C. N. Burman Co. Lamp
US5362309A (en) 1992-09-14 1994-11-08 Coraje, Inc. Apparatus and method for enhanced intravascular phonophoresis including dissolution of intravascular blockage and concomitant inhibition of restenosis
WO1994006380A1 (en) 1992-09-16 1994-03-31 Hitachi, Ltd. Ultrasonic irradiation apparatus and processor using the same
DE4238645C1 (en) 1992-11-16 1994-05-05 Siemens Ag Therapeutic ultrasonic applicator for urogenital area - has ultrasonic waves focussed onto working zone defined by envelope curve with two perpendicular main axes
US5573497A (en) 1994-11-30 1996-11-12 Technomed Medical Systems And Institut National High-intensity ultrasound therapy method and apparatus with controlled cavitation effect and reduced side lobes
US5381325A (en) 1993-02-19 1995-01-10 Messana; Joseph Self-positioning lamp fixture with stabilizing base
US5469852A (en) 1993-03-12 1995-11-28 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus and probe therefor
DE4310924C2 (en) 1993-04-02 1995-01-26 Siemens Ag Therapy device for the treatment of pathological tissue with ultrasound waves and a catheter
DE4403134A1 (en) 1993-05-14 1995-08-03 Laser Medizin Zentrum Ggmbh Be Combination device for thermal obliteration of biological tissue
US6251100B1 (en) 1993-09-24 2001-06-26 Transmedica International, Inc. Laser assisted topical anesthetic permeation
DE4405504B4 (en) 1994-02-21 2008-10-16 Siemens Ag Method and apparatus for imaging an object with a 2-D ultrasound array
US5509896A (en) 1994-09-09 1996-04-23 Coraje, Inc. Enhancement of thrombolysis with external ultrasound
JPH0884740A (en) 1994-09-16 1996-04-02 Toshiba Corp Treatment apparatus
US5694936A (en) 1994-09-17 1997-12-09 Kabushiki Kaisha Toshiba Ultrasonic apparatus for thermotherapy with variable frequency for suppressing cavitation
JP3754113B2 (en) 1994-09-17 2006-03-08 株式会社東芝 Ultrasonic therapy device
US5540909A (en) 1994-09-28 1996-07-30 Alliance Pharmaceutical Corp. Harmonic ultrasound imaging with microbubbles
EP0709673A1 (en) 1994-10-25 1996-05-01 Laboratoires D'electronique Philips Apparatus for non-destructive testing of hollow tubular articles with ultrasound
US5520188A (en) 1994-11-02 1996-05-28 Focus Surgery Inc. Annular array transducer
AU4763996A (en) 1995-01-20 1996-08-07 Medela, Inc. Device and method for supporting a breast shield and related pump equipment
US5678554A (en) 1996-07-02 1997-10-21 Acuson Corporation Ultrasound transducer for multiple focusing and method for manufacture thereof
DE19507305A1 (en) 1995-03-02 1996-09-05 Delma Elektro Med App Operating light with main lamp and spare lamp
US6176842B1 (en) 1995-03-08 2001-01-23 Ekos Corporation Ultrasound assembly for use with light activated drugs
US5873902A (en) 1995-03-31 1999-02-23 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
US5617862A (en) 1995-05-02 1997-04-08 Acuson Corporation Method and apparatus for beamformer system with variable aperture
US5558092A (en) 1995-06-06 1996-09-24 Imarx Pharmaceutical Corp. Methods and apparatus for performing diagnostic and therapeutic ultrasound simultaneously
US6521211B1 (en) 1995-06-07 2003-02-18 Bristol-Myers Squibb Medical Imaging, Inc. Methods of imaging and treatment with targeted compositions
US5566675A (en) 1995-06-30 1996-10-22 Siemens Medical Systems, Inc. Beamformer for phase aberration correction
EP0755653B1 (en) 1995-07-27 2001-04-11 Agilent Technologies Deutschland GmbH Patient monitoring module
US5582578A (en) 1995-08-01 1996-12-10 Duke University Method for the comminution of concretions
JPH0955571A (en) 1995-08-11 1997-02-25 Hewlett Packard Japan Ltd Electronic circuit board with high insulation section and its production
US5648098A (en) 1995-10-17 1997-07-15 The Board Of Regents Of The University Of Nebraska Thrombolytic agents and methods of treatment for thrombosis
US5590657A (en) 1995-11-06 1997-01-07 The Regents Of The University Of Michigan Phased array ultrasound system and method for cardiac ablation
US6321109B2 (en) 1996-02-15 2001-11-20 Biosense, Inc. Catheter based surgery
US5676692A (en) 1996-03-28 1997-10-14 Indianapolis Center For Advanced Research, Inc. Focussed ultrasound tissue treatment method
CH691345A5 (en) 1996-04-18 2001-07-13 Siemens Ag Therapy device by a simple adjustment of a desired distance from a reference point.
US20020045890A1 (en) 1996-04-24 2002-04-18 The Regents Of The University O F California Opto-acoustic thrombolysis
US6022309A (en) 1996-04-24 2000-02-08 The Regents Of The University Of California Opto-acoustic thrombolysis
US5724972A (en) 1996-05-02 1998-03-10 Acuson Corporation Method and apparatus for distributed focus control with slope tracking
US5717657A (en) 1996-06-24 1998-02-10 The United States Of America As Represented By The Secretary Of The Navy Acoustical cavitation suppressor for flow fields
US5849727A (en) 1996-06-28 1998-12-15 Board Of Regents Of The University Of Nebraska Compositions and methods for altering the biodistribution of biological agents
US5836896A (en) 1996-08-19 1998-11-17 Angiosonics Method of inhibiting restenosis by applying ultrasonic energy
US5753929A (en) 1996-08-28 1998-05-19 Motorola, Inc. Multi-directional optocoupler and method of manufacture
DE19635593C1 (en) 1996-09-02 1998-04-23 Siemens Ag Ultrasound transducer for diagnostic and therapeutic use
CA2213948C (en) 1996-09-19 2006-06-06 United States Surgical Corporation Ultrasonic dissector
US6036667A (en) 1996-10-04 2000-03-14 United States Surgical Corporation Ultrasonic dissection and coagulation system
US5769790A (en) 1996-10-25 1998-06-23 General Electric Company Focused ultrasound surgery system guided by ultrasound imaging
US5827204A (en) 1996-11-26 1998-10-27 Grandia; Willem Medical noninvasive operations using focused modulated high power ultrasound
US5797848A (en) 1997-01-31 1998-08-25 Acuson Corporation Ultrasonic transducer assembly with improved electrical interface
JP2007144225A (en) 1997-03-03 2007-06-14 Toshiba Corp Ultrasonic therapy system
WO1998048711A1 (en) 1997-05-01 1998-11-05 Ekos Corporation Ultrasound catheter
US5879314A (en) 1997-06-30 1999-03-09 Cybersonics, Inc. Transducer assembly and method for coupling ultrasonic energy to a body for thrombolysis of vascular thrombi
US6093883A (en) 1997-07-15 2000-07-25 Focus Surgery, Inc. Ultrasound intensity determining method and apparatus
US5944666A (en) 1997-08-21 1999-08-31 Acuson Corporation Ultrasonic method for imaging blood flow including disruption or activation of contrast agent
US6128958A (en) 1997-09-11 2000-10-10 The Regents Of The University Of Michigan Phased array system architecture
US6113558A (en) 1997-09-29 2000-09-05 Angiosonics Inc. Pulsed mode lysis method
US6126607A (en) 1997-11-03 2000-10-03 Barzell-Whitmore Maroon Bells, Inc. Ultrasound interface control system
DE19800416C2 (en) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound
EP1053041A4 (en) 1998-01-12 2001-02-07 Georgia Tech Res Inst Assessment and control of acoustic tissue effects
US6896659B2 (en) 1998-02-06 2005-05-24 Point Biomedical Corporation Method for ultrasound triggered drug delivery using hollow microbubbles with controlled fragility
US6511444B2 (en) 1998-02-17 2003-01-28 Brigham And Women's Hospital Transmyocardial revascularization using ultrasound
US6659105B2 (en) 1998-02-26 2003-12-09 Senorx, Inc. Tissue specimen isolating and damaging device and method
US6165144A (en) 1998-03-17 2000-12-26 Exogen, Inc. Apparatus and method for mounting an ultrasound transducer
US6685640B1 (en) 1998-03-30 2004-02-03 Focus Surgery, Inc. Ablation system
FR2778573B1 (en) 1998-05-13 2000-09-22 Technomed Medical Systems FREQUENCY ADJUSTMENT IN A HIGH INTENSITY FOCUSED ULTRASOUND TREATMENT APPARATUS
JP4095729B2 (en) 1998-10-26 2008-06-04 株式会社日立製作所 Therapeutic ultrasound system
EP1125121B1 (en) 1998-10-28 2007-12-12 Covaris, Inc. Apparatus and methods for controlling sonic treatment
US7687039B2 (en) 1998-10-28 2010-03-30 Covaris, Inc. Methods and systems for modulating acoustic energy delivery
WO2000030554A1 (en) 1998-11-20 2000-06-02 Jones Joie P Methods for selectively dissolving and removing materials using ultra-high frequency ultrasound
US6309355B1 (en) 1998-12-22 2001-10-30 The Regents Of The University Of Michigan Method and assembly for performing ultrasound surgery using cavitation
US6508774B1 (en) 1999-03-09 2003-01-21 Transurgical, Inc. Hifu applications with feedback control
US6308710B1 (en) 1999-04-12 2001-10-30 David Silva Scrotal drape and support
JP2000300559A (en) 1999-04-26 2000-10-31 Olympus Optical Co Ltd Ultrasonic probe and its manufacture
FR2792996B1 (en) 1999-04-28 2001-07-13 Alm FLEXIBLE ANGULAR TRAVEL LIMIT STOP, ARTICULATED SYSTEM COMPRISING SUCH A STOP, AND MEDICAL EQUIPMENT COMPRISING SUCH AN ARTICULATED SYSTEM
US6890332B2 (en) 1999-05-24 2005-05-10 Csaba Truckai Electrical discharge devices and techniques for medical procedures
EP1408853A1 (en) 1999-06-14 2004-04-21 Exogen, Inc. Method and kit for cavitation-induced tissue healing with low intensity ultrasound
US6318146B1 (en) 1999-07-14 2001-11-20 Wisconsin Alumni Research Foundation Multi-imaging modality tissue mimicking materials for imaging phantoms
DE19933135A1 (en) 1999-07-19 2001-01-25 Thomson Brandt Gmbh Galvanic isolation device with optocoupler for bidirectional connecting cables
US20030078499A1 (en) 1999-08-12 2003-04-24 Eppstein Jonathan A. Microporation of tissue for delivery of bioactive agents
AU6636000A (en) 1999-08-13 2001-03-13 Point Biomedical Corporation Hollow microspheres with controlled fragility for medical use
US6470204B1 (en) 1999-08-25 2002-10-22 Egidijus Edward Uzgiris Intracavity probe for MR image guided biopsy and delivery of therapy
WO2001024715A1 (en) 1999-10-05 2001-04-12 Omnisonics Medical Technologies, Inc. Method and apparatus for ultrasonic medical treatment, in particular, for debulking the prostate
US20030236539A1 (en) 1999-10-05 2003-12-25 Omnisonics Medical Technologies, Inc. Apparatus and method for using an ultrasonic probe to clear a vascular access device
US6524251B2 (en) 1999-10-05 2003-02-25 Omnisonics Medical Technologies, Inc. Ultrasonic device for tissue ablation and sheath for use therewith
US6391020B1 (en) 1999-10-06 2002-05-21 The Regents Of The Univerity Of Michigan Photodisruptive laser nucleation and ultrasonically-driven cavitation of tissues and materials
JP2003513691A (en) * 1999-10-25 2003-04-15 シーラス、コーポレイション Use of focused ultrasound to seal blood vessels
US7300414B1 (en) 1999-11-01 2007-11-27 University Of Cincinnati Transcranial ultrasound thrombolysis system and method of treating a stroke
US6626855B1 (en) 1999-11-26 2003-09-30 Therus Corpoation Controlled high efficiency lesion formation using high intensity ultrasound
WO2001041655A1 (en) 1999-12-06 2001-06-14 Simcha Milo Ultrasonic medical device
JP2004512856A (en) 1999-12-23 2004-04-30 シーラス、コーポレイション Imaging and therapeutic ultrasound transducers
US6635017B1 (en) 2000-02-09 2003-10-21 Spentech, Inc. Method and apparatus combining diagnostic ultrasound with therapeutic ultrasound to enhance thrombolysis
US6308585B1 (en) 2000-02-10 2001-10-30 Ultra Sonus Ab Method and a device for attaching ultrasonic transducers
US6750463B1 (en) 2000-02-29 2004-06-15 Hill-Rom Services, Inc. Optical isolation apparatus and method
JP3565758B2 (en) 2000-03-09 2004-09-15 株式会社日立製作所 Sensitizer for tumor treatment
EP1330815A2 (en) 2000-03-15 2003-07-30 The Regents Of The University Of California Method and apparatus for dynamic focusing of ultrasound energy
US6613004B1 (en) 2000-04-21 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for creating longer necrosed volumes using a phased array focused ultrasound system
US6419648B1 (en) 2000-04-21 2002-07-16 Insightec-Txsonics Ltd. Systems and methods for reducing secondary hot spots in a phased array focused ultrasound system
US6543272B1 (en) 2000-04-21 2003-04-08 Insightec-Txsonics Ltd. Systems and methods for testing and calibrating a focused ultrasound transducer array
US6536553B1 (en) 2000-04-25 2003-03-25 The United States Of America As Represented By The Secretary Of The Army Method and apparatus using acoustic sensor for sub-surface object detection and visualization
DE60131398T2 (en) 2000-05-16 2008-09-04 Atrionix, Inc., Irwindale DEVICE AND METHOD USING AN ULTRASOUND TRANSFORMER ON A FEEDING PIECE
US6556750B2 (en) 2000-05-26 2003-04-29 Fairchild Semiconductor Corporation Bi-directional optical coupler
US6477426B1 (en) 2000-06-20 2002-11-05 Celsion Corporation System and method for heating the prostate gland to treat and prevent the growth and spread of prostate tumors
US6506171B1 (en) 2000-07-27 2003-01-14 Insightec-Txsonics, Ltd System and methods for controlling distribution of acoustic energy around a focal point using a focused ultrasound system
AU2001280040A1 (en) 2000-07-31 2002-02-13 Galil Medical Ltd. Planning and facilitation systems and methods for cryosurgery
IL137689A0 (en) 2000-08-03 2001-10-31 L R Res & Dev Ltd System for enhanced chemical debridement
WO2002016965A2 (en) 2000-08-21 2002-02-28 V-Target Technologies Ltd. Radioactive emission detector
US6612988B2 (en) 2000-08-29 2003-09-02 Brigham And Women's Hospital, Inc. Ultrasound therapy
US7299803B2 (en) 2000-10-09 2007-11-27 Ams Research Corporation Pelvic surgery drape
US6589174B1 (en) 2000-10-20 2003-07-08 Sunnybrook & Women's College Health Sciences Centre Technique and apparatus for ultrasound therapy
US6613005B1 (en) 2000-11-28 2003-09-02 Insightec-Txsonics, Ltd. Systems and methods for steering a focused ultrasound array
US6506154B1 (en) 2000-11-28 2003-01-14 Insightec-Txsonics, Ltd. Systems and methods for controlling a phased array focused ultrasound system
US6666833B1 (en) 2000-11-28 2003-12-23 Insightec-Txsonics Ltd Systems and methods for focussing an acoustic energy beam transmitted through non-uniform tissue medium
US6770031B2 (en) 2000-12-15 2004-08-03 Brigham And Women's Hospital, Inc. Ultrasound therapy
US6626854B2 (en) 2000-12-27 2003-09-30 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6645162B2 (en) 2000-12-27 2003-11-11 Insightec - Txsonics Ltd. Systems and methods for ultrasound assisted lipolysis
US6607498B2 (en) 2001-01-03 2003-08-19 Uitra Shape, Inc. Method and apparatus for non-invasive body contouring by lysing adipose tissue
US7347855B2 (en) 2001-10-29 2008-03-25 Ultrashape Ltd. Non-invasive ultrasonic body contouring
JP4712980B2 (en) 2001-01-18 2011-06-29 株式会社日立メディコ Ultrasonic device
US20020099356A1 (en) 2001-01-19 2002-07-25 Unger Evan C. Transmembrane transport apparatus and method
US6559644B2 (en) 2001-05-30 2003-05-06 Insightec - Txsonics Ltd. MRI-based temperature mapping with error compensation
US6735461B2 (en) 2001-06-19 2004-05-11 Insightec-Txsonics Ltd Focused ultrasound system with MRI synchronization
US6820160B1 (en) 2001-08-21 2004-11-16 Cypress Semiconductor Corporation Apparatus for optically isolating a USB peripheral from a USB host
US7175596B2 (en) 2001-10-29 2007-02-13 Insightec-Txsonics Ltd System and method for sensing and locating disturbances in an energy path of a focused ultrasound system
CN1612713A (en) 2001-11-05 2005-05-04 计算机化医学体系股份有限公司 Apparatus and method for registration, guidance, and targeting of external beam radiation therapy
WO2003040672A2 (en) 2001-11-06 2003-05-15 The Johns Hopkins University Device for thermal stimulation of small neural fibers
US6790180B2 (en) 2001-12-03 2004-09-14 Insightec-Txsonics Ltd. Apparatus, systems, and methods for measuring power output of an ultrasound transducer
US6522142B1 (en) 2001-12-14 2003-02-18 Insightec-Txsonics Ltd. MRI-guided temperature mapping of tissue undergoing thermal treatment
CA2474257A1 (en) 2002-01-18 2003-08-07 American Technology Corporation Modulator- amplifier
SG114521A1 (en) 2002-01-21 2005-09-28 Univ Nanyang Ultrasonic treatment of breast cancers
US6942617B2 (en) 2002-02-04 2005-09-13 Shen-Min Liang Automatic stone-tracking system
JP4551090B2 (en) 2002-02-20 2010-09-22 メディシス テクノロジーズ コーポレイション Ultrasonic treatment and imaging of adipose tissue
US6736814B2 (en) 2002-02-28 2004-05-18 Misonix, Incorporated Ultrasonic medical treatment device for bipolar RF cauterization and related method
US6648839B2 (en) 2002-02-28 2003-11-18 Misonix, Incorporated Ultrasonic medical treatment device for RF cauterization and related method
US6890083B2 (en) 2002-03-11 2005-05-10 Dennis Cochran Underwater probe and illumination device
US20030181890A1 (en) 2002-03-22 2003-09-25 Schulze Dale R. Medical device that removably attaches to a bodily organ
US6780161B2 (en) 2002-03-22 2004-08-24 Fmd, Llc Apparatus for extracorporeal shock wave lithotripter using at least two shock wave pulses
US7128711B2 (en) 2002-03-25 2006-10-31 Insightec, Ltd. Positioning systems and methods for guided ultrasound therapy systems
EP1492592B1 (en) 2002-04-05 2010-12-08 Misonix Incorporated High efficiency medical transducer with ergonomic shape and method of manufacture
US20030199857A1 (en) 2002-04-17 2003-10-23 Dornier Medtech Systems Gmbh Apparatus and method for manipulating acoustic pulses
EP1538980B1 (en) 2002-06-25 2017-01-18 Ultrashape Ltd. Device for body aesthetics
DE10228550B3 (en) * 2002-06-26 2004-02-12 Dornier Medtech Systems Gmbh Lithotripter for fragmentation of a target in a body and method for monitoring the fragmentation of a target in a body
US20050020945A1 (en) 2002-07-02 2005-01-27 Tosaya Carol A. Acoustically-aided cerebrospinal-fluid manipulation for neurodegenerative disease therapy
US6705994B2 (en) 2002-07-08 2004-03-16 Insightec - Image Guided Treatment Ltd Tissue inhomogeneity correction in ultrasound imaging
US6852082B2 (en) 2002-07-17 2005-02-08 Adam Strickberger Apparatus and methods for performing non-invasive vasectomies
US7367948B2 (en) 2002-08-29 2008-05-06 The Regents Of The University Of Michigan Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)
JP3780253B2 (en) 2002-10-01 2006-05-31 オリンパス株式会社 Ultrasonic phantom
US20040067591A1 (en) 2002-10-04 2004-04-08 Wisconsin Alumni Research Foundation Tissue mimicking elastography phantoms
US7004282B2 (en) 2002-10-28 2006-02-28 Misonix, Incorporated Ultrasonic horn
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7374551B2 (en) 2003-02-19 2008-05-20 Pittsburgh Plastic Surgery Research Associates Minimally invasive fat cavitation method
EP1608267A4 (en) 2003-03-31 2007-04-25 Liposonix Inc Vortex transducer
IL155546A (en) 2003-04-22 2010-06-16 Healfus Ltd Apparatus for treatment of damaged tissue
US7377900B2 (en) 2003-06-02 2008-05-27 Insightec - Image Guided Treatment Ltd. Endo-cavity focused ultrasound transducer
US20050171428A1 (en) 2003-07-21 2005-08-04 Gabor Fichtinger Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
DE10394286T5 (en) 2003-08-14 2006-06-29 Duke University Apparatus for improved shockwave renal fragmentation (SWL) using a piezoelectric ring assembly (PEAA) shockwave generator in combination with a primary shockwave source
US20050038361A1 (en) 2003-08-14 2005-02-17 Duke University Apparatus for improved shock-wave lithotripsy (SWL) using a piezoelectric annular array (PEAA) shock-wave generator in combination with a primary shock wave source
US7358226B2 (en) 2003-08-27 2008-04-15 The Regents Of The University Of California Ultrasonic concentration of drug delivery capsules
US7359640B2 (en) 2003-09-30 2008-04-15 Stmicroelectronics Sa Optical coupling device and method for bidirectional data communication over a common signal line
JP2005167058A (en) 2003-12-04 2005-06-23 Oval Corp Explosion-proof insulated separation circuit
US20050154308A1 (en) 2003-12-30 2005-07-14 Liposonix, Inc. Disposable transducer seal
CN1897907B (en) 2003-12-30 2012-06-20 麦迪斯技术公司 Ultrasound therapy head with movement control
US8337407B2 (en) 2003-12-30 2012-12-25 Liposonix, Inc. Articulating arm for medical procedures
CA2551325A1 (en) 2003-12-30 2005-07-21 Liposonix, Inc. Component ultrasound transducer
US7341569B2 (en) 2004-01-30 2008-03-11 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
JP2007520307A (en) 2004-02-06 2007-07-26 テクニオン リサーチ アンド ディベロップメント ファウンデーション リミティド Microbubble local formation method, cavitation effect control and heating effect control by using enhanced ultrasound
CA2559053C (en) 2004-03-09 2015-11-03 Robarts Research Institute An apparatus and computing device for performing brachytherapy and methods of imaging using the same
US7196313B2 (en) 2004-04-02 2007-03-27 Fairchild Semiconductor Corporation Surface mount multi-channel optocoupler
US20050234438A1 (en) 2004-04-15 2005-10-20 Mast T D Ultrasound medical treatment system and method
US20070219448A1 (en) 2004-05-06 2007-09-20 Focus Surgery, Inc. Method and Apparatus for Selective Treatment of Tissue
WO2005107622A1 (en) 2004-05-06 2005-11-17 Nanyang Technological University Mechanical manipulator for hifu transducers
US7771359B2 (en) 2004-05-10 2010-08-10 Venousonics Ltd. Enhancement of ultrasonic cavitation
FI116176B (en) 2004-05-18 2005-09-30 Abb Oy Grounding and Surge Protection Arrangement
WO2006018837A2 (en) 2004-08-17 2006-02-23 Technion Research & Development Foundation Ltd. Ultrasonic image-guided tissue-damaging procedure
US20060060991A1 (en) 2004-09-21 2006-03-23 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for controlled transient cavitation
US20060074303A1 (en) 2004-09-28 2006-04-06 Minnesota Medical Physics Llc Apparatus and method for conformal radiation brachytherapy for prostate gland and other tumors
US20060111744A1 (en) 2004-10-13 2006-05-25 Guided Therapy Systems, L.L.C. Method and system for treatment of sweat glands
EP1804668B1 (en) 2004-10-18 2012-05-23 Mobile Robotics Sweden AB Robot for ultrasonic examination
US20060173387A1 (en) 2004-12-10 2006-08-03 Douglas Hansmann Externally enhanced ultrasonic therapy
US20060264760A1 (en) 2005-02-10 2006-11-23 Board Of Regents, The University Of Texas System Near infrared transrectal probes for prostate cancer detection and prognosis
US20060206028A1 (en) 2005-03-11 2006-09-14 Qi Yu Apparatus and method for ablating deposits from blood vessel
FR2883190B1 (en) 2005-03-15 2007-08-10 Edap S A ENDO-CAVITARY THERAPEUTIC PROBE COMPRISING AN INTEGRATED IMAGING TRANSDUCER WITHIN THE ULTRASONIC THERAPY TRANSDUCER
US20060241523A1 (en) 2005-04-12 2006-10-26 Prorhythm, Inc. Ultrasound generating method, apparatus and probe
JP5340728B2 (en) 2005-06-07 2013-11-13 コーニンクレッカ フィリップス エヌ ヴェ Method and apparatus for ultrasonic drug delivery and thermal treatment with phase variable fluid
US20070016039A1 (en) 2005-06-21 2007-01-18 Insightec-Image Guided Treatment Ltd. Controlled, non-linear focused ultrasound treatment
US20060293630A1 (en) 2005-06-22 2006-12-28 Misonix Incorporated Fluid containment apparatus for surgery and method of use
US20070010805A1 (en) 2005-07-08 2007-01-11 Fedewa Russell J Method and apparatus for the treatment of tissue
US20070065420A1 (en) 2005-08-23 2007-03-22 Johnson Lanny L Ultrasound Therapy Resulting in Bone Marrow Rejuvenation
US7430913B2 (en) 2005-08-26 2008-10-07 The Boeing Company Rapid prototype integrated matrix ultrasonic transducer array inspection apparatus, systems, and methods
US7967763B2 (en) 2005-09-07 2011-06-28 Cabochon Aesthetics, Inc. Method for treating subcutaneous tissues
WO2007035529A2 (en) 2005-09-16 2007-03-29 University Of Washington Thin-profile therapeutic ultrasound applicators
US20070083120A1 (en) 2005-09-22 2007-04-12 Cain Charles A Pulsed cavitational ultrasound therapy
EP1948315B1 (en) 2005-11-07 2009-08-12 Smith and Nephew, Inc. Apparatus for mounting an ultrasonic therapeutic device to an orthopaedic cast
US9387515B2 (en) 2005-11-15 2016-07-12 The Brigham And Women's Hospital, Inc. Impedance matching for ultrasound phased array elements
ATE493089T1 (en) 2005-11-30 2011-01-15 Urotech Pty Ltd UROLOGICAL CLOTH
WO2007085953A1 (en) 2006-01-26 2007-08-02 Nanyang Technological University Apparatus and method for motorised placement of needle
US8235901B2 (en) 2006-04-26 2012-08-07 Insightec, Ltd. Focused ultrasound system with far field tail suppression
US20080154181A1 (en) 2006-05-05 2008-06-26 Khanna Rohit K Central nervous system ultrasonic drain
US7431704B2 (en) 2006-06-07 2008-10-07 Bacoustics, Llc Apparatus and method for the treatment of tissue with ultrasound energy by direct contact
JP4800862B2 (en) 2006-06-21 2011-10-26 株式会社日立製作所 phantom
US20080033417A1 (en) 2006-08-04 2008-02-07 Nields Morgan W Apparatus for planning and performing thermal ablation
US7449947B2 (en) 2006-09-06 2008-11-11 Texas Instruments Incorporated Reduction of voltage spikes in switching half-bridge stages
US8332567B2 (en) 2006-09-19 2012-12-11 Fisher-Rosemount Systems, Inc. Apparatus and methods to communicatively couple field devices to controllers in a process control system
US7559905B2 (en) 2006-09-21 2009-07-14 Focus Surgery, Inc. HIFU probe for treating tissue with in-line degassing of fluid
US8535250B2 (en) 2006-10-13 2013-09-17 University Of Washington Through Its Center For Commercialization Method and apparatus to detect the fragmentation of kidney stones by measuring acoustic scatter
US7950980B2 (en) 2006-10-19 2011-05-31 Medela Holding Ag System and device for supporting a breast shield
WO2008062342A2 (en) 2006-11-20 2008-05-29 Koninklijke Philips Electronics, N.V. Control and display of ultrasonic microbubble cavitation
US7714481B2 (en) 2006-11-30 2010-05-11 Olympus Medical Systems Corp. Ultrasonic treatment apparatus
US8382689B2 (en) 2007-02-08 2013-02-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Device and method for high intensity focused ultrasound ablation with acoustic lens
ES2471118T3 (en) 2007-06-22 2014-06-25 Ekos Corporation Method and apparatus for the treatment of intracranial hemorrhages
US8568339B2 (en) 2007-08-16 2013-10-29 Ultrashape Ltd. Single element ultrasound transducer with multiple driving circuits
US9289137B2 (en) 2007-09-28 2016-03-22 Volcano Corporation Intravascular pressure devices incorporating sensors manufactured using deep reactive ion etching
WO2011011539A1 (en) 2009-07-21 2011-01-27 University Of Virginia Patent Foundation Systems and methods for ultrasound imaging and insonation of microbubbles
US20090227874A1 (en) 2007-11-09 2009-09-10 Eigen, Inc. Holder assembly for a medical imaging instrument
WO2009094554A2 (en) * 2008-01-25 2009-07-30 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US8466605B2 (en) 2008-03-13 2013-06-18 Ultrashape Ltd. Patterned ultrasonic transducers
US20090287083A1 (en) 2008-05-14 2009-11-19 Leonid Kushculey Cavitation detector
JP2010029650A (en) 2008-07-01 2010-02-12 Yoshihiro Kagamiyama Medical ultrasonic phantom
JP2010019554A (en) 2008-07-08 2010-01-28 Hioki Ee Corp Circuit board and measuring device
WO2010030819A1 (en) 2008-09-10 2010-03-18 The Trustees Of Columbia University In The City Of New York Systems and methods for opening a tissue
US20100125225A1 (en) 2008-11-19 2010-05-20 Daniel Gelbart System for selective ultrasonic ablation
DE102008059331B4 (en) 2008-11-27 2012-05-31 Siemens Aktiengesellschaft Tripod, especially ground stand
JP5341569B2 (en) 2009-03-06 2013-11-13 日置電機株式会社 Insulated input measuring instrument
CA2973013C (en) 2009-03-20 2023-01-24 University Of Cincinnati Ultrasound-mediated inducement, detection, and enhancement of stable cavitation
WO2010118387A1 (en) 2009-04-09 2010-10-14 Virginia Tech Intellectual Properties, Inc. Integration of very short electric pulses for minimally to noninvasive electroporation
EP2243561B1 (en) 2009-04-23 2018-11-28 Esaote S.p.A. Array of electroacoustic transducers and electronic probe for three-dimensional images comprising said transducer array
US20100298744A1 (en) 2009-04-30 2010-11-25 Palomar Medical Technologies, Inc. System and method of treating tissue with ultrasound energy
US8992426B2 (en) 2009-05-04 2015-03-31 Siemens Medical Solutions Usa, Inc. Feedback in medical ultrasound imaging for high intensity focused ultrasound
US20100286519A1 (en) 2009-05-11 2010-11-11 General Electric Company Ultrasound system and method to automatically identify and treat adipose tissue
US9028434B2 (en) 2009-05-18 2015-05-12 Olympus Medical Systems Corp. Ultrasound operation apparatus, cavitation control method, and ultrasound transducer control method
US8845537B2 (en) 2009-06-03 2014-09-30 Olympus Medical Systems Corp. Ultrasound operation apparatus, ultrasound operation system, and cavitation utilization method
WO2010143072A1 (en) 2009-06-10 2010-12-16 Insightec Ltd. Acoustic-feedback power control during focused ultrasound delivery
EP2449544B1 (en) 2009-06-29 2018-04-18 Koninklijke Philips N.V. Tumor ablation training system
WO2011004449A1 (en) 2009-07-06 2011-01-13 オリンパスメディカルシステムズ株式会社 Ultrasonic surgery apparatus
CA2770452C (en) 2009-08-17 2017-09-19 Histosonics, Inc. Disposable acoustic coupling medium container
JP5863654B2 (en) 2009-08-26 2016-02-16 リージェンツ オブ ザ ユニバーシティー オブ ミシガン Micromanipulator control arm for therapeutic and image processing ultrasonic transducers
CA2770706C (en) 2009-08-26 2017-06-20 Charles A. Cain Devices and methods for using controlled bubble cloud cavitation in fractionating urinary stones
US8539813B2 (en) 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
GB0916634D0 (en) 2009-09-22 2009-11-04 Isis Innovation Ultrasound systems
JP5542399B2 (en) 2009-09-30 2014-07-09 株式会社日立製作所 Insulated circuit board and power semiconductor device or inverter module using the same
US8295912B2 (en) 2009-10-12 2012-10-23 Kona Medical, Inc. Method and system to inhibit a function of a nerve traveling with an artery
US20140074076A1 (en) 2009-10-12 2014-03-13 Kona Medical, Inc. Non-invasive autonomic nervous system modulation
US9174065B2 (en) 2009-10-12 2015-11-03 Kona Medical, Inc. Energetic modulation of nerves
US20110118600A1 (en) 2009-11-16 2011-05-19 Michael Gertner External Autonomic Modulation
US8376970B2 (en) 2009-10-29 2013-02-19 Eilaz Babaev Ultrasound apparatus and methods for mitigation of neurological damage
US20110112400A1 (en) 2009-11-06 2011-05-12 Ardian, Inc. High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
JP4734448B2 (en) 2009-12-04 2011-07-27 株式会社日立製作所 Ultrasonic therapy device
US20110144490A1 (en) 2009-12-10 2011-06-16 General Electric Company Devices and methods for adipose tissue reduction and skin contour irregularity smoothing
US20110144545A1 (en) 2009-12-15 2011-06-16 General Electric Company Methods And System For Delivering Treatment To A Region Of Interest Using Ultrasound
WO2011092683A1 (en) * 2010-02-01 2011-08-04 Livesonics Ltd. Non-invasive ultrasound treatment of subcostal lesions
JP5735488B2 (en) 2010-04-09 2015-06-17 株式会社日立製作所 Ultrasound diagnostic treatment device
US8876740B2 (en) 2010-04-12 2014-11-04 University Of Washington Methods and systems for non-invasive treatment of tissue using high intensity focused ultrasound therapy
FR2960789B1 (en) 2010-06-07 2013-07-19 Image Guided Therapy ULTRASOUND TRANSDUCER FOR MEDICAL USE
EP2397188A1 (en) 2010-06-15 2011-12-21 Theraclion SAS Ultrasound probe head comprising an imaging transducer with a shielding element
EP2600937B8 (en) 2010-08-02 2024-03-06 Guided Therapy Systems, L.L.C. Systems for treating acute and/or chronic injuries in soft tissue
US20120092724A1 (en) 2010-08-18 2012-04-19 Pettis Nathaniel B Networked three-dimensional printing
US8333115B1 (en) 2010-08-26 2012-12-18 The Boeing Company Inspection apparatus and method for irregular shaped, closed cavity structures
EP3556307B1 (en) 2010-08-27 2021-12-01 Ekos Corporation Apparatus for treatment of intracranial hemorrhages
US8715187B2 (en) 2010-12-17 2014-05-06 General Electric Company Systems and methods for automatically identifying and segmenting different tissue types in ultrasound images
US8317703B2 (en) 2011-02-17 2012-11-27 Vivant Medical, Inc. Energy-delivery device including ultrasound transducer array and phased antenna array, and methods of adjusting an ablation field radiating into tissue using same
US9669203B2 (en) 2011-03-01 2017-06-06 University Of Cincinnati Methods of enhancing delivery of drugs using ultrasonic waves and systems for performing the same
US8900145B2 (en) 2011-03-10 2014-12-02 University Of Washington Through Its Center For Commercialization Ultrasound systems and methods for real-time noninvasive spatial temperature estimation
US9498651B2 (en) 2011-04-11 2016-11-22 University Of Washington Methods of soft tissue emulsification using a mechanism of ultrasonic atomization inside gas or vapor cavities and associated systems and devices
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9339348B2 (en) 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel
US20140214018A1 (en) 2011-09-01 2014-07-31 Perseus-Biomed Inc. Method and system for tissue modulation
WO2013055795A1 (en) 2011-10-10 2013-04-18 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy with shear wave elastography feedback
US20130090579A1 (en) 2011-10-10 2013-04-11 Charles A. Cain Pulsed Cavitational Therapeutic Ultrasound With Dithering
WO2013103975A1 (en) 2012-01-06 2013-07-11 Histosonics, Inc. Histotripsy therapy transducer
US10426501B2 (en) 2012-01-13 2019-10-01 Crux Biomedical, Inc. Retrieval snare device and method
US9084539B2 (en) 2012-02-02 2015-07-21 Volcano Corporation Wireless pressure wire system with integrated power
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
EP2844343B1 (en) 2012-04-30 2018-11-21 The Regents Of The University Of Michigan Ultrasound transducer manufacturing using rapid-prototyping method
US9457201B2 (en) 2012-05-11 2016-10-04 The Regents Of The University Of California Portable device to initiate and monitor treatment of stroke victims in the field
WO2013177430A1 (en) 2012-05-23 2013-11-28 Sunnybrook Health Sciences Centre Multi-frequency ultrasound device and method of operation
FR2991807B1 (en) 2012-06-06 2014-08-29 Centre Nat Rech Scient DEVICE AND METHOD FOR FOCUSING PULSES
US10226203B2 (en) 2012-08-23 2019-03-12 Volcano Corporation Device for anatomical lesion length estimation
WO2014043206A2 (en) 2012-09-11 2014-03-20 Histosonics, Inc. Histotripsy therapy system
WO2014055906A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
EP2914166B1 (en) 2012-10-31 2022-05-25 Philips Image Guided Therapy Corporation Dependency-based startup in a multi-modality medical system
US20140128734A1 (en) 2012-11-05 2014-05-08 Ekos Corporation Catheter systems and methods
EP2914341B1 (en) 2012-11-05 2020-04-15 Regents of the University of Minnesota Non-invasive lung pacing
AU2013342257B2 (en) 2012-11-08 2018-08-30 Smith & Nephew, Inc. Improved reattachment of detached cartilage to subchondral bone
US9228730B1 (en) 2013-03-12 2016-01-05 The United States Of America As Represented By The Secretary Of The Air Force Variable radius multi-lamp illumination system
JP6440682B2 (en) 2013-03-28 2018-12-19 ユニバーシティ オブ ワシントン スルー イッツ センター フォー コマーシャリゼーション Focused ultrasound equipment and method of use
US20140330124A1 (en) 2013-05-03 2014-11-06 SonaCare Medical, LLC Flexible endoscopic probe system and method of using same
CN105407969B (en) 2013-06-28 2019-04-05 皇家飞利浦有限公司 Energy converter for image guidance ultrasound thrombolysis is placed and registration
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
CN105407968B (en) 2013-07-03 2019-09-03 博莱科瑞士股份公司 Equipment for the ultrasound disposition to ishemic stroke
CN105530869B (en) 2013-07-03 2019-10-29 希斯托索尼克斯公司 The histotripsy excitation sequence optimized is formed to bubble cloud using impact scattering
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US20160184614A1 (en) 2013-08-27 2016-06-30 University Of Washington Through Its Center For Commercialization Systems and methods for treating abscesses and infected fluid collections
WO2015138781A1 (en) 2014-03-12 2015-09-17 The Regents Of The University Of Michigan Frequency compounding ultrasound pulses for imaging and therapy
EP4230262A3 (en) 2015-06-24 2023-11-22 The Regents Of The University Of Michigan Histotripsy therapy systems for the treatment of brain tissue

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080319356A1 (en) * 2005-09-22 2008-12-25 Cain Charles A Pulsed cavitational ultrasound therapy
US20090177085A1 (en) * 2005-09-22 2009-07-09 Adam Maxwell Histotripsy for thrombolysis
US20100059264A1 (en) * 2008-09-10 2010-03-11 Kabushiki Kaisha Toshiba Electronic apparatus and printed wiring board
US20120059264A1 (en) * 2009-05-13 2012-03-08 Koninklijke Philips Electronics N.V. Ultrasonic blood flow doppler audio with pitch shifting
US20100305432A1 (en) * 2009-05-28 2010-12-02 Edwards Lifesciences Corporation System and Method for Locating Medical Devices in Vivo Using Ultrasound Doppler Mode
US20110263967A1 (en) * 2010-04-22 2011-10-27 of higher education having a principal place of bussiness Ultrasound based method and apparatus for stone detection and to facilitate clearance thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling by Kholkhlova et al. pub. J. Acoust. Soc. Am. 130 (5), Pt. 2, November 2011 *
Investigation of the mechanism of ARFI-based Color Doppler feedback of histotripsy tissue fractionation by Miller et al. pub. Ultrasonics Symposium (IUS), 2013 IEEE International , Issue Date: 21-25 July 2013 *
Real-time elastography-based monitoring of histotripsy tissue fractionation using color Doppler by Miller et al. pub. Ultrasonics Symposium (IUS), 2012 IEEE International, Issue Date: 7-10 Oct. 2012 *
Xu et al., "Non-invasive Creation of an Atrial Septal Defect by Histotripsy in a Canine Model", 2010 February 16, National Institutes of Health-Public Access Author Manuscript, 121(6), pages 742-749 *

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11701134B2 (en) 2005-09-22 2023-07-18 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US11364042B2 (en) 2005-09-22 2022-06-21 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
US20110040190A1 (en) * 2009-08-17 2011-02-17 Jahnke Russell C Disposable Acoustic Coupling Medium Container
US9061131B2 (en) 2009-08-17 2015-06-23 Histosonics, Inc. Disposable acoustic coupling medium container
US9526923B2 (en) 2009-08-17 2016-12-27 Histosonics, Inc. Disposable acoustic coupling medium container
US9943708B2 (en) 2009-08-26 2018-04-17 Histosonics, Inc. Automated control of micromanipulator arm for histotripsy prostate therapy while imaging via ultrasound transducers in real time
US10071266B2 (en) 2011-08-10 2018-09-11 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US11058399B2 (en) 2012-10-05 2021-07-13 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11819712B2 (en) 2013-08-22 2023-11-21 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US10780298B2 (en) 2013-08-22 2020-09-22 The Regents Of The University Of Michigan Histotripsy using very short monopolar ultrasound pulses
US9597058B2 (en) * 2013-09-11 2017-03-21 Toshiba Medical Systems Corporation Ultrasound diagnosis apparatus and ultrasound imaging method
US10231710B2 (en) 2013-09-11 2019-03-19 Toshiba Medical Systems Corporation Ultrasound diagnosis apparatus and ultrasound imaging method
US20150073275A1 (en) * 2013-09-11 2015-03-12 Kabushiki Kaisha Toshiba Ultrasound diagnosis apparatus and ultrasound imaging method
US10888307B2 (en) * 2014-02-26 2021-01-12 Koninklijke Philips N.V. System for performing intraluminal coronary and method of operation thereof
US20170042521A1 (en) * 2014-02-26 2017-02-16 Koninklijke Philips N.V. System for performing intraluminal coronary and method of operation thereof
US10470742B2 (en) 2014-04-28 2019-11-12 Covidien Lp Systems and methods for speckle reduction
US10004610B2 (en) * 2015-02-04 2018-06-26 DePuy Synthes Products, Inc. Non-invasive methods for modifying tissue to facilitate treatment
US20160220393A1 (en) * 2015-02-04 2016-08-04 DePuy Synthes Products, Inc. Non-invasive methods for modifying tissue to facilitate treatment
US10959768B2 (en) 2015-02-04 2021-03-30 DePuy Synthes Products, Inc. Non-invasive methods for modifying tissue to facilitate treatment
US11135454B2 (en) 2015-06-24 2021-10-05 The Regents Of The University Of Michigan Histotripsy therapy systems and methods for the treatment of brain tissue
US11806553B2 (en) 2017-09-01 2023-11-07 Dalhousie University Transducer assembly for generating focused ultrasound
US11648424B2 (en) 2018-11-28 2023-05-16 Histosonics Inc. Histotripsy systems and methods
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
WO2020113083A1 (en) * 2018-11-28 2020-06-04 Histosonics, Inc. Histotripsy systems and methods
US11813485B2 (en) 2020-01-28 2023-11-14 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
WO2022056394A1 (en) * 2020-09-11 2022-03-17 The Regents Of The University Of Michigan Transcranial mr-guided histotripsy systems and methods

Also Published As

Publication number Publication date
US20180049719A1 (en) 2018-02-22
EP2903688A4 (en) 2016-06-15
US11058399B2 (en) 2021-07-13
WO2014055906A1 (en) 2014-04-10
EP2903688A1 (en) 2015-08-12

Similar Documents

Publication Publication Date Title
US11058399B2 (en) Bubble-induced color doppler feedback during histotripsy
US20130102932A1 (en) Imaging Feedback of Histotripsy Treatments with Ultrasound Transient Elastography
JPH09103434A (en) Ultrasonic treatment device
Zhang et al. Real-time feedback of histotripsy thrombolysis using bubble-induced color Doppler
JP7358391B2 (en) Ultrasonic processing device with means for imaging cavitation bubbles
Gudur et al. High-frequency rapid B-mode ultrasound imaging for real-time monitoring of lesion formation and gas body activity during high-intensity focused ultrasound ablation
Chen et al. Harmonic motion imaging for abdominal tumor detection and high-intensity focused ultrasound ablation monitoring: an in vivo feasibility study in a transgenic mouse model of pancreatic cancer
JP4928458B2 (en) Ultrasonic diagnostic equipment
JP2006204929A (en) Ultrasound therapeutic apparatus
Miller et al. Bubble-induced color Doppler feedback for histotripsy tissue fractionation
Macoskey et al. Bubble-induced color Doppler feedback correlates with histotripsy-induced destruction of structural components in liver tissue
Jing et al. Effect of skull porous trabecular structure on transcranial ultrasound imaging in the presence of elastic wave mode conversion at varying incidence angle
KR101625646B1 (en) Real-time HIFU treatment monitoring method and ultrasound medical device thereof
Lu et al. Delay multiply and sum beamforming method applied to enhance linear‐array passive acoustic mapping of ultrasound cavitation
Niu et al. A 2 D non‐invasive ultrasonic method for simultaneous measurement of arterial strain and flow pattern
Jing et al. Very low frequency radial modulation for deep penetration contrast-enhanced ultrasound imaging
EP3157438B1 (en) Ablation treatment device sensor
Boulos et al. Passive cavitation imaging using different advanced beamforming methods
Rangraz et al. Real-time monitoring of high-intensity focused ultrasound thermal therapy using the manifold learning method
Foiret et al. Super-localization of contrast agents in moving organs, first experiments in a rat kidney
Li et al. Harmonic Motion Imaging-Guided Focused Ultrasound Ablation: Comparison of Three Focused Ultrasound Interference Filtering Methods
Miller et al. Investigation of the mechanism of ARFI-based Color Doppler feedback of histotripsy tissue fractionation
WO2007119609A1 (en) Embolus observing method and device, and ultrasonograph using them
Miller et al. Real-time elastography-based monitoring of histotripsy tissue fractionation using color Doppler
Sun et al. X-FMAS Beamforming Method for 3D Imaging Using Row-Column Addressed Array

Legal Events

Date Code Title Description
AS Assignment

Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF MICHIGAN;REEL/FRAME:031476/0300

Effective date: 20131021

AS Assignment

Owner name: THE REGENTS OF THE UNIVERSITY OF MICHIGAN, MICHIGA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:XU, ZHEN;MILLER, RYAN M.;MAXWELL, ADAM;AND OTHERS;SIGNING DATES FROM 20131025 TO 20131115;REEL/FRAME:031622/0313

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION