US20140112820A1 - Beta-based titanium alloy with low elastic modulus - Google Patents

Beta-based titanium alloy with low elastic modulus Download PDF

Info

Publication number
US20140112820A1
US20140112820A1 US14/076,136 US201314076136A US2014112820A1 US 20140112820 A1 US20140112820 A1 US 20140112820A1 US 201314076136 A US201314076136 A US 201314076136A US 2014112820 A1 US2014112820 A1 US 2014112820A1
Authority
US
United States
Prior art keywords
elastic modulus
titanium alloy
beta
titanium
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/076,136
Inventor
Dong Geun Lee
Yong Tae Lee
Xujun Mi
Wenjun Ye
Songxiao Hui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Korea Institute of Machinery and Materials KIMM
Original Assignee
Korea Institute of Machinery and Materials KIMM
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/KR2008/007693 external-priority patent/WO2009145406A1/en
Application filed by Korea Institute of Machinery and Materials KIMM filed Critical Korea Institute of Machinery and Materials KIMM
Priority to US14/076,136 priority Critical patent/US20140112820A1/en
Assigned to KOREA INSTITUTE OF MACHINERY & MATERIALS reassignment KOREA INSTITUTE OF MACHINERY & MATERIALS ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, DONG GEUN, LEE, YONG TAE, HUI, SONGXIAO, MI, XUJUN, YE, WENJUN
Publication of US20140112820A1 publication Critical patent/US20140112820A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium

Definitions

  • the present disclosure relates to a titanium alloy with a low elastic modulus, including no elements harmful to the human body, and more particularly, to a beta-based titanium alloy with a low elastic modulus, including titanium (Ti), niobium (Nb) and zirconium (Zr), and further including tantalum (Ta), hafnium (Hf), molybdenum (Mo), tin (Sn), and the like.
  • Titanium is widely used in the fields of aerospace, weaponry, nuclear power, sports and leisure, biomedicine and the like due to its high specific strength (strength/weight), high corrosion resistance, excellent mechanical properties including high temperature properties, and excellent biocompatibility.
  • Biomedical metals have been developed for use in implants for replacing bones, joints, teeth, and the like.
  • the biomedical metals are used for manufacturing a variety of prostheses such as artificial bones, artificial joints, and dental prostheses.
  • biomedical metals should be excellent in biocompatibility as well as mechanical properties, corrosion resistance, and chemical resistance. That is, biomedical metals should be non-toxic and not induce allergies in the human body.
  • Titanium and titanium alloys have been used as biomaterial for replacing stainless steel. In the beginning, pure titanium and titanium alloy such as Ti-6Al-4V were used as biomaterial.
  • biocompatible titanium alloys that have been developed to solve the problem of cytotoxicity are Ti-6Al-7Nb and Ti-5Al-2.5Fe, which are second-generation titanium alloys.
  • the stress shield effect is caused by elastic modulus difference between natural bone with a low elastic modulus and biocompatible material with a high elastic modulus.
  • a metal implant with a high elastic modulus bears most of the load applied to the region around the implant, and the natural bone in the region does not bear any tension, compression and bending for a long time.
  • the thickness and the weight of the natural bone are reduced gradually, causing serious problems such as osteoporosis around the implant.
  • This phenomenon is referred to as the “stress shield effect.”
  • the bonding strength between the natural bone and the artificial implant also decreases, resulting in decreased service life of the implant.
  • Ti-13Nb-13Zr (ASTM F1713), Ti-12Mo-6Zr-2Fe (ASTM F1813), Ti-15Mo (ASTM F2066), and the like have been developed throughout the world to solve the above mentioned problems.
  • a variety of alloys such as Ti-35Nb-5Ta-7Zr and Ti-16Nb-13Ta-4Mo in a similar composition range are being developed.
  • the titanium alloys hitherto developed have an elastic modulus of approximately 60 GPa to approximately 80 GPa, which is still much higher than the elastic modulus of natural bones that range from approximately 10 GPa to approximately 30 GPa. Accordingly, the problem of “stress shield effect” has not been completely solved yet. Therefore, there is a considerable demand for a material that is not harmful to the human body and, at the same time, has a lower elastic modulus.
  • the present disclosure provides a titanium alloy composition that is not harmful to the human body, has an elastic modulus as low as bones of the human body, and at the same time, is melted and cast easily and cost-effectively.
  • a beta phase generally has a low elastic modulus
  • the inventors selected alloying elements of titanium alloy on the basis of whether they can serve as a beta stabilizer in titanium alloy to lower the elastic modulus of titanium alloy.
  • the inventors selected the alloying elements of titanium alloy on the basis of whether they are harmless to the human body in terms of biochemical suitability, and whether the density, melting temperature and boiling temperature thereof are economically suitable when compared to titanium. Resultantly, as beta stabilizers satisfying the above requirements, niobium (Nb) and zirconium (Zr) were selected.
  • the inventors designed a titanium alloy composition having a low elastic modulus using a semi-experimental method for designing and developing an alloy.
  • the method includes calculating the covalent bond order and the energy level of the electrons according to the content of each alloying element, using the electronic state, which is the core of the discrete variational (DV)-Xa molecular orbital method.
  • micro-properties of the material can be analyzed approximately from the electronic state of the material by interpreting the Schrodinger equation and the like.
  • the inventors calculated the bonding order, B o and the energy level of the electrons, M d of the above-described alloying elements through the DV-Xa molecular orbital method, and discovered a beta-based titanium alloy composition with a low elastic modulus from there-among.
  • the titanium alloy with a low elastic modulus includes from 37 wt. % to 41 wt. % niobium (Nb), from 5 wt. % to 8 wt. % zirconium (Zr), and a balance of titanium, with unavoidable impurities.
  • the titanium alloy has an elastic modulus of 47 GPa or lower.
  • Zirconium has very high corrosion resistance in hot water under acidic or basic atmosphere. Zirconium forms oxide film even in air, showing high corrosion resistance. Zirconium is a biocompatible metal without the cytotoxic effect. It is preferable that zirconium is contained in the titanium alloy in a range from 5 wt. % to 8 wt. %. This is because the elastic modulus of the ternary alloy of titanium, niobium and zirconium increases considerably outside this range, so that it cannot be applied to a living body. It is more preferable that zirconium is contained in the titanium alloy in a range from 5.5 wt. % to 7 wt. %.
  • the elastic modulus of the titanium alloy it is possible to lower the elastic modulus of the titanium alloy to 47 GPa. It is preferable that the elastic modulus of the titanium alloy is 45 GPa or lower. And it is more preferable that the elastic modulus of the titanium alloy is 42 GPa or lower.
  • one or more elements selected from tantalum (Ta), hafnium (Hf), molybdenum (Mo), and tin (Sn) may be further added in the titanium alloy in a range of 3 wt. % or lower. It is preferable that they are added in a range from 0.1 wt. % to 3 wt. % in view of the elastic modulus factor.
  • Tantalum (Ta) is ductile, and has high mechanical strength even at high temperature. Tantalum forms a stable film with high electric resistance so that it is relatively free from oxidation in air. In addition, tantalum is highly resistant to acid, and has excellent compatibility with the human body, so that it can be used for cementing bones. Tantalum, when alloyed in titanium, serves as a major beta stabilizer.
  • Hafnium (Hf) has characteristics very similar to zirconium, and has excellent corrosion-resistance and bio-compatibility. It serves as a beta stabilizer when alloyed in titanium.
  • Molybdenum (Mo) has a relatively high melting point. However, it has excellent thermal conductivity, high corrosion resistance even in strong acid, and very favorable mechanical properties over a wide temperature range. It serves as a beta stabilizer when alloyed in titanium.
  • Tin (Sn) is stable in an air and has excellent ductility. It is soluble in acids and alkalis, and has a very low melting temperature of about 232° C. It is stable in the human body and thus widely used in the fields of table ware, plating and the like. It may also serve as a beta stabilizer when alloyed in titanium.
  • Addition of the above elements in an amount greater than 3 wt. % may affect the titanium-niobium-zirconium ternary system to increase the elastic modulus. Accordingly, the maximum content of the above-mentioned elements in the titanium alloy is set to 3 wt. % or lower.
  • the titanium alloy in accordance with the exemplary embodiments can be fabricated by various melting or casting methods such as vacuum induction melting (VIM), vacuum arc remelting (VAR), induction skull melting (ISM), plasma arc melting (PAM), electron beam melting (EBM) and the like.
  • VIM vacuum induction melting
  • VAR vacuum arc remelting
  • ISM induction skull melting
  • PAM plasma arc melting
  • EBM electron beam melting
  • the beta-based titanium alloy in accordance with the exemplary embodiments of the present invention has low elastic modulus and excellent mechanical properties. Therefore, it can be used in a variety of applications, for example, as a material for medical devices, such as artificial bones, artificial teeth and artificial hip joints, as a material for general civilian goods such as eyewear frames and headsets, and as a material for sports and leisure goods such as golf clubs.
  • FIG. 1 is a photograph of an ingot prepared by melting and casting a titanium alloy in accordance with an exemplary embodiment.
  • FIG. 2 is a photograph of a cylinder-shaped product prepared by drawing the ingot of FIG. 1 .
  • FIGS. 3 and 4 are micrographs, each showing a microstructure of a titanium alloy in accordance with Embodiment 1.
  • FIG. 5 is a micrograph showing a microstructure of a titanium alloy in accordance with Embodiment 2.
  • Ti-Nb-Zr ternary alloys having compositions as listed in Table 1 were prepared by a vacuum arc remelting (VAR) process.
  • Ti-Nb master alloy was used to cast beta-based titanium alloys.
  • the titanium alloys melted by the VAR process in accordance with the embodiment were cast into ingots as shown in FIG. 1 . Then, the ingots were processed into bars having a diameter of 15 mm as shown in FIG. 2 , through a drawing process.
  • the ingot had an excellent appearance. Surface crack, fracture and the like that are often generated during the drawing process were not observed in the surface of the bar. Accordingly, it can be concluded that the titanium alloys in accordance with the embodiment have good formability and good workability.
  • the alloy bar fabricated in accordance with the embodiment was cut into a section perpendicular to the drawing direction and a section parallel to the drawing direction.
  • the cut surface was first macro-polished with abrasive papers of up to 2400 grit and then micro-polished with a diamond paste.
  • the cut surface was etched with Kroll etchant (H 2 O 100 ml+HNO 3 5 ml+HF 3 ml) and then the microstructure of the cut surface was observed using an optical microscope.
  • FIG. 3 is a micrograph (at 200 ⁇ magnification) of a surface of the specimen No. 4 (Table 1) cut perpendicular to the drawing direction.
  • FIG. 4 is a micrograph (at 200 ⁇ magnification) of a surface of the specimen No. 4 (Table 1) cut parallel to the drawing direction.
  • the beta-based titanium alloy fabricated in accordance with the embodiment had uniform grain size, and showed no segregations and no defects.
  • the ternary titanium alloy in accordance with the embodiment can achieve the ultra-low elastic modulus, which has been difficult to achieve even in related art quaternary titanium alloys.
  • a titanium alloy in accordance with Embodiment 2 further includes tantalum (Ta) as shown in Table 2, so as to improve mechanical properties while still maintaining the low elastic modulus and including no elements harmful to the human body.
  • the titanium alloys were melted by the vacuum arc remelting (VAR) process, cast into ingots, and then drawn into bars, as described in Embodiment 1.
  • Specimens were cut from the alloy bars and polished mechanically. After etching the specimen, the microstructure was observed at a magnification of 50 ⁇ using an optical microscope. As shown in FIG. 5 , there were no segregations and no defects visible in the microstructure of the alloy.
  • the titanium alloys in accordance with Embodiment 2 were not increased in the elastic modulus in comparison with the titanium alloys in accordance with Embodiment 1. Accordingly, the titanium alloy in accordance with Embodiment 2 can be used to achieve the required mechanical properties as well as the elastic modulus.

Abstract

A beta-based titanium alloy with a low elastic modulus includes 37 wt. % to 41 wt. % niobium (Nb), 5 wt. % to 8 wt. % zirconium (Zr), and a balance of titanium (Ti), with unavoidable impurities, and having an elastic modulus of 47 GPa or lower. The beta-based titanium alloy has a much lower elastic modulus than the typical biomedical titanium alloys, and thus can resolve the problem of so-called “stress shield effect.” Therefore, the beta-based titanium alloy can be widely used as a material for general civilian goods such as eyewear frames and headsets and sports and leisure goods, as well as a biomedical material for artificial bones, artificial teeth and artificial hip joints.

Description

    CROSS REFERENCE TO PRIOR APPLICATIONS
  • This application is a Continuation In Part Application of copending U.S. patent application Ser. No. 12/994,083, filed on Nov. 22, 2010, which is a National Stage Patent Application of International Patent Application No. PCT/KR2008/007693 (filed on Dec. 24, 2008) under 35 U.S.C. §371, which claims priority to Korean Patent Application No. 10-2008-0049737 (filed on May 28, 2008), which are all hereby incorporated by reference in their entirety
  • BACKGROUND
  • The present disclosure relates to a titanium alloy with a low elastic modulus, including no elements harmful to the human body, and more particularly, to a beta-based titanium alloy with a low elastic modulus, including titanium (Ti), niobium (Nb) and zirconium (Zr), and further including tantalum (Ta), hafnium (Hf), molybdenum (Mo), tin (Sn), and the like.
  • Titanium is widely used in the fields of aerospace, weaponry, nuclear power, sports and leisure, biomedicine and the like due to its high specific strength (strength/weight), high corrosion resistance, excellent mechanical properties including high temperature properties, and excellent biocompatibility.
  • Biomedical metals have been developed for use in implants for replacing bones, joints, teeth, and the like. The biomedical metals are used for manufacturing a variety of prostheses such as artificial bones, artificial joints, and dental prostheses. Accordingly, biomedical metals should be excellent in biocompatibility as well as mechanical properties, corrosion resistance, and chemical resistance. That is, biomedical metals should be non-toxic and not induce allergies in the human body.
  • Titanium and titanium alloys have been used as biomaterial for replacing stainless steel. In the beginning, pure titanium and titanium alloy such as Ti-6Al-4V were used as biomaterial.
  • However, since it came to light that aluminum can cause Alzheimer's disease and vanadium is cytotoxic in the human body, unceasing efforts have been made to develop a new biocompatible alloy based on titanium.
  • Widely known examples of biocompatible titanium alloys that have been developed to solve the problem of cytotoxicity are Ti-6Al-7Nb and Ti-5Al-2.5Fe, which are second-generation titanium alloys.
  • Since the 1990s, the problem of “stress shield effect” was newly raised. The stress shield effect is caused by elastic modulus difference between natural bone with a low elastic modulus and biocompatible material with a high elastic modulus.
  • For example, a metal implant with a high elastic modulus bears most of the load applied to the region around the implant, and the natural bone in the region does not bear any tension, compression and bending for a long time. As a result, the thickness and the weight of the natural bone are reduced gradually, causing serious problems such as osteoporosis around the implant. This phenomenon is referred to as the “stress shield effect.” As the natural bone weakens and the density of the osseous tissue of the cortex decreases, the bonding strength between the natural bone and the artificial implant also decreases, resulting in decreased service life of the implant.
  • As a result, a demand arose for a biomedical metal that satisfies bio-mechanical suitability requirements as well as bio-chemical suitability requirements including cytotoxicity. That is, a demand emerged for a metal that is not harmful to the human body and has an elastic modulus as low as bones of the human body.
  • Ti-13Nb-13Zr (ASTM F1713), Ti-12Mo-6Zr-2Fe (ASTM F1813), Ti-15Mo (ASTM F2066), and the like have been developed throughout the world to solve the above mentioned problems. In addition, a variety of alloys such as Ti-35Nb-5Ta-7Zr and Ti-16Nb-13Ta-4Mo in a similar composition range are being developed.
  • However, the titanium alloys hitherto developed have an elastic modulus of approximately 60 GPa to approximately 80 GPa, which is still much higher than the elastic modulus of natural bones that range from approximately 10 GPa to approximately 30 GPa. Accordingly, the problem of “stress shield effect” has not been completely solved yet. Therefore, there is a considerable demand for a material that is not harmful to the human body and, at the same time, has a lower elastic modulus.
  • Considering that an alloying element of a high melting point may make the alloying process more difficult and increase the manufacturing cost, the ease of the fabrication process should be taken into account in the development of a titanium alloy.
  • SUMMARY
  • The present disclosure provides a titanium alloy composition that is not harmful to the human body, has an elastic modulus as low as bones of the human body, and at the same time, is melted and cast easily and cost-effectively.
  • Noting that a beta phase generally has a low elastic modulus, the inventors selected alloying elements of titanium alloy on the basis of whether they can serve as a beta stabilizer in titanium alloy to lower the elastic modulus of titanium alloy.
  • Also, the inventors selected the alloying elements of titanium alloy on the basis of whether they are harmless to the human body in terms of biochemical suitability, and whether the density, melting temperature and boiling temperature thereof are economically suitable when compared to titanium. Resultantly, as beta stabilizers satisfying the above requirements, niobium (Nb) and zirconium (Zr) were selected.
  • Then, the inventors designed a titanium alloy composition having a low elastic modulus using a semi-experimental method for designing and developing an alloy. The method includes calculating the covalent bond order and the energy level of the electrons according to the content of each alloying element, using the electronic state, which is the core of the discrete variational (DV)-Xa molecular orbital method.
  • Most properties of a material are determined by the electronic state of the material except when a nuclear reaction is involved. Based on the electronic state determining micro-properties of the material on an atomic scale, we can estimate the macro-properties of the material by performing statistical-mechanical analysis. Here, the micro-properties of the material can be analyzed approximately from the electronic state of the material by interpreting the Schrodinger equation and the like.
  • The inventors calculated the bonding order, Bo and the energy level of the electrons, Md of the above-described alloying elements through the DV-Xa molecular orbital method, and discovered a beta-based titanium alloy composition with a low elastic modulus from there-among.
  • In accordance with an exemplary embodiment, the titanium alloy with a low elastic modulus includes from 37 wt. % to 41 wt. % niobium (Nb), from 5 wt. % to 8 wt. % zirconium (Zr), and a balance of titanium, with unavoidable impurities. The titanium alloy has an elastic modulus of 47 GPa or lower.
  • As such, it is possible to realize a low elastic modulus of 47 GPa or lower, which is difficult to realize in a related art Ti-Nb-Zr ternary alloy.
  • Niobium (Nb), which is a major alloying element in the titanium alloy in accordance with the exemplary embodiment, is a soft, grey, ductile metal. Niobium is known as a biocompatible metal because it is stable and does not undergo toxic reactions with fiber cells, corrosion products, and bio-solutions in the human body. In addition, niobium is very stable at room temperature, and has very high corrosion resistance so that it is not corroded by oxygen and strong acids. It is preferable that niobium is contained in the titanium alloy in a weight percentage ranging from 37 wt. % to 41 wt. %. This is because the beta phase is difficult to form sufficiently outside this composition range, and thus the elastic modulus increases considerably to 65 GPa or higher. It is more preferable that niobium is contained in the titanium alloy in a weight percentage ranging from 38 wt. % to 40 wt. %.
  • Zirconium (Zr) has very high corrosion resistance in hot water under acidic or basic atmosphere. Zirconium forms oxide film even in air, showing high corrosion resistance. Zirconium is a biocompatible metal without the cytotoxic effect. It is preferable that zirconium is contained in the titanium alloy in a range from 5 wt. % to 8 wt. %. This is because the elastic modulus of the ternary alloy of titanium, niobium and zirconium increases considerably outside this range, so that it cannot be applied to a living body. It is more preferable that zirconium is contained in the titanium alloy in a range from 5.5 wt. % to 7 wt. %. According to an exemplary embodiment, it is possible to lower the elastic modulus of the titanium alloy to 47 GPa. It is preferable that the elastic modulus of the titanium alloy is 45 GPa or lower. And it is more preferable that the elastic modulus of the titanium alloy is 42 GPa or lower.
  • According to use, one or more elements selected from tantalum (Ta), hafnium (Hf), molybdenum (Mo), and tin (Sn) may be further added in the titanium alloy in a range of 3 wt. % or lower. It is preferable that they are added in a range from 0.1 wt. % to 3 wt. % in view of the elastic modulus factor.
  • Tantalum (Ta) is ductile, and has high mechanical strength even at high temperature. Tantalum forms a stable film with high electric resistance so that it is relatively free from oxidation in air. In addition, tantalum is highly resistant to acid, and has excellent compatibility with the human body, so that it can be used for cementing bones. Tantalum, when alloyed in titanium, serves as a major beta stabilizer.
  • Hafnium (Hf) has characteristics very similar to zirconium, and has excellent corrosion-resistance and bio-compatibility. It serves as a beta stabilizer when alloyed in titanium.
  • Molybdenum (Mo) has a relatively high melting point. However, it has excellent thermal conductivity, high corrosion resistance even in strong acid, and very favorable mechanical properties over a wide temperature range. It serves as a beta stabilizer when alloyed in titanium.
  • Tin (Sn) is stable in an air and has excellent ductility. It is soluble in acids and alkalis, and has a very low melting temperature of about 232° C. It is stable in the human body and thus widely used in the fields of table ware, plating and the like. It may also serve as a beta stabilizer when alloyed in titanium.
  • Addition of the above elements in an amount greater than 3 wt. % may affect the titanium-niobium-zirconium ternary system to increase the elastic modulus. Accordingly, the maximum content of the above-mentioned elements in the titanium alloy is set to 3 wt. % or lower.
  • The titanium alloy in accordance with the exemplary embodiments can be fabricated by various melting or casting methods such as vacuum induction melting (VIM), vacuum arc remelting (VAR), induction skull melting (ISM), plasma arc melting (PAM), electron beam melting (EBM) and the like.
  • The beta-based titanium alloy in accordance with the exemplary embodiments of the present invention has low elastic modulus and excellent mechanical properties. Therefore, it can be used in a variety of applications, for example, as a material for medical devices, such as artificial bones, artificial teeth and artificial hip joints, as a material for general civilian goods such as eyewear frames and headsets, and as a material for sports and leisure goods such as golf clubs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a photograph of an ingot prepared by melting and casting a titanium alloy in accordance with an exemplary embodiment.
  • FIG. 2 is a photograph of a cylinder-shaped product prepared by drawing the ingot of FIG. 1.
  • FIGS. 3 and 4 are micrographs, each showing a microstructure of a titanium alloy in accordance with Embodiment 1.
  • FIG. 5 is a micrograph showing a microstructure of a titanium alloy in accordance with Embodiment 2.
  • DETAILED DESCRIPTION
  • Hereinafter, specific embodiments will be described in detail with reference to the accompanying drawings. However, it should be understood that the description of the embodiment is merely illustrative and should not be taken in a limiting sense.
  • Embodiment 1
  • Ti-Nb-Zr ternary alloys having compositions as listed in Table 1 were prepared by a vacuum arc remelting (VAR) process.
  • In order for uniform alloy composition, process convenience, process economy, time and energy savings and the like, a Ti-Nb master alloy was used to cast beta-based titanium alloys.
  • The titanium alloys melted by the VAR process in accordance with the embodiment were cast into ingots as shown in FIG. 1. Then, the ingots were processed into bars having a diameter of 15 mm as shown in FIG. 2, through a drawing process.
  • The ingot had an excellent appearance. Surface crack, fracture and the like that are often generated during the drawing process were not observed in the surface of the bar. Accordingly, it can be concluded that the titanium alloys in accordance with the embodiment have good formability and good workability.
  • The alloy bar fabricated in accordance with the embodiment was cut into a section perpendicular to the drawing direction and a section parallel to the drawing direction. The cut surface was first macro-polished with abrasive papers of up to 2400 grit and then micro-polished with a diamond paste.
  • After the mechanical polishing, the cut surface was etched with Kroll etchant (H2O 100 ml+HNO3 5 ml+HF 3 ml) and then the microstructure of the cut surface was observed using an optical microscope.
  • FIG. 3 is a micrograph (at 200× magnification) of a surface of the specimen No. 4 (Table 1) cut perpendicular to the drawing direction. FIG. 4 is a micrograph (at 200× magnification) of a surface of the specimen No. 4 (Table 1) cut parallel to the drawing direction. Referring to FIGS. 3 and 4, the beta-based titanium alloy fabricated in accordance with the embodiment had uniform grain size, and showed no segregations and no defects.
  • Four test specimens were taken from the titanium alloy in accordance with the embodiment. Then, an elastic compression test was performed according to ASTM E9-89a specifications. The average elastic moduli of the specimens obtained from the elastic compression test are given in Table 1.
  • TABLE 1
    Specimen Composition of alloy Elastic
    No. (wt. %) modulus (GPa) Remarks
    1 Ti—34Nb—11Zr 68 Comparative
    2 Ti—35Nb—8.2Zr 72 Comparative
    3 Ti—37.9Nb—7.4Zr 41.5 Experimental
    4 Ti—38.9Nb—5.5Zr 38.9 Experimental
    5 Ti—39Nb—6Zr 40 Experimental
    6 Ti—40.9Nb—5Zr 40 Experimental
    7 Ti—38.2Nb—6Zr 41 Experimental
    8 Ti—37.5Nb—6.5Zr 45 Experimental
    9 Ti—40.5Nb—7.5Zr 47 Experimental
    10 Ti—42.4Nb—5Zr 67 Comparative
    11 Ti—42.4Nb—5.5Zr 74 Comparative
    12 Ti—43Nb—12Zr 81 Comparative
  • As can be seen from the measured elastic modulus data in Table 1, contents of niobium and zirconium in the comparative examples were similar to those in the experimental examples. However, the elastic moduli of the comparative examples were 50% to 100% greater than those of the experimental examples.
  • That is, by minimizing the addition of the alloying elements through a new alloy design for restricting the amount of the alloying elements, the ternary titanium alloy in accordance with the embodiment can achieve the ultra-low elastic modulus, which has been difficult to achieve even in related art quaternary titanium alloys.
  • Contrary to Embodiment 1, a titanium alloy in accordance with Embodiment 2 further includes tantalum (Ta) as shown in Table 2, so as to improve mechanical properties while still maintaining the low elastic modulus and including no elements harmful to the human body. The titanium alloys were melted by the vacuum arc remelting (VAR) process, cast into ingots, and then drawn into bars, as described in Embodiment 1.
  • Specimens were cut from the alloy bars and polished mechanically. After etching the specimen, the microstructure was observed at a magnification of 50× using an optical microscope. As shown in FIG. 5, there were no segregations and no defects visible in the microstructure of the alloy.
  • Further, the elastic compression test was performed four times according to ASTM E9-89a specifications to measure the elastic modulus of the alloy. The average elastic moduli of the specimens obtained from the elastic compression test are given in Table 2.
  • TABLE 2
    Specimen Composition of alloy Elastic
    No. (wt. %) modulus (GPa) Remarks
    13 Ti—37.3Nb—5.8Zr—2.9Ta 43 Experimental
    14 Ti—39Nb—6.5Zr—1.5Ta 39 Experimental
    15 Ti—37Nb—6Zr—2.8Ta 40 Experimental
  • As shown in Table 2, the titanium alloys in accordance with Embodiment 2 were not increased in the elastic modulus in comparison with the titanium alloys in accordance with Embodiment 1. Accordingly, the titanium alloy in accordance with Embodiment 2 can be used to achieve the required mechanical properties as well as the elastic modulus.

Claims (6)

What is claimed is:
1. A titanium alloy comprising 37 wt. % to 41 wt. % niobium (Nb), 5 wt. % to 8 wt. % zirconium (Zr), and a balance of titanium (Ti), with unavoidable impurities, and having an elastic modulus of 47 GPa or lower.
2. The titanium alloy of claim 1, wherein the elastic modulus thereof is 45 GPa or lower.
3. The titanium alloy of claim 1, wherein the elastic modulus thereof is 42 GPa or lower.
4. The titanium alloy with a low elastic modulus of claim 1, further comprising one or more elements selected from tantalum (Ta), hafnium (Hf), molybdenum (Mo) and tin (Sn), whose total content is 3 wt. % or lower.
5. The titanium alloy with a low elastic modulus of claim 1, wherein the content of niobium (Nb) is 38 wt. % to 40 wt. %, and the content of zirconium (Zr) is 5.5 wt. % to 7 wt. %.
6. The titanium alloy with a low elastic modulus of claim 4, wherein the content of niobium (Nb) is 38 wt. % to 40 wt. %, the content of zirconium (Zr) is 5.5 wt. % to 7 wt. %, and the titanium alloy further comprises 0.1 wt. % to 3 wt. % tantalum (Ta).
US14/076,136 2008-05-28 2013-11-08 Beta-based titanium alloy with low elastic modulus Abandoned US20140112820A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/076,136 US20140112820A1 (en) 2008-05-28 2013-11-08 Beta-based titanium alloy with low elastic modulus

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
KR20080049737 2008-05-28
KR10-2008-0049737 2008-05-28
PCT/KR2008/007693 WO2009145406A1 (en) 2008-05-28 2008-12-24 Beta-based titanium alloy with low elastic modulus
US99408310A 2010-11-22 2010-11-22
US14/076,136 US20140112820A1 (en) 2008-05-28 2013-11-08 Beta-based titanium alloy with low elastic modulus

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
PCT/KR2008/007693 Continuation-In-Part WO2009145406A1 (en) 2008-05-28 2008-12-24 Beta-based titanium alloy with low elastic modulus
US12/994,083 Continuation-In-Part US20110070121A1 (en) 2008-05-28 2008-12-24 Beta-based titanium alloy with low elastic modulus

Publications (1)

Publication Number Publication Date
US20140112820A1 true US20140112820A1 (en) 2014-04-24

Family

ID=50485507

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/076,136 Abandoned US20140112820A1 (en) 2008-05-28 2013-11-08 Beta-based titanium alloy with low elastic modulus

Country Status (1)

Country Link
US (1) US20140112820A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562730A (en) * 1989-12-21 1996-10-08 Smith & Nephew Richards, Inc. Total artificial heart device of enhanced hemocompatibility
US7261782B2 (en) * 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US7722805B2 (en) * 2003-12-25 2010-05-25 Institute Of Metal Research Chinese Academy Of Sciences Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5562730A (en) * 1989-12-21 1996-10-08 Smith & Nephew Richards, Inc. Total artificial heart device of enhanced hemocompatibility
US7261782B2 (en) * 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US7722805B2 (en) * 2003-12-25 2010-05-25 Institute Of Metal Research Chinese Academy Of Sciences Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NPL-1: Schneider et al, Study of the Non-linear stress-strain behavior in Ti-Nb-Zr alloys, Materials Research, Vol.8, No.4, pp435-438, 2005, *

Similar Documents

Publication Publication Date Title
EP2297370B1 (en) Beta-based titanium alloy with low elastic modulus
Liu et al. Binary titanium alloys as dental implant materials—a review
Ozan et al. New Ti-Ta-Zr-Nb alloys with ultrahigh strength for potential orthopedic implant applications
Hermawan et al. Metals for biomedical applications
US7722805B2 (en) Titanium alloy with extra-low modulus and superelasticity and its producing method and processing thereof
JP3330380B2 (en) Hot implant, method of manufacturing the same, and alloy useful for hot implant
WO2022257915A1 (en) Biomedical amorphous alloy and use thereof
Mat-Baharin et al. Influence of alloying elements on cellular response and in-vitro corrosion behavior of titanium-molybdenum-chromium alloys for implant materials
Hsu et al. Structure and mechanical properties of as-cast Ti–5Nb–xCr alloys
Guo et al. Preparation and characterization of metastable β-type titanium alloys with favorable properties for orthopedic applications
CN107541632A (en) A kind of bio-medical Mg Zn Zr magnesium alloys and preparation method thereof
KR100653160B1 (en) Production method of Ti-base alloy with low elastic modulus and excellent bio-compatibility
CN101760668B (en) Biological medical titanium alloy with low elastic modulus
Rokaya et al. Modification of titanium alloys for dental applications
Ozdemir et al. Understanding the enhanced corrosion performance of two novel Ti-based biomedical high entropy alloys
JP4212945B2 (en) Functional medical device and manufacturing method thereof
US20140112820A1 (en) Beta-based titanium alloy with low elastic modulus
KR100959197B1 (en) Titanium alloy with excellent bio-compatibility, low elastic modulus and high strength
JP3779368B2 (en) Biological composite implant material
Niinomi Casting
US20240002982A1 (en) Superelastic alloys
KR100393270B1 (en) Ti alloy composite
Hsu et al. Effect of thermomechanical treatment on structure and properties of metastable Ti-25Nb-8Sn alloy
JP2000087160A (en) Titanium alloy for living body
Zheng¹ et al. New kind of titanium alloys for biomedical application

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOREA INSTITUTE OF MACHINERY & MATERIALS, KOREA, R

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LEE, DONG GEUN;LEE, YONG TAE;MI, XUJUN;AND OTHERS;SIGNING DATES FROM 20131106 TO 20131107;REEL/FRAME:031610/0414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION