US20140107443A1 - Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue - Google Patents

Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue Download PDF

Info

Publication number
US20140107443A1
US20140107443A1 US14/109,459 US201314109459A US2014107443A1 US 20140107443 A1 US20140107443 A1 US 20140107443A1 US 201314109459 A US201314109459 A US 201314109459A US 2014107443 A1 US2014107443 A1 US 2014107443A1
Authority
US
United States
Prior art keywords
light
tissue
optical
hydration
patient tissue
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/109,459
Inventor
Carine Hoarau
Ronald J. Podhajsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US14/109,459 priority Critical patent/US20140107443A1/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: PODHAJSKY, RONALD J., HOARAU, CARINE
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US20140107443A1 publication Critical patent/US20140107443A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4875Hydration status, fluid retention of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • A61B18/1233Generators therefor with circuits for assuring patient safety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0075Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by spectroscopy, i.e. measuring spectra, e.g. Raman spectroscopy, infrared absorption spectroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing

Definitions

  • This application relates to optical spectrometry systems and, more particularly, to optical spectrometry systems applied to patient tissue to measure tissue hydration levels and to detect a signal indicative of water content.
  • Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue.
  • endoscopes and endoscopic instruments are used for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
  • Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar.
  • Typical sizes for cannulas range from three millimeters (mm) to twelve millimeters (mm). Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
  • coagulation is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried.
  • vessel sealing or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.
  • tissue conductance and permittivity are significant factors in the therapeutic effect of such medical devices that apply the electro-thermal energy to patient tissue. Displacement of water is correlated with changes in tissue conductance and permittivity and lack of control over such changes in tissue conductance and permittivity can lead to overdessication during vessel sealing procedures.
  • the present disclosure relates to a system and a method for monitoring water displacement during treatment of patient tissue.
  • the system for monitoring water displacement in tissue during patient therapy includes a generator configured to supply electrosurgical energy to tissue, a spectrometer operably coupled to the generator, and a processor in operative communication with the generator and with the spectrometer.
  • the spectrometer includes a light source for exposing tissue to light and a light sensor. The light sensor is configured to sense changes in light through tissue in response to tissue treatment and communicate such changes to the processor to determine tissue hydration levels.
  • a plurality of optical fibers may be operably coupled to the generator and configured to communicate light between the generator and tissue. The plurality of optical fibers may be configured in an array.
  • the spectrometer may be a near infra-red spectrometer providing light in the near infrared wavelength range as the light source.
  • the system may also include an optical temperature monitor.
  • the optical temperature monitor may be in operative communication with the processor, and include at least one optical fiber operatively coupled to the optical temperature monitor.
  • the one or more optical fibers are configured to enable the optical temperature monitor to monitor the temperature of the tissue where water displacement is optically monitored.
  • the one or more optical fibers may be configured within a plurality of optical fibers wherein at least one optical fiber is operatively coupled to the light source to enable transmitting light towards the tissue and at least one optical fiber is configured to receive light reflected from the tissue and to transport the light to the light sensor.
  • the plurality of optical fibers may be configured in an optical array.
  • the plurality of optical fibers of the optical array may be configured to have an optic fiber distance between adjacent optical fibers. The optical fiber distance is within the range of about 0.25 millimeters (mm) to about 4.0 mm to optimize the transmission of light through tissue to determine hydration levels.
  • the processor is configured to record and/or analyze changes in hydration of the tissue sensed by the spectrometer across the optic fiber distance.
  • the processor may be configured to record and/or analyze changes in temperature of the tissue sensed by the optical temperature monitor. The sensed temperature may be used to calculate compensation for the temperature effect on hydration measured by the spectrometer.
  • the system is incorporated in an electrosurgical pencil that includes a housing having proximal and distal ends, and a blade receptacle defined at a distal end of the housing for supporting an electrosurgical blade therein.
  • the electrosurgical blade is disposed in optical communication with the light source and light sensor for monitoring hydration levels in tissue during operation of the electrosurgical pencil.
  • the system is incorporated in an electrosurgical forceps that includes a pair of first and second jaw members disposed in pivotal relationship with respect to one another and attached to a distal end of at least one shaft.
  • Each jaw member supports an electrically conductive surface thereon, at least one of the jaw members is disposed in optical communication with the light source and the other of the jaw members is disposed in optical communication with the light sensor for monitoring hydration levels in tissue during operation of the electrosurgical forceps.
  • the present disclosure relates also to a method for monitoring water displacement in tissue during patient therapy.
  • the method includes the steps of providing a spectrometer including a light source in operative communication with patient tissue, generating light from the light source, reflecting the light through the patient tissue; and receiving the light reflected through the patient tissue with a light sensor.
  • the method may include supplying electrosurgical energy to patient or subject tissue utilizing an energy source, sensing changes in light through the tissue in response to tissue treatment, and determining changes in tissue hydration levels based on the sensed changes in light through the tissue.
  • the method may include providing a processor for analyzing the sensed changes in light through the tissue, and determining the changes in hydration levels in the tissue based on the sensed changes in light through the tissue.
  • the processor may operatively communicate with the spectrometer to regulate the supply of electrosurgical energy to the tissue.
  • the method may also include configuring a plurality of optical fibers in an array, wherein the array enables at least one of the plurality of optical fibers operatively coupled to the light source and enables at least one optical fiber of the plurality of optical fibers to be configured to enable transporting light reflected from the tissue to be separated to effect an optic fiber distance within the tissue. That is, the processor may be operatively coupled to the spectrometer and/or the supply of electrosurgical energy.
  • the method includes providing an optical temperature monitor, providing at least one optical fiber operatively coupled to the optical temperature monitor, and monitoring the temperature of the tissue where water displacement is optically monitored. Knowledge of the temperature of the tissue can be used to provide more accurate measurement of tissue hydration.
  • the present disclosure relates to an electrically conductive member for use with an electrosurgical instrument.
  • the electrically conductive member includes a surface configured to engage patient tissue and adapted to connect to a source of electrosurgical energy.
  • the electrically conductive member also includes at least one optical transmitter that is configured to propagate light through patient tissue and at least one corresponding optical sensor configured to sense changes in reflected light propagating through patient tissue during operation of the electrosurgical instrument and relating the changes in reflected light through patient tissue to hydration levels in tissue.
  • FIG. 1 is a perspective view of an electrode assembly of an electrosurgical pencil according to the present disclosure illustrating one embodiment of an end effector assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense at least a portion of the light propagating through patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil;
  • FIG. 2A is a perspective view an ES pencil blade of the end effector assembly of FIG. 1 ;
  • FIG. 2B is a cross-sectional view of the pencil blade of the end effector assembly taken along section line 2 B- 2 B of FIG. 2A ;
  • FIG. 2C is a perspective view of another embodiment of the pencil blade of the electrocautery end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 2D is a cross-sectional view of the pencil blade of the electrocautery end effector assembly taken along section line 2 D- 2 D of FIG. 2C
  • FIG. 3A is a schematic view of one embodiment of an optical transmitter wherein light is reflected by a prism
  • FIG. 3B is a schematic view of one embodiment of an optical sensor wherein light is reflected by a prism
  • FIG. 3C is a schematic view of one embodiment of a dual-function optical transmitter and optical sensor wherein light is reflected by a prism;
  • FIG. 4A is a schematic view of one embodiment of an optical transmitter wherein light is transmitted by a light emitting diode
  • FIG. 4B is a schematic view of one embodiment of an optical sensor wherein light is sensed by a light emitting diode
  • FIG. 5A is a perspective view of another embodiment of the pencil blade of the end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 5B is a cross-sectional view of the pencil blade of the end effector assembly taken along section line 5 B- 5 B of FIG. 5A ;
  • FIG. 6A is a perspective view of another embodiment of the pencil blade of the end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 6B is a cross-sectional view of the pencil blade of the electrocautery end effector assembly taken along section line 6 B- 6 B of FIG. 6A ;
  • FIG. 7 is a schematic view of one embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure in which one optical transmitter and two optical sources are disposed substantially linearly on a surface of the electrically conductive member;
  • FIG. 7A is a schematic view of the electrically conductive member of FIG. 7 taken along section line 7 A- 7 A;
  • FIG. 8 is a schematic view of another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure in which one optical transmitter and two optical sources are disposed substantially linearly on a surface of the electrically conductive member;
  • FIG. 9 is a schematic view of yet another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having a circular array of optical sensors and an optical transmitter disposed on a surface of the electrically conductive member;
  • FIG. 10 is a schematic view of still another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having a circular array of optical transmitters and an optical sensor disposed on a surface of the electrically conductive member;
  • FIG. 11 is a schematic view of another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having two circular arrays of optical transmitters and optical sensors disposed on a surface of the electrically conductive member;
  • FIG. 12A is a schematic view of a surface of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having an array of optical transmitters and optical sensors disposed in channels on the suface of the electrically conductive member;
  • FIG. 12B is an end view of the electrically conductive member of FIG. 12A for an electrosurgical pencil
  • FIG. 12 B′ is an end view of the electrically conductive member of FIG. 12A for a bipolar electrosurgical forceps
  • FIG. 12C is a schematic view of the electrically conductive member of FIG. 12B taken along section line 12 C- 12 C;
  • FIG. 12 C′ is a view of the electrically conductive member of FIG. 12 B′ taken along section line 12 C′- 12 C′;
  • FIG. 13 is an enlarged view of an end of an optical fiber illustrated in FIG. 12 C′;
  • FIG. 14 is a perspective view of a bipolar electrosurgical forceps according to the present disclosure illustrating one embodiment of an end effector assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 14A is an enlarged perspective view of the embodiment of the jaw members of the end effector assembly of FIG. 14 ;
  • FIG. 14B is a profile view of another embodiment of the jaw members of the end effector assembly of FIG. 14 ;
  • FIG. 14C is an enlarged perspective view of another embodiment of the jaw members of the end effector assembly of FIG. 14 ;
  • FIG. 15A is a schematic, side view of another embodiment of the jaw members of the end effector assembly of FIG. 14 ;
  • FIG. 15B is a schematic, view of the lower jaw member of the end effector assembly of FIG. 15A taken along section line 15 B- 15 B;
  • FIG. 15C is a schematic, side view of another embodiment of the jaw members of the end effector assembly of FIG. 14 ;
  • FIG. 15D is a schematic view of the lower jaw member of the end effector assembly of FIG. 15C taken along section line 15 D- 15 D;
  • FIG. 16 is a schematic, side view of another embodiment of an end effector assembly according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 16A is an enlarged view of the area of detail 16 A illustrated in FIG. 16 ;
  • FIG. 17 is a schematic, side view of another embodiment of the parallel jaw type bipolar electrosurgical forceps assembly of FIG. 16 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 18 is a schematic, side view of yet another embodiment of the parallel jaw type bipolar electrosurgical forceps assembly of FIG. 16 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 19 is a schematic view of a system for monitoring water displacement during treatment of patient tissue according to the present disclosure.
  • FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch included within the system for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11 ;
  • FIG. 21 is a view of an optical alignment member included within the mechanical-optical multiplexer switch taken along section line 21 - 21 illustrated in FIG. 20 .
  • the present disclosure relates to a system and method for detecting water displacement and/or water hydration levels in tissue by arranging optic fibers in an array on the tissue contacting surfaces.
  • Optic fibers are configured at one end to connect the fibers to a light source and at an opposite end to terminate in an array such that the light is transmitted into the tissue may be measured and/or monitored.
  • Several light sensing optic fibers may also be included in the array and disposed in close proximity to the lens of the fiber optic that is the source.
  • the end of the sensing optic fiber opposite the array is connected to a spectrometer.
  • the configuration of the array can be designed into many different configurations and is not necessarily limited in this disclosure. The configuration may be dependent on the type of tissue and the geometry of the application.
  • Applications include by are not limited to medical devices that use electro-thermal energy.
  • the spacing and placement of the optical fiber elements of the optical array are specified such that discrete changes in hydration of the tissue over time can be recorded. These recorded discrete hydration changes together with the known array geometry can be analyzed (for example, by computer) to provide information on the displacement of water in the tissue.
  • the source and detected wavelengths are selected to optimize the detection of water.
  • Tissue conductance and permittivity are significant factors in the therapeutic effect of medical devices that use electro-thermal energy.
  • a series of probes measures the hydration of a multitude of tissues.
  • a probe or probes are placed in an array at a location where the sensors receiving the reflected signal are placed in the array so that changes in hydration can be monitored. Dynamic changes of hydration during energy treatment of tissue can be recorded, analyzed, and utilized to control delivery of electrosurgical energy during the course of tissue treatment.
  • FIG. 1 there is illustrated a partial view of electrosurgical pencil 100 that includes a housing 102 defining an open distal end 103 a for selectively receiving proximal end 108 of electrocautery blade 106 therein.
  • Open distal end 103 a defines a blade receptacle 105 for blade 106 .
  • the proximal end 103 b of the housing 103 is not entirely shown).
  • electrocautery blade 106 is supported in a collar 120 .
  • Collar 120 is positioned between distal end 110 and proximal end 108 of electrocautery blade 106 .
  • Collar 120 has a shaped outer surface 120 a configured and dimensioned to complement the inner profile of receptacle 105 of open distal end 103 a .
  • the open distal end 103 a of housing 102 defines a hexagonally-shaped inner profile of receptacle 105 and collar 120 defines a hexagonal outer surface 120 a .
  • the blade 106 and the collar 120 define an electrocautery end effector assembly 112 that is operatively connectable to the blade receptacle 105 .
  • Blade receptacle 105 is defined at the distal end 103 a of the housing for supporting the electrosurgical blade 106 therein.
  • the electrosurgical blade 106 is configured to be connected to a source of electrosurgical energy, e.g., an electrosurgical generator, not shown.
  • an optical transmitter includes, but is not limited to, small diameter optical fibers, e.g., having a diameter ranging up to about 1 millimeter (mm); large diameter optical fibers, e.g. having a diameter ranging up to about 2 mm; prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration to function as a prism, light-emitting electronic devices such as a light-emitting diodes (LED), or electrical cable s that transmit electrical signals that provide optical information from a light source.
  • small diameter optical fibers e.g., having a diameter ranging up to about 1 millimeter (mm)
  • large diameter optical fibers e.g. having a diameter ranging up to about 2 mm
  • prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration to function as a prism
  • light-emitting electronic devices such as a light-emitting
  • an electrical cable is capable of providing optical communication between a light source and a light-emitting electronic device.
  • Photo-electric detectors convert photonic signals to electrical signals
  • light-emitting electronic devices such as light-emitting diodes convert electrical signals to photonic signals.
  • Such optical transmitters may be configured as single members or in an assembly of one or more members of the same category in optical communication with one another or in an assembly of one or more members of different categories in optical communication with one another.
  • an optical sensor includes, but is not limited to, small diameter optical fibers, e.g., having a diameter ranging up to about one (1) millimeter (mm); large diameter optical fibers, e.g. having a diameter ranging up to about two (2) mm; prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration that functions as a prism, light-sensing electronic devices such a photo-electric detector or photosensor, or electrical cables that transmit electrical signals that provide optical information from a photo-electric detector.
  • small diameter optical fibers e.g., having a diameter ranging up to about one (1) millimeter (mm)
  • large diameter optical fibers e.g. having a diameter ranging up to about two (2) mm
  • prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration that functions as a prism, light-sensing electronic devices such a photo-electric detector or
  • Such photoelectric detectors may be made from, for example, gallium arsenide (GaAs), indium phosphide (InP), gallium phosphide (GaP), indium gallium arsenide (InGaAs), silicon germanium (SiGe), germanium (Ge), germanium tin (GeSn), sulfur germanium tin (SGeSn) and the like.
  • an electrical cable is capable of providing optical communication between a photo-electric detector and a light-emitting electronic device. Photo-electric detectors convert photonic signal to electrical signals, and light-emitting electronic devices such as light-emitting diodes convert the electrical signals to photonic signals.
  • optical sensors may be configured as single members or in an assembly of one or more members of the same category in optical communication with one another or in an assembly of one or more members of different categories in optical communication with one another.
  • Optical sensors include, but are not limited to, optical detectors that are mostly quantum devices in which an individual photon produces a discrete effect; photoresistors or light dependent resistors in which resistance is a function of light intensity; photodiodes operating in a photovoltaic mode or in a photoconductive mode; photovoltaic cells or solar cells producing a voltage and an electric current when illuminated; photomultiplier tubes containing a photocathode that emits electrons when illuminated and wherein the electrons may be amplified by a chain of dynodes; phototubes containing a photocathode that emits electrons when illuminated wherein the tube conducts a current proportional to the light intensity; light-emitting devices (LEDs) that are reverse-biased to act as photodiodes; phototransistors that function as amplifying photodiodes; optical detectors that function as thermometers converting heat of incoming radiation to an electrical current, such as pyroelectric detectors, Golay cells, thermo
  • an optical transmitter may also function alternately as an optical sensor to serve as a dual function optical transmitter and optical receiver.
  • a dual function optical transmitter and optical receiver may include a multiplexer device.
  • optical transmitter 202 includes one or more optical fibers e.g., optical fibers 204 a , 204 b , and 204 c and/or one or more light reflecting prisms 206 in optical communication with corresponding optical fibers 204 a , 204 b and/or 204 c .
  • the optical transmitter 202 may include a large diameter single optical fiber 208 in optical communication with patient tissue (not shown). The diameter of optical fiber 208 ranges up to about 3 mm.
  • Light 10 is illustrated propagating through the optical fibers 204 a , 204 b and 204 c to prism 206 wherein the light 10 is reflected by the prism 306 to a large diameter single optical fiber 208 propagates the light to patient tissue.
  • FIG. 3B illustrates an optical sensor 202 ′ that also includes one or more optical fibers e.g., optical fibers 204 a , 204 b , and 204 c and/or one or more light reflecting prisms 206 in optical communication with corresponding optical fibers 204 a ′, 204 b ′ and/or 204 c ′.
  • the optical sensor 202 may include a large diameter single optical fiber 208 in optical communication with patient tissue (not shown).
  • Optical sensor 202 ′ differs from optical transmitter 202 in that light 10 ′ travels in the reverse direction as compared to light 10 .
  • optical fibers 204 a ′, 204 b ′ and 204 c ′ may have diameters which differ from one another so as to propagate differing wavelengths of light.
  • the diameters of optical fibers 204 a ′, 204 b ′ and 204 c ′ may also differ from the diameters of optical fibers 204 a , 204 b and 204 c of optical transmitter 202 described with respect to FIG. 3A .
  • FIG. 3C illustrates one embodiment of a dual function optical transmitter and optical sensor 202 ′′ wherein light 10 ′′ may propagate to patient tissue (again not shown) and alternately propagate from patient tissue. More particularly, dual-function optical transmitter and optical sensor 202 ′′ is substantially identical to optical transmitter 202 and optical sensor 202 ′ except for the inclusion of optical multiplexer 210 in the path of optical fibers 204 a , 204 b and 204 c .
  • the optical multiplexer (MUX) 210 is in optical communication with proximal optical fibers 214 a , 214 b and 214 c and with distal optical fibers 204 a , 204 b and 204 c
  • light 10 ′′ propagates from the proximal side of MUX 210 through the proximal optical fibers 214 a , 214 b and 214 c through the MUX 210 to the distal optical fibers 204 a , 204 b and 204 c .
  • light 10 ′′ is reflected by the prism 206 to propagate through the large optical fiber 208 to pass through patient tissue.
  • light 10 ′′ propagates from patient tissue where the light 10 ′′ is detected by the large diameter optical fiber 208 and propagates to the prism 206 wherein the light 10 ′′ is reflected by the prism 206 to distal optical fibers 204 a , 204 b and 204 c .
  • the light 10 ′′ propagates to the MUX 210 where the light is selectively propagated by switching to at least one or more of the proximal optical fibers 214 a , 214 b and 214 c.
  • FIG. 4A illustrates an alternate embodiment of an optical transmitter 2510 .
  • optical transmitter 2510 includes electrical cable 2541 that is capable of providing optical communication between a light source (to be described below with respect to FIGS. 18-20 ), and a light-emitting electronic device 2561 such as a light-emitting diode.
  • a photo-electric detector (not shown) converts a photonic signal to an electrical signal.
  • the light-emitting electronic device 256 converts the electrical signal to a photonic signal resulting in light 101 being emitted from the light-emitting electronic device 256 to propagate through large diameter optical fiber 208 to patient tissue (also not shown).
  • FIG. 4B illustrates an alternate embodiment of an optical sensor 2520 .
  • optical sensor 2520 includes electrical cable 2542 that is capable of providing optical communication between photo-electric detector 2562 and a light detector (to be described below with respect to FIGS. 18-20 ).
  • Light 102 propagating through patient tissue propagates to large diameter optical fiber 208 in contact with patient tissue.
  • the photo-electric detector 2520 detects the light 102 propagating through the large diameter optical fiber 208 and converts the photonic signal to an electrical signal.
  • the electrical signal communicates with the light detector (to be described below).
  • electrocautery blade 106 defines a proximal end 150 a and a distal end 150 b .
  • the blade 106 a has a substantially planar configuration having a generally convex lateral cross-section defining one or more peripheral edges 120 and one or more lateral surfaces, e.g., first surface 1301 a and second surface 1301 b .
  • the blade 106 a includes a cylindrical shaft 140 defining a hollow central region 140 ′ therewithin and extending to a proximal end 144 of substantially planar region 152 of the blade 106 a .
  • the hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140 .
  • the electrosurgical blade 106 a is configured with one or more optical transmitters 202 positioned to propagate light 10 through patient tissue and one or more optical sensors 202 ′ positioned to sense at least a portion of the light 10 ′ propagating through patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100 .
  • the electrosurgical blade 106 a is configured wherein optical transmitters 2021 a and 2022 a (shown partially) propagate light through patient tissue via the first lateral surface 1301 a while optical transmitters 2021 b ( 2022 b , not shown) propagate light through patient tissue via the second lateral surface 1301 b .
  • Optical transmitters 2021 a , 2022 a , 2021 b (and 2022 b , not shown) are configured with prism 206 and the optical fibers described with respect to optical transmitter 202 in FIG. 3A .
  • the electrosurgical blade 106 a is configured wherein optical sensors 2021 a ′ and 2022 a ′ (shown partially) sense at least a portion of the light propagating through the patient tissue via the first lateral surface. 1301 a while optical sensors 2021 b ′ (and corresponding optical sensors not shown) sense at least a portion of the light propagating through the patient tissue via the second lateral surface 1301 b .
  • Optical sensors 2021 a ′, 2022 a ′, 2021 b ′ (and corresponding optical sensors not shown) are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202 ′ in FIG. 3B .
  • the diameters of the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ may differ from one another.
  • the optical sensors 2021 a ′ and 2021 b ′ may be positioned proximally on the electrosurgical blade 106 a with respect to the optical transmitters 2021 a and 2021 b.
  • the transmission optical fibers 204 a , 204 b , 204 c and the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ are routed through the hollow central region 140 ′ of the shaft 140 and further through the housing 102 .
  • electrocautery blade 106 again defines proximal end 150 a and distal end 150 b .
  • the blade 106 b has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1202 and at least one lateral surface, e.g., first surface 1302 a and second surface 1302 b (not explicitly shown on the opposing side of first surface 1302 a ).
  • the blade 106 b includes cylindrical shaft 140 defining hollow central region 140 ′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 b .
  • the hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140 .
  • the electrosurgical blade 106 b is again configured with at least one optical transmitter 202 positioned to propagate light 10 through patient tissue and at least one optical sensor 202 ′ positioned to sense at least a portion of the light 10 ′ propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100 .
  • the electrosurgical blade 106 b is configured wherein optical transmitters 2023 a and 2023 b propagate light through the patient tissue via first and second lateral portions 1202 a and 1202 b , respectively, of peripheral edge 1202 . Additionally, the electrosurgical blade 106 b is configured wherein optical sensors 2023 a ′ and 2023 b ′ sense at least a portion of the light propagating through the patient tissue via first and second lateral portions 1202 a and 1202 b , respectively, of peripheral edge 1202 .
  • Optical transmitters 2023 a and 2023 b are configured with prism 206 and the optical fibers described with respect to optical transmitter 202 in FIG. 3A .
  • Optical sensors 2023 a ′ and 2023 b ′ are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202 ′ in FIG. 3B , except that large diameter single optical fiber 208 is replaced by more than one smaller diameter optical fibers similar to 204 a ′, 204 b ′, 204 c ′.
  • the diameters of the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ may differ from one another.
  • the optical sensors 2023 a ′ and 2023 b ′ may be positioned on the electrosurgical blade 106 b proximally with respect to optical transmitters 2023 a and 2023 b.
  • the transmission optical fibers 204 a , 204 b , 204 c and the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ are routed through the hollow central region 140 ′ of the shaft 140 and further through the housing 102 .
  • electrocautery blade 106 again defines proximal end 150 a and distal end 150 b .
  • the blade 106 c again has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1203 and at least one lateral surface, e.g., first surface 1303 a and a second surface not explicitly shown on the opposing side of first surface 1303 a .
  • the blade 106 c again includes cylindrical shaft 140 defining hollow central region 140 ′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 c .
  • the hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140 .
  • the electrosurgical blade 106 c is configured with at least one optical transmitter 2510 positioned to propagate light 1001 through patient tissue, but, in a similar manner as with respect to electrosurgical blades 106 a and 106 b , with at least one optical sensor 202 ′ positioned to sense at least a portion of the light 10 ′ propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100 .
  • the electrosurgical blade 106 c is configured wherein optical transmitters 2511 a and 2511 b propagate light through the patient tissue via first and second lateral portions 1203 a and 1203 b , respectively, of peripheral edge 1203 .
  • the optical transmitters 2511 a and 2511 b include electrical cables 2541 a and 2541 b and light-emitting electronic devices 2561 a and 2561 b and large diameter optical fibers 2081 a and 2081 b , respectively, as described with respect to optical transmitter 2510 in FIG. 4A .
  • the electrosurgical blade 106 c is configured wherein optical sensors 2024 a ′ and 2024 b ′ sense at least a portion of the light propagating through the patient tissue via first and second lateral portions 1203 a and 1203 b , respectively, of peripheral edge 1203 .
  • Optical sensors 2024 a ′ and 2024 b ′ are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202 ′ in FIG. 3B , except that large diameter single optical fiber 208 is replaced by more than one smaller diameter optical fibers similar to 204 a ′, 204 b ′, 204 c ′. As indicated, the diameters of the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ may differ from one another.
  • the transmitting electrical cables 2541 a and 2541 b and the sensing optical fibers 204 a ′, 204 b ′, 204 c ′ are again routed through the hollow central region 140 ′ of the shaft 140 and further through the housing 102 .
  • FIGS. 6A and 6B illustrate yet another embodiment of electrocautery blade 106 . More particularly, electrocautery blade 106 d again defines proximal end 150 a and distal end 150 b .
  • the blade 106 d has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1204 and at least one lateral surface, e.g., first surface 1304 a and a second surface not explicitly shown on the opposing side of first surface 1304 a .
  • the blade 106 d includes cylindrical shaft 140 defining hollow central region 140 ′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 c .
  • the hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140 .
  • the electrosurgical blade 106 d is configured with at least one optical transmitter 202 positioned to propagate light 10 through patient tissue, but, with at least one optical sensor 2520 positioned to sense at least a portion of the light 1002 propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100 .
  • the electrosurgical blade 106 d is configured wherein optical transmitters 2025 a and 2025 b propagate light through the patient tissue via first and second lateral portions 1204 a and 1204 b , respectively, of peripheral edge 1204 .
  • the optical transmitters 2025 a and 2025 b include large diameter optical fibers 2082 a and 2082 b , respectively, as described with respect to optical transmitter 202 in FIG. 3A .
  • Optical sensors 2025 a and 2025 b are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202 ′ in FIG. 3A .
  • the electrosurgical blade 106 d is configured wherein optical sensors 2521 a ′ and 2521 b ′ sense at least a portion of the light propagating through the patient tissue also via first and second lateral portions 1204 a and 1204 b , respectively, of peripheral edge 1204 .
  • the optical sensors 2521 a ′ and 2521 b ′ include the electrical cables 2542 a ′ and 2542 b ′ and photo-electric detectors 2562 a ′ and 2562 b ′ and each with a plurality of optical fibers similar to optical fibers 204 a ′, 204 b ′ and 204 c ′ on the first and second portions 1204 a and 1204 b , respectively, of the lateral edge 1204 . as described with respect to optical sensor 2520 in FIG. 4B , thereby sensing at least a portion of the light propagating through the patient tissue.
  • the electrosurgical blade 106 d is configured wherein optical sensors 2521 a ′ and 2521 b ′ may be positioned proximally on the electrosurgical blade 106 d with respect to the optical transmitters 2025 a and 2025 b.
  • the transmitting optical fibers 204 a , 204 b , 204 c and the sensing electrical cables 2542 a and 2542 b are routed through the hollow central region 140 ′ of the shaft 140 and further through the housing 102 .
  • FIGS. 7-11 and 12 A, 12 B, 12 C and 13 illustrate various embodiments of an electrically conductive member 300 for use with an electrosurgical instrument.
  • the electrically conductive member 300 has a surface 302 that is configured to be in contact with patient tissue (not shown) and to be connected to a source of electrosurgical energy (not shown),
  • the electrically conductive member 300 is configured with one or more optical transmitters positioned in an array to propagate light through patient tissue and one or more optical sensors positioned in an array to sense via reflectance by the patient tissue at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil.
  • electrically conductive member 300 a has surface 302 a that is configured to be in contact with, or to engage with, patient tissue (not shown) and adapted to connect to a source of electrosurgical energy (not shown),
  • the surface 302 a is configured with one more optical transmitters 2512 positioned in an array to propagate light through patient tissue and at least one optical sensor, e.g., two optical sensors 2522 and 2523 positioned in an array, configured to sense changes in reflected light, e.g., via reflectance by the patient tissue, at least a portion of the light propagating through the patient tissue during operation of the electrosurgical instrument and relating the changes in reflected light to hydration levels in tissue during operation of the electrosurgical pencil.
  • the optical sensors 2522 ′ and 2523 ′ may include first optical fibers 2522 a ′ and 2523 a ′, second optical fibers 2522 b ′ and 2523 b ′, and third optical fibers 2522 c ′ and 2523 c ′, respectively, wherein the diameter of the first optical fibers 2522 a ′ and 2523 a ′ differs from the diameter of the second optical fibers 2522 b ′ and 2523 b ′, and the diameter of the third optical fibers 2522 c ′ and 2523 c ′ differs from the diameters of the first and second optical fibers.
  • the optical transmitters 2512 are disposed substantially linearly to form on the surface a single line of optical fibers 2512 a that is disposed distally from the two optical sensors 2522 ′ and 2523 .
  • the optical fibers of optical sensors 2522 ′ and 2523 ′ are disposed substantially linearly to form first and second lines of optical fibers 2522 a ′, 2522 b ′, 2522 c ′ and 2523 a ′, 2523 b ′, 2523 c ′, respectively.
  • the optical transmitters 2512 may be disposed substantially linearly relative to one another along an axis “A” defined through the electrically conductive member 300 a from a proximal end to a distal end thereof.
  • the optical transmitters 2512 may be disposed distally relative to the optical sensors 2522 ′ and 2523 ′.
  • the optical sensors 2522 ′ and 2523 ′ may correspond to the optical transmitters 2512 .
  • the optical transmitter 2512 includes electrical cable 2541 , light-emitting electronic device 2561 and the single line of optical fibers 2512 a .
  • optical sensors 2522 ′ and 2523 ′ include electrical cables 2542 ′ and 2543 ′, photo-electric detector 2562 ′ and 2563 ′, and the optical fibers 2522 a ′, 2522 b ′, 2522 c ′ and 2523 a ′, 2523 b ′, 2523 c ′, respectively.
  • light path 301 Upon emission of light from the light-emitting electronic device 2561 , light path 301 propagates from the single line of optical fibers 2512 a to first line of optical fibers 2522 a ′, 2522 b ′, 2522 c ′ of first optical sensor 2522 ′.
  • light path 311 propagates from the single line of optical fibers 2512 a to second line of optical fibers 2523 a ′, 2523 b ′, 2523 c ′ of second optical sensor 2523 ′.
  • the different diameters of the optical fibers of the optical sensors 2522 ′ and 2523 ′ enable monitoring of water motility within the patient tissue during the electrosurgical procedure.
  • FIG. 8 illustrates an alternate embodiment of the electrically conductive member 300 having surface 302 .
  • electrically conductive member 300 b is an alternate embodiment of the electrically conductive member 300 a described above with respect to FIGS. 7 and 7A .
  • the electrically conductive member 300 b includes the at least two optical sensors 2522 ′ and 2523 ′.
  • the optical fibers 2522 a ′, 2522 b ′, 2522 c ′ and 2523 a ′, 2523 b ′ 2523 c ′ of the optical sensors 2522 ′ and 2523 ′, respectively are disposed substantially linearly to form on surface 302 b first and second lines.
  • the first line 2522 ′ is distal from the second line 2523 ′.
  • Electrically conductive member 300 b differs from electrically conductive member 300 a in that the optical fibers 2512 a of the optical transmitter 2512 are disposed substantially linearly to form a single line disposed between the first and second lines of the two or more optical sensors 2522 ′ and 2523 ′. That is, the plurality of optical sensors 2522 ′ and 2523 ′ may be disposed substantially linearly along an axis “B” defined through the electrically conductive member 300 b .
  • the optical sensors 2522 ′ and 2523 ′ may be disposed substantially linearly relative to one another to form first and second lines of optical sensors on the surface 302 b .
  • the second line of optical sensors 2522 ′ may be distal from the first line of optical sensors 2523 ′.
  • the optical transmitter 2512 forms a first light path in patient tissue.
  • the first light propagates by reflectance in the patient tissue to the first optical sensor 2522 ′ while the optical transmitter 2512 also forms a second light path in patient tissue, wherein the second light path propagates by reflectance in the patient tissue to the second optical sensor 2523 ′.
  • the diameters of the optical fibers 2522 a ′, 2522 b ′, 2522 c ′ may differ from one another.
  • the diameters of the optical fibers 2523 a ′, 2523 b ′, 2523 c ′ may differ from one another to allow propagation of light of differing wavelengths.
  • the optical transmitter 2512 may also include the light-emitting electronic device 2561 and electrical cable 2541 described previously with respect to FIG. 4A while the optical sensors 2522 ′, 2523 ′ include the photo-electric detector 2562 and electrical cable 2542 described previously with respect to FIG. 4B .
  • FIG. 9 illustrates yet another embodiment of the electrically conductive member 300 having surface 302 .
  • electrically conductive member 300 c includes one or more optical transmitters 2513 and two or more optical sensors, e.g., first optical sensor 2524 ′ and second optical sensor 2525 ′.
  • the optical transmitter 2513 and the first and second optical sensors 2524 ′, 2525 ′ are disposed in a pattern on surface 302 c that includes at least a first plurality of optical fibers 2524 a ′, 2524 b ′, 2524 c ′ of optical sensor 2524 ′ in a circumferential arrangement and a second plurality of optical fibers 2525 a ′, 2525 b ′, 2525 c ′ of optical sensor 2525 ′ in a circumferentially substantially concentric arrangement with respect to the first plurality of optical fibers 2524 a ′, 2524 b ′, 2524 c ′ of optical sensor 2524 ′.
  • the first plurality of optical sensors 2524 ′ may be disposed in a first circumferential pattern on the surface 302 c and the second plurality of optical sensors 2525 ′ may be disposed in a second circumferential pattern on the surface 302 c that is concentric to the first circumferential pattern of the first plurality of optical sensors 2524 ′.
  • Optical fibers 2513 a , 2513 b , 2513 c , 2513 c , 2513 d , 2513 e of optical transmitter 2513 are disposed substantially at the center of the substantially concentric arrangement of the first and second plurality of optical fibers 2524 a ′, 2524 b ′, 2524 c ′ and 2525 a ′, 2525 b ′, 2525 c ′ of the optical sensors 2524 ′ and 2525 ′, respectively. That is, the optical transmitter 2513 may be disposed substantially at the center of the concentric arrangement of the first and second circumferential patterns of the optical sensors 2524 ′ and 2525 ′, respectively.
  • the optical transmitter 2513 forms multiple light paths in patient tissue distributed substantially radially away from the optical fibers 2513 a , 2513 b , 2513 c , 2513 c , 2513 d , 2513 e .
  • the light propagates by reflectance in the patient tissue to the substantially concentric arrangement of the first and second plurality of optical fibers 2524 a ′, 2524 b ′, 2524 c ′ and 2525 a ′, 2525 b ′, 2525 c ′ of the optical sensors 2524 ′ and 2525 ′, respectively.
  • the diameters of the plurality of optical fibers 2524 a ′, 2524 b ′, 2524 c ′ and 2525 a ′, 2525 b ′, 2525 c ′ may again differ from one another as explained above
  • the optical transmitter 2513 may include the light-emitting electronic device 2561 and electrical cable 2541 described previously with respect to FIG. 4A while the optical sensors 2524 ′, 2525 ′ include the photo-electric detector 2562 and electrical cable 2542 described previously with respect to FIG. 4B .
  • FIG. 10 illustrates still another embodiment of the electrically conductive member 300 having surface 302 .
  • electrically conductive member 300 d includes two or more optical transmitters, e.g., first optical transmitter 2514 and second optical transmitter 2515 .
  • the optical transmitters 2514 , 2515 are disposed in a pattern on surface 302 d that includes at least a first plurality of optical fibers 2514 a , 2514 b . . . 2514 n of optical transmitter 2514 in a circumferential arrangement and a second plurality of optical fibers 2515 a , 2515 b . . .
  • the first plurality of optical transmitters 2514 may be disposed in a first circumferential pattern on the surface 302 d and the second plurality of optical transmitters 2515 may be disposed in a second circumferential pattern on the surface 302 d that is concentric to the first circumferential pattern of the first plurality of optical transmitters 2514 .
  • Optical fibers 2526 a ′, 2526 b ′ and 2526 c ′ of one or more optical sensors 2526 ′ are disposed substantially at the center of the substantially concentric arrangement of the first and second plurality of optical fibers 2514 a , 2514 b . . . 2514 n and 2515 a , 2515 b . . . 2515 n of optical transmitters 2514 and 2515 , respectively. That is, the optical sensor 2526 ′ may be disposed substantially at the center of the concentric arrangement of the first and second circumferential patterns of the optical transmitters 2514 and 2515 , respectively.
  • the optical transmitters 2514 , 2515 form multiple light paths in patient tissue distributed substantially radially towards the optical fibers 2526 a ′, 2526 b ′, 2526 c ′ of optical sensor 2526 ′.
  • the light propagates by reflectance in the patient tissue from the substantially concentric arrangement of the first and second plurality of optical fibers 2514 a , 2514 b . . . 2514 n and 2515 a , 2515 b . . . 2515 n of optical transmitters 2514 and 2515 , respectively.
  • optical fibers 2526 a ′, 2526 b ′, 2526 c ′ of optical sensor 2526 ′ may again differ from one another to allow propagation and sensing of light of different wavelengths.
  • the light-emitting electronic devices and photo-electric detectors and electrical cables may be configured as described previously with respect to FIGS. 4A and 4B .
  • FIG. 11 illustrates yet another embodiment of the electrically conductive member 300 having surface 302 .
  • electrically conductive member 300 e includes two or more optical transmitters, e.g., first optical transmitter 2516 and second optical transmitter 2517 , and two or more optical sensors, e.g., first optical sensor 2527 ′ and second optical sensor 2528 ′.
  • the optical transmitters 2516 , 2517 and the optical sensors 2527 ′, 2528 ′ are disposed in a pattern on surface 302 e .
  • At least a first plurality of optical fibers 2516 a , 2516 b . . . 2516 n and 2517 a , 2517 b . . . 2517 n form at least a portion of the optical transmitters 2516 and 2517 , respectively, and are disposed in a substantially circumferential arrangement.
  • At least a first plurality of optical fibers 2527 a ′, 2527 b ′, 2527 c ′ and at least a second plurality of optical fibers 2528 a ′, 2528 b ′, 2528 c ′ form at least a portion of the optical sensors 2527 ′ and 2528 ′, respectively.
  • the first and second plurality of optical fibers 2527 a ′, 2527 b ′, 2527 c ′ and 2528 a ′, 2528 b ′, 2528 c ′ of optical sensors 2527 ′ and 2528 ′, respectively, are disposed substantially at the center of the substantially circumferential arrangement of the first and second plurality of optical fibers 2516 a , 2516 b . . .
  • the first array of optical transmitter 2516 and optical sensor 2527 ′ is disposed distally with respect to the second array of optical transmitter 2517 and optical sensor 2528 ′.
  • the first optical sensor 2527 ′ may include fibers 2527 a ′, 2527 b ′, 2527 c ′ that form a first circumferential arrangement and the first optical transmitter 2516 may be disposed substantially at the center of the first circumferential arrangement of the fibers 2527 a ′, 2527 b ′, 2527 c ′.
  • the second optical sensor 2528 ′ may include fibers 2528 a ′, 2528 b ′, 2528 c ′ that form a second circumferential arrangement and the second optical transmitter 2517 may be disposed substantially at the center of the second circumferential arrangement of the fibers 2528 a ′, 2528 b ′, 2528 c ′.
  • the second circumferential arrangement may be disposed distally relative to the first circumferential arrangement, along an axis “C” defined through the electrically conductive member 302 e.
  • the optical transmitters 2516 , 2517 form multiple light paths in patient tissue distributed substantially radially towards the respective optical fibers 2527 a ′, 2527 b ′, 2527 c ′ of optical sensor 2527 ′ and 2528 a ′, 2528 b ′, 2528 c ′ of optical sensor 2528 ′ in the first and second arrays, respectively. Again, the light propagates by reflectance in the patient tissue.
  • the diameters of the optical fibers 2527 a ′, 2527 b ′, 2527 c ′ of optical sensor 2527 ′ and of optical fibers 2528 a ′, 2528 b ′, 2528 c ′ of optical sensor 2528 ′ may again differ from one another to allow propagation and sensing of light of different wavelengths.
  • First and second arrays of optical transmitters and optical sensors may also be formed by replacing the concentrically arranged optical fibers 2516 a , 2516 b . . . 2516 n and 2517 a , 2517 b . . . 2517 n of optical transmitters 2516 and 2517 , respectively, with optical sensors and by replacing the first and second plurality of optical fibers 2527 a ′, 2527 b ′, 2527 c ′ and 2528 a ′, 2528 b ′, 2528 c ′ of optical sensors 2527 ′ and 2528 ′, respectively, that are disposed substantially at the center of the substantially circumferential arrangement of the first and second plurality of optical fibers 2516 a , 2516 b . . . 2516 n and 2517 a , 2517 b . . . 2517 n with optical transmitters.
  • FIGS. 12A , 12 B, 12 B′, 12 C, 12 C′ and 13 illustrate different embodiments of yet another electrically conductive member 300 for use with an electrosurgical instrument having a surface 302 according to the present disclosure. More particularly, FIGS. 12A , 12 B, 12 C and 13 illustrate an electrically conductive member 300 f having at least a first lateral surface 3021 f and a second lateral surface 3022 f on an opposing side of the electrically conductive member 300 f.
  • the electrically conductive member 300 f includes on first and second lateral surfaces 3021 f and 3022 f one or more optical transmitters, e.g., optical transmitters 3011 a , 3011 b , 3011 c , 3011 d and 3012 a , 3012 b , 3012 c , 3012 d .
  • the electrically conductive member 300 f also includes on first and second lateral surfaces 3021 f and 3022 f one or more optical sensors, e.g., optical sensors 3011 a ′, 3011 b ′, 3011 c ′ and 3012 a ′, 3012 b ′, 3012 c ′.
  • the optical transmitters 3011 a , 3011 b , 3011 c , 3011 d and 3012 a , 3012 b , 3012 c , 3012 d and optical sensors 3011 a ′, 3011 b ′, 3011 c ′ and 3012 a ′, 3012 b ′, 3012 c ′ each may include an optical fiber having at least one end 3010 with a tapered configuration to function as a prism. That is, the optical transmitters 3011 a , 3011 b , 3011 c , 3011 d and 3012 a , 3012 b , 3012 c , 3012 d may each have tapered end 3010 that forms a prism.
  • the optical sensors 3011 a ′, 3011 b ′, 3011 c ′ and 3012 a ′, 3012 b ′, 3012 c ′ are each positioned in channels (for simplicity, the channels are not separately numbered) in the respective surfaces 3021 f and 3022 f having a depth within the electrically conductive member 300 f that is greater than the depth of channels (for simplicity, the channels are not separately numbered) within which optical transmitters 3011 a , 3011 b , 3011 c , 3011 d and 3012 a , 3012 b , 3012 c , 3012 d are positioned.
  • the tapered configuration ends 3010 of the optical transmitters 3011 a , 3011 b , 3011 c , 3011 d and 3012 a , 3012 b , 3012 c , 3012 d are positioned within the respective surfaces 3021 f and 3022 f to transmit light through patient tissue via the tapered configuration ends 3010 .
  • the tapered configuration ends 3010 of the optical sensors 3011 a ′, 3011 b ′, 3011 c ′ and 3012 a ′, 3012 b ′, 3012 c ′ are positioned within the respective surfaces 3021 f and 3022 f to sense light propagating by reflectance, through patient tissue via the tapered configuration ends 3010 .
  • light 321 is identified in FIG. 13 as reflecting in either direction to represent the two different functions of transmission into the patient tissue and sensing by reflectance from the patient tissue.
  • the light 321 propagates and reflects through patient tissue.
  • the first and second lateral surfaces 3021 f , 3022 f may each include translucent heat-insulating layers 3031 f and 3032 f to cover the respective channels and the optical fibers positioned therewithin.
  • the electrically conductive member 300 f illustrated in FIGS. 12A , 12 B, 12 C and 13 which includes the optical transmitters and optical sensors in both the first and second lateral surfaces 3021 f , 3022 f may be adapted as a blade for an electrosurgical pencil in a similar manner as described previously with respect to FIGS. 1 through 6 b.
  • the electrically conductive member 300 f ′ illustrated in FIGS. 12A , 12 B′, 12 C′ and 13 is configured identically to the electrically conductive member 300 f except that only the optical transmitters 3012 a , 3012 b , 3012 c , 3012 d and optical sensors 3012 a ′, 3012 b ′, 3012 c ′ associated with second lateral surface 3022 f and their respective channels (again not numbered for simplicity) are illustrated.
  • the electrically conductive member 300 f ′ may be adapted as a jaw member of a bipolar electrosurgical forceps, as described in more detail below with respect to FIG. 14 .
  • FIG. 14 illustrates a bipolar electrosurgical forceps 400 according to the present disclosure illustrating one embodiment of an end effector assembly 405 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps.
  • a bipolar forceps 400 for use with various surgical procedures and generally includes a housing 402 , a handle assembly 430 , a rotating assembly 480 , a trigger assembly 470 and an end effector assembly 405 which mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue.
  • End effector assembly 405 is attached to distal end 414 of shaft 412 and includes a pair of opposing jaw members 410 and 420 .
  • Movable handle 440 of handle assembly 430 is ultimately connected to a drive rod (not shown) disposed within the shaft 412 which, together, mechanically cooperate to impart movement of the jaw members 410 and 420 from an open position wherein the jaw members 410 and 420 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 410 and 420 cooperate to grasp tissue.
  • Forceps 400 also includes an electrical interface or plug 450 which connects the forceps 400 to a source of electrosurgical energy, e.g., a generator (not shown).
  • Plug 450 includes a pair of prong members 452 a and 452 b that are dimensioned to mechanically and electrically connect the forceps 400 to the source of electrosurgical energy.
  • An electrical cable 455 extends from the plug 450 to a sleeve 456 which securely connects the cable 455 to the forceps 400 .
  • the first and second jaw members 410 and 420 each have respective inwardly facing surfaces 410 ′ and 420 ′ associated therewith.
  • the inwardly facing surfaces 410 ′ and 420 ′ may be formed partially of an electrically conductive material and partially of an electrically insulating material.
  • the electrically conductive material is in electrical communication with the source of electrosurgical energy. Consequently, the inwardly facing surfaces 410 ′ and 420 ′ may be referred to as electrically conductive surfaces 410 ′, 420 ′ and as electrically insulating surfaces 410 ′, 420 ′.
  • first and second jaw members 410 and 420 respectively are each adapted for relative movement between an open position to receive tissue and a closed position engaging tissue between the inwardly facing surfaces 410 ′ and 410 ′. That is, first and second jaw members 410 and 420 are disposed in pivotal relationship with respect to one another and attached to distal end 414 of at least one shaft, e.g., shaft 412 . Each jaw member 410 and 420 supports an electrically conductive surface 410 ′ and 420 ′, respectively, thereon.
  • Jaw member 410 and/or jaw member 420 is configured to be connected to the source of electrosurgical energy (via the plug 450 ), One of the jaw members, e.g., lower jaw member 410 , may be in a fixed position with respect to the shaft 412 .
  • the jaw members 410 and 420 of end effector assembly 405 are configured to effect optical transmission of light through patient tissue.
  • FIG. 14A illustrates one embodiment of end effector assembly 405 .
  • end effector assembly 405 a includes one of the jaw members 410 and/or 420 , e.g., upper jaw member 420 a , configured with one or more optical transmitters, e.g., optical transmitter 2510 , as described previously with respect to FIG. 4A , that is positioned in the surface 420 ′ to propagate light through patient tissue.
  • optical transmitters e.g., optical transmitter 2510
  • One or both of the jaw members may be configured with one or more optical sensors, e.g., optical sensor 202 ′, as described previously with respect to FIG. 2B with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a ′, 204 b ′, 204 c ′ having diameters that differ from one another.
  • Optical sensor 202 ′ is positioned to sense at least a portion of the light (not shown) propagating through the patient tissue. The light is transmitted by the optical transmitter 2510 positioned in the upper jaw member 420 a , for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400 .
  • one or both of the jaw members 410 and 420 is disposed in optical communication with a light source 7321 , 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400 .
  • FIG. 14B illustrates another embodiment of the end effector assembly 405 of FIG. 14 .
  • end effector assembly 405 b includes one of the jaw members 410 and/or 420 , e.g., upper jaw member 420 b , configured with one or more optical transmitters, e.g., optical transmitter 2510 that includes a light-emitting electronic device (as described previously with respect to FIG. 4A ) that is positioned in the surface 420 ′ to propagate light through patient tissue.
  • optical transmitter 2510 that includes a light-emitting electronic device (as described previously with respect to FIG. 4A ) that is positioned in the surface 420 ′ to propagate light through patient tissue.
  • One or both of the jaw members e.g., lower jaw member 410 b
  • one or more optical sensors e.g., optical sensor 2520 that includes a photo-electric detector (as described previously with respect to FIG. 4B ) that is positioned to sense at least a portion of light 331 propagating through the patient tissue.
  • the light 331 is transmitted by the optical transmitter 2510 positioned in the upper jaw member 420 , for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400 .
  • one or both of the jaw members 410 and 420 is disposed in optical communication with a light source 7321 , 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400 .
  • FIG. 14C illustrates still another embodiment of the end effector assembly 405 of FIG. 14 .
  • end effector assembly 405 c includes one or more jaw members 410 and/or 420 , e.g., upper jaw member 420 c , configured with one or more optical transmitters, e.g., optical transmitter 202 , as described previously with respect to FIG. 4A with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a , 204 b , 204 c having diameters that differ from one another.
  • the optical transmitter 202 is positioned in the surface 420 ′ to propagate light through patient tissue.
  • One or both of the jaw members e.g., lower jaw member 410 b
  • the jaw members is configured with one or more optical sensors, e.g., optical sensor 202 ′, as described previously with respect to FIG. 3B with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a ′, 204 b ′, 204 c ′ having diameters that differ from one another.
  • the optical sensor 202 ′ is positioned to sense at least a portion of light propagating through the patient tissue. The light has been transmitted by the optical transmitter 202 positioned in the upper jaw member 420 , for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400 .
  • At least one of the jaw members 410 and 420 is disposed in optical communication with a light source 7321 , 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400 .
  • FIGS. 15A and 15B illustrate yet another embodiment of the end effector assembly 405 of FIG. 14 .
  • end effector assembly 405 d includes the jaw members 410 and/or 420 , e.g., upper jaw member 420 d , configured with one or more optical transmitters 2026 , e.g., optical transmitter 202 , as described previously with respect to FIG. 3A with the exception that the large diameter single optical fiber 208 is omitted and one surface 2061 of prism 206 is exposed directly on inwardly facing surface 420 ′ to reflect light from a common light source 1220 via the prism 206 to patient tissue (not shown).
  • optical transmitter 2026 is positioned in the inwardly facing surface 420 ′ to propagate light in different paths, e.g., light paths 341 a , 341 b , 341 c , through patient tissue.
  • One or both of the jaw members e.g., lower jaw member 410 d
  • is configured with one or more optical sensors e.g., first, second and third optical sensors 2026 a ′, 2026 b ′, 2026 c ′, respectively, that are similar to optical sensor 202 ′, as described previously with respect to FIG.
  • the optical sensors 2026 a ′, 2026 b ′, 2026 c ′ are each positioned to sense at least a portion of the light propagating in light paths 341 a , 341 b , 341 c , respectively, through the patient tissue.
  • the light is transmitted by the optical transmitter 2026 positioned in the upper jaw member 420 , for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400 .
  • the channel groups 2040 a ′, 2040 b ′, 2040 c ′ are formed laterally offset from one another within the lower jaw member 410 d .
  • the first, second and third optical sensors 2026 a ′, 2026 b ′, 2026 c ′ each have a prism associated therewith, e.g., prisms 206 a ′, 206 b ′, 206 c ′, respectively, mounted on the fixed jaw member 410 d .
  • the first prism 206 a ′ is mounted distally of the second prism 206 b ′ and the second prism 206 b ′ is mounted distally of the third prism 206 c ′.
  • the first prism 206 a ′ is mounted proximal to first lateral edge 430 a of the surface 410 d .
  • the second prism 206 b ′ is laterally offset with respect to the first prism 206 a ′ and is further laterally offset with respect to the lateral edge 430 a .
  • the third prism 206 c ′ is laterally offset with respect to both first and second prisms 206 a ′ and 206 b ′, respectively, and may be proximal to second lateral edge 430 b of the surface 410 d.
  • the first channel group 2040 a ′ is laterally offset from the second channel group 2040 b ′ and both the first and second channel groups 2040 a ′ and 2040 b are laterally offset from third channel group 2040 c′.
  • one or both of the jaw members 410 and 420 may be disposed in optical communication with a light source 7321 , 7322 and/or 7323 and the other of the jaw members 410 and 420 may be disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400 .
  • FIGS. 15C and 15D illustrate yet another embodiment of the end effector assembly 405 of FIG. 14 having lower and upper jaw members 410 and 420 , respectively.
  • end effector assembly 405 e includes upper jaw member 420 e that is identical to upper jaw member 420 d as described above with respect to FIGS. 15A and 15D .
  • the jaw members, e.g., lower jaw member 410 e may be substantially identical to lower jaw member 410 d described above with respect to FIGS. 15A and 15B .
  • Lower jaw member 410 e is also configured with one or more optical sensors, e.g., first, second and third optical sensors 2026 a ′, 2026 b ′, 2026 c ′, respectively, that are again similar to optical sensor 202 ′, as described previously with respect to FIG. 4B with the exception that the large diameter single optical fiber 208 is now included.
  • optical sensors e.g., first, second and third optical sensors 2026 a ′, 2026 b ′, 2026 c ′, respectively, that are again similar to optical sensor 202 ′, as described previously with respect to FIG. 4B with the exception that the large diameter single optical fiber 208 is now included.
  • one end 2080 a , 2080 b , 2080 c of each large diameter single optical fiber 208 a , 208 b , 208 c , respectively, is exposed directly on inwardly facing surface 410 ′ to sense light propagating in light paths 341 a , 341 b , 341 c , respectively, from patient tissue (not shown) and to communicate the light to be reflected via the respective prisms 206 a ′, 206 b ′, 206 c ′ again through a plurality of optical fibers 204 a ′, 204 b ′, 204 c ′ that are routed through individual channels in channel groups 2040 a ′, 2040 b ′, 2040 c ′, respectively.
  • the optical sensors 2026 a ′, 2026 b ′, 2026 c ′ are each positioned to sense at least a portion of the light propagating in light paths 341 a , 341 b , 341 c , respectively, through the patient tissue.
  • the light is transmitted by the optical transmitter 2026 positioned in the upper jaw member 420 , for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400 .
  • the channel groups 2040 a ′, 2040 b ′, 2040 c ′ are formed laterally offset from one another within the lower jaw member 410 d .
  • the first, second and third optical sensors 2026 a ′, 2026 b ′, 2026 c ′ each have a large diameter single optical fiber 208 a , 208 b , 208 c associated with prisms 206 a ′, 206 b ′, 206 c ′, respectively, that are mounted within the fixed jaw member 410 e .
  • the first large diameter single optical fiber 208 a and associated prism 206 a ′ are mounted distally of the second large diameter single optical fiber 208 b and associated second prism 206 b ′, and the second large diameter single optical fiber 208 b and associated second prism 206 b ′ are mounted distally of the third large diameter single optical fiber 208 c and associated prism 206 c′.
  • the first optical fiber 208 a and associated first prism 206 a ′ may be mounted in proximity to first lateral edge 440 a of the surface 410 e .
  • the second optical fiber 208 b and associated first prism 206 b ′ may be laterally offset with respect to the first optical fiber 208 a and associated first prism 206 a ′ and may be further laterally offset with respect to the first lateral edge 440 a .
  • the third optical fiber 208 c and associated third prism 206 c ′ may be laterally offset with respect to both first and second optical fiber 208 a , 208 b and associated prisms 206 a ′ and 206 b ′, respectively, and may be in proximity to second lateral edge 440 b of the surface 410 e.
  • the first channel group 2040 a ′ is laterally offset from the second channel group 2040 b ′ and both the first and second channel groups 2040 a ′ and 2040 b are laterally offset from third channel group 2040 c′.
  • the first jaw member 410 e is thus a compound jaw member in which the first, second and third optical fibers 208 a , 208 b , 208 c , respectively, extend partially into a secondary region 410 e ′ defined within the first jaw member 410 e away from the surface 410 ′. Additionally, the first, second and third prisms 206 a ′, 206 b ′, 206 c ′ and the optical fibers 204 a ′, 204 b ′, 204 c ′ and channel groups 2040 a ′, 2040 b ′, 2040 c ′ are mounted predominantly, if not entirely, within the secondary region 410 e′.
  • FIGS. 16 , 16 A, 17 and 18 illustrate various embodiments of an end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520 having one or more optical transmitters positioned to propagate light through patient tissue and one or more optical sensors positioned to sense at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps.
  • the end effector assembly 505 ay be configured such that the jaw members 510 and 520 remain substantially parallel to one another during the relative movement between the open position to the closed position and vice versa.
  • One of the jaw members 510 or 520 may be in a fixed position with respect to a shaft (not shown). Alternatively, both of the jaw members 510 and 520 may be movable with respect to a shaft (not shown).
  • end effector assembly 505 a includes first jaw member 510 a and second jaw member 520 a having respective inwardly facing surfaces 510 a ′ and 520 a ′ associated therewith.
  • the jaw members 510 a and 520 a are adapted for relative movement between an open position to receive tissue and a closed position engaging tissue between the inwardly facing surfaces 510 a ′ and 520 a′.
  • each jaw member 510 a and 520 a is formed partially of an electrically conductive surface and of an electrically insulating surface.
  • One or both of the jaw members 510 a and/or 520 a is configured to be connected to a source of electrosurgical energy (not shown).
  • One of the jaw members may be in a fixed position with respect to a shaft (not shown).
  • One or both of the jaw members may be configured with one or more optical transmitters, e.g., optical transmitter 2027 a that is similar to optical transmitter 202 described previously with respect to FIG. 3A , except that optical transmitter 2027 a does not include large diameter optical fiber 208 .
  • the optical transmitter 2027 a includes prism 2060 a having surface 2061 that is exposed on inwardly facing surface 520 a ′.
  • the optical transmitter 2027 and associated prism 2060 a and surface 2061 are positioned to propagate light through patient tissue (not shown) in a light path 351 a.
  • one of the jaw members may be configured with one or more optical sensors, e.g., optical sensor 2027 a ′ that is similar to optical sensor 202 ′ described previously with respect to FIG. 3B , except that optical sensor 2027 a ′ also does not include large diameter optical fiber 208 .
  • the optical sensor 2027 a ′ includes prism 2060 a ′ having surface 2061 ′ that is exposed on inwardly facing surface 510 a ′.
  • the optical sensor 2027 a ′ and associated prism 2060 a ′ and surface 2061 ′ are positioned to sense at least a portion of the light propagating via light path 351 a through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical forceps.
  • the light reflected via the respective prisms 2027 a and 2027 a ′ propagates through plurality of optical fibers 204 a , 204 b , 204 c and 204 a ′, 204 b ′, 204 c ′ that are routed through individual channels in channel groups 2040 a and 2040 a ′ in jaw members 520 a and 510 a , respectively.
  • the optical fibers 204 a , 204 b , 204 c and 204 a ′, 204 b ′, 204 c ′ again have diameters that differ from one another.
  • the optical fibers 204 a , 204 b , 204 c and 204 a ′, 204 b ′, 204 c ′ are routed in individual channels to reduce interference between one another.
  • the optical transmitter 2027 a receives light propagating through channel group 2040 a from a light source 602 that is in optical-electrical communication therewith, while optical sensor 2027 a ′ propagates light through channel group 2040 a ′ that is in optical-electrical communication with a light detector 602 ′.
  • the prisms 2027 a and 2027 a ′ may include angled surfaces 2062 and 2062 ′ with reflective coatings 2070 and 2070 ′, respectively, to increase the efficiency of the reflection of light via the prisms.
  • FIG. 17 illustrates another embodiment of end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520 .
  • jaw members 510 b and 520 b of end effector assembly 505 b include, respectively, inwardly facing surfaces 510 b ′ and 520 b′.
  • Jaw members 510 b and 520 b differ from jaw members 510 a and 520 a in that in place of optical transmitter 2027 a and optical sensor 2027 a , respectively, second jaw member 520 b includes optical transmitter 2510 b that is similar to optical transmitter 2510 having light-emitting electronic device 2561 and electric cable 2541 described above with respect to FIG. 4A , except that optical transmitter 2510 b does not include large diameter optical fiber 208 .
  • Optical transmitter 2027 b is in electrical communication with a processor 600 .
  • first jaw member 510 b includes optical sensor 2520 b that is similar to optical sensor 2520 having photo-electric detector 2562 and electrical cable 2542 described above with respect to FIG. 4B , except that optical sensor 2520 b also does not include large diameter optical fiber 208 .
  • the optical transmitter 2510 b and optical sensor 2520 b are in electrical communication, via electrical cables 2541 and 2542 , respectively, with a processor 604 .
  • Optical transmitter 2027 b may propagate light from second surface 520 b ′ in a path 351 b through patient tissue (not shown) to optical sensor 2027 b ′ and that the propagation and intensity of the light may be controlled by the processor 604 .
  • FIG. 18 illustrates yet another embodiment of end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520 .
  • jaw members 510 c and 520 c of end effector assembly 505 c include, respectively, inwardly facing surfaces 510 c ′ and 520 c ′.
  • Second jaw member 520 c includes optical transmitter 2510 c that is identical to optical transmitter 2510 b illustrated in FIG. 17 and includes light-emitting electronic device 2561 and electrical cable 2541 .
  • first jaw member 510 c includes optical sensor 2027 c ′ which is similar to optical sensor 202 ′ described above with respect to FIG. 3B , and which includes large diameter optical fiber 208 having one end 2081 exposed on surface 510 c ′ and which is in optical communication with prism 206 that is included in optical sensor 2027 c ′. Additionally, optical sensor 2027 c ′ differs from optical sensor 2027 a ′ illustrated in FIGS.
  • optical sensor 2027 c ′ includes a large diameter optical fiber 2083 that is in optical communication with the prism 206 such that light emitted by optical transmitter 2510 c propagates in light path 351 c to be sensed at end 2081 of optical fiber 208 exposed on surface 510 c ′.
  • the light propagates in light path 351 c through large diameter optical fiber 208 to prism 206 where it is reflected to propagate through large diameter optical fiber 2083 to a photo-detector 606 ′.
  • the photo-detector 606 ′ is in communication with the processor 604 .
  • the processor 604 is in communication with the light-emitting electronic device 2510 c of optical transmitter 2510 c via the electrical cable 2541 .
  • Optical transmitter 2510 c may propagate light from second surface 520 c ′ in path 351 c through patient tissue (not shown) to optical sensor 2520 b and that the propagation and intensity of the light may be controlled by the processor 604 .
  • FIGS. 19-20 there is illustrated one embodiment of an optical hydrology system 700 according to the present disclosure that includes schematically an exemplary embodiment of an optical hydrology array 710 according to the present disclosure.
  • Optical hydrology array 710 is formed, in one embodiment, in a flat rectangular plate type arrangement.
  • the array 710 includes a first or lower surface 712 a that is configured in a generally flat shape suitable to be disposed in proximity to patient tissue 2 (see FIG. 19 ).
  • a second or upper surface 712 b is disposed in a position opposite to the first or lower surface 712 a .
  • First and second side walls 718 and 720 respectively, straddle between the first and second surfaces 712 a and 712 b , respectively to form the generally box-like flat rectangular plate type configuration of the array 710 for housing the optical components therein.
  • the array 710 further includes a plurality of apertures 722 that extend from the first surface 712 a to the second surface 712 b .
  • the plurality of apertures 722 penetrate through the first and second surfaces 712 a and 712 b , respectively, and are configured in a matrix-like arrangement.
  • the optical hydrology system 700 further includes a plurality of optical fibers 724 disposed in a corresponding number of apertures 722 disposed in the first and second surfaces 712 a and 712 b , respectively.
  • the system 700 includes a generator 714 that is configured to supply electrosurgical energy to patient tissue 2 .
  • An optical spectrometer 716 is operably coupled to the generator 714 .
  • the electrosurgical generator 710 is operably coupled to the hydrology array 710 .
  • a processor 730 is disposed in operative communication with the generator 714 and with the spectrometer 716 .
  • the spectrometer 720 may include a light source 732 for transmitting light to expose the tissue 2 to light; and a light detector 734 .
  • the light detector 734 is configured to sense changes in light through the tissue 2 in response to tissue treatment and communicate such changes to the processor 730 to determine tissue hydration levels.
  • the plurality of optical fibers 724 are operably coupled to the generator 714 and are configured to communicate light between the generator 714 and the tissue 2 .
  • the spectrometer 716 is a near infra-red spectrometer providing light in the near infrared wavelength range as the light source 722 .
  • at least one of the optical fibers 724 a of the array 710 is configured to operatively communicate light 755 originating from the light source 732 to enable transmitting the light 755 towards the tissue 2 .
  • one or more of the optical fibers 724 b of the array 710 is configured to receive light reflected from the tissue 2 and to transport the light 755 to the light detector 734 .
  • the light 755 originating from the light source 732 , travels in a generally U-shaped path 760 from ends 726 of the optical fibers 724 a to ends 728 of optical fibers 724 b and then to the light detector 734 .
  • an optic fiber distance d is defined between adjacent optical fibers 724 and particularly between ends 726 of the optical fibers 724 a to ends 728 of optical fibers 724 b .
  • the optical fiber distance d is within a range of about four (4) mm to about ten (10) mm to optimize and/or enable the transmission of light 755 through the tissue 2 to determine hydration levels in the tissue 2 . In one embodiment, range of the distance d extends from about three (3) mm to about twelve (12) mm.
  • the processor 730 is configured to at least record and/or analyze changes in hydration of the tissue 2 sensed by the spectrometer 716 across the optic fiber distance d.
  • the “banana-shaped” path of light 755 is that portion of the light emitted at the end 726 of optical fiber 724 a that can be detected by the end 728 of the optical fiber 724 b and does not define the limits of the light distribution within the tissue 2 .
  • the system 700 includes a temperature monitor 702 .
  • the temperature monitor 702 may be an optical temperature monitor and operatively communicates with the processor 730 and may be operably coupled to one or more fibers 724 c .
  • the temperature monitor 702 is described as an optical temperature monitor although other type of temperature monitors such as thermo-electrical or chemical or thermo-mechanical monitors may be used.
  • the optical fiber(s) 724 c is/are configured to enable the temperature monitor 702 to monitor the temperature of the light 755 reflected through the tissue 2 originating from the light source 732 .
  • End 727 of the optical fiber 724 c that is configured to enable the temperature monitor 702 to monitor the temperature of the light 755 is positioned in interfacing relationship with the generally U-shaped path 760 of the light 755 that travels from the end 726 of the optical fiber 724 a to end 728 of optical fiber 724 b .
  • the processor 730 is configured to record and/or analyze changes in temperature of the tissue 2 sensed by the temperature monitor 702 .
  • the system 700 may include a light source 732 ′ that is independent of the spectrometer 716 .
  • the independent light source 732 ′ is in optical communication with the optical fiber 724 a to propagate light 755 through the optical hydrology array and with the processor 730 .
  • a mechanical-optical multiplexer switch 740 may be included in the path of optical fiber 724 b to enable the light 755 propagating through optical fiber 724 b to be transferred from the light detector 734 housed in the spectrometer 716 to the independent detector 734 ′.
  • FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch 740 included within the system 700 for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11 .
  • FIG. 21 is a view of optical alignment member 742 included within the mechanical-optical multiplexer switch 742 .
  • the multiplexer switch 742 provides mechanical-optical alignment between one or more light sources 732 , e.g., light source 7321 emitting in a wavelength range of about 200 nanometers (nm) to about 2000 nm, light source 7322 emitting in a wavelength range of about 400 nm to about 2000 nm, and light source 7323 emitting in a wavelength range of about 600 nm to about 2000 nm and patient tissue 2 (see also FIG. 19 ) and between patient tissue 2 and one or more light detectors, e.g., light detector 7341 detecting in a wavelength range of about 300 nm to about 900 nm and light detector 7342 detecting in a wavelength range of about 850 nm to about 2500 nm.
  • the wavelength ranges disclosed herein represent exemplary embodiments of the present disclosure and are not intended to be limiting.
  • the switch 740 includes a first optical fiber alignment member 742 (an “instrument side” optical alignment member) that is configured with at least first and second surfaces 742 a and 742 b , respectively, on opposing sides of the alignment member 742 .
  • the first and second surfaces 742 a and 742 b each include a plurality of ports disposed thereupon, e.g., ports d1, s1, d2, s2, d3, s3 on first surface 742 a and ports d1′, s1′, d2′, s2′, d3′, s3′ on second surface 742 b.
  • Two or more corresponding ports on the first surface are configured to enable optical communication between one or more light sources, e.g., first light source 7321 , second light source 7322 , and third light source 7323 , and the optical alignment member 742 .
  • two or more corresponding ports on the first surface are configured to enable optical communication between the optical alignment member 742 and one or more light detectors, e.g., light detector 7341 and light detector 7342 .
  • Two or more corresponding ports on the second surface are configured to enable optical communication between two or more corresponding ports on the first surface, e.g., ports s1, s2, s3, respectively, that are configured to enable optical communication between the one or more light sources, e.g., first light source 7321 , second light source 7322 , and third light source 7323 , and the optical alignment member 742 via corresponding channels 762 disposed therebetween,
  • two or more corresponding ports on the second surface are configured to enable optical communication between two or more corresponding ports on the first surface, e.g., ports d1, d2, d3, respectively, that are configured to enable optical communication between the optical alignment member 742 and at least one light detector, e.g., light detector 7341 and light detector 7342 , via corresponding channels 764 disposed therebetween.
  • ports s1 and s1′ are aligned with first light source 7321
  • ports s2 and s2′ are aligned with second light source 7322
  • ports s3 and s3′ are aligned with light source 7323
  • Ports d1 and d1′ are aligned with first light detector 7341 and ports d2 and d2′ and d3 and d3′ are aligned with the second light detector 7342 .
  • the switch 740 also includes a second optical fiber alignment member 752 a (a first “tissue-side” optical alignment member) configured with the first and second surfaces 754 a and 754 b , respectively.
  • the first and second surfaces 754 a and 754 b each include a plurality of ports 1d1′, 1s1′, 1d2′, 1s2′, 1d3′, 1s3′ and 1d1, 1s1, 1d2, 1s2, 1d3, 1s3, respectively, disposed thereupon,
  • Two or more corresponding ports on the first surface are configured to enable optical communication between corresponding optical ports on the optical member 752 , e.g., ports s1′, s2′, s3′ on the surface 742 b of the first optical member 742 , via corresponding channels 762 disposed therebetween,
  • Two or more corresponding ports on the second surface, e.g., ports 1d1, 1d2, 1d3, of the second optical alignment member 752 are configured to enable optical communication between corresponding optical ports 1d1′, 1d2′, 1d3′ on the first surface 752 a of the second optical alignment member 752 a via corresponding channels 764 disposed therebetween and patient tissue 2 .
  • At least a third optical fiber alignment member e.g., optical alignment members 752 b , 752 c . . . 752 n (or second, third . . . nth “tissue-side” optical alignment members) are also configured with at least the first and second surfaces 754 a and 754 b , respectively.
  • first and second surfaces 754 a and 754 b each include a plurality of ports 1 disposed thereupon, e.g., ports 2s1′, 2s2′, 2s3′, 2d1′, 2d2′, 2d3′ and 2s1, 2s2, 2s3, 2d1, 2d2, 2d3 on surfaces 752 a and 752 b of third optical alignment member 752 b , ports 3s1′, 3s2′, 3s3′, 3d1′, 3d2′, 3d3′ and 3s1, 3s2, 3s3, 3d1, 3d2, 3d3 on surfaces 754 a and 754 b of fourth optical alignment member 752 c , up through ports ns1′, ns2′, ns3′, nd1′, nd2′, nd3′ and ns1, ns2, ns3, nd1, nd2, nd3 on surfaces 754 a and 754 b of nth optical alignment member 75
  • optical alignment is provided via the channels 762 and 764 and aforementioned ports of the third through nth optical alignment members 752 b through 754 n .
  • the nth optical alignment member represents at least the third optical alignment member and may include a greater number within the limits of practicality.
  • the first optical alignment member 742 is movable, as indicated via the arrows “A” and “B” in a linear direction, with respect to the second and at least the third optical alignment members, e.g., 752 a , 752 b , 752 c . . . 752 n to enable the optical alignment between the light sources 7321 , 7322 and 7323 and patient tissue 2 and between patient tissue 2 and the light detectors 7341 and 7342 .
  • the optical alignment occurs when the first optical alignment member 742 has been moved to a position with respect to, for example, fourth optical alignment member 752 c such that ports s1′, s2′, s3′ on the second surface 742 b of the first optical alignment member 742 are aligned with the ports 3s1′, 3s2′, 3s3′, respectively, on the first surface 754 a of the fourth optical alignment member 752 c , and when the ports d1′, d2′, d3′ on the second surface 742 b of the first optical alignment member 742 are aligned with the ports 3d1′, 3d2′, 3d3′ of the fourth optical alignment member 752 c.
  • first light source 7321 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a first light path 7551 in patient tissue 2 between first light source 7321 emitting at a wavelength of about 200 nm to 2000 nm to first light detector 7341 detecting at wavelengths of about 300 nm to about 900 nm.
  • light from second light source 7322 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a second light path 7552 in patient tissue 2 between second light source 7322 emitting at a wavelength of about 400 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • third light source 7323 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a third light path 7553 in patient tissue 2 between third light source 7323 emitting at a wavelength of about 600 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • the same optical hydrology array 710 illustrated in FIG. 19 is positioned between the “tissue-side” optical alignment members 752 a . . . 752 n and the patient tissue 2 .
  • the same optical hydrology array 710 is associated with the differing “tissue-side” optical alignment members 752 a . . . 752 n . That is, different groups of the optical fibers associated with the optical hydrology array 710 are routed to and from through the array 10 and separate to be associated with corresponding “tissue-side” optical alignment members 752 a . . . 752 n to provide differing details of water motility information with respect to the patient tissue 2 .
  • FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch 740 included within the system 700 for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11 , that is, the switch 740 is configured wherein one sensing (detecting) optical fiber is associated with a corresponding transmitting (source or emitting) optical fiber, system 700 may further be modified to include optical splitters (not shown) in the paths between the patient tissue 2 and the “tissue-side” optical alignment members 752 a , 752 b to 752 n to accommodate situations where there is a mis-match in the number of transmitting or source fibers with respect to the number of sensing or detecting fibers.
  • optical splitters not shown
  • system 700 may further be modified to include optical splitters (not shown) in the paths between the “instrument side” optical alignment member 742 and the light sources 7321 , 7322 , 7323 and light detectors 7341 , 7342 also to accommodate situations where there is a mismatch in the number of transmitting or source fibers with respect to the number of sensing or detecting fibers.
  • optical splitters not shown
  • the “instrument-side” optical alignment member 742 and the “tissue-side” optical alignment members 752 a . . . 752 n may be configured to be substantially identical, and are illustrated as mirror images of one another. Also, the number of ports d1, s1, d2, s2, d3, s3 and d1′, s1′, d2′, s2′, d3′, s3′ etc. and channels 762 and 764 may be varied as necessary or advantageous. Additionally, the mechanical-optical multiplexer switch 740 may be configured wherein the second and at least a third optical alignment members 752 a . . .
  • tissue-side members are movable with respect to the first optical alignment member 742 (“instrument-side” member) to enable the optical alignment between the at least one light source, e.g., light sources 7321 , 7322 , 7323 , and patient tissue 2 and between patient tissue 2 and the at least one light detector, e.g., light detectors 7341 , 7342 .
  • the at least one light source e.g., light sources 7321 , 7322 , 7323
  • the at least one light detector e.g., light detectors 7341 , 7342
  • other configurations of the “tissue-side” optical alignment members 752 a . . . 752 n may be devised, such as wherein the optical alignment member 742 rotates around the optical alignment members 752 a . . . 752 b or vice versa.
  • the embodiments are not limited with respect to the direction and type of motion of the optical alignment members.
  • the mechanical-optical multiplexer switch 740 has been described with respect to the electrically conductive member 300 d illustrated in FIG. 11 , which in FIGS. 19-20 is equivalent to the optical hydrology array 710 .
  • the mechanical-optical multiplexer switch 740 is configured for the embodiment of FIG. 11 wherein the optical fibers are routed entirely to and from the patient tissue 2 as opposed to electrically conductive member 300 a illustrated in FIGS. 7 and 7A wherein light-emitting electronic devices 2561 ′ and photo-electric detectors 2562 ′ and 2563 ′ and associated electrical cables 2541 and 2542 are employed.
  • the mechanical-optical multiplexer switch 740 may be made from an opaque material such as a metal or metal alloy, a plastic or a ceramic or suitable combinations thereof to prevent interference by light transmission between the optical fibers in the various channels 762 and 764 .
  • Dashed box 770 represents a common housing within which the processor 730 , spectrometer 716 , and the generator 714 may be incorporated therein. Additionally, temperature monitor 702 may be incorporated within the housing 770 or may be located elsewhere such as on or in the electrosurgical instrument. Supporting structure (not shown) for the optical alignment members 742 and 752 a . . . 752 n may be provided by the switch housing. Also, the motion of the optical alignment members 742 and 752 a . . . 752 n with respect to each other may be effected by electrical, mechanical, chemical, pneumatic or other movers suitable for the application.
  • the electrosurgical pencil blades 106 a to 106 d may be substituted for the optical hydrology array 710 in FIG. 19 for either light reflectance or light transmission applications, as applicable to the particular blade or assembly.
  • the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • IR Infrared
  • first light source 7321 emits light at a wavelength of about 200 nm to 2000 nm to first light detector 7341 detecting at wavelengths of about 300 nm to about 900 nm.
  • Second light source 7322 emits light at a wavelength of about 400 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • third light source 7323 emits light at a wavelength of about 600 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • the values of the electrical, thermal and hydraulic conductivities of the tissue all depend on the quantity and location of the water content within the tissue.
  • the analysis of the quantity and location of the water content within the tissue may be determined by comparing intensities of the light passing through the patient tissue both spatially and temporally, that is by comparing the measured intensities to the spatial location and to the time at which the measurements have been made.
  • a reference wavelength ⁇ r may be defined as a measured wavelength of light that is insensitive to the moisture content of the tissue.
  • Reference wavelength ⁇ r is a function of x, y and t, where x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement. For any given tissue, there are multiple wavelengths ⁇ r that are insensitive to the moisture content of the tissue.
  • the reference wavelength ⁇ r is then defined as follows:
  • a reference intensity Ir may be defined as the intensity of light passing through patient tissue as measured at a selected particular reference wavelength ⁇ r that is a measured wavelength of light that is insensitive to the moisture content of the tissue. Since ⁇ r is a function of x, y and t, then Ir is also a function of ⁇ r, x, y and t, as follows:
  • Reference intensity Ir is measured at a wavelength that is known not to be sensitive to the presence of water.
  • hydration wavelength ⁇ h may be defined as a measured wavelength of light at which the intensity of light passing through the tissue varies depending on the moisture content of the tissue.
  • Hydration wavelength ⁇ h is a function of x, y and t, where x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement.
  • the hydration wavelength ⁇ h is then defined as follows:
  • ⁇ h For any given tissue sample, there are a range of multiple, discrete hydration wavelengths ⁇ h at which the intensity of light passing through patient tissue is sensitive to the moisture content of the tissue.
  • the particular hydration wavelength ⁇ h at which the intensity of the light passing through patient tissue is measured during the electrosurgical procedure may be selected as that wavelength that exhibits the greatest level of gain with respect to the moisture content of the tissue.
  • a hydration intensity Ih may be defined as a function of ⁇ h, x, y and t, where Ah defines the measured wavelength of light that is dependent on the moisture content of the tissue, x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement. Therefore, the hydration intensity Ih is defined as follows:
  • the intensities Ir and Ih may be measured in counts of photon emissions per unit of time. Alternatively, other units of measurement may be applied such as the candela (cd, the Standards International SI unit of measurement for light intensity) or the lumen (Im, the SI unit for measuring the flux of light being produced by a light source or received by a surface) or the lumen hour (Im h, the SI unit for a quantity of light, equal to one lumen of light flux continued for one hour).
  • the analysis of the moisture content is performed by calculating the ratio R of the hydration intensity Ih to the reference intensity Ir as follows:
  • Ir is determined as a function of [ ⁇ r(x1, y1, t1)].
  • ⁇ h(x1, y1, t1) is the hydration wavelength measured at location x1, y1 at time t1
  • ⁇ r(x1, y1, t1) is the reference wavelength measured at location x1, y1 at time t1.
  • a subsequent measurement of the reference wavelength ⁇ r, reference intensity Ir, hydration wavelength ⁇ h and hydration intensity Ih may be taken at the same location but at a different time and a new ratio of intensities calculated as follows:
  • ⁇ h(x1, y1, t2) is the hydration wavelength measured at location x1, y1 at time t2
  • ⁇ r(x1, y1, t2) is the reference wavelength measured at location x1, y1 at time t2.
  • ⁇ h(x2, y2, t1) is the hydration wavelength measured at location x2, y2 at time t1
  • ⁇ r(x2, y2, t1) is the reference wavelength measured at location x2, y2 at time t1.
  • reference wavelength ⁇ r reference intensity Ir
  • hydration wavelength ⁇ h hydration intensity Ih
  • R (222/222) ⁇ Ih[ ⁇ h ( x 2 ,y 2 ,t 2)]/ Ir[ ⁇ r ( x 2 ,y 2 ,t 2] ⁇ Eq. 9
  • ⁇ h(x2, y2, t2) is the hydration wavelength measured at location x2, y2 at time t2
  • ⁇ r(x2, y2, t2) is the reference wavelength measured at location x2, y2 at time t2.
  • the ratio R may be calculated at numerous desired locations and times.
  • the location and time of the reference wavelength ⁇ r and reference intensity Ir need not correspond to the location and time of the hydration wavelength ⁇ h and hydration intensity Ih.
  • the ratio R may be calculated as follows:
  • ⁇ h(x2, y2, t1) is the hydration wavelength measured at location x2, y2 at time t1
  • ⁇ r(x1, y1, t2) is the reference wavelength measured at location x1, y1 at time t2.
  • the ratio R corrects for inconsistencies not related to the hydration level of the tissue. Such inconsistencies may include variation of the intensity of the light source or variations in the tissue that are not related to hydration content.
  • the numerical values of the ratio R are dependent on the particular tissue undergoing the electrosurgical procedure and on the particular spectrometer. Wavelengths in the range of about 900 nm generally represent wavelengths at which the light intensity is generally not sensitive to hydration content and thus does not vary with hydration content. Such wavelengths may be selected as reference wavelengths ⁇ r. Wavelengths in the range of about 1500 nm generally represent wavelengths at which the light intensity is sensitive to hydration content, and thus do vary with hydration content. Such wavelengths may be selected as hydration wavelengths ⁇ h.
  • the measurements of the ratio R may be calculated at a fixed value of the hydration wavelength ⁇ h during an electrosurgical procedure, for further validation of the results, the measurements of the ratio R may be calculated at one or more other values of the hydration wavelength ⁇ h during the electrosurgical procedure.
  • a refinement of the intensity measurements may be performed to further remove spurious factors to give a more accurate reading of tissue moisture content by various mathematical operations such as addition, subtraction, multiplication and division as follows:
  • the above calculated ratio values of intensities may also be raised exponentially, for example, as follows:
  • n is a positive or negative number other than zero (and which may differ for each ratio reading such as R(111/221) or R(221/112), etc.)
  • the mechanical-optical multiplexer switch 740 in FIGS. 19-20 allows different wavelength intensities to be measured with respect to space and time, e.g., with respect to x-y coordinates and with respect to time t.
  • the array 710 provides a differential in water content and in water movement. Water movement could be in an elliptical pattern rather than a circular pattern. Based on any of the foregoing measurements, either with intensity ratio measurements alone or further refined by additional mathematical operations such as addition, subtraction, multiplication, division, etc., a Monte-Carlo analysis may be performed to determine the most probable location of the greatest moisture content within the tissue.
  • Movement of the mechanical-optical multiplexer switch 740 during the electrosurgical process enables acquisition of numerous intensity measurements at different locations and at different times from various locations within the array 710 .
  • the present disclosure relates also to a method for monitoring water displacement in tissue during patient therapy.
  • the method includes providing a spectrometer, e.g., spectrometer 716 that includes light source 732 and light detector 734 .
  • the method includes generating light 755 from the light source 732 that is reflected through the patient or subject tissue 2 and receiving the light 755 reflected through the tissue 2 wherein the light 755 reflected through the tissue 2 is received by the light detector 734 .
  • the method may further include supplying electrosurgical energy to the tissue 2 , e.g., via the electrosurgical generator 714 utilizing an energy source (not shown), sensing changes in light through the tissue 2 in response to tissue treatment, e.g. via the optical array 710 , and determining changes in tissue hydration levels based on the sensed changes in light 755 through the tissue 2 , e.g., via the optical spectrometer 716 .
  • the method may also include providing a processor such as the processor 730 to which the sensed changes in light 755 through the tissue 2 are communicated wherein the processor 730 determines the changes in tissue hydration levels based on the sensed changes in light 755 through the tissue 2 .
  • the processor 730 is operably coupled to the spectrometer 716 and/or the electrosurgical generator 714 and/or the energy source.
  • the method includes providing a plurality of optical fibers 724 arranged wherein at least one of the optical fibers 724 a is configured to operatively communicate light 755 originating from the light source 732 to enable transmitting light towards the tissue 2 and at least one of the optical fibers 724 b is configured to enable transporting light 755 reflected from the tissue 2 .
  • the method may also include interfacing the one or more optical fibers 724 a to the light source 732 and the one or more optical fibers 724 b to the light detector 734 .
  • the method may also include configuring the plurality of optical fibers 724 in the array 710 to be separated to effect an optimal optic fiber distance d within the tissue 2 , as described above.
  • the method further includes providing light 755 in the near infrared wavelength range as the light source 732 . Additionally, the method may be implemented by further including the steps of providing optical temperature monitor 702 , providing one or more optical fibers 724 c that operatively couple to the optical temperature monitor 702 , and monitoring the temperature of light 755 reflected through the tissue 2 originating from the light source 732 .
  • the method may be implemented wherein the one or more optical fibers 724 c operatively coupled to the optical temperature monitor 702 is configured within the array 710 .
  • the method is implemented via a processor such as the processor 730 for recording and/or analyzing changes in hydration of the tissue 2 in time and/or space sensed by the spectrometer 716 based on the fiber optic distance d. Additionally, the method may be implemented wherein the processor 730 records and/or analyzes changes in temperature of the tissue 2 sensed by the optical temperature monitor 702 .
  • the method is implemented wherein the array 710 and/or system 700 is incorporated in the electrosurgical pencil 100 including the housing 102 having proximal and distal ends 108 and 110 , respectively, and the blade receptacle 105 defined at the distal end 110 of the housing 102 for supporting the electrosurgical blade 106 therein.
  • the electrosurgical blade 106 is disposed in optical communication with the light source 732 and the light detector 734 and the method includes monitoring hydration levels in the tissue 2 during operation of the electrosurgical pencil 100 .
  • the method is implemented wherein the arrays 710 and 710 ′ are incorporated in the electrosurgical forceps 400 including the pair of first and second jaw members 410 and 420 , respectively, disposed in pivotal relationship with respect to one another and attached to the distal end 414 of at least one shaft 412 .
  • Each jaw member 410 and 420 supports the electrically conductive surfaces 410 ′ and 420 ′, respectively, thereon.
  • At least one of the jaw members 410 and/or 420 is disposed in optical communication with the light source 732 , via the optical fibers 724 of the respective arrays 710 and/or 710 ′, and the other of the jaw members 420 and/or 410 , respectively being disposed in optical communication with the light detector 734 , also via the optical fibers 724 of the respective arrays 710 and/or 710 ′.
  • the method includes monitoring hydration levels in tissue 2 during operation of the electrosurgical forceps 400 .
  • the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • IR near Infrared
  • the water content is a solvent.
  • the dissolved ions travel through the solvent and their optical characteristics enable the spectrometer to sense the presence and movement of water in the tissue.
  • the electrosurgical generator thus may be driven to control the flow of water through the tissue to optimize the delivery of energy to the tissue and thus to enhance the therapeutic effect of the particular energy treatment being applied.
  • the array of optical fibers may be arranged in various geometries to track the motility of water through the tissue.
  • tissue dessication water must be displaced to other locations within the tissue.
  • the system array can track movement of water and then control algorithms can optimize energy induction.
  • the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and/or 710 ′ and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • IR near Infrared
  • Differences in fiber optic geometries enable detection and tracking of the manner in which water is moving through the tissue.
  • the induction of energy can be slowly ramped up or the induction can be applied to immediately reach a steady peak value.
  • the induction of energy can be applied in pulses.
  • the energy induction process can be applied to force water out of tissue and control pulsing time and operation can be controlled to effect such forcing of water out of patient tissue.

Abstract

A system that monitors water displacement in tissue during patient therapy includes a generator supplying electrosurgical energy to tissue, a spectrometer operably coupled to the generator, and a processor communicating with the generator and with the spectrometer having a light source for exposing tissue to light and a light sensor. The light sensor is configured to sense changes in light through tissue in response to tissue treatment and communicate the changes to the processor to determine tissue hydration levels and motility. A plurality of optical fibers may be configured in an array to communicate light between the generator and tissue. An optical temperature monitor may communicate with the processor and be coupled to an optical fiber. The optical fibers may have an optic fiber distance between adjacent optical fibers. The system may be incorporated within an electrosurgical pencil or a forceps. A corresponding method of detecting hydration is also disclosed.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • The present application is a continuation application of U.S. patent application Ser. No. 12/757,340 filed on Apr. 9, 2010, the entire content of which is hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field
  • This application relates to optical spectrometry systems and, more particularly, to optical spectrometry systems applied to patient tissue to measure tissue hydration levels and to detect a signal indicative of water content.
  • 2. Description of Related Art
  • Electrosurgical forceps utilize both mechanical clamping action and electrical energy to effect hemostasis by heating the tissue and blood vessels to coagulate, cauterize and/or seal tissue. As an alternative to open forceps for use with open surgical procedures, many modern surgeons use endoscopes and endoscopic instruments for remotely accessing organs through smaller, puncture-like incisions. As a direct result thereof, patients tend to benefit from less scarring and reduced healing time.
  • Endoscopic instruments are inserted into the patient through a cannula, or port, which has been made with a trocar. Typical sizes for cannulas range from three millimeters (mm) to twelve millimeters (mm). Smaller cannulas are usually preferred, which, as can be appreciated, ultimately presents a design challenge to instrument manufacturers who must find ways to make endoscopic instruments that fit through the smaller cannulas.
  • Many endoscopic surgical procedures require cutting or ligating blood vessels or vascular tissue. Due to the inherent spatial considerations of the surgical cavity, surgeons often have difficulty suturing vessels or performing other traditional methods of controlling bleeding, e.g., clamping and/or tying-off transected blood vessels. By utilizing an endoscopic electrosurgical forceps, a surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding simply by controlling the intensity, frequency and duration of the electrosurgical energy applied through the jaw members to the tissue. Most small blood vessels, i.e., in the range below two millimeters in diameter, can often be closed using standard electrosurgical instruments and techniques. However, if a larger vessel is ligated, it may be necessary for the surgeon to convert the endoscopic procedure into an open-surgical procedure and thereby abandon the benefits of endoscopic surgery. Alternatively, the surgeon can seal the larger vessel or tissue.
  • It is thought that the process of coagulating vessels is fundamentally different than electrosurgical vessel sealing. For the purposes herein, “coagulation” is defined as a process of desiccating tissue wherein the tissue cells are ruptured and dried. “Vessel sealing” or “tissue sealing” is defined as the process of liquefying the collagen in the tissue so that it reforms into a fused mass. Coagulation of small vessels is sufficient to permanently close them, while larger vessels need to be sealed to assure permanent closure.
  • Thus, medical devices that apply electro-thermal energy for vessel sealing, ablation, coagulation are known in the art. Tissue conductance and permittivity are significant factors in the therapeutic effect of such medical devices that apply the electro-thermal energy to patient tissue. Displacement of water is correlated with changes in tissue conductance and permittivity and lack of control over such changes in tissue conductance and permittivity can lead to overdessication during vessel sealing procedures.
  • SUMMARY
  • To advance the state of the art with respect to application of electro-thermal energy to patient tissue, the present disclosure relates to a system and a method for monitoring water displacement during treatment of patient tissue.
  • In one embodiment, the system for monitoring water displacement in tissue during patient therapy includes a generator configured to supply electrosurgical energy to tissue, a spectrometer operably coupled to the generator, and a processor in operative communication with the generator and with the spectrometer. The spectrometer includes a light source for exposing tissue to light and a light sensor. The light sensor is configured to sense changes in light through tissue in response to tissue treatment and communicate such changes to the processor to determine tissue hydration levels. A plurality of optical fibers may be operably coupled to the generator and configured to communicate light between the generator and tissue. The plurality of optical fibers may be configured in an array. The spectrometer may be a near infra-red spectrometer providing light in the near infrared wavelength range as the light source.
  • In one embodiment, the system may also include an optical temperature monitor. The optical temperature monitor may be in operative communication with the processor, and include at least one optical fiber operatively coupled to the optical temperature monitor. The one or more optical fibers are configured to enable the optical temperature monitor to monitor the temperature of the tissue where water displacement is optically monitored. The one or more optical fibers may be configured within a plurality of optical fibers wherein at least one optical fiber is operatively coupled to the light source to enable transmitting light towards the tissue and at least one optical fiber is configured to receive light reflected from the tissue and to transport the light to the light sensor. The plurality of optical fibers may be configured in an optical array. The plurality of optical fibers of the optical array may be configured to have an optic fiber distance between adjacent optical fibers. The optical fiber distance is within the range of about 0.25 millimeters (mm) to about 4.0 mm to optimize the transmission of light through tissue to determine hydration levels.
  • In one embodiment, the processor is configured to record and/or analyze changes in hydration of the tissue sensed by the spectrometer across the optic fiber distance. In addition, the processor may be configured to record and/or analyze changes in temperature of the tissue sensed by the optical temperature monitor. The sensed temperature may be used to calculate compensation for the temperature effect on hydration measured by the spectrometer.
  • In one embodiment, the system is incorporated in an electrosurgical pencil that includes a housing having proximal and distal ends, and a blade receptacle defined at a distal end of the housing for supporting an electrosurgical blade therein. The electrosurgical blade is disposed in optical communication with the light source and light sensor for monitoring hydration levels in tissue during operation of the electrosurgical pencil.
  • In one embodiment, the system is incorporated in an electrosurgical forceps that includes a pair of first and second jaw members disposed in pivotal relationship with respect to one another and attached to a distal end of at least one shaft. Each jaw member supports an electrically conductive surface thereon, at least one of the jaw members is disposed in optical communication with the light source and the other of the jaw members is disposed in optical communication with the light sensor for monitoring hydration levels in tissue during operation of the electrosurgical forceps.
  • The present disclosure relates also to a method for monitoring water displacement in tissue during patient therapy. The method includes the steps of providing a spectrometer including a light source in operative communication with patient tissue, generating light from the light source, reflecting the light through the patient tissue; and receiving the light reflected through the patient tissue with a light sensor. The method may include supplying electrosurgical energy to patient or subject tissue utilizing an energy source, sensing changes in light through the tissue in response to tissue treatment, and determining changes in tissue hydration levels based on the sensed changes in light through the tissue. In addition, the method may include providing a processor for analyzing the sensed changes in light through the tissue, and determining the changes in hydration levels in the tissue based on the sensed changes in light through the tissue. The processor may operatively communicate with the spectrometer to regulate the supply of electrosurgical energy to the tissue. The method may also include configuring a plurality of optical fibers in an array, wherein the array enables at least one of the plurality of optical fibers operatively coupled to the light source and enables at least one optical fiber of the plurality of optical fibers to be configured to enable transporting light reflected from the tissue to be separated to effect an optic fiber distance within the tissue. That is, the processor may be operatively coupled to the spectrometer and/or the supply of electrosurgical energy.
  • In one embodiment, the method includes providing an optical temperature monitor, providing at least one optical fiber operatively coupled to the optical temperature monitor, and monitoring the temperature of the tissue where water displacement is optically monitored. Knowledge of the temperature of the tissue can be used to provide more accurate measurement of tissue hydration.
  • In one embodiment, the present disclosure relates to an electrically conductive member for use with an electrosurgical instrument. The electrically conductive member includes a surface configured to engage patient tissue and adapted to connect to a source of electrosurgical energy. The electrically conductive member also includes at least one optical transmitter that is configured to propagate light through patient tissue and at least one corresponding optical sensor configured to sense changes in reflected light propagating through patient tissue during operation of the electrosurgical instrument and relating the changes in reflected light through patient tissue to hydration levels in tissue.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various embodiments are described herein with reference to the drawings:
  • FIG. 1 is a perspective view of an electrode assembly of an electrosurgical pencil according to the present disclosure illustrating one embodiment of an end effector assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense at least a portion of the light propagating through patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil;
  • FIG. 2A is a perspective view an ES pencil blade of the end effector assembly of FIG. 1;
  • FIG. 2B is a cross-sectional view of the pencil blade of the end effector assembly taken along section line 2B-2B of FIG. 2A;
  • FIG. 2C is a perspective view of another embodiment of the pencil blade of the electrocautery end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 2D is a cross-sectional view of the pencil blade of the electrocautery end effector assembly taken along section line 2D-2D of FIG. 2C
  • FIG. 3A is a schematic view of one embodiment of an optical transmitter wherein light is reflected by a prism;
  • FIG. 3B is a schematic view of one embodiment of an optical sensor wherein light is reflected by a prism;
  • FIG. 3C is a schematic view of one embodiment of a dual-function optical transmitter and optical sensor wherein light is reflected by a prism;
  • FIG. 4A is a schematic view of one embodiment of an optical transmitter wherein light is transmitted by a light emitting diode;
  • FIG. 4B is a schematic view of one embodiment of an optical sensor wherein light is sensed by a light emitting diode;
  • FIG. 5A is a perspective view of another embodiment of the pencil blade of the end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 5B is a cross-sectional view of the pencil blade of the end effector assembly taken along section line 5B-5B of FIG. 5A;
  • FIG. 6A is a perspective view of another embodiment of the pencil blade of the end effector assembly of FIG. 1 having an optical transmitter and an optical sensor;
  • FIG. 6B is a cross-sectional view of the pencil blade of the electrocautery end effector assembly taken along section line 6B-6B of FIG. 6A;
  • FIG. 7 is a schematic view of one embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure in which one optical transmitter and two optical sources are disposed substantially linearly on a surface of the electrically conductive member;
  • FIG. 7A is a schematic view of the electrically conductive member of FIG. 7 taken along section line 7A-7A;
  • FIG. 8 is a schematic view of another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure in which one optical transmitter and two optical sources are disposed substantially linearly on a surface of the electrically conductive member;
  • FIG. 9 is a schematic view of yet another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having a circular array of optical sensors and an optical transmitter disposed on a surface of the electrically conductive member;
  • FIG. 10 is a schematic view of still another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having a circular array of optical transmitters and an optical sensor disposed on a surface of the electrically conductive member;
  • FIG. 11 is a schematic view of another embodiment of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having two circular arrays of optical transmitters and optical sensors disposed on a surface of the electrically conductive member;
  • FIG. 12A is a schematic view of a surface of an electrically conductive member for use with an electrosurgical instrument according to the present disclosure having an array of optical transmitters and optical sensors disposed in channels on the suface of the electrically conductive member;
  • FIG. 12B is an end view of the electrically conductive member of FIG. 12A for an electrosurgical pencil;
  • FIG. 12B′ is an end view of the electrically conductive member of FIG. 12A for a bipolar electrosurgical forceps;
  • FIG. 12C is a schematic view of the electrically conductive member of FIG. 12B taken along section line 12C-12C;
  • FIG. 12C′ is a view of the electrically conductive member of FIG. 12B′ taken along section line 12C′-12C′;
  • FIG. 13 is an enlarged view of an end of an optical fiber illustrated in FIG. 12C′;
  • FIG. 14 is a perspective view of a bipolar electrosurgical forceps according to the present disclosure illustrating one embodiment of an end effector assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 14A is an enlarged perspective view of the embodiment of the jaw members of the end effector assembly of FIG. 14;
  • FIG. 14B is a profile view of another embodiment of the jaw members of the end effector assembly of FIG. 14;
  • FIG. 14C is an enlarged perspective view of another embodiment of the jaw members of the end effector assembly of FIG. 14;
  • FIG. 15A is a schematic, side view of another embodiment of the jaw members of the end effector assembly of FIG. 14;
  • FIG. 15B is a schematic, view of the lower jaw member of the end effector assembly of FIG. 15A taken along section line 15B-15B;
  • FIG. 15C is a schematic, side view of another embodiment of the jaw members of the end effector assembly of FIG. 14;
  • FIG. 15D is a schematic view of the lower jaw member of the end effector assembly of FIG. 15C taken along section line 15D-15D;
  • FIG. 16 is a schematic, side view of another embodiment of an end effector assembly according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps assembly having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 16A is an enlarged view of the area of detail 16A illustrated in FIG. 16;
  • FIG. 17 is a schematic, side view of another embodiment of the parallel jaw type bipolar electrosurgical forceps assembly of FIG. 16 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 18 is a schematic, side view of yet another embodiment of the parallel jaw type bipolar electrosurgical forceps assembly of FIG. 16 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense light propagating through patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps;
  • FIG. 19 is a schematic view of a system for monitoring water displacement during treatment of patient tissue according to the present disclosure;
  • FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch included within the system for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11; and
  • FIG. 21 is a view of an optical alignment member included within the mechanical-optical multiplexer switch taken along section line 21-21 illustrated in FIG. 20.
  • DETAILED DESCRIPTION
  • The present disclosure relates to a system and method for detecting water displacement and/or water hydration levels in tissue by arranging optic fibers in an array on the tissue contacting surfaces. Optic fibers are configured at one end to connect the fibers to a light source and at an opposite end to terminate in an array such that the light is transmitted into the tissue may be measured and/or monitored. Several light sensing optic fibers may also be included in the array and disposed in close proximity to the lens of the fiber optic that is the source. The end of the sensing optic fiber opposite the array is connected to a spectrometer. The configuration of the array can be designed into many different configurations and is not necessarily limited in this disclosure. The configuration may be dependent on the type of tissue and the geometry of the application. Applications include by are not limited to medical devices that use electro-thermal energy. The spacing and placement of the optical fiber elements of the optical array are specified such that discrete changes in hydration of the tissue over time can be recorded. These recorded discrete hydration changes together with the known array geometry can be analyzed (for example, by computer) to provide information on the displacement of water in the tissue. The source and detected wavelengths are selected to optimize the detection of water.
  • One application of this type of optical array is the placement of the array in close proximity to a thermal ablation probe. The displacement of water is correlated with changes in tissue conductance and permittivity. Tissue conductance and permittivity are significant factors in the therapeutic effect of medical devices that use electro-thermal energy.
  • A series of probes measures the hydration of a multitude of tissues. A probe or probes are placed in an array at a location where the sensors receiving the reflected signal are placed in the array so that changes in hydration can be monitored. Dynamic changes of hydration during energy treatment of tissue can be recorded, analyzed, and utilized to control delivery of electrosurgical energy during the course of tissue treatment.
  • Turning now to FIG. 1, there is illustrated a partial view of electrosurgical pencil 100 that includes a housing 102 defining an open distal end 103 a for selectively receiving proximal end 108 of electrocautery blade 106 therein. Open distal end 103 a defines a blade receptacle 105 for blade 106. (The proximal end 103 b of the housing 103 is not entirely shown).
  • In one embodiment, electrocautery blade 106 is supported in a collar 120. Collar 120 is positioned between distal end 110 and proximal end 108 of electrocautery blade 106. Collar 120 has a shaped outer surface 120 a configured and dimensioned to complement the inner profile of receptacle 105 of open distal end 103 a. In one embodiment, the open distal end 103 a of housing 102 defines a hexagonally-shaped inner profile of receptacle 105 and collar 120 defines a hexagonal outer surface 120 a. The blade 106 and the collar 120 define an electrocautery end effector assembly 112 that is operatively connectable to the blade receptacle 105.
  • Such an electrosurgical pencil is disclosed in commonly owned US Patent Application Publication No. 2006/0178667, U.S. patent application Ser. No. 11/337,990 by Sartor et al., entitled “ELECTROSURGICAL PENCIL WITH ADVANCED ES CONTROLS,” the entire contents of which is incorporated by reference herein.
  • Blade receptacle 105 is defined at the distal end 103 a of the housing for supporting the electrosurgical blade 106 therein. The electrosurgical blade 106 is configured to be connected to a source of electrosurgical energy, e.g., an electrosurgical generator, not shown.
  • Turning initially to FIGS. 3A through 4B, there are various illustrated embodiments of optical transmitters and optical sensors for use with end effector assembly 112. As defined herein, an optical transmitter includes, but is not limited to, small diameter optical fibers, e.g., having a diameter ranging up to about 1 millimeter (mm); large diameter optical fibers, e.g. having a diameter ranging up to about 2 mm; prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration to function as a prism, light-emitting electronic devices such as a light-emitting diodes (LED), or electrical cable s that transmit electrical signals that provide optical information from a light source. As defined herein, an electrical cable is capable of providing optical communication between a light source and a light-emitting electronic device. Photo-electric detectors convert photonic signals to electrical signals, and light-emitting electronic devices such as light-emitting diodes convert electrical signals to photonic signals.
  • Such optical transmitters may be configured as single members or in an assembly of one or more members of the same category in optical communication with one another or in an assembly of one or more members of different categories in optical communication with one another.
  • As defined herein, an optical sensor includes, but is not limited to, small diameter optical fibers, e.g., having a diameter ranging up to about one (1) millimeter (mm); large diameter optical fibers, e.g. having a diameter ranging up to about two (2) mm; prisms that reflect at least a portion of light propagating therethrough, optical fibers having at least one end with a tapered configuration that functions as a prism, light-sensing electronic devices such a photo-electric detector or photosensor, or electrical cables that transmit electrical signals that provide optical information from a photo-electric detector. Such photoelectric detectors may be made from, for example, gallium arsenide (GaAs), indium phosphide (InP), gallium phosphide (GaP), indium gallium arsenide (InGaAs), silicon germanium (SiGe), germanium (Ge), germanium tin (GeSn), sulfur germanium tin (SGeSn) and the like. As defined herein, an electrical cable is capable of providing optical communication between a photo-electric detector and a light-emitting electronic device. Photo-electric detectors convert photonic signal to electrical signals, and light-emitting electronic devices such as light-emitting diodes convert the electrical signals to photonic signals.
  • Similarly, such optical sensors may be configured as single members or in an assembly of one or more members of the same category in optical communication with one another or in an assembly of one or more members of different categories in optical communication with one another.
  • Optical sensors include, but are not limited to, optical detectors that are mostly quantum devices in which an individual photon produces a discrete effect; photoresistors or light dependent resistors in which resistance is a function of light intensity; photodiodes operating in a photovoltaic mode or in a photoconductive mode; photovoltaic cells or solar cells producing a voltage and an electric current when illuminated; photomultiplier tubes containing a photocathode that emits electrons when illuminated and wherein the electrons may be amplified by a chain of dynodes; phototubes containing a photocathode that emits electrons when illuminated wherein the tube conducts a current proportional to the light intensity; light-emitting devices (LEDs) that are reverse-biased to act as photodiodes; phototransistors that function as amplifying photodiodes; optical detectors that function as thermometers converting heat of incoming radiation to an electrical current, such as pyroelectric detectors, Golay cells, thermocouples and thermistors
  • Additionally, as defined herein, an optical transmitter may also function alternately as an optical sensor to serve as a dual function optical transmitter and optical receiver. A dual function optical transmitter and optical receiver may include a multiplexer device.
  • Returning specifically to FIG. 3A, optical transmitter 202 includes one or more optical fibers e.g., optical fibers 204 a, 204 b, and 204 c and/or one or more light reflecting prisms 206 in optical communication with corresponding optical fibers 204 a, 204 b and/or 204 c. The optical transmitter 202 may include a large diameter single optical fiber 208 in optical communication with patient tissue (not shown). The diameter of optical fiber 208 ranges up to about 3 mm. Light 10 is illustrated propagating through the optical fibers 204 a, 204 b and 204 c to prism 206 wherein the light 10 is reflected by the prism 306 to a large diameter single optical fiber 208 propagates the light to patient tissue.
  • FIG. 3B illustrates an optical sensor 202′ that also includes one or more optical fibers e.g., optical fibers 204 a, 204 b, and 204 c and/or one or more light reflecting prisms 206 in optical communication with corresponding optical fibers 204 a′, 204 b′ and/or 204 c′. The optical sensor 202 may include a large diameter single optical fiber 208 in optical communication with patient tissue (not shown). Optical sensor 202′ differs from optical transmitter 202 in that light 10′ travels in the reverse direction as compared to light 10. More particularly, light 10′ is illustrated propagating from the patient tissue (again not shown) through the large diameter optical fiber 208 to prism 206 wherein the light 10′ is reflected by the prism 206 to optical fibers 204 a′, 204 b′ and 204 c′. Additionally, optical fibers 204 a′, 204 b′ and 204 c′ may have diameters which differ from one another so as to propagate differing wavelengths of light. The diameters of optical fibers 204 a′, 204 b′ and 204 c′ may also differ from the diameters of optical fibers 204 a, 204 b and 204 c of optical transmitter 202 described with respect to FIG. 3A.
  • FIG. 3C illustrates one embodiment of a dual function optical transmitter and optical sensor 202″ wherein light 10″ may propagate to patient tissue (again not shown) and alternately propagate from patient tissue. More particularly, dual-function optical transmitter and optical sensor 202″ is substantially identical to optical transmitter 202 and optical sensor 202′ except for the inclusion of optical multiplexer 210 in the path of optical fibers 204 a, 204 b and 204 c. The optical multiplexer (MUX) 210 is in optical communication with proximal optical fibers 214 a, 214 b and 214 c and with distal optical fibers 204 a, 204 b and 204 c
  • In the transmission phase of operation, light 10″ propagates from the proximal side of MUX 210 through the proximal optical fibers 214 a, 214 b and 214 c through the MUX 210 to the distal optical fibers 204 a, 204 b and 204 c. As is the case for optical transmitter 202, light 10″ is reflected by the prism 206 to propagate through the large optical fiber 208 to pass through patient tissue.
  • In the sensing phase of operation, light 10″ propagates from patient tissue where the light 10″ is detected by the large diameter optical fiber 208 and propagates to the prism 206 wherein the light 10″ is reflected by the prism 206 to distal optical fibers 204 a, 204 b and 204 c. The light 10″ propagates to the MUX 210 where the light is selectively propagated by switching to at least one or more of the proximal optical fibers 214 a, 214 b and 214 c.
  • FIG. 4A illustrates an alternate embodiment of an optical transmitter 2510. More particularly, optical transmitter 2510 includes electrical cable 2541 that is capable of providing optical communication between a light source (to be described below with respect to FIGS. 18-20), and a light-emitting electronic device 2561 such as a light-emitting diode. A photo-electric detector (not shown) converts a photonic signal to an electrical signal. The light-emitting electronic device 256 converts the electrical signal to a photonic signal resulting in light 101 being emitted from the light-emitting electronic device 256 to propagate through large diameter optical fiber 208 to patient tissue (also not shown).
  • FIG. 4B illustrates an alternate embodiment of an optical sensor 2520. More particularly, optical sensor 2520 includes electrical cable 2542 that is capable of providing optical communication between photo-electric detector 2562 and a light detector (to be described below with respect to FIGS. 18-20). Light 102 propagating through patient tissue (not shown) propagates to large diameter optical fiber 208 in contact with patient tissue. The photo-electric detector 2520 detects the light 102 propagating through the large diameter optical fiber 208 and converts the photonic signal to an electrical signal. The electrical signal communicates with the light detector (to be described below).
  • Returning to FIGS. 2A and 2B, one embodiment of electrocautery blade 106 is shown. More particularly, electrocautery blade 106 a defines a proximal end 150 a and a distal end 150 b. The blade 106 a has a substantially planar configuration having a generally convex lateral cross-section defining one or more peripheral edges 120 and one or more lateral surfaces, e.g., first surface 1301 a and second surface 1301 b. The blade 106 a includes a cylindrical shaft 140 defining a hollow central region 140′ therewithin and extending to a proximal end 144 of substantially planar region 152 of the blade 106 a. The hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140.
  • The electrosurgical blade 106 a is configured with one or more optical transmitters 202 positioned to propagate light 10 through patient tissue and one or more optical sensors 202′ positioned to sense at least a portion of the light 10′ propagating through patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100.
  • More particularly, the electrosurgical blade 106 a is configured wherein optical transmitters 2021 a and 2022 a (shown partially) propagate light through patient tissue via the first lateral surface 1301 a while optical transmitters 2021 b (2022 b, not shown) propagate light through patient tissue via the second lateral surface 1301 b. Optical transmitters 2021 a, 2022 a, 2021 b (and 2022 b, not shown) are configured with prism 206 and the optical fibers described with respect to optical transmitter 202 in FIG. 3A.
  • Similarly, the electrosurgical blade 106 a is configured wherein optical sensors 2021 a′ and 2022 a′ (shown partially) sense at least a portion of the light propagating through the patient tissue via the first lateral surface. 1301 a while optical sensors 2021 b′ (and corresponding optical sensors not shown) sense at least a portion of the light propagating through the patient tissue via the second lateral surface 1301 b. Optical sensors 2021 a′, 2022 a′, 2021 b′ (and corresponding optical sensors not shown) are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202′ in FIG. 3B. As indicated, the diameters of the sensing optical fibers 204 a′, 204 b′, 204 c′ may differ from one another. The optical sensors 2021 a′ and 2021 b′ may be positioned proximally on the electrosurgical blade 106 a with respect to the optical transmitters 2021 a and 2021 b.
  • The transmission optical fibers 204 a, 204 b, 204 c and the sensing optical fibers 204 a′, 204 b′, 204 c′ are routed through the hollow central region 140′ of the shaft 140 and further through the housing 102.
  • Turning now to FIGS. 2C and 2D, there is illustrated another embodiment of electrocautery blade 106. More particularly, electrocautery blade 106 b again defines proximal end 150 a and distal end 150 b. The blade 106 b has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1202 and at least one lateral surface, e.g., first surface 1302 a and second surface 1302 b (not explicitly shown on the opposing side of first surface 1302 a). The blade 106 b includes cylindrical shaft 140 defining hollow central region 140′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 b. The hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140.
  • The electrosurgical blade 106 b is again configured with at least one optical transmitter 202 positioned to propagate light 10 through patient tissue and at least one optical sensor 202′ positioned to sense at least a portion of the light 10′ propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100.
  • More particularly, the electrosurgical blade 106 b is configured wherein optical transmitters 2023 a and 2023 b propagate light through the patient tissue via first and second lateral portions 1202 a and 1202 b, respectively, of peripheral edge 1202. Additionally, the electrosurgical blade 106 b is configured wherein optical sensors 2023 a′ and 2023 b′ sense at least a portion of the light propagating through the patient tissue via first and second lateral portions 1202 a and 1202 b, respectively, of peripheral edge 1202.
  • Optical transmitters 2023 a and 2023 b are configured with prism 206 and the optical fibers described with respect to optical transmitter 202 in FIG. 3A. Optical sensors 2023 a′ and 2023 b′ are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202′ in FIG. 3B, except that large diameter single optical fiber 208 is replaced by more than one smaller diameter optical fibers similar to 204 a′, 204 b′, 204 c′. As indicated, the diameters of the sensing optical fibers 204 a′, 204 b′, 204 c′ may differ from one another. The optical sensors 2023 a′ and 2023 b′ may be positioned on the electrosurgical blade 106 b proximally with respect to optical transmitters 2023 a and 2023 b.
  • The transmission optical fibers 204 a, 204 b, 204 c and the sensing optical fibers 204 a′, 204 b′, 204 c′ are routed through the hollow central region 140′ of the shaft 140 and further through the housing 102.
  • Turning now to FIGS. 5A and 5B, there is illustrated still another embodiment of electrocautery blade 106. More particularly, electrocautery blade 106 c again defines proximal end 150 a and distal end 150 b. The blade 106 c again has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1203 and at least one lateral surface, e.g., first surface 1303 a and a second surface not explicitly shown on the opposing side of first surface 1303 a. The blade 106 c again includes cylindrical shaft 140 defining hollow central region 140′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 c. The hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140.
  • In contrast to electrosurgical blades 106 a and 106 b, the electrosurgical blade 106 c is configured with at least one optical transmitter 2510 positioned to propagate light 1001 through patient tissue, but, in a similar manner as with respect to electrosurgical blades 106 a and 106 b, with at least one optical sensor 202′ positioned to sense at least a portion of the light 10′ propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100.
  • More particularly, the electrosurgical blade 106 c is configured wherein optical transmitters 2511 a and 2511 b propagate light through the patient tissue via first and second lateral portions 1203 a and 1203 b, respectively, of peripheral edge 1203. Thus, the optical transmitters 2511 a and 2511 b include electrical cables 2541 a and 2541 b and light-emitting electronic devices 2561 a and 2561 b and large diameter optical fibers 2081 a and 2081 b, respectively, as described with respect to optical transmitter 2510 in FIG. 4A. Additionally, the electrosurgical blade 106 c is configured wherein optical sensors 2024 a′ and 2024 b′ sense at least a portion of the light propagating through the patient tissue via first and second lateral portions 1203 a and 1203 b, respectively, of peripheral edge 1203.
  • Optical sensors 2024 a′ and 2024 b′ are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202′ in FIG. 3B, except that large diameter single optical fiber 208 is replaced by more than one smaller diameter optical fibers similar to 204 a′, 204 b′, 204 c′. As indicated, the diameters of the sensing optical fibers 204 a′, 204 b′, 204 c′ may differ from one another.
  • The transmitting electrical cables 2541 a and 2541 b and the sensing optical fibers 204 a′, 204 b′, 204 c′ are again routed through the hollow central region 140′ of the shaft 140 and further through the housing 102.
  • FIGS. 6A and 6B illustrate yet another embodiment of electrocautery blade 106. More particularly, electrocautery blade 106 d again defines proximal end 150 a and distal end 150 b. The blade 106 d has a substantially planar configuration having a generally convex lateral cross-section defining at least one peripheral edge 1204 and at least one lateral surface, e.g., first surface 1304 a and a second surface not explicitly shown on the opposing side of first surface 1304 a. The blade 106 d includes cylindrical shaft 140 defining hollow central region 140′ therewithin and extending to proximal end 144 of substantially planar region 152 of the blade 106 c. The hollow shaft 140 extends to the substantially planar region 152 to define a circumferential recess 142 around the outer surface of the hollow shaft 140.
  • In contrast to electrosurgical blades 106 a, 106 b or 106 c, the electrosurgical blade 106 d is configured with at least one optical transmitter 202 positioned to propagate light 10 through patient tissue, but, with at least one optical sensor 2520 positioned to sense at least a portion of the light 1002 propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil 100.
  • More particularly, the electrosurgical blade 106 d is configured wherein optical transmitters 2025 a and 2025 b propagate light through the patient tissue via first and second lateral portions 1204 a and 1204 b, respectively, of peripheral edge 1204. Thus, the optical transmitters 2025 a and 2025 b include large diameter optical fibers 2082 a and 2082 b, respectively, as described with respect to optical transmitter 202 in FIG. 3A.
  • Optical sensors 2025 a and 2025 b are also configured with prism 206 and the optical fibers described with respect to the optical sensor 202′ in FIG. 3A.
  • Additionally, the electrosurgical blade 106 d is configured wherein optical sensors 2521 a′ and 2521 b′ sense at least a portion of the light propagating through the patient tissue also via first and second lateral portions 1204 a and 1204 b, respectively, of peripheral edge 1204. The optical sensors 2521 a′ and 2521 b′ include the electrical cables 2542 a′ and 2542 b′ and photo-electric detectors 2562 a′ and 2562 b′ and each with a plurality of optical fibers similar to optical fibers 204 a′, 204 b′ and 204 c′ on the first and second portions 1204 a and 1204 b, respectively, of the lateral edge 1204. as described with respect to optical sensor 2520 in FIG. 4B, thereby sensing at least a portion of the light propagating through the patient tissue.
  • Additionally, the electrosurgical blade 106 d is configured wherein optical sensors 2521 a′ and 2521 b′ may be positioned proximally on the electrosurgical blade 106 d with respect to the optical transmitters 2025 a and 2025 b.
  • The transmitting optical fibers 204 a, 204 b, 204 c and the sensing electrical cables 2542 a and 2542 b are routed through the hollow central region 140′ of the shaft 140 and further through the housing 102.
  • FIGS. 7-11 and 12A, 12B, 12C and 13 illustrate various embodiments of an electrically conductive member 300 for use with an electrosurgical instrument. The electrically conductive member 300 has a surface 302 that is configured to be in contact with patient tissue (not shown) and to be connected to a source of electrosurgical energy (not shown),
  • As described in more detail below, the electrically conductive member 300 is configured with one or more optical transmitters positioned in an array to propagate light through patient tissue and one or more optical sensors positioned in an array to sense via reflectance by the patient tissue at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical pencil.
  • Turning particularly to FIGS. 7 and 7A, and in conjunction with FIGS. 4A and 4B, electrically conductive member 300 a has surface 302 a that is configured to be in contact with, or to engage with, patient tissue (not shown) and adapted to connect to a source of electrosurgical energy (not shown), The surface 302 a is configured with one more optical transmitters 2512 positioned in an array to propagate light through patient tissue and at least one optical sensor, e.g., two optical sensors 2522 and 2523 positioned in an array, configured to sense changes in reflected light, e.g., via reflectance by the patient tissue, at least a portion of the light propagating through the patient tissue during operation of the electrosurgical instrument and relating the changes in reflected light to hydration levels in tissue during operation of the electrosurgical pencil.
  • The optical sensors 2522′ and 2523′ may include first optical fibers 2522 a′ and 2523 a′, second optical fibers 2522 b′ and 2523 b′, and third optical fibers 2522 c′ and 2523 c′, respectively, wherein the diameter of the first optical fibers 2522 a′ and 2523 a′ differs from the diameter of the second optical fibers 2522 b′ and 2523 b′, and the diameter of the third optical fibers 2522 c′ and 2523 c′ differs from the diameters of the first and second optical fibers.
  • The optical transmitters 2512 are disposed substantially linearly to form on the surface a single line of optical fibers 2512 a that is disposed distally from the two optical sensors 2522′ and 2523. The optical fibers of optical sensors 2522′ and 2523′ are disposed substantially linearly to form first and second lines of optical fibers 2522 a′, 2522 b′, 2522 c′ and 2523 a′, 2523 b′, 2523 c′, respectively. The optical transmitters 2512 may be disposed substantially linearly relative to one another along an axis “A” defined through the electrically conductive member 300 a from a proximal end to a distal end thereof. The optical transmitters 2512 may be disposed distally relative to the optical sensors 2522′ and 2523′. The optical sensors 2522′ and 2523′ may correspond to the optical transmitters 2512.
  • As illustrated in FIG. 7A, in a similar manner as with respect to the optical transmitter 2510 described with respect to FIG. 4A, the optical transmitter 2512 includes electrical cable 2541, light-emitting electronic device 2561 and the single line of optical fibers 2512 a. In addition, in a similar manner as with respect to the optical sensor 2520 described with respect to FIG. 4B, optical sensors 2522′ and 2523′ include electrical cables 2542′ and 2543′, photo-electric detector 2562′ and 2563′, and the optical fibers 2522 a′, 2522 b′, 2522 c′ and 2523 a′, 2523 b′, 2523 c′, respectively.
  • Upon emission of light from the light-emitting electronic device 2561, light path 301 propagates from the single line of optical fibers 2512 a to first line of optical fibers 2522 a′, 2522 b′, 2522 c′ of first optical sensor 2522′. Similarly, light path 311 propagates from the single line of optical fibers 2512 a to second line of optical fibers 2523 a′, 2523 b′, 2523 c′ of second optical sensor 2523′.
  • As explained below in more detail with respect to FIGS. 19-20, the different diameters of the optical fibers of the optical sensors 2522′ and 2523′ enable monitoring of water motility within the patient tissue during the electrosurgical procedure.
  • FIG. 8 illustrates an alternate embodiment of the electrically conductive member 300 having surface 302. More particularly, electrically conductive member 300 b is an alternate embodiment of the electrically conductive member 300 a described above with respect to FIGS. 7 and 7A. Again, the electrically conductive member 300 b includes the at least two optical sensors 2522′ and 2523′. The optical fibers 2522 a′, 2522 b′, 2522 c′ and 2523 a′, 2523 b2523 c′ of the optical sensors 2522′ and 2523′, respectively are disposed substantially linearly to form on surface 302 b first and second lines. The first line 2522′ is distal from the second line 2523′.
  • Electrically conductive member 300 b differs from electrically conductive member 300 a in that the optical fibers 2512 a of the optical transmitter 2512 are disposed substantially linearly to form a single line disposed between the first and second lines of the two or more optical sensors 2522′ and 2523′. That is, the plurality of optical sensors 2522′ and 2523′ may be disposed substantially linearly along an axis “B” defined through the electrically conductive member 300 b. The optical sensors 2522′ and 2523′ may be disposed substantially linearly relative to one another to form first and second lines of optical sensors on the surface 302 b. The second line of optical sensors 2522′ may be distal from the first line of optical sensors 2523′.
  • As illustrated in FIG. 7A, the optical transmitter 2512 forms a first light path in patient tissue. The first light propagates by reflectance in the patient tissue to the first optical sensor 2522′ while the optical transmitter 2512 also forms a second light path in patient tissue, wherein the second light path propagates by reflectance in the patient tissue to the second optical sensor 2523′. The diameters of the optical fibers 2522 a′, 2522 b′, 2522 c′ may differ from one another. Similarly, the diameters of the optical fibers 2523 a′, 2523 b′, 2523 c′ may differ from one another to allow propagation of light of differing wavelengths.
  • The optical transmitter 2512 may also include the light-emitting electronic device 2561 and electrical cable 2541 described previously with respect to FIG. 4A while the optical sensors 2522′, 2523′ include the photo-electric detector 2562 and electrical cable 2542 described previously with respect to FIG. 4B.
  • FIG. 9 illustrates yet another embodiment of the electrically conductive member 300 having surface 302. More particularly, electrically conductive member 300 c includes one or more optical transmitters 2513 and two or more optical sensors, e.g., first optical sensor 2524′ and second optical sensor 2525′. The optical transmitter 2513 and the first and second optical sensors 2524′, 2525′ are disposed in a pattern on surface 302 c that includes at least a first plurality of optical fibers 2524 a′, 2524 b′, 2524 c′ of optical sensor 2524′ in a circumferential arrangement and a second plurality of optical fibers 2525 a′, 2525 b′, 2525 c′ of optical sensor 2525′ in a circumferentially substantially concentric arrangement with respect to the first plurality of optical fibers 2524 a′, 2524 b′, 2524 c′ of optical sensor 2524′. That is, the first plurality of optical sensors 2524′ may be disposed in a first circumferential pattern on the surface 302 c and the second plurality of optical sensors 2525′ may be disposed in a second circumferential pattern on the surface 302 c that is concentric to the first circumferential pattern of the first plurality of optical sensors 2524′.
  • Optical fibers 2513 a, 2513 b, 2513 c, 2513 c, 2513 d, 2513 e of optical transmitter 2513 are disposed substantially at the center of the substantially concentric arrangement of the first and second plurality of optical fibers 2524 a′, 2524 b′, 2524 c′ and 2525 a′, 2525 b′, 2525 c′ of the optical sensors 2524′ and 2525′, respectively. That is, the optical transmitter 2513 may be disposed substantially at the center of the concentric arrangement of the first and second circumferential patterns of the optical sensors 2524′ and 2525′, respectively.
  • In view of the light paths 301 and 311 illustrated in FIG. 7A, the optical transmitter 2513 forms multiple light paths in patient tissue distributed substantially radially away from the optical fibers 2513 a, 2513 b, 2513 c, 2513 c, 2513 d, 2513 e. The light propagates by reflectance in the patient tissue to the substantially concentric arrangement of the first and second plurality of optical fibers 2524 a′, 2524 b′, 2524 c′ and 2525 a′, 2525 b′, 2525 c′ of the optical sensors 2524′ and 2525′, respectively. The diameters of the plurality of optical fibers 2524 a′, 2524 b′, 2524 c′ and 2525 a′, 2525 b′, 2525 c′ may again differ from one another as explained above
  • In addition, the optical transmitter 2513 may include the light-emitting electronic device 2561 and electrical cable 2541 described previously with respect to FIG. 4A while the optical sensors 2524′, 2525′ include the photo-electric detector 2562 and electrical cable 2542 described previously with respect to FIG. 4B.
  • FIG. 10 illustrates still another embodiment of the electrically conductive member 300 having surface 302. More particularly, electrically conductive member 300 d includes two or more optical transmitters, e.g., first optical transmitter 2514 and second optical transmitter 2515. The optical transmitters 2514, 2515 are disposed in a pattern on surface 302 d that includes at least a first plurality of optical fibers 2514 a, 2514 b . . . 2514 n of optical transmitter 2514 in a circumferential arrangement and a second plurality of optical fibers 2515 a, 2515 b . . . 2515 n of optical transmitter 2515 in a circumferential substantially concentric arrangement with respect to the first plurality of optical fibers 2514 a, 2514 b . . . 2514 n. That is, the first plurality of optical transmitters 2514 may be disposed in a first circumferential pattern on the surface 302 d and the second plurality of optical transmitters 2515 may be disposed in a second circumferential pattern on the surface 302 d that is concentric to the first circumferential pattern of the first plurality of optical transmitters 2514.
  • Optical fibers 2526 a′, 2526 b′ and 2526 c′ of one or more optical sensors 2526′ are disposed substantially at the center of the substantially concentric arrangement of the first and second plurality of optical fibers 2514 a, 2514 b . . . 2514 n and 2515 a, 2515 b . . . 2515 n of optical transmitters 2514 and 2515, respectively. That is, the optical sensor 2526′ may be disposed substantially at the center of the concentric arrangement of the first and second circumferential patterns of the optical transmitters 2514 and 2515, respectively.
  • In view of the light paths 301 and 311 illustrated in FIG. 7A, the optical transmitters 2514, 2515 form multiple light paths in patient tissue distributed substantially radially towards the optical fibers 2526 a′, 2526 b′, 2526 c′ of optical sensor 2526′. The light propagates by reflectance in the patient tissue from the substantially concentric arrangement of the first and second plurality of optical fibers 2514 a, 2514 b . . . 2514 n and 2515 a, 2515 b . . . 2515 n of optical transmitters 2514 and 2515, respectively. The diameters of the optical fibers 2526 a′, 2526 b′, 2526 c′ of optical sensor 2526′ may again differ from one another to allow propagation and sensing of light of different wavelengths. The light-emitting electronic devices and photo-electric detectors and electrical cables may be configured as described previously with respect to FIGS. 4A and 4B.
  • FIG. 11 illustrates yet another embodiment of the electrically conductive member 300 having surface 302. More particularly, electrically conductive member 300 e includes two or more optical transmitters, e.g., first optical transmitter 2516 and second optical transmitter 2517, and two or more optical sensors, e.g., first optical sensor 2527′ and second optical sensor 2528′. The optical transmitters 2516, 2517 and the optical sensors 2527′, 2528′ are disposed in a pattern on surface 302 e. At least a first plurality of optical fibers 2516 a, 2516 b . . . 2516 n and 2517 a, 2517 b . . . 2517 n form at least a portion of the optical transmitters 2516 and 2517, respectively, and are disposed in a substantially circumferential arrangement.
  • At least a first plurality of optical fibers 2527 a′, 2527 b′, 2527 c′ and at least a second plurality of optical fibers 2528 a′, 2528 b′, 2528 c′ form at least a portion of the optical sensors 2527′ and 2528′, respectively. The first and second plurality of optical fibers 2527 a′, 2527 b′, 2527 c′ and 2528 a′, 2528 b′, 2528 c′ of optical sensors 2527′ and 2528′, respectively, are disposed substantially at the center of the substantially circumferential arrangement of the first and second plurality of optical fibers 2516 a, 2516 b . . . 2516 n and 2517 a, 2517 b . . . 2517 n that form at least a portion of the optical transmitters 2516 and 2517, respectively, to form a first array of optical transmitting and sensing fibers. The first array of optical transmitter 2516 and optical sensor 2527′ is disposed distally with respect to the second array of optical transmitter 2517 and optical sensor 2528′. That is, the first optical sensor 2527′ may include fibers 2527 a′, 2527 b′, 2527 c′ that form a first circumferential arrangement and the first optical transmitter 2516 may be disposed substantially at the center of the first circumferential arrangement of the fibers 2527 a′, 2527 b′, 2527 c′. The second optical sensor 2528′ may include fibers 2528 a′, 2528 b′, 2528 c′ that form a second circumferential arrangement and the second optical transmitter 2517 may be disposed substantially at the center of the second circumferential arrangement of the fibers 2528 a′, 2528 b′, 2528 c′. The second circumferential arrangement may be disposed distally relative to the first circumferential arrangement, along an axis “C” defined through the electrically conductive member 302 e.
  • In view of the light paths 301 and 311 illustrated in FIG. 7A, the optical transmitters 2516, 2517 form multiple light paths in patient tissue distributed substantially radially towards the respective optical fibers 2527 a′, 2527 b′, 2527 c′ of optical sensor 2527′ and 2528 a′, 2528 b′, 2528 c′ of optical sensor 2528′ in the first and second arrays, respectively. Again, the light propagates by reflectance in the patient tissue. The diameters of the optical fibers 2527 a′, 2527 b′, 2527 c′ of optical sensor 2527′ and of optical fibers 2528 a′, 2528 b′, 2528 c′ of optical sensor 2528′ may again differ from one another to allow propagation and sensing of light of different wavelengths.
  • First and second arrays of optical transmitters and optical sensors may also be formed by replacing the concentrically arranged optical fibers 2516 a, 2516 b . . . 2516 n and 2517 a, 2517 b . . . 2517 n of optical transmitters 2516 and 2517, respectively, with optical sensors and by replacing the first and second plurality of optical fibers 2527 a′, 2527 b′, 2527 c′ and 2528 a′, 2528 b′, 2528 c′ of optical sensors 2527′ and 2528′, respectively, that are disposed substantially at the center of the substantially circumferential arrangement of the first and second plurality of optical fibers 2516 a, 2516 b . . . 2516 n and 2517 a, 2517 b . . . 2517 n with optical transmitters.
  • FIGS. 12A, 12B, 12B′, 12C, 12C′ and 13 illustrate different embodiments of yet another electrically conductive member 300 for use with an electrosurgical instrument having a surface 302 according to the present disclosure. More particularly, FIGS. 12A, 12B, 12C and 13 illustrate an electrically conductive member 300 f having at least a first lateral surface 3021 f and a second lateral surface 3022 f on an opposing side of the electrically conductive member 300 f.
  • The electrically conductive member 300 f includes on first and second lateral surfaces 3021 f and 3022 f one or more optical transmitters, e.g., optical transmitters 3011 a, 3011 b, 3011 c, 3011 d and 3012 a, 3012 b, 3012 c, 3012 d. The electrically conductive member 300 f also includes on first and second lateral surfaces 3021 f and 3022 f one or more optical sensors, e.g., optical sensors 3011 a′, 3011 b′, 3011 c′ and 3012 a′, 3012 b′, 3012 c′. The optical transmitters 3011 a, 3011 b, 3011 c, 3011 d and 3012 a, 3012 b, 3012 c, 3012 d and optical sensors 3011 a′, 3011 b′, 3011 c′ and 3012 a′, 3012 b′, 3012 c′ each may include an optical fiber having at least one end 3010 with a tapered configuration to function as a prism. That is, the optical transmitters 3011 a, 3011 b, 3011 c, 3011 d and 3012 a, 3012 b, 3012 c, 3012 d may each have tapered end 3010 that forms a prism.
  • As illustrated in FIGS. 12B and 12C, the optical sensors 3011 a′, 3011 b′, 3011 c′ and 3012 a′, 3012 b′, 3012 c′ are each positioned in channels (for simplicity, the channels are not separately numbered) in the respective surfaces 3021 f and 3022 f having a depth within the electrically conductive member 300 f that is greater than the depth of channels (for simplicity, the channels are not separately numbered) within which optical transmitters 3011 a, 3011 b, 3011 c, 3011 d and 3012 a, 3012 b, 3012 c, 3012 d are positioned.
  • The tapered configuration ends 3010 of the optical transmitters 3011 a, 3011 b, 3011 c, 3011 d and 3012 a, 3012 b, 3012 c, 3012 d are positioned within the respective surfaces 3021 f and 3022 f to transmit light through patient tissue via the tapered configuration ends 3010. Similarly, the tapered configuration ends 3010 of the optical sensors 3011 a′, 3011 b′, 3011 c′ and 3012 a′, 3012 b′, 3012 c′ are positioned within the respective surfaces 3021 f and 3022 f to sense light propagating by reflectance, through patient tissue via the tapered configuration ends 3010. For simplicity, light 321 is identified in FIG. 13 as reflecting in either direction to represent the two different functions of transmission into the patient tissue and sensing by reflectance from the patient tissue. The light 321 propagates and reflects through patient tissue. The first and second lateral surfaces 3021 f, 3022 f may each include translucent heat-insulating layers 3031 f and 3032 f to cover the respective channels and the optical fibers positioned therewithin.
  • The electrically conductive member 300 f illustrated in FIGS. 12A, 12B, 12C and 13, which includes the optical transmitters and optical sensors in both the first and second lateral surfaces 3021 f, 3022 f may be adapted as a blade for an electrosurgical pencil in a similar manner as described previously with respect to FIGS. 1 through 6 b.
  • The electrically conductive member 300 f′ illustrated in FIGS. 12A, 12B′, 12C′ and 13 is configured identically to the electrically conductive member 300 f except that only the optical transmitters 3012 a, 3012 b, 3012 c, 3012 d and optical sensors 3012 a′, 3012 b′, 3012 c′ associated with second lateral surface 3022 f and their respective channels (again not numbered for simplicity) are illustrated. The electrically conductive member 300 f′ may be adapted as a jaw member of a bipolar electrosurgical forceps, as described in more detail below with respect to FIG. 14.
  • FIG. 14 illustrates a bipolar electrosurgical forceps 400 according to the present disclosure illustrating one embodiment of an end effector assembly 405 having an optical transmitter positioned to propagate light through patient tissue and optical sensors positioned to sense at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps.
  • One embodiment of a bipolar forceps 400 is shown for use with various surgical procedures and generally includes a housing 402, a handle assembly 430, a rotating assembly 480, a trigger assembly 470 and an end effector assembly 405 which mutually cooperate to grasp, seal and divide tubular vessels and vascular tissue.
  • End effector assembly 405 is attached to distal end 414 of shaft 412 and includes a pair of opposing jaw members 410 and 420. Movable handle 440 of handle assembly 430 is ultimately connected to a drive rod (not shown) disposed within the shaft 412 which, together, mechanically cooperate to impart movement of the jaw members 410 and 420 from an open position wherein the jaw members 410 and 420 are disposed in spaced relation relative to one another, to a clamping or closed position wherein the jaw members 410 and 420 cooperate to grasp tissue.
  • Forceps 400 also includes an electrical interface or plug 450 which connects the forceps 400 to a source of electrosurgical energy, e.g., a generator (not shown). Plug 450 includes a pair of prong members 452 a and 452 b that are dimensioned to mechanically and electrically connect the forceps 400 to the source of electrosurgical energy. An electrical cable 455 extends from the plug 450 to a sleeve 456 which securely connects the cable 455 to the forceps 400.
  • The first and second jaw members 410 and 420 each have respective inwardly facing surfaces 410′ and 420′ associated therewith. As defined herein, the inwardly facing surfaces 410′ and 420′ may be formed partially of an electrically conductive material and partially of an electrically insulating material. The electrically conductive material is in electrical communication with the source of electrosurgical energy. Consequently, the inwardly facing surfaces 410′ and 420′ may be referred to as electrically conductive surfaces 410′, 420′ and as electrically insulating surfaces 410′, 420′.
  • The first and second jaw members 410 and 420 respectively are each adapted for relative movement between an open position to receive tissue and a closed position engaging tissue between the inwardly facing surfaces 410′ and 410′. That is, first and second jaw members 410 and 420 are disposed in pivotal relationship with respect to one another and attached to distal end 414 of at least one shaft, e.g., shaft 412. Each jaw member 410 and 420 supports an electrically conductive surface 410′ and 420′, respectively, thereon. Jaw member 410 and/or jaw member 420 is configured to be connected to the source of electrosurgical energy (via the plug 450), One of the jaw members, e.g., lower jaw member 410, may be in a fixed position with respect to the shaft 412. The jaw members 410 and 420 of end effector assembly 405 are configured to effect optical transmission of light through patient tissue.
  • FIG. 14A illustrates one embodiment of end effector assembly 405. More particularly, end effector assembly 405 a includes one of the jaw members 410 and/or 420, e.g., upper jaw member 420 a, configured with one or more optical transmitters, e.g., optical transmitter 2510, as described previously with respect to FIG. 4A, that is positioned in the surface 420′ to propagate light through patient tissue.
  • One or both of the jaw members, e.g., lower jaw member 410 a, may be configured with one or more optical sensors, e.g., optical sensor 202′, as described previously with respect to FIG. 2B with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a′, 204 b′, 204 c′ having diameters that differ from one another. Optical sensor 202′ is positioned to sense at least a portion of the light (not shown) propagating through the patient tissue. The light is transmitted by the optical transmitter 2510 positioned in the upper jaw member 420 a, for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400.
  • As described below with respect to FIGS. 19-20, one or both of the jaw members 410 and 420 is disposed in optical communication with a light source 7321, 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400.
  • FIG. 14B illustrates another embodiment of the end effector assembly 405 of FIG. 14. More particularly, end effector assembly 405 b includes one of the jaw members 410 and/or 420, e.g., upper jaw member 420 b, configured with one or more optical transmitters, e.g., optical transmitter 2510 that includes a light-emitting electronic device (as described previously with respect to FIG. 4A) that is positioned in the surface 420′ to propagate light through patient tissue.
  • One or both of the jaw members, e.g., lower jaw member 410 b, is configured with one or more optical sensors, e.g., optical sensor 2520 that includes a photo-electric detector (as described previously with respect to FIG. 4B) that is positioned to sense at least a portion of light 331 propagating through the patient tissue. The light 331 is transmitted by the optical transmitter 2510 positioned in the upper jaw member 420, for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400.
  • As described below with respect to FIGS. 19-20, one or both of the jaw members 410 and 420 is disposed in optical communication with a light source 7321, 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400.
  • FIG. 14C illustrates still another embodiment of the end effector assembly 405 of FIG. 14. More particularly, end effector assembly 405 c includes one or more jaw members 410 and/or 420, e.g., upper jaw member 420 c, configured with one or more optical transmitters, e.g., optical transmitter 202, as described previously with respect to FIG. 4A with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a, 204 b, 204 c having diameters that differ from one another. The optical transmitter 202 is positioned in the surface 420′ to propagate light through patient tissue.
  • One or both of the jaw members, e.g., lower jaw member 410 b, is configured with one or more optical sensors, e.g., optical sensor 202′, as described previously with respect to FIG. 3B with the exception that the large diameter single optical fiber 208 is replaced by a plurality of optical fibers such as optical fibers 204 a′, 204 b′, 204 c′ having diameters that differ from one another. The optical sensor 202′ is positioned to sense at least a portion of light propagating through the patient tissue. The light has been transmitted by the optical transmitter 202 positioned in the upper jaw member 420, for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400.
  • Again, as described below with respect to FIGS. 19-20, at least one of the jaw members 410 and 420 is disposed in optical communication with a light source 7321, 7322 and/or 7323 and the other of the jaw members 410 and 420 is disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400.
  • FIGS. 15A and 15B illustrate yet another embodiment of the end effector assembly 405 of FIG. 14. More particularly, end effector assembly 405 d includes the jaw members 410 and/or 420, e.g., upper jaw member 420 d, configured with one or more optical transmitters 2026, e.g., optical transmitter 202, as described previously with respect to FIG. 3A with the exception that the large diameter single optical fiber 208 is omitted and one surface 2061 of prism 206 is exposed directly on inwardly facing surface 420′ to reflect light from a common light source 1220 via the prism 206 to patient tissue (not shown). Thus, optical transmitter 2026 is positioned in the inwardly facing surface 420′ to propagate light in different paths, e.g., light paths 341 a, 341 b, 341 c, through patient tissue.
  • One or both of the jaw members, e.g., lower jaw member 410 d, is configured with one or more optical sensors, e.g., first, second and third optical sensors 2026 a′, 2026 b′, 2026 c′, respectively, that are similar to optical sensor 202′, as described previously with respect to FIG. 3B with the exception that the large diameter single optical fiber 208 is again omitted and one surface 2061 a′, 2061 b′, 2061 c′ of prisms 206 a′, 206 b′, 206 c′, respectively, is exposed directly on inwardly facing surface 410′ to reflect light via the prism 206 from patient tissue (not shown) through a plurality of optical fibers 204 a′, 204 b′, 204 c′ that are routed through individual channels in channel groups 2040 a′, 2040 b′, 2040 c′, respectively.
  • The optical sensors 2026 a′, 2026 b′, 2026 c′ are each positioned to sense at least a portion of the light propagating in light paths 341 a, 341 b, 341 c, respectively, through the patient tissue. The light is transmitted by the optical transmitter 2026 positioned in the upper jaw member 420, for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400. To enable routing of the optical fibers 204 a′, 204 b′, 204 c′ in channel groups 2040 a′, 2040 b′, 2040 c′, the channel groups 2040 a′, 2040 b′, 2040 c′ are formed laterally offset from one another within the lower jaw member 410 d. More particularly, as indicated above, the first, second and third optical sensors 2026 a′, 2026 b′, 2026 c′ each have a prism associated therewith, e.g., prisms 206 a′, 206 b′, 206 c′, respectively, mounted on the fixed jaw member 410 d. The first prism 206 a′ is mounted distally of the second prism 206 b′ and the second prism 206 b′ is mounted distally of the third prism 206 c′. The first prism 206 a′ is mounted proximal to first lateral edge 430 a of the surface 410 d. The second prism 206 b′ is laterally offset with respect to the first prism 206 a′ and is further laterally offset with respect to the lateral edge 430 a. The third prism 206 c′ is laterally offset with respect to both first and second prisms 206 a′ and 206 b′, respectively, and may be proximal to second lateral edge 430 b of the surface 410 d.
  • Correspondingly, the first channel group 2040 a′ is laterally offset from the second channel group 2040 b′ and both the first and second channel groups 2040 a′ and 2040 b are laterally offset from third channel group 2040 c′.
  • As described below with respect to FIGS. 19-20, one or both of the jaw members 410 and 420 may be disposed in optical communication with a light source 7321, 7322 and/or 7323 and the other of the jaw members 410 and 420 may be disposed in optical communication with a light sensor 7341 and/or 7342 for monitoring hydration levels in the tissue 2 during operation of the electrosurgical forceps 400.
  • FIGS. 15C and 15D illustrate yet another embodiment of the end effector assembly 405 of FIG. 14 having lower and upper jaw members 410 and 420, respectively. More particularly, end effector assembly 405 e includes upper jaw member 420 e that is identical to upper jaw member 420 d as described above with respect to FIGS. 15A and 15D. The jaw members, e.g., lower jaw member 410 e, may be substantially identical to lower jaw member 410 d described above with respect to FIGS. 15A and 15B. Lower jaw member 410 e is also configured with one or more optical sensors, e.g., first, second and third optical sensors 2026 a′, 2026 b′, 2026 c′, respectively, that are again similar to optical sensor 202′, as described previously with respect to FIG. 4B with the exception that the large diameter single optical fiber 208 is now included.
  • As illustrated in FIGS. 15C and 15D, one end 2080 a, 2080 b, 2080 c of each large diameter single optical fiber 208 a, 208 b, 208 c, respectively, is exposed directly on inwardly facing surface 410′ to sense light propagating in light paths 341 a, 341 b, 341 c, respectively, from patient tissue (not shown) and to communicate the light to be reflected via the respective prisms 206 a′, 206 b′, 206 c′ again through a plurality of optical fibers 204 a′, 204 b′, 204 c′ that are routed through individual channels in channel groups 2040 a′, 2040 b′, 2040 c′, respectively.
  • In a similar manner as with respect to end effector assembly 405 d described with respect to FIGS. 15A and 15C, the optical sensors 2026 a′, 2026 b′, 2026 c′ are each positioned to sense at least a portion of the light propagating in light paths 341 a, 341 b, 341 c, respectively, through the patient tissue. The light is transmitted by the optical transmitter 2026 positioned in the upper jaw member 420, for monitoring hydration levels in the patient tissue during operation of the electrosurgical forceps 400. To enable routing of the optical fibers 204 a′, 204 b′, 204 c′ in channel groups 2040 a′, 2040 b′, 2040 c′, the channel groups 2040 a′, 2040 b′, 2040 c′ are formed laterally offset from one another within the lower jaw member 410 d. More particularly, as indicated above, the first, second and third optical sensors 2026 a′, 2026 b′, 2026 c′ each have a large diameter single optical fiber 208 a, 208 b, 208 c associated with prisms 206 a′, 206 b′, 206 c′, respectively, that are mounted within the fixed jaw member 410 e. The first large diameter single optical fiber 208 a and associated prism 206 a′ are mounted distally of the second large diameter single optical fiber 208 b and associated second prism 206 b′, and the second large diameter single optical fiber 208 b and associated second prism 206 b′ are mounted distally of the third large diameter single optical fiber 208 c and associated prism 206 c′.
  • The first optical fiber 208 a and associated first prism 206 a′ may be mounted in proximity to first lateral edge 440 a of the surface 410 e. The second optical fiber 208 b and associated first prism 206 b′ may be laterally offset with respect to the first optical fiber 208 a and associated first prism 206 a′ and may be further laterally offset with respect to the first lateral edge 440 a. The third optical fiber 208 c and associated third prism 206 c′ may be laterally offset with respect to both first and second optical fiber 208 a, 208 b and associated prisms 206 a′ and 206 b′, respectively, and may be in proximity to second lateral edge 440 b of the surface 410 e.
  • Correspondingly, the first channel group 2040 a′ is laterally offset from the second channel group 2040 b′ and both the first and second channel groups 2040 a′ and 2040 b are laterally offset from third channel group 2040 c′.
  • The first jaw member 410 e is thus a compound jaw member in which the first, second and third optical fibers 208 a, 208 b, 208 c, respectively, extend partially into a secondary region 410 e′ defined within the first jaw member 410 e away from the surface 410′. Additionally, the first, second and third prisms 206 a′, 206 b′, 206 c′ and the optical fibers 204 a′, 204 b′, 204 c′ and channel groups 2040 a′, 2040 b′, 2040 c′ are mounted predominantly, if not entirely, within the secondary region 410 e′.
  • FIGS. 16, 16A, 17 and 18 illustrate various embodiments of an end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520 having one or more optical transmitters positioned to propagate light through patient tissue and one or more optical sensors positioned to sense at least a portion of the light propagating through the patient tissue for monitoring hydration levels in tissue during operation of the bipolar forceps. The end effector assembly 505 ay be configured such that the jaw members 510 and 520 remain substantially parallel to one another during the relative movement between the open position to the closed position and vice versa. One of the jaw members 510 or 520 may be in a fixed position with respect to a shaft (not shown). Alternatively, both of the jaw members 510 and 520 may be movable with respect to a shaft (not shown).
  • More particularly, referring first to FIGS. 16 and 16A, end effector assembly 505 a includes first jaw member 510 a and second jaw member 520 a having respective inwardly facing surfaces 510 a′ and 520 a′ associated therewith. The jaw members 510 a and 520 a are adapted for relative movement between an open position to receive tissue and a closed position engaging tissue between the inwardly facing surfaces 510 a′ and 520 a′.
  • In a similar manner as with respect to jaw members 410 and 420 discussed previously with respect to FIGS. 14A to 15D, the inwardly facing surfaces 510 a′ and 520 a′ of each jaw member 510 a and 520 a, respectively, is formed partially of an electrically conductive surface and of an electrically insulating surface. One or both of the jaw members 510 a and/or 520 a is configured to be connected to a source of electrosurgical energy (not shown). One of the jaw members may be in a fixed position with respect to a shaft (not shown).
  • One or both of the jaw members, e.g., jaw member 520 a, may be configured with one or more optical transmitters, e.g., optical transmitter 2027 a that is similar to optical transmitter 202 described previously with respect to FIG. 3A, except that optical transmitter 2027 a does not include large diameter optical fiber 208. The optical transmitter 2027 a includes prism 2060 a having surface 2061 that is exposed on inwardly facing surface 520 a′. The optical transmitter 2027 and associated prism 2060 a and surface 2061 are positioned to propagate light through patient tissue (not shown) in a light path 351 a.
  • Similarly, one of the jaw members, e.g., jaw member 510 a, may be configured with one or more optical sensors, e.g., optical sensor 2027 a′ that is similar to optical sensor 202′ described previously with respect to FIG. 3B, except that optical sensor 2027 a′ also does not include large diameter optical fiber 208. The optical sensor 2027 a′ includes prism 2060 a ′ having surface 2061′ that is exposed on inwardly facing surface 510 a′. The optical sensor 2027 a′ and associated prism 2060 a′ and surface 2061′ are positioned to sense at least a portion of the light propagating via light path 351 a through the patient tissue for monitoring hydration levels in tissue during operation of the electrosurgical forceps.
  • The light reflected via the respective prisms 2027 a and 2027 a′ propagates through plurality of optical fibers 204 a, 204 b, 204 c and 204 a′, 204 b′, 204 c′ that are routed through individual channels in channel groups 2040 a and 2040 a′ in jaw members 520 a and 510 a, respectively. The optical fibers 204 a, 204 b, 204 c and 204 a′, 204 b′, 204 c′ again have diameters that differ from one another. The optical fibers 204 a, 204 b, 204 c and 204 a′, 204 b′, 204 c′ are routed in individual channels to reduce interference between one another.
  • The optical transmitter 2027 a receives light propagating through channel group 2040 a from a light source 602 that is in optical-electrical communication therewith, while optical sensor 2027 a′ propagates light through channel group 2040 a′ that is in optical-electrical communication with a light detector 602′.
  • As illustrated in more detail in FIG. 16A, the prisms 2027 a and 2027 a′ may include angled surfaces 2062 and 2062′ with reflective coatings 2070 and 2070′, respectively, to increase the efficiency of the reflection of light via the prisms.
  • FIG. 17 illustrates another embodiment of end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520.
  • In a similar manner as with respect to end effector assembly 505 a described above with respect to FIGS. 16 and 16A, jaw members 510 b and 520 b of end effector assembly 505 b include, respectively, inwardly facing surfaces 510 b′ and 520 b′.
  • Jaw members 510 b and 520 b differ from jaw members 510 a and 520 a in that in place of optical transmitter 2027 a and optical sensor 2027 a, respectively, second jaw member 520 b includes optical transmitter 2510 b that is similar to optical transmitter 2510 having light-emitting electronic device 2561 and electric cable 2541 described above with respect to FIG. 4A, except that optical transmitter 2510 b does not include large diameter optical fiber 208. Optical transmitter 2027 b is in electrical communication with a processor 600.
  • Similarly, first jaw member 510 b includes optical sensor 2520 b that is similar to optical sensor 2520 having photo-electric detector 2562 and electrical cable 2542 described above with respect to FIG. 4B, except that optical sensor 2520 b also does not include large diameter optical fiber 208.
  • The optical transmitter 2510 b and optical sensor 2520 b are in electrical communication, via electrical cables 2541 and 2542, respectively, with a processor 604.
  • Optical transmitter 2027 b may propagate light from second surface 520 b′ in a path 351 b through patient tissue (not shown) to optical sensor 2027 b′ and that the propagation and intensity of the light may be controlled by the processor 604.
  • FIG. 18 illustrates yet another embodiment of end effector assembly 505 according to the present disclosure for a parallel jaw type bipolar electrosurgical forceps (not shown) having first and second jaw members 510 and 520.
  • In a similar manner as with respect to end effector assemblies 505 a and 505 b described above with respect to FIGS. 16, 16A and 17, jaw members 510 c and 520 c of end effector assembly 505 c include, respectively, inwardly facing surfaces 510 c′ and 520 c′. Second jaw member 520 c includes optical transmitter 2510 c that is identical to optical transmitter 2510 b illustrated in FIG. 17 and includes light-emitting electronic device 2561 and electrical cable 2541.
  • However, in contrast to first jaw member 510 b illustrated in FIG. 16, first jaw member 510 c includes optical sensor 2027 c′ which is similar to optical sensor 202′ described above with respect to FIG. 3B, and which includes large diameter optical fiber 208 having one end 2081 exposed on surface 510 c′ and which is in optical communication with prism 206 that is included in optical sensor 2027 c′. Additionally, optical sensor 2027 c′ differs from optical sensor 2027 a′ illustrated in FIGS. 16 and 16A in that in place of the plurality of optical fibers 204 a′, 204 b′, 204 c′ in optical communication with the prism 2060 a′, optical sensor 2027 c′ includes a large diameter optical fiber 2083 that is in optical communication with the prism 206 such that light emitted by optical transmitter 2510 c propagates in light path 351 c to be sensed at end 2081 of optical fiber 208 exposed on surface 510 c′. The light propagates in light path 351 c through large diameter optical fiber 208 to prism 206 where it is reflected to propagate through large diameter optical fiber 2083 to a photo-detector 606′.
  • The photo-detector 606′ is in communication with the processor 604. Similarly, the processor 604 is in communication with the light-emitting electronic device 2510 c of optical transmitter 2510 c via the electrical cable 2541. Optical transmitter 2510 c may propagate light from second surface 520 c′ in path 351 c through patient tissue (not shown) to optical sensor 2520 b and that the propagation and intensity of the light may be controlled by the processor 604.
  • Turning now to FIGS. 19-20, there is illustrated one embodiment of an optical hydrology system 700 according to the present disclosure that includes schematically an exemplary embodiment of an optical hydrology array 710 according to the present disclosure. Optical hydrology array 710 is formed, in one embodiment, in a flat rectangular plate type arrangement. The array 710 includes a first or lower surface 712 a that is configured in a generally flat shape suitable to be disposed in proximity to patient tissue 2 (see FIG. 19). A second or upper surface 712 b is disposed in a position opposite to the first or lower surface 712 a. First and second side walls 718 and 720, respectively, straddle between the first and second surfaces 712 a and 712 b, respectively to form the generally box-like flat rectangular plate type configuration of the array 710 for housing the optical components therein.
  • The array 710 further includes a plurality of apertures 722 that extend from the first surface 712 a to the second surface 712 b. The plurality of apertures 722 penetrate through the first and second surfaces 712 a and 712 b, respectively, and are configured in a matrix-like arrangement. The optical hydrology system 700 further includes a plurality of optical fibers 724 disposed in a corresponding number of apertures 722 disposed in the first and second surfaces 712 a and 712 b, respectively.
  • In one embodiment, the system 700 includes a generator 714 that is configured to supply electrosurgical energy to patient tissue 2. An optical spectrometer 716 is operably coupled to the generator 714. The electrosurgical generator 710 is operably coupled to the hydrology array 710. In addition, a processor 730 is disposed in operative communication with the generator 714 and with the spectrometer 716. The spectrometer 720 may include a light source 732 for transmitting light to expose the tissue 2 to light; and a light detector 734. The light detector 734 is configured to sense changes in light through the tissue 2 in response to tissue treatment and communicate such changes to the processor 730 to determine tissue hydration levels.
  • The plurality of optical fibers 724 are operably coupled to the generator 714 and are configured to communicate light between the generator 714 and the tissue 2. In one embodiment, the spectrometer 716 is a near infra-red spectrometer providing light in the near infrared wavelength range as the light source 722. More particularly, at least one of the optical fibers 724 a of the array 710 is configured to operatively communicate light 755 originating from the light source 732 to enable transmitting the light 755 towards the tissue 2. In addition, one or more of the optical fibers 724 b of the array 710 is configured to receive light reflected from the tissue 2 and to transport the light 755 to the light detector 734.
  • The light 755, originating from the light source 732, travels in a generally U-shaped path 760 from ends 726 of the optical fibers 724 a to ends 728 of optical fibers 724 b and then to the light detector 734. Thus, an optic fiber distance d is defined between adjacent optical fibers 724 and particularly between ends 726 of the optical fibers 724 a to ends 728 of optical fibers 724 b. The optical fiber distance d is within a range of about four (4) mm to about ten (10) mm to optimize and/or enable the transmission of light 755 through the tissue 2 to determine hydration levels in the tissue 2. In one embodiment, range of the distance d extends from about three (3) mm to about twelve (12) mm. The processor 730 is configured to at least record and/or analyze changes in hydration of the tissue 2 sensed by the spectrometer 716 across the optic fiber distance d. The “banana-shaped” path of light 755 is that portion of the light emitted at the end 726 of optical fiber 724 a that can be detected by the end 728 of the optical fiber 724 b and does not define the limits of the light distribution within the tissue 2.
  • In one embodiment, the system 700 includes a temperature monitor 702. The temperature monitor 702 may be an optical temperature monitor and operatively communicates with the processor 730 and may be operably coupled to one or more fibers 724 c. The temperature monitor 702 is described as an optical temperature monitor although other type of temperature monitors such as thermo-electrical or chemical or thermo-mechanical monitors may be used. The optical fiber(s) 724 c is/are configured to enable the temperature monitor 702 to monitor the temperature of the light 755 reflected through the tissue 2 originating from the light source 732. End 727 of the optical fiber 724 c that is configured to enable the temperature monitor 702 to monitor the temperature of the light 755 is positioned in interfacing relationship with the generally U-shaped path 760 of the light 755 that travels from the end 726 of the optical fiber 724 a to end 728 of optical fiber 724 b. The processor 730 is configured to record and/or analyze changes in temperature of the tissue 2 sensed by the temperature monitor 702.
  • In one embodiment, the system 700 may include a light source 732′ that is independent of the spectrometer 716. The independent light source 732′ is in optical communication with the optical fiber 724 a to propagate light 755 through the optical hydrology array and with the processor 730. Additionally, a mechanical-optical multiplexer switch 740 may be included in the path of optical fiber 724 b to enable the light 755 propagating through optical fiber 724 b to be transferred from the light detector 734 housed in the spectrometer 716 to the independent detector 734′.
  • FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch 740 included within the system 700 for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11.
  • FIG. 21 is a view of optical alignment member 742 included within the mechanical-optical multiplexer switch 742.
  • The multiplexer switch 742 provides mechanical-optical alignment between one or more light sources 732, e.g., light source 7321 emitting in a wavelength range of about 200 nanometers (nm) to about 2000 nm, light source 7322 emitting in a wavelength range of about 400 nm to about 2000 nm, and light source 7323 emitting in a wavelength range of about 600 nm to about 2000 nm and patient tissue 2 (see also FIG. 19) and between patient tissue 2 and one or more light detectors, e.g., light detector 7341 detecting in a wavelength range of about 300 nm to about 900 nm and light detector 7342 detecting in a wavelength range of about 850 nm to about 2500 nm. The wavelength ranges disclosed herein represent exemplary embodiments of the present disclosure and are not intended to be limiting.
  • The switch 740 includes a first optical fiber alignment member 742 (an “instrument side” optical alignment member) that is configured with at least first and second surfaces 742 a and 742 b, respectively, on opposing sides of the alignment member 742. The first and second surfaces 742 a and 742 b each include a plurality of ports disposed thereupon, e.g., ports d1, s1, d2, s2, d3, s3 on first surface 742 a and ports d1′, s1′, d2′, s2′, d3′, s3′ on second surface 742 b.
  • Two or more corresponding ports on the first surface, e.g., ports s1, s2, s3 on first surface 742 a, are configured to enable optical communication between one or more light sources, e.g., first light source 7321, second light source 7322, and third light source 7323, and the optical alignment member 742.
  • Additionally, two or more corresponding ports on the first surface, e.g., ports d1, d2, d3 on first surface 742 a are configured to enable optical communication between the optical alignment member 742 and one or more light detectors, e.g., light detector 7341 and light detector 7342.
  • Two or more corresponding ports on the second surface, e.g., ports s1′, s2′, s3′ on surface 742 b, are configured to enable optical communication between two or more corresponding ports on the first surface, e.g., ports s1, s2, s3, respectively, that are configured to enable optical communication between the one or more light sources, e.g., first light source 7321, second light source 7322, and third light source 7323, and the optical alignment member 742 via corresponding channels 762 disposed therebetween,
  • Similarly, two or more corresponding ports on the second surface, e.g., ports d1′, d2′, d3′, are configured to enable optical communication between two or more corresponding ports on the first surface, e.g., ports d1, d2, d3, respectively, that are configured to enable optical communication between the optical alignment member 742 and at least one light detector, e.g., light detector 7341 and light detector 7342, via corresponding channels 764 disposed therebetween.
  • As indicated in FIG. 20, ports s1 and s1′ are aligned with first light source 7321, ports s2 and s2′ are aligned with second light source 7322 and ports s3 and s3′ are aligned with light source 7323. Ports d1 and d1′ are aligned with first light detector 7341 and ports d2 and d2′ and d3 and d3′ are aligned with the second light detector 7342.
  • The switch 740 also includes a second optical fiber alignment member 752 a (a first “tissue-side” optical alignment member) configured with the first and second surfaces 754 a and 754 b, respectively. In a similar manner, the first and second surfaces 754 a and 754 b each include a plurality of ports 1d1′, 1s1′, 1d2′, 1s2′, 1d3′, 1s3′ and 1d1, 1s1, 1d2, 1s2, 1d3, 1s3, respectively, disposed thereupon,
  • Two or more corresponding ports on the first surface, e.g., ports 1s1′, 1s2′, 1s3′, are configured to enable optical communication between corresponding optical ports on the optical member 752, e.g., ports s1′, s2′, s3′ on the surface 742 b of the first optical member 742, via corresponding channels 762 disposed therebetween,
  • Two or more corresponding ports on the second surface, e.g., ports 1d1, 1d2, 1d3, of the second optical alignment member 752 are configured to enable optical communication between corresponding optical ports 1d1′, 1d2′, 1d3′ on the first surface 752 a of the second optical alignment member 752 a via corresponding channels 764 disposed therebetween and patient tissue 2.
  • Similarly, at least a third optical fiber alignment member, e.g., optical alignment members 752 b, 752 c . . . 752 n (or second, third . . . nth “tissue-side” optical alignment members) are also configured with at least the first and second surfaces 754 a and 754 b, respectively. Again, the first and second surfaces 754 a and 754 b each include a plurality of ports 1 disposed thereupon, e.g., ports 2s1′, 2s2′, 2s3′, 2d1′, 2d2′, 2d3′ and 2s1, 2s2, 2s3, 2d1, 2d2, 2d3 on surfaces 752 a and 752 b of third optical alignment member 752 b, ports 3s1′, 3s2′, 3s3′, 3d1′, 3d2′, 3d3′ and 3s1, 3s2, 3s3, 3d1, 3d2, 3d3 on surfaces 754 a and 754 b of fourth optical alignment member 752 c, up through ports ns1′, ns2′, ns3′, nd1′, nd2′, nd3′ and ns1, ns2, ns3, nd1, nd2, nd3 on surfaces 754 a and 754 b of nth optical alignment member 752 n, respectively.
  • In view of the foregoing description of optical alignment members 742 and 752 a, optical alignment is provided via the channels 762 and 764 and aforementioned ports of the third through nth optical alignment members 752 b through 754 n. As defined herein, the nth optical alignment member represents at least the third optical alignment member and may include a greater number within the limits of practicality.
  • As illustrated in FIG. 20, the first optical alignment member 742 is movable, as indicated via the arrows “A” and “B” in a linear direction, with respect to the second and at least the third optical alignment members, e.g., 752 a, 752 b, 752 c . . . 752 n to enable the optical alignment between the light sources 7321, 7322 and 7323 and patient tissue 2 and between patient tissue 2 and the light detectors 7341 and 7342.
  • The optical alignment occurs when the first optical alignment member 742 has been moved to a position with respect to, for example, fourth optical alignment member 752 c such that ports s1′, s2′, s3′ on the second surface 742 b of the first optical alignment member 742 are aligned with the ports 3s1′, 3s2′, 3s3′, respectively, on the first surface 754 a of the fourth optical alignment member 752 c, and when the ports d1′, d2′, d3′ on the second surface 742 b of the first optical alignment member 742 are aligned with the ports 3d1′, 3d2′, 3d3′ of the fourth optical alignment member 752 c.
  • For clarity, optical fibers are not shown in the channels 762 and 764 or separately numbered. The result of the optical alignment is that light from first light source 7321 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a first light path 7551 in patient tissue 2 between first light source 7321 emitting at a wavelength of about 200 nm to 2000 nm to first light detector 7341 detecting at wavelengths of about 300 nm to about 900 nm.
  • Similarly, light from second light source 7322 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a second light path 7552 in patient tissue 2 between second light source 7322 emitting at a wavelength of about 400 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • Additionally, light from third light source 7323 propagates through the optical fibers in the first optical alignment member 742 (“instrument side”) to interface with the corresponding optical fibers in the fourth optical alignment member 752 c (“tissue side”) to form a third light path 7553 in patient tissue 2 between third light source 7323 emitting at a wavelength of about 600 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • For simplicity, the same optical hydrology array 710 illustrated in FIG. 19 is positioned between the “tissue-side” optical alignment members 752 a . . . 752 n and the patient tissue 2. It should be noted that the same optical hydrology array 710 is associated with the differing “tissue-side” optical alignment members 752 a . . . 752 n. That is, different groups of the optical fibers associated with the optical hydrology array 710 are routed to and from through the array 10 and separate to be associated with corresponding “tissue-side” optical alignment members 752 a . . . 752 n to provide differing details of water motility information with respect to the patient tissue 2.
  • Although FIG. 20 is a schematic view of one embodiment of the mechanical-optical multiplexer switch 740 included within the system 700 for monitoring water displacement of FIG. 19 as configured with respect to the array of optical transmitters and optical sensors illustrated in FIG. 11, that is, the switch 740 is configured wherein one sensing (detecting) optical fiber is associated with a corresponding transmitting (source or emitting) optical fiber, system 700 may further be modified to include optical splitters (not shown) in the paths between the patient tissue 2 and the “tissue-side” optical alignment members 752 a, 752 b to 752 n to accommodate situations where there is a mis-match in the number of transmitting or source fibers with respect to the number of sensing or detecting fibers.
  • Similarly, system 700 may further be modified to include optical splitters (not shown) in the paths between the “instrument side” optical alignment member 742 and the light sources 7321, 7322, 7323 and light detectors 7341, 7342 also to accommodate situations where there is a mismatch in the number of transmitting or source fibers with respect to the number of sensing or detecting fibers.
  • The “instrument-side” optical alignment member 742 and the “tissue-side” optical alignment members 752 a . . . 752 n may be configured to be substantially identical, and are illustrated as mirror images of one another. Also, the number of ports d1, s1, d2, s2, d3, s3 and d1′, s1′, d2′, s2′, d3′, s3′ etc. and channels 762 and 764 may be varied as necessary or advantageous. Additionally, the mechanical-optical multiplexer switch 740 may be configured wherein the second and at least a third optical alignment members 752 a . . . 752 n (“tissue-side” members) are movable with respect to the first optical alignment member 742 (“instrument-side” member) to enable the optical alignment between the at least one light source, e.g., light sources 7321, 7322, 7323, and patient tissue 2 and between patient tissue 2 and the at least one light detector, e.g., light detectors 7341, 7342. Although such motion would also be linear as indicated by the arrows “A” and “B”, other configurations of the “tissue-side” optical alignment members 752 a . . . 752 n may be devised, such as wherein the optical alignment member 742 rotates around the optical alignment members 752 a . . . 752 b or vice versa. The embodiments are not limited with respect to the direction and type of motion of the optical alignment members.
  • The mechanical-optical multiplexer switch 740 has been described with respect to the electrically conductive member 300 d illustrated in FIG. 11, which in FIGS. 19-20 is equivalent to the optical hydrology array 710. The mechanical-optical multiplexer switch 740 is configured for the embodiment of FIG. 11 wherein the optical fibers are routed entirely to and from the patient tissue 2 as opposed to electrically conductive member 300 a illustrated in FIGS. 7 and 7A wherein light-emitting electronic devices 2561′ and photo-electric detectors 2562′ and 2563′ and associated electrical cables 2541 and 2542 are employed.
  • The mechanical-optical multiplexer switch 740 may be made from an opaque material such as a metal or metal alloy, a plastic or a ceramic or suitable combinations thereof to prevent interference by light transmission between the optical fibers in the various channels 762 and 764. Dashed box 770 represents a common housing within which the processor 730, spectrometer 716, and the generator 714 may be incorporated therein. Additionally, temperature monitor 702 may be incorporated within the housing 770 or may be located elsewhere such as on or in the electrosurgical instrument. Supporting structure (not shown) for the optical alignment members 742 and 752 a . . . 752 n may be provided by the switch housing. Also, the motion of the optical alignment members 742 and 752 a . . . 752 n with respect to each other may be effected by electrical, mechanical, chemical, pneumatic or other movers suitable for the application.
  • In view of the previous descriptions of electrosurgical pencil blades 106 a to 106 d described with respect to FIGS. 1-6B, of electrically conductive members 300 a to 300 f and 300 f′ described with respect to FIGS. 7 to 13, of end effector assemblies 405 a to 405 e described with respect to FIGS. 14 to 15D, and of end effector assemblies 505 a to 505 c described with respect to FIGS. 16 to 18, the electrosurgical pencil blades 106 a to 106 d, the electrically conductive members 300 a to 300 f and 300 f′, the end effector assemblies 405 a to 405 e, and the end effector assemblies 505 a to 505 c may be substituted for the optical hydrology array 710 in FIG. 19 for either light reflectance or light transmission applications, as applicable to the particular blade or assembly.
  • Referring to FIG. 19, the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • As described above with respect to FIG. 20, first light source 7321 emits light at a wavelength of about 200 nm to 2000 nm to first light detector 7341 detecting at wavelengths of about 300 nm to about 900 nm. Second light source 7322 emits light at a wavelength of about 400 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm. Additionally, third light source 7323 emits light at a wavelength of about 600 nm to 2000 nm to second light detector 7342 detecting at wavelengths of about 850 nm to about 2500 nm.
  • The values of the electrical, thermal and hydraulic conductivities of the tissue all depend on the quantity and location of the water content within the tissue. The analysis of the quantity and location of the water content within the tissue may be determined by comparing intensities of the light passing through the patient tissue both spatially and temporally, that is by comparing the measured intensities to the spatial location and to the time at which the measurements have been made.
  • First, a reference wavelength λr may be defined as a measured wavelength of light that is insensitive to the moisture content of the tissue. Reference wavelength λr is a function of x, y and t, where x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement. For any given tissue, there are multiple wavelengths λr that are insensitive to the moisture content of the tissue. The reference wavelength λr is then defined as follows:

  • λr=f(x,y,t)  Eq. 1
  • A reference intensity Ir may be defined as the intensity of light passing through patient tissue as measured at a selected particular reference wavelength λr that is a measured wavelength of light that is insensitive to the moisture content of the tissue. Since λr is a function of x, y and t, then Ir is also a function of λr, x, y and t, as follows:

  • Ir=f[λr(x,y,t)]  Eq. 2
  • Reference intensity Ir is measured at a wavelength that is known not to be sensitive to the presence of water.
  • Next, hydration wavelength λh may be defined as a measured wavelength of light at which the intensity of light passing through the tissue varies depending on the moisture content of the tissue. Hydration wavelength λh is a function of x, y and t, where x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement. The hydration wavelength λh is then defined as follows:

  • λh=f(x,y,t)  Eq. 3
  • For any given tissue sample, there are a range of multiple, discrete hydration wavelengths λh at which the intensity of light passing through patient tissue is sensitive to the moisture content of the tissue. The particular hydration wavelength λh at which the intensity of the light passing through patient tissue is measured during the electrosurgical procedure may be selected as that wavelength that exhibits the greatest level of gain with respect to the moisture content of the tissue.
  • A hydration intensity Ih may be defined as a function of λh, x, y and t, where Ah defines the measured wavelength of light that is dependent on the moisture content of the tissue, x and y define a two-dimensional location of the measurement within the patient tissue with respect to a reference set of x-y coordinate axes and t defines the time of the measurement. Therefore, the hydration intensity Ih is defined as follows:

  • Ih=f[λh(x,y,t)]  Eq. 4
  • The intensities Ir and Ih may be measured in counts of photon emissions per unit of time. Alternatively, other units of measurement may be applied such as the candela (cd, the Standards International SI unit of measurement for light intensity) or the lumen (Im, the SI unit for measuring the flux of light being produced by a light source or received by a surface) or the lumen hour (Im h, the SI unit for a quantity of light, equal to one lumen of light flux continued for one hour). The analysis of the moisture content is performed by calculating the ratio R of the hydration intensity Ih to the reference intensity Ir as follows:

  • R={Ih[λh(x,y,t)]/Ir[λr(x,y,t)]}  Eq. 5
  • At location x1, y1 at time t1, Ir is determined as a function of [λr(x1, y1, t1)]. Ih is determined as a function of [λh (x1, y1, t1)]. The ratio R is then calculated:

  • R(111/111)={Ih[λh(x1,y1,t1)]/Ir[λr(x1,y1,t1)]}  Eq. 6
  • where λh(x1, y1, t1) is the hydration wavelength measured at location x1, y1 at time t1 and λr(x1, y1, t1) is the reference wavelength measured at location x1, y1 at time t1.
  • A subsequent measurement of the reference wavelength λr, reference intensity Ir, hydration wavelength λh and hydration intensity Ih may be taken at the same location but at a different time and a new ratio of intensities calculated as follows:

  • R(112/112)={Ih[λh(x1,y1,t2)]/Ir[λr(x1,y1,t12]}  Eq. 7
  • where λh(x1, y1, t2) is the hydration wavelength measured at location x1, y1 at time t2 and λr(x1, y1, t2) is the reference wavelength measured at location x1, y1 at time t2.
  • Alternatively, another measurement of the reference wavelength λr, reference intensity Ir, hydration wavelength λh and hydration intensity Ih may be taken at a different location but at the same time and another ratio of intensities calculated as follows:

  • R(221/221)={Ih[λh(x2,y2,t1)]/Ir[λr(x2,y2,t1]}  Eq. 8
  • where λh(x2, y2, t1) is the hydration wavelength measured at location x2, y2 at time t1 and λr(x2, y2, t1) is the reference wavelength measured at location x2, y2 at time t1.
  • Yet another measurement of the reference wavelength λr, reference intensity Ir, hydration wavelength λh and hydration intensity Ih may be taken at a different location and a different time as follows:

  • R(222/222)={Ih[λh(x2,y2,t2)]/Ir[λr(x2,y2,t2]}  Eq. 9
  • where λh(x2, y2, t2) is the hydration wavelength measured at location x2, y2 at time t2 and λr(x2, y2, t2) is the reference wavelength measured at location x2, y2 at time t2.
  • As can be understood from the foregoing, the ratio R may be calculated at numerous desired locations and times. The location and time of the reference wavelength λr and reference intensity Ir need not correspond to the location and time of the hydration wavelength λh and hydration intensity Ih. In such an exemplary case, the ratio R may be calculated as follows:

  • R(221/112)={Ih[λh(x2,y2,t1)]/Ir[λr(x1,y1,t12]}  Eq. 10
  • where λh(x2, y2, t1) is the hydration wavelength measured at location x2, y2 at time t1 and λr(x1, y1, t2) is the reference wavelength measured at location x1, y1 at time t2.
  • The ratio R corrects for inconsistencies not related to the hydration level of the tissue. Such inconsistencies may include variation of the intensity of the light source or variations in the tissue that are not related to hydration content. The numerical values of the ratio R are dependent on the particular tissue undergoing the electrosurgical procedure and on the particular spectrometer. Wavelengths in the range of about 900 nm generally represent wavelengths at which the light intensity is generally not sensitive to hydration content and thus does not vary with hydration content. Such wavelengths may be selected as reference wavelengths λr. Wavelengths in the range of about 1500 nm generally represent wavelengths at which the light intensity is sensitive to hydration content, and thus do vary with hydration content. Such wavelengths may be selected as hydration wavelengths λh.
  • While the measurements of the ratio R may be calculated at a fixed value of the hydration wavelength λh during an electrosurgical procedure, for further validation of the results, the measurements of the ratio R may be calculated at one or more other values of the hydration wavelength λh during the electrosurgical procedure.
  • A refinement of the intensity measurements may be performed to further remove spurious factors to give a more accurate reading of tissue moisture content by various mathematical operations such as addition, subtraction, multiplication and division as follows:

  • Addition: R(111/111)+R(221/221)  Eq. 11

  • or

  • Subtraction: R(112/112)−R(111/111)  Eq. 12

  • or

  • Multiplication: R(111/221)*R(212/211)  Eq. 13

  • or

  • Division: R(222/212)/R(221/112),etc.  Eq. 14
  • If determined to be advantageous, the above calculated ratio values of intensities may also be raised exponentially, for example, as follows:

  • Multiplication: R(111/221)n *R(221/112)n,  Eq. 15
  • where n is a positive or negative number other than zero (and which may differ for each ratio reading such as R(111/221) or R(221/112), etc.)
  • The mechanical-optical multiplexer switch 740 in FIGS. 19-20 allows different wavelength intensities to be measured with respect to space and time, e.g., with respect to x-y coordinates and with respect to time t.
  • The array 710 provides a differential in water content and in water movement. Water movement could be in an elliptical pattern rather than a circular pattern. Based on any of the foregoing measurements, either with intensity ratio measurements alone or further refined by additional mathematical operations such as addition, subtraction, multiplication, division, etc., a Monte-Carlo analysis may be performed to determine the most probable location of the greatest moisture content within the tissue.
  • Movement of the mechanical-optical multiplexer switch 740 during the electrosurgical process enables acquisition of numerous intensity measurements at different locations and at different times from various locations within the array 710.
  • In view of the foregoing description of the optical hydrology array monitoring system 700 and electrosurgical pencil 100 and electrosurgical forceps 400, the present disclosure relates also to a method for monitoring water displacement in tissue during patient therapy. The method includes providing a spectrometer, e.g., spectrometer 716 that includes light source 732 and light detector 734. The method includes generating light 755 from the light source 732 that is reflected through the patient or subject tissue 2 and receiving the light 755 reflected through the tissue 2 wherein the light 755 reflected through the tissue 2 is received by the light detector 734.
  • The method may further include supplying electrosurgical energy to the tissue 2, e.g., via the electrosurgical generator 714 utilizing an energy source (not shown), sensing changes in light through the tissue 2 in response to tissue treatment, e.g. via the optical array 710, and determining changes in tissue hydration levels based on the sensed changes in light 755 through the tissue 2, e.g., via the optical spectrometer 716. The method may also include providing a processor such as the processor 730 to which the sensed changes in light 755 through the tissue 2 are communicated wherein the processor 730 determines the changes in tissue hydration levels based on the sensed changes in light 755 through the tissue 2. The processor 730 is operably coupled to the spectrometer 716 and/or the electrosurgical generator 714 and/or the energy source.
  • Additionally, in one embodiment, the method includes providing a plurality of optical fibers 724 arranged wherein at least one of the optical fibers 724 a is configured to operatively communicate light 755 originating from the light source 732 to enable transmitting light towards the tissue 2 and at least one of the optical fibers 724 b is configured to enable transporting light 755 reflected from the tissue 2.
  • The method may also include interfacing the one or more optical fibers 724 a to the light source 732 and the one or more optical fibers 724 b to the light detector 734. The method may also include configuring the plurality of optical fibers 724 in the array 710 to be separated to effect an optimal optic fiber distance d within the tissue 2, as described above.
  • In one embodiment, the method further includes providing light 755 in the near infrared wavelength range as the light source 732. Additionally, the method may be implemented by further including the steps of providing optical temperature monitor 702, providing one or more optical fibers 724 c that operatively couple to the optical temperature monitor 702, and monitoring the temperature of light 755 reflected through the tissue 2 originating from the light source 732.
  • The method may be implemented wherein the one or more optical fibers 724 c operatively coupled to the optical temperature monitor 702 is configured within the array 710.
  • In one embodiment, the method is implemented via a processor such as the processor 730 for recording and/or analyzing changes in hydration of the tissue 2 in time and/or space sensed by the spectrometer 716 based on the fiber optic distance d. Additionally, the method may be implemented wherein the processor 730 records and/or analyzes changes in temperature of the tissue 2 sensed by the optical temperature monitor 702.
  • Referring again to FIG. 1 and FIG. 19, the method is implemented wherein the array 710 and/or system 700 is incorporated in the electrosurgical pencil 100 including the housing 102 having proximal and distal ends 108 and 110, respectively, and the blade receptacle 105 defined at the distal end 110 of the housing 102 for supporting the electrosurgical blade 106 therein. The electrosurgical blade 106 is disposed in optical communication with the light source 732 and the light detector 734 and the method includes monitoring hydration levels in the tissue 2 during operation of the electrosurgical pencil 100.
  • Referring again to FIG. 14, the method is implemented wherein the arrays 710 and 710′ are incorporated in the electrosurgical forceps 400 including the pair of first and second jaw members 410 and 420, respectively, disposed in pivotal relationship with respect to one another and attached to the distal end 414 of at least one shaft 412. Each jaw member 410 and 420 supports the electrically conductive surfaces 410′ and 420′, respectively, thereon. At least one of the jaw members 410 and/or 420 is disposed in optical communication with the light source 732, via the optical fibers 724 of the respective arrays 710 and/or 710′, and the other of the jaw members 420 and/or 410, respectively being disposed in optical communication with the light detector 734, also via the optical fibers 724 of the respective arrays 710 and/or 710′. The method includes monitoring hydration levels in tissue 2 during operation of the electrosurgical forceps 400.
  • Again, the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • Whether the optical hydrology system with the array is applied to RF therapy or to microwave therapy, the water content is a solvent. The dissolved ions travel through the solvent and their optical characteristics enable the spectrometer to sense the presence and movement of water in the tissue. The electrosurgical generator thus may be driven to control the flow of water through the tissue to optimize the delivery of energy to the tissue and thus to enhance the therapeutic effect of the particular energy treatment being applied.
  • As described previously, such as with respect to FIGS. 7 to 13, the array of optical fibers may be arranged in various geometries to track the motility of water through the tissue. During tissue dessication, water must be displaced to other locations within the tissue. The system array can track movement of water and then control algorithms can optimize energy induction. Again, the near Infrared (IR) wavelength optical spectrometer 716 and optical fibers 724 sense changes across the array 710 and/or 710′ and correlate the changes with movement of water through the tissue. Light reflected by the tissue enables detecting water content and transmitted light.
  • Differences in fiber optic geometries enable detection and tracking of the manner in which water is moving through the tissue. The induction of energy can be slowly ramped up or the induction can be applied to immediately reach a steady peak value. Alternatively, the induction of energy can be applied in pulses. The energy induction process can be applied to force water out of tissue and control pulsing time and operation can be controlled to effect such forcing of water out of patient tissue.
  • Although the subject disclosure has been described with respect to exemplary embodiments, it will be readily apparent to those having ordinary skill in the art to which it appertains that changes and modifications may be made thereto without departing from the spirit or scope of the subject disclosure as defined by the appended claims.

Claims (22)

1-10. (canceled)
11. A system for monitoring water displacement in tissue during tissue treatment, comprising:
a generator configured to supply electrosurgical energy to tissue;
a spectrometer operably coupled to the generator; and
a processor in operative communication with the generator and with the spectrometer, the spectrometer including:
at least one light source configured to expose tissue to light; and
at least one light sensor configured to sense changes in light through tissue in response to tissue treatment and communicate such changes to the processor to determine tissue hydration levels.
12. The system according to claim 11, further comprising:
a plurality of optical fibers operably coupled to the generator and configured to communicate light between the spectrometer and tissue.
13. The system according to claim 12, wherein the plurality of optical fibers are configured in an array.
14. (canceled)
15. A method for monitoring water displacement in tissue during tissue treatment, comprising:
providing a spectrometer including a light source in operative communication with patient tissue;
generating light from the light source;
reflecting the light through patient tissue; and
receiving the light reflected through the patient tissue with a light sensor.
16. The method according to claim 15, further comprising:
supplying electrosurgical energy to patient tissue utilizing an energy source;
sensing changes in light through the patient tissue with the light sensor in response to patient tissue treatment; and
determining changes in patient tissue hydration levels based on the sensed changes in light through the patient tissue.
17. The method according to claim 16, further comprising:
providing a processor operatively coupled to at least one of the spectrometer and energy source for analyzing the sensed changes in light through the patient tissue.
18. The method according to claim 17, wherein the processor operatively communicates with the spectrometer and the method further comprises regulating the supply of electrosurgical energy to the patient tissue based on the sensed changes in light through the patient tissue.
19. (canceled)
20. A system for determining tissue hydration in patient tissue during tissue treatment, comprising:
a generator configured to supply electrosurgical energy to patient tissue;
a processor in operatively coupled to the generator;
a first light source operatively coupled to the processor and configured to expose patient tissue to light at a reference wavelength insensitive to the moisture content of patient tissue;
a second light source operatively coupled to the processor and configured to expose patient tissue to light at a hydration wavelength sensitive to the moisture content of patient tissue;
a first light sensor operatively coupled to the processor and configured to sense changes in light at the reference wavelength in response to tissue treatment; and
a second light sensor operatively coupled to the processor and configured to sense changes in light at the hydration wavelength in response to tissue treatment.
21. The system for determining tissue hydration in accordance with claim 20, wherein the processor is configured to:
receive sensed changes in light at the reference wavelength;
receive sensed changes in light at the hydration wavelength; and
computing tissue hydration based at least in part upon the sensed changes in light at the reference wavelength and the sensed changes in light at the hydration wavelength.
22. The system for determining tissue hydration in accordance with claim 21, wherein the processor is configured to determine the electrosurgical energy supplied to tissue by the generator.
23. The system for determining tissue hydration in accordance with claim 21, wherein the processor is configured to determine the electrosurgical energy supplied to tissue by the generator based at least in part upon the computed tissue hydration.
24. The system for determining tissue hydration in accordance with claim 20, wherein at least one of the first light sensor and the second light sensor are configured to sense light reflected from patient tissue.
25. The system for determining tissue hydration in accordance with claim 20, wherein at least one of the first light sensor and the second light sensor are configured to sense light transmitted through patient tissue.
26. A method for determining tissue hydration, comprising:
exposing tissue to light at a reference wavelength insensitive to the moisture content of tissue;
exposing tissue to light at a hydration wavelength sensitive to the moisture content of tissue;
sensing changes in light at the reference wavelength;
sensing changes in light at the hydration wavelength; and
comparing the sensed changes in light at the reference wavelength to the sensed changes in light at the hydration wavelength to determine tissue hydration.
27. The method for determining tissue hydration in accordance with claim 26, further comprising applying electrosurgical energy to tissue.
28. The method for determining tissue hydration in accordance with claim 27, further comprising modifying the electrosurgical energy in response to the determined tissue hydration.
29. The method for determining tissue hydration in accordance with claim 26, wherein sensing changes in light includes sensing changes in light reflected from tissue.
30. The method for determining tissue hydration in accordance with claim 26, wherein sensing changes in light includes sensing changes in light transmitted through tissue.
31. The method for determining tissue hydration in accordance with claim 26, wherein sensing changes in light includes sensing changes in light absorbed by tissue.
US14/109,459 2010-04-09 2013-12-17 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue Abandoned US20140107443A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/109,459 US20140107443A1 (en) 2010-04-09 2013-12-17 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/757,340 US8961504B2 (en) 2010-04-09 2010-04-09 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US14/109,459 US20140107443A1 (en) 2010-04-09 2013-12-17 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/757,340 Continuation US8961504B2 (en) 2010-04-09 2010-04-09 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue

Publications (1)

Publication Number Publication Date
US20140107443A1 true US20140107443A1 (en) 2014-04-17

Family

ID=44761475

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/757,340 Active 2033-02-27 US8961504B2 (en) 2010-04-09 2010-04-09 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US14/109,459 Abandoned US20140107443A1 (en) 2010-04-09 2013-12-17 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US12/757,340 Active 2033-02-27 US8961504B2 (en) 2010-04-09 2010-04-09 Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue

Country Status (1)

Country Link
US (2) US8961504B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US10231667B2 (en) 2014-10-31 2019-03-19 Koninklijke Philips N.V. Non-invasive dehydration monitoring
US10660694B2 (en) 2014-08-27 2020-05-26 Covidien Lp Vessel sealing instrument and switch assemblies thereof
US10687886B2 (en) 2013-03-11 2020-06-23 Covidien Lp Surgical instrument
US11090111B2 (en) 2013-03-11 2021-08-17 Covidien Lp Surgical instrument with switch activation control
US11207128B2 (en) 2013-03-11 2021-12-28 Covidien Lp Surgical instrument with system and method for springing open jaw members
US11331144B2 (en) * 2018-05-04 2022-05-17 Covidien Lp Light energy surgical system, apparatus, and method
US11350983B2 (en) 2014-01-29 2022-06-07 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US11806068B2 (en) 2020-12-15 2023-11-07 Covidien Lp Energy-based surgical instrument for grasping, treating, and/or dividing tissue

Families Citing this family (482)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364577B2 (en) 2002-02-11 2008-04-29 Sherwood Services Ag Vessel sealing system
JP4499992B2 (en) 2001-04-06 2010-07-14 コヴィディエン アクチェンゲゼルシャフト Vascular sealing machine and splitting machine having non-conductive stop member
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US9848938B2 (en) 2003-11-13 2017-12-26 Covidien Ag Compressible jaw configuration with bipolar RF output electrodes for soft tissue fusion
US7367976B2 (en) 2003-11-17 2008-05-06 Sherwood Services Ag Bipolar forceps having monopolar extension
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
CA2561034C (en) 2005-09-30 2014-12-09 Sherwood Services Ag Flexible endoscopic catheter with an end effector for coagulating and transfecting tissue
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8475453B2 (en) 2006-10-06 2013-07-02 Covidien Lp Endoscopic vessel sealer and divider having a flexible articulating shaft
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US7434717B2 (en) 2007-01-11 2008-10-14 Ethicon Endo-Surgery, Inc. Apparatus for closing a curved anvil of a surgical stapling device
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
RU2493788C2 (en) 2008-02-14 2013-09-27 Этикон Эндо-Серджери, Инк. Surgical cutting and fixing instrument, which has radio-frequency electrodes
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9585657B2 (en) 2008-02-15 2017-03-07 Ethicon Endo-Surgery, Llc Actuator for releasing a layer of material from a surgical end effector
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US8142473B2 (en) 2008-10-03 2012-03-27 Tyco Healthcare Group Lp Method of transferring rotational motion in an articulating surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
RU2525225C2 (en) 2009-02-06 2014-08-10 Этикон Эндо-Серджери, Инк. Improvement of drive surgical suturing instrument
US8187273B2 (en) 2009-05-07 2012-05-29 Tyco Healthcare Group Lp Apparatus, system, and method for performing an electrosurgical procedure
US8246618B2 (en) 2009-07-08 2012-08-21 Tyco Healthcare Group Lp Electrosurgical jaws with offset knife
US8133254B2 (en) 2009-09-18 2012-03-13 Tyco Healthcare Group Lp In vivo attachable and detachable end effector assembly and laparoscopic surgical instrument and methods therefor
US8112871B2 (en) 2009-09-28 2012-02-14 Tyco Healthcare Group Lp Method for manufacturing electrosurgical seal plates
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8597295B2 (en) 2010-04-12 2013-12-03 Covidien Lp Surgical instrument with non-contact electrical coupling
US8439913B2 (en) 2010-04-29 2013-05-14 Covidien Lp Pressure sensing sealing plate
US10265118B2 (en) 2010-05-04 2019-04-23 Covidien Lp Pinion blade drive mechanism for a laparoscopic vessel dissector
US8672939B2 (en) 2010-06-01 2014-03-18 Covidien Lp Surgical device for performing an electrosurgical procedure
US8585736B2 (en) 2010-06-02 2013-11-19 Covidien Lp Apparatus for performing an electrosurgical procedure
US9028495B2 (en) 2010-06-23 2015-05-12 Covidien Lp Surgical instrument with a separable coaxial joint
US8647343B2 (en) 2010-06-23 2014-02-11 Covidien Lp Surgical forceps for sealing and dividing tissue
US8795269B2 (en) 2010-07-26 2014-08-05 Covidien Lp Rotary tissue sealer and divider
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8814864B2 (en) 2010-08-23 2014-08-26 Covidien Lp Method of manufacturing tissue sealing electrodes
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US20120080498A1 (en) 2010-09-30 2012-04-05 Ethicon Endo-Surgery, Inc. Curved end effector for a stapling instrument
US8857694B2 (en) 2010-09-30 2014-10-14 Ethicon Endo-Surgery, Inc. Staple cartridge loading assembly
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
RU2013119928A (en) 2010-09-30 2014-11-10 Этикон Эндо-Серджери, Инк. A STAPLING SYSTEM CONTAINING A RETAINING MATRIX AND A LEVELING MATRIX
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9005200B2 (en) 2010-09-30 2015-04-14 Covidien Lp Vessel sealing instrument
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US9301753B2 (en) 2010-09-30 2016-04-05 Ethicon Endo-Surgery, Llc Expandable tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9700317B2 (en) 2010-09-30 2017-07-11 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasable tissue thickness compensator
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9277919B2 (en) 2010-09-30 2016-03-08 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising fibers to produce a resilient load
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9017372B2 (en) 2010-10-01 2015-04-28 Covidien Lp Blade deployment mechanisms for surgical forceps
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US9655672B2 (en) 2010-10-04 2017-05-23 Covidien Lp Vessel sealing instrument
US8932293B2 (en) 2010-11-17 2015-01-13 Covidien Lp Method and apparatus for vascular tissue sealing with reduced energy consumption
US8945175B2 (en) 2011-01-14 2015-02-03 Covidien Lp Latch mechanism for surgical instruments
US9113940B2 (en) 2011-01-14 2015-08-25 Covidien Lp Trigger lockout and kickback mechanism for surgical instruments
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US8900232B2 (en) 2011-05-06 2014-12-02 Covidien Lp Bifurcated shaft for surgical instrument
US8939972B2 (en) 2011-05-06 2015-01-27 Covidien Lp Surgical forceps
US8685009B2 (en) 2011-05-16 2014-04-01 Covidien Lp Thread-like knife for tissue cutting
US9113933B2 (en) * 2011-05-16 2015-08-25 Covidien Lp Optical energy-based methods and apparatus for tissue sealing
US8852185B2 (en) 2011-05-19 2014-10-07 Covidien Lp Apparatus for performing an electrosurgical procedure
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9615877B2 (en) 2011-06-17 2017-04-11 Covidien Lp Tissue sealing forceps
US9039732B2 (en) 2011-07-11 2015-05-26 Covidien Lp Surgical forceps
US8745840B2 (en) 2011-07-11 2014-06-10 Covidien Lp Surgical forceps and method of manufacturing thereof
US8852186B2 (en) 2011-08-09 2014-10-07 Covidien Lp Microwave sensing for tissue sealing
US8845636B2 (en) 2011-09-16 2014-09-30 Covidien Lp Seal plate with insulation displacement connection
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
USD680220S1 (en) 2012-01-12 2013-04-16 Coviden IP Slider handle for laparoscopic device
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US11399898B2 (en) 2012-03-06 2022-08-02 Briteseed, Llc User interface for a system used to determine tissue or artifact characteristics
US9375282B2 (en) * 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
MX358135B (en) 2012-03-28 2018-08-06 Ethicon Endo Surgery Inc Tissue thickness compensator comprising a plurality of layers.
MX350846B (en) 2012-03-28 2017-09-22 Ethicon Endo Surgery Inc Tissue thickness compensator comprising capsules defining a low pressure environment.
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140005678A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Rotary drive arrangements for surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
KR20140008546A (en) 2012-07-05 2014-01-22 삼성전자주식회사 Surgical tool, surgical robot having the same and remote control robot system
US9833285B2 (en) 2012-07-17 2017-12-05 Covidien Lp Optical sealing device with cutting ability
US9192421B2 (en) 2012-07-24 2015-11-24 Covidien Lp Blade lockout mechanism for surgical forceps
US10231782B2 (en) 2012-09-06 2019-03-19 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US10226297B2 (en) * 2012-09-06 2019-03-12 Covidien Lp Medical devices and methods incorporating frustrated total internal reflection for energy-efficient sealing and cutting of tissue using light energy
US9572529B2 (en) * 2012-10-31 2017-02-21 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US10206583B2 (en) * 2012-10-31 2019-02-19 Covidien Lp Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
MX364729B (en) 2013-03-01 2019-05-06 Ethicon Endo Surgery Inc Surgical instrument with a soft stop.
US9307986B2 (en) 2013-03-01 2016-04-12 Ethicon Endo-Surgery, Llc Surgical instrument soft stop
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9826976B2 (en) 2013-04-16 2017-11-28 Ethicon Llc Motor driven surgical instruments with lockable dual drive shafts
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
WO2014194317A1 (en) * 2013-05-31 2014-12-04 Covidien Lp Surgical device with an end-effector assembly and system for monitoring of tissue during a surgical procedure
EP3030176B1 (en) 2013-08-07 2022-09-28 Covidien LP Bipolar surgical instrument with tissue stop
US9962221B2 (en) 2013-08-07 2018-05-08 Covidien Lp Bipolar surgical instrument
US9808249B2 (en) 2013-08-23 2017-11-07 Ethicon Llc Attachment portions for surgical instrument assemblies
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US20140166726A1 (en) 2014-02-24 2014-06-19 Ethicon Endo-Surgery, Inc. Staple cartridge including a barbed staple
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10542988B2 (en) 2014-04-16 2020-01-28 Ethicon Llc End effector comprising an anvil including projections extending therefrom
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
JP6612256B2 (en) 2014-04-16 2019-11-27 エシコン エルエルシー Fastener cartridge with non-uniform fastener
CN106456176B (en) 2014-04-16 2019-06-28 伊西康内外科有限责任公司 Fastener cartridge including the extension with various configuration
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US20160038220A1 (en) 2014-08-11 2016-02-11 Covidien Lp Surgical instruments and methods for performing tonsillectomy and adenoidectomy procedures
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9724094B2 (en) 2014-09-05 2017-08-08 Ethicon Llc Adjunct with integrated sensors to quantify tissue compression
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
CN107427300B (en) 2014-09-26 2020-12-04 伊西康有限责任公司 Surgical suture buttress and buttress material
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US10245027B2 (en) 2014-12-18 2019-04-02 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10245028B2 (en) 2015-02-27 2019-04-02 Ethicon Llc Power adapter for a surgical instrument
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9993248B2 (en) * 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10722293B2 (en) * 2015-05-29 2020-07-28 Covidien Lp Surgical device with an end effector assembly and system for monitoring of tissue before and after a surgical procedure
US10405863B2 (en) 2015-06-18 2019-09-10 Ethicon Llc Movable firing beam support arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10028744B2 (en) 2015-08-26 2018-07-24 Ethicon Llc Staple cartridge assembly including staple guides
WO2017031712A1 (en) 2015-08-26 2017-03-02 Covidien Lp Electrosurgical end effector assemblies and electrosurgical forceps configured to reduce thermal spread
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10524788B2 (en) 2015-09-30 2020-01-07 Ethicon Llc Compressible adjunct with attachment regions
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10426543B2 (en) 2016-01-23 2019-10-01 Covidien Lp Knife trigger for vessel sealer
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10682154B2 (en) 2016-08-02 2020-06-16 Covidien Lp Cutting mechanisms for surgical end effector assemblies, instruments, and systems
US10631887B2 (en) 2016-08-15 2020-04-28 Covidien Lp Electrosurgical forceps for video assisted thoracoscopic surgery and other surgical procedures
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
BR112019011947A2 (en) 2016-12-21 2019-10-29 Ethicon Llc surgical stapling systems
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10667810B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Closure members with cam surface arrangements for surgical instruments with separate and distinct closure and firing systems
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10568625B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10813695B2 (en) * 2017-01-27 2020-10-27 Covidien Lp Reflectors for optical-based vessel sealing
EP3593749A4 (en) * 2017-03-10 2020-12-23 Sony Corporation Operation system, surgical system, control device, distortion body, surgical instrument, and external force detection system
US11172980B2 (en) 2017-05-12 2021-11-16 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
US10973567B2 (en) 2017-05-12 2021-04-13 Covidien Lp Electrosurgical forceps for grasping, treating, and/or dividing tissue
USD854684S1 (en) 2017-06-08 2019-07-23 Covidien Lp Open vessel sealer with mechanical cutter
USD854149S1 (en) 2017-06-08 2019-07-16 Covidien Lp End effector for open vessel sealer
USD843574S1 (en) 2017-06-08 2019-03-19 Covidien Lp Knife for open vessel sealer
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11389161B2 (en) 2017-06-28 2022-07-19 Cilag Gmbh International Surgical instrument comprising selectively actuatable rotatable couplers
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11376062B2 (en) 2018-10-12 2022-07-05 Covidien Lp Electrosurgical forceps
US11471211B2 (en) 2018-10-12 2022-10-18 Covidien Lp Electrosurgical forceps
US11350982B2 (en) 2018-12-05 2022-06-07 Covidien Lp Electrosurgical forceps
US11523861B2 (en) 2019-03-22 2022-12-13 Covidien Lp Methods for manufacturing a jaw assembly for an electrosurgical forceps
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
DE102019121366A1 (en) * 2019-08-07 2021-02-11 Aesculap Ag Apparatus and method for measuring tissue temperature
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
EP4082024A1 (en) 2019-12-23 2022-11-02 Covidien LP Energy-based surgical systems and methods based on an artificial-intelligence learning system
CN115066209A (en) 2020-02-06 2022-09-16 柯惠Lp公司 Systems and methods for suture guidance
EP4110216A1 (en) 2020-02-26 2023-01-04 Covidien LP Energy based surgical systems and methods based on an artificial-intelligence learning system
US11903635B2 (en) * 2020-02-28 2024-02-20 Covidien Lp Electrosurgical forceps including tissue indication
US11617612B2 (en) 2020-03-16 2023-04-04 Covidien Lp Forceps with linear trigger mechanism
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
US11737748B2 (en) 2020-07-28 2023-08-29 Cilag Gmbh International Surgical instruments with double spherical articulation joints with pivotable links
US11660109B2 (en) 2020-09-08 2023-05-30 Covidien Lp Cutting elements for surgical instruments such as for use in robotic surgical systems
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US20230096074A1 (en) * 2021-09-30 2023-03-30 Cilag Gmbh International Electrosurgical instrument with light accumulator end effector and fiber optics
US20230101623A1 (en) * 2021-09-30 2023-03-30 Cilag Gmbh International Electrosurgical system with optical sensor electronics
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6219566B1 (en) * 1999-07-13 2001-04-17 Photonics Research Ontario Method of measuring concentration of luminescent materials in turbid media
US20010039419A1 (en) * 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation device and method
US20010046047A1 (en) * 1999-12-01 2001-11-29 Ryer Damond V. Spectral instrument using multiple non-interfering optical beam paths and elements for use therewith
US20020026127A1 (en) * 2000-03-23 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US6405065B1 (en) * 1999-01-22 2002-06-11 Instrumentation Metrics, Inc. Non-invasive in vivo tissue classification using near-infrared measurements
US20040015163A1 (en) * 1998-10-23 2004-01-22 Buysse Steven P. Method and system for controlling output of RF medical generator
US6936004B2 (en) * 2001-09-06 2005-08-30 Pentax Corporation Probe and fluorescent diagnostic system
US20060161055A1 (en) * 2002-03-20 2006-07-20 Critisense, Ltd. Probe design
US20090303462A1 (en) * 2006-09-29 2009-12-10 Ottawa Hospital Research Institute Correlation technique for analysis of clinical condition
US20100049187A1 (en) * 2008-08-21 2010-02-25 Carlton John D Electrosurgical Instrument Including a Sensor

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU401367A1 (en) 1971-10-05 1973-10-12 Тернопольский государственный медицинский институт BIAKTIVNYE ELECTRO SURGICAL INSTRUMENT
DE2415263A1 (en) 1974-03-29 1975-10-02 Aesculap Werke Ag Surgical H.F. coagulation probe has electrode tongs - with exposed ends of insulated conductors forming tong-jaws
DE2514501A1 (en) 1975-04-03 1976-10-21 Karl Storz Bipolar coagulation instrument for endoscopes - has two high frequency electrodes looped over central insulating piece
FR2315286A2 (en) 1975-06-26 1977-01-21 Lamidey Marcel H.F. blood coagulating dissecting forceps - with adjustable stops to vary clamping space and circuit making contacts
USD263020S (en) 1980-01-22 1982-02-16 Rau Iii David M Retractable knife
DE3490633C2 (en) 1984-01-30 1988-06-23 Cahr Kovskij Ni Skij I Obscej Bipolar electrosurgical instrument
DE3423356C2 (en) 1984-06-25 1986-06-26 Berchtold Medizin-Elektronik GmbH & Co, 7200 Tuttlingen Electrosurgical high frequency cutting instrument
US4657016A (en) 1984-08-20 1987-04-14 Garito Jon C Electrosurgical handpiece for blades, needles and forceps
USD295893S (en) 1985-09-25 1988-05-24 Acme United Corporation Disposable surgical clamp
USD295894S (en) 1985-09-26 1988-05-24 Acme United Corporation Disposable surgical scissors
US4760845A (en) * 1987-01-14 1988-08-02 Hgm Medical Laser Systems, Inc. Laser angioplasty probe
DE8712328U1 (en) 1987-09-11 1988-02-18 Jakoubek, Franz, 7201 Emmingen-Liptingen, De
JP2806511B2 (en) 1990-07-31 1998-09-30 松下電工株式会社 Manufacturing method of sintered alloy
US5190541A (en) 1990-10-17 1993-03-02 Boston Scientific Corporation Surgical instrument and method
JP2951418B2 (en) 1991-02-08 1999-09-20 トキコ株式会社 Sample liquid component analyzer
USD348930S (en) 1991-10-11 1994-07-19 Ethicon, Inc. Endoscopic stapler
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5586982A (en) * 1992-04-10 1996-12-24 Abela; George S. Cell transfection apparatus and method
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5762609A (en) 1992-09-14 1998-06-09 Sextant Medical Corporation Device and method for analysis of surgical tissue interventions
DE4303882C2 (en) 1993-02-10 1995-02-09 Kernforschungsz Karlsruhe Combination instrument for separation and coagulation for minimally invasive surgery
GB9309142D0 (en) 1993-05-04 1993-06-16 Gyrus Medical Ltd Laparoscopic instrument
GB9322464D0 (en) 1993-11-01 1993-12-22 Gyrus Medical Ltd Electrosurgical apparatus
DE4403252A1 (en) 1994-02-03 1995-08-10 Michael Hauser Instrument shaft for min. invasive surgery
GB9413070D0 (en) 1994-06-29 1994-08-17 Gyrus Medical Ltd Electrosurgical apparatus
USD384413S (en) 1994-10-07 1997-09-30 United States Surgical Corporation Endoscopic suturing instrument
GB9425781D0 (en) 1994-12-21 1995-02-22 Gyrus Medical Ltd Electrosurgical instrument
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
DE19515914C1 (en) 1995-05-02 1996-07-25 Aesculap Ag Tong or scissor-shaped surgical instrument
US6293942B1 (en) 1995-06-23 2001-09-25 Gyrus Medical Limited Electrosurgical generator method
US7115123B2 (en) 1996-01-05 2006-10-03 Thermage, Inc. Handpiece with electrode and non-volatile memory
DE19608716C1 (en) 1996-03-06 1997-04-17 Aesculap Ag Bipolar surgical holding instrument
US5904709A (en) * 1996-04-17 1999-05-18 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Microwave treatment for cardiac arrhythmias
DE29616210U1 (en) 1996-09-18 1996-11-14 Winter & Ibe Olympus Handle for surgical instruments
US5923475A (en) 1996-11-27 1999-07-13 Eastman Kodak Company Laser printer using a fly's eye integrator
US5891142A (en) 1996-12-06 1999-04-06 Eggers & Associates, Inc. Electrosurgical forceps
US6626901B1 (en) 1997-03-05 2003-09-30 The Trustees Of Columbia University In The City Of New York Electrothermal instrument for sealing and joining or cutting tissue
USH2037H1 (en) 1997-05-14 2002-07-02 David C. Yates Electrosurgical hemostatic device including an anvil
DE19738457B4 (en) 1997-09-03 2009-01-02 Celon Ag Medical Instruments Method and device for in vivo deep coagulation of biological tissue volumes while sparing the tissue surface with high frequency alternating current
DE19751108A1 (en) 1997-11-18 1999-05-20 Beger Frank Michael Dipl Desig Electrosurgical operation tool, especially for diathermy
EP0923907A1 (en) 1997-12-19 1999-06-23 Gyrus Medical Limited An electrosurgical instrument
USD449886S1 (en) 1998-10-23 2001-10-30 Sherwood Services Ag Forceps with disposable electrode
US7901400B2 (en) 1998-10-23 2011-03-08 Covidien Ag Method and system for controlling output of RF medical generator
USD424694S (en) 1998-10-23 2000-05-09 Sherwood Services Ag Forceps
USD425201S (en) 1998-10-23 2000-05-16 Sherwood Services Ag Disposable electrode assembly
DE19858512C1 (en) 1998-12-18 2000-05-25 Storz Karl Gmbh & Co Kg Bipolar medical instrument for minimally invasive surgery for endoscopic operations; has mutually insulated leads passing through tubular shaft to conductor elements on linked jaw parts
US20030171747A1 (en) 1999-01-25 2003-09-11 Olympus Optical Co., Ltd. Medical treatment instrument
GB9911956D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and method
GB9911954D0 (en) 1999-05-21 1999-07-21 Gyrus Medical Ltd Electrosurgery system and instrument
GB9912625D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical generator and system
GB9912627D0 (en) 1999-05-28 1999-07-28 Gyrus Medical Ltd An electrosurgical instrument
GB9913652D0 (en) 1999-06-11 1999-08-11 Gyrus Medical Ltd An electrosurgical generator
WO2001001847A1 (en) 1999-07-06 2001-01-11 Inbae Yoon Penetrating endoscope and endoscopic surgical instrument with cmos image sensor and display
DE10003020C2 (en) 2000-01-25 2001-12-06 Aesculap Ag & Co Kg Bipolar barrel instrument
US6953461B2 (en) 2002-05-16 2005-10-11 Tissuelink Medical, Inc. Fluid-assisted medical devices, systems and methods
DE10027727C1 (en) 2000-06-03 2001-12-06 Aesculap Ag & Co Kg Scissors-shaped or forceps-shaped surgical instrument
US6537209B1 (en) 2000-09-14 2003-03-25 Itconcepts, Inc. Optical system of lateral observation endoscope
DE10045375C2 (en) 2000-09-14 2002-10-24 Aesculap Ag & Co Kg Medical instrument
US6679899B2 (en) 2000-10-20 2004-01-20 Ethicon Endo-Surgery, Inc. Method for detecting transverse vibrations in an ultrasonic hand piece
US6775575B2 (en) 2001-02-26 2004-08-10 D. Bommi Bommannan System and method for reducing post-surgical complications
USD457959S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
EP1435865A4 (en) 2001-09-05 2007-03-14 Tissuelink Medical Inc Fluid assisted medical devices, fluid delivery systems and controllers for such devices, and methods
US7011657B2 (en) 2001-10-22 2006-03-14 Surgrx, Inc. Jaw structure for electrosurgical instrument and method of use
US20050131390A1 (en) 2002-04-25 2005-06-16 Russell Heinrich Surgical instruments including mems devices
ES2289307T3 (en) 2002-05-06 2008-02-01 Covidien Ag BLOOD DETECTOR TO CONTROL AN ELECTROCHIRURGICAL UNIT.
US7967839B2 (en) 2002-05-20 2011-06-28 Rocky Mountain Biosystems, Inc. Electromagnetic treatment of tissues and cells
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
US7235072B2 (en) 2003-02-20 2007-06-26 Sherwood Services Ag Motion detector for controlling electrosurgical output
US7909820B2 (en) 2003-03-06 2011-03-22 Salient Surgical Technologies, Inc. Electrosurgical generator and bipolar electrosurgical device adaptors
US7128741B1 (en) 2003-04-04 2006-10-31 Megadyne Medical Products, Inc. Methods, systems, and devices for performing electrosurgical procedures
US7160299B2 (en) 2003-05-01 2007-01-09 Sherwood Services Ag Method of fusing biomaterials with radiofrequency energy
EP1617776B1 (en) 2003-05-01 2015-09-02 Covidien AG System for programing and controlling an electrosurgical generator system
USD496997S1 (en) 2003-05-15 2004-10-05 Sherwood Services Ag Vessel sealer and divider
USD499181S1 (en) 2003-05-15 2004-11-30 Sherwood Services Ag Handle for a vessel sealer and divider
KR100512369B1 (en) 2003-05-30 2005-09-02 주식회사 하이닉스반도체 Bit Line Isolation Circuit and Method of isolating Bit line
US20050059858A1 (en) 2003-09-16 2005-03-17 Frith Martin A. Endoscope magnetic rocker switch
USD509297S1 (en) 2003-10-17 2005-09-06 Tyco Healthcare Group, Lp Surgical instrument
USD541938S1 (en) 2004-04-09 2007-05-01 Sherwood Services Ag Open vessel sealer with mechanical cutter
DE102004026179B4 (en) 2004-05-14 2009-01-22 Erbe Elektromedizin Gmbh Electrosurgical instrument
USD533942S1 (en) 2004-06-30 2006-12-19 Sherwood Services Ag Open vessel sealer with mechanical cutter
USD535027S1 (en) 2004-10-06 2007-01-09 Sherwood Services Ag Low profile vessel sealing and cutting mechanism
USD531311S1 (en) 2004-10-06 2006-10-31 Sherwood Services Ag Pistol grip style elongated dissecting and dividing instrument
USD525361S1 (en) 2004-10-06 2006-07-18 Sherwood Services Ag Hemostat style elongated dissecting and dividing instrument
USD541418S1 (en) 2004-10-06 2007-04-24 Sherwood Services Ag Lung sealing device
USD567943S1 (en) 2004-10-08 2008-04-29 Sherwood Services Ag Over-ratchet safety for a vessel sealing instrument
USD564662S1 (en) 2004-10-13 2008-03-18 Sherwood Services Ag Hourglass-shaped knife for electrosurgical forceps
US20060089637A1 (en) * 2004-10-14 2006-04-27 Werneth Randell L Ablation catheter
US20090204114A1 (en) 2005-03-31 2009-08-13 Covidien Ag Electrosurgical Forceps with Slow Closure Sealing Plates and Method of Sealing Tissue
US7722607B2 (en) 2005-09-30 2010-05-25 Covidien Ag In-line vessel sealer and divider
US7789878B2 (en) 2005-09-30 2010-09-07 Covidien Ag In-line vessel sealer and divider
US8882766B2 (en) 2006-01-24 2014-11-11 Covidien Ag Method and system for controlling delivery of energy to divide tissue
US8685016B2 (en) 2006-01-24 2014-04-01 Covidien Ag System and method for tissue sealing
US8241282B2 (en) 2006-01-24 2012-08-14 Tyco Healthcare Group Lp Vessel sealing cutting assemblies
US8147485B2 (en) 2006-01-24 2012-04-03 Covidien Ag System and method for tissue sealing
US8216223B2 (en) 2006-01-24 2012-07-10 Covidien Ag System and method for tissue sealing
WO2007134039A2 (en) * 2006-05-08 2007-11-22 Medeikon Corporation Interferometric characterization of ablated tissue
US7662152B2 (en) * 2006-06-13 2010-02-16 Biosense Webster, Inc. Catheter with multi port tip for optical lesion evaluation
US7776037B2 (en) 2006-07-07 2010-08-17 Covidien Ag System and method for controlling electrode gap during tissue sealing
US7731717B2 (en) 2006-08-08 2010-06-08 Covidien Ag System and method for controlling RF output during tissue sealing
USD575395S1 (en) 2007-02-15 2008-08-19 Tyco Healthcare Group Lp Hemostat style elongated dissecting and dividing instrument
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
USD575401S1 (en) 2007-06-12 2008-08-19 Tyco Healthcare Group Lp Vessel sealer
DE202007009317U1 (en) 2007-06-26 2007-08-30 Aesculap Ag & Co. Kg Surgical instrument e.g. shear, for minimal invasive surgery, has tool unit connected with force transmission unit over flexible drive unit in sections for transmitting actuating force from force transmission unit to tool unit
US8357158B2 (en) 2008-04-22 2013-01-22 Covidien Lp Jaw closure detection system
US8968314B2 (en) 2008-09-25 2015-03-03 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8535312B2 (en) 2008-09-25 2013-09-17 Covidien Lp Apparatus, system and method for performing an electrosurgical procedure
US8469957B2 (en) 2008-10-07 2013-06-25 Covidien Lp Apparatus, system, and method for performing an electrosurgical procedure
US8852179B2 (en) 2008-10-10 2014-10-07 Covidien Lp Apparatus, system and method for monitoring tissue during an electrosurgical procedure
USD617900S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut bottom jaw
USD617902S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector tip with undercut top jaw
USD617901S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector chamfered tip
USD617903S1 (en) 2009-05-13 2010-06-15 Tyco Healthcare Group Lp End effector pointed tip
USD618798S1 (en) 2009-05-13 2010-06-29 Tyco Healthcare Group Lp Vessel sealing jaw seal plate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040015163A1 (en) * 1998-10-23 2004-01-22 Buysse Steven P. Method and system for controlling output of RF medical generator
US6405065B1 (en) * 1999-01-22 2002-06-11 Instrumentation Metrics, Inc. Non-invasive in vivo tissue classification using near-infrared measurements
US6219566B1 (en) * 1999-07-13 2001-04-17 Photonics Research Ontario Method of measuring concentration of luminescent materials in turbid media
US20010046047A1 (en) * 1999-12-01 2001-11-29 Ryer Damond V. Spectral instrument using multiple non-interfering optical beam paths and elements for use therewith
US20020026127A1 (en) * 2000-03-23 2002-02-28 Balbierz Daniel J. Tissue biopsy and treatment apparatus and method
US20010039419A1 (en) * 2000-04-27 2001-11-08 Medtronic, Inc. Vibration sensitive ablation device and method
US6936004B2 (en) * 2001-09-06 2005-08-30 Pentax Corporation Probe and fluorescent diagnostic system
US20060161055A1 (en) * 2002-03-20 2006-07-20 Critisense, Ltd. Probe design
US20090303462A1 (en) * 2006-09-29 2009-12-10 Ottawa Hospital Research Institute Correlation technique for analysis of clinical condition
US20100049187A1 (en) * 2008-08-21 2010-02-25 Carlton John D Electrosurgical Instrument Including a Sensor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9198717B2 (en) 2005-08-19 2015-12-01 Covidien Ag Single action tissue sealer
US10188452B2 (en) 2005-08-19 2019-01-29 Covidien Ag Single action tissue sealer
US10687886B2 (en) 2013-03-11 2020-06-23 Covidien Lp Surgical instrument
US11090111B2 (en) 2013-03-11 2021-08-17 Covidien Lp Surgical instrument with switch activation control
US11207128B2 (en) 2013-03-11 2021-12-28 Covidien Lp Surgical instrument with system and method for springing open jaw members
US11350983B2 (en) 2014-01-29 2022-06-07 Covidien Lp Tissue sealing instrument with tissue-dissecting electrode
US10660694B2 (en) 2014-08-27 2020-05-26 Covidien Lp Vessel sealing instrument and switch assemblies thereof
US10231667B2 (en) 2014-10-31 2019-03-19 Koninklijke Philips N.V. Non-invasive dehydration monitoring
US11331144B2 (en) * 2018-05-04 2022-05-17 Covidien Lp Light energy surgical system, apparatus, and method
US11806068B2 (en) 2020-12-15 2023-11-07 Covidien Lp Energy-based surgical instrument for grasping, treating, and/or dividing tissue

Also Published As

Publication number Publication date
US20110251605A1 (en) 2011-10-13
US8961504B2 (en) 2015-02-24

Similar Documents

Publication Publication Date Title
US8961504B2 (en) Optical hydrology arrays and system and method for monitoring water displacement during treatment of patient tissue
US11103135B2 (en) Surgical devices and methods utilizing optical coherence tomography (OCT) to monitor and control tissue sealing
US20170143260A1 (en) Surgical devices and methods utilizing optical coherence tomography (oct) to monitor and control tissue sealing
JP5336481B2 (en) Method and system for monitoring tissue during an electrosurgical procedure
CA2778509C (en) Electrosurgical apparatus with tissue site sensing and feedback control
US20200397378A1 (en) Apparatus and methods for optical position sensing
JP2009056289A (en) Ablation catheter with optically transparent electricity conductive tip
US11730530B2 (en) Device for tissue coagulation
CN103907001B (en) Engineering in medicine system comprising temperature sensor or temperature measuring equipment
KR20190038513A (en) Frequency domian based multi-wavelength bio-signal analysing apparatus and method thereof
US7725145B2 (en) Biological photometric device
JP3547968B2 (en) Pulse waveform detector
CN105726117A (en) Spectral Sensing Of Ablation
US20210282856A1 (en) Smart Surgical Laser Tissue Sealing And Cutting Apparatus With Optical Fiber Guided Sensors
JP2022543835A (en) Apparatus and method for measuring tissue temperature
JP2022548476A (en) Apparatus and method for determining the switch-off time of medical devices
CA2884985A1 (en) Multiple led sensors on a fiberoptic cable used as a catheter
US20220287760A1 (en) Device and method for tissue identification
US20160081555A1 (en) Multi-range optical sensing
KR101820798B1 (en) Method and apparatus of Homodyne-based diffuse optical spectroscopic imaging
JP2021041200A (en) Blood sugar change amount measuring device

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:031835/0538

Effective date: 20120928

Owner name: TYCO HEALTHCARE GROUP LP, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HOARAU, CARINE;PODHAJSKY, RONALD J.;SIGNING DATES FROM 20100323 TO 20100409;REEL/FRAME:031802/0683

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION