US20140163356A2 - Insertion Guidance System for Needles and Medical Components - Google Patents

Insertion Guidance System for Needles and Medical Components Download PDF

Info

Publication number
US20140163356A2
US20140163356A2 US13/118,033 US201113118033A US2014163356A2 US 20140163356 A2 US20140163356 A2 US 20140163356A2 US 201113118033 A US201113118033 A US 201113118033A US 2014163356 A2 US2014163356 A2 US 2014163356A2
Authority
US
United States
Prior art keywords
needle
probe
catheter
magnetic
guidance system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/118,033
Other versions
US9554716B2 (en
US20110282188A1 (en
Inventor
Eddie K. Burnside
Kelly B. Powers
Shayne Messerly
Jiaye Z. Jho
Bret Hamatake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CR Bard Inc
Original Assignee
CR Bard Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/323,273 external-priority patent/US8388541B2/en
Priority to US13/118,033 priority Critical patent/US9554716B2/en
Priority to US13/118,138 priority patent/US9456766B2/en
Application filed by CR Bard Inc filed Critical CR Bard Inc
Assigned to C.R. BARD, INC. reassignment C.R. BARD, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HAMATAKE, BRET, MESSERLY, SHAYNE, JHO, JIAYE Z., POWERS, KELLY B., BURNSIDE, EDDIE K.
Publication of US20110282188A1 publication Critical patent/US20110282188A1/en
Priority to ES11850625T priority patent/ES2900584T3/en
Priority to PCT/US2011/067268 priority patent/WO2012088535A1/en
Priority to JP2013546461A priority patent/JP2014501143A/en
Priority to EP11850625.2A priority patent/EP2654559B1/en
Priority to US13/336,919 priority patent/US9521961B2/en
Priority to CN201180068309.9A priority patent/CN103379853B/en
Priority to CN201610166569.4A priority patent/CN105796177B/en
Priority to EP21185773.5A priority patent/EP3918989A3/en
Priority to US13/543,586 priority patent/US9492097B2/en
Priority to US14/040,205 priority patent/US10524691B2/en
Priority to US14/054,700 priority patent/US10449330B2/en
Priority to US14/141,046 priority patent/US11123099B2/en
Publication of US20140163356A2 publication Critical patent/US20140163356A2/en
Priority to US14/788,305 priority patent/US10238418B2/en
Priority to US15/284,355 priority patent/US10342575B2/en
Priority to US15/365,698 priority patent/US10602958B2/en
Priority to US15/365,752 priority patent/US10231753B2/en
Publication of US9554716B2 publication Critical patent/US9554716B2/en
Application granted granted Critical
Priority to US15/842,685 priority patent/US20180116551A1/en
Priority to US16/653,594 priority patent/US20200054858A1/en
Priority to US16/734,011 priority patent/US20200138332A1/en
Priority to US16/830,040 priority patent/US11529070B2/en
Priority to US17/389,191 priority patent/US20210353173A1/en
Priority to US17/471,034 priority patent/US20210401456A1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0833Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures
    • A61B8/0841Detecting organic movements or changes, e.g. tumours, cysts, swellings involving detecting or locating foreign bodies or organic structures for locating instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/90Identification means for patients or instruments, e.g. tags
    • A61B90/98Identification means for patients or instruments, e.g. tags using electromagnetic means, e.g. transponders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3403Needle locating or guiding means
    • A61B2017/3413Needle locating or guiding means guided by ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2063Acoustic tracking systems, e.g. using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/378Surgical systems with images on a monitor during operation using ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/467Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient characterised by special input means

Definitions

  • embodiments of the present invention are directed to an integrated catheter placement system configured for accurately placing a catheter within the vasculature of a patient.
  • the integrated system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location system (“TLS”), or magnetically-based (e.g., via permanent magnet(s) or electromagnet(s)) tracking of the catheter tip during its advancement through the vasculature to detect and facilitate correction of any tip malposition during such advancement.
  • TLS tip location system
  • the integrated system comprises a system console including a control processor, a tip location sensor for temporary placement on a portion of a body of the patient, and an ultrasound probe.
  • the tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature.
  • the ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter into the vasculature.
  • the ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode.
  • a third modality i.e., ECG signal-based catheter tip guidance, is included in the system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate.
  • embodiments of the present disclosure are also directed to a guidance system for assisting with the insertion of a needle or other medical component into the body of a patient.
  • the guidance system utilizes ultrasound imaging or other suitable imaging technology.
  • the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a subcutaneous vessel, for instance.
  • One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle.
  • the system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions.
  • the system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
  • magnet-based detection In addition to magnet-based detection, other modalities for detecting the medical component are disclosed, including optically-based and electromagnetic signal-based systems.
  • FIG. 1 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to one example embodiment of the present invention
  • FIG. 2 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 1 ;
  • FIGS. 3A and 3B are views of a probe of the integrated system of FIG. 1 ;
  • FIG. 4 is a screenshot of an ultrasound image as depicted on a display of the integrated system of FIG. 1 ;
  • FIG. 5 is a perspective view of a stylet employed in connection with the system of FIG. 1 in placing a catheter within a patient vasculature;
  • FIG. 6 is an icon as depicted on a display of the integrated system of FIG. 1 , indicating a position of a distal end of the stylet of FIG. 5 during catheter tip placement procedures;
  • FIGS. 7A-7E depict various example icons that can be depicted on the display of the integrated system of FIG. 1 during catheter tip placement procedures;
  • FIGS. 8A-8C are screenshots of images depicted on a display of the integrated system of FIG. 1 during catheter tip placement procedures;
  • FIG. 9 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to another example embodiment of the present invention.
  • FIG. 10 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 9 ;
  • FIG. 11 is a perspective view of a stylet employed in connection with the integrated system of FIG. 9 in placing a catheter within a patient vasculature;
  • FIGS. 12A-12E are various views of portions of the stylet of FIG. 11 ;
  • FIGS. 13A-13D are various views of a fin connector assembly for use with the integrated system of FIG. 9 ;
  • FIGS. 14A-14C are views showing the connection of a stylet tether and fin connector to a sensor of the integrated system of FIG. 9 ;
  • FIG. 15 is a cross sectional view of the connection of the stylet tether, fin connector, and sensor shown in FIG. 14C ;
  • FIG. 16 is simplified view of an ECG trace of a patient
  • FIG. 17 is a screenshot of an image depicted on a display of the integrated system of FIG. 9 during catheter tip placement procedures;
  • FIG. 18 is a block diagram depicting various elements of an ultrasound-based guidance system for needles and other medical components, according to one embodiment
  • FIG. 19 is a simplified view of a patient and a catheter being inserted therein, showing one possible environment in which the guidance system of FIG. 18 can be practiced;
  • FIG. 20 is a top view of the ultrasound probe of the guidance system of FIG. 18 ;
  • FIG. 21A is a side view of a needle for use with the guidance system of FIG. 18 , according to one embodiment
  • FIG. 21B is an end view of the needle of FIG. 21A ;
  • FIGS. 22A and 22B are simplified views of the ultrasound probe of the guidance system being used to guide a needle toward a vessel within the body of a patient;
  • FIGS. 23A and 23B show possible screenshots for depiction on the display of the guidance system, showing the position and orientation of a needle according to one embodiment
  • FIG. 24 shows various stages of a method for guiding a needle to a desired target within the body of a patient according to one embodiment
  • FIG. 25 shows a sensor array for attachment to an ultrasound probe and associated display, according to one embodiment
  • FIG. 26 is a simplified view of a needle holder gun for use with the guidance system of FIG. 18 , according to one embodiment
  • FIG. 27 is a simplified view of an ultrasound probe and needle including elements of an optical guidance system, according to one embodiment
  • FIG. 28 shows operation of the ultrasound probe and needle of FIG. 27 , according to one embodiment
  • FIG. 29 is a simplified view of an ultrasound probe and needle including elements of an electromagnetic signal-based guidance system, according to one embodiment
  • FIG. 30 is a simplified view of an ultrasound probe and needle including elements of an electromagnetic signal-based guidance system, according to another embodiment
  • FIGS. 31A-31D are various views of a needle and associated components for use with a needle guidance system, according to one embodiment
  • FIG. 32 is a side view of a needle for use with a needle guidance system, according to one embodiment
  • FIGS. 33A and 33B are various views of a needle for use with a needle guidance system, according to one embodiment.
  • FIGS. 34A-34G are views of variously shaped magnetic elements for use with a needle guidance system according to one embodiment.
  • proximal refers to a direction relatively closer to a clinician using the device to be described herein
  • distal refers to a direction relatively further from the clinician.
  • end of a needle placed within the body of a patient is considered a distal end of the needle, while the needle end remaining outside the body is a proximal end of the needle.
  • the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”
  • Embodiments of the present invention are generally directed to a catheter placement system configured for accurately placing a catheter within the vasculature of a patient.
  • the catheter placement system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location/navigation system (“TLS”), or magnetically-based tracking of the catheter tip during its advancement through the tortuous vasculature path to detect and facilitate correction of any tip malposition during such advancement.
  • TLS tip location/navigation system
  • the ultrasound guidance and tip location features of the present system according to one embodiment are integrated into a single device for use by a clinician placing the catheter.
  • the integrated catheter placement system enables ultrasound and TLS activities to be viewed from a single display of the integrated system.
  • controls located on an ultrasound probe of the integrated device which probe is maintained within the sterile field of the patient during catheter placement, can be used to control functionality of the system, thus precluding the need for a clinician to reach out of the sterile field in order to control the system.
  • a third modality i.e., ECG signal-based catheter tip guidance
  • ECG signal-based catheter tip guidance is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate.
  • ECG-based positional assistance is also referred to herein as “tip confirmation.”
  • Combination of the three modalities above enables the catheter placement system to facilitate catheter placement within the patient's vasculature with a relatively high level of accuracy, i.e., placement of the distal tip of the catheter in a predetermined and desired position. Moreover, because of the ECG-based guidance of the catheter tip, correct tip placement may be confirmed without the need for a confirmatory X-ray. This, in turn, reduces the patient's exposure to potentially harmful x-rays, the cost and time involved in transporting the patient to and from the x-ray department, costly and inconvenient catheter repositioning procedures, etc.
  • FIGS. 1 and 2 depict various components of a catheter placement system (“system”), generally designated at 10 , configured in accordance with one example embodiment of the present invention.
  • the system 10 generally includes a console 20 , display 30 , probe 40 , and sensor 50 , each of which is described in further detail below.
  • FIG. 2 shows the general relation of these components to a patient 70 during a procedure to place a catheter 72 into the patient vasculature through a skin insertion site 73 .
  • the catheter 72 generally includes a proximal portion 74 that remains exterior to the patient and a distal portion 76 that resides within the patient vasculature after placement is complete.
  • the system 10 is employed to ultimately position a distal tip 76 A of the catheter 72 in a desired position within the patient vasculature.
  • the desired position for the catheter distal tip 76 A is proximate the patient's heart, such as in the lower one-third (1 ⁇ 3 rd ) portion of the Superior Vena Cava (“SVC”).
  • SVC Superior Vena Cava
  • the catheter proximal portion 74 further includes a hub 74 A that provides fluid communication between the one or more lumens of the catheter 72 and one or more extension legs 74 B extending proximally from the hub.
  • FIG. 8C An example implementation of the console 20 is shown in FIG. 8C , though it is appreciated that the console can take one of a variety of forms.
  • a processor 22 including non-volatile memory such as EEPROM for instance, is included in the console 20 for controlling system function during operation of the system 10 , thus acting as a control processor.
  • a digital controller/analog interface 24 is also included with the console 20 and is in communication with both the processor 22 and other system components to govern interfacing between the probe 40 , sensor 50 , and other system components.
  • the system 10 further includes ports 52 for connection with the sensor 50 and optional components 54 including a printer, storage media, keyboard, etc.
  • the ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein.
  • a power connection 56 is included with the console 20 to enable operable connection to an external power supply 58 .
  • An internal battery 60 can also be employed, either with or exclusive of an external power supply.
  • Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.
  • the display 30 in the present embodiment is integrated into the console 20 and is used to display information to the clinician during the catheter placement procedure.
  • the display may be separate from the console.
  • the content depicted by the display 30 changes according to which mode the catheter placement system is in: US, TLS, or in other embodiments, ECG tip confirmation.
  • a console button interface 32 (see FIGS. 1 , 8 C) and buttons included on the probe 40 can be used to immediately call up a desired mode to the display 30 by the clinician to assist in the placement procedure.
  • information from multiple modes, such as TLS and ECG may be displayed simultaneously, such as in FIG. 17 .
  • the single display 30 of the system console 20 can be employed for ultrasound guidance in accessing a patient's vasculature, TLS guidance during catheter advancement through the vasculature, and (as in later embodiments) ECG-based confirmation of catheter distal tip placement with respect to a node of the patient's heart.
  • the display 30 is an LCD device.
  • FIGS. 3A and 3B depict features of the probe 40 according to one embodiment.
  • the probe 40 is employed in connection with the first modality mentioned above, i.e., ultrasound (“US”)-based visualization of a vessel, such as a vein, in preparation for insertion of the catheter 72 into the vasculature.
  • US ultrasound
  • Such visualization gives real time ultrasound guidance for introducing the catheter into the vasculature of the patient and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
  • the handheld probe 40 includes a head 80 that houses a piezoelectric array for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin proximate the prospective insertion site 73 ( FIG. 2 ).
  • the probe 40 further includes a plurality of control buttons 84 , which can be included on a button pad 82 .
  • the modality of the system 10 can be controlled by the control buttons 84 , thus eliminating the need for the clinician to reach out of the sterile field, which is established about the patient insertion site prior to catheter placement, to change modes via use of the console button interface 32 .
  • a clinician employs the first (US) modality to determine a suitable insertion site and establish vascular access, such as with a needle or introducer, then with the catheter.
  • the clinician can then seamlessly switch, via button pushes on the probe button pad 82 , to the second (TLS) modality without having to reach out of the sterile field.
  • the TLS mode can then be used to assist in advancement of the catheter 72 through the vasculature toward an intended destination.
  • FIG. 1 shows that the probe 40 further includes button and memory controller 42 for governing button and probe operation.
  • the button and memory controller 42 can include non-volatile memory, such as EEPROM, in one embodiment.
  • the button and memory controller 42 is in operable communication with a probe interface 44 of the console 20 , which includes a piezo input/output component 44 A for interfacing with the probe piezoelectric array and a button and memory input/output component 44 B for interfacing with the button and memory controller 42 .
  • FIG. 4 shows an example screenshot 88 as depicted on the display 30 while the system 10 is in its first ultrasound modality.
  • An image 90 of a subcutaneous region of the patient 70 is shown, depicting a cross section of a vein 92 .
  • the image 90 is produced by operation of the piezoelectric array of the probe 40 .
  • a depth scale indicator 94 also included on the display screenshot 88 is a depth scale indicator 94 , providing information regarding the depth of the image 90 below the patient's skin, a lumen size scale 96 that provides information as to the size of the vein 92 relative to standard catheter lumen sizes, and other indicia 98 that provide information regarding status of the system 10 or possible actions to be taken, e.g., freeze frame, image templates, data save, image print, power status, image brightness, etc.
  • the US mode shown in FIG. 4 can be simultaneously depicted on the display 30 with other modes, such as the TLS mode, if desired.
  • aural information such as beeps, tones, etc.
  • the buttons included on the probe 40 and the console button interface 32 can be configured in a variety of ways, including the use of user input controls in addition to buttons, such as slide switches, toggle switches, electronic or touch-sensitive pads, etc. Additionally, both US and TLS activities can occur simultaneously or exclusively during use of the system 10 .
  • the handheld ultrasound probe 40 is employed as part of the integrated catheter placement system 10 to enable US visualization of the peripheral vasculature of a patient in preparation for transcutaneous introduction of the catheter.
  • the probe is also employed to control functionality of the TLS portion, or second modality, of the system 10 when navigating the catheter toward its desired destination within the vasculature as described below.
  • the probe 40 is a dual-purpose device, enabling convenient control of both US and TLS functionality of the system 10 from the sterile field.
  • the probe can also be employed to control some or all ECG-related functionality, or third modality, of the catheter placement system 10 , as described further below.
  • the catheter placement system 10 further includes the second modality mentioned above, i.e., the magnetically-based catheter TLS, or tip location system.
  • the TLS enables the clinician to quickly locate and confirm the position and/or orientation of the catheter 72 , such as a peripherally-inserted central catheter (“PICC”), central venous catheter (“CVC”), or other suitable catheter, during initial placement into and advancement through the vasculature of the patient 70 .
  • the TLS modality detects a magnetic field generated by a magnetic element-equipped tip location stylet, which is pre-loaded in one embodiment into a longitudinally defined lumen of the catheter 72 , thus enabling the clinician to ascertain the general location and orientation of the catheter tip within the patient body.
  • the magnetic assembly can be tracked using the teachings of one or more of the following U.S. Pat. Nos. 5,775,322; 5,879,297; 6,129,668; 6,216,028; and 6,263,230.
  • the contents of the afore-mentioned U.S. patents are incorporated herein by reference in their entireties.
  • the TLS also displays the direction in which the catheter tip is pointing, thus further assisting accurate catheter placement.
  • the TLS further assists the clinician in determining when a malposition of the catheter tip has occurred, such as in the case where the tip has deviated from a desired venous path into another vein.
  • FIG. 5 gives an example of such a stylet 100 , which includes a proximal end 100 A and a distal end 100 B.
  • a handle is included at the stylet proximal end 100 A, with a core wire 104 extending distally therefrom.
  • a magnetic assembly is disposed distally of the core wire 104 .
  • the magnetic assembly includes one or more magnetic elements 106 disposed adjacent one another proximate the stylet distal end 100 B and encapsulated by tubing 108 .
  • a plurality of magnetic elements 106 is included, each element including a solid, cylindrically shaped ferromagnetic stacked end-to-end with the other magnetic elements.
  • An adhesive tip 110 can fill the distal tip of the tubing 108 , distally to the magnetic elements 106 .
  • the magnetic elements may vary from the design in not only shape, but also composition, number, size, magnetic type, and position in the stylet distal segment.
  • the plurality of ferromagnetic magnetic elements is replaced with an electromagnetic assembly, such as an electromagnetic coil, which produces a magnetic field for detection by the sensor.
  • an assembly usable here can be found in U.S. Pat. No. 5,099,845 entitled “Medical Instrument Location Means,” which is incorporated herein by reference in its entirety.
  • stylets including magnetic elements that can be employed with the TLS modality can be found in U.S. application Ser. No. 11/466,602, filed Aug.
  • stylet as used herein can include any one of a variety of devices configured for removable placement within a lumen of the catheter to assist in placing a distal end of the catheter in a desired location within the patient's vasculature.
  • FIG. 2 shows disposal of the stylet 100 substantially within a lumen in the catheter 72 such that the proximal portion thereof extends proximally from the catheter lumen, through the hub 74 A and out through a selected one of the extension legs 74 B. So disposed within a lumen of the catheter, the distal end 100 B of the stylet 100 is substantially co-terminal with the distal catheter end 76 A such that detection by the TLS of the stylet distal end correspondingly indicates the location of the catheter distal end.
  • the TLS sensor 50 is employed by the system 10 during TLS operation to detect a magnetic field produced by the magnetic elements 106 of the stylet 100 .
  • the TLS sensor 50 is placed on the chest of the patient during catheter insertion.
  • the TLS sensor 50 is placed on the chest of the patient in a predetermined location, such as through the use of external body landmarks, to enable the magnetic field of the stylet magnetic elements 106 , disposed in the catheter 72 as described above, to be detected during catheter transit through the patient vasculature.
  • detection by the TLS sensor 50 of the magnetic field of the magnetic elements provides information to the clinician as to the position and orientation of the catheter distal end during its transit.
  • the TLS sensor 50 is operably connected to the console 20 of the system 10 via one or more of the ports 52 , as shown in FIG. 1 .
  • the magnetic elements 106 are employed in the stylet 100 to enable the position of the catheter distal end 76 A ( FIG. 2 ) to be observable relative to the TLS sensor 50 placed on the patient's chest. Detection by the TLS sensor 50 of the stylet magnetic elements 106 is graphically displayed on the display 30 of the console 20 during TLS mode.
  • a clinician placing the catheter is able to generally determine the location of the catheter distal end 76 A within the patient vasculature relative to the TLS sensor 50 and detect when catheter malposition, such as advancement of the catheter along an undesired vein, is occurring.
  • FIGS. 6 and 7 A- 7 E show examples of icons that can be used by the console display 30 to depict detection of the stylet magnetic elements 106 by the TLS sensor 50 .
  • FIG. 6 shows an icon 114 that depicts the distal portion of the stylet 100 , including the magnetic elements 106 as detected by the TLS sensor 50 when the magnetic elements are positioned under the TLS sensor.
  • the icon indicates the position and orientation of the catheter distal end.
  • FIGS. 7A-7E show various icons that can be depicted on the on the console display 30 when the magnetic elements 106 of the stylet 100 are not positioned directly under a portion of the TLS sensor 50 , but are nonetheless detected nearby.
  • the icons can include half-icons 114 A and quarter-icons 114 B that are displayed according to the position of the stylet magnetic assembly, i.e., the magnetic elements 106 in the present embodiment, relative to the TLS sensor 50 .
  • FIGS. 8A-8C depict screenshots taken from the display 30 of the system 10 while in TLS mode, showing how the magnetic assembly of the stylet 100 is depicted.
  • the screenshot 118 of FIG. 8A shows a representative image 120 of the TLS sensor 50 .
  • Other information is provided on the display screenshot 118 , including a depth scale indicator 124 , status/action indicia 126 , and icons 128 corresponding to the button interface 32 included on the console 20 ( FIG. 8C ).
  • the icons 128 in the present embodiment are simply indicators to guide the user in identifying the purpose of the corresponding buttons of the button interface 32
  • the display can be made touch-sensitive so that the icons themselves can function as button interfaces and can change according to the mode the system is in.
  • the distal end 76 A of the catheter 72 is relatively distant from the TLS sensor 50 .
  • the display screenshot will indicate “no signal,” indicating that the magnetic field from the stylet magnetic assembly has not been detected.
  • the magnetic assembly proximate the stylet distal end 100 B has advanced sufficiently close to the TLS sensor 50 to be detected thereby, though it is not yet under the sensor. This is indicated by the half-icon 114 A shown to the left of the sensor image 120 , representing the stylet magnetic assembly being positioned to the right of the TLS sensor 50 from the perspective of the patient.
  • the magnetic assembly proximate the stylet distal end 100 B has advanced under the TLS sensor 50 such that its position and orientation relative thereto is detected by the TLS sensor. This is indicated by the icon 114 on the sensor image 120 .
  • the button icons 128 provide indications of the actions that can be performed by pressing the corresponding buttons of the console button interface 32 . As such, the button icons 128 can change according to which modality the system 10 is in, thus providing flexibility of use for the button interface 32 .
  • the button pad 82 of the probe 40 FIG.
  • buttons 84 that mimic several of the buttons of the button interface 32 , the button icons 128 on the display 30 provide a guide to the clinician for controlling the system 10 with the probe buttons 84 while remaining in the sterile field. For instance, if the clinician has need to leave TLS mode and return to US (ultrasound) mode, the appropriate control button 84 on the probe button pad 82 can be depressed, and the US mode can be immediately called up, with the display 30 refreshing to accommodate the visual information needed for US functionality, such as that shown in FIG. 4 . This is accomplished without a need for the clinician to reach out of the sterile field.
  • the integrated system 10 includes the console 20 , display 30 , probe 40 for US functionality, and the TLS sensor 50 for tip location functionality as described above. Note that the system 10 depicted in FIGS. 9 and 10 is similar in many respects to the system shown in FIGS. 1 and 2 . As such, only selected differences will be discussed below.
  • 9 and 10 includes additional functionality wherein determination of the proximity of the catheter distal tip 76 A relative to a sino-atrial (“SA”) or other electrical impulse-emitting node of the heart of the patient 70 can be determined, thus providing enhanced ability to accurately place the catheter distal tip in a desired location proximate the node.
  • SA sino-atrial
  • ECG ECG-based tip confirmation
  • this third modality of the system 10 enables detection of ECG signals from the SA node in order to place the catheter distal tip in a desired location within the patient vasculature.
  • the US, TLS, and ECG modalities are seamlessly combined in the present system 10 and can be employed in concert or individually to assist in catheter placement.
  • FIGS. 9 and 10 show the addition to the system 10 of a stylet 130 configured in accordance with the present embodiment.
  • the catheter stylet 130 is removably predisposed within the lumen of the catheter 72 being inserted into the patient 70 via the insertion site 73 .
  • the stylet 130 in addition to including a magnetic assembly for the magnetically-based TLS modality, includes an ECG sensor assembly proximate its distal end and including a portion that is co-terminal with the distal end of the catheter tip for sensing ECG signals produced by the SA node.
  • the stylet 130 includes a tether 134 extending from its proximal end that operably connects to the TLS sensor 50 .
  • the stylet tether 134 permits ECG signals detected by the ECG sensor assembly included on a distal portion of the stylet 130 to be conveyed to the TLS sensor 50 during confirmation of the catheter tip location as part of the ECG signal-based tip confirmation modality.
  • Reference and ground ECG lead/electrode pairs 158 attach to the body of the body of the patient 70 and are operably attached to the TLS sensor 50 to enable the system to filter out high level electrical activity unrelated to the electrical activity of the SA node of the heart, thus enabling the ECG-based tip confirmation functionality.
  • the ECG signals sensed by the stylet ECG sensor assembly are received by the TLS sensor 50 positioned on the patient's chest ( FIG. 10 ).
  • the TLS sensor 50 and/or console processor 22 can process the ECG signal data to produce an electrocardiogram waveform on the display 30 , as will be described.
  • a processor is included therein to perform the intended functionality. If the console 20 processes the ECG signal data, the processor 22 , controller 24 , or other processor can be utilized in the console to process the data.
  • the catheter 72 equipped with the stylet 130 as described above can advance under the TLS sensor 50 , which is positioned on the chest of the patient as shown in FIG. 10 .
  • This enables the TLS sensor 50 to detect the position of the magnetic assembly of the stylet 130 , which is substantially co-terminal with the distal tip 76 A of the catheter as located within the patient's vasculature.
  • the detection by the TLS sensor 50 of the stylet magnetic assembly is depicted on the display 30 during ECG mode.
  • the display 30 further depicts during ECG mode an ECG electrocardiogram waveform produced as a result of patient heart's electrical activity as detected by the ECG sensor assembly of the stylet 130 .
  • the ECG electrical activity of the SA node is detected by the ECG sensor assembly of the stylet (described below) and forwarded to the TLS sensor 50 and console 20 .
  • the ECG electrical activity is then processed for depiction on the display 30 .
  • clinician placing the catheter can then observe the ECG data to determine optimum placement of the distal tip 76 A of the catheter 72 , such as proximate the SA node in one embodiment.
  • the console 20 which includes the electronic components, such as the processor 22 ( FIG. 9 ) necessary to receive and process the signals detected by the stylet ECG sensor assembly.
  • the TLS sensor 50 can include the necessary electronic components processing the ECG signals.
  • the display 30 is used to display information to the clinician during the catheter placement procedure.
  • the content of the display 30 changes according to which mode the catheter placement system is in: US, TLS, or ECG. Any of the three modes can be immediately called up to the display 30 by the clinician, and in some cases information from multiple modes, such as TLS and ECG, may be displayed simultaneously.
  • the mode the system is in may be controlled by the control buttons 84 included on the handheld probe 40 , thus eliminating the need for the clinician to reach out of the sterile field (such as touching the button interface 32 of the console 20 ) to change modes.
  • the probe 40 is employed to also control some or all ECG-related functionality of the system 10 .
  • buttons interface 32 or other input configurations can also be used to control system functionality.
  • aural information such as beeps, tones, etc., can also be employed by the system to assist the clinician during catheter placement.
  • FIGS. 11-12E in describing various details of one embodiment of the stylet 130 that is removably loaded into the catheter 72 and employed during insertion to position the distal tip 76 A of the catheter in a desired location within the patient vasculature.
  • the stylet 130 as removed from the catheter defines a proximal end 130 A and a distal end 130 B.
  • a connector 132 is included at the proximal stylet end 130 A, and a tether 134 extends distally from the connector and attaches to a handle 136 .
  • a core wire 138 extends distally from the handle 136 .
  • the stylet 130 is pre-loaded within a lumen of the catheter 72 in one embodiment such that the distal end 130 B is substantially flush, or co-terminal, with the catheter opening at the distal end 76 A thereof ( FIG. 10 ), and such that a proximal portion of the core wire 138 , the handle 136 , and the tether 134 extend proximally from a selected one of the extension tubes 74 B.
  • a guidewire or other catheter guiding apparatus could include the principles of the embodiment described herein.
  • the core wire 138 defines an elongate shape and is composed of a suitable stylet material including stainless steel or a memory material such as, in one embodiment, a nickel and titanium-containing alloy commonly known by the acronym “nitinol.” Though not shown here, manufacture of the core wire 138 from nitinol in one embodiment enables the portion of the core wire corresponding to a distal segment of the stylet to have a pre-shaped bent configuration so as to urge the distal portion of the catheter 72 into a similar bent configuration. In other embodiments, the core wire includes no pre-shaping.
  • the nitinol construction lends torqueability to the core wire 138 to enable a distal segment of the stylet 130 to be manipulated while disposed within the lumen of the catheter 72 , which in turn enables the distal portion of the catheter to be navigated through the vasculature during catheter insertion.
  • the handle 136 is provided to enable insertion/removal of the stylet from the catheter 72 .
  • the handle 136 further enables the core wire to be rotated within the lumen of the catheter 72 , to assist in navigating the catheter distal portion through the vasculature of the patient 70 .
  • the handle 136 attaches to a distal end of the tether 134 .
  • the tether 134 is a flexible, shielded cable housing one or more conductive wires electrically connected both to the core wire 138 , which acts as the ECG sensor assembly referred to above, and the tether connector 132 .
  • the tether 134 provides a conductive pathway from the distal portion of the core wire 138 through to the tether connector 132 at proximal end 130 A of the stylet 130 .
  • the tether connector 132 is configured for operable connection to the TLS sensor 50 on the patient's chest for assisting in navigation of the catheter distal tip 76 A to a desired location within the patient vasculature.
  • a distal portion of the core wire 138 is gradually tapered, or reduced in diameter, distally from a junction point 142 .
  • a sleeve 140 is slid over the reduced-diameter core wire portion. Though of relatively greater diameter here, the sleeve in another embodiment can be sized to substantially match the diameter of the proximal portion of the stylet core wire.
  • the stylet 130 further includes a magnetic assembly disposed proximate the distal end 130 B thereof for use during TLS mode.
  • the magnetic assembly in the illustrated embodiment includes a plurality of magnetic elements 144 interposed between an outer surface of the reduced-diameter core wire 138 and an inner surface of the sleeve 140 proximate the stylet distal end 130 B.
  • the magnetic elements 144 include 20 ferromagnetic magnets of a solid cylindrical shape stacked end-to-end in a manner similar to the stylet 100 of FIG. 2 .
  • the magnetic element(s) may vary from this design in not only shape, but also composition, number, size, magnetic type, and position in the stylet.
  • the plurality of magnets of the magnetic assembly is replaced with an electromagnetic coil that produces a magnetic field for detection by the TLS sensor.
  • the magnetic elements 144 are employed in the stylet 130 distal portion to enable the position of the stylet distal end 130 B to be observable relative to the TLS sensor 50 placed on the patient's chest.
  • the TLS sensor 50 is configured to detect the magnetic field of the magnetic elements 144 as the stylet advances with the catheter 72 through the patient vasculature. In this way, a clinician placing the catheter 72 is able to generally determine the location of the catheter distal end 76 A within the patient vasculature and detect when catheter malposition is occurring, such as advancement of the catheter along an undesired vein, for instance.
  • the stylet 130 further includes the afore-mentioned ECG sensor assembly, according to one embodiment.
  • the ECG sensor assembly enables the stylet 130 , disposed in a lumen of the catheter 72 during insertion, to be employed in detecting an intra-atrial ECG signal produced by an SA or other node of the patient's heart, thereby allowing for navigation of the distal tip 76 A of the catheter 72 to a predetermined location within the vasculature proximate the patient's heart.
  • the ECG sensor assembly serves as an aide in confirming proper placement of the catheter distal tip 76 A.
  • the ECG sensor assembly includes a distal portion of the core wire 138 disposed proximate the stylet distal end 130 B.
  • the core wire 138 being electrically conductive, enables ECG signals to be detected by the distal end thereof and transmitted proximally along the core wire.
  • a conductive material 146 such as a conductive epoxy, fills a distal portion of the sleeve 140 adjacent the distal termination of the core wire 138 so as to be in conductive communication with the distal end of the core wire. This in turn increases the conductive surface of the distal end 130 B of the stylet 130 so as to improve its ability to detect ECG signals.
  • the stylet 130 is loaded into a lumen of the catheter 72 .
  • the stylet 130 can come preloaded in the catheter lumen from the manufacturer, or loaded into the catheter by the clinician prior to catheter insertion.
  • the stylet 130 is disposed within the catheter lumen such that the distal end 130 B of the stylet 130 is substantially co-terminal with the distal tip 76 A of the catheter 72 , thus placing the distal tips of both the stylet and the catheter in substantial alignment with one another.
  • the co-terminality of the catheter 72 and stylet 130 enables the magnetic assembly to function with the TLS sensor 50 in TLS mode to track the position of the catheter distal tip 76 A as it advances within the patient vasculature, as has been described.
  • the distal end 130 B of the stylet 130 need not be co-terminal with the catheter distal end 76 A. Rather, all that is required is that a conductive path between the vasculature and the ECG sensor assembly, in this case the core wire 138 , be established such that electrical impulses of the SA node or other node of the patient's heart can be detected.
  • This conductive path in one embodiment can include various components including saline solution, blood, etc.
  • the TLS mode of the system 10 can be employed as already described to advance the catheter distal tip 76 A toward its intended destination proximate the SA node.
  • the system 10 can be switched to ECG mode to enable ECG signals emitted by the SA node to be detected.
  • the electrically conductive ECG sensor assembly including the distal end of the core wire 138 and the conductive material 146 , begins to detect the electrical impulses produced by the SA node.
  • the ECG sensor assembly serves as an electrode for detecting the ECG signals.
  • the elongate core wire 138 proximal to the core wire distal end serves as a conductive pathway to convey the electrical impulses produced by the SA node and received by the ECG sensor assembly to the tether 134 .
  • the tether 134 conveys the ECG signals to the TLS sensor 50 temporarily placed on the patient's chest.
  • the tether 134 is operably connected to the TLS sensor 50 via the tether connector 132 or other suitable direct or indirect connective configuration.
  • the ECG signal can then be process and depicted on the system display 30 ( FIG. 9 , 10 ).
  • Monitoring of the ECG signal received by the TLS sensor 50 and displayed by the display 30 enables a clinician to observe and analyze changes in the signal as the catheter distal tip 76 A advances toward the SA node.
  • the clinician can determine that the catheter distal tip 76 A has reached a desired position with respect to the SA node. As mentioned, in one embodiment this desired position lies within the lower one-third (1 ⁇ 3rd) portion of the SVC.
  • the ECG sensor assembly and magnetic assembly can work in concert in assisting a clinician in placing a catheter within the vasculature.
  • the magnetic assembly of the stylet 130 assists the clinician in generally navigating the vasculature from initial catheter insertion so as to place the distal end 76 A of the catheter 72 in the general region of the patient's heart.
  • the ECG sensor assembly can then be employed to guide the catheter distal end 76 A to the desired location within the SVC by enabling the clinician to observe changes in the ECG signals produced by the heart as the stylet ECG sensor assembly approaches the SA node.
  • the clinician can determine that the distal ends of both the stylet 130 and the catheter 72 have arrived at the desired location with respect to the patient's heart.
  • the catheter 72 may be secured in place and the stylet 130 removed from the catheter lumen.
  • the stylet may include one of a variety of configurations in addition to what is explicitly described herein.
  • the stylet can attach directly to the console instead of an indirect attachment via the TLS sensor.
  • the structure of the stylet 130 that enables its TLS and ECG-related functionalities can be integrated into the catheter structure itself.
  • the magnetic assembly and/or ECG sensor assembly can, in one embodiment, be incorporated into the wall of the catheter.
  • FIGS. 13A-15 describe various details relating to the passage of ECG signal data from the stylet tether 134 to the TLS sensor 50 positioned on the patient's chest, according the present embodiment.
  • this embodiment is concerned with passage of ECG signal data from a sterile field surrounding the catheter 72 and insertion site 73 , which includes the stylet 130 and tether 134 , and a non-sterile field, such as the patient's chest on which the TLS sensor is positioned.
  • Such passage should not disrupt the sterile field so that the sterility thereof is compromised.
  • a sterile drape that is positioned over the patient 70 during the catheter insertion procedure defines the majority of the sterile field: areas above the drape are sterile, while areas below (excluding the insertion site and immediately surrounding region) are non-sterile.
  • the discussion below includes at least a first communication node associated with the stylet 130 , and a second communication node associated with the TLS sensor 50 that operably connect with one another to enable ECG signal data transfer therebetween.
  • FIGS. 13A-15 depict a “through-drape” implementation also referred to as a “shark fin” implementation.
  • FIG. 14A shows the TLS sensor 50 as described above for placement on the chest of the patient during a catheter insertion procedure.
  • the TLS sensor 50 includes on a top surface thereof a connector base 152 defining a channel 152 A in which are disposed three electrical base contacts 154 .
  • a fin connector 156 also shown in FIGS. 13A-13D , is sized to be slidingly received by the channel 152 A of the connector base 152 , as shown in FIGS.
  • Two ECG lead/electrode pairs 158 extend from the fin connector 156 for placement on the shoulder and torso or other suitable external locations on the patient body.
  • the drape-piercing tether connector 132 is configured to slidingly mate with a portion of the fin connector 156 , as will be described further below, to complete a conductive pathway from the stylet 120 , through the sterile field to the TLS sensor 50 .
  • FIGS. 13A-13D show further aspects of the fin connector 156 .
  • the fin connector 156 defines a lower barrel portion 160 that is sized to be received in the channel 152 A of the connector base 152 ( FIGS. 14B , 15 ).
  • a hole 162 surrounded by a centering cone 164 is included on a back end of an upper barrel portion 166 .
  • the upper barrel portion 166 is sized to receive the tether connector 132 of the stylet 130 ( FIGS. 14C , 15 ) such that a pin contact 170 extending into a channel 172 of the tether connector 132 ( FIG.
  • An engagement feature such as the engagement feature 169 shown in FIGS. 13C and 13D , can be included on the fin connector 156 to engage with a corresponding feature on the tether connector 132 to assist with maintaining a mating between the two components.
  • FIG. 13D shows that the fin connector 156 includes a plurality of electrical contacts 168 .
  • three contacts 168 are included: the two forward-most contact each electrically connecting with a terminal end of one of the ECG leads 158 , and the rear contact extending into axial proximity of the hole 162 so as to electrically connect with the pin contact 170 of the tether connector 132 when the latter is mated with the fin connector 156 ( FIG. 15 ).
  • a bottom portion of each contact 168 of the fin connector 156 is positioned to electrically connect with a corresponding one of the base contacts 154 of the TLS sensor connector base 152 .
  • FIG. 14B shows a first connection stage, wherein the fin connector 156 is removably mated with the TLS sensor connector base 152 by the sliding engagement of the lower barrel portion 160 of the fin connector with the connector base channel 152 A. This engagement electrically connects the connector base contacts 154 with the corresponding fin contacts 168 .
  • FIG. 14C shows a second connection stage, wherein the tether connector 132 is removably mated with the fin connector 156 by the sliding engagement of the tether connector channel 172 with the upper barrel portion 166 of the fin connector. This engagement electrically connects the tether connector pin contact 170 with the back contact 168 of the fin connector 156 , as best seen in FIG. 15 .
  • the horizontal sliding movement of the tether connector 132 with respect to the fin connector 156 is in the same engagement direction as when the fin connector is slidably mated to the sensor connector base channel 152 A ( FIG. 14B ).
  • one or both of the stylet 130 /tether connector 132 and the fin connector 156 are disposable.
  • the tether connector in one embodiment can be mated to the fin connector after the fin connector has been mated to the TLS sensor, while in another embodiment the tether connector can be first mated to the fin connector through the surgical drape before the fin connector is mated to the TLS sensor.
  • the stylet 130 is operably connected to the TLS sensor 50 via the tether connector 132 , thus enabling the ECG sensor assembly of the stylet to communicate ECG signals to the TLS sensor.
  • the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50 .
  • the tether connector 132 is referred to as a first communication node for the stylet 130
  • the fin connector 156 is referred to as a second communication node for the TLS sensor 50 .
  • the tether connector can use a slicing contact instead of a pin contact to pierce the drape.
  • the fin connector can be integrally formed with the TLS sensor.
  • a sterile drape 174 used during catheter placement to establish a sterile field is interposed between the interconnection of the tether connector 132 with the fin connector 156 .
  • the tether connector 132 includes the pin contact 170 that is configured to pierce the drape 174 when the two components are mated. This piercing forms a small hole, or perforation 175 , in the sterile drape 174 that is occupied by the pin contact 170 , thus minimizing the size of the drape perforation by the pin contact.
  • the fit between the tether connector 132 and the fin connector 156 is such that the perforation in sterile drape made by piercing of the pin contact 170 is enclosed by the tether connector channel 172 , thus preserving the sterility of the drape and preventing a breach in the drape that could compromise the sterile field established thereby.
  • the tether connector channel 172 is configured so as to fold the sterile drape 174 down prior to piercing by the pin contact 170 such that the pin contact does not pierce the drape until it is disposed proximate the hole 162 of the fin connector 156 . It is noted here that the tether connector 132 and fin connector 156 are configured so as to facilitate alignment therebetween blindly through the opaque sterile drape 174 , i.e., via palpation absent visualization by the clinician of both components.
  • the fin contacts 168 of the fin connector 156 as shown in FIG. 15 are configured to mate with the sensor base contacts 154 in such a way as to assist in retaining the fin connector in engagement with the sensor base channel 152 A. This in turn reduces the need for additional apparatus to secure the fin connector 156 to the TLS sensor 50 .
  • FIG. 16 shows a typical ECG waveform 176 , including a P-wave and a QRS complex.
  • the amplitude of the P-wave varies as a function of distance of the ECG sensor assembly from the SA node, which produces the waveform 176 .
  • a clinician can use this relationship in determining when the catheter tip is properly positioned proximate the heart. For instance, in one implementation the catheter tip is desirably placed within the lower one-third (1 ⁇ 3rd) of the superior vena cava, as has been discussed.
  • the ECG data detected by the ECG sensor assembly of the stylet 130 is used to reproduce waveforms such as the waveform 176 , for depiction on the display 30 of the system 10 during ECG mode.
  • the screenshot 178 of the display 30 includes elements of the TLS modality, including a representative image 120 of the TLS sensor 50 , and can the icon 114 corresponding to the position of the distal end of the stylet 130 during transit through the patient vasculature.
  • the screenshot 178 further includes a window 180 in which the current ECG waveform captured by the ECG sensor assembly of the stylet 130 and processed by the system 10 is displayed. The window 180 is continually refreshed as new waveforms are detected.
  • Window 182 includes a successive depiction of the most recent detected ECG waveforms, and includes a refresh bar 182 A, which moves laterally to refresh the waveforms as they are detected.
  • Window 184 A is used to display a baseline ECG waveform, captured before the ECG sensor assembly is brought into proximity with the SA node, for comparison purposes to assist the clinician in determining when the desired catheter tip location has been achieved.
  • Windows 184 B and 184 C can be filed by user-selected detected ECG waveforms when the user pushes a predetermined button on the probe 40 or the console button interface 32 . The waveforms in the windows 184 B and 184 C remain until overwritten by new waveforms as a result of user selection via button pushes or other input.
  • the depth scale 124 As in previous modes, the depth scale 124 , status/action indicia 126 , and button icons 128 are included on the display 30 .
  • An integrity indicator 186 is also included on the display 30 to give an indication of whether the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50 .
  • the display 30 depicts in one embodiment elements of both the TLS and ECG modalities simultaneously on a single screen, thus offering the clinician ample data to assist in placing the catheter distal tip in a desired position.
  • a printout of the screenshot or selected ECG or TLS data can be saved, printed, or otherwise preserved by the system 10 to enable documentation of proper catheter placement.
  • Embodiments of the present invention described herein are generally directed to a guidance system for locating and guiding a needle or other medical component during ultrasound-based or other suitable procedures for accessing with the needle a subcutaneous vessel of a patient, for instance.
  • the guidance system enables the position, orientation, and advancement of the needle to be superimposed in real-time atop the ultrasound image of the vessel, thus enabling a clinician to accurately guide the needle to the intended target.
  • the guidance system tracks the needle's position in five degrees of motion: x, y, and z spatial coordinate space, needle pitch, and needle yaw. Such tracking enables the needle to be guided and placed with relatively high accuracy.
  • FIGS. 18 and 19 depict various components of an ultrasound-based needle guidance system (“system”), generally designated at 1110 , configured in accordance with one embodiment of the present invention.
  • the system 1110 generally includes an ultrasound (“US”) imaging portion including a console 1120 , display 1130 , and probe 1140 , each of which is described in further detail below.
  • USB ultrasound
  • the system 1110 bears similarity to the system 10 shown in FIG. 1 with respect to some components, in one embodiment.
  • the ultrasound imaging portion can be configured in one of a variety of ways in addition to what is shown and described herein.
  • the ultrasound imaging portion of the system 1110 is employed to image a targeted internal portion of a body of a patient prior to percutaneous insertion of a needle or other device to access the target. As described below, in one embodiment insertion of the needle is performed prior to the subsequent insertion of a catheter into a vein or other portion of the vasculature of the patient. It is appreciated, however, that insertion of a needle into the body of a patient can be performed for a variety of medical purposes.
  • FIG. 19 shows the general relation of the above-described components to a patient 1170 during a procedure to ultimately place a catheter 1172 into the patient vasculature through a skin insertion site 1173 , according to one embodiment.
  • the catheter 1172 generally includes a proximal portion 1174 that remains exterior to the patient and a distal portion 1176 that resides within the patient vasculature after placement is complete.
  • the system 1110 is employed to ultimately position a distal tip 1176 A of the catheter 1172 in a desired position within the patient vasculature.
  • the desired position for the catheter distal tip 1176 A is proximate the patient's heart, such as in the lower one-third (1 ⁇ 3 rd ) portion of the Superior Vena Cava (“SVC”).
  • SVC Superior Vena Cava
  • the system 1110 can be employed to place the catheter distal tip in other locations.
  • the catheter proximal portion 1174 further includes a hub 1174 A that provides fluid communication between the one or more lumens of the catheter 1172 and one or more extension legs 1174 B extending proximally from the hub.
  • a hub 1174 A that provides fluid communication between the one or more lumens of the catheter 1172 and one or more extension legs 1174 B extending proximally from the hub.
  • the above discussion is only one example for use of the system 1110 ; indeed it can be employed for a variety of uses, such as the placement of needles preparatory to insertion of a catheter as above, the insertion of a needle for other uses, or for the insertion of other medical components into the body of a patient, including x-ray or ultrasound markers, biopsy sheaths, ablation components, bladder scanning components, vena cava filters, etc.
  • the console 1120 houses a variety of components of the system 1110 and it is appreciated that the console can take one of a variety of forms.
  • a processor 1122 including non-volatile memory such as EEPROM for instance, is included in the console 1120 for controlling system function and executing various algorithms during operation of the system 1110 , thus acting as a control processor.
  • a digital controller/analog interface 1124 is also included with the console 1120 and is in communication with both the processor 1122 and other system components to govern interfacing between the probe 1140 and other system components.
  • the system 1110 further includes ports 1152 for connection with additional components such as optional components 1154 including a printer, storage media, keyboard, etc.
  • the ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein.
  • a power connection 1156 is included with the console 1120 to enable operable connection to an external power supply 1158 .
  • An internal battery 1160 can also be employed, either with or exclusive of an external power supply.
  • Power management circuitry 1159 is included with the digital controller/analog interface 1124 of the console to regulate power use and distribution.
  • the display 1130 in the present embodiment is integrated into the console 1120 and is used to display information to the clinician during the placement procedure, such as an ultrasound image of the targeted internal body portion attained by the probe 1140 .
  • the display may be separate from the console.
  • a console button interface 1132 and control buttons 1184 ( FIG. 19 ) included on the probe 1140 can be used to immediately call up a desired mode to the display 1130 by the clinician to assist in the placement procedure.
  • the display 1130 is an LCD device.
  • FIG. 19 further depicts a needle 1200 used to gain initial access to the patient vasculature via the insertion site 1173 .
  • the needle 1200 is configured to cooperate with the system 1110 in enabling the system to detect the position, orientation, and advancement of the needle during an ultrasound-based placement procedure.
  • FIG. 20 depicts features of the probe 1140 according to one embodiment.
  • the probe 1140 is employed in connection with ultrasound-based visualization of a vessel, such as a vein, in preparation for insertion of the needle 1200 and/or catheter 1172 into the vasculature.
  • a vessel such as a vein
  • Such visualization gives real time ultrasound guidance and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
  • the handheld probe 1140 includes a head 1180 that houses a piezoelectric array for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin proximate the prospective insertion site 1173 ( FIG. 19 ).
  • the probe 1140 further includes a plurality of control buttons 1184 ( FIG. 19 ) for controlling the system, thus eliminating the need for the clinician to reach out of the sterile field, which is established about the patient insertion site prior to establishment of the insertion site, to control the system 1110 .
  • a clinician employs the ultrasound imaging portion of the system 1110 to determine a suitable insertion site and establish vascular access, such as with the needle 1200 , prior to introduction of the catheter 1172 for ultimate advancement thereof through the vasculature toward an intended destination.
  • FIG. 18 shows that the probe 1140 further includes a button and memory controller 1142 for governing button and probe operation.
  • the button and memory controller 1142 can include non-volatile memory, such as EEPROM, in one embodiment.
  • the button and memory controller 1142 is in operable communication with a probe interface 1144 of the console 1120 , which includes a piezo input/output component 1144 A for interfacing with the probe piezoelectric array and a button and memory input/output component 1144 B for interfacing with the button and memory controller 1142 .
  • the probe 1140 includes a sensor array 1190 for detecting the position, orientation, and movement of the needle 1200 during ultrasound imaging procedures, such as those described above.
  • the sensor array includes a plurality of magnetic sensors 1192 embedded within the housing of the probe.
  • the sensors 1192 are configured to detect a magnetic field associated with the needle 1200 and enable the system 1110 to track the needle. Though configured here as magnetic sensors, it is appreciated that the sensors 1192 can be sensors of other types and configurations, as will be described.
  • the sensors 1192 of the sensor array 1190 can be included in a component separate from the probe, such as a separate handheld device.
  • the sensors 1192 are disposed in a planar configuration below a top face 1182 of the probe 1140 , though it is appreciated that the sensors can be arranged in other configurations, such as in an arched or semi-circular arrangement.
  • each of the sensors 1192 includes three orthogonal sensor coils for enabling detection of a magnetic field in three spatial dimensions.
  • Such three dimensional (“3-D”) magnetic sensors can be purchased, for example, from Honeywell Sensing and Control of Morristown, N.J. Further, the sensors 1192 of the present embodiment are configured as Hall-effect sensors, though other types of magnetic sensors could be employed. Further, instead of 3-D sensors, a plurality of one dimensional magnetic sensors can be included and arranged as desired to achieve 1-, 2-, or 3-D detection capability.
  • five sensors 1192 are included in the sensor array 1190 so as to enable detection of the needle 1200 in not only the three spatial dimensions (i.e., X, Y, Z coordinate space), but also the pitch and yaw orientation of the needle itself.
  • orthogonal sensing components of two or more of the sensors 1192 enable the pitch and yaw attitude of the magnetic element 1210 , and thus the needle 1200 , to be determined.
  • fewer or more sensors can be employed in the sensor array. More generally, it is appreciated that the number, size, type, and placement of the sensors of the sensor array can vary from what is explicitly shown here.
  • FIGS. 21A and 21B show details of one example of the needle 1200 that can be used in connection with the guidance system 1110 in accessing a targeted internal body portion of the patient, as shown in FIG. 19 , according to one embodiment.
  • the needle 1200 includes a hollow cannula 1202 , which defines a proximal end 1202 A and a distal end 1202 B.
  • a hub 1204 is attached to the proximal end 1202 A of the cannula 1202 and includes an open end 1204 A that is configured as a connector for connecting with various devices, in the present embodiment.
  • the open end 1204 A of the hub 1204 is in communication with the hollow cannula 1202 such that a guide wire, stylet, or other component may be passed through the hub into the cannula.
  • a magnetic element 1210 is included with the hub 1204 .
  • the magnetic element 1210 in the present embodiment is a permanent magnet, including a ferromagnetic substance for instance, and is ring-shaped so as to define hole 1212 that is aligned with the hollow cannula 1202 . So configured, the magnetic element 1210 produces a magnetic field that is detectable by the sensor array 1190 of the ultrasound probe 1140 so as to enable the location, orientation, and movement of the needle 1200 to be tracked by the system 1110 , as described further below.
  • FIGS. 22A and 22B show the ultrasound probe 1140 of the system 1110 and the needle 1200 in position and ready for insertion thereof through a skin surface 1220 of a patient to access a targeted internal body portion.
  • the probe 1140 is shown with its head 1180 placed against the patient skin and producing an ultrasound beam 1222 so as to ultrasonically image a portion of a vessel 1226 beneath the patient skin surface 1220 .
  • the ultrasonic image of the vessel 1226 can be depicted on the display 1130 of the system 1110 ( FIG. 19 ).
  • the system 1110 in the present embodiment is configured to detect the position, orientation, and movement of the needle 1200 described above.
  • the sensor array 1190 of the probe 1140 is configured to detect a magnetic field of the magnetic element 1210 included with the needle 1200 .
  • Each of the sensors 1192 of the sensor array 1190 is configured to spatially detect the magnetic element 1210 in three dimensional space.
  • magnetic field strength data of the needle's magnetic element 1210 sensed by each of the sensors 1192 is forwarded to a processor, such as the processor 1122 of the console 1120 ( FIG. 18 ), which computes in real-time the position and/or orientation of the magnetic element 1210 .
  • the position of the magnetic element 1210 in X, Y, and Z coordinate space with respect to the sensor array 1190 can be determined by the system 1110 using the magnetic field strength data sensed by the sensors 1192 .
  • FIG. 22A shows that the pitch of the magnetic element 1210 can also be determined
  • FIG. 22B shows that the yaw of the magnetic element can be determined.
  • Suitable circuitry of the probe 1140 , the console 1120 , or other component of the system can provide the calculations necessary for such position/orientation.
  • the magnetic element 210 can be tracked using the teachings of one or more of the following U.S. Pat. Nos. 5,775,322; 5,879,297; 6,129,668; 6,216,028; and 6,263,230. The contents of the afore-mentioned U.S. patents are incorporated herein by reference in their entireties.
  • the above position and orientation information determined by the system 1110 together with the length of the cannula 1202 and position of the magnetic element 1210 with respect to the distal needle tip as known by or input into the system, enable the system to accurately determine the location and orientation of the entire length of the needle 1200 with respect to the sensor array 1190 .
  • the distance between the magnetic element 1210 and the distal needle tip is known by or input into the system 1110 .
  • This enables the system 1110 to superimpose an image of the needle 1200 on to an image produced by the ultrasound beam 1222 of the probe 1140 .
  • FIGS. 23A and 23B show examples of such a superimposition of the needle onto an ultrasound image. Specifically, FIGS.
  • FIGS. 23A and 23B each show a screenshot 1230 that can be depicted on the display 1130 ( FIG. 19 ), for instance.
  • an ultrasound image 1232 is shown, including depiction of the patient skin surface 1220 , and the subcutaneous vessel 1226 .
  • the ultrasound image 1232 corresponds to an image acquired by the ultrasound beam 1222 shown in FIGS. 22A and 22B , for instance.
  • the screenshot 1230 further shows a needle image 1234 representing the position and orientation of the actual needle 1200 as determined by the system 1110 as described above. Because the system is able to determine the location and orientation of the needle 1200 with respect to the sensor array 1190 , the system is able to accurately determine the position and orientation of the needle 1200 with respect to the ultrasound image 1232 and superimpose it thereon for depiction as the needle image 1234 on the display 1130 . Coordination of the positioning of the needle image 1234 on the ultrasound image 1232 is performed by suitable algorithms executed by the processor 1122 or other suitable component of the system 1110 .
  • the sensors 1192 are configured to continuously detect the magnetic field of the magnetic element 1210 of the needle 1200 during operation of the system 1110 . This enables the system 1110 to continuously update the position and orientation of the needle image 1234 for depiction on the display 1130 . Thus, advancement or other movement of the needle 1200 is depicted in real-time by the needle image 1234 on the display 1130 . Note that the system 1110 is capable of continuously updating both the ultrasound image 1232 and the needle image 1234 on the display 1130 as movements of the probe 1140 and the needle 1200 occur during a placement procedure or other activity.
  • FIG. 23A further shows that in one embodiment the system 1110 can depict a projected path 1236 based on the current position and orientation of the needle 1200 as depicted by the needle image 1234 .
  • the projected path 1236 assists a clinician in determining whether the current orientation of the needle 1200 , as depicted by the needle image 1234 on the display 1130 , will result in arriving at the desired internal body portion target, such as the vessel 1226 shown here.
  • the projected path 1236 is correspondingly modified by the system 1110 .
  • a target 1238 indicating the point where the projected path 1236 crosses the plane of the ultrasound image 1232 , can also be depicted on the display 1130 by the system 1110 . As shown in FIG.
  • the target 1238 is located within the vessel 1226 depicted in the ultrasound image 1232 .
  • the position of the target 1238 on the display 1130 can also be modified as the needle 1200 and/or the ultrasound image 1232 are adjusted.
  • the screenshot 1230 also includes an area of probability 1239 , here depicted as a box, which indicates any possible margin of error of the system due to needle length, needle rigidity and flex, field strength of the magnetic element, magnetic interference, possible discrepancy in alignment of the magnetic axis of the magnetic element with the longitudinal axis of the needle, orientation of the sensor array with respect to the ultrasound imaging plane, etc.
  • FIG. 23B shows that, in one embodiment, the screenshot 1230 can be configured such that the ultrasound image 1232 and the needle image 1234 are oriented so as to be displayed in a three dimensional aspect. This enables the angle and orientation of the needle 1200 , as depicted by the needle image 1234 , to be ascertained and compared with the intended target imaged by the ultrasound image 1232 .
  • the screenshots 1230 are merely examples of possible depictions produced by the system 1110 for display; indeed, other visual depictions can be used.
  • the particular area of the body being imaged is merely an example; the system can be used to ultrasonically image a variety of body portions, and should not be limited to what is explicitly depicted in the accompanying figures.
  • system as depicted and described herein can be included as a component of a larger system, if desired, or can be configured as a stand-alone device.
  • aural information such as beeps, tones, etc., can also be employed by the system 1110 to assist the clinician during positioning and insertion of the needle into the patient.
  • the system 1110 it is necessary for the system 1110 to know the total length of the needle 1200 and the location of the magnetic element 1210 thereon in order to enable an accurate depiction of the needle image 1234 and other features of the screenshots 1230 of FIGS. 23A and 23B to be made.
  • the system 1110 can be informed these and/or other pertinent parameters in various ways, including scanning by the system of a barcode included on or with the needle, the inclusion of a radiofrequency identification (“RFID”) chip with the needle for scanning by the system, color coding of the needle, manual entry of the parameters by the clinician into the system, etc.
  • RFID chip 1354 is included on the needle 1200 shown in FIG. 33A .
  • the probe 1140 or other component of the system 1110 can include an RFID reader to read the information included on the RFID chip 1354 , such as the type or length of the needle 1200 , etc. These and other means for inputting the needle parameters into the system 1110 or detecting the parameters are therefore contemplated.
  • a length of the needle (or other aspect of a medical component) can be determined by measurement by the probe/system of a characteristic of the magnetic element, such as its field strength.
  • the magnetic element of the needle can be positioned at a predetermined distance from the probe or at a predetermined location with respect to the probe. With the magnetic element so positioned, the sensor array of the probe detects and measures the field strength of the magnetic element. The system can compare the measured field strength with a stored list of possible field strengths corresponding to different lengths of needles. The system can match the two strengths and determine the needle length. The needle location and subsequent needle insertion can then proceed as described herein.
  • the magnetic element instead of holding the magnetic element stationary at a predetermined location, the magnetic element can be moved about the probe such that multiple field strength readings are taken by the probe.
  • aspects that can be modified so as to impart different field strengths to a set of magnetic element include size, shape, and composition of the magnetic element, etc.
  • the system 1110 in guiding a needle or other medical device in connection with ultrasonic imaging of a targeted internal body portion (“target”) of a patient, according to one embodiment.
  • the probe With the magnetic element-equipped needle 1200 positioned a suitable distance (e.g., two or more feet) away from the ultrasound probe 1140 including the sensor array 1190 , the probe is employed to ultrasonically image, for depiction on the display 1130 of the system 1110 , the target within the patient that the needle is intended to intersect via percutaneous insertion.
  • a calibration of the system 1110 is then initiated, in which algorithms are executed by the processor 1122 of the console 1120 to determine a baseline for any ambient magnetic fields in the vicinity of where the procedure will be performed.
  • the system 1110 is also informed of the total length of the needle 1200 , and/or position of the magnetic element with respect to the distal needle tip such as by user input, automatic detection, or in another suitable manner, as has been discussed above.
  • the needle 1200 is then brought into the range of the sensors 1192 of the sensor array 1190 of the probe 1140 .
  • Each of the sensors 1192 detects the magnetic field strength associated with the magnetic element 1210 of the needle 1200 , which data is forwarded to the processor 1122 .
  • data can be stored in memory until needed by the processor.
  • suitable algorithms are performed by the processor 1122 to calculate a magnetic field strength of the magnetic element 1210 of the needle 1200 at predicted points in space in relationship to the probe.
  • the processor 1122 compares the actual magnetic field strength data detected by the sensors 1192 to the calculated field strength values. Note that this process is further described by the U.S. patents identified above.
  • This process can be iteratively performed until the calculated value for a predicted point matches the measured data. Once this match occurs, the magnetic element 1210 has been positionally located in three dimensional space. Using the magnetic field strength data as detected by the sensors 1192 , the pitch and yaw (i.e., orientation) of the magnetic element 1210 can also be determined. Together with the known length of the needle 1200 and the position of the distal tip of the needle with respect to the magnetic element, this enables an accurate representation of the position and orientation of the needle can be made by the system 1110 and depicted as a virtual model, i.e., the needle image 1234 , on the display 1130 . Note that the predicted and actual detected values must match within a predetermined tolerance or confidence level in one embodiment for the system 1110 to enable needle depiction to occur.
  • Depiction of the virtual needle image 1234 of the needle 1200 as described above is performed in the present embodiment by overlaying the needle image on the ultrasound image 1232 of the display 1130 ( FIGS. 23A , 23 B).
  • Suitable algorithms of the system 1110 as executed by the processor 1122 or other suitable component further enable the projected path 1236 , the target 1238 , and area of probability 1239 ( FIGS. 23A , 23 B) to be determined and depicted on the display 1130 atop the ultrasound image 1232 of the target.
  • the above prediction, detection, comparison, and depiction process is iteratively performed to continue tracking the movement of the needle 1200 in real-time.
  • a method 1240 for guiding a needle or other medical component includes various stages.
  • a targeted internal body portion of a patient is imaged by an imaging system, such as an ultrasound imaging device for instance.
  • a detectable characteristic of a medical component such as a needle is sensed by one or more sensors included with the imaging system.
  • the detectable characteristic of the needle is a magnetic field of the magnetic element 1210 included with the needle 1200 and the sensors are magnetic sensors included in the sensor array 1190 included with the ultrasound probe 1140 .
  • a position of the medical component with respect to the targeted internal body portion is determined in at least two spatial dimensions via sensing of the detectable characteristic. As described above, such determination is made in the present embodiment by the processor 1122 of the console 1120 .
  • stage 1248 an image representing the position of the medical component is combined with the image of the targeted internal body portion for depiction on a display.
  • Stage 1250 shows that stages 1244 - 1248 can be iteratively repeated to depict advancement or other movement of the medical component with respect to the imaged target, such as percutaneous insertion of the needle 1200 toward the vessel 1226 ( FIGS. 23A , 23 B), for instance.
  • processor 1122 or other suitable component can calculate additional aspects, including the area of probability 1239 and the target 1238 ( FIGS. 23A , 23 B) for depiction on the display 1130 .
  • FIG. 25 shows one example of this, wherein an attachable sensor module 1260 including the sensors 1192 of the sensor array 1190 is shown attached to the ultrasound probe 1140 .
  • the sensor module 1260 in one embodiment includes a processor and algorithms suitable for locating and tracking the needle or other medical component and for depicting on a display the virtual image of the needle for overlay on to the ultrasound image.
  • the sensor module 1260 can be included with a module display 1262 for depiction of the needle tracking.
  • FIG. 26 shows that in one embodiment, a needle holder can be employed to hold and advance the needle 1200 during the ultrasound imaging and needle guidance procedure performed by the system 1110 as has been described.
  • the needle holder 1270 is pistol-shaped and includes a trigger 1272 for selectively advancing the needle 1200 or other suitable medical component by moving the needle longitudinally away from the barrel of the holder upon pressing of the trigger. So configured, the needle holder 1270 facilitates ease of needle handling with one hand of the clinician while the other hand is grasping and manipulating the ultrasound probe 1140 .
  • the needle holder 1270 can provide needle movement/rotation assistance such as via a motor, ratcheting, hydraulic/pneumatic drivers, etc.
  • a clocking feature can be included on the needle holder 1270 to assist with determining the orientation of the distal tip of the needle 1200 and for facilitating rotation of the needle.
  • the needle holder 1270 can be operably connected to the system 1110 such that advancement by the needle holder is automatically stopped when the distal end 1202 B of the needle cannula 1202 reaches the targeted internal body portion or the needle intercepts the ultrasound plane.
  • the magnetic element can be included with the needle holder instead of the needle itself. The needle, when temporarily attached to the needle holder, can thus be located and guided by the guidance system without the need for a magnetic element to be attached directly to the needle.
  • FIGS. 27 and 28 depict components of the guidance system 1110 according to another embodiment, wherein an optical-based interaction between the probe 1140 and the needle 1200 is employed to enable tracking and guidance of the needle.
  • the probe 1140 includes a optical/light source, such as an LED 1280 , and a photodetector 1282 positioned on the probe surface.
  • the light source and detector can be configured to produce and detect light signals of a variety of ranges including visible, infrared, etc.
  • the needle hub 1204 includes a reflective surface 1286 capable of reflecting light produced by the LED 1280 and incident thereon. As shown in FIG. 28 , light emitted by the LED 1280 is reflected by the reflective surface 1286 of the needle 1200 , a portion of which is received and sensed by the photodetector 1282 . As in previous embodiments, the processor 1122 of the system console 1120 can be employed to receive the sensed data of the photodetector 1282 and compute the position and or orientation of the needle 1200 . As before, the length of the needle 1200 and/or the position of the reflective surface with respect to the distal end of the needle 1200 are input into or otherwise detectable or known by the system 1110 . Note that the reflective surface can be included at other locations on the needle.
  • the detectable characteristic of the needle 1200 includes the reflectivity of the reflective surface 1286 , in contrast to the magnetic field characteristic of the magnetic element 1210 of previous embodiments, and the sensor includes the photodetector 1282 , in contrast to the magnetic sensors 1192 of previous embodiments.
  • the above-described configuration can be reversed, wherein an optical source is included with the needle or medical component.
  • light is emitted from the needle and detected by the photodetector 1282 included with the probe 1140 so as to enable location and tracking of the needle.
  • a power source can be included with the needle, such as a watch battery or the like, in order to power the light source of the needle.
  • the needle or medical component can include one or more of these or other detectable characteristics to enable the needle to be tracked and guided toward a target within the body of the patient.
  • detectable characteristic modalities include electromagnetic or radiofrequency (“RF”) (see, e.g., FIGS. 29-30 below), and radioactivity.
  • RF modalities it is appreciated that one or more synchronously or asynchronously pulsed frequency sources can be included with the needle as to enable detection thereof by a suitable sensor(s).
  • an RF first source can be coupled with a passive magnet as a second source.
  • FIGS. 29 and 30 depict components of a guidance system according to one embodiment, wherein EM signal interaction between the probe 1140 and the needle 1200 is employed to enable tracking and guidance of the needle.
  • the needle 1200 includes a stylet 1298 disposed therein.
  • the stylet 1298 includes an E. coli 1290 that is operably connected to the probe 1140 via a tether 1292 .
  • the E. coli 1290 can be driven by suitable components included in the probe 1140 or system console 1120 such that the E. coli emits an EM signal during operation.
  • a sensor 1294 suitable for detecting EM signals emitted by the E. coli 1290 of the stylet 1298 is included in the probe 1140 .
  • the sensor 1294 is a three-axis sensor for detecting corresponding orthogonal components of the EM signal, though other coil and sensor configurations can also be employed. So configured, the position and orientation of the needle 1200 can be determined, by EM signal triangulation or other suitable process, and displayed by the system in a manner similar to that already described above.
  • the processor 1122 of the system console 1120 FIG. 18
  • the processor 1122 of the system console 1120 can be employed to receive the sensed data of the EM sensor 1294 and compute the position and/or orientation of the needle 1200 .
  • the length of the needle 1200 and/or the position of the E. coli 1290 with respect to the distal end of the needle 1200 are input into or otherwise detectable or known by the system.
  • FIG. 30 shows a variation of the EM configuration of FIG. 29 , wherein the respective positions of the EM components is reversed: the E. coli 1290 is included in the probe 1140 and the EM sensor 1294 is included with the stylet 1298 disposed in the needle 1200 .
  • the operable connection between the E. coli 1290 and the EM sensor 1294 via the tether 1292 enables the component disposed in the stylet 1298 to be driven by the system 1110 .
  • This also enables correspondence of the particular EM frequency/frequencies emitted by the E. coli 1290 and detected by the EM sensor 1294 to be made.
  • the probe/system includes suitable signal processing components configured to detect the EM signal emitted by the E. coli and to process it as necessary in order to locate the needle.
  • E. coli and EM sensors can be included at other locations than what is depicted herein.
  • the E. coli can be included on the needle itself, or on a connector that is attachable to the proximal end of the needle.
  • FIGS. 31A-31D give further details of the needle 1200 configured according to one embodiment, wherein the needle includes a hub 1304 from which extends the cannula 1202 .
  • a magnetic element 1310 defining a hole 1312 is included in a cavity 1314 A of a housing 1314 .
  • the housing 1314 includes threads so as to threadably engage the needle hub 1304 or other suitable component of the needle or medical component. In this way, the magnetic element 1310 is removably attachable to the needle 1200 via the housing 1314 .
  • the magnetic element 1310 need not be permanently affixed or included with the needle 1200 , but rather can be removed therefrom when magnetic-based needle guidance is no longer needed.
  • the needle 1200 further includes a distally slidable needle safety component 1320 for safely isolating the distal tip of the needle upon removal of the needle from the patient.
  • a distally slidable needle safety component 1320 for safely isolating the distal tip of the needle upon removal of the needle from the patient.
  • FIGS. 32-33B give further examples of the needle 1200 including a magnetic element.
  • two bar-like magnetic elements 1340 are disposed so as to orthogonally extend from a hub 1334 of the needle 1200 , illustrating that the magnetic element need not be oriented parallel to the longitudinal axis of the needle.
  • four magnetic elements 1350 are included in the needle hub 1344 , showing that more than one magnetic element can be included with the needle.
  • Such a configuration may be employed, for example, where limited space prevents one magnetic element from being used. Note the number, shape, and placement of the magnetic elements here is only one example of many possible configurations.
  • FIGS. 34A-34G give various example configurations of a magnetic element 1360 that defines a hole for receiving the cannula of the needle therethrough.
  • Various shape configurations for the magnetic element 1360 are shown, including a square ( FIG. 34A ), a hexagon ( FIG. 34B ), a triangle ( FIG. 34C ), a rectangle ( FIG. 34D ), an oval ( FIG. 34E ), an octagon ( FIG. 34F ), and a four-sided pyramid ( FIG. 34G ).
  • the magnetic elements shown in the accompanying figures are merely examples of the broad number of geometric and other shapes that can be used to define the magnetic element; indeed other shapes not shown explicitly herein are also contemplated.

Abstract

A guidance system for assisting with the insertion of a needle or other medical component into the body of a patient is disclosed. The guidance system utilizes ultrasound imaging or other suitable imaging technology. In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a vessel. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle. The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation-in-part of U.S. patent application Ser. No. 12/323,273, filed Nov. 25, 2008, now U.S. Pat. No. 8,388,541. This application claims the benefit of the following provisional applications either directly or via the parent application: U.S. Provisional Application No. 61/349,771, filed May 28, 2010, U.S. Provisional Application No. 61/095,921, filed Sep. 10, 2008, U.S. Provisional Application No. 61/095,451, filed Sep. 9, 2008, U.S. Provisional Application No. 61/091,233, filed Aug. 22, 2008, U.S. Provisional Application No. 61/054,944, filed Apr. 17, 2008, and U.S. Provisional Application No. 60/990,242, filed Nov. 26, 2007. Each of the aforementioned applications is incorporated herein by reference in its entirety.
  • BRIEF SUMMARY
  • Briefly summarized, embodiments of the present invention are directed to an integrated catheter placement system configured for accurately placing a catheter within the vasculature of a patient. The integrated system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location system (“TLS”), or magnetically-based (e.g., via permanent magnet(s) or electromagnet(s)) tracking of the catheter tip during its advancement through the vasculature to detect and facilitate correction of any tip malposition during such advancement.
  • In one embodiment, the integrated system comprises a system console including a control processor, a tip location sensor for temporary placement on a portion of a body of the patient, and an ultrasound probe. The tip location sensor senses a magnetic field of a stylet disposed in a lumen of the catheter when the catheter is disposed in the vasculature. The ultrasound probe ultrasonically images a portion of the vasculature prior to introduction of the catheter into the vasculature. In addition, the ultrasound probe includes user input controls for controlling use of the ultrasound probe in an ultrasound mode and use of the tip location sensor in a tip location mode.
  • In another embodiment, a third modality, i.e., ECG signal-based catheter tip guidance, is included in the system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate.
  • In addition, embodiments of the present disclosure are also directed to a guidance system for assisting with the insertion of a needle or other medical component into the body of a patient. The guidance system utilizes ultrasound imaging or other suitable imaging technology.
  • In one embodiment, the guidance system comprises an imaging device including a probe for producing an image of an internal body portion target, such as a subcutaneous vessel, for instance. One or more sensors are included with the probe. The sensors sense a detectable characteristic related to the needle, such as a magnetic field of a magnet included with the needle.
  • The system includes a processor that uses data relating to the detectable characteristic sensed by the sensors to determine a position and/or orientation of the needle in three spatial dimensions. The system includes a display for depicting the position and/or orientation of the needle together with the image of the target.
  • In addition to magnet-based detection, other modalities for detecting the medical component are disclosed, including optically-based and electromagnetic signal-based systems.
  • These and other features of embodiments of the present invention will become more fully apparent from the following description and appended claims, or may be learned by the practice of embodiments of the invention as set forth hereinafter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more particular description of the present disclosure will be rendered by reference to specific embodiments thereof that are illustrated in the appended drawings. It is appreciated that these drawings depict only typical embodiments of the invention and are therefore not to be considered limiting of its scope. Example embodiments of the invention will be described and explained with additional specificity and detail through the use of the accompanying drawings in which:
  • FIG. 1 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to one example embodiment of the present invention;
  • FIG. 2 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 1;
  • FIGS. 3A and 3B are views of a probe of the integrated system of FIG. 1;
  • FIG. 4 is a screenshot of an ultrasound image as depicted on a display of the integrated system of FIG. 1;
  • FIG. 5 is a perspective view of a stylet employed in connection with the system of FIG. 1 in placing a catheter within a patient vasculature;
  • FIG. 6 is an icon as depicted on a display of the integrated system of FIG. 1, indicating a position of a distal end of the stylet of FIG. 5 during catheter tip placement procedures;
  • FIGS. 7A-7E depict various example icons that can be depicted on the display of the integrated system of FIG. 1 during catheter tip placement procedures;
  • FIGS. 8A-8C are screenshots of images depicted on a display of the integrated system of FIG. 1 during catheter tip placement procedures;
  • FIG. 9 is a block diagram depicting various elements of an integrated system for intravascular placement of a catheter, according to another example embodiment of the present invention;
  • FIG. 10 is a simplified view of a patient and a catheter being inserted therein with assistance of the integrated system of FIG. 9;
  • FIG. 11 is a perspective view of a stylet employed in connection with the integrated system of FIG. 9 in placing a catheter within a patient vasculature;
  • FIGS. 12A-12E are various views of portions of the stylet of FIG. 11;
  • FIGS. 13A-13D are various views of a fin connector assembly for use with the integrated system of FIG. 9;
  • FIGS. 14A-14C are views showing the connection of a stylet tether and fin connector to a sensor of the integrated system of FIG. 9;
  • FIG. 15 is a cross sectional view of the connection of the stylet tether, fin connector, and sensor shown in FIG. 14C;
  • FIG. 16 is simplified view of an ECG trace of a patient;
  • FIG. 17 is a screenshot of an image depicted on a display of the integrated system of FIG. 9 during catheter tip placement procedures;
  • FIG. 18 is a block diagram depicting various elements of an ultrasound-based guidance system for needles and other medical components, according to one embodiment;
  • FIG. 19 is a simplified view of a patient and a catheter being inserted therein, showing one possible environment in which the guidance system of FIG. 18 can be practiced;
  • FIG. 20 is a top view of the ultrasound probe of the guidance system of FIG. 18;
  • FIG. 21A is a side view of a needle for use with the guidance system of FIG. 18, according to one embodiment;
  • FIG. 21B is an end view of the needle of FIG. 21A;
  • FIGS. 22A and 22B are simplified views of the ultrasound probe of the guidance system being used to guide a needle toward a vessel within the body of a patient;
  • FIGS. 23A and 23B show possible screenshots for depiction on the display of the guidance system, showing the position and orientation of a needle according to one embodiment;
  • FIG. 24 shows various stages of a method for guiding a needle to a desired target within the body of a patient according to one embodiment;
  • FIG. 25 shows a sensor array for attachment to an ultrasound probe and associated display, according to one embodiment;
  • FIG. 26 is a simplified view of a needle holder gun for use with the guidance system of FIG. 18, according to one embodiment;
  • FIG. 27 is a simplified view of an ultrasound probe and needle including elements of an optical guidance system, according to one embodiment;
  • FIG. 28 shows operation of the ultrasound probe and needle of FIG. 27, according to one embodiment;
  • FIG. 29 is a simplified view of an ultrasound probe and needle including elements of an electromagnetic signal-based guidance system, according to one embodiment;
  • FIG. 30 is a simplified view of an ultrasound probe and needle including elements of an electromagnetic signal-based guidance system, according to another embodiment;
  • FIGS. 31A-31D are various views of a needle and associated components for use with a needle guidance system, according to one embodiment;
  • FIG. 32 is a side view of a needle for use with a needle guidance system, according to one embodiment;
  • FIGS. 33A and 33B are various views of a needle for use with a needle guidance system, according to one embodiment; and
  • FIGS. 34A-34G are views of variously shaped magnetic elements for use with a needle guidance system according to one embodiment.
  • DETAILED DESCRIPTION OF SELECTED EMBODIMENTS
  • Reference will now be made to figures wherein like structures will be provided with like reference designations. It is understood that the drawings are diagrammatic and schematic representations of exemplary embodiments of the present invention, and are neither limiting nor necessarily drawn to scale.
  • For clarity it is to be understood that the word “proximal” refers to a direction relatively closer to a clinician using the device to be described herein, while the word “distal” refers to a direction relatively further from the clinician. For example, the end of a needle placed within the body of a patient is considered a distal end of the needle, while the needle end remaining outside the body is a proximal end of the needle. Also, the words “including,” “has,” and “having,” as used herein, including the claims, shall have the same meaning as the word “comprising.”
  • I. Assisted Catheter Placement
  • Embodiments of the present invention are generally directed to a catheter placement system configured for accurately placing a catheter within the vasculature of a patient. In one embodiment, the catheter placement system employs at least two modalities for improving catheter placement accuracy: 1) ultrasound-assisted guidance for introducing the catheter into the patient's vasculature; and 2) a tip location/navigation system (“TLS”), or magnetically-based tracking of the catheter tip during its advancement through the tortuous vasculature path to detect and facilitate correction of any tip malposition during such advancement. The ultrasound guidance and tip location features of the present system according to one embodiment are integrated into a single device for use by a clinician placing the catheter. Integration of these two modalities into a single device simplifies the catheter placement process and results in relatively faster catheter placements. For instance, the integrated catheter placement system enables ultrasound and TLS activities to be viewed from a single display of the integrated system. Also, controls located on an ultrasound probe of the integrated device, which probe is maintained within the sterile field of the patient during catheter placement, can be used to control functionality of the system, thus precluding the need for a clinician to reach out of the sterile field in order to control the system.
  • In another embodiment, a third modality, i.e., ECG signal-based catheter tip guidance, is included in the integrated system to enable guidance of the catheter tip to a desired position with respect to a node of the patient's heart from which the ECG signals originate. Such ECG-based positional assistance is also referred to herein as “tip confirmation.”
  • Combination of the three modalities above according to one embodiment enables the catheter placement system to facilitate catheter placement within the patient's vasculature with a relatively high level of accuracy, i.e., placement of the distal tip of the catheter in a predetermined and desired position. Moreover, because of the ECG-based guidance of the catheter tip, correct tip placement may be confirmed without the need for a confirmatory X-ray. This, in turn, reduces the patient's exposure to potentially harmful x-rays, the cost and time involved in transporting the patient to and from the x-ray department, costly and inconvenient catheter repositioning procedures, etc.
  • Reference is first made to FIGS. 1 and 2 which depict various components of a catheter placement system (“system”), generally designated at 10, configured in accordance with one example embodiment of the present invention. As shown, the system 10 generally includes a console 20, display 30, probe 40, and sensor 50, each of which is described in further detail below.
  • FIG. 2 shows the general relation of these components to a patient 70 during a procedure to place a catheter 72 into the patient vasculature through a skin insertion site 73. FIG. 2 shows that the catheter 72 generally includes a proximal portion 74 that remains exterior to the patient and a distal portion 76 that resides within the patient vasculature after placement is complete. The system 10 is employed to ultimately position a distal tip 76A of the catheter 72 in a desired position within the patient vasculature. In one embodiment, the desired position for the catheter distal tip 76A is proximate the patient's heart, such as in the lower one-third (⅓rd) portion of the Superior Vena Cava (“SVC”). Of course, the system 10 can be employed to place the catheter distal tip in other locations. The catheter proximal portion 74 further includes a hub 74A that provides fluid communication between the one or more lumens of the catheter 72 and one or more extension legs 74B extending proximally from the hub.
  • An example implementation of the console 20 is shown in FIG. 8C, though it is appreciated that the console can take one of a variety of forms. A processor 22, including non-volatile memory such as EEPROM for instance, is included in the console 20 for controlling system function during operation of the system 10, thus acting as a control processor. A digital controller/analog interface 24 is also included with the console 20 and is in communication with both the processor 22 and other system components to govern interfacing between the probe 40, sensor 50, and other system components.
  • The system 10 further includes ports 52 for connection with the sensor 50 and optional components 54 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein. A power connection 56 is included with the console 20 to enable operable connection to an external power supply 58. An internal battery 60 can also be employed, either with or exclusive of an external power supply. Power management circuitry 59 is included with the digital controller/analog interface 24 of the console to regulate power use and distribution.
  • The display 30 in the present embodiment is integrated into the console 20 and is used to display information to the clinician during the catheter placement procedure. In another embodiment, the display may be separate from the console. As will be seen, the content depicted by the display 30 changes according to which mode the catheter placement system is in: US, TLS, or in other embodiments, ECG tip confirmation. In one embodiment, a console button interface 32 (see FIGS. 1, 8C) and buttons included on the probe 40 can be used to immediately call up a desired mode to the display 30 by the clinician to assist in the placement procedure. In one embodiment, information from multiple modes, such as TLS and ECG, may be displayed simultaneously, such as in FIG. 17. Thus, the single display 30 of the system console 20 can be employed for ultrasound guidance in accessing a patient's vasculature, TLS guidance during catheter advancement through the vasculature, and (as in later embodiments) ECG-based confirmation of catheter distal tip placement with respect to a node of the patient's heart. In one embodiment, the display 30 is an LCD device.
  • FIGS. 3A and 3B depict features of the probe 40 according to one embodiment. The probe 40 is employed in connection with the first modality mentioned above, i.e., ultrasound (“US”)-based visualization of a vessel, such as a vein, in preparation for insertion of the catheter 72 into the vasculature. Such visualization gives real time ultrasound guidance for introducing the catheter into the vasculature of the patient and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
  • The handheld probe 40 includes a head 80 that houses a piezoelectric array for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin proximate the prospective insertion site 73 (FIG. 2). The probe 40 further includes a plurality of control buttons 84, which can be included on a button pad 82. In the present embodiment, the modality of the system 10 can be controlled by the control buttons 84, thus eliminating the need for the clinician to reach out of the sterile field, which is established about the patient insertion site prior to catheter placement, to change modes via use of the console button interface 32.
  • As such, in one embodiment a clinician employs the first (US) modality to determine a suitable insertion site and establish vascular access, such as with a needle or introducer, then with the catheter. The clinician can then seamlessly switch, via button pushes on the probe button pad 82, to the second (TLS) modality without having to reach out of the sterile field. The TLS mode can then be used to assist in advancement of the catheter 72 through the vasculature toward an intended destination.
  • FIG. 1 shows that the probe 40 further includes button and memory controller 42 for governing button and probe operation. The button and memory controller 42 can include non-volatile memory, such as EEPROM, in one embodiment. The button and memory controller 42 is in operable communication with a probe interface 44 of the console 20, which includes a piezo input/output component 44A for interfacing with the probe piezoelectric array and a button and memory input/output component 44B for interfacing with the button and memory controller 42.
  • FIG. 4 shows an example screenshot 88 as depicted on the display 30 while the system 10 is in its first ultrasound modality. An image 90 of a subcutaneous region of the patient 70 is shown, depicting a cross section of a vein 92. The image 90 is produced by operation of the piezoelectric array of the probe 40. also included on the display screenshot 88 is a depth scale indicator 94, providing information regarding the depth of the image 90 below the patient's skin, a lumen size scale 96 that provides information as to the size of the vein 92 relative to standard catheter lumen sizes, and other indicia 98 that provide information regarding status of the system 10 or possible actions to be taken, e.g., freeze frame, image templates, data save, image print, power status, image brightness, etc.
  • Note that while a vein is depicted in the image 90, other body lumens or portions can be imaged in other embodiments. Note that the US mode shown in FIG. 4 can be simultaneously depicted on the display 30 with other modes, such as the TLS mode, if desired. In addition to the visual display 30, aural information, such as beeps, tones, etc., can also be employed by the system 10 to assist the clinician during catheter placement. Moreover, the buttons included on the probe 40 and the console button interface 32 can be configured in a variety of ways, including the use of user input controls in addition to buttons, such as slide switches, toggle switches, electronic or touch-sensitive pads, etc. Additionally, both US and TLS activities can occur simultaneously or exclusively during use of the system 10.
  • As just described, the handheld ultrasound probe 40 is employed as part of the integrated catheter placement system 10 to enable US visualization of the peripheral vasculature of a patient in preparation for transcutaneous introduction of the catheter. In the present example embodiment, however, the probe is also employed to control functionality of the TLS portion, or second modality, of the system 10 when navigating the catheter toward its desired destination within the vasculature as described below. Again, as the probe 40 is used within the sterile field of the patient, this feature enables TLS functionality to be controlled entirely from within the sterile field. Thus the probe 40 is a dual-purpose device, enabling convenient control of both US and TLS functionality of the system 10 from the sterile field. In one embodiment, the probe can also be employed to control some or all ECG-related functionality, or third modality, of the catheter placement system 10, as described further below.
  • The catheter placement system 10 further includes the second modality mentioned above, i.e., the magnetically-based catheter TLS, or tip location system. The TLS enables the clinician to quickly locate and confirm the position and/or orientation of the catheter 72, such as a peripherally-inserted central catheter (“PICC”), central venous catheter (“CVC”), or other suitable catheter, during initial placement into and advancement through the vasculature of the patient 70. Specifically, the TLS modality detects a magnetic field generated by a magnetic element-equipped tip location stylet, which is pre-loaded in one embodiment into a longitudinally defined lumen of the catheter 72, thus enabling the clinician to ascertain the general location and orientation of the catheter tip within the patient body. In one embodiment, the magnetic assembly can be tracked using the teachings of one or more of the following U.S. Pat. Nos. 5,775,322; 5,879,297; 6,129,668; 6,216,028; and 6,263,230. The contents of the afore-mentioned U.S. patents are incorporated herein by reference in their entireties. The TLS also displays the direction in which the catheter tip is pointing, thus further assisting accurate catheter placement. The TLS further assists the clinician in determining when a malposition of the catheter tip has occurred, such as in the case where the tip has deviated from a desired venous path into another vein.
  • As mentioned, the TLS utilizes a stylet to enable the distal end of the catheter 72 to be tracked during its advancement through the vasculature. FIG. 5 gives an example of such a stylet 100, which includes a proximal end 100A and a distal end 100B. A handle is included at the stylet proximal end 100A, with a core wire 104 extending distally therefrom. A magnetic assembly is disposed distally of the core wire 104. The magnetic assembly includes one or more magnetic elements 106 disposed adjacent one another proximate the stylet distal end 100B and encapsulated by tubing 108. In the present embodiment, a plurality of magnetic elements 106 is included, each element including a solid, cylindrically shaped ferromagnetic stacked end-to-end with the other magnetic elements. An adhesive tip 110 can fill the distal tip of the tubing 108, distally to the magnetic elements 106.
  • Note that in other embodiments, the magnetic elements may vary from the design in not only shape, but also composition, number, size, magnetic type, and position in the stylet distal segment. For example, in one embodiment, the plurality of ferromagnetic magnetic elements is replaced with an electromagnetic assembly, such as an electromagnetic coil, which produces a magnetic field for detection by the sensor. Another example of an assembly usable here can be found in U.S. Pat. No. 5,099,845 entitled “Medical Instrument Location Means,” which is incorporated herein by reference in its entirety. Yet other examples of stylets including magnetic elements that can be employed with the TLS modality can be found in U.S. application Ser. No. 11/466,602, filed Aug. 23, 2006, and entitled “Stylet Apparatuses and Methods of Manufacture,” which is incorporated herein by reference in its entirety. These and other variations are therefore contemplated by embodiments of the present invention. It should appreciated herein that “stylet” as used herein can include any one of a variety of devices configured for removable placement within a lumen of the catheter to assist in placing a distal end of the catheter in a desired location within the patient's vasculature.
  • FIG. 2 shows disposal of the stylet 100 substantially within a lumen in the catheter 72 such that the proximal portion thereof extends proximally from the catheter lumen, through the hub 74A and out through a selected one of the extension legs 74B. So disposed within a lumen of the catheter, the distal end 100B of the stylet 100 is substantially co-terminal with the distal catheter end 76A such that detection by the TLS of the stylet distal end correspondingly indicates the location of the catheter distal end.
  • The TLS sensor 50 is employed by the system 10 during TLS operation to detect a magnetic field produced by the magnetic elements 106 of the stylet 100. As seen in FIG. 2, the TLS sensor 50 is placed on the chest of the patient during catheter insertion. The TLS sensor 50 is placed on the chest of the patient in a predetermined location, such as through the use of external body landmarks, to enable the magnetic field of the stylet magnetic elements 106, disposed in the catheter 72 as described above, to be detected during catheter transit through the patient vasculature. Again, as the magnetic elements 106 of the stylet magnetic assembly are co-terminal with the distal end 76A of the catheter 72 (FIG. 2), detection by the TLS sensor 50 of the magnetic field of the magnetic elements provides information to the clinician as to the position and orientation of the catheter distal end during its transit.
  • In greater detail, the TLS sensor 50 is operably connected to the console 20 of the system 10 via one or more of the ports 52, as shown in FIG. 1. Note that other connection schemes between the TLS sensor and the system console can also be used without limitation. As just described, the magnetic elements 106 are employed in the stylet 100 to enable the position of the catheter distal end 76A (FIG. 2) to be observable relative to the TLS sensor 50 placed on the patient's chest. Detection by the TLS sensor 50 of the stylet magnetic elements 106 is graphically displayed on the display 30 of the console 20 during TLS mode. In this way, a clinician placing the catheter is able to generally determine the location of the catheter distal end 76A within the patient vasculature relative to the TLS sensor 50 and detect when catheter malposition, such as advancement of the catheter along an undesired vein, is occurring.
  • FIGS. 6 and 7A-7E show examples of icons that can be used by the console display 30 to depict detection of the stylet magnetic elements 106 by the TLS sensor 50. In particular, FIG. 6 shows an icon 114 that depicts the distal portion of the stylet 100, including the magnetic elements 106 as detected by the TLS sensor 50 when the magnetic elements are positioned under the TLS sensor. As the stylet distal end 100B is substantially co-terminal with the distal end 76A of the catheter 72, the icon indicates the position and orientation of the catheter distal end. FIGS. 7A-7E show various icons that can be depicted on the on the console display 30 when the magnetic elements 106 of the stylet 100 are not positioned directly under a portion of the TLS sensor 50, but are nonetheless detected nearby. The icons can include half-icons 114A and quarter-icons 114B that are displayed according to the position of the stylet magnetic assembly, i.e., the magnetic elements 106 in the present embodiment, relative to the TLS sensor 50.
  • FIGS. 8A-8C depict screenshots taken from the display 30 of the system 10 while in TLS mode, showing how the magnetic assembly of the stylet 100 is depicted. The screenshot 118 of FIG. 8A shows a representative image 120 of the TLS sensor 50. Other information is provided on the display screenshot 118, including a depth scale indicator 124, status/action indicia 126, and icons 128 corresponding to the button interface 32 included on the console 20 (FIG. 8C). Though the icons 128 in the present embodiment are simply indicators to guide the user in identifying the purpose of the corresponding buttons of the button interface 32, in another embodiment the display can be made touch-sensitive so that the icons themselves can function as button interfaces and can change according to the mode the system is in.
  • During initial stages of catheter advancement through the patient's vasculature after insertion therein, the distal end 76A of the catheter 72, having the stylet distal end 100B substantially co-terminal therewith, is relatively distant from the TLS sensor 50. As such, the display screenshot will indicate “no signal,” indicating that the magnetic field from the stylet magnetic assembly has not been detected. In FIG. 8B, the magnetic assembly proximate the stylet distal end 100B has advanced sufficiently close to the TLS sensor 50 to be detected thereby, though it is not yet under the sensor. This is indicated by the half-icon 114A shown to the left of the sensor image 120, representing the stylet magnetic assembly being positioned to the right of the TLS sensor 50 from the perspective of the patient.
  • In FIG. 8C, the magnetic assembly proximate the stylet distal end 100B has advanced under the TLS sensor 50 such that its position and orientation relative thereto is detected by the TLS sensor. This is indicated by the icon 114 on the sensor image 120. Note that the button icons 128 provide indications of the actions that can be performed by pressing the corresponding buttons of the console button interface 32. As such, the button icons 128 can change according to which modality the system 10 is in, thus providing flexibility of use for the button interface 32. Note further that, as the button pad 82 of the probe 40 (FIG. 3A, 3B) includes buttons 84 that mimic several of the buttons of the button interface 32, the button icons 128 on the display 30 provide a guide to the clinician for controlling the system 10 with the probe buttons 84 while remaining in the sterile field. For instance, if the clinician has need to leave TLS mode and return to US (ultrasound) mode, the appropriate control button 84 on the probe button pad 82 can be depressed, and the US mode can be immediately called up, with the display 30 refreshing to accommodate the visual information needed for US functionality, such as that shown in FIG. 4. This is accomplished without a need for the clinician to reach out of the sterile field.
  • Reference is now made to FIGS. 9 and 10 in describing the integrated catheter placement system 10 according to another example embodiment. As before, the integrated system 10 includes the console 20, display 30, probe 40 for US functionality, and the TLS sensor 50 for tip location functionality as described above. Note that the system 10 depicted in FIGS. 9 and 10 is similar in many respects to the system shown in FIGS. 1 and 2. As such, only selected differences will be discussed below. The system 10 of FIGS. 9 and 10 includes additional functionality wherein determination of the proximity of the catheter distal tip 76A relative to a sino-atrial (“SA”) or other electrical impulse-emitting node of the heart of the patient 70 can be determined, thus providing enhanced ability to accurately place the catheter distal tip in a desired location proximate the node. Also referred to herein as “ECG” or “ECG-based tip confirmation,” this third modality of the system 10 enables detection of ECG signals from the SA node in order to place the catheter distal tip in a desired location within the patient vasculature. Note that the US, TLS, and ECG modalities are seamlessly combined in the present system 10 and can be employed in concert or individually to assist in catheter placement.
  • FIGS. 9 and 10 show the addition to the system 10 of a stylet 130 configured in accordance with the present embodiment. As an overview, the catheter stylet 130 is removably predisposed within the lumen of the catheter 72 being inserted into the patient 70 via the insertion site 73. The stylet 130, in addition to including a magnetic assembly for the magnetically-based TLS modality, includes an ECG sensor assembly proximate its distal end and including a portion that is co-terminal with the distal end of the catheter tip for sensing ECG signals produced by the SA node. In contrast to the previous embodiment, the stylet 130 includes a tether 134 extending from its proximal end that operably connects to the TLS sensor 50. As will be described in further detail, the stylet tether 134 permits ECG signals detected by the ECG sensor assembly included on a distal portion of the stylet 130 to be conveyed to the TLS sensor 50 during confirmation of the catheter tip location as part of the ECG signal-based tip confirmation modality. Reference and ground ECG lead/electrode pairs 158 attach to the body of the body of the patient 70 and are operably attached to the TLS sensor 50 to enable the system to filter out high level electrical activity unrelated to the electrical activity of the SA node of the heart, thus enabling the ECG-based tip confirmation functionality. Together with the reference and ground signals received from the ECG lead/electrode pairs 158 placed on the patient's skin, the ECG signals sensed by the stylet ECG sensor assembly are received by the TLS sensor 50 positioned on the patient's chest (FIG. 10). The TLS sensor 50 and/or console processor 22 can process the ECG signal data to produce an electrocardiogram waveform on the display 30, as will be described. In the case where the TLS sensor 50 processes the ECG signal data, a processor is included therein to perform the intended functionality. If the console 20 processes the ECG signal data, the processor 22, controller 24, or other processor can be utilized in the console to process the data.
  • Thus, as it is advanced through the patient vasculature, the catheter 72 equipped with the stylet 130 as described above can advance under the TLS sensor 50, which is positioned on the chest of the patient as shown in FIG. 10. This enables the TLS sensor 50 to detect the position of the magnetic assembly of the stylet 130, which is substantially co-terminal with the distal tip 76A of the catheter as located within the patient's vasculature. The detection by the TLS sensor 50 of the stylet magnetic assembly is depicted on the display 30 during ECG mode. The display 30 further depicts during ECG mode an ECG electrocardiogram waveform produced as a result of patient heart's electrical activity as detected by the ECG sensor assembly of the stylet 130. In greater detail, the ECG electrical activity of the SA node, including the P-wave of the waveform, is detected by the ECG sensor assembly of the stylet (described below) and forwarded to the TLS sensor 50 and console 20. The ECG electrical activity is then processed for depiction on the display 30. clinician placing the catheter can then observe the ECG data to determine optimum placement of the distal tip 76A of the catheter 72, such as proximate the SA node in one embodiment. In one embodiment, the console 20 which includes the electronic components, such as the processor 22 (FIG. 9) necessary to receive and process the signals detected by the stylet ECG sensor assembly. In another embodiment, the TLS sensor 50 can include the necessary electronic components processing the ECG signals.
  • As already discussed, the display 30 is used to display information to the clinician during the catheter placement procedure. The content of the display 30 changes according to which mode the catheter placement system is in: US, TLS, or ECG. Any of the three modes can be immediately called up to the display 30 by the clinician, and in some cases information from multiple modes, such as TLS and ECG, may be displayed simultaneously. In one embodiment, as before, the mode the system is in may be controlled by the control buttons 84 included on the handheld probe 40, thus eliminating the need for the clinician to reach out of the sterile field (such as touching the button interface 32 of the console 20) to change modes. Thus, in the present embodiment the probe 40 is employed to also control some or all ECG-related functionality of the system 10. Note that the button interface 32 or other input configurations can also be used to control system functionality. Also, in addition to the visual display 30, aural information, such as beeps, tones, etc., can also be employed by the system to assist the clinician during catheter placement.
  • Reference is now made to FIGS. 11-12E in describing various details of one embodiment of the stylet 130 that is removably loaded into the catheter 72 and employed during insertion to position the distal tip 76A of the catheter in a desired location within the patient vasculature. As shown, the stylet 130 as removed from the catheter defines a proximal end 130A and a distal end 130B. A connector 132 is included at the proximal stylet end 130A, and a tether 134 extends distally from the connector and attaches to a handle 136. A core wire 138 extends distally from the handle 136. The stylet 130 is pre-loaded within a lumen of the catheter 72 in one embodiment such that the distal end 130B is substantially flush, or co-terminal, with the catheter opening at the distal end 76A thereof (FIG. 10), and such that a proximal portion of the core wire 138, the handle 136, and the tether 134 extend proximally from a selected one of the extension tubes 74B. Note that, though described herein as a stylet, in other embodiments a guidewire or other catheter guiding apparatus could include the principles of the embodiment described herein.
  • The core wire 138 defines an elongate shape and is composed of a suitable stylet material including stainless steel or a memory material such as, in one embodiment, a nickel and titanium-containing alloy commonly known by the acronym “nitinol.” Though not shown here, manufacture of the core wire 138 from nitinol in one embodiment enables the portion of the core wire corresponding to a distal segment of the stylet to have a pre-shaped bent configuration so as to urge the distal portion of the catheter 72 into a similar bent configuration. In other embodiments, the core wire includes no pre-shaping. Further, the nitinol construction lends torqueability to the core wire 138 to enable a distal segment of the stylet 130 to be manipulated while disposed within the lumen of the catheter 72, which in turn enables the distal portion of the catheter to be navigated through the vasculature during catheter insertion.
  • The handle 136 is provided to enable insertion/removal of the stylet from the catheter 72. In embodiments where the stylet core wire 138 is torqueable, the handle 136 further enables the core wire to be rotated within the lumen of the catheter 72, to assist in navigating the catheter distal portion through the vasculature of the patient 70.
  • The handle 136 attaches to a distal end of the tether 134. In the present embodiment, the tether 134 is a flexible, shielded cable housing one or more conductive wires electrically connected both to the core wire 138, which acts as the ECG sensor assembly referred to above, and the tether connector 132. As such, the tether 134 provides a conductive pathway from the distal portion of the core wire 138 through to the tether connector 132 at proximal end 130A of the stylet 130. As will be explained, the tether connector 132 is configured for operable connection to the TLS sensor 50 on the patient's chest for assisting in navigation of the catheter distal tip 76A to a desired location within the patient vasculature.
  • As seen in FIGS. 12B-12D, a distal portion of the core wire 138 is gradually tapered, or reduced in diameter, distally from a junction point 142. A sleeve 140 is slid over the reduced-diameter core wire portion. Though of relatively greater diameter here, the sleeve in another embodiment can be sized to substantially match the diameter of the proximal portion of the stylet core wire. The stylet 130 further includes a magnetic assembly disposed proximate the distal end 130B thereof for use during TLS mode. The magnetic assembly in the illustrated embodiment includes a plurality of magnetic elements 144 interposed between an outer surface of the reduced-diameter core wire 138 and an inner surface of the sleeve 140 proximate the stylet distal end 130B. In the present embodiment, the magnetic elements 144 include 20 ferromagnetic magnets of a solid cylindrical shape stacked end-to-end in a manner similar to the stylet 100 of FIG. 2. In other embodiments, however, the magnetic element(s) may vary from this design in not only shape, but also composition, number, size, magnetic type, and position in the stylet. For example, in one embodiment the plurality of magnets of the magnetic assembly is replaced with an electromagnetic coil that produces a magnetic field for detection by the TLS sensor. These and other variations are therefore contemplated by embodiments of the present invention.
  • The magnetic elements 144 are employed in the stylet 130 distal portion to enable the position of the stylet distal end 130B to be observable relative to the TLS sensor 50 placed on the patient's chest. As has been mentioned, the TLS sensor 50 is configured to detect the magnetic field of the magnetic elements 144 as the stylet advances with the catheter 72 through the patient vasculature. In this way, a clinician placing the catheter 72 is able to generally determine the location of the catheter distal end 76A within the patient vasculature and detect when catheter malposition is occurring, such as advancement of the catheter along an undesired vein, for instance.
  • The stylet 130 further includes the afore-mentioned ECG sensor assembly, according to one embodiment. The ECG sensor assembly enables the stylet 130, disposed in a lumen of the catheter 72 during insertion, to be employed in detecting an intra-atrial ECG signal produced by an SA or other node of the patient's heart, thereby allowing for navigation of the distal tip 76A of the catheter 72 to a predetermined location within the vasculature proximate the patient's heart. Thus, the ECG sensor assembly serves as an aide in confirming proper placement of the catheter distal tip 76A.
  • In the embodiment illustrated in FIGS. 11-12E, the ECG sensor assembly includes a distal portion of the core wire 138 disposed proximate the stylet distal end 130B. The core wire 138, being electrically conductive, enables ECG signals to be detected by the distal end thereof and transmitted proximally along the core wire. A conductive material 146, such as a conductive epoxy, fills a distal portion of the sleeve 140 adjacent the distal termination of the core wire 138 so as to be in conductive communication with the distal end of the core wire. This in turn increases the conductive surface of the distal end 130B of the stylet 130 so as to improve its ability to detect ECG signals.
  • Before catheter placement, the stylet 130 is loaded into a lumen of the catheter 72. Note that the stylet 130 can come preloaded in the catheter lumen from the manufacturer, or loaded into the catheter by the clinician prior to catheter insertion. The stylet 130 is disposed within the catheter lumen such that the distal end 130B of the stylet 130 is substantially co-terminal with the distal tip 76A of the catheter 72, thus placing the distal tips of both the stylet and the catheter in substantial alignment with one another. The co-terminality of the catheter 72 and stylet 130 enables the magnetic assembly to function with the TLS sensor 50 in TLS mode to track the position of the catheter distal tip 76A as it advances within the patient vasculature, as has been described. Note, however, that for the tip confirmation functionality of the system 10, the distal end 130B of the stylet 130 need not be co-terminal with the catheter distal end 76A. Rather, all that is required is that a conductive path between the vasculature and the ECG sensor assembly, in this case the core wire 138, be established such that electrical impulses of the SA node or other node of the patient's heart can be detected. This conductive path in one embodiment can include various components including saline solution, blood, etc.
  • In one embodiment, once the catheter 72 has been introduced into the patient vasculature via the insertion site 73 (FIG. 10) the TLS mode of the system 10 can be employed as already described to advance the catheter distal tip 76A toward its intended destination proximate the SA node. Upon approaching the region of the heart, the system 10 can be switched to ECG mode to enable ECG signals emitted by the SA node to be detected. As the stylet-loaded catheter is advanced toward the patient's heart, the electrically conductive ECG sensor assembly, including the distal end of the core wire 138 and the conductive material 146, begins to detect the electrical impulses produced by the SA node. As such, the ECG sensor assembly serves as an electrode for detecting the ECG signals. The elongate core wire 138 proximal to the core wire distal end serves as a conductive pathway to convey the electrical impulses produced by the SA node and received by the ECG sensor assembly to the tether 134.
  • The tether 134 conveys the ECG signals to the TLS sensor 50 temporarily placed on the patient's chest. The tether 134 is operably connected to the TLS sensor 50 via the tether connector 132 or other suitable direct or indirect connective configuration. As described, the ECG signal can then be process and depicted on the system display 30 (FIG. 9, 10). Monitoring of the ECG signal received by the TLS sensor 50 and displayed by the display 30 enables a clinician to observe and analyze changes in the signal as the catheter distal tip 76A advances toward the SA node. When the received ECG signal matches a desired profile, the clinician can determine that the catheter distal tip 76A has reached a desired position with respect to the SA node. As mentioned, in one embodiment this desired position lies within the lower one-third (⅓rd) portion of the SVC.
  • The ECG sensor assembly and magnetic assembly can work in concert in assisting a clinician in placing a catheter within the vasculature. Generally, the magnetic assembly of the stylet 130 assists the clinician in generally navigating the vasculature from initial catheter insertion so as to place the distal end 76A of the catheter 72 in the general region of the patient's heart. The ECG sensor assembly can then be employed to guide the catheter distal end 76A to the desired location within the SVC by enabling the clinician to observe changes in the ECG signals produced by the heart as the stylet ECG sensor assembly approaches the SA node. Again, once a suitable ECG signal profile is observed, the clinician can determine that the distal ends of both the stylet 130 and the catheter 72 have arrived at the desired location with respect to the patient's heart. Once it has been positioned as desired, the catheter 72 may be secured in place and the stylet 130 removed from the catheter lumen. It is noted here that the stylet may include one of a variety of configurations in addition to what is explicitly described herein. In one embodiment, the stylet can attach directly to the console instead of an indirect attachment via the TLS sensor. In another embodiment, the structure of the stylet 130 that enables its TLS and ECG-related functionalities can be integrated into the catheter structure itself. For instance, the magnetic assembly and/or ECG sensor assembly can, in one embodiment, be incorporated into the wall of the catheter.
  • FIGS. 13A-15 describe various details relating to the passage of ECG signal data from the stylet tether 134 to the TLS sensor 50 positioned on the patient's chest, according the present embodiment. In particular, this embodiment is concerned with passage of ECG signal data from a sterile field surrounding the catheter 72 and insertion site 73, which includes the stylet 130 and tether 134, and a non-sterile field, such as the patient's chest on which the TLS sensor is positioned. Such passage should not disrupt the sterile field so that the sterility thereof is compromised. A sterile drape that is positioned over the patient 70 during the catheter insertion procedure defines the majority of the sterile field: areas above the drape are sterile, while areas below (excluding the insertion site and immediately surrounding region) are non-sterile. As will be seen, the discussion below includes at least a first communication node associated with the stylet 130, and a second communication node associated with the TLS sensor 50 that operably connect with one another to enable ECG signal data transfer therebetween.
  • One embodiment addressing the passage of ECG signal data from the sterile field to the non-sterile field without compromising the sterility of the former is depicted in FIGS. 13A-15, which depict a “through-drape” implementation also referred to as a “shark fin” implementation. In particular, FIG. 14A shows the TLS sensor 50 as described above for placement on the chest of the patient during a catheter insertion procedure. The TLS sensor 50 includes on a top surface thereof a connector base 152 defining a channel 152A in which are disposed three electrical base contacts 154. A fin connector 156, also shown in FIGS. 13A-13D, is sized to be slidingly received by the channel 152A of the connector base 152, as shown in FIGS. 14B and 15. Two ECG lead/electrode pairs 158 extend from the fin connector 156 for placement on the shoulder and torso or other suitable external locations on the patient body. The drape-piercing tether connector 132 is configured to slidingly mate with a portion of the fin connector 156, as will be described further below, to complete a conductive pathway from the stylet 120, through the sterile field to the TLS sensor 50.
  • FIGS. 13A-13D show further aspects of the fin connector 156. In particular, the fin connector 156 defines a lower barrel portion 160 that is sized to be received in the channel 152A of the connector base 152 (FIGS. 14B, 15). A hole 162 surrounded by a centering cone 164 is included on a back end of an upper barrel portion 166. The upper barrel portion 166 is sized to receive the tether connector 132 of the stylet 130 (FIGS. 14C, 15) such that a pin contact 170 extending into a channel 172 of the tether connector 132 (FIG. 15) is guided by the centering hole until it seats within the hole 162 of the fin connector 156, thus interconnecting the tether connector with the fin connector. An engagement feature, such as the engagement feature 169 shown in FIGS. 13C and 13D, can be included on the fin connector 156 to engage with a corresponding feature on the tether connector 132 to assist with maintaining a mating between the two components.
  • FIG. 13D shows that the fin connector 156 includes a plurality of electrical contacts 168. In the present embodiment, three contacts 168 are included: the two forward-most contact each electrically connecting with a terminal end of one of the ECG leads 158, and the rear contact extending into axial proximity of the hole 162 so as to electrically connect with the pin contact 170 of the tether connector 132 when the latter is mated with the fin connector 156 (FIG. 15). A bottom portion of each contact 168 of the fin connector 156 is positioned to electrically connect with a corresponding one of the base contacts 154 of the TLS sensor connector base 152.
  • FIG. 14B shows a first connection stage, wherein the fin connector 156 is removably mated with the TLS sensor connector base 152 by the sliding engagement of the lower barrel portion 160 of the fin connector with the connector base channel 152A. This engagement electrically connects the connector base contacts 154 with the corresponding fin contacts 168.
  • FIG. 14C shows a second connection stage, wherein the tether connector 132 is removably mated with the fin connector 156 by the sliding engagement of the tether connector channel 172 with the upper barrel portion 166 of the fin connector. This engagement electrically connects the tether connector pin contact 170 with the back contact 168 of the fin connector 156, as best seen in FIG. 15. In the present embodiment, the horizontal sliding movement of the tether connector 132 with respect to the fin connector 156 is in the same engagement direction as when the fin connector is slidably mated to the sensor connector base channel 152A (FIG. 14B). In one embodiment, one or both of the stylet 130/tether connector 132 and the fin connector 156 are disposable. Also, the tether connector in one embodiment can be mated to the fin connector after the fin connector has been mated to the TLS sensor, while in another embodiment the tether connector can be first mated to the fin connector through the surgical drape before the fin connector is mated to the TLS sensor.
  • In the connection scheme shown in FIG. 14C, the stylet 130 is operably connected to the TLS sensor 50 via the tether connector 132, thus enabling the ECG sensor assembly of the stylet to communicate ECG signals to the TLS sensor. In addition, the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50. In one embodiment, therefore, the tether connector 132 is referred to as a first communication node for the stylet 130, while the fin connector 156 is referred to as a second communication node for the TLS sensor 50.
  • Note that various other connective schemes and structures can be employed to establish operable communication between the stylet and the TLS sensor. For instance, the tether connector can use a slicing contact instead of a pin contact to pierce the drape. Or, the fin connector can be integrally formed with the TLS sensor. These and other configurations are therefore embraced within the scope of embodiments of the present disclosure.
  • As seen in FIG. 15, a sterile drape 174 used during catheter placement to establish a sterile field is interposed between the interconnection of the tether connector 132 with the fin connector 156. As just described, the tether connector 132 includes the pin contact 170 that is configured to pierce the drape 174 when the two components are mated. This piercing forms a small hole, or perforation 175, in the sterile drape 174 that is occupied by the pin contact 170, thus minimizing the size of the drape perforation by the pin contact. Moreover, the fit between the tether connector 132 and the fin connector 156 is such that the perforation in sterile drape made by piercing of the pin contact 170 is enclosed by the tether connector channel 172, thus preserving the sterility of the drape and preventing a breach in the drape that could compromise the sterile field established thereby. The tether connector channel 172 is configured so as to fold the sterile drape 174 down prior to piercing by the pin contact 170 such that the pin contact does not pierce the drape until it is disposed proximate the hole 162 of the fin connector 156. It is noted here that the tether connector 132 and fin connector 156 are configured so as to facilitate alignment therebetween blindly through the opaque sterile drape 174, i.e., via palpation absent visualization by the clinician of both components.
  • Note further that the fin contacts 168 of the fin connector 156 as shown in FIG. 15 are configured to mate with the sensor base contacts 154 in such a way as to assist in retaining the fin connector in engagement with the sensor base channel 152A. This in turn reduces the need for additional apparatus to secure the fin connector 156 to the TLS sensor 50.
  • FIG. 16 shows a typical ECG waveform 176, including a P-wave and a QRS complex. Generally, the amplitude of the P-wave varies as a function of distance of the ECG sensor assembly from the SA node, which produces the waveform 176. A clinician can use this relationship in determining when the catheter tip is properly positioned proximate the heart. For instance, in one implementation the catheter tip is desirably placed within the lower one-third (⅓rd) of the superior vena cava, as has been discussed. The ECG data detected by the ECG sensor assembly of the stylet 130 is used to reproduce waveforms such as the waveform 176, for depiction on the display 30 of the system 10 during ECG mode.
  • Reference is now made to FIG. 17 in describing display aspects of ECG signal data on the display 30 when the system 10 is in ECG mode, the third modality described further above, according to one embodiment. The screenshot 178 of the display 30 includes elements of the TLS modality, including a representative image 120 of the TLS sensor 50, and can the icon 114 corresponding to the position of the distal end of the stylet 130 during transit through the patient vasculature. The screenshot 178 further includes a window 180 in which the current ECG waveform captured by the ECG sensor assembly of the stylet 130 and processed by the system 10 is displayed. The window 180 is continually refreshed as new waveforms are detected.
  • Window 182 includes a successive depiction of the most recent detected ECG waveforms, and includes a refresh bar 182A, which moves laterally to refresh the waveforms as they are detected. Window 184A is used to display a baseline ECG waveform, captured before the ECG sensor assembly is brought into proximity with the SA node, for comparison purposes to assist the clinician in determining when the desired catheter tip location has been achieved. Windows 184B and 184C can be filed by user-selected detected ECG waveforms when the user pushes a predetermined button on the probe 40 or the console button interface 32. The waveforms in the windows 184B and 184C remain until overwritten by new waveforms as a result of user selection via button pushes or other input. As in previous modes, the depth scale 124, status/action indicia 126, and button icons 128 are included on the display 30. An integrity indicator 186 is also included on the display 30 to give an indication of whether the ECG lead/electrode pairs 158 are operably connected to the TLS sensor 50.
  • As seen above, therefore, the display 30 depicts in one embodiment elements of both the TLS and ECG modalities simultaneously on a single screen, thus offering the clinician ample data to assist in placing the catheter distal tip in a desired position. Note further that in one embodiment a printout of the screenshot or selected ECG or TLS data can be saved, printed, or otherwise preserved by the system 10 to enable documentation of proper catheter placement.
  • Although the embodiments described herein relate to a particular configuration of a catheter, such as a PICC or CVC, such embodiments are merely exemplary. Accordingly, the principles of the present invention can be extended to catheters of many different configurations and designs.
  • II. Assisted Guidance for Needle/Medical Component
  • Embodiments of the present invention described herein are generally directed to a guidance system for locating and guiding a needle or other medical component during ultrasound-based or other suitable procedures for accessing with the needle a subcutaneous vessel of a patient, for instance. In one embodiment, the guidance system enables the position, orientation, and advancement of the needle to be superimposed in real-time atop the ultrasound image of the vessel, thus enabling a clinician to accurately guide the needle to the intended target. Furthermore, in one embodiment, the guidance system tracks the needle's position in five degrees of motion: x, y, and z spatial coordinate space, needle pitch, and needle yaw. Such tracking enables the needle to be guided and placed with relatively high accuracy.
  • Reference is first made to FIGS. 18 and 19, which depict various components of an ultrasound-based needle guidance system (“system”), generally designated at 1110, configured in accordance with one embodiment of the present invention. As shown, the system 1110 generally includes an ultrasound (“US”) imaging portion including a console 1120, display 1130, and probe 1140, each of which is described in further detail below. Note that the system 1110 bears similarity to the system 10 shown in FIG. 1 with respect to some components, in one embodiment. It should be noted, however, that the ultrasound imaging portion can be configured in one of a variety of ways in addition to what is shown and described herein.
  • The ultrasound imaging portion of the system 1110 is employed to image a targeted internal portion of a body of a patient prior to percutaneous insertion of a needle or other device to access the target. As described below, in one embodiment insertion of the needle is performed prior to the subsequent insertion of a catheter into a vein or other portion of the vasculature of the patient. It is appreciated, however, that insertion of a needle into the body of a patient can be performed for a variety of medical purposes.
  • FIG. 19 shows the general relation of the above-described components to a patient 1170 during a procedure to ultimately place a catheter 1172 into the patient vasculature through a skin insertion site 1173, according to one embodiment. FIG. 19 shows that the catheter 1172 generally includes a proximal portion 1174 that remains exterior to the patient and a distal portion 1176 that resides within the patient vasculature after placement is complete. The system 1110 is employed to ultimately position a distal tip 1176A of the catheter 1172 in a desired position within the patient vasculature. In one embodiment, the desired position for the catheter distal tip 1176A is proximate the patient's heart, such as in the lower one-third (⅓rd) portion of the Superior Vena Cava (“SVC”). Of course, the system 1110 can be employed to place the catheter distal tip in other locations.
  • The catheter proximal portion 1174 further includes a hub 1174A that provides fluid communication between the one or more lumens of the catheter 1172 and one or more extension legs 1174B extending proximally from the hub. As mentioned, placement of a needle into the patient vasculature at the insertion site 1173 is typically performed prior to insertion of the catheter, though it is appreciated that other placement methods can be employed. Further, it is appreciated that the above discussion is only one example for use of the system 1110; indeed it can be employed for a variety of uses, such as the placement of needles preparatory to insertion of a catheter as above, the insertion of a needle for other uses, or for the insertion of other medical components into the body of a patient, including x-ray or ultrasound markers, biopsy sheaths, ablation components, bladder scanning components, vena cava filters, etc.
  • In greater detail, the console 1120 houses a variety of components of the system 1110 and it is appreciated that the console can take one of a variety of forms. A processor 1122, including non-volatile memory such as EEPROM for instance, is included in the console 1120 for controlling system function and executing various algorithms during operation of the system 1110, thus acting as a control processor. A digital controller/analog interface 1124 is also included with the console 1120 and is in communication with both the processor 1122 and other system components to govern interfacing between the probe 1140 and other system components.
  • The system 1110 further includes ports 1152 for connection with additional components such as optional components 1154 including a printer, storage media, keyboard, etc. The ports in one embodiment are USB ports, though other port types or a combination of port types can be used for this and the other interfaces connections described herein. A power connection 1156 is included with the console 1120 to enable operable connection to an external power supply 1158. An internal battery 1160 can also be employed, either with or exclusive of an external power supply. Power management circuitry 1159 is included with the digital controller/analog interface 1124 of the console to regulate power use and distribution.
  • The display 1130 in the present embodiment is integrated into the console 1120 and is used to display information to the clinician during the placement procedure, such as an ultrasound image of the targeted internal body portion attained by the probe 1140. In another embodiment, the display may be separate from the console. In one embodiment, a console button interface 1132 and control buttons 1184 (FIG. 19) included on the probe 1140 can be used to immediately call up a desired mode to the display 1130 by the clinician to assist in the placement procedure. In one embodiment, the display 1130 is an LCD device.
  • FIG. 19 further depicts a needle 1200 used to gain initial access to the patient vasculature via the insertion site 1173. As will be described in further detail below, the needle 1200 is configured to cooperate with the system 1110 in enabling the system to detect the position, orientation, and advancement of the needle during an ultrasound-based placement procedure.
  • FIG. 20 depicts features of the probe 1140 according to one embodiment. The probe 1140 is employed in connection with ultrasound-based visualization of a vessel, such as a vein, in preparation for insertion of the needle 1200 and/or catheter 1172 into the vasculature. Such visualization gives real time ultrasound guidance and assists in reducing complications typically associated with such introduction, including inadvertent arterial puncture, hematoma, pneumothorax, etc.
  • The handheld probe 1140 includes a head 1180 that houses a piezoelectric array for producing ultrasonic pulses and for receiving echoes thereof after reflection by the patient's body when the head is placed against the patient's skin proximate the prospective insertion site 1173 (FIG. 19). The probe 1140 further includes a plurality of control buttons 1184 (FIG. 19) for controlling the system, thus eliminating the need for the clinician to reach out of the sterile field, which is established about the patient insertion site prior to establishment of the insertion site, to control the system 1110.
  • As such, in one embodiment a clinician employs the ultrasound imaging portion of the system 1110 to determine a suitable insertion site and establish vascular access, such as with the needle 1200, prior to introduction of the catheter 1172 for ultimate advancement thereof through the vasculature toward an intended destination.
  • FIG. 18 shows that the probe 1140 further includes a button and memory controller 1142 for governing button and probe operation. The button and memory controller 1142 can include non-volatile memory, such as EEPROM, in one embodiment. The button and memory controller 1142 is in operable communication with a probe interface 1144 of the console 1120, which includes a piezo input/output component 1144A for interfacing with the probe piezoelectric array and a button and memory input/output component 1144B for interfacing with the button and memory controller 1142.
  • As seen in FIG. 20, the probe 1140 includes a sensor array 1190 for detecting the position, orientation, and movement of the needle 1200 during ultrasound imaging procedures, such as those described above. As will be described in further detail below, the sensor array includes a plurality of magnetic sensors 1192 embedded within the housing of the probe. The sensors 1192 are configured to detect a magnetic field associated with the needle 1200 and enable the system 1110 to track the needle. Though configured here as magnetic sensors, it is appreciated that the sensors 1192 can be sensors of other types and configurations, as will be described. Also, though they are shown in FIG. 20 as included with the probe 1140, the sensors 1192 of the sensor array 1190 can be included in a component separate from the probe, such as a separate handheld device. In the present embodiment, the sensors 1192 are disposed in a planar configuration below a top face 1182 of the probe 1140, though it is appreciated that the sensors can be arranged in other configurations, such as in an arched or semi-circular arrangement.
  • In the present embodiment, each of the sensors 1192 includes three orthogonal sensor coils for enabling detection of a magnetic field in three spatial dimensions. Such three dimensional (“3-D”) magnetic sensors can be purchased, for example, from Honeywell Sensing and Control of Morristown, N.J. Further, the sensors 1192 of the present embodiment are configured as Hall-effect sensors, though other types of magnetic sensors could be employed. Further, instead of 3-D sensors, a plurality of one dimensional magnetic sensors can be included and arranged as desired to achieve 1-, 2-, or 3-D detection capability.
  • In the present embodiment, five sensors 1192 are included in the sensor array 1190 so as to enable detection of the needle 1200 in not only the three spatial dimensions (i.e., X, Y, Z coordinate space), but also the pitch and yaw orientation of the needle itself. Note that in one embodiment, orthogonal sensing components of two or more of the sensors 1192 enable the pitch and yaw attitude of the magnetic element 1210, and thus the needle 1200, to be determined.
  • In other embodiments, fewer or more sensors can be employed in the sensor array. More generally, it is appreciated that the number, size, type, and placement of the sensors of the sensor array can vary from what is explicitly shown here.
  • FIGS. 21A and 21B show details of one example of the needle 1200 that can be used in connection with the guidance system 1110 in accessing a targeted internal body portion of the patient, as shown in FIG. 19, according to one embodiment. In particular, the needle 1200 includes a hollow cannula 1202, which defines a proximal end 1202A and a distal end 1202B. A hub 1204 is attached to the proximal end 1202A of the cannula 1202 and includes an open end 1204A that is configured as a connector for connecting with various devices, in the present embodiment. Indeed, the open end 1204A of the hub 1204 is in communication with the hollow cannula 1202 such that a guide wire, stylet, or other component may be passed through the hub into the cannula.
  • As shown in FIGS. 21A and 21B, a magnetic element 1210 is included with the hub 1204. As best seen in FIG. 21B, the magnetic element 1210 in the present embodiment is a permanent magnet, including a ferromagnetic substance for instance, and is ring-shaped so as to define hole 1212 that is aligned with the hollow cannula 1202. So configured, the magnetic element 1210 produces a magnetic field that is detectable by the sensor array 1190 of the ultrasound probe 1140 so as to enable the location, orientation, and movement of the needle 1200 to be tracked by the system 1110, as described further below.
  • In other embodiments, it is appreciated that many other types, numbers, and sizes of magnetic elements can be employed with the needle 1200 or other medical component to enable tracking thereof by the present guidance system.
  • Reference is now made to FIGS. 22A and 22B, which show the ultrasound probe 1140 of the system 1110 and the needle 1200 in position and ready for insertion thereof through a skin surface 1220 of a patient to access a targeted internal body portion. In particular, the probe 1140 is shown with its head 1180 placed against the patient skin and producing an ultrasound beam 1222 so as to ultrasonically image a portion of a vessel 1226 beneath the patient skin surface 1220. The ultrasonic image of the vessel 1226 can be depicted on the display 1130 of the system 1110 (FIG. 19).
  • As mentioned above, the system 1110 in the present embodiment is configured to detect the position, orientation, and movement of the needle 1200 described above. In particular, the sensor array 1190 of the probe 1140 is configured to detect a magnetic field of the magnetic element 1210 included with the needle 1200. Each of the sensors 1192 of the sensor array 1190 is configured to spatially detect the magnetic element 1210 in three dimensional space. Thus during operation of the system 1110, magnetic field strength data of the needle's magnetic element 1210 sensed by each of the sensors 1192 is forwarded to a processor, such as the processor 1122 of the console 1120 (FIG. 18), which computes in real-time the position and/or orientation of the magnetic element 1210.
  • Specifically, and as shown in FIGS. 22A and 22B, the position of the magnetic element 1210 in X, Y, and Z coordinate space with respect to the sensor array 1190 can be determined by the system 1110 using the magnetic field strength data sensed by the sensors 1192. Moreover, FIG. 22A shows that the pitch of the magnetic element 1210 can also be determined, while FIG. 22B shows that the yaw of the magnetic element can be determined. Suitable circuitry of the probe 1140, the console 1120, or other component of the system can provide the calculations necessary for such position/orientation. In one embodiment, the magnetic element 210 can be tracked using the teachings of one or more of the following U.S. Pat. Nos. 5,775,322; 5,879,297; 6,129,668; 6,216,028; and 6,263,230. The contents of the afore-mentioned U.S. patents are incorporated herein by reference in their entireties.
  • The above position and orientation information determined by the system 1110, together with the length of the cannula 1202 and position of the magnetic element 1210 with respect to the distal needle tip as known by or input into the system, enable the system to accurately determine the location and orientation of the entire length of the needle 1200 with respect to the sensor array 1190. Optionally, the distance between the magnetic element 1210 and the distal needle tip is known by or input into the system 1110. This in turn enables the system 1110 to superimpose an image of the needle 1200 on to an image produced by the ultrasound beam 1222 of the probe 1140. FIGS. 23A and 23B show examples of such a superimposition of the needle onto an ultrasound image. Specifically, FIGS. 23A and 23B each show a screenshot 1230 that can be depicted on the display 1130 (FIG. 19), for instance. In FIG. 23A, an ultrasound image 1232 is shown, including depiction of the patient skin surface 1220, and the subcutaneous vessel 1226. The ultrasound image 1232 corresponds to an image acquired by the ultrasound beam 1222 shown in FIGS. 22A and 22B, for instance.
  • The screenshot 1230 further shows a needle image 1234 representing the position and orientation of the actual needle 1200 as determined by the system 1110 as described above. Because the system is able to determine the location and orientation of the needle 1200 with respect to the sensor array 1190, the system is able to accurately determine the position and orientation of the needle 1200 with respect to the ultrasound image 1232 and superimpose it thereon for depiction as the needle image 1234 on the display 1130. Coordination of the positioning of the needle image 1234 on the ultrasound image 1232 is performed by suitable algorithms executed by the processor 1122 or other suitable component of the system 1110.
  • The sensors 1192 are configured to continuously detect the magnetic field of the magnetic element 1210 of the needle 1200 during operation of the system 1110. This enables the system 1110 to continuously update the position and orientation of the needle image 1234 for depiction on the display 1130. Thus, advancement or other movement of the needle 1200 is depicted in real-time by the needle image 1234 on the display 1130. Note that the system 1110 is capable of continuously updating both the ultrasound image 1232 and the needle image 1234 on the display 1130 as movements of the probe 1140 and the needle 1200 occur during a placement procedure or other activity.
  • FIG. 23A further shows that in one embodiment the system 1110 can depict a projected path 1236 based on the current position and orientation of the needle 1200 as depicted by the needle image 1234. The projected path 1236 assists a clinician in determining whether the current orientation of the needle 1200, as depicted by the needle image 1234 on the display 1130, will result in arriving at the desired internal body portion target, such as the vessel 1226 shown here. Again, as the orientation and/or position of the needle image 1234 changes, the projected path 1236 is correspondingly modified by the system 1110. A target 1238, indicating the point where the projected path 1236 crosses the plane of the ultrasound image 1232, can also be depicted on the display 1130 by the system 1110. As shown in FIG. 23A, in the present example the target 1238 is located within the vessel 1226 depicted in the ultrasound image 1232. Note that the position of the target 1238 on the display 1130 can also be modified as the needle 1200 and/or the ultrasound image 1232 are adjusted. The screenshot 1230 also includes an area of probability 1239, here depicted as a box, which indicates any possible margin of error of the system due to needle length, needle rigidity and flex, field strength of the magnetic element, magnetic interference, possible discrepancy in alignment of the magnetic axis of the magnetic element with the longitudinal axis of the needle, orientation of the sensor array with respect to the ultrasound imaging plane, etc.
  • FIG. 23B shows that, in one embodiment, the screenshot 1230 can be configured such that the ultrasound image 1232 and the needle image 1234 are oriented so as to be displayed in a three dimensional aspect. This enables the angle and orientation of the needle 1200, as depicted by the needle image 1234, to be ascertained and compared with the intended target imaged by the ultrasound image 1232. It should be noted that the screenshots 1230 are merely examples of possible depictions produced by the system 1110 for display; indeed, other visual depictions can be used. Note further that the particular area of the body being imaged is merely an example; the system can be used to ultrasonically image a variety of body portions, and should not be limited to what is explicitly depicted in the accompanying figures. Further, the system as depicted and described herein can be included as a component of a larger system, if desired, or can be configured as a stand-alone device. Also, it is appreciated that, in addition to the visual display 1130, aural information, such as beeps, tones, etc., can also be employed by the system 1110 to assist the clinician during positioning and insertion of the needle into the patient.
  • As mentioned above, in one embodiment it is necessary for the system 1110 to know the total length of the needle 1200 and the location of the magnetic element 1210 thereon in order to enable an accurate depiction of the needle image 1234 and other features of the screenshots 1230 of FIGS. 23A and 23B to be made. The system 1110 can be informed these and/or other pertinent parameters in various ways, including scanning by the system of a barcode included on or with the needle, the inclusion of a radiofrequency identification (“RFID”) chip with the needle for scanning by the system, color coding of the needle, manual entry of the parameters by the clinician into the system, etc. For instance, an RFID chip 1354 is included on the needle 1200 shown in FIG. 33A. The probe 1140 or other component of the system 1110 can include an RFID reader to read the information included on the RFID chip 1354, such as the type or length of the needle 1200, etc. These and other means for inputting the needle parameters into the system 1110 or detecting the parameters are therefore contemplated.
  • In one embodiment, a length of the needle (or other aspect of a medical component) can be determined by measurement by the probe/system of a characteristic of the magnetic element, such as its field strength. For instance, in one embodiment the magnetic element of the needle can be positioned at a predetermined distance from the probe or at a predetermined location with respect to the probe. With the magnetic element so positioned, the sensor array of the probe detects and measures the field strength of the magnetic element. The system can compare the measured field strength with a stored list of possible field strengths corresponding to different lengths of needles. The system can match the two strengths and determine the needle length. The needle location and subsequent needle insertion can then proceed as described herein. In another embodiment, instead of holding the magnetic element stationary at a predetermined location, the magnetic element can be moved about the probe such that multiple field strength readings are taken by the probe. Aspects that can be modified so as to impart different field strengths to a set of magnetic element include size, shape, and composition of the magnetic element, etc.
  • Further details are given here regarding use of the system 1110 in guiding a needle or other medical device in connection with ultrasonic imaging of a targeted internal body portion (“target”) of a patient, according to one embodiment. With the magnetic element-equipped needle 1200 positioned a suitable distance (e.g., two or more feet) away from the ultrasound probe 1140 including the sensor array 1190, the probe is employed to ultrasonically image, for depiction on the display 1130 of the system 1110, the target within the patient that the needle is intended to intersect via percutaneous insertion. A calibration of the system 1110 is then initiated, in which algorithms are executed by the processor 1122 of the console 1120 to determine a baseline for any ambient magnetic fields in the vicinity of where the procedure will be performed. The system 1110 is also informed of the total length of the needle 1200, and/or position of the magnetic element with respect to the distal needle tip such as by user input, automatic detection, or in another suitable manner, as has been discussed above.
  • The needle 1200 is then brought into the range of the sensors 1192 of the sensor array 1190 of the probe 1140. Each of the sensors 1192 detects the magnetic field strength associated with the magnetic element 1210 of the needle 1200, which data is forwarded to the processor 1122. In one embodiment, such data can be stored in memory until needed by the processor. As the sensors 1192 detect the magnetic field, suitable algorithms are performed by the processor 1122 to calculate a magnetic field strength of the magnetic element 1210 of the needle 1200 at predicted points in space in relationship to the probe. The processor 1122 then compares the actual magnetic field strength data detected by the sensors 1192 to the calculated field strength values. Note that this process is further described by the U.S. patents identified above. This process can be iteratively performed until the calculated value for a predicted point matches the measured data. Once this match occurs, the magnetic element 1210 has been positionally located in three dimensional space. Using the magnetic field strength data as detected by the sensors 1192, the pitch and yaw (i.e., orientation) of the magnetic element 1210 can also be determined. Together with the known length of the needle 1200 and the position of the distal tip of the needle with respect to the magnetic element, this enables an accurate representation of the position and orientation of the needle can be made by the system 1110 and depicted as a virtual model, i.e., the needle image 1234, on the display 1130. Note that the predicted and actual detected values must match within a predetermined tolerance or confidence level in one embodiment for the system 1110 to enable needle depiction to occur.
  • Depiction of the virtual needle image 1234 of the needle 1200 as described above is performed in the present embodiment by overlaying the needle image on the ultrasound image 1232 of the display 1130 (FIGS. 23A, 23B). Suitable algorithms of the system 1110 as executed by the processor 1122 or other suitable component further enable the projected path 1236, the target 1238, and area of probability 1239 (FIGS. 23A, 23B) to be determined and depicted on the display 1130 atop the ultrasound image 1232 of the target. The above prediction, detection, comparison, and depiction process is iteratively performed to continue tracking the movement of the needle 1200 in real-time.
  • In light of the foregoing and with reference to FIG. 24, it is appreciated that in one embodiment a method 1240 for guiding a needle or other medical component includes various stages. At stage 1242, a targeted internal body portion of a patient is imaged by an imaging system, such as an ultrasound imaging device for instance.
  • At stage 1244, a detectable characteristic of a medical component such as a needle is sensed by one or more sensors included with the imaging system. In the present embodiment, the detectable characteristic of the needle is a magnetic field of the magnetic element 1210 included with the needle 1200 and the sensors are magnetic sensors included in the sensor array 1190 included with the ultrasound probe 1140.
  • At stage 1246, a position of the medical component with respect to the targeted internal body portion is determined in at least two spatial dimensions via sensing of the detectable characteristic. As described above, such determination is made in the present embodiment by the processor 1122 of the console 1120.
  • At stage 1248, an image representing the position of the medical component is combined with the image of the targeted internal body portion for depiction on a display. Stage 1250 shows that stages 1244-1248 can be iteratively repeated to depict advancement or other movement of the medical component with respect to the imaged target, such as percutaneous insertion of the needle 1200 toward the vessel 1226 (FIGS. 23A, 23B), for instance.
  • It is appreciated that the processor 1122 or other suitable component can calculate additional aspects, including the area of probability 1239 and the target 1238 (FIGS. 23A, 23B) for depiction on the display 1130.
  • It is appreciated that in one embodiment the sensor array need not be incorporated natively into the ultrasound imaging device, but can be included therewith in other ways. FIG. 25 shows one example of this, wherein an attachable sensor module 1260 including the sensors 1192 of the sensor array 1190 is shown attached to the ultrasound probe 1140. Such a configuration enables needle guidance as described herein to be achieved in connection with a standard ultrasound imaging device, i.e., a device not including a sensor array integrated into the ultrasound probe or a processor and algorithms configured to locate and track a needle as described above. As such, the sensor module 1260 in one embodiment includes a processor and algorithms suitable for locating and tracking the needle or other medical component and for depicting on a display the virtual image of the needle for overlay on to the ultrasound image. In one embodiment, the sensor module 1260 can be included with a module display 1262 for depiction of the needle tracking. These and other configurations of the guidance system are therefore contemplated.
  • FIG. 26 shows that in one embodiment, a needle holder can be employed to hold and advance the needle 1200 during the ultrasound imaging and needle guidance procedure performed by the system 1110 as has been described. As shown, the needle holder 1270 is pistol-shaped and includes a trigger 1272 for selectively advancing the needle 1200 or other suitable medical component by moving the needle longitudinally away from the barrel of the holder upon pressing of the trigger. So configured, the needle holder 1270 facilitates ease of needle handling with one hand of the clinician while the other hand is grasping and manipulating the ultrasound probe 1140. In addition, the needle holder 1270 can provide needle movement/rotation assistance such as via a motor, ratcheting, hydraulic/pneumatic drivers, etc. Moreover, a clocking feature can be included on the needle holder 1270 to assist with determining the orientation of the distal tip of the needle 1200 and for facilitating rotation of the needle.
  • In one embodiment, the needle holder 1270 can be operably connected to the system 1110 such that advancement by the needle holder is automatically stopped when the distal end 1202B of the needle cannula 1202 reaches the targeted internal body portion or the needle intercepts the ultrasound plane. In yet another embodiment the magnetic element can be included with the needle holder instead of the needle itself. The needle, when temporarily attached to the needle holder, can thus be located and guided by the guidance system without the need for a magnetic element to be attached directly to the needle.
  • FIGS. 27 and 28 depict components of the guidance system 1110 according to another embodiment, wherein an optical-based interaction between the probe 1140 and the needle 1200 is employed to enable tracking and guidance of the needle. In particular, the probe 1140 includes a optical/light source, such as an LED 1280, and a photodetector 1282 positioned on the probe surface. It is appreciated that the light source and detector can be configured to produce and detect light signals of a variety of ranges including visible, infrared, etc.
  • The needle hub 1204 includes a reflective surface 1286 capable of reflecting light produced by the LED 1280 and incident thereon. As shown in FIG. 28, light emitted by the LED 1280 is reflected by the reflective surface 1286 of the needle 1200, a portion of which is received and sensed by the photodetector 1282. As in previous embodiments, the processor 1122 of the system console 1120 can be employed to receive the sensed data of the photodetector 1282 and compute the position and or orientation of the needle 1200. As before, the length of the needle 1200 and/or the position of the reflective surface with respect to the distal end of the needle 1200 are input into or otherwise detectable or known by the system 1110. Note that the reflective surface can be included at other locations on the needle.
  • In light of the above, it is appreciated that in the present embodiment the detectable characteristic of the needle 1200 includes the reflectivity of the reflective surface 1286, in contrast to the magnetic field characteristic of the magnetic element 1210 of previous embodiments, and the sensor includes the photodetector 1282, in contrast to the magnetic sensors 1192 of previous embodiments. It should be appreciated that in one embodiment, the above-described configuration can be reversed, wherein an optical source is included with the needle or medical component. In this case, light is emitted from the needle and detected by the photodetector 1282 included with the probe 1140 so as to enable location and tracking of the needle. A power source can be included with the needle, such as a watch battery or the like, in order to power the light source of the needle.
  • More generally, it is appreciated that the needle or medical component can include one or more of these or other detectable characteristics to enable the needle to be tracked and guided toward a target within the body of the patient. Non-limiting examples of other detectable characteristic modalities include electromagnetic or radiofrequency (“RF”) (see, e.g., FIGS. 29-30 below), and radioactivity. With respect to RF modalities, it is appreciated that one or more synchronously or asynchronously pulsed frequency sources can be included with the needle as to enable detection thereof by a suitable sensor(s). Or, an RF first source can be coupled with a passive magnet as a second source.
  • FIGS. 29 and 30 depict components of a guidance system according to one embodiment, wherein EM signal interaction between the probe 1140 and the needle 1200 is employed to enable tracking and guidance of the needle. In particular, in FIG. 29 the needle 1200 includes a stylet 1298 disposed therein. The stylet 1298 includes an E. coli 1290 that is operably connected to the probe 1140 via a tether 1292. In this way, the E. coli 1290 can be driven by suitable components included in the probe 1140 or system console 1120 such that the E. coli emits an EM signal during operation.
  • A sensor 1294 suitable for detecting EM signals emitted by the E. coli 1290 of the stylet 1298 is included in the probe 1140. In the present embodiment, the sensor 1294 is a three-axis sensor for detecting corresponding orthogonal components of the EM signal, though other coil and sensor configurations can also be employed. So configured, the position and orientation of the needle 1200 can be determined, by EM signal triangulation or other suitable process, and displayed by the system in a manner similar to that already described above. As in previous embodiments, the processor 1122 of the system console 1120 (FIG. 18) can be employed to receive the sensed data of the EM sensor 1294 and compute the position and/or orientation of the needle 1200. As before, the length of the needle 1200 and/or the position of the E. coli 1290 with respect to the distal end of the needle 1200 are input into or otherwise detectable or known by the system.
  • FIG. 30 shows a variation of the EM configuration of FIG. 29, wherein the respective positions of the EM components is reversed: the E. coli 1290 is included in the probe 1140 and the EM sensor 1294 is included with the stylet 1298 disposed in the needle 1200. Note that in the embodiments of FIGS. 29 and 30, the operable connection between the E. coli 1290 and the EM sensor 1294 via the tether 1292 enables the component disposed in the stylet 1298 to be driven by the system 1110. This also enables correspondence of the particular EM frequency/frequencies emitted by the E. coli 1290 and detected by the EM sensor 1294 to be made. In one embodiment, the configuration shown in FIG. 29 can be varied, wherein no tether operably connects the E. coli and the EM sensor; rather, the E. coli of the stylet operates as a separate component from the probe and its EM sensor and is powered by an independent power source, such as a battery. In this case, the probe/system includes suitable signal processing components configured to detect the EM signal emitted by the E. coli and to process it as necessary in order to locate the needle.
  • Note that the E. coli and EM sensors can be included at other locations than what is depicted herein. For instance, the E. coli can be included on the needle itself, or on a connector that is attachable to the proximal end of the needle.
  • FIGS. 31A-31D give further details of the needle 1200 configured according to one embodiment, wherein the needle includes a hub 1304 from which extends the cannula 1202. A magnetic element 1310 defining a hole 1312 is included in a cavity 1314A of a housing 1314. The housing 1314 includes threads so as to threadably engage the needle hub 1304 or other suitable component of the needle or medical component. In this way, the magnetic element 1310 is removably attachable to the needle 1200 via the housing 1314. Thus, the magnetic element 1310 need not be permanently affixed or included with the needle 1200, but rather can be removed therefrom when magnetic-based needle guidance is no longer needed. In addition, this enables the magnetic element to be attached to many different types and sizes of needles. Note that in the present embodiment the needle 1200 further includes a distally slidable needle safety component 1320 for safely isolating the distal tip of the needle upon removal of the needle from the patient. Note further that other removable magnetic elements can be employed in addition to what is explicitly shown and described herein.
  • FIGS. 32-33B give further examples of the needle 1200 including a magnetic element. In FIG. 32, two bar-like magnetic elements 1340 are disposed so as to orthogonally extend from a hub 1334 of the needle 1200, illustrating that the magnetic element need not be oriented parallel to the longitudinal axis of the needle. In FIGS. 33A-33B, four magnetic elements 1350 are included in the needle hub 1344, showing that more than one magnetic element can be included with the needle. Such a configuration may be employed, for example, where limited space prevents one magnetic element from being used. Note the number, shape, and placement of the magnetic elements here is only one example of many possible configurations.
  • FIGS. 34A-34G give various example configurations of a magnetic element 1360 that defines a hole for receiving the cannula of the needle therethrough. Various shape configurations for the magnetic element 1360 are shown, including a square (FIG. 34A), a hexagon (FIG. 34B), a triangle (FIG. 34C), a rectangle (FIG. 34D), an oval (FIG. 34E), an octagon (FIG. 34F), and a four-sided pyramid (FIG. 34G). The magnetic elements shown in the accompanying figures are merely examples of the broad number of geometric and other shapes that can be used to define the magnetic element; indeed other shapes not shown explicitly herein are also contemplated.
  • Embodiments of the invention may be embodied in other specific forms without departing from the spirit of the present disclosure. The described embodiments are to be considered in all respects only as illustrative, not restrictive. The scope of the embodiments is, therefore, indicated by the appended claims rather than by the foregoing description. All changes that come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims (16)

What is claimed is:
18. A guidance system for guiding insertion of a needle into a body of a patient, comprising:
an ultrasound imaging device including a probe for ultrasonically imaging an internal body portion target;
a magnetic element included with the needle;
a plurality of magnetic sensors included with the probe that each sense a magnetic field of the magnetic element of the needle;
a processor that receives magnetic field data sensed by the sensors to determine a position of the needle in three spatial dimensions; and
a display that depicts the determined position of the needle together with the image of the target.
19. The guidance system as defined in claim 18, wherein the magnetic element includes a permanent magnet that is disposed in a hub of the needle, and wherein no physical connection exists between the magnetic element and the magnetic sensors.
20. The guidance system as defined in claim 18, wherein the needle further includes one of a color coding, a barcode, and an RFID chip to enable the guidance system to identify a length of the needle, and wherein the magnetic sensors are distributed in an arcuate fashion within the probe.
21. The guidance system as defined in claim 18, wherein the magnetic element includes a permanent magnet defining a hole through which a cannula of the needle is received, and wherein a shape of the permanent magnet defines one of a square, a pentagon, a triangle, a rectangle, an oval, an octagon, and a pyramid.
22. The guidance system as defined in claim 18, wherein the magnetic element includes a plurality of permanent magnets included in a hub of the needle.
23. The guidance system as defined in claim 18, wherein the magnetic element includes at least one bar magnet disposed orthogonal to a longitudinal axis of a cannula of the needle.
29. A guidance system for guiding insertion of a needle into a body of a patient, comprising:
an ultrasound imaging probe physically independent from the needle for ultrasonically imaging an internal body portion target;
a magnetic element associated with the needle;
a plurality of magnetic sensors associated with the probe that each sense a magnetic field of the magnetic element;
a processor that receives magnetic field data sensed by the sensors to determine a location and orientation of the needle; and
a display that depicts the image of the internal body portion target taken by the ultrasound imaging probe and a superimposed representation of the needle oriented and located with respect to the image.
30. The guidance system as defined in claim 29, wherein the magnetic element is disposed within a hub of the needle, and the plurality of magnetic sensors are disposed within the probe.
31. A guidance system, comprising:
an ultrasound imaging probe for ultrasonically imaging an internal body portion target;
a medical device separate from the imaging probe configured for insertion into the internal body portion target, the medical device having a magnetic field associated therewith;
a plurality of magnetic sensors associated with the probe that each sense the magnetic field of the medical device;
a processor that receives magnetic field data sensed by the magnetic sensors to determine a position and/or orientation of the medical device; and
a display that shows an image of the internal body portion target taken by the ultrasound imaging probe and a superimposed representation of the medical device positioned and/or oriented with respect to the image.
32. The guidance system as defined in claim 31, wherein the medical device is a needle, and the internal body portion target is a blood vessel.
33. The guidance system as defined in claim 31, wherein the magnetic field is provided by a magnetic element coupled to the medical device.
34. The guidance system as defined in claim 33, wherein the magnetic element is disposed within a hub of the medical device, and the plurality of magnetic sensors are disposed within the probe.
35. The guidance system as defined in claim 33, wherein the magnetic element is a permanent magnet.
36. The guidance system as defined in claim 31, wherein each of the magnetic sensors are configured for detection of a magnetic field in three spatial dimensions.
37. The guidance system as defined in claim 36, wherein each of the magnetic sensors includes orthogonal sensor coils.
38. The guidance system as defined in claim 31, wherein the magnetic sensors are configured to continuously detect the magnetic field, and wherein the system is configured to continuously update the image, such that the position and/or orientation of the medical device with respect to the image is continuously updated as simultaneous movements of the probe and the medical device occur.
US13/118,033 2007-11-26 2011-05-27 Insertion guidance system for needles and medical components Active 2031-09-01 US9554716B2 (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
US13/118,033 US9554716B2 (en) 2007-11-26 2011-05-27 Insertion guidance system for needles and medical components
US13/118,138 US9456766B2 (en) 2007-11-26 2011-05-27 Apparatus for use with needle insertion guidance system
EP21185773.5A EP3918989A3 (en) 2010-12-23 2011-12-23 Systems and methods for guiding a medical instrument
CN201610166569.4A CN105796177B (en) 2010-12-23 2011-12-23 For guiding the system and method for medical instrument
JP2013546461A JP2014501143A (en) 2010-12-23 2011-12-23 System and method for guiding medical devices
PCT/US2011/067268 WO2012088535A1 (en) 2010-12-23 2011-12-23 System, device, and method to guide a rigid instrument
ES11850625T ES2900584T3 (en) 2010-12-23 2011-12-23 System for guiding a rigid instrument
EP11850625.2A EP2654559B1 (en) 2010-12-23 2011-12-23 System to guide a rigid instrument
US13/336,919 US9521961B2 (en) 2007-11-26 2011-12-23 Systems and methods for guiding a medical instrument
CN201180068309.9A CN103379853B (en) 2010-12-23 2011-12-23 For guiding the system of medical apparatus and instruments
US13/543,586 US9492097B2 (en) 2007-11-26 2012-07-06 Needle length determination and calibration for insertion guidance system
US14/040,205 US10524691B2 (en) 2007-11-26 2013-09-27 Needle assembly including an aligned magnetic element
US14/054,700 US10449330B2 (en) 2007-11-26 2013-10-15 Magnetic element-equipped needle assemblies
US14/141,046 US11123099B2 (en) 2007-11-26 2013-12-26 Apparatus for use with needle insertion guidance system
US14/788,305 US10238418B2 (en) 2007-11-26 2015-06-30 Apparatus for use with needle insertion guidance system
US15/284,355 US10342575B2 (en) 2007-11-26 2016-10-03 Apparatus for use with needle insertion guidance system
US15/365,752 US10231753B2 (en) 2007-11-26 2016-11-30 Insertion guidance system for needles and medical components
US15/365,698 US10602958B2 (en) 2007-11-26 2016-11-30 Systems and methods for guiding a medical instrument
US15/842,685 US20180116551A1 (en) 2007-11-26 2017-12-14 Needles For Use With System For Guiding A Medical Instrument
US16/653,594 US20200054858A1 (en) 2007-11-26 2019-10-15 Magnetic Element-Equipped Needle Assemblies
US16/734,011 US20200138332A1 (en) 2007-11-26 2020-01-03 Needle Assembly Including an Aligned Magnetic Element
US16/830,040 US11529070B2 (en) 2007-11-26 2020-03-25 System and methods for guiding a medical instrument
US17/389,191 US20210353173A1 (en) 2007-11-26 2021-07-29 Needles For Use With System For Guiding A Medical Instrument
US17/471,034 US20210401456A1 (en) 2007-11-26 2021-09-09 Apparatus for Use with Needle Insertion Guidance System

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US99024207P 2007-11-26 2007-11-26
US4594408P 2008-04-17 2008-04-17
US9123308P 2008-08-22 2008-08-22
US9545108P 2008-09-09 2008-09-09
US9592108P 2008-09-10 2008-09-10
US12/323,273 US8388541B2 (en) 2007-11-26 2008-11-25 Integrated system for intravascular placement of a catheter
US34977110P 2010-05-28 2010-05-28
US13/118,033 US9554716B2 (en) 2007-11-26 2011-05-27 Insertion guidance system for needles and medical components

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/323,273 Continuation-In-Part US8388541B2 (en) 2007-11-26 2008-11-25 Integrated system for intravascular placement of a catheter

Related Child Applications (4)

Application Number Title Priority Date Filing Date
US13/118,138 Continuation-In-Part US9456766B2 (en) 2007-11-26 2011-05-27 Apparatus for use with needle insertion guidance system
US13/118,136 Continuation-In-Part US8737803B2 (en) 2011-05-27 2011-05-27 Method and apparatus for storing and streaming audiovisual content
US13/543,586 Continuation-In-Part US9492097B2 (en) 2007-11-26 2012-07-06 Needle length determination and calibration for insertion guidance system
US15/365,752 Division US10231753B2 (en) 2007-11-26 2016-11-30 Insertion guidance system for needles and medical components

Publications (3)

Publication Number Publication Date
US20110282188A1 US20110282188A1 (en) 2011-11-17
US20140163356A2 true US20140163356A2 (en) 2014-06-12
US9554716B2 US9554716B2 (en) 2017-01-31

Family

ID=45004427

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/118,033 Active 2031-09-01 US9554716B2 (en) 2007-11-26 2011-05-27 Insertion guidance system for needles and medical components
US15/365,752 Active US10231753B2 (en) 2007-11-26 2016-11-30 Insertion guidance system for needles and medical components

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/365,752 Active US10231753B2 (en) 2007-11-26 2016-11-30 Insertion guidance system for needles and medical components

Country Status (8)

Country Link
US (2) US9554716B2 (en)
EP (4) EP3662827B1 (en)
JP (3) JP5868961B2 (en)
CN (2) CN103037762B (en)
CA (3) CA2800810C (en)
ES (5) ES2778041T3 (en)
MX (2) MX2012013858A (en)
WO (1) WO2011150358A1 (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031674A1 (en) * 2007-11-26 2014-01-30 C. R. Bard, Inc. Needle Assembly Including an Aligned Magnetic Element
US20140128728A1 (en) * 2012-11-07 2014-05-08 Samsung Medison Co., Ltd. Ultrasound system and method for providing guide line of needle
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US9415188B2 (en) 2010-10-29 2016-08-16 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US20170196591A1 (en) * 2016-01-08 2017-07-13 One Scimed Place Surgical guidance devices, systems, and methods
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11096758B2 (en) 2017-05-23 2021-08-24 Boston Scientific Limited Surgical guidance systems, devices, and methods
US11219428B2 (en) 2014-01-29 2022-01-11 Becton, Dickinson And Company Wearable electronic device for enhancing visualization during insertion of an invasive device

Families Citing this family (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
WO2009094646A2 (en) 2008-01-24 2009-07-30 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for image guided ablation
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
US8340379B2 (en) 2008-03-07 2012-12-25 Inneroptic Technology, Inc. Systems and methods for displaying guidance data based on updated deformable imaging data
EP2108328B2 (en) * 2008-04-09 2020-08-26 Brainlab AG Image-based control method for medicinal devices
WO2010077632A2 (en) 2008-12-08 2010-07-08 Silicon Valley Medical Instruments, Inc. System and catheter for image guidance and methods thereof
US8574160B2 (en) * 2008-12-18 2013-11-05 C. R. Bard, Inc. Needle guides for a sonographic imaging device
US11464578B2 (en) 2009-02-17 2022-10-11 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8554307B2 (en) 2010-04-12 2013-10-08 Inneroptic Technology, Inc. Image annotation in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8761862B2 (en) 2009-10-09 2014-06-24 Stephen F. Ridley Ultrasound guided probe device and sterilizable shield for same
US9733235B2 (en) 2010-05-28 2017-08-15 California Instute Of Technology Methods and design of membrane filters
CN103228219B (en) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 For support and the covered structure of ultrasound probe head
US8425425B2 (en) 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
USD724745S1 (en) 2011-08-09 2015-03-17 C. R. Bard, Inc. Cap for an ultrasound probe
USD699359S1 (en) 2011-08-09 2014-02-11 C. R. Bard, Inc. Ultrasound probe head
DK2997901T3 (en) 2011-09-06 2018-05-22 Ezono Ag IMAGING PROBE
WO2013070775A1 (en) 2011-11-07 2013-05-16 C.R. Bard, Inc Ruggedized ultrasound hydrogel insert
JP2013123459A (en) 2011-12-13 2013-06-24 Seiko Epson Corp Living body inspecting probe
US8670816B2 (en) 2012-01-30 2014-03-11 Inneroptic Technology, Inc. Multiple medical device guidance
DE102012002412A1 (en) * 2012-02-09 2013-08-14 Bernd Meier Device for determination of position of puncture needle in workspace of ultrasound probe for human body, has processor unit introducing stitch projection and penetration depth of needle together with image for representation of projection
US9146069B2 (en) * 2012-05-22 2015-09-29 Haptech, Inc. Method and apparatus for firearm recoil simulation
US10852093B2 (en) 2012-05-22 2020-12-01 Haptech, Inc. Methods and apparatuses for haptic systems
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
GB2503668B (en) * 2012-07-03 2018-02-07 Univ Hospitals Of Leicester Nhs Trust Delivery apparatus
WO2014052894A2 (en) * 2012-09-28 2014-04-03 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
BR112015009608A2 (en) 2012-10-30 2017-07-04 Truinject Medical Corp cosmetic or therapeutic training system, test tools, injection apparatus and methods for training injection, for using test tool and for injector classification
US20140257080A1 (en) * 2013-03-05 2014-09-11 Ezono Ag System for ultrasound image guided procedure
US9257220B2 (en) 2013-03-05 2016-02-09 Ezono Ag Magnetization device and method
GB201303917D0 (en) * 2013-03-05 2013-04-17 Ezono Ag System for image guided procedure
US9459087B2 (en) 2013-03-05 2016-10-04 Ezono Ag Magnetic position detection system
US10188831B2 (en) 2013-03-14 2019-01-29 Angiodynamics, Inc. Systems and methods for catheter tip placement using ECG
US10314559B2 (en) 2013-03-14 2019-06-11 Inneroptic Technology, Inc. Medical device guidance
US20140275990A1 (en) * 2013-03-15 2014-09-18 Soma Access Systems, Llc Ultrasound Guidance System Including Tagged Probe Assembly
EP3091917B1 (en) * 2014-01-10 2019-09-18 Soma Research LLC Needle guidance systems for use with ultrasound devices
WO2015109251A1 (en) 2014-01-17 2015-07-23 Truinject Medical Corp. Injection site training system
US10492767B2 (en) 2014-01-20 2019-12-03 General Electric Company Method and system for sequential needle recalibration
WO2015138883A1 (en) 2014-03-13 2015-09-17 New York University Position guidance device with bubble level
WO2015141881A1 (en) * 2014-03-21 2015-09-24 알피니언메디칼시스템 주식회사 Optical scanning device and ultrasonic probe comprising same
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
CN106535807B (en) * 2014-07-16 2020-03-31 皇家飞利浦有限公司 Ultrasonic tracking device for disposable biopsy needle
US10238363B2 (en) 2014-08-21 2019-03-26 Richard D. Striano Needle guide for ultrasound transducer
US9901406B2 (en) 2014-10-02 2018-02-27 Inneroptic Technology, Inc. Affected region display associated with a medical device
EP4011298A1 (en) 2014-11-18 2022-06-15 C. R. Bard, Inc. Ultrasound imaging system having automatic image presentation
EP3220828B1 (en) 2014-11-18 2021-12-22 C.R. Bard, Inc. Ultrasound imaging system having automatic image presentation
US10188467B2 (en) 2014-12-12 2019-01-29 Inneroptic Technology, Inc. Surgical guidance intersection display
US9949700B2 (en) 2015-07-22 2018-04-24 Inneroptic Technology, Inc. Medical device approaches
WO2017070124A1 (en) * 2015-10-19 2017-04-27 New York University Electronic position guidance device with real-time auditory and visual feedback
US11275150B2 (en) * 2015-12-16 2022-03-15 Koninklijke Philips N.V. Interventional device recognition
US9675319B1 (en) 2016-02-17 2017-06-13 Inneroptic Technology, Inc. Loupe display
WO2017151441A2 (en) 2016-02-29 2017-09-08 Truinject Medical Corp. Cosmetic and therapeutic injection safety systems, methods, and devices
US10648790B2 (en) 2016-03-02 2020-05-12 Truinject Corp. System for determining a three-dimensional position of a testing tool
US10849688B2 (en) 2016-03-02 2020-12-01 Truinject Corp. Sensory enhanced environments for injection aid and social training
WO2017197247A2 (en) 2016-05-12 2017-11-16 Affera, Inc. Anatomical model controlling
US11406352B2 (en) 2016-05-19 2022-08-09 Acist Medical Systems, Inc. Position sensing in intravascular processes
JP6943883B2 (en) * 2016-05-19 2021-10-06 アシスト・メディカル・システムズ,インコーポレイテッド Position detection in intravascular processes
US20170347914A1 (en) 2016-06-01 2017-12-07 Becton, Dickinson And Company Invasive Medical Devices Including Magnetic Region And Systems And Methods
US11413429B2 (en) * 2016-06-01 2022-08-16 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US11826522B2 (en) 2016-06-01 2023-11-28 Becton, Dickinson And Company Medical devices, systems and methods utilizing permanent magnet and magnetizable feature
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
ES2912332T3 (en) * 2016-11-23 2022-05-25 Clear Guide Medical Inc Intervention instrument navigation system
US10945713B2 (en) 2016-11-23 2021-03-16 C. R. Bard, Inc. Single insertion multiple sample biopsy apparatus
EP3730177B1 (en) * 2016-12-14 2023-02-01 C. R. Bard, Inc. Needles for use with system for guiding a medical instrument
KR102015520B1 (en) * 2017-01-13 2019-08-28 주식회사 루트로닉 An treatment apparatus and a method for controlling that
WO2018136901A1 (en) 2017-01-23 2018-07-26 Truinject Corp. Syringe dose and position measuring apparatus
ES2926050T3 (en) 2017-04-27 2022-10-21 Bard Access Systems Inc Magnetization system for needle sets
EP3614916A4 (en) * 2017-04-28 2020-04-22 Bard Peripheral Vascular, Inc. Implantable unique device identifier and detection system
AU2018266132A1 (en) * 2017-05-09 2019-10-10 Boston Scientific Scimed, Inc. Operating room devices, methods, and systems
US10667869B2 (en) * 2017-05-17 2020-06-02 General Electric Company Guidance system for needle procedures
CN107049594B (en) * 2017-06-14 2020-04-07 京东方科技集团股份有限公司 Recovery device and magnetic particle recovery method
EP3417790A1 (en) 2017-06-20 2018-12-26 eZono AG System and method for image-guided procedure analysis
US11259879B2 (en) 2017-08-01 2022-03-01 Inneroptic Technology, Inc. Selective transparency to assist medical device navigation
DE102017008148A1 (en) * 2017-08-29 2019-02-28 Joimax Gmbh Sensor unit, intraoperative navigation system and method for detecting a surgical instrument
US11583249B2 (en) * 2017-09-08 2023-02-21 Biosense Webster (Israel) Ltd. Method and apparatus for performing non-fluoroscopic transseptal procedure
EP3706630B1 (en) 2017-11-09 2023-10-25 Acessa Health Inc. System for controlling ablation treatment and visualization
US11484365B2 (en) 2018-01-23 2022-11-01 Inneroptic Technology, Inc. Medical image guidance
EP3745979A4 (en) 2018-01-29 2021-03-24 Bard Access Systems, Inc. Connection system for establishing an electrical connection through a drape and methods thereof
AU2019256795A1 (en) * 2018-04-20 2020-11-12 Stent Tek Limited Apparatus for orientation display and alignment in percutaneous devices
WO2019221926A1 (en) 2018-05-18 2019-11-21 Bard Access Systems, Inc. Connection systems and methods thereof for establishing an electrical connection through a drape
US20200060643A1 (en) * 2018-08-22 2020-02-27 Bard Access Systems, Inc. Systems and Methods for Infrared-Enhanced Ultrasound Visualization
SE544094C2 (en) * 2018-11-05 2021-12-21 Scibase Ab Medical device for analyzing epithelial barrier function using electrical impedance spectroscopy
KR102238250B1 (en) * 2018-12-07 2021-04-09 인제대학교 산학협력단 Laser guide arm for ultra sound guided nerve block and vessel access
CN113164161A (en) 2018-12-07 2021-07-23 维兰医疗技术公司 Percutaneous catheter system and method for rapid diagnosis of pulmonary disease
US11801113B2 (en) * 2018-12-13 2023-10-31 Covidien Lp Thoracic imaging, distance measuring, and notification system and method
WO2020154543A1 (en) * 2019-01-23 2020-07-30 Affera, Inc. Systems and methods for therapy annotation
CN113473916A (en) 2019-01-30 2021-10-01 巴德阿克塞斯系统股份有限公司 System and method for tracking medical devices
US20200281561A1 (en) * 2019-03-05 2020-09-10 Ethos Medical, Inc. Systems, Methods, and Devices for Instrument Guidance
KR20200120062A (en) * 2019-04-11 2020-10-21 삼성메디슨 주식회사 Ultrasonic probe and ultrasonic imaging apparatus having the same
IL288209B2 (en) 2019-05-24 2024-01-01 Berkeley Lights Inc Systems and methods for optimizing an instrument system workflow
US11730443B2 (en) 2019-06-13 2023-08-22 Fujifilm Sonosite, Inc. On-screen markers for out-of-plane needle guidance
US11737848B2 (en) 2019-07-29 2023-08-29 Bard Access Systems, Inc. Connection systems and methods for establishing optical and electrical connections through a drape
WO2021033491A1 (en) * 2019-08-16 2021-02-25 富士フイルム株式会社 Ultrasonic diagnostic apparatus and control method for ultrasonic diagnostic apparatus
JP2022546575A (en) 2019-09-04 2022-11-04 バード・アクセス・システムズ,インコーポレーテッド System and method for ultrasound probe needle tracking status indicator
US20210065857A1 (en) * 2019-09-04 2021-03-04 Bard Access Systems, Inc. Needle-Guidance Systems, Devices, and Method Thereof Including RFID Technology
US11759166B2 (en) 2019-09-20 2023-09-19 Bard Access Systems, Inc. Automatic vessel detection tools and methods
US11517349B2 (en) 2019-09-27 2022-12-06 Bard Access Systems, Inc. Autovance feature of an intraosseous device
EP4034008A4 (en) 2019-09-27 2023-09-13 Bard Access Systems, Inc. Constant-torque intraosseous access devices and methods thereof
EP4031027A4 (en) 2019-09-27 2023-09-13 Bard Access Systems, Inc. Various operating mechanisms for intraosseous access medical devices and methods thereof
WO2021108697A1 (en) 2019-11-25 2021-06-03 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
EP4061272A4 (en) * 2019-11-25 2023-11-22 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US20210161554A1 (en) * 2019-12-03 2021-06-03 Gyrus Acmi, Inc. D/B/A Olympus Surgical Technologies America Medical instrument guidance systems and methods
CN112998857A (en) 2019-12-19 2021-06-22 巴德阿克塞斯系统股份有限公司 Needle sterility breach warning using magnetic needle tracking
KR20220123076A (en) * 2019-12-31 2022-09-05 아우리스 헬스, 인코포레이티드 Alignment Techniques for Transdermal Access
JP2023508719A (en) * 2019-12-31 2023-03-03 オーリス ヘルス インコーポレイテッド Alignment interface for percutaneous access
KR102372064B1 (en) * 2020-02-04 2022-03-08 인제대학교 산학협력단 Ultrasound Imaging System and Needle Insertion Guide Method Using thereof
CN215340440U (en) 2020-02-28 2021-12-28 巴德阿克塞斯系统股份有限公司 Electrical and optical connection system
US11896264B2 (en) 2020-04-21 2024-02-13 Bard Access Systems, Inc. Reusable push-activated intraosseous access device
CN111552415B (en) * 2020-04-30 2023-03-31 中国航空无线电电子研究所 High-safety-level touch device and method for airplane
CN215606058U (en) 2020-06-03 2022-01-25 巴德阿克塞斯系统股份有限公司 Obturator assembly configured for use with an intraosseous access system
EP4171423A1 (en) 2020-06-26 2023-05-03 Bard Access Systems, Inc. Malposition detection system
EP4171373A1 (en) 2020-06-29 2023-05-03 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
US11624677B2 (en) 2020-07-10 2023-04-11 Bard Access Systems, Inc. Continuous fiber optic functionality monitoring and self-diagnostic reporting system
US11877810B2 (en) 2020-07-21 2024-01-23 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3D visualization thereof
CN216675721U (en) 2020-08-03 2022-06-07 巴德阿克塞斯系统股份有限公司 Bragg grating optical fiber fluctuation sensing and monitoring system
US11890139B2 (en) 2020-09-03 2024-02-06 Bard Access Systems, Inc. Portable ultrasound systems
EP4216824A1 (en) 2020-09-29 2023-08-02 Bard Access Systems, Inc. Hands-free ultrasound probes, assemblies, systems, and methods
US20220101991A1 (en) 2020-09-30 2022-03-31 Bard Access Systems, Inc. RFID Enabled Medical Devices and Associated Systems
US20220104886A1 (en) 2020-10-02 2022-04-07 Bard Access Systems, Inc. Ultrasound Systems and Methods for Sustained Spatial Attention
US11899249B2 (en) 2020-10-13 2024-02-13 Bard Access Systems, Inc. Disinfecting covers for functional connectors of medical devices and methods thereof
EP4231909A1 (en) 2020-11-06 2023-08-30 Bard Access Systems, Inc. Medical devices with a quick release drive connector
EP4232121A1 (en) 2020-11-09 2023-08-30 Bard Access Systems, Inc. Medical device magnetizer
CN114464394A (en) 2020-11-10 2022-05-10 巴德阿克塞斯系统股份有限公司 Devices, systems, and methods for magnetizing a medical device while maintaining sterility thereof
US20220160434A1 (en) * 2020-11-24 2022-05-26 Bard Access Systems, Inc. Ultrasound System with Target and Medical Instrument Awareness
US11420042B2 (en) 2020-12-11 2022-08-23 Advanced Neuromodulation Systems, Inc. Systems and methods for delivering neurostimulation using exogenous electrodes
WO2022271728A1 (en) 2021-06-22 2022-12-29 Bard Access Systems, Inc. Ultrasound detection system
US20230045275A1 (en) * 2021-08-05 2023-02-09 GE Precision Healthcare LLC Methods and system for guided device insertion during medical imaging
WO2023064492A1 (en) 2021-10-14 2023-04-20 Bard Access Systems, Inc. Fiber optic ultrasound probe

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5775322A (en) * 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US6216029B1 (en) * 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US6263230B1 (en) * 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US20070282197A1 (en) * 2006-05-19 2007-12-06 Siemens Aktiengesellschaft Instrument, imaging position fixing system and position fixing method

Family Cites Families (1454)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3133244A (en) 1960-09-15 1964-05-12 Gen Precision Inc Magnetic field detector and resolver having a two section housing for the detector
US3297020A (en) 1963-09-30 1967-01-10 Mathiesen Erik Apparatus for detecting estrus in animals
US3625200A (en) 1969-08-26 1971-12-07 Us Catheter & Instr Corp Controlled curvable tip member
SE336642B (en) 1969-10-28 1971-07-12 Astra Meditec Ab
US4370983A (en) 1971-01-20 1983-02-01 Lichtenstein Eric Stefan Computer-control medical care system
US3795855A (en) 1971-12-08 1974-03-05 Cyclotron Corp Magnetic resonance probe system
US3817241A (en) 1972-02-16 1974-06-18 Henry And Carol Grausz Disposable central venous catheter and method of use
US3896373A (en) 1972-11-30 1975-07-22 Stein Paul D Method and apparatus for determining cross-sectional area of a blood conduit and volumetric flow therethrough
US3847157A (en) 1973-06-18 1974-11-12 J Caillouette Medico-surgical tube
US3902501A (en) 1973-06-21 1975-09-02 Medtronic Inc Endocardial electrode
US3868565A (en) 1973-07-30 1975-02-25 Jack Kuipers Object tracking and orientation determination means, system and process
US3995623A (en) 1974-12-23 1976-12-07 American Hospital Supply Corporation Multipurpose flow-directed catheter
US4003369A (en) 1975-04-22 1977-01-18 Medrad, Inc. Angiographic guidewire with safety core wire
US3986373A (en) 1975-06-27 1976-10-19 The Maytag Company Drive system for a laundry apparatus
US4175566A (en) 1975-08-07 1979-11-27 Millar Instruments, Inc. Catheter fluid-velocity flow probe
US4063561A (en) 1975-08-25 1977-12-20 The Signal Companies, Inc. Direction control device for endotracheal tube
US4181120A (en) 1976-04-23 1980-01-01 Tokyo Shibaura Electric Co., Ltd. Vessel for ultrasonic scanner
LU77252A1 (en) 1976-05-06 1977-08-22
US4114601A (en) 1976-08-09 1978-09-19 Micro Tec Instrumentation, Inc. Medical and surgical implement detection system
US4072146A (en) 1976-09-08 1978-02-07 Howes Randolph M Venous catheter device
US4173228A (en) 1977-05-16 1979-11-06 Applied Medical Devices Catheter locating device
US4224949A (en) 1977-11-17 1980-09-30 Cornell Research Foundation, Inc. Method and electrical resistance probe for detection of estrus in bovine
DE10130427A1 (en) 2001-06-23 2003-03-27 Reinmar Peppmoeller Stable, water-swellable and absorbent anionic polymers with a sponge structure and their production and use
JPS54112585A (en) 1978-02-22 1979-09-03 Tokyo Shibaura Electric Co Ultrasonic wave probe for ultrasonic wave diagnosis device
US4244362A (en) 1978-11-29 1981-01-13 Anderson Charles C Endotracheal tube control device
DE2919024A1 (en) * 1979-01-19 1980-07-31 Kretztechnik Gmbh Ultrasonic direction and depth indicator - uses beam scanning providing intersecting picture display on screen for injection needle or probe
US4327722A (en) 1979-08-20 1982-05-04 Groshong Leroy E Methods and apparatus for intravenous therapy and hyperalimentation
US4317078A (en) 1979-10-15 1982-02-23 Ohio State University Research Foundation Remote position and orientation detection employing magnetic flux linkage
US4380237A (en) 1979-12-03 1983-04-19 Massachusetts General Hospital Apparatus for making cardiac output conductivity measurements
US4365639A (en) 1980-02-07 1982-12-28 Applied Cardiac Electrophysiology Catheter, cardiac pacemaker and method of pacing
US4327723A (en) 1980-05-13 1982-05-04 Arrow International, Inc. Catheter shield
US4431214A (en) 1980-09-15 1984-02-14 Federal Paper Board Co., Inc. Data guide device
US4429693A (en) 1980-09-16 1984-02-07 Blake L W Surgical fluid evacuator
US4362166A (en) 1980-11-04 1982-12-07 Mallinckrodt, Inc. Disposable medical probe and connector
DE3109040A1 (en) 1981-03-10 1982-09-30 Siemens AG, 1000 Berlin und 8000 München ULTRASONIC APPLICATOR
US4710708A (en) 1981-04-27 1987-12-01 Develco Method and apparatus employing received independent magnetic field components of a transmitted alternating magnetic field for determining location
US4445501A (en) 1981-05-07 1984-05-01 Mccormick Laboratories, Inc. Circuits for determining very accurately the position of a device inside biological tissue
US4431005A (en) 1981-05-07 1984-02-14 Mccormick Laboratories, Inc. Method of and apparatus for determining very accurately the position of a device inside biological tissue
US4459854A (en) 1981-07-24 1984-07-17 National Research Development Corporation Ultrasonic transducer coupling member
US4417886A (en) 1981-11-05 1983-11-29 Arrow International, Inc. Catheter introduction set
US4582061A (en) * 1981-11-18 1986-04-15 Indianapolis Center For Advanced Research, Inc. Needle with ultrasonically reflective displacement scale
US4407294A (en) 1982-01-07 1983-10-04 Technicare Corporation Ultrasound tissue probe localization system
JPS5930213U (en) 1982-08-17 1984-02-24 株式会社東芝 Puncture type ultrasound probe adapter
US4469106A (en) 1982-09-02 1984-09-04 Advanced Technology Laboratories, Inc. Needle guide for use with medical ultrasonic scanning apparatus
IL67660A (en) 1983-01-11 1987-07-31 Fidelity Medical Ltd Signal processing apparatus and high resolution electrocardiograph equipment including same
DK148405C (en) 1983-02-07 1986-04-21 Medical Innovation Co CONTINUED FOR ULTRA SOUND SCANNER HEADS
US4582067A (en) 1983-02-14 1986-04-15 Washington Research Foundation Method for endoscopic blood flow detection by the use of ultrasonic energy
US4770185A (en) 1983-02-14 1988-09-13 The Board Of Regents Of The University Of Washington Method and apparatus for endoscopic blood flow detection by the use of ultrasonic energy
US4681117A (en) 1983-02-15 1987-07-21 Brodman Richard F Intracardiac catheter and a method for detecting myocardial ischemia
US4652820A (en) 1983-03-23 1987-03-24 North American Philips Corporation Combined position sensor and magnetic motor or bearing
JPS59147508U (en) 1983-03-25 1984-10-02 株式会社東芝 Ultrasonic probe adapter
US4619247A (en) 1983-03-31 1986-10-28 Sumitomo Electric Industries, Ltd. Catheter
FR2545349B1 (en) 1983-05-04 1986-09-26 Duret Francois PROCESS FOR INPUT OF THE FORM OF HUMAN ORGANS OR PATHOLOGICAL ABNORMALITIES AND DEVICE FOR IMPLEMENTING SAME
US4608992A (en) 1983-08-18 1986-09-02 Salomon Hakim External magnetic detection of physiopathological and other parameters
US4593687A (en) 1983-10-31 1986-06-10 Gray Leo C Endotracheal catheter
US4577634A (en) 1983-11-22 1986-03-25 Gessman Lawrence J Method and apparatus for alleviating paroxysmal atrail tachycardia
US4595012A (en) 1984-01-13 1986-06-17 American Hospital Supply Corporation Lumen mounted electrodes for pacing and intra-cardiac ECG sensing
US4588394A (en) 1984-03-16 1986-05-13 Pudenz-Schulte Medical Research Corp. Infusion reservoir and pump system
US4622644A (en) 1984-05-10 1986-11-11 Position Orientation Systems, Ltd. Magnetic position and orientation measurement system
JPS60244161A (en) 1984-05-18 1985-12-04 Fuji Photo Optical Co Ltd Endoscope
US4572198A (en) 1984-06-18 1986-02-25 Varian Associates, Inc. Catheter for use with NMR imaging systems
US4587975A (en) 1984-07-02 1986-05-13 Cardiac Pacemakers, Inc. Dimension sensitive angioplasty catheter
US4697595A (en) 1984-07-24 1987-10-06 Telectronics N.V. Ultrasonically marked cardiac catheters
YU132884A (en) 1984-07-26 1987-12-31 Branko Breyer Electrode cateter with ultrasonic marking
GB8420116D0 (en) 1984-08-08 1984-09-12 Elchemtec Ltd Apparatus for monitoring redox reactions
US4601706A (en) 1984-12-03 1986-07-22 Rene Aillon Central venous pressure catheter for preventing air embolism and method of making
US4798588A (en) 1984-12-03 1989-01-17 Rene Aillon Central venous pressure catheter and method for using
US4733669A (en) 1985-05-24 1988-03-29 Cardiometrics, Inc. Blood flow measurement catheter
US4856529A (en) 1985-05-24 1989-08-15 Cardiometrics, Inc. Ultrasonic pulmonary artery catheter and method
US4660571A (en) 1985-07-18 1987-04-28 Cordis Corporation Percutaneous lead having radially adjustable electrode
US4681106A (en) 1985-08-12 1987-07-21 Intravascular Surgical Instruments, Inc. Catheter based surgical methods and apparatus therefor
US4790809A (en) 1985-08-29 1988-12-13 Medical Engineering Corporation Ureteral stent
US4674518A (en) 1985-09-06 1987-06-23 Cardiac Pacemakers, Inc. Method and apparatus for measuring ventricular volume
US4889128A (en) 1985-09-13 1989-12-26 Pfizer Hospital Products Doppler catheter
US4957111A (en) 1985-09-13 1990-09-18 Pfizer Hospital Products Group, Inc. Method of using a doppler catheter
US4665925A (en) 1985-09-13 1987-05-19 Pfizer Hospital Products Group, Inc. Doppler catheter
US4644960A (en) 1985-09-23 1987-02-24 Arrow International, Inc. Device for making electrical connection to an electrolyte, and system employing same
DE3641107A1 (en) * 1985-12-03 1987-06-11 Vladimir Feingold SUBCUTANEOUS INPUT DEVICE
US4737794A (en) 1985-12-09 1988-04-12 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US4742356A (en) 1985-12-09 1988-05-03 Mcdonnell Douglas Corporation Method and apparatus for determining remote object orientation and position
US5045071A (en) 1985-12-17 1991-09-03 Mbo Laboratories, Inc. Double wall catheter with internal printing and embedded marker
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4692148A (en) 1986-03-28 1987-09-08 Aisin Seiki Kabushiki Kaisha Intra-aortic balloon pump apparatus and method of using same
US4809681A (en) 1986-03-28 1989-03-07 Aisin Seiki Kabushiki Kaisha Electrocardiographic measurement method for controlling an intra-aortic balloon pump
US5040548A (en) 1989-06-01 1991-08-20 Yock Paul G Angioplasty mehtod
FR2597351B1 (en) 1986-04-16 1994-03-25 Celsa Composants Electriques IMPLANTABLE DRUG DELIVERY CAPSULE AND METHOD AND DEVICE TO FACILITATE ITS USE.
US4821731A (en) 1986-04-25 1989-04-18 Intra-Sonix, Inc. Acoustic image system and method
US5078140A (en) 1986-05-08 1992-01-07 Kwoh Yik S Imaging device - aided robotic stereotaxis system
US4676249A (en) 1986-05-19 1987-06-30 Cordis Corporation Multi-mode guidewire
US4798598A (en) 1986-05-23 1989-01-17 Sarcem S.A. Guide for a catheter
US4771788A (en) 1986-07-18 1988-09-20 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
US4867169A (en) 1986-07-29 1989-09-19 Kaoru Machida Attachment attached to ultrasound probe for clinical application
JPS6336172A (en) 1986-07-29 1988-02-16 Toshiba Corp Ultrasonic coupler
US4741356A (en) 1986-08-08 1988-05-03 Assured Flow Sales, Inc. Hydrant variable riser and restraint
US4796632A (en) 1986-08-11 1989-01-10 General Electric Company Standoff adapter for ultrasound probe
US4852580A (en) 1986-09-17 1989-08-01 Axiom Medical, Inc. Catheter for measuring bioimpedance
AU7847487A (en) * 1986-09-18 1988-02-04 Selfridge, A.R. Cannulation of blood vessels
US4887606A (en) 1986-09-18 1989-12-19 Yock Paul G Apparatus for use in cannulation of blood vessels
DE3733439A1 (en) 1986-10-03 1988-04-14 Toshiba Kawasaki Kk HEADER FOR DIAGNOSTIC ULTRASONIC PROBE
US4849692A (en) 1986-10-09 1989-07-18 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US4945305A (en) 1986-10-09 1990-07-31 Ascension Technology Corporation Device for quantitatively measuring the relative position and orientation of two bodies in the presence of metals utilizing direct current magnetic fields
US5046497A (en) 1986-11-14 1991-09-10 Millar Instruments, Inc. Structure for coupling a guidewire and a catheter
US4850358A (en) 1986-11-14 1989-07-25 Millar Instruments, Inc. Method and assembly for introducing multiple devices into a biological vessel
US4700997A (en) 1986-11-14 1987-10-20 Minnesota Mining And Manufacturing Company Electrical connector
US5231995A (en) 1986-11-14 1993-08-03 Desai Jawahar M Method for catheter mapping and ablation
US4966148A (en) 1986-11-14 1990-10-30 Millar Instruments, Inc. Assembly for positioning diagnostic devices in a biological vessel
US4836214A (en) 1986-12-01 1989-06-06 Bomed Medical Manufacturing, Ltd. Esophageal electrode array for electrical bioimpedance measurement
US5050607A (en) 1987-03-04 1991-09-24 Huntington Medical Research Institutes High resolution magnetic resonance imaging of body cavities
US4793361A (en) 1987-03-13 1988-12-27 Cardiac Pacemakers, Inc. Dual channel P-wave detection in surface electrocardiographs
JPH0197440A (en) 1987-03-19 1989-04-14 Toshiba Corp Ultrasonic probe apparatus
US4967753A (en) 1987-04-10 1990-11-06 Cardiometrics, Inc. Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel
US5174295A (en) 1987-04-10 1992-12-29 Cardiometrics, Inc. Apparatus, system and method for measuring spatial average velocity and/or volumetric flow of blood in a vessel and screw joint for use therewith
US4943770A (en) 1987-04-21 1990-07-24 Mccormick Laboratories, Inc. Device for accurately detecting the position of a ferromagnetic material inside biological tissue
US5025799A (en) 1987-05-13 1991-06-25 Wilson Bruce C Steerable memory alloy guide wires
US4841977A (en) 1987-05-26 1989-06-27 Inter Therapy, Inc. Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly
US4787396A (en) 1987-06-18 1988-11-29 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure transducer
US4989608A (en) 1987-07-02 1991-02-05 Ratner Adam V Device construction and method facilitating magnetic resonance imaging of foreign objects in a body
US4840622A (en) 1987-10-06 1989-06-20 Menlo Care, Inc. Kink resistant catheter
US4809713A (en) 1987-10-28 1989-03-07 Joseph Grayzel Catheter with magnetic fixation
US5273042A (en) 1987-10-28 1993-12-28 Medical Parameters, Inc. Guidewire advancement method
US4860757A (en) 1987-10-28 1989-08-29 Medical Parameters, Incorporated Guidewire advancement system
US4911173A (en) 1987-11-13 1990-03-27 Diasonics, Inc. Biopsy attachment for ultrasound probe
US4989610A (en) 1987-11-16 1991-02-05 Spacelabs, Inc. Method and system of ECG data review and analysis
US4901725A (en) 1988-01-29 1990-02-20 Telectronics N.V. Minute volume rate-responsive pacemaker
US5251127A (en) 1988-02-01 1993-10-05 Faro Medical Technologies Inc. Computer-aided surgery apparatus
US4869263A (en) 1988-02-04 1989-09-26 Cardiometrics, Inc. Device and method for measuring volumetric blood flow in a vessel
CN2031655U (en) 1988-02-08 1989-02-01 山东医科大学 Multifunction composite type cardiac catheter
US4813729A (en) 1988-02-10 1989-03-21 Speckhart Frank H Magnetic retrieval tool
US5212988A (en) 1988-02-29 1993-05-25 The Reagents Of The University Of California Plate-mode ultrasonic structure including a gel
US5522878A (en) 1988-03-25 1996-06-04 Lectec Corporation Solid multipurpose ultrasonic biomedical couplant gel in sheet form and method
US4840182A (en) 1988-04-04 1989-06-20 Rhode Island Hospital Conductance catheter
US4869718A (en) 1988-04-04 1989-09-26 Brader Eric W Transcricothyroid catheterization device
US5202985A (en) 1988-04-14 1993-04-13 Racal-Datacom, Inc. Apparatus and method for displaying data communication network configuration after searching the network
US4856317A (en) 1988-05-02 1989-08-15 Fiberoptic Sensor Technologies, Inc. Vacuum calibration system and method for fiberoptic pressure transducer
US4873987A (en) 1988-06-30 1989-10-17 Ljubomir Djordjevich Noninvasive continuous monitor of arterial blood pressure waveform
US4899756A (en) 1988-07-18 1990-02-13 Sonek Jiri D Articulated needle guide for ultrasound imaging and method of using same
US5239464A (en) 1988-08-04 1993-08-24 Blair Preston E Interactive video system providing repeated switching of multiple tracks of actions sequences
US5067489A (en) 1988-08-16 1991-11-26 Flexmedics Corporation Flexible guide with safety tip
EP0413028B1 (en) 1988-08-30 1995-07-12 Fujitsu Limited Acoustic coupler
US4905698A (en) 1988-09-13 1990-03-06 Pharmacia Deltec Inc. Method and apparatus for catheter location determination
US4947852A (en) 1988-10-05 1990-08-14 Cardiometrics, Inc. Apparatus and method for continuously measuring volumetric blood flow using multiple transducer and catheter for use therewith
US5078148A (en) 1988-10-05 1992-01-07 Cardiometrics, Inc. Apparatus and method for continuously measuring volumetric blood flow using multiple transducers and catheter for use therewith
JPH0299040A (en) 1988-10-06 1990-04-11 Toshiba Corp X-ray diagnostic apparatus
US4961433A (en) 1988-11-02 1990-10-09 Cardiometrics, Inc. Guide wire assembly with electrical functions and male and female connectors for use therewith
US4995396A (en) 1988-12-08 1991-02-26 Olympus Optical Co., Ltd. Radioactive ray detecting endoscope
US4887615A (en) 1988-12-28 1989-12-19 Microtek Medical Inc. Sterile drape for ultrasound probe
US4998916A (en) 1989-01-09 1991-03-12 Hammerslag Julius G Steerable medical device
US4924870A (en) 1989-01-13 1990-05-15 Fiberoptic Sensor Technologies, Inc. Fiber optic sensors
US5099850A (en) 1989-01-17 1992-03-31 Olympus Optical Co., Ltd. Ultrasonic diagnostic apparatus
US4977886A (en) 1989-02-08 1990-12-18 Olympus Optical Co., Ltd. Position controlling apparatus
US4917669A (en) 1989-02-08 1990-04-17 Safetyject Catheter inserter
US4911174A (en) 1989-02-13 1990-03-27 Cardiac Pacemakers, Inc. Method for matching the sense length of an impedance measuring catheter to a ventricular chamber
US5004456A (en) 1989-03-10 1991-04-02 Arrow International Investment Corporation In-dwelling catheter
US4957110A (en) 1989-03-17 1990-09-18 C. R. Bard, Inc. Steerable guidewire having electrodes for measuring vessel cross-section and blood flow
US5016173A (en) 1989-04-13 1991-05-14 Vanguard Imaging Ltd. Apparatus and method for monitoring visually accessible surfaces of the body
US5240004A (en) 1989-04-28 1993-08-31 Thomas Jefferson University Intravascular, ultrasonic imaging catheters and methods for making same
CN1049287A (en) 1989-05-24 1991-02-20 住友电气工业株式会社 The treatment conduit
AU642647B2 (en) 1989-05-24 1993-10-28 Micronix Pty Ltd Medical instrument location means
US5029585A (en) 1989-07-14 1991-07-09 Baxter International Inc. Comformable intralumen electrodes
US6344053B1 (en) 1993-12-22 2002-02-05 Medtronic Ave, Inc. Endovascular support device and method
US5570671A (en) 1989-09-18 1996-11-05 The Research Foundation Of State University Of New York Method for positioning esophageal catheter for determining pressures associated with the left atrium
US5190045A (en) 1989-09-28 1993-03-02 Frazin Leon J Method and device for doppler-guided and imaged retrograde catheterization
US5220924A (en) 1989-09-28 1993-06-22 Frazin Leon J Doppler-guided retrograde catheterization using transducer equipped guide wire
DE69021158T2 (en) 1989-09-29 1995-12-07 Terumo Corp Ultrasonic coupler and manufacturing process.
EP0419729A1 (en) 1989-09-29 1991-04-03 Siemens Aktiengesellschaft Position finding of a catheter by means of non-ionising fields
US5084022A (en) 1989-10-04 1992-01-28 Lake Region Manufacturing Company, Inc. Graduated guidewire
US5125410A (en) 1989-10-13 1992-06-30 Olympus Optical Co., Ltd. Integrated ultrasonic diagnosis device utilizing intra-blood-vessel probe
US5005592A (en) 1989-10-27 1991-04-09 Becton Dickinson And Company Method and apparatus for tracking catheters
US5057095A (en) 1989-11-16 1991-10-15 Fabian Carl E Surgical implement detector utilizing a resonant marker
US5105829A (en) 1989-11-16 1992-04-21 Fabian Carl E Surgical implement detector utilizing capacitive coupling
JP2976379B2 (en) 1989-11-30 1999-11-10 株式会社島津製作所 Ultrasound diagnostic equipment
US5272513A (en) 1991-12-06 1993-12-21 Optical Air Data Systems, L.P. Laser doppler velocimeter
US5058595A (en) 1990-01-31 1991-10-22 St. Louis University Judkins-type angiographic catheter with Doppler crystal, and method of use
US5114401A (en) 1990-02-23 1992-05-19 New England Deaconess Hospital Corporation Method for central venous catheterization
US5214615A (en) 1990-02-26 1993-05-25 Will Bauer Three-dimensional displacement of a body with computer interface
US5121750A (en) 1990-03-02 1992-06-16 Katims Jefferson J Apparatus for locating a catheter adjacent to a pacemaker node of the heart
US5078678A (en) 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for locating a catheter adjacent to a pacemaker node of the heart
US5078714A (en) 1990-03-02 1992-01-07 Jefferson Katims Method and apparatus for placement of a probe in the body and the medical procedure for guiding and locating a catheter or probe in the body
US5109862A (en) 1990-03-19 1992-05-05 Del Mar Avionics Method and apparatus for spectral analysis of electrocardiographic signals
CH681351A5 (en) 1990-04-12 1993-03-15 Hans Baer Dr
JP2750201B2 (en) 1990-04-13 1998-05-13 オリンパス光学工業株式会社 Endoscope insertion state detection device
US5095910A (en) * 1990-04-18 1992-03-17 Advanced Technology Laboratories, Inc. Ultrasonic imaging of biopsy needle
US5146151A (en) 1990-06-08 1992-09-08 United Technologies Corporation Floating voltage reference having dual output voltage
US5360443A (en) 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
US5092341A (en) 1990-06-18 1992-03-03 Del Mar Avionics Surface ecg frequency analysis system and method based upon spectral turbulence estimation
US5100387A (en) 1990-07-02 1992-03-31 Ng Raymond C Disposable universal needle guide apparatus (for amniocentesis)
US5058583A (en) 1990-07-13 1991-10-22 Geddes Leslie A Multiple monopolar system and method of measuring stroke volume of the heart
US5158086A (en) 1990-07-20 1992-10-27 W. L. Gore & Associates, Inc. Invasive probe system
JPH0490741A (en) 1990-08-03 1992-03-24 Olympus Optical Co Ltd Endoscope
US5160342A (en) 1990-08-16 1992-11-03 Evi Corp. Endovascular filter and method for use thereof
GB9018660D0 (en) 1990-08-24 1990-10-10 Imperial College Probe system
US5076278A (en) 1990-10-15 1991-12-31 Catheter Technology Co. Annular ultrasonic transducers employing curved surfaces useful in catheter localization
US5211636A (en) 1990-10-31 1993-05-18 Lake Region Manufacturing Co., Inc. Steerable infusion guide wire
DE9015857U1 (en) 1990-11-21 1991-02-07 B. Braun Melsungen Ag, 3508 Melsungen, De
US5348020A (en) 1990-12-14 1994-09-20 Hutson William H Method and system for near real-time analysis and display of electrocardiographic signals
US5531664A (en) 1990-12-26 1996-07-02 Olympus Optical Co., Ltd. Bending actuator having a coil sheath with a fixed distal end and a free proximal end
US5134370A (en) 1991-01-08 1992-07-28 Northwest Marine Technology Inc. Apparatus for the detection of magnetic tags
US5184627A (en) 1991-01-18 1993-02-09 Boston Scientific Corporation Infusion guidewire including proximal stiffening sheath
JP2953079B2 (en) 1991-02-14 1999-09-27 富士写真光機株式会社 Electronic endoscope device
US5156151A (en) 1991-02-15 1992-10-20 Cardiac Pathways Corporation Endocardial mapping and ablation system and catheter probe
US5350352A (en) 1991-02-21 1994-09-27 Siemens Aktiengesellschaft Acoustic pressure pulse generator
US5235987A (en) 1991-02-22 1993-08-17 Dymax Corporation Needle guide
US6541756B2 (en) 1991-03-21 2003-04-01 Masimo Corporation Shielded optical probe having an electrical connector
US5161536A (en) 1991-03-22 1992-11-10 Catheter Technology Ultrasonic position indicating apparatus and methods
US5257636A (en) 1991-04-02 1993-11-02 Steven J. White Apparatus for determining position of an endothracheal tube
WO1992017240A1 (en) 1991-04-05 1992-10-15 Medtronic, Inc. Subcutaneous multi-electrode sensing system
US5433729A (en) 1991-04-12 1995-07-18 Incontrol, Inc. Atrial defibrillator, lead systems, and method
US5144955A (en) 1991-04-15 1992-09-08 Cordis Corporation Doppler velocity measuring medical unit
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
US5330496A (en) 1991-05-06 1994-07-19 Alferness Clifton A Vascular catheter assembly for tissue penetration and for cardiac stimulation and methods thereof
US5233994A (en) 1991-05-13 1993-08-10 Advanced Technology Laboratories, Inc. Detection of tissue abnormality through blood perfusion differentiation
EP0588864A4 (en) 1991-05-24 1996-01-10 Ep Technologies Combination monophasic action potential/ablation catheter and high-performance filter system
US6821287B1 (en) 1991-05-24 2004-11-23 Advanced Cardiovascular Systems, Inc. Multi-mode vascular catheter system
US5261409A (en) 1991-05-27 1993-11-16 Sulzer Brothers Limited Puncturing device for blood vessels
US5395366A (en) 1991-05-30 1995-03-07 The State University Of New York Sampling capsule and process
US5279607A (en) 1991-05-30 1994-01-18 The State University Of New York Telemetry capsule and process
JP2567099Y2 (en) 1991-06-07 1998-03-30 山形日本電気株式会社 Gas supply device
US5279309A (en) 1991-06-13 1994-01-18 International Business Machines Corporation Signaling device and method for monitoring positions in a surgical operation
DE4125950C1 (en) 1991-08-06 1992-11-05 Dornier Medizintechnik Gmbh, 8000 Muenchen, De
US5184601A (en) 1991-08-05 1993-02-09 Putman John M Endoscope stabilizer
US5174299A (en) 1991-08-12 1992-12-29 Cardiac Pacemakers, Inc. Thermocouple-based blood flow sensor
US5275053A (en) 1991-08-21 1994-01-04 Fiberoptic Sensor Technologies, Inc. Fiber optic pressure sensor systems
US5255680A (en) 1991-09-03 1993-10-26 General Electric Company Automatic gantry positioning for imaging systems
JP2735747B2 (en) 1991-09-03 1998-04-02 ゼネラル・エレクトリック・カンパニイ Tracking and imaging system
US5251635A (en) 1991-09-03 1993-10-12 General Electric Company Stereoscopic X-ray fluoroscopy system using radiofrequency fields
US5211165A (en) 1991-09-03 1993-05-18 General Electric Company Tracking system to follow the position and orientation of a device with radiofrequency field gradients
US5265610A (en) 1991-09-03 1993-11-30 General Electric Company Multi-planar X-ray fluoroscopy system using radiofrequency fields
US5425367A (en) 1991-09-04 1995-06-20 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5645065A (en) 1991-09-04 1997-07-08 Navion Biomedical Corporation Catheter depth, position and orientation location system
US5191891A (en) 1991-09-10 1993-03-09 Ralin, Inc. Portable ECG monitor/recorder
US5713363A (en) 1991-11-08 1998-02-03 Mayo Foundation For Medical Education And Research Ultrasound catheter and method for imaging and hemodynamic monitoring
US5325860A (en) 1991-11-08 1994-07-05 Mayo Foundation For Medical Education And Research Ultrasonic and interventional catheter and method
US5205830A (en) 1991-11-12 1993-04-27 Arrow International Investment Corporation Catheter assembly
US5445150A (en) 1991-11-18 1995-08-29 General Electric Company Invasive system employing a radiofrequency tracking system
US5437277A (en) 1991-11-18 1995-08-01 General Electric Company Inductively coupled RF tracking system for use in invasive imaging of a living body
US5274551A (en) 1991-11-29 1993-12-28 General Electric Company Method and apparatus for real-time navigation assist in interventional radiological procedures
US5289373A (en) 1991-11-29 1994-02-22 General Electric Company Method and apparatus for real-time tracking of catheter guide wires in fluoroscopic images during interventional radiological procedures
US5366443A (en) 1992-01-07 1994-11-22 Thapliyal And Eggers Partners Method and apparatus for advancing catheters through occluded body lumens
US5280786A (en) 1992-01-21 1994-01-25 Fiberoptic Sensor Technologies, Inc. Fiberoptic blood pressure and oxygenation sensor
US5509411A (en) 1993-01-29 1996-04-23 Cardima, Inc. Intravascular sensing device
US6187744B1 (en) 1992-03-11 2001-02-13 Michael W. Rooney Methods and compositions for regulating the intravascular flow and oxygenating activity of hemoglobin in a human or animal subject
DE4207901C3 (en) 1992-03-12 1999-10-07 Aesculap Ag & Co Kg Method and device for displaying a work area in a three-dimensional structure
US5246007A (en) 1992-03-13 1993-09-21 Cardiometrics, Inc. Vascular catheter for measuring flow characteristics and method
US5318025A (en) 1992-04-01 1994-06-07 General Electric Company Tracking system to monitor the position and orientation of a device using multiplexed magnetic resonance detection
US5217026A (en) 1992-04-06 1993-06-08 Kingston Technologies, Inc. Guidewires with lubricious surface and method of their production
US5540681A (en) 1992-04-10 1996-07-30 Medtronic Cardiorhythm Method and system for radiofrequency ablation of tissue
US5422478A (en) 1992-04-17 1995-06-06 Fiberoptic Sensor Technologies, Inc. Fiberoptic pressure sensor having drift correction means for insitu calibration
US5247171A (en) 1992-04-17 1993-09-21 Fiberoptic Sensor Technologies, Inc. Drift correction for fiberoptic pressure sensors
US5292342A (en) 1992-05-01 1994-03-08 Medtronic, Inc. Low cost implantable medical device
US5423877A (en) 1992-05-04 1995-06-13 David C. Mackey Method and device for acute pain management by simultaneous spinal cord electrical stimulation and drug infusion
US5397302A (en) 1992-05-11 1995-03-14 Arrow Precision Products, Inc. Method of using a dual lumen biliary catheter
US5536248A (en) 1992-05-11 1996-07-16 Arrow Precision Products, Inc. Method and apparatus for electrosurgically obtaining access to the biliary tree and placing a stent therein
US5246426A (en) 1992-06-17 1993-09-21 Arrow International Investment Corp. Catheterization system
US5271404A (en) 1992-06-25 1993-12-21 Cardiometrics, Inc. Method and apparatus for processing signal data to form an envelope on line
US5341807A (en) 1992-06-30 1994-08-30 American Cardiac Ablation Co., Inc. Ablation catheter positioning system
US5449002A (en) 1992-07-01 1995-09-12 Goldman; Robert J. Capacitive biofeedback sensor with resilient polyurethane dielectric for rehabilitation
US5307072A (en) 1992-07-09 1994-04-26 Polhemus Incorporated Non-concentricity compensation in position and orientation measurement systems
US5476090A (en) 1992-07-15 1995-12-19 Fuji Photo Optical Co., Ltd. Hard enclosure and sheath for same
WO1994002077A2 (en) 1992-07-15 1994-02-03 Angelase, Inc. Ablation catheter system
US5325873A (en) 1992-07-23 1994-07-05 Abbott Laboratories Tube placement verifier system
JP3204542B2 (en) 1992-07-24 2001-09-04 株式会社東芝 Magnetic field source measurement device
US5257979A (en) 1992-07-27 1993-11-02 Ravindar Jagpal Instrument for catheterization
US5269759A (en) 1992-07-28 1993-12-14 Cordis Corporation Magnetic guidewire coupling for vascular dilatation apparatus
EP0652745A1 (en) 1992-07-31 1995-05-17 Daratech Pty. Ltd. Controlled release implants
US5776080A (en) 1992-08-12 1998-07-07 Scimed Life Systems, Inc. Shaft movement control apparatus
US5588442A (en) 1992-08-12 1996-12-31 Scimed Life Systems, Inc. Shaft movement control apparatus and method
JP3432825B2 (en) 1992-08-14 2003-08-04 ブリテイッシュ・テレコミュニケーションズ・パブリック・リミテッド・カンパニー Positioning system
US6757557B1 (en) 1992-08-14 2004-06-29 British Telecommunications Position location system
US7189208B1 (en) 1992-09-23 2007-03-13 Endocardial Solutions, Inc. Method for measuring heart electrophysiology
US7930012B2 (en) 1992-09-23 2011-04-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Chamber location method
US5333614A (en) 1992-09-28 1994-08-02 Feiring Andrew J Measurement of absolute vascular flow
US5375596A (en) 1992-09-29 1994-12-27 Hdc Corporation Method and apparatus for determining the position of catheters, tubes, placement guidewires and implantable ports within biological tissue
US5666473A (en) 1992-10-08 1997-09-09 Science & Technology Corporation & Unm Tactile computer aided sculpting device
US5287331A (en) 1992-10-26 1994-02-15 Queen's University Air coupled ultrasonic transducer
US5456718A (en) 1992-11-17 1995-10-10 Szymaitis; Dennis W. Apparatus for detecting surgical objects within the human body
US5517990A (en) 1992-11-30 1996-05-21 The Cleveland Clinic Foundation Stereotaxy wand and tool guide
NL9300028A (en) 1993-01-07 1994-08-01 Academisch Ziekenhuis Utrecht Method for measuring the electrical impedance in blood vessels and catheterization system using a catheter to carry out that method.
US5337678A (en) 1993-01-07 1994-08-16 Ergonomic Equipment Pty. Ltd. Adjustable desk frame
US5505205A (en) 1993-01-08 1996-04-09 Hewlett-Packard Company Interface element for medical ultrasound transducer
US5385146A (en) 1993-01-08 1995-01-31 Goldreyer; Bruce N. Orthogonal sensing for use in clinical electrophysiology
US5311871A (en) 1993-01-12 1994-05-17 Yock Paul G Syringe with ultrasound emitting transducer for flow-directed cannulation of arteries and veins
AU672668B2 (en) 1993-01-18 1996-10-10 Eric Dardel Blood vessel locating and puncturing device
US5651047A (en) 1993-01-25 1997-07-22 Cardiac Mariners, Incorporated Maneuverable and locateable catheters
US5453575A (en) 1993-02-01 1995-09-26 Endosonics Corporation Apparatus and method for detecting blood flow in intravascular ultrasonic imaging
US5423334A (en) 1993-02-01 1995-06-13 C. R. Bard, Inc. Implantable medical device characterization system
US5919170A (en) 1993-02-01 1999-07-06 Mentor Corporation Urinary catheter
GB9302387D0 (en) 1993-02-06 1993-03-24 Osprey Metals Ltd Production of powder
US5329927A (en) 1993-02-25 1994-07-19 Echo Cath, Inc. Apparatus and method for locating an interventional medical device with a ultrasound color imaging system
JP3860227B2 (en) 1993-03-10 2006-12-20 株式会社東芝 Ultrasonic therapy device used under MRI guide
US6522905B2 (en) 1993-03-11 2003-02-18 Jawahar M. Desai Apparatus and method for cardiac ablation
US5433198A (en) 1993-03-11 1995-07-18 Desai; Jawahar M. Apparatus and method for cardiac ablation
US5417701A (en) 1993-03-30 1995-05-23 Holmed Corporation Surgical instrument with magnetic needle holder
US5394877A (en) 1993-04-01 1995-03-07 Axon Medical, Inc. Ultrasound medical diagnostic device having a coupling medium providing self-adherence to a patient
US5368048A (en) 1993-04-19 1994-11-29 Stoy; George P. Method of making radio-opaque tipped, sleeved guidewire and product
US5411485A (en) 1993-04-19 1995-05-02 Hyprotek Catheter access system and method
EP1219259B1 (en) 1993-04-22 2003-07-16 Image Guided Technologies, Inc. System for locating relative positions of objects
DE69432834T2 (en) 1993-04-26 2004-05-13 St. Louis University Display of the location of a surgical probe
US5357961A (en) 1993-05-12 1994-10-25 Hdc Corporation Catheter guidewire and flushing apparatus and method of insertion
WO1994027501A1 (en) 1993-05-24 1994-12-08 Boston Scientific Corporation Medical acoustic imaging catheter and guidewire
US5465724A (en) 1993-05-28 1995-11-14 Acuson Corporation Compact rotationally steerable ultrasound transducer
DE4409797C2 (en) 1993-06-02 1997-07-03 Dornier Medizintechnik Connector
DE4319033C1 (en) 1993-06-08 1994-06-30 Braun Melsungen Ag Seldinger device with vein catheterisation
US5526812A (en) 1993-06-21 1996-06-18 General Electric Company Display system for enhancing visualization of body structures during medical procedures
US5715817A (en) 1993-06-29 1998-02-10 C.R. Bard, Inc. Bidirectional steering catheter
US5438873A (en) 1993-07-01 1995-08-08 Fiberoptic Sensor Technologies, Inc. Fiberoptic sensor using tapered and bundled fibers
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US6285898B1 (en) 1993-07-20 2001-09-04 Biosense, Inc. Cardiac electromechanics
US5391199A (en) 1993-07-20 1995-02-21 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias
US5738096A (en) 1993-07-20 1998-04-14 Biosense, Inc. Cardiac electromechanics
US5427114A (en) 1993-08-19 1995-06-27 Fiberoptic Sensor Technologies, Inc. Dual pressure sensing catheter
US5398691A (en) 1993-09-03 1995-03-21 University Of Washington Method and apparatus for three-dimensional translumenal ultrasonic imaging
US5902238A (en) 1993-09-14 1999-05-11 University Of Washington Medical tube and apparatus for locating the same in the body of a patient
US5425382A (en) 1993-09-14 1995-06-20 University Of Washington Apparatus and method for locating a medical tube in the body of a patient
US5558091A (en) 1993-10-06 1996-09-24 Biosense, Inc. Magnetic determination of position and orientation
US5417208A (en) 1993-10-12 1995-05-23 Arrow International Investment Corp. Electrode-carrying catheter and method of making same
US5555618A (en) 1993-10-12 1996-09-17 Arrow International Investment Corp. Method of making electrode-carrying catheter
US5840024A (en) 1993-10-18 1998-11-24 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US5695479A (en) 1993-11-01 1997-12-09 Jagpal; Ravindar Instrument, system, kit and method for catheterization procedures
US5456256A (en) 1993-11-04 1995-10-10 Ultra-Scan Corporation High resolution ultrasonic imaging apparatus and method
US5464629A (en) 1993-11-16 1995-11-07 Georgetown University Method of forming hydrogel particles having a controlled size using liposomes
JPH07136162A (en) 1993-11-17 1995-05-30 Fujitsu Ltd Ultrasonic coupler
US5429617A (en) 1993-12-13 1995-07-04 The Spectranetics Corporation Radiopaque tip marker for alignment of a catheter within a body
CN1117771A (en) 1993-12-14 1996-02-28 Plc医药系统公司 Unitary ECG monitor lead and needle electrode system
EP0735842B1 (en) 1993-12-22 1999-03-31 Sulzer Osypka GmbH Ultrasonic marked cardiac ablation catheter
HRP940025A2 (en) 1994-01-14 1996-06-30 Branko Breyer A blood flow velocity measurement system perpendicular to a single probing beam
US6099524A (en) 1994-01-28 2000-08-08 Cardiac Pacemakers, Inc. Electrophysiological mapping and ablation catheter and method
US5413107A (en) 1994-02-16 1995-05-09 Tetrad Corporation Ultrasonic probe having articulated structure and rotatable transducer head
ES2114626T3 (en) 1994-03-18 1998-06-01 Schneider Europ Ag MAGNETIC RESONANCE VISUALIZATION SYSTEM TO LOCATE A MEDICAL INSTRUMENT.
US5425370A (en) 1994-03-23 1995-06-20 Echocath, Inc. Method and apparatus for locating vibrating devices
US5640967A (en) 1994-03-29 1997-06-24 Quinton Electrophysiology Corporation Monitoring system and method for use during an electrophysiology study
US5517989A (en) 1994-04-01 1996-05-21 Cardiometrics, Inc. Guidewire assembly
US5833622A (en) 1994-04-04 1998-11-10 Graphic Controls Corporation Non-invasive fetal probe having improved mechanical and electrical properties
US5474065A (en) 1994-04-04 1995-12-12 Graphic Controls Corporation Non-invasive fetal probe
US5540230A (en) 1994-04-15 1996-07-30 Echocath, Inc. Diffracting doppler-transducer
US5546949A (en) 1994-04-26 1996-08-20 Frazin; Leon Method and apparatus of logicalizing and determining orientation of an insertion end of a probe within a biotic structure
US6249234B1 (en) 1994-05-14 2001-06-19 Absolute Sensors Limited Position detector
NO942222D0 (en) 1994-06-14 1994-06-14 Vingmed Sound As Method for determining blood flow velocity / time spectrum
US5394876A (en) 1994-06-30 1995-03-07 Spacelabs Medical, Inc. Method and apparatus for aiming a doppler flow sensing device
US5600330A (en) 1994-07-12 1997-02-04 Ascension Technology Corporation Device for measuring position and orientation using non-dipole magnet IC fields
US5623582A (en) 1994-07-14 1997-04-22 Immersion Human Interface Corporation Computer interface or control input device for laparoscopic surgical instrument and other elongated mechanical objects
US5654864A (en) 1994-07-25 1997-08-05 University Of Virginia Patent Foundation Control method for magnetic stereotaxis system
US5669383A (en) 1994-07-28 1997-09-23 Sims Deltec, Inc. Polyimide sheath for a catheter detector and method
ES2144123T3 (en) 1994-08-19 2000-06-01 Biosense Inc MEDICAL DIAGNOSIS, TREATMENT AND IMAGE SYSTEMS.
US5492538A (en) 1994-08-25 1996-02-20 Johlin, Jr.; Frederick C. Method for transferring the exit site of a catheter from the mouth to the nose and instrumentation useful therefor
US5701898A (en) * 1994-09-02 1997-12-30 The United States Of America As Represented By The Department Of Health And Human Services Method and system for Doppler ultrasound measurement of blood flow
CA2197682A1 (en) 1994-09-06 1996-03-14 Sims Deltec, Inc. Method and apparatus for location of a catheter tip
US5829444A (en) 1994-09-15 1998-11-03 Visualization Technology, Inc. Position tracking and imaging system for use in medical applications
DE69531994T2 (en) 1994-09-15 2004-07-22 OEC Medical Systems, Inc., Boston SYSTEM FOR POSITION DETECTION BY MEANS OF A REFERENCE UNIT ATTACHED TO A PATIENT'S HEAD FOR USE IN THE MEDICAL AREA
US5623931A (en) 1994-10-11 1997-04-29 Siemens Medical Systems, Inc. Needle guide for use with ultrasound imaging systems
US5941251A (en) 1994-10-11 1999-08-24 Ep Technologies, Inc. Systems for locating and guiding operative elements within interior body regions
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5578873A (en) 1994-10-12 1996-11-26 Micron Technology, Inc. Integrated circuitry having a thin film polysilicon layer in ohmic contact with a conductive layer
US6678552B2 (en) 1994-10-24 2004-01-13 Transscan Medical Ltd. Tissue characterization based on impedance images and on impedance measurements
US5453576A (en) 1994-10-24 1995-09-26 Transonic Systems Inc. Cardiovascular measurements by sound velocity dilution
US5919141A (en) 1994-11-15 1999-07-06 Life Sensing Instrument Company, Inc. Vital sign remote monitoring device
US5624430A (en) 1994-11-28 1997-04-29 Eton; Darwin Magnetic device to assist transcorporeal guidewire placement
US5622184A (en) 1994-11-29 1997-04-22 Applied Medical Resources Corporation Guidewire and method of manufacture
US5630419A (en) 1994-12-20 1997-05-20 Tetrad Corporation Sealing connector for multiconductor cables
US5762064A (en) 1995-01-23 1998-06-09 Northrop Grumman Corporation Medical magnetic positioning system and method for determining the position of a magnetic probe
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US5682890A (en) 1995-01-26 1997-11-04 Picker International, Inc. Magnetic resonance stereotactic surgery with exoskeleton tissue stabilization
JP3539645B2 (en) 1995-02-16 2004-07-07 株式会社日立製作所 Remote surgery support device
US5626554A (en) 1995-02-21 1997-05-06 Exogen, Inc. Gel containment structure
US6019724A (en) 1995-02-22 2000-02-01 Gronningsaeter; Aage Method for ultrasound guidance during clinical procedures
US6374670B1 (en) 1995-03-13 2002-04-23 University Of Washington Non-invasive gut motility monitor
US5795298A (en) 1995-03-28 1998-08-18 Sonometrics Corporation System for sharing electrocardiogram electrodes and transducers
US5817022A (en) 1995-03-28 1998-10-06 Sonometrics Corporation System for displaying a 2-D ultrasound image within a 3-D viewing environment
US5868673A (en) 1995-03-28 1999-02-09 Sonometrics Corporation System for carrying out surgery, biopsy and ablation of a tumor or other physical anomaly
US5797849A (en) 1995-03-28 1998-08-25 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5779638A (en) 1995-03-28 1998-07-14 Sonometrics Corporation Ultrasound-based 3-D tracking system using a digital signal processor
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
US5515853A (en) 1995-03-28 1996-05-14 Sonometrics Corporation Three-dimensional digital ultrasound tracking system
US5820560A (en) 1995-03-31 1998-10-13 Universite De Montreal Inspiratory proportional pressure assist ventilation controlled by a diaphragm electromyographic signal
GB9506909D0 (en) 1995-04-04 1995-05-24 Scient Generics Ltd Spatial magnetic interrogation system
US5730129A (en) 1995-04-03 1998-03-24 General Electric Company Imaging of interventional devices in a non-stationary subject
US5666958A (en) 1995-04-06 1997-09-16 Rothenberg; Peter M. Interface module for electrically connecting medical equipment
US6017496A (en) 1995-06-07 2000-01-25 Irori Matrices with memories and uses thereof
US5494038A (en) 1995-04-25 1996-02-27 Abbott Laboratories Apparatus for ultrasound testing
US5961923A (en) 1995-04-25 1999-10-05 Irori Matrices with memories and uses thereof
US6100026A (en) 1995-04-25 2000-08-08 Irori Matrices with memories and uses thereof
US6329139B1 (en) 1995-04-25 2001-12-11 Discovery Partners International Automated sorting system for matrices with memory
US6319668B1 (en) 1995-04-25 2001-11-20 Discovery Partners International Method for tagging and screening molecules
US6340588B1 (en) 1995-04-25 2002-01-22 Discovery Partners International, Inc. Matrices with memories
US6284459B1 (en) 1995-04-25 2001-09-04 Discovery Partners International Solid support matrices with memories and combinatorial libraries therefrom
US5713858A (en) 1995-04-28 1998-02-03 Medtronic, Inc. Permanently implantable guiding catheter
US5742291A (en) 1995-05-09 1998-04-21 Synthonics Incorporated Method and apparatus for creation of three-dimensional wire frames
WO1996036273A2 (en) 1995-05-16 1996-11-21 The United States Of America, Represented By The Secretary Of The Air Force System and method for enhanced visualization of subcutaneous structures
US5699801A (en) 1995-06-01 1997-12-23 The Johns Hopkins University Method of internal magnetic resonance imaging and spectroscopic analysis and associated apparatus
US5691898A (en) 1995-09-27 1997-11-25 Immersion Human Interface Corp. Safe and low cost computer peripherals with force feedback for consumer applications
US5718241A (en) 1995-06-07 1998-02-17 Biosense, Inc. Apparatus and method for treating cardiac arrhythmias with no discrete target
US5752513A (en) 1995-06-07 1998-05-19 Biosense, Inc. Method and apparatus for determining position of object
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
US6032070A (en) 1995-06-07 2000-02-29 University Of Arkansas Method and apparatus for detecting electro-magnetic reflection from biological tissue
CA2224589C (en) 1995-06-12 2007-05-08 Cordis Webster, Inc. Catheter with an electromagnetic guidance sensor
US5592939A (en) 1995-06-14 1997-01-14 Martinelli; Michael A. Method and system for navigating a catheter probe
US5702433A (en) 1995-06-27 1997-12-30 Arrow International Investment Corp. Kink-resistant steerable catheter assembly for microwave ablation
AU6677596A (en) 1995-07-21 1997-02-18 Respironics, Inc. Method and apparatus for diode laser pulse oximetry using multifiber optical cables and disposable fiber optic probes
US6023638A (en) 1995-07-28 2000-02-08 Scimed Life Systems, Inc. System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue
US5842986A (en) 1995-08-16 1998-12-01 Proton Sciences Corp. Ferromagnetic foreign body screening method and apparatus
US5700889A (en) 1995-08-17 1997-12-23 E. I. Du Pont De Nemours And Company Process for polymerization of copolymers of tetrafluoroethylene and hexafluoropropylene
US5638819A (en) 1995-08-29 1997-06-17 Manwaring; Kim H. Method and apparatus for guiding an instrument to a target
DE19532676C1 (en) 1995-09-05 1997-05-07 Inst Physikalische Hochtech Ev Arrangement for determining the position of a marker in a cavity within the organism of a living being
US5669388A (en) 1995-09-06 1997-09-23 Echocath, Inc. Apparatus and method for automatic placement of transducer
US6071300A (en) 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
JPH0994298A (en) 1995-09-28 1997-04-08 Terumo Corp Guide wire
US6166806A (en) 1995-09-29 2000-12-26 Tjin; Swee Chuan Fiber optic catheter for accurate flow measurements
USD375450S (en) 1995-09-29 1996-11-12 Siemens Medical Systems Inc. Ultrasound transducer probe holder with groove
USD383968S (en) 1995-09-29 1997-09-23 Siemens Medical Systems, Inc. Ultrasound transducer probe holder
US6375615B1 (en) 1995-10-13 2002-04-23 Transvascular, Inc. Tissue penetrating catheters having integral imaging transducers and their methods of use
US5733323A (en) 1995-11-13 1998-03-31 Cordis Corporation Electrically conductive unipolar vascular sheath
US5716389A (en) 1995-11-13 1998-02-10 Walinsky; Paul Cardiac ablation catheter arrangement with movable guidewire
US5697377A (en) 1995-11-22 1997-12-16 Medtronic, Inc. Catheter mapping system and method
US5944023A (en) 1995-12-07 1999-08-31 Sims Deltec, Inc. Systems and methods for determining the location of an implanted device including a magnet
BR9612087A (en) 1995-12-19 1999-02-17 Filtertek Inc Filter having magnetic components and method for manufacturing it
US5598846A (en) 1995-12-21 1997-02-04 Hewlett-Packard Company Rotatable ultrasound transducer finger probe
NL1001979C1 (en) 1995-12-22 1997-06-24 Cardiovasculair Research Insti Device for determining a characteristic point in the heart cycle.
US6569103B2 (en) 1995-12-22 2003-05-27 Arrow International Investment Corp. Device for determining a characteristic point in the cardiac cycle
US7452358B2 (en) 1996-01-05 2008-11-18 Thermage, Inc. RF electrode assembly for handpiece
US5617866A (en) 1996-01-05 1997-04-08 Acuson Corporation Modular transducer system
US5727552A (en) 1996-01-11 1998-03-17 Medtronic, Inc. Catheter and electrical lead location system
US5711299A (en) 1996-01-26 1998-01-27 Manwaring; Kim H. Surgical guidance method and system for approaching a target within a body
DE29601310U1 (en) 1996-01-26 1997-06-05 Braun Melsungen Ag Catheter set with ECG lead possibility
US20020045812A1 (en) 1996-02-01 2002-04-18 Shlomo Ben-Haim Implantable sensor for determining position coordinates
US5795632A (en) 1996-02-06 1998-08-18 Parker Laboratories Protective cover set for a medical probe
EP0891152B1 (en) 1996-02-15 2003-11-26 Biosense, Inc. Independently positionable transducers for location system
CA2246284C (en) 1996-02-15 2008-01-29 Biosense, Inc. Catheter with lumen
DE69732362T2 (en) 1996-02-15 2006-03-23 Biosense Webster, Inc., Diamond Bar Method for calibrating a probe
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
WO1997029683A1 (en) 1996-02-15 1997-08-21 Biosense, Inc. Movable transmit or receive coils for location system
US5769843A (en) 1996-02-20 1998-06-23 Cormedica Percutaneous endomyocardial revascularization
US5991693A (en) 1996-02-23 1999-11-23 Mindcraft Technologies, Inc. Wireless I/O apparatus and method of computer-assisted instruction
JP4141500B2 (en) 1996-02-27 2008-08-27 バイオセンス・ウェブスター・インコーポレイテッド Positioning device and operation method thereof
US5824031A (en) 1996-02-28 1998-10-20 Cardio Source Apparatus and method for deflecting a tip of a lead or catheter
AU1983397A (en) 1996-02-29 1997-09-16 Acuson Corporation Multiple ultrasound image registration system, method and transducer
US5731996A (en) 1996-03-05 1998-03-24 Hughes Electronics Dipole moment detector and localizer
US5665103A (en) 1996-03-07 1997-09-09 Scimed Life Systems, Inc. Stent locating device
US5727553A (en) 1996-03-25 1998-03-17 Saad; Saad A. Catheter with integral electromagnetic location identification device
US6050718A (en) 1996-03-28 2000-04-18 Immersion Corporation Method and apparatus for providing high bandwidth force feedback with improved actuator feel
US5727550A (en) 1996-04-09 1998-03-17 Lectec Corporation Dual purpose ultrasonic biomedical couplant pad and electrode
US7678098B2 (en) 1996-04-10 2010-03-16 Endoscopic Technologies, Inc. Venous cannula and cardiopulmonary bypass system
US5800410A (en) 1996-04-19 1998-09-01 Becton Dickinson And Company Catheter with stress distribution fingers
US7236816B2 (en) 1996-04-25 2007-06-26 Johns Hopkins University Biopsy and sampling needle antennas for magnetic resonance imaging-guided biopsies
US5928145A (en) 1996-04-25 1999-07-27 The Johns Hopkins University Method of magnetic resonance imaging and spectroscopic analysis and associated apparatus employing a loopless antenna
JP4636634B2 (en) 1996-04-26 2011-02-23 ボストン サイエンティフィック サイムド,インコーポレイテッド Intravascular stent
US5810733A (en) 1996-05-07 1998-09-22 Acuson Corporation Encapsulated ultrasound transducer probe assembly
AU728802B2 (en) 1996-05-17 2001-01-18 Biosense, Inc. Self-aligning catheter
EP0954260A1 (en) 1996-05-22 1999-11-10 Diversified Pharmaceuticals, Inc. Compositions, methods and devices for the transdermal delivery of drugs
DE19622078A1 (en) 1996-05-31 1997-12-04 Siemens Ag Active current localising appts. for heart
US5742394A (en) 1996-06-14 1998-04-21 Ascension Technology Corporation Optical 6D measurement system with two fan shaped beams rotating around one axis
US5767669A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Magnetic field position and orientation measurement system with dynamic eddy current rejection
US5767960A (en) 1996-06-14 1998-06-16 Ascension Technology Corporation Optical 6D measurement system with three fan-shaped beams rotating around one axis
EP1438980A3 (en) * 1996-06-17 2004-10-20 Becton, Dickinson and Company Medical tube for insertion and detection within the body of a patient
US6135961A (en) 1996-06-28 2000-10-24 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US6569101B2 (en) 2001-04-19 2003-05-27 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
SE9602574D0 (en) 1996-06-28 1996-06-28 Siemens Elema Ab Method and arrangement for locating a measurement and / or treatment catheter in a vessel or organ of a patient
US7819807B2 (en) 1996-06-28 2010-10-26 Sonosite, Inc. Balance body ultrasound system
US5893363A (en) 1996-06-28 1999-04-13 Sonosight, Inc. Ultrasonic array transducer transceiver for a hand held ultrasonic diagnostic instrument
US5722412A (en) 1996-06-28 1998-03-03 Advanced Technology Laboratories, Inc. Hand held ultrasonic diagnostic instrument
US6575908B2 (en) 1996-06-28 2003-06-10 Sonosite, Inc. Balance body ultrasound system
US6416475B1 (en) 1996-06-28 2002-07-09 Sonosite, Inc. Ultrasonic signal processor for a hand held ultrasonic diagnostic instrument
US5817024A (en) 1996-06-28 1998-10-06 Sonosight, Inc. Hand held ultrasonic diagnostic instrument with digital beamformer
US6962566B2 (en) 2001-04-19 2005-11-08 Sonosite, Inc. Medical diagnostic ultrasound instrument with ECG module, authorization mechanism and methods of use
US6496715B1 (en) 1996-07-11 2002-12-17 Medtronic, Inc. System and method for non-invasive determination of optimal orientation of an implantable sensing device
JPH1043310A (en) 1996-08-02 1998-02-17 Terumo Corp Catheter apparatus
CA2212275C (en) 1996-08-05 2007-07-03 Cordis Corporation Guidewire having a distal tip that can change its shape within a vessel
US5713362A (en) 1996-08-19 1998-02-03 Echocath, Inc. Higher-order quadrature driven diffraction grating doppler transducers
US5827192A (en) 1996-08-21 1998-10-27 Cleveland Clinic Foundation Method of determining the conductivity of blood
US5842998A (en) 1996-08-21 1998-12-01 Cleveland Clinic Foundation Apparatus for determining the conductivity of blood
US5844140A (en) 1996-08-27 1998-12-01 Seale; Joseph B. Ultrasound beam alignment servo
US5744953A (en) 1996-08-29 1998-04-28 Ascension Technology Corporation Magnetic motion tracker with transmitter placed on tracked object
US5997473A (en) 1996-09-06 1999-12-07 Olympus Optical Co., Ltd. Method of locating a coil which consists of determining the space occupied by a source coil generating a magnetic field
US5831260A (en) 1996-09-10 1998-11-03 Ascension Technology Corporation Hybrid motion tracker
SE9603314D0 (en) 1996-09-12 1996-09-12 Siemens Elema Ab Method and apparatus for determining the location of a catheter within the body of a patient
US5795297A (en) 1996-09-12 1998-08-18 Atlantis Diagnostics International, L.L.C. Ultrasonic diagnostic imaging system with personal computer architecture
US5971933A (en) 1996-09-17 1999-10-26 Cleveland Clinic Foundation Method and apparatus to correct for electric field non-uniformity in conductance catheter volumetry
US6293955B1 (en) 1996-09-20 2001-09-25 Converge Medical, Inc. Percutaneous bypass graft and securing system
US5830145A (en) 1996-09-20 1998-11-03 Cardiovascular Imaging Systems, Inc. Enhanced accuracy of three-dimensional intraluminal ultrasound (ILUS) image reconstruction
US6197001B1 (en) 1996-09-27 2001-03-06 Becton Dickinson And Company Vascular access device
US5758650A (en) 1996-09-30 1998-06-02 Siemens Medical Systems, Inc. Universal needle guide for ultrasonic transducers
US6136274A (en) 1996-10-07 2000-10-24 Irori Matrices with memories in automated drug discovery and units therefor
WO1998017299A1 (en) 1996-10-18 1998-04-30 The Board Of Trustees Of The Leland Stanford Junior University Isozyme-specific activators of protein kinase c, methods and compositions
WO1998020358A1 (en) 1996-11-04 1998-05-14 Philips Electronics N.V. Mr system and invasive device for interventional procedures
US6058323A (en) * 1996-11-05 2000-05-02 Lemelson; Jerome System and method for treating select tissue in a living being
US5676159A (en) 1996-11-05 1997-10-14 Janin Group Ultrasound cover
US6406442B1 (en) 1996-11-07 2002-06-18 Prolifix Medical, Inc. Guidewire for precision catheter positioning
US7302288B1 (en) 1996-11-25 2007-11-27 Z-Kat, Inc. Tool position indicator
US5810008A (en) * 1996-12-03 1998-09-22 Isg Technologies Inc. Apparatus and method for visualizing ultrasonic images
US5967991A (en) 1996-12-03 1999-10-19 Echocath, Inc. Drive apparatus for an interventional medical device used in an ultrasonic imaging system
US6325762B1 (en) 1996-12-09 2001-12-04 Swee Chuan Tjin Method and apparatus for continuous cardiac output monitoring
US7666191B2 (en) 1996-12-12 2010-02-23 Intuitive Surgical, Inc. Robotic surgical system with sterile surgical adaptor
US7699855B2 (en) 1996-12-12 2010-04-20 Intuitive Surgical Operations, Inc. Sterile surgical adaptor
US6275258B1 (en) 1996-12-17 2001-08-14 Nicholas Chim Voice responsive image tracking system
US5782767A (en) 1996-12-31 1998-07-21 Diagnostic Ultrasound Corporation Coupling pad for use with medical ultrasound devices
USD391838S (en) 1997-01-02 1998-03-10 Siemens Medical Systems, Inc. Fitted ultrasound transducer probe holder
EP1491139B1 (en) 1997-01-03 2007-08-29 Biosense Webster, Inc. Bend-responsive catheter
DE69738092T2 (en) * 1997-01-03 2008-05-21 Biosense Webster, Inc., Diamond Bar Curvature-sensitive catheter
US5951598A (en) 1997-01-14 1999-09-14 Heartstream, Inc. Electrode system
US6122538A (en) 1997-01-16 2000-09-19 Acuson Corporation Motion--Monitoring method and system for medical devices
US5935160A (en) 1997-01-24 1999-08-10 Cardiac Pacemakers, Inc. Left ventricular access lead for heart failure pacing
CA2278726C (en) 1997-01-27 2004-08-31 Immersion Corporation Method and apparatus for providing high bandwidth, realistic force feedback including an improved actuator
IL120228A0 (en) 1997-02-16 1997-06-10 Technion Res & Dev Foundation Blood vessel cross-sectional detector and compliance measurement device and method
US6019725A (en) 1997-03-07 2000-02-01 Sonometrics Corporation Three-dimensional tracking and imaging system
JP4430744B2 (en) 1997-03-14 2010-03-10 ユニヴァーシティ・オヴ・アラバマ・アト・バーミンガム・リサーチ・ファンデイション Implantable system for patients in need of such treatment with cardiac cardioversion
US6266563B1 (en) 1997-03-14 2001-07-24 Uab Research Foundation Method and apparatus for treating cardiac arrhythmia
US5836882A (en) 1997-03-17 1998-11-17 Frazin; Leon J. Method and apparatus of localizing an insertion end of a probe within a biotic structure
US5833605A (en) 1997-03-28 1998-11-10 Shah; Ajit Apparatus for vascular mapping and methods of use
US5984908A (en) 1997-04-10 1999-11-16 Chase Medical Inc Venous return catheter having integral support member
JPH10290839A (en) 1997-04-21 1998-11-04 Terumo Corp Guide wire
US5876328A (en) 1997-04-23 1999-03-02 Endolap, Inc. Surgical camera drape assembly and method
US5944022A (en) 1997-04-28 1999-08-31 American Cardiac Ablation Co. Inc. Catheter positioning system
US5782773A (en) 1997-05-05 1998-07-21 Chih-Wei Chen Three-dimensional electrocardiogram display method
US6129668A (en) 1997-05-08 2000-10-10 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US5879297A (en) 1997-05-08 1999-03-09 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US6635027B1 (en) 1997-05-19 2003-10-21 Micro Therepeutics, Inc. Method and apparatus for intramural delivery of a substance
WO1998052466A1 (en) 1997-05-21 1998-11-26 Lucent Medical Systems, Inc. Non-invasive sensing of a physical parameter
US5769881A (en) 1997-05-22 1998-06-23 Sulzer Intermedics Inc. Endocardial lead with multiple branches
EP0880108A1 (en) 1997-05-23 1998-11-25 Koninklijke Philips Electronics N.V. Image processing method including a chaining step and medical imaging apparatus including means for carrying out this method
US6514249B1 (en) 1997-07-08 2003-02-04 Atrionix, Inc. Positioning system and method for orienting an ablation element within a pulmonary vein ostium
SE9702678D0 (en) 1997-07-11 1997-07-11 Siemens Elema Ab Device for mapping electrical activity in the heart
CA2240757C (en) 1997-07-14 2001-08-28 Matsushita Electric Industrial Co., Ltd. Blood vessel puncturing device
US5843153A (en) 1997-07-15 1998-12-01 Sulzer Intermedics Inc. Steerable endocardial lead using magnetostrictive material and a magnetic field
US5800497A (en) 1997-07-17 1998-09-01 Medtronic, Inc. Medical electrical lead with temporarily stiff portion
WO1999004705A1 (en) 1997-07-25 1999-02-04 Tsui Ban C H Devices, systems and methods for determining proper placement of epidural catheters
US6115624A (en) 1997-07-30 2000-09-05 Genesis Technologies, Inc. Multiparameter fetal monitoring device
US6490474B1 (en) 1997-08-01 2002-12-03 Cardiac Pathways Corporation System and method for electrode localization using ultrasound
EP1014857A4 (en) 1997-08-19 2006-10-25 John D Mendlein Multi-site ultrasound methods and devices, particularly for measurement of fluid regulation
GB9717574D0 (en) 1997-08-19 1997-10-22 Flying Null Ltd Catheter location
US5913830A (en) 1997-08-20 1999-06-22 Respironics, Inc. Respiratory inductive plethysmography sensor
US6720745B2 (en) 1997-08-26 2004-04-13 Color Kinetics, Incorporated Data delivery track
US7352339B2 (en) 1997-08-26 2008-04-01 Philips Solid-State Lighting Solutions Diffuse illumination systems and methods
US6016038A (en) 1997-08-26 2000-01-18 Color Kinetics, Inc. Multicolored LED lighting method and apparatus
US6292901B1 (en) 1997-08-26 2001-09-18 Color Kinetics Incorporated Power/data protocol
US6211626B1 (en) 1997-08-26 2001-04-03 Color Kinetics, Incorporated Illumination components
US6459919B1 (en) 1997-08-26 2002-10-01 Color Kinetics, Incorporated Precision illumination methods and systems
US20020113555A1 (en) 1997-08-26 2002-08-22 Color Kinetics, Inc. Lighting entertainment system
US7038398B1 (en) 1997-08-26 2006-05-02 Color Kinetics, Incorporated Kinetic illumination system and methods
US6528954B1 (en) 1997-08-26 2003-03-04 Color Kinetics Incorporated Smart light bulb
US6015414A (en) 1997-08-29 2000-01-18 Stereotaxis, Inc. Method and apparatus for magnetically controlling motion direction of a mechanically pushed catheter
US6128174A (en) 1997-08-29 2000-10-03 Stereotaxis, Inc. Method and apparatus for rapidly changing a magnetic field produced by electromagnets
US5941904A (en) 1997-09-12 1999-08-24 Sulzer Intermedics Inc. Electromagnetic acceleration transducer for implantable medical device
CA2301606C (en) 1997-09-12 2005-11-01 Boston Scientific Limited Method and system for synchronized acquisition, processing and sharing of instrumentation data and for synchronized control in a client-server network
US6248072B1 (en) 1997-09-19 2001-06-19 John M. Murkin Hand controlled scanning device
US5836990A (en) 1997-09-19 1998-11-17 Medtronic, Inc. Method and apparatus for determining electrode/tissue contact
US6027451A (en) 1997-09-26 2000-02-22 Ep Technologies, Inc. Method and apparatus for fixing the anatomical orientation of a displayed ultrasound generated image
US6248074B1 (en) 1997-09-30 2001-06-19 Olympus Optical Co., Ltd. Ultrasonic diagnosis system in which periphery of magnetic sensor included in distal part of ultrasonic endoscope is made of non-conductive material
CA2304735A1 (en) 1997-10-01 1999-04-08 Boston Scientific Limited Preinsertion measurement of catheters
US5953683A (en) 1997-10-09 1999-09-14 Ascension Technology Corporation Sourceless orientation sensor
US6138681A (en) 1997-10-13 2000-10-31 Light Sciences Limited Partnership Alignment of external medical device relative to implanted medical device
US5941889A (en) 1997-10-14 1999-08-24 Civco Medical Instruments Inc. Multiple angle disposable needle guide system
US6259941B1 (en) 1997-10-20 2001-07-10 Irvine Biomedical, Inc. Intravascular ultrasound locating system
JPH11128237A (en) 1997-10-27 1999-05-18 Toshiba Medical Seizo Kk Puncture adapter
US5935063A (en) 1997-10-29 1999-08-10 Irvine Biomedical, Inc. Electrode catheter system and methods thereof
US6139540A (en) 1997-10-30 2000-10-31 Lake Region Manufacturing, Inc. Guidewire with disposition to coil
US6099481A (en) 1997-11-03 2000-08-08 Ntc Technology, Inc. Respiratory profile parameter determination method and apparatus
AU1520699A (en) 1997-11-07 1999-05-31 Johns Hopkins University, The Methods for treatment of disorders of cardiac contractility
US6014580A (en) 1997-11-12 2000-01-11 Stereotaxis, Inc. Device and method for specifying magnetic field for surgical applications
US6311082B1 (en) 1997-11-12 2001-10-30 Stereotaxis, Inc. Digital magnetic system for magnetic surgery
WO1999024097A1 (en) 1997-11-12 1999-05-20 Stereotaxis, Inc. Intracranial bolt and method of placing and using an intracranial bolt to position a medical device
US6157853A (en) 1997-11-12 2000-12-05 Stereotaxis, Inc. Method and apparatus using shaped field of repositionable magnet to guide implant
US7066924B1 (en) 1997-11-12 2006-06-27 Stereotaxis, Inc. Method of and apparatus for navigating medical devices in body lumens by a guide wire with a magnetic tip
US6212419B1 (en) 1997-11-12 2001-04-03 Walter M. Blume Method and apparatus using shaped field of repositionable magnet to guide implant
US6224571B1 (en) 1997-11-14 2001-05-01 Venetec International, Inc. Medical line securement device
GB2331807B (en) 1997-11-15 2002-05-29 Roke Manor Research Catheter tracking system
GB2331365B (en) 1997-11-15 2002-03-13 Roke Manor Research Catheter tracking system
US6233994B1 (en) 1997-11-24 2001-05-22 Morgan Construction Company Apparatus for and method of processing billets in a rolling mill
US20030163142A1 (en) 1997-11-27 2003-08-28 Yoav Paltieli System and method for guiding the movements of a device to a target particularly for medical applications
IL122336A0 (en) 1997-11-27 1998-04-05 Ultra Guide Ltd System and method for guiding the movements of a device to a target particularly for medical applications
US5931788A (en) 1997-12-05 1999-08-03 Keen; Richard R. Method and apparatus for imaging internal organs and vascular structures through the gastrointestinal wall
US7132804B2 (en) 1997-12-17 2006-11-07 Color Kinetics Incorporated Data delivery track
US6073043A (en) 1997-12-22 2000-06-06 Cormedica Corporation Measuring position and orientation using magnetic fields
US5931863A (en) 1997-12-22 1999-08-03 Procath Corporation Electrophysiology catheter
US5916209A (en) 1997-12-24 1999-06-29 Mick; Matthew J. Coronary catheters for use in a transradial catheterization
DE19800416C2 (en) 1998-01-08 2002-09-19 Storz Karl Gmbh & Co Kg Device for the treatment of body tissue, in particular soft tissue close to the surface, by means of ultrasound
US6052610A (en) 1998-01-09 2000-04-18 International Business Machines Corporation Magnetic catheter tracker and method therefor
WO1999035977A1 (en) 1998-01-16 1999-07-22 Lumend, Inc. Catheter apparatus for treating arterial occlusions
US5865748A (en) 1998-01-16 1999-02-02 Guidant Corporation Guided directional coronary atherectomy distal linear encoder
JP4177903B2 (en) 1998-01-22 2008-11-05 バイオセンス・ウエブスター・インコーポレーテツド Measurement in the body
AU2481199A (en) 1998-01-26 1999-08-09 Scimed Life Systems, Inc. Catheter assembly with distal end inductive coupler and embedded transmission line
US6505062B1 (en) 1998-02-09 2003-01-07 Stereotaxis, Inc. Method for locating magnetic implant by source field
EP0973454B1 (en) 1998-02-10 2007-01-17 Biosense Webster, Inc. Probe assembly for improved catheter calibration
US5997481A (en) 1998-02-17 1999-12-07 Ultra Sound Probe Covers, Llc Probe cover with deformable membrane gel reservoir
US6176829B1 (en) 1998-02-26 2001-01-23 Echocath, Inc. Multi-beam diffraction grating imager apparatus and method
US6471700B1 (en) 1998-04-08 2002-10-29 Senorx, Inc. Apparatus and method for accessing biopsy site
US6148228A (en) 1998-03-05 2000-11-14 Fang; Dan Oun System and method for detecting and locating heart disease
US6006137A (en) 1998-03-06 1999-12-21 Medtronic, Inc. Method for single elecrode bi-atrial pacing
US6165144A (en) 1998-03-17 2000-12-26 Exogen, Inc. Apparatus and method for mounting an ultrasound transducer
US5910113A (en) 1998-03-24 1999-06-08 Pruter; Rick L. Sheath for ultrasound probe
SE9801006D0 (en) 1998-03-25 1998-03-25 Siemens Elema Ab Method and arrangement for determining the location of a catheter within an animal body
WO1999049407A1 (en) 1998-03-26 1999-09-30 Boston Scientific Corporation Interactive systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions
GB2335744A (en) 1998-03-27 1999-09-29 Intravascular Res Ltd Medical ultrasonic imaging
EP1069858A1 (en) 1998-04-13 2001-01-24 Prolifix Medical, Inc. Guidewire for precision catheter positioning
US6173199B1 (en) 1998-05-05 2001-01-09 Syncro Medical Innovations, Inc. Method and apparatus for intubation of a patient
US5957857A (en) 1998-05-07 1999-09-28 Cardiac Pacemakers, Inc. Apparatus and method for automatic sensing threshold determination in cardiac pacemakers
US6266555B1 (en) 1998-05-07 2001-07-24 Medtronic, Inc. Single complex electrogram display having a sensing threshold for an implantable medical device
US6306105B1 (en) 1998-05-14 2001-10-23 Scimed Life Systems, Inc. High performance coil wire
US6259938B1 (en) 1998-05-15 2001-07-10 Respironics, Inc. Monitoring catheter and method of using same
US6107699A (en) 1998-05-22 2000-08-22 Scimed Life Systems, Inc. Power supply for use in electrophysiological apparatus employing high-voltage pulses to render tissue temporarily unresponsive
US6231518B1 (en) 1998-05-26 2001-05-15 Comedicus Incorporated Intrapericardial electrophysiological procedures
US6022342A (en) 1998-06-02 2000-02-08 Mukherjee; Dipankar Catheter introducer for antegrade and retrograde medical procedures
CA2345921C (en) 1998-06-12 2005-01-25 Cardiac Pacemakers, Inc. Modified guidewire for left ventricular access lead
US6064905A (en) 1998-06-18 2000-05-16 Cordis Webster, Inc. Multi-element tip electrode mapping catheter
US5910120A (en) 1998-06-23 1999-06-08 Incontrol, Inc. Method and system for detecting dislodgment of an implanted right atrial endocardial lead
US6039694A (en) 1998-06-25 2000-03-21 Sonotech, Inc. Coupling sheath for ultrasound transducers
GB9814400D0 (en) 1998-07-02 1998-09-02 Nokia Telecommunications Oy Amplifier circuitry
US6149595A (en) 1998-07-02 2000-11-21 Seitz; Walter S. Noninvasive apparatus and method for the determination of cardiac valve function
US6113504A (en) 1998-07-10 2000-09-05 Oblon, Spivak, Mcclelland, Maier & Neustadt, P.C. Golf ball locator
BR9912685A (en) 1998-07-23 2001-05-02 Cardio Tech Inc Digital ecg detection system and method
JP2003524443A (en) 1998-08-02 2003-08-19 スーパー ディメンション リミテッド Medical guidance device
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
EP1115327A4 (en) 1998-08-07 2007-06-20 Stereotaxis Inc Method and apparatus for magnetically controlling catheters in body lumens and cavities
US6315709B1 (en) 1998-08-07 2001-11-13 Stereotaxis, Inc. Magnetic vascular defect treatment system
US6132378A (en) 1998-08-10 2000-10-17 Marino; Sharon Cover for ultrasound probe
US6332874B1 (en) 1998-08-28 2001-12-25 C.R. Bard, Inc. Coupling and stabilization system for proximal end of catheter
US6385472B1 (en) 1999-09-10 2002-05-07 Stereotaxis, Inc. Magnetically navigable telescoping catheter and method of navigating telescoping catheter
US6361499B1 (en) 1998-09-16 2002-03-26 Civco Medical Instruments Inc. Multiple angle needle guide
US6379307B1 (en) 1998-09-16 2002-04-30 Roy Filly Adjustable needle guide apparatus and method
US6261231B1 (en) 1998-09-22 2001-07-17 Dupont Pharmaceuticals Company Hands-free ultrasound probe holder
DE29817053U1 (en) 1998-09-23 2000-02-17 Braun Melsungen Ag Connection device for intra-atrial ECG lead
WO2000016684A1 (en) 1998-09-24 2000-03-30 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US6167765B1 (en) 1998-09-25 2001-01-02 The Regents Of The University Of Michigan System and method for determining the flow rate of blood in a vessel using doppler frequency signals
US6063032A (en) 1998-09-28 2000-05-16 Scimed Systems, Inc. Ultrasound imaging with zoom having independent processing channels
US6200305B1 (en) 1998-09-30 2001-03-13 Medtronic Ave, Inc. Catheter having a variable length shaft segment and method of use
US6102862A (en) 1998-10-02 2000-08-15 Scimed Life Systems, Inc. Adaptive cancellation of ring-down artifact in IVUS imaging
JP2002526148A (en) 1998-10-02 2002-08-20 ステリオタクシス インコーポレイテツド Magnetically navigable and / or controllable device for removing material from body cavities and sinuses
US6428551B1 (en) 1999-03-30 2002-08-06 Stereotaxis, Inc. Magnetically navigable and/or controllable device for removing material from body lumens and cavities
US6120445A (en) 1998-10-02 2000-09-19 Scimed Life Systems, Inc. Method and apparatus for adaptive cross-sectional area computation of IVUS objects using their statistical signatures
US6203499B1 (en) 1998-10-05 2001-03-20 Atl Ultrasound Inc. Multiple angle needle guide
US6375639B1 (en) 1998-10-09 2002-04-23 Renee F. Duplessie Intravenous stabilizing device
FR2799633B1 (en) 1999-10-14 2002-03-22 Sometec METHOD AND DEVICE FOR IMPROVING THE PRECISION OF MEASUREMENT OF A SPEED OF A FLUID
US6373240B1 (en) 1998-10-15 2002-04-16 Biosense, Inc. Metal immune system for tracking spatial coordinates of an object in the presence of a perturbed energy field
US8788020B2 (en) 1998-10-23 2014-07-22 Varian Medical Systems, Inc. Method and system for radiation application
US6132379A (en) 1998-11-04 2000-10-17 Patacsil; Estelito G. Method and apparatus for ultrasound guided intravenous cannulation
US6545678B1 (en) 1998-11-05 2003-04-08 Duke University Methods, systems, and computer program products for generating tissue surfaces from volumetric data thereof using boundary traces
US6277077B1 (en) 1998-11-16 2001-08-21 Cardiac Pathways Corporation Catheter including ultrasound transducer with emissions attenuation
DE19854905C2 (en) 1998-11-27 2002-08-14 Siemens Ag Method for displaying the tip of a medical instrument located in the body of a patient
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US6538634B1 (en) 1998-12-18 2003-03-25 Kent Ridge Digital Labs Apparatus for the simulation of image-guided surgery
IL143909A0 (en) 1998-12-23 2002-04-21 Jakab Peter D Magnetic resonance scanner with electromagnetic position and orientation tracking device
US6611141B1 (en) 1998-12-23 2003-08-26 Howmedica Leibinger Inc Hybrid 3-D probe tracked by multiple sensors
EP1057140A1 (en) 1998-12-29 2000-12-06 Koninklijke Philips Electronics N.V. Image processing method and x-ray apparatus having image processing means for extracting a thread-like structure in a noisy digital image
US6139502A (en) 1998-12-30 2000-10-31 G.E. Vingmed Ultrasound A/S Ultrasonic transducer probe and handle housing and stand-off pad
WO2000040155A1 (en) 1999-01-01 2000-07-13 Dymax Corporation Slotted needle guide
JP4417459B2 (en) 1999-01-11 2010-02-17 株式会社東芝 X-ray diagnostic equipment
US6241673B1 (en) 1999-01-26 2001-06-05 Acuson Corporation Diagnostic medical ultrasound system with wireless communication device
US6986744B1 (en) 1999-02-02 2006-01-17 Transonic Systems, Inc. Method and apparatus for determining blood flow during a vascular corrective procedure
US6236883B1 (en) 1999-02-03 2001-05-22 The Trustees Of Columbia University In The City Of New York Methods and systems for localizing reentrant circuits from electrogram features
US6330467B1 (en) 1999-02-04 2001-12-11 Stereotaxis, Inc. Efficient magnet system for magnetically-assisted surgery
US6544251B1 (en) 1999-02-10 2003-04-08 Michael K. Crawford Peripherally inserted catheter
US6193743B1 (en) 1999-02-18 2001-02-27 Intermedics Inc. Apparatus for manufacturing an endocardial defibrillation lead with multi-lumen lead body and method
US6719724B1 (en) 1999-02-19 2004-04-13 Alsius Corporation Central venous line catheter having multiple heat exchange elements and multiple infusion lumens
ATE552771T1 (en) 1999-02-25 2012-04-15 Medtronic Minimed Inc TEST PLUG AND CABLE FOR GLUCOSE MONITORING DEVICE
US6173715B1 (en) 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use
US6112115A (en) 1999-03-09 2000-08-29 Feldman; Marc D. Method and apparatus for determining cardiac performance in a patient
US6471656B1 (en) 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
US6494832B1 (en) 1999-03-09 2002-12-17 Conductance Technologies, Inc. Multifrequency conductance catheter-based system and method to determine LV function in a patient
US7174201B2 (en) 1999-03-11 2007-02-06 Biosense, Inc. Position sensing system with integral location pad and position display
AU4170700A (en) 1999-03-12 2000-09-28 Echocath, Inc. Angle-independent continuous wave doppler device
US6375606B1 (en) 1999-03-17 2002-04-23 Stereotaxis, Inc. Methods of and apparatus for treating vascular defects
US6296604B1 (en) 1999-03-17 2001-10-02 Stereotaxis, Inc. Methods of and compositions for treating vascular defects
US6148823A (en) 1999-03-17 2000-11-21 Stereotaxis, Inc. Method of and system for controlling magnetic elements in the body using a gapped toroid magnet
US6075442A (en) 1999-03-19 2000-06-13 Lucent Technoilogies Inc. Low power child locator system
US6470207B1 (en) 1999-03-23 2002-10-22 Surgical Navigation Technologies, Inc. Navigational guidance via computer-assisted fluoroscopic imaging
US6546787B1 (en) * 1999-03-25 2003-04-15 Regents Of The University Of Minnesota Means and method for modeling and treating specific tissue structures
FR2791249B1 (en) 1999-03-25 2001-06-15 Edap Technomed COUPLING MEDIUM FOR POWER ULTRASOUND
US6911026B1 (en) 1999-07-12 2005-06-28 Stereotaxis, Inc. Magnetically guided atherectomy
US6466815B1 (en) 1999-03-30 2002-10-15 Olympus Optical Co., Ltd. Navigation apparatus and surgical operation image acquisition/display apparatus using the same
US6398736B1 (en) 1999-03-31 2002-06-04 Mayo Foundation For Medical Education And Research Parametric imaging ultrasound catheter
US6593754B1 (en) 1999-04-01 2003-07-15 Actuant Corporation Compact subsurface object locator
US7452331B1 (en) 1999-04-08 2008-11-18 Rick L Pruter Vascular adjustable multi-gauge tilt-out method and apparatus for guiding needles
US6612990B1 (en) 1999-04-08 2003-09-02 Rick L. Pruter Method and apparatus for guiding needles
USD424693S (en) 1999-04-08 2000-05-09 Pruter Rick L Needle guide for attachment to an ultrasound transducer probe
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US6902528B1 (en) 1999-04-14 2005-06-07 Stereotaxis, Inc. Method and apparatus for magnetically controlling endoscopes in body lumens and cavities
WO2000063658A2 (en) 1999-04-15 2000-10-26 Ultraguide Ltd. Apparatus and method for detecting the bending of medical invasive tools in medical interventions
US6031765A (en) 1999-04-22 2000-02-29 Aplus Flash Technology, Inc. Reversed split-gate cell array
US6139496A (en) 1999-04-30 2000-10-31 Agilent Technologies, Inc. Ultrasonic imaging system having isonification and display functions integrated in an easy-to-manipulate probe assembly
US6364839B1 (en) 1999-05-04 2002-04-02 Sonosite, Inc. Ultrasound diagnostic instrument having software in detachable scanhead
US6292678B1 (en) 1999-05-13 2001-09-18 Stereotaxis, Inc. Method of magnetically navigating medical devices with magnetic fields and gradients, and medical devices adapted therefor
US6233476B1 (en) 1999-05-18 2001-05-15 Mediguide Ltd. Medical positioning system
US7840252B2 (en) 1999-05-18 2010-11-23 MediGuide, Ltd. Method and system for determining a three dimensional representation of a tubular organ
AU4601500A (en) 1999-05-18 2000-12-05 Sonometrics Corporation System for incorporating sonomicrometer functions into medical instruments and implantable biomedical devices
US6417839B1 (en) 1999-05-20 2002-07-09 Ascension Technology Corporation System for position and orientation determination of a point in space using scanning laser beams
DE19925853A1 (en) 1999-06-02 2000-12-07 Biotronik Mess & Therapieg Cardioversion arrangement
NL1012223C2 (en) 1999-06-03 2000-12-06 Martil Instr B V Cardiac pacemaker as well as pacemaker unit and electric wire therefor.
WO2000074565A1 (en) 1999-06-05 2000-12-14 Wilson-Cook Medical Inc. Indicia for an endoscopic medical device
US6288704B1 (en) 1999-06-08 2001-09-11 Vega, Vista, Inc. Motion detection and tracking system to control navigation and display of object viewers
US6478793B1 (en) 1999-06-11 2002-11-12 Sherwood Services Ag Ablation treatment of bone metastases
US6306097B1 (en) 1999-06-17 2001-10-23 Acuson Corporation Ultrasound imaging catheter guiding assembly with catheter working port
US6423002B1 (en) 1999-06-24 2002-07-23 Acuson Corporation Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
JP2001061861A (en) 1999-06-28 2001-03-13 Siemens Ag System having image photographing means and medical work station
US6471655B1 (en) 1999-06-29 2002-10-29 Vitalwave Corporation Method and apparatus for the noninvasive determination of arterial blood pressure
US6270493B1 (en) 1999-07-19 2001-08-07 Cryocath Technologies, Inc. Cryoablation structure
US6246231B1 (en) 1999-07-29 2001-06-12 Ascension Technology Corporation Magnetic field permeable barrier for magnetic position measurement system
US6142987A (en) 1999-08-03 2000-11-07 Scimed Life Systems, Inc. Guided filter with support wire and methods of use
US7033603B2 (en) 1999-08-06 2006-04-25 Board Of Regents The University Of Texas Drug releasing biodegradable fiber for delivery of therapeutics
US6427079B1 (en) 1999-08-09 2002-07-30 Cormedica Corporation Position and orientation measuring with magnetic fields
DE19938558A1 (en) 1999-08-17 2001-02-22 Axel Muntermann Catheters with improved electrical properties and treatment methods for improving the electrical properties of catheters
US20020173721A1 (en) 1999-08-20 2002-11-21 Novasonics, Inc. User interface for handheld imaging devices
US20030013959A1 (en) 1999-08-20 2003-01-16 Sorin Grunwald User interface for handheld imaging devices
US6360123B1 (en) 1999-08-24 2002-03-19 Impulse Dynamics N.V. Apparatus and method for determining a mechanical property of an organ or body cavity by impedance determination
AU3885801A (en) 1999-09-20 2001-04-24 Stereotaxis, Inc. Magnetically guided myocardial treatment system
US6368285B1 (en) 1999-09-21 2002-04-09 Biosense, Inc. Method and apparatus for mapping a chamber of a heart
US6385476B1 (en) 1999-09-21 2002-05-07 Biosense, Inc. Method and apparatus for intracardially surveying a condition of a chamber of a heart
US6535625B1 (en) 1999-09-24 2003-03-18 Magnetus Llc Magneto-acoustic imaging
US6315727B1 (en) 1999-09-29 2001-11-13 Cornel Research Foundation, Inc. Method and apparatus for ultrasound corneal scanning
US6975197B2 (en) 2002-01-23 2005-12-13 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
US7019610B2 (en) 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US6702804B1 (en) 1999-10-04 2004-03-09 Stereotaxis, Inc. Method for safely and efficiently navigating magnetic devices in the body
US6102044A (en) 1999-10-08 2000-08-15 Medical Concepts Development, Inc. Electrode carrying surgical drape and method
US6672308B1 (en) 1999-10-08 2004-01-06 Jnc Medical, Llc Endotracheal intubation control assembly
US6463121B1 (en) 1999-10-13 2002-10-08 General Electric Company Interactive x-ray position and exposure control using image data as reference information
US6493573B1 (en) 1999-10-28 2002-12-10 Winchester Development Associates Method and system for navigating a catheter probe in the presence of field-influencing objects
US6379302B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies Inc. Navigation information overlay onto ultrasound imagery
US6381485B1 (en) 1999-10-28 2002-04-30 Surgical Navigation Technologies, Inc. Registration of human anatomy integrated for electromagnetic localization
WO2001031466A1 (en) 1999-10-28 2001-05-03 Winchester Development Associates Coil structures and methods for generating magnetic fields
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US8239001B2 (en) 2003-10-17 2012-08-07 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US11331150B2 (en) 1999-10-28 2022-05-17 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6474341B1 (en) 1999-10-28 2002-11-05 Surgical Navigation Technologies, Inc. Surgical communication and power system
US8644907B2 (en) 1999-10-28 2014-02-04 Medtronic Navigaton, Inc. Method and apparatus for surgical navigation
US6172499B1 (en) 1999-10-29 2001-01-09 Ascension Technology Corporation Eddy current error-reduced AC magnetic position measurement system
JP4394226B2 (en) * 1999-11-22 2010-01-06 Hoya株式会社 Endoscope position detection device for endoscope
US6325540B1 (en) 1999-11-29 2001-12-04 General Electric Company Method and apparatus for remotely configuring and servicing a field replaceable unit in a medical diagnostic system
US6574518B1 (en) 1999-11-29 2003-06-03 General Electric Company Method and apparatus for communicating operational data for a system unit in a medical diagnostic system
GB9928695D0 (en) 1999-12-03 2000-02-02 Sinvent As Tool navigator
JP4488568B2 (en) 1999-12-14 2010-06-23 東芝メディカル製造株式会社 Puncture adapter
US6366804B1 (en) 1999-12-29 2002-04-02 Ge Medical Systems Information Technologies, Inc. Method of and apparatus for Identifying a portion of a waveform representing a physiological event
US6412980B1 (en) 1999-12-30 2002-07-02 Ge Medical Systems Global Technology Company, Llc Method and apparatus for configuring and monitoring a system unit in a medical diagnostic system
US6552841B1 (en) 2000-01-07 2003-04-22 Imperium Advanced Ultrasonic Imaging Ultrasonic imager
US20030072805A1 (en) 2000-01-11 2003-04-17 Kazuyuki Miyazawa Microgel and external compositions containing the same
US6354999B1 (en) 2000-01-14 2002-03-12 Florence Medical Ltd. System and method for detecting, localizing, and characterizing occlusions and aneurysms in a vessel
US6556858B1 (en) 2000-01-19 2003-04-29 Herbert D. Zeman Diffuse infrared light imaging system
US8221402B2 (en) 2000-01-19 2012-07-17 Medtronic, Inc. Method for guiding a medical device
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6628976B1 (en) 2000-01-27 2003-09-30 Biosense Webster, Inc. Catheter having mapping assembly
US6711428B2 (en) 2000-01-27 2004-03-23 Biosense Webster, Inc. Catheter having mapping assembly
US6487916B1 (en) 2000-02-02 2002-12-03 Bechtel Bxwt Idaho, Llc Ultrasonic flow metering system
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6514226B1 (en) 2000-02-10 2003-02-04 Chf Solutions, Inc. Method and apparatus for treatment of congestive heart failure by improving perfusion of the kidney
US6515657B1 (en) 2000-02-11 2003-02-04 Claudio I. Zanelli Ultrasonic imager
US6401723B1 (en) 2000-02-16 2002-06-11 Stereotaxis, Inc. Magnetic medical devices with changeable magnetic moments and method of navigating magnetic medical devices with changeable magnetic moments
WO2001064102A1 (en) 2000-03-01 2001-09-07 Transscan Medical Ltd. Uniform, disposable, interface for mutli-element probe
US6607488B1 (en) 2000-03-02 2003-08-19 Acuson Corporation Medical diagnostic ultrasound system and method for scanning plane orientation
US6406422B1 (en) 2000-03-02 2002-06-18 Levram Medical Devices, Ltd. Ventricular-assist method and apparatus
US6615155B2 (en) 2000-03-09 2003-09-02 Super Dimension Ltd. Object tracking using a single sensor or a pair of sensors
US8611993B2 (en) 2000-03-13 2013-12-17 Arrow International, Inc. Pre-loaded lockable stimulating catheter for delivery of anaesthetic drugs
US7386341B2 (en) 2000-03-13 2008-06-10 Arrow International, Inc. Instrument and method for delivery of anaesthetic drugs
US6456874B1 (en) 2000-03-13 2002-09-24 Arrow International Inc. Instrument for delivery of anaesthetic drug
US6475152B1 (en) 2000-03-13 2002-11-05 Koninklijke Philips Electronics N.V. Biopsy needle guide for attachment to an ultrasound transducer
US6491671B1 (en) 2000-03-14 2002-12-10 Vanderbilt University Microcatheter with hemodynamic guide structure
US6584343B1 (en) 2000-03-15 2003-06-24 Resolution Medical, Inc. Multi-electrode panel system for sensing electrical activity of the heart
DE10015826A1 (en) 2000-03-30 2001-10-11 Siemens Ag Image generating system for medical surgery
US6238344B1 (en) 2000-03-30 2001-05-29 Acuson Corporation Medical diagnostic ultrasound imaging system with a wirelessly-controlled peripheral
US6958677B1 (en) 2000-03-31 2005-10-25 Ge Medical Systems Information Technologies, Inc. Object location monitoring system
US6733500B2 (en) 2000-03-31 2004-05-11 Medtronic, Inc. Method and system for delivering a medical electrical lead within a venous system
WO2001076479A1 (en) 2000-04-06 2001-10-18 Martil Instruments B.V. Catheter for measuring the impedance of surrounding blood
US6940379B2 (en) 2000-04-11 2005-09-06 Stereotaxis, Inc. Magnets with varying magnetization direction and method of making such magnets
US6626902B1 (en) 2000-04-12 2003-09-30 University Of Virginia Patent Foundation Multi-probe system
US6682760B2 (en) 2000-04-18 2004-01-27 Colbar R&D Ltd. Cross-linked collagen matrices and methods for their preparation
US7146209B2 (en) 2000-05-08 2006-12-05 Brainsgate, Ltd. Stimulation for treating eye pathologies
US6508802B1 (en) 2000-05-23 2003-01-21 Cornell Research Foundation, Inc. Remote sensing gene therapy delivery device and method of administering a therapeutic solution to a heart
US6277326B1 (en) 2000-05-31 2001-08-21 Callaway Golf Company Process for liquid-phase sintering of a multiple-component material
JP2001340334A (en) 2000-06-01 2001-12-11 Ge Medical Systems Global Technology Co Llc Piercing needle guiding utensil, ultrasonic probe and ultrasonic imaging device
US6689119B1 (en) 2000-06-02 2004-02-10 Scimed Life Systems, Inc. Self-aligning medical device
US6869390B2 (en) 2000-06-05 2005-03-22 Mentor Corporation Automated implantation system for radioisotope seeds
US6961608B2 (en) 2000-06-05 2005-11-01 Kabushiki Kaisha Toshiba Interventional MR imaging with detection and display of device position
US6537192B1 (en) 2000-06-05 2003-03-25 Mentor Corporation Automated radioisotope seed loader system for implant needles
WO2001093766A1 (en) 2000-06-07 2001-12-13 Stereotaxis, Inc. Guide for medical devices
US6423050B1 (en) 2000-06-16 2002-07-23 Zbylut J. Twardowski Method and apparatus for locking of central-vein catheters
US20020019447A1 (en) 2000-07-03 2002-02-14 Renn Donald Walter Physical forms of clarified hydrocolloids of undiminished properties and method of producing same
US6569160B1 (en) 2000-07-07 2003-05-27 Biosense, Inc. System and method for detecting electrode-tissue contact
US6546270B1 (en) 2000-07-07 2003-04-08 Biosense, Inc. Multi-electrode catheter, system and method
DE10033723C1 (en) 2000-07-12 2002-02-21 Siemens Ag Surgical instrument position and orientation visualization device for surgical operation has data representing instrument position and orientation projected onto surface of patient's body
US6511474B1 (en) 2000-07-12 2003-01-28 Corpak, Inc. Bolus for non-occluding high flow enteral feeding tube
AU2902401A (en) 2000-07-13 2002-06-24 Wilson Cook Medical Inc System of indicia for a medical device
US6484118B1 (en) 2000-07-20 2002-11-19 Biosense, Inc. Electromagnetic position single axis system
US6569097B1 (en) 2000-07-21 2003-05-27 Diagnostics Ultrasound Corporation System for remote evaluation of ultrasound information obtained by a programmed application-specific data collection device
US20030184544A1 (en) 2000-07-24 2003-10-02 Prudent Jean Nicholson Modeling human beings by symbol manipulation
AU2001296217A1 (en) 2000-07-24 2002-02-05 Stereotaxis, Inc. Magnetically navigated pacing leads, and methods for delivering medical devices
DE10037491A1 (en) 2000-08-01 2002-02-14 Stryker Leibinger Gmbh & Co Kg Process for three-dimensional visualization of structures inside the body
US8036731B2 (en) 2001-01-22 2011-10-11 Spectrum Dynamics Llc Ingestible pill for diagnosing a gastrointestinal tract
EP1311226A4 (en) 2000-08-23 2008-12-17 Micronix Pty Ltd Catheter locator apparatus and method of use
NL1016122C2 (en) 2000-09-07 2002-03-11 Jozef Reinier Cornelis Jansen Method and device for determining the segmental volume and the electrical parallel conduction of a heart chamber or blood vessel of a patient, as well as a catheter for use in this method or device.
US6524303B1 (en) 2000-09-08 2003-02-25 Stereotaxis, Inc. Variable stiffness magnetic catheter
US6799066B2 (en) 2000-09-14 2004-09-28 The Board Of Trustees Of The Leland Stanford Junior University Technique for manipulating medical images
US6350160B1 (en) 2000-09-20 2002-02-26 Robert Feuersanger Medical connector system and method of use
NL1016247C2 (en) 2000-09-22 2002-03-25 Martil Instr B V Heart-lung machine provided with an electrical impedance measurement device for signaling microemboli and / or fibrinogen concentration.
US6398738B1 (en) 2000-09-25 2002-06-04 Millar Instruments, Inc. Method and apparatus for reconstructing a high fidelity pressure waveform with a balloon catheter
NL1016320C2 (en) 2000-10-03 2002-04-04 Jozef Reinier Cornelis Jansen Device for controlling heart supporting devices.
US7106479B2 (en) 2000-10-10 2006-09-12 Stryker Corporation Systems and methods for enhancing the viewing of medical images
US6537196B1 (en) 2000-10-24 2003-03-25 Stereotaxis, Inc. Magnet assembly with variable field directions and methods of magnetically navigating medical objects
US20030149368A1 (en) 2000-10-24 2003-08-07 Hennemann Willard W. Method and apparatus for locating and detecting vascular plaque via impedence and conductivity measurements, and for cryogenically passivating vascular plaque and inhibiting vascular plaque progression and rupture
EP1434522B1 (en) 2000-10-30 2010-01-13 The General Hospital Corporation Optical systems for tissue analysis
US6941166B2 (en) 2000-11-10 2005-09-06 C.R. Bard, Inc. Software controlled electrophysiology data management
US6944495B2 (en) 2000-11-10 2005-09-13 C.R. Bard, Inc. Methods for processing electrocardiac signals having superimposed complexes
US6662034B2 (en) 2000-11-15 2003-12-09 Stereotaxis, Inc. Magnetically guidable electrophysiology catheter
US6488668B1 (en) 2000-11-16 2002-12-03 Ideal Instruments, Inc. Detectable heavy duty needle
EP1208799A1 (en) 2000-11-16 2002-05-29 Kretztechnik Aktiengesellschaft Method for determining the insertion direction of a biopsy needle and for controlling its trajectory
US6677752B1 (en) 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US7103205B2 (en) 2000-11-24 2006-09-05 U-Systems, Inc. Breast cancer screening with ultrasound image overlays
AU2002222102A1 (en) 2000-11-28 2002-06-11 Roke Manor Research Limited. Optical tracking systems
US6517520B2 (en) 2000-12-21 2003-02-11 Ethicon Endo Surgery, Inc. Peripherally inserted catheter with flushable guide-tube
US6597943B2 (en) 2000-12-26 2003-07-22 Ge Medical Systems Information Technologies, Inc. Method of using spectral measures to distinguish among atrialfibrillation, atrial-flutter and other cardiac rhythms
US6540679B2 (en) 2000-12-28 2003-04-01 Guided Therapy Systems, Inc. Visual imaging system for ultrasonic probe
DE10100975C1 (en) 2001-01-11 2002-07-25 Horst Pajunk Clamping adapter for a catheter comprises an electrically conductive contact sleeve which proximally adjoins the clamping element and is provided with an electrical connection
US6352363B1 (en) 2001-01-16 2002-03-05 Stereotaxis, Inc. Shielded x-ray source, method of shielding an x-ray source, and magnetic surgical system with shielded x-ray source
US6602241B2 (en) 2001-01-17 2003-08-05 Transvascular, Inc. Methods and apparatus for acute or chronic delivery of substances or apparatus to extravascular treatment sites
CA2435205A1 (en) 2001-01-22 2002-08-01 V-Target Technologies Ltd. Ingestible device
US20020099326A1 (en) 2001-01-24 2002-07-25 Wilson Jon S. Multi-lumen catheter with attachable hub
US7300430B2 (en) 2001-01-24 2007-11-27 Arrow International, Inc. Multi-lumen catheter with attachable hub
US6626834B2 (en) 2001-01-25 2003-09-30 Shane Dunne Spiral scanner with electronic control
US20020103430A1 (en) 2001-01-29 2002-08-01 Hastings Roger N. Catheter navigation within an MR imaging device
US7630750B2 (en) 2001-02-05 2009-12-08 The Research Foundation For The State University Of New York Computer aided treatment planning
MXPA03007008A (en) 2001-02-06 2004-10-15 Transvascular Inc Methods and apparatus for guided transluminal interventions using vessel wall penetrating catheters and other apparatus.
JP2002224069A (en) 2001-02-07 2002-08-13 Japan Science & Technology Corp Body surface multi-lead electrocardiogram device and analytical method using this device
ATE266962T1 (en) 2001-03-01 2004-06-15 Pulsion Medical Sys Ag DEVICE, COMPUTER PROGRAM AND CENTRAL VENONY CATHETER FOR HEMODYNAMIC MONITORING
US6560473B2 (en) 2001-03-02 2003-05-06 Steven Dominguez Disposable ECG chest electrode template with built-in defibrillation electrodes
ITSV20010008A1 (en) 2001-03-05 2002-09-05 Esaote Spa NEEDLE GUIDE DEVICE IN PARTICULAR FOR ECHOGRAPHIC PROBES AND COMBINATION OF ECHOGRAPHIC PROBE AND SAID NEEDLE GUIDE DEVICE
US6679857B1 (en) 2001-03-06 2004-01-20 Conair Corporation Massagers having gel coverings
WO2002073526A2 (en) 2001-03-13 2002-09-19 Wide Horizon Holdings Inc. Cerebral programming
JP2002270118A (en) 2001-03-14 2002-09-20 Hitachi Ltd Panel grounding electrode and display device
US6485426B2 (en) 2001-03-14 2002-11-26 Sandhu Navparkash Needle guide for ultrasound transducer
US6695786B2 (en) * 2001-03-16 2004-02-24 U-Systems, Inc. Guide and position monitor for invasive medical instrument
US6645148B2 (en) 2001-03-20 2003-11-11 Vermon Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
US6785571B2 (en) 2001-03-30 2004-08-31 Neil David Glossop Device and method for registering a position sensor in an anatomical body
AU2002307150A1 (en) 2001-04-06 2002-10-21 Steven Solomon Cardiological mapping and navigation system
US6773412B2 (en) 2001-04-13 2004-08-10 Chf Solutions, Inc. User interface for blood treatment device
US6969373B2 (en) 2001-04-13 2005-11-29 Tricardia, Llc Syringe system
JP2003010138A (en) 2001-04-16 2003-01-14 Nippon Koden Corp Medical telemeter system
WO2002085442A1 (en) 2001-04-19 2002-10-31 Radi Medical Systems Ab Combined pressure-volume sensor and guide wire assembly
US6685644B2 (en) 2001-04-24 2004-02-03 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus
US6512958B1 (en) 2001-04-26 2003-01-28 Medtronic, Inc. Percutaneous medical probe and flexible guide wire
US6605086B2 (en) 2001-05-02 2003-08-12 Cardiac Pacemakers, Inc. Steerable catheter with torque transfer system
US6610058B2 (en) 2001-05-02 2003-08-26 Cardiac Pacemakers, Inc. Dual-profile steerable catheter
US6652506B2 (en) 2001-05-04 2003-11-25 Cardiac Pacemakers, Inc. Self-locking handle for steering a single or multiple-profile catheter
US6648875B2 (en) 2001-05-04 2003-11-18 Cardiac Pacemakers, Inc. Means for maintaining tension on a steering tendon in a steerable catheter
ATE412372T1 (en) 2001-05-06 2008-11-15 Stereotaxis Inc CATHETER ADVANCEMENT SYSTEM
US6511413B2 (en) 2001-05-16 2003-01-28 Levram Medical Devices, Ltd. Single cannula ventricular-assist method and apparatus
US20040243118A1 (en) 2001-06-01 2004-12-02 Ayers Gregory M. Device and method for positioning a catheter tip for creating a cryogenic lesion
US6755822B2 (en) 2001-06-01 2004-06-29 Cryocor, Inc. Device and method for the creation of a circumferential cryogenic lesion in a pulmonary vein
JP2002368224A (en) 2001-06-04 2002-12-20 Sony Corp Functional device and manufacturing method therefor
US7141812B2 (en) 2002-06-05 2006-11-28 Mikro Systems, Inc. Devices, methods, and systems involving castings
AU2002309238A1 (en) 2001-06-05 2002-12-16 Barnev Ltd. Birth monitoring system
US20030208142A1 (en) 2001-06-12 2003-11-06 Boudewijn Alexander C Vascular guidewire for magnetic resonance and /or fluoroscopy
US6473167B1 (en) 2001-06-14 2002-10-29 Ascension Technology Corporation Position and orientation determination using stationary fan beam sources and rotating mirrors to sweep fan beams
EP1408831A4 (en) 2001-06-19 2007-01-31 Univ Pennsylvania Optical guidance system for invasive catheter placement
JP4854137B2 (en) 2001-06-21 2012-01-18 株式会社東芝 Medical diagnostic imaging equipment
WO2003002181A2 (en) 2001-06-29 2003-01-09 A.B. Korkor Medical, Inc. Catheter introducer having an expandable tip
US6666828B2 (en) 2001-06-29 2003-12-23 Medtronic, Inc. Catheter system having disposable balloon
DE10132332A1 (en) 2001-07-02 2003-02-06 Heiko Fiebig Isometric exercise machine has two handles with holes through and joined by cable, with cable-clamps with hole through and screw fixtures
US6528991B2 (en) 2001-07-03 2003-03-04 Ascension Technology Corporation Magnetic position measurement system with field containment means
WO2003005887A2 (en) 2001-07-11 2003-01-23 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20030013986A1 (en) 2001-07-12 2003-01-16 Vahid Saadat Device for sensing temperature profile of a hollow body organ
US6786900B2 (en) 2001-08-13 2004-09-07 Cryovascular Systems, Inc. Cryotherapy methods for treating vessel dissections and side branch occlusion
JP2003061752A (en) 2001-08-23 2003-03-04 Katsuhiko Yamagishi Rotary brush for shower hose
US6986739B2 (en) 2001-08-23 2006-01-17 Sciperio, Inc. Architecture tool and methods of use
JP4443079B2 (en) 2001-09-13 2010-03-31 株式会社日立メディコ Magnetic resonance imaging apparatus and RF receiving coil for magnetic resonance imaging apparatus
WO2003028224A2 (en) 2001-09-24 2003-04-03 Given Imaging Ltd. System and method for controlling a device in vivo
US6684176B2 (en) 2001-09-25 2004-01-27 Symbol Technologies, Inc. Three dimensional (3-D) object locator system for items or sites using an intuitive sound beacon: system and method of operation
US6733458B1 (en) 2001-09-25 2004-05-11 Acuson Corporation Diagnostic medical ultrasound systems and methods using image based freehand needle guidance
IL145700A0 (en) 2001-09-30 2002-06-30 Younis Imad Electrode system for neural applications
US6976962B2 (en) 2001-10-10 2005-12-20 Bullis James K Enhanced focusing of propagating waves by compensation for medium attenuation
WO2003032837A1 (en) 2001-10-12 2003-04-24 University Of Florida Computer controlled guidance of a biopsy needle
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
GB0124887D0 (en) 2001-10-17 2001-12-05 Qinetiq Ltd Metal detection apparatus
JP2003126093A (en) 2001-10-23 2003-05-07 Olympus Optical Co Ltd Ultrasonic diagnostic apparatus
US7308303B2 (en) 2001-11-01 2007-12-11 Advanced Bionics Corporation Thrombolysis and chronic anticoagulation therapy
US20030088195A1 (en) 2001-11-02 2003-05-08 Vardi Gil M Guidewire having measurement indicia
JP2006509528A (en) 2001-11-02 2006-03-23 ザ ヘンリー エム ジャクソン ファウンデーション Cardiac gating method and system
US6959214B2 (en) 2001-11-28 2005-10-25 Medtronic, Inc. Implantable medical device for measuring mechanical heart function
US6689067B2 (en) 2001-11-28 2004-02-10 Siemens Corporate Research, Inc. Method and apparatus for ultrasound guidance of needle biopsies
CA2468835A1 (en) 2001-12-03 2003-06-12 Ekos Corporation Small vessel ultrasound catheter
US7065403B1 (en) 2001-12-03 2006-06-20 Pacesetter, Inc. System and method for measuring lead impedance in an implantable stimulation device employing pulse-train waveforms
EP1319366A1 (en) 2001-12-14 2003-06-18 BrainLAB AG Magnetic navigation for a catheter
US7670302B2 (en) 2001-12-18 2010-03-02 Boston Scientific Scimed, Inc. Super elastic guidewire with shape retention tip
US7729742B2 (en) 2001-12-21 2010-06-01 Biosense, Inc. Wireless position sensor
KR20030058423A (en) 2001-12-31 2003-07-07 주식회사 메디슨 Method and apparatus for observing biopsy needle and guiding the same toward target object in three-dimensional ultrasound diagnostic system using interventional ultrasound
JP4090741B2 (en) 2002-01-07 2008-05-28 イビケン株式会社 Shipping management system and shipping management program
AU2003207507A1 (en) 2002-01-11 2003-07-30 Gen Hospital Corp Apparatus for oct imaging with axial line focus for improved resolution and depth of field
US7020512B2 (en) 2002-01-14 2006-03-28 Stereotaxis, Inc. Method of localizing medical devices
US6999821B2 (en) 2002-01-18 2006-02-14 Pacesetter, Inc. Body implantable lead including one or more conductive polymer electrodes and methods for fabricating same
AU2003207615A1 (en) 2002-01-18 2003-12-02 Std Manufacturing, Inc. Ablation technology for catheter based delivery systems
TWI220386B (en) 2002-01-21 2004-08-21 Matsushita Electric Works Ltd Ultrasonic transdermal permeation device
US20040210289A1 (en) 2002-03-04 2004-10-21 Xingwu Wang Novel nanomagnetic particles
US7091412B2 (en) 2002-03-04 2006-08-15 Nanoset, Llc Magnetically shielded assembly
US7161453B2 (en) 2002-01-23 2007-01-09 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
WO2003061752A1 (en) 2002-01-24 2003-07-31 Quinn David G Catheter and stylet assembly and method of catheter insertion
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
US6980852B2 (en) 2002-01-25 2005-12-27 Subqiview Inc. Film barrier dressing for intravascular tissue monitoring system
DE10203372A1 (en) 2002-01-29 2003-09-04 Siemens Ag Medical examination and / or treatment system
US6755789B2 (en) 2002-02-05 2004-06-29 Inceptio Medical Technologies, Llc Ultrasonic vascular imaging system and method of blood vessel cannulation
US6719699B2 (en) 2002-02-07 2004-04-13 Sonotech, Inc. Adhesive hydrophilic membranes as couplants in ultrasound imaging applications
US7027634B2 (en) 2002-02-13 2006-04-11 Ascension Technology Corporation Range adaptable system for determining the angular position and distance of a radiating point source and method of employing
US6711431B2 (en) 2002-02-13 2004-03-23 Kinamed, Inc. Non-imaging, computer assisted navigation system for hip replacement surgery
US6599249B1 (en) 2002-02-14 2003-07-29 Koninklijke Philips Electronics N.V. Intraoperative ultrasound probe with an integrated acoustic standoff
US6701918B2 (en) 2002-02-19 2004-03-09 Ibionics Corporation Magnetically guided device for insertion through a nasal passageway
US20030220557A1 (en) 2002-03-01 2003-11-27 Kevin Cleary Image guided liver interventions based on magnetic tracking of internal organ motion
US6889091B2 (en) 2002-03-06 2005-05-03 Medtronic, Inc. Method and apparatus for placing a coronary sinus/cardiac vein pacing lead using a multi-purpose side lumen
US6968846B2 (en) 2002-03-07 2005-11-29 Stereotaxis, Inc. Method and apparatus for refinably accurate localization of devices and instruments in scattering environments
ATE369084T1 (en) 2002-03-15 2007-08-15 Bard Inc C R APPARATUS FOR CONTROLLING ABLATION ENERGY AND ELECTROGRAM RECORDING USING A MULTIPLE COMMON ELECTRODES IN AN ELECTROPHYSIOLOGY CATHETER
US6784660B2 (en) 2002-03-18 2004-08-31 Ascension Technology Corporation Magnetic position and orientation measurement system with magnetic field permeable attenuator
NL1021183C2 (en) 2002-03-20 2003-09-23 Martil Instr B V Catheter with integrated signal processing device.
JP4282979B2 (en) 2002-03-25 2009-06-24 テルモ株式会社 Guide wire
US6774624B2 (en) 2002-03-27 2004-08-10 Ge Medical Systems Global Technology Company, Llc Magnetic tracking system
EP1348393B1 (en) 2002-03-27 2007-03-21 BrainLAB AG Medical navigation or pre-operative treatment planning supported by generic patient data
US7163533B2 (en) 2002-04-04 2007-01-16 Angiodynamics, Inc. Vascular treatment device and method
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
US20050256398A1 (en) 2004-05-12 2005-11-17 Hastings Roger N Systems and methods for interventional medicine
US8721655B2 (en) 2002-04-10 2014-05-13 Stereotaxis, Inc. Efficient closed loop feedback navigation
JP3967950B2 (en) 2002-04-10 2007-08-29 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Puncture needle guide, ultrasonic probe, and ultrasonic imaging apparatus
AU2003237089B2 (en) 2002-04-22 2009-01-22 The Johns Hopkins University Apparatus for insertion of a medical device during a medical imaging process
SE0201307L (en) 2002-04-26 2003-02-18 Kvaerner Pulping Tech Diffuser herb wash for cellulose pulp
AU2003231269B2 (en) 2002-05-01 2008-08-28 Venetec International, Inc. Medical line securement device
US7008418B2 (en) 2002-05-09 2006-03-07 Stereotaxis, Inc. Magnetically assisted pulmonary vein isolation
US6908433B1 (en) 2002-05-10 2005-06-21 Rick L. Pruter Adhesive method and apparatus for guiding needles
US7022082B2 (en) 2002-05-13 2006-04-04 Sonek Jiri D Needle guide systems and methods
JP4388255B2 (en) 2002-05-21 2009-12-24 アロカ株式会社 Ultrasound probe for puncture
EP1519683A4 (en) 2002-05-30 2008-03-19 Univ Washington Solid hydrogel coupling for ultrasound imaging and therapy
US6676605B2 (en) * 2002-06-07 2004-01-13 Diagnostic Ultrasound Bladder wall thickness measurement system and methods
DE10225518B4 (en) 2002-06-10 2004-07-08 Rayonex Schwingungstechnik Gmbh Method and device for controlling and determining the position of an instrument or device
US6875179B2 (en) 2002-06-17 2005-04-05 Board Of Trustees Of The University Of Arkansas Ultrasonic guided catheter deployment system
US6856823B2 (en) 2002-06-18 2005-02-15 Ascension Technology Corporation Spiral magnetic transmitter for position measurement system
US6679836B2 (en) 2002-06-21 2004-01-20 Scimed Life Systems, Inc. Universal programmable guide catheter
ATE364350T1 (en) 2002-06-26 2007-07-15 Endosense S A CATHETERIZATION SYSTEM
US7248914B2 (en) 2002-06-28 2007-07-24 Stereotaxis, Inc. Method of navigating medical devices in the presence of radiopaque material
US7096059B2 (en) 2002-07-03 2006-08-22 Bioanalytical Systems, Inc. Device and method for electrocardiography on freely moving animals
US7189198B2 (en) 2002-07-03 2007-03-13 Stereotaxis, Inc. Magnetically guidable carriers and methods for the targeted magnetic delivery of substances in the body
CA2492140A1 (en) 2002-07-12 2004-01-22 Iscience Surgical Corporation Ultrasound interfacing device for tissue imaging
US7096057B2 (en) 2002-08-02 2006-08-22 Barnes Jewish Hospital Method and apparatus for intracorporeal medical imaging using a self-tuned coil
US7604608B2 (en) 2003-01-14 2009-10-20 Flowcardia, Inc. Ultrasound catheter and methods for making and using same
US6860422B2 (en) 2002-09-03 2005-03-01 Ricoh Company, Ltd. Method and apparatus for tracking documents in a workflow
GB0220986D0 (en) 2002-09-10 2002-10-23 Univ Bristol Ultrasound probe
US7106043B1 (en) 2002-09-17 2006-09-12 Bioluminate, Inc. Low capacitance measurement probe
US6962580B2 (en) * 2002-09-17 2005-11-08 Transoma Medical, Inc. Vascular access port with needle detector
US7123954B2 (en) 2002-09-19 2006-10-17 Sanjiv Mathur Narayan Method for classifying and localizing heart arrhythmias
US7128734B1 (en) 2002-09-20 2006-10-31 Arrow International, Inc. Apparatus and method for reverse tunneling a multi-lumen catheter in a patient
US7107105B2 (en) 2002-09-24 2006-09-12 Medtronic, Inc. Deployable medical lead fixation system and method
US7082335B2 (en) 2002-09-30 2006-07-25 Medtronic, Inc. Multipolar pacing method and apparatus
US7534223B2 (en) 2002-10-08 2009-05-19 Boston Scientific Scimed, Inc. Catheter with formed guide wire ramp
US7252633B2 (en) 2002-10-18 2007-08-07 Olympus Corporation Remote controllable endoscope system
JP3821435B2 (en) 2002-10-18 2006-09-13 松下電器産業株式会社 Ultrasonic probe
US20040082916A1 (en) 2002-10-29 2004-04-29 Jenkins Jane A. Catheter support system
US6794667B2 (en) 2002-10-31 2004-09-21 Ge Medical Systems Global Technology Company, Llc Source pin loading methods and apparatus for positron emission tomography
US6754596B2 (en) 2002-11-01 2004-06-22 Ascension Technology Corporation Method of measuring position and orientation with improved signal to noise ratio
US7881769B2 (en) 2002-11-18 2011-02-01 Mediguide Ltd. Method and system for mounting an MPS sensor on a catheter
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040097803A1 (en) 2002-11-20 2004-05-20 Dorin Panescu 3-D catheter localization using permanent magnets with asymmetrical properties about their longitudinal axis
CA2450971A1 (en) 2002-11-27 2004-05-27 Z-Tech (Canada) Inc. Apparatus and method for determining adequacy of electrode-to-skin contact and electrode quality for bioelectrical measurements
US7153277B2 (en) 2002-12-03 2006-12-26 Scimed Life Systems, Inc. Composite medical device with markers
EP1572284B1 (en) 2002-12-04 2010-08-04 Lake Region Manufacturing, Inc. Marked guidewires
US7267650B2 (en) 2002-12-16 2007-09-11 Cardiac Pacemakers, Inc. Ultrasound directed guiding catheter system and method
US7455660B2 (en) 2002-12-18 2008-11-25 Medical Components, Inc. Locking guidewire straightener
US7043293B1 (en) 2002-12-24 2006-05-09 Cardiodynamics International Corporation Method and apparatus for waveform assessment
US7351205B2 (en) 2003-01-03 2008-04-01 Civco Medical Instruments Co., Inc. Shallow angle needle guide apparatus and method
US20040133130A1 (en) 2003-01-06 2004-07-08 Ferry Steven J. Magnetically navigable medical guidewire
US7729743B2 (en) 2003-01-07 2010-06-01 Koninklijke Philips Electronics N.V. Method and arrangement for tracking a medical instrument
US6815651B2 (en) 2003-01-10 2004-11-09 Ascension Technology Corporation Optical position measurement system employing one or more linear detector arrays
US6843771B2 (en) 2003-01-15 2005-01-18 Salutron, Inc. Ultrasonic monitor for measuring heart rate and blood flow rate
US7947040B2 (en) 2003-01-21 2011-05-24 Baylis Medical Company Inc Method of surgical perforation via the delivery of energy
US7048733B2 (en) 2003-09-19 2006-05-23 Baylis Medical Company Inc. Surgical perforation device with curve
US7270662B2 (en) 2004-01-21 2007-09-18 Naheed Visram Surgical perforation device with electrocardiogram (ECG) monitoring ability and method of using ECG to position a surgical perforation device
US7112197B2 (en) 2003-01-21 2006-09-26 Baylis Medical Company Inc. Surgical device with pressure monitoring ability
WO2004066817A2 (en) 2003-01-24 2004-08-12 Proteus Biomedical Inc. Methods and systems for measuring cardiac parameters
WO2004069032A2 (en) 2003-01-29 2004-08-19 Sandhill Scientific, Inc. Viscous swallow medium and method of use for esophageal function testing
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
US7542791B2 (en) 2003-01-30 2009-06-02 Medtronic Navigation, Inc. Method and apparatus for preplanning a surgical procedure
US7098907B2 (en) 2003-01-30 2006-08-29 Frantic Films Corporation Method for converting explicitly represented geometric surfaces into accurate level sets
US7591786B2 (en) 2003-01-31 2009-09-22 Sonosite, Inc. Dock for connecting peripheral devices to a modular diagnostic ultrasound apparatus
US9603545B2 (en) 2003-02-21 2017-03-28 3Dt Holdings, Llc Devices, systems, and methods for removing targeted lesions from vessels
WO2008091609A2 (en) 2007-01-23 2008-07-31 Dtherapeutics, Llc Devices, systems, and methods for mapping organ profiles
CA2516559C (en) 2003-02-21 2016-09-27 Electro-Cat, Llc System and method for measuring cross-sectional areas and pressure gradients in luminal organs
US8185194B2 (en) 2003-02-21 2012-05-22 Dtherapeutics, Llc Systems and methods for determining phasic cardiac cycle measurements
US8078274B2 (en) 2003-02-21 2011-12-13 Dtherapeutics, Llc Device, system and method for measuring cross-sectional areas in luminal organs
US7182735B2 (en) 2003-02-26 2007-02-27 Scimed Life Systems, Inc. Elongated intracorporal medical device
US20070055142A1 (en) 2003-03-14 2007-03-08 Webler William E Method and apparatus for image guided position tracking during percutaneous procedures
US20040186461A1 (en) 2003-03-17 2004-09-23 Dimatteo Kristian Catheter with an adjustable cuff
US20040185066A1 (en) 2003-03-17 2004-09-23 Yuh-Jye Uang Antifreeze gel in a deformable container
US7054228B1 (en) 2003-03-25 2006-05-30 Robert Hickling Sound source location and quantification using arrays of vector probes
US7028387B1 (en) 2003-03-26 2006-04-18 Advanced Neuromodulation Systems, Inc. Method of making a miniaturized positional assembly
WO2004086086A2 (en) * 2003-03-27 2004-10-07 Koninklijke Philips Electronics N.V. Guidance of invasive medical devices with combined three dimensional ultrasonic imaging system
US20040199069A1 (en) 2003-04-02 2004-10-07 Connelly Patrick R. Device and method for preventing magnetic resonance imaging induced damage
US20050149002A1 (en) 2003-04-08 2005-07-07 Xingwu Wang Markers for visualizing interventional medical devices
US7299085B2 (en) 2003-04-23 2007-11-20 Medtronic, Inc. Remote monitoring of implanted medical device and surface ECG signals
US7651469B2 (en) 2003-04-25 2010-01-26 Cook Incorporated Low friction coated marked wire guide for over the wire insertion of a catheter
US20040225233A1 (en) 2003-05-09 2004-11-11 Frankowski Brian J. Magnetic guidewires
DE602004017248D1 (en) 2003-05-19 2008-12-04 Ust Inc Geometrically shaped hydrogel coupling bodies for high intensity focused ultrasound treatment
EP1628574A1 (en) 2003-05-21 2006-03-01 Philips Intellectual Property & Standards GmbH Apparatus and method for navigating a catheter
US6980843B2 (en) 2003-05-21 2005-12-27 Stereotaxis, Inc. Electrophysiology catheter
WO2004103182A1 (en) 2003-05-21 2004-12-02 Philips Intellectual Property & Standards Gmbh Apparatus and method for navigating a catheter
US7909815B2 (en) 2003-05-23 2011-03-22 Civco Medical Instruments Co., Inc. Instrument guide for use with needles and catheters
US7090639B2 (en) 2003-05-29 2006-08-15 Biosense, Inc. Ultrasound catheter calibration system
US7850613B2 (en) 2003-05-30 2010-12-14 Orison Corporation Apparatus and method for three dimensional ultrasound breast imaging
SE525289C2 (en) 2003-06-02 2005-01-25 Moelnlycke Health Care Ab Surface product for surgical procedures
US7546158B2 (en) 2003-06-05 2009-06-09 The Regents Of The University Of California Communication methods based on brain computer interfaces
US7494459B2 (en) 2003-06-26 2009-02-24 Biophan Technologies, Inc. Sensor-equipped and algorithm-controlled direct mechanical ventricular assist device
EP1680017B1 (en) 2003-07-11 2013-01-09 C.R. Bard, Inc. Multi-color overlay system for processing and displaying electrocardiac signals
US7766839B2 (en) 2003-07-22 2010-08-03 Peter H. Rogers Needle insertion systems and methods
CA2533161C (en) 2003-07-24 2013-04-23 Dune Medical Devices Ltd. Method and apparatus for examining a substance,particularly tissue, to characterize its type
US7321228B2 (en) 2003-07-31 2008-01-22 Biosense Webster, Inc. Detection of metal disturbance in a magnetic tracking system
US7001341B2 (en) 2003-08-13 2006-02-21 Scimed Life Systems, Inc. Marking biopsy sites
US20050159676A1 (en) 2003-08-13 2005-07-21 Taylor James D. Targeted biopsy delivery system
KR100506543B1 (en) 2003-08-14 2005-08-05 주식회사 제닉 Temperature Sensitive State-Changing Hydrogel Composition and Method for their Preparation
US8123691B2 (en) 2003-08-19 2012-02-28 Kabushiki Kaisha Toshiba Ultrasonic diagnostic apparatus for fixedly displaying a puncture probe during 2D imaging
US20050043640A1 (en) 2003-08-21 2005-02-24 Chang Alexander C. Remote electrocardiogram for early detection of coronary heart disease
US7313430B2 (en) 2003-08-28 2007-12-25 Medtronic Navigation, Inc. Method and apparatus for performing stereotactic surgery
US8000771B2 (en) 2003-09-02 2011-08-16 Cardiac Pacemakers, Inc. Method and apparatus for catheterization by detecting signals indicating proximity to anatomical features
DE202004021943U1 (en) 2003-09-12 2013-05-13 Vessix Vascular, Inc. Selectable eccentric remodeling and / or ablation of atherosclerotic material
US20050075561A1 (en) 2003-10-01 2005-04-07 Lucent Medical Systems, Inc. Method and apparatus for indicating an encountered obstacle during insertion of a medical device
US20050075696A1 (en) 2003-10-02 2005-04-07 Medtronic, Inc. Inductively rechargeable external energy source, charger, system and method for a transcutaneous inductive charger for an implantable medical device
WO2005033524A1 (en) 2003-10-03 2005-04-14 Micronix Pty Ltd Universal equipment clamp
WO2005033574A1 (en) 2003-10-03 2005-04-14 Micronix Pty Ltd Universal ball joint tensioning mechanism
JP4167162B2 (en) 2003-10-14 2008-10-15 アロカ株式会社 Ultrasonic diagnostic equipment
US7840253B2 (en) 2003-10-17 2010-11-23 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US7951081B2 (en) 2003-10-20 2011-05-31 Boston Scientific Scimed, Inc. Transducer/sensor assembly
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US20050085718A1 (en) 2003-10-21 2005-04-21 Ramin Shahidi Systems and methods for intraoperative targetting
US7029446B2 (en) 2003-10-30 2006-04-18 Martin Edmund Wendelken Standoff holder and standoff pad for ultrasound probe
US7244234B2 (en) 2003-11-11 2007-07-17 Soma Development Llc Ultrasound guided probe device and method of using same
US7285096B2 (en) 2003-11-12 2007-10-23 Esi, Inc. Ultrasound probe positioning immersion shell
US7161686B2 (en) 2003-11-13 2007-01-09 Ascension Technology Corporation Sensor for determining the angular position of a radiating point source in two dimensions and method of operation
US7106431B2 (en) 2003-11-13 2006-09-12 Ascension Technology Corporation Sensor for determining the angular position of a radiating point source in two dimensions
US20050208095A1 (en) 2003-11-20 2005-09-22 Angiotech International Ag Polymer compositions and methods for their use
BRPI0416822A (en) 2003-11-21 2007-03-06 Alza Corp Transdermal Ultrasound Vaccine Release Method and System
US20050113700A1 (en) 2003-11-26 2005-05-26 Koji Yanagihara Ultrasonic probe
DE10355275B4 (en) 2003-11-26 2009-03-05 Siemens Ag catheter device
JP5214883B2 (en) 2003-11-28 2013-06-19 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for three-dimensional spectrally encoded imaging
US7237313B2 (en) 2003-12-05 2007-07-03 Boston Scientific Scimed, Inc. Elongated medical device for intracorporal use
US7901348B2 (en) 2003-12-12 2011-03-08 University Of Washington Catheterscope 3D guidance and interface system
US7349732B1 (en) 2003-12-12 2008-03-25 Pacesetter, Inc. System and method for emulating a surface EKG using internal cardiac signals sensed by an implantable medical device
DE10358735B4 (en) 2003-12-15 2011-04-21 Siemens Ag Catheter device comprising a catheter, in particular an intravascular catheter
JP3873285B2 (en) 2003-12-24 2007-01-24 有限会社エスアールジェイ Endoscope device
US20050154308A1 (en) 2003-12-30 2005-07-14 Liposonix, Inc. Disposable transducer seal
US7026927B2 (en) 2003-12-31 2006-04-11 Calypso Medical Technologies, Inc. Receiver used in marker localization sensing system and having dithering in excitation pulses
US7104980B1 (en) 2004-01-16 2006-09-12 Dennis M Laherty Catheterization assist device and method of use
WO2005070318A1 (en) 2004-01-20 2005-08-04 Philips Intellectual Property & Standards Gmbh Device and method for navigating a catheter
WO2005072616A2 (en) 2004-01-20 2005-08-11 Therus Corporation Interface for use between medical instrumentation and a patient
US8620406B2 (en) 2004-01-23 2013-12-31 Boston Scientific Scimed, Inc. Medical devices visible by magnetic resonance imaging
US20050165313A1 (en) 2004-01-26 2005-07-28 Byron Jacquelyn M. Transducer assembly for ultrasound probes
CN1913833B (en) 2004-01-26 2010-06-09 维达保健公司 Manual interosseous device
US7341569B2 (en) 2004-01-30 2008-03-11 Ekos Corporation Treatment of vascular occlusions using ultrasonic energy and microbubbles
WO2005077253A1 (en) 2004-02-18 2005-08-25 Osaka University Endoscope system
US7299086B2 (en) 2004-03-05 2007-11-20 Cardiac Pacemakers, Inc. Wireless ECG in implantable devices
US7811294B2 (en) 2004-03-08 2010-10-12 Mediguide Ltd. Automatic guidewire maneuvering system and method
US7699782B2 (en) 2004-03-09 2010-04-20 Angelsen Bjoern A J Extended, ultrasound real time 3D image probe for insertion into the body
FR2867396B1 (en) 2004-03-10 2006-12-22 P2A PERFORATING PERFORMER WITH STERILE CONNECTION
US7613478B2 (en) 2004-03-15 2009-11-03 General Electric Company Method and system for portability of clinical images using a high-quality display and portable device
US20050205081A1 (en) 2004-03-18 2005-09-22 American Permanent Ware Corporation Drawer for a heated food cabinet
US7594911B2 (en) 2004-03-18 2009-09-29 C. R. Bard, Inc. Connector system for a proximally trimmable catheter
US7565208B2 (en) 2004-03-25 2009-07-21 Boston Scientific Scimed, Inc. Catheter with sensor tips, tool and device and methods of use of same
US7699829B2 (en) 2004-03-25 2010-04-20 Boston Scientific Scimed, Inc. Catheter with sensor tip and method of use of same
WO2005096267A1 (en) 2004-04-02 2005-10-13 Koninklijke Philips Electronics, N.V. Intracavity probe with continuous shielding of acoustic window
US7650178B2 (en) 2004-04-30 2010-01-19 University Of Basel Magnetic field sensor-based navigation system to track MR image-guided interventional procedures
JP4537756B2 (en) 2004-04-30 2010-09-08 オリンパス株式会社 Ultrasonic diagnostic equipment
US20050256541A1 (en) 2004-04-30 2005-11-17 Medtronic, Inc. Catheter with temporary stimulation electrode
DE102004022628A1 (en) 2004-05-07 2005-12-15 Sensient Imaging Technologies Gmbh FRET bioassay
US20050288599A1 (en) 2004-05-17 2005-12-29 C.R. Bard, Inc. High density atrial fibrillation cycle length (AFCL) detection and mapping system
US20080027320A1 (en) 2004-05-18 2008-01-31 Siemens Medical Solutions Usa, Inc. Multidimensional transducer systems and methods for intra patient probes
US8204580B2 (en) 2004-05-25 2012-06-19 Kurzweil Technologies, Inc. Use of patterns in processing on mobile monitoring device and computer system
WO2005117690A1 (en) 2004-05-26 2005-12-15 Martil Instruments B.V. Catheter and portable data managing device
EP1750607A2 (en) 2004-06-02 2007-02-14 Medtronic, Inc. Loop ablation apparatus and method
WO2005119505A2 (en) 2004-06-04 2005-12-15 Stereotaxis, Inc. User interface for remote control of medical devices
MXPA06014441A (en) 2004-06-16 2007-06-05 Greater Glasgow Nhs Board Ultrasound waveguide.
USD525363S1 (en) 2004-06-18 2006-07-18 Visual Sonics Nosepiece
USD518574S1 (en) 2004-06-18 2006-04-04 Visualsonics Inc. Nosepiece
USD520139S1 (en) 2004-06-18 2006-05-02 Visualsonics Inc. Nosepiece
USD520140S1 (en) 2004-06-18 2006-05-02 Visualsonics Inc. Nosepiece
US20050283216A1 (en) 2004-06-21 2005-12-22 Pyles Stephen T Apparatus and method for displacing tissue obstructions
US7840268B2 (en) 2004-06-21 2010-11-23 Advanced Neuromodulation Systems, Inc. System and method of managing medical device historical data
US7850610B2 (en) 2004-06-28 2010-12-14 Medtronic, Inc. Electrode location mapping system and method
JP4995720B2 (en) 2004-07-02 2012-08-08 ザ ジェネラル ホスピタル コーポレイション Endoscopic imaging probe with double clad fiber
JP4109272B2 (en) 2004-07-09 2008-07-02 直彦 徳本 Puncture adapter
US7402134B2 (en) 2004-07-15 2008-07-22 Micardia Corporation Magnetic devices and methods for reshaping heart anatomy
ITMI20041448A1 (en) 2004-07-20 2004-10-20 Milano Politecnico APPARATUS FOR THE MERGER AND NAVIGATION OF ECOGRAPHIC AND VOLUMETRIC IMAGES OF A PATIENT USING A COMBINATION OF ACTIVE AND PASSIVE OPTICAL MARKERS FOR THE LOCALIZATION OF ECHOGRAPHIC PROBES AND SURGICAL INSTRUMENTS COMPARED TO THE PATIENT
US7261691B1 (en) 2004-08-02 2007-08-28 Kwabena Asomani Personalized emergency medical monitoring and transmission system
US7373271B1 (en) 2004-09-20 2008-05-13 Ascension Technology Corporation System and method for measuring position and orientation using distortion-compensated magnetic fields
KR101257100B1 (en) 2004-09-29 2013-04-22 더 제너럴 하스피탈 코포레이션 System and Method for Optical Coherence Imaging
US7096870B2 (en) 2004-09-30 2006-08-29 Lonnie Jay Lamprich Disposable sterile surgical drape and attached instruments
US20060068074A1 (en) 2004-09-30 2006-03-30 Stefandl Roland E Shelf stable gelatinous product
US7875049B2 (en) 2004-10-04 2011-01-25 Medtronic, Inc. Expandable guide sheath with steerable backbone and methods for making and using them
US7831294B2 (en) 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US7327872B2 (en) 2004-10-13 2008-02-05 General Electric Company Method and system for registering 3D models of anatomical regions with projection images of the same
US7331462B2 (en) 2004-10-26 2008-02-19 Alcon, Inc. Kit management system
US7190819B2 (en) 2004-10-29 2007-03-13 Stereotaxis, Inc. Image-based medical device localization
WO2006050453A1 (en) 2004-11-02 2006-05-11 The General Hospital Corporation Fiber-optic rotational device, optical system and method for imaging a sample
US7653427B2 (en) 2004-11-12 2010-01-26 Intra-Medical Imaging LLC Method and instrument for minimally invasive sentinel lymph node location and biopsy
DE102005045071A1 (en) 2005-09-21 2007-04-12 Siemens Ag Catheter device with a position sensor system for the treatment of a partial and / or complete vascular occlusion under image monitoring
US7798970B2 (en) 2004-11-17 2010-09-21 Salutron, Inc Ultrasonic monitor for measuring blood flow and pulse rates
US7713210B2 (en) 2004-11-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for localizing an ultrasound catheter
DE102004058008B4 (en) 2004-12-01 2007-08-23 Siemens Ag Guidewire for vascular catheter with improved tracking and navigation
US20060116576A1 (en) 2004-12-01 2006-06-01 Scimed Life Systems, Inc. System and use thereof to provide indication of proximity between catheter and location of interest in 3-D space
WO2006062996A2 (en) 2004-12-08 2006-06-15 Kenneth Binmoeller Method and apparatus for performing needle guided interventions
WO2006063156A1 (en) 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
EP1835852A4 (en) 2004-12-21 2010-10-20 Sydney West Area Health Service Automated processing of electrophysiological data
US7869865B2 (en) 2005-01-07 2011-01-11 Biosense Webster, Inc. Current-based position sensing
US20070032746A1 (en) 2005-01-10 2007-02-08 Stereotaxis, Inc. Guide wire with magnetically adjustable bent tip and method for using the same
US20070225589A1 (en) 2005-01-11 2007-09-27 Viswanathan Raju R Single catheter diagnosis, navigation and treatment of arrhythmias
US7976518B2 (en) 2005-01-13 2011-07-12 Corpak Medsystems, Inc. Tubing assembly and signal generator placement control device and method for use with catheter guidance systems
WO2006074509A1 (en) 2005-01-14 2006-07-20 Micronix Pty Ltd Tubing assembly for use with a catheter position guidance system
EP1843810A1 (en) 2005-01-14 2007-10-17 Micronix Pty Ltd Guiding insert assembly for a catheter used with a catheter position guidance system
EP1838215B1 (en) 2005-01-18 2012-08-01 Philips Electronics LTD Electromagnetically tracked k-wire device
WO2006080399A1 (en) 2005-01-26 2006-08-03 Hitachi Medical Corporation Pressing member, ultrasonic probe and ultrasonic diagnosing device
US20080021336A1 (en) 2006-04-24 2008-01-24 Dobak John D Iii Devices and methods for accelerometer-based characterization of cardiac synchrony and dyssynchrony
WO2006086223A2 (en) 2005-02-08 2006-08-17 Blue Belt Technologies, Inc. Augmented reality device and method
US20060241432A1 (en) 2005-02-15 2006-10-26 Vanderbilt University Method and apparatus for calibration, tracking and volume construction data for use in image-guided procedures
US20060206037A1 (en) 2005-02-24 2006-09-14 Braxton Ernest E Apparatus and method for non-invasive measurement of intracranial pressure
WO2006092766A2 (en) 2005-03-02 2006-09-08 Koninklijke Philips Electronics N.V. Low power standby mode monitor
US10362947B2 (en) 2005-03-15 2019-07-30 Integra LifeSciences Switzerland Sarl Pressure sensing devices
US20080260818A1 (en) 2005-03-28 2008-10-23 Dexcel Pharma Technologies Ltd. Controlled Absorption of Statins in the Intestine
EP1890598A1 (en) 2005-03-31 2008-02-27 Gregersen Enterprises 2005 Aps Apparatus and method for a global model of hollow internal organs including the determination of cross-sectional areas and volume in internal hollow organs and wall properties
US7542800B2 (en) 2005-04-05 2009-06-02 Cardiac Pacemakers, Inc. Method and apparatus for synchronizing neural stimulation to cardiac cycles
FR2883982B1 (en) 2005-04-05 2009-05-29 Centre Nat Rech Scient METHOD AND IMAGING DEVICE USING SHEAR WAVES
CN1672649A (en) 2005-04-16 2005-09-28 何明利 Cerebrospinal fluid puncturing drainer
EP1874211B1 (en) 2005-04-21 2017-05-31 Boston Scientific Scimed, Inc. Control devices for energy delivery
US7604601B2 (en) 2005-04-26 2009-10-20 Biosense Webster, Inc. Display of catheter tip with beam direction for ultrasound system
US8870779B2 (en) 2005-04-26 2014-10-28 Biosense Webster, Inc. Display of two-dimensional ultrasound fan
ES2425388T3 (en) 2005-05-06 2013-10-15 Vasonova, Inc. Apparatus for guiding and positioning an endovascular device
US20090118612A1 (en) 2005-05-06 2009-05-07 Sorin Grunwald Apparatus and Method for Vascular Access
DE102005022120B4 (en) 2005-05-12 2009-04-09 Siemens Ag Catheter, catheter device and diagnostic imaging device
US20070060992A1 (en) 2005-06-02 2007-03-15 Carlo Pappone Methods and devices for mapping the ventricle for pacing lead placement and therapy delivery
JP2006338526A (en) 2005-06-03 2006-12-14 Dentsu Kiko Kk Pointing device, motion sensor, character recognition device, and position data computing method
DE102005027951A1 (en) 2005-06-16 2007-01-04 Siemens Ag Medical system for introducing a catheter into a vessel
DE102005028226A1 (en) 2005-06-17 2006-12-28 Siemens Ag Device for controlling movement of catheter in patient's body, has control device coupled with joystick that guides magnetic tip of catheter in patient's body, when catheter approaches obstacle in patient's body
JP2007000226A (en) 2005-06-22 2007-01-11 Toshiba Corp Medical image diagnostic apparatus
WO2007002541A2 (en) 2005-06-28 2007-01-04 University Of Maryland, Baltimore Method and system for guiding a probe in a patient for a medical procedure
WO2007005976A1 (en) 2005-07-01 2007-01-11 Hansen Medical, Inc. Robotic catheter system
US9314222B2 (en) 2005-07-07 2016-04-19 Stereotaxis, Inc. Operation of a remote medical navigation system using ultrasound image
US7536218B2 (en) 2005-07-15 2009-05-19 Biosense Webster, Inc. Hybrid magnetic-based and impedance-based position sensing
DE102005034167B4 (en) 2005-07-21 2012-01-26 Siemens Ag Device and method for determining a position of an implant in a body
EP1919956A4 (en) 2005-08-04 2010-02-17 Lorraine Inst Nat Polytech Gelation of undenatured proteins with polysaccharides
CN101238353B (en) 2005-08-04 2015-07-22 皇家飞利浦电子股份有限公司 System and method for magnetic tracking of a sensor for interventional device localization
JP4763439B2 (en) 2005-08-08 2011-08-31 オリンパス株式会社 Medical device magnetic guidance and position detection system
US20070038113A1 (en) 2005-08-11 2007-02-15 Kabushiki Kaisha Toshiba Puncture adaptor, ultrasonic probe for puncture, ultrasonic diagnostic apparatus for puncture, method for detecting angle of puncture needle
JP2007068989A (en) * 2005-08-11 2007-03-22 Toshiba Corp Ultrasonic diagnostic apparatus, ultrasonic probe, and puncture adapter
US8150522B2 (en) 2005-08-19 2012-04-03 The Trustees Of The University Of Pennsylvania Active control of epileptic seizures and diagnosis based on critical systems-like behavior
US20070055294A1 (en) 2005-08-23 2007-03-08 Brandon Giap Magnetic needle positioner
US8784336B2 (en) 2005-08-24 2014-07-22 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US20070049817A1 (en) 2005-08-30 2007-03-01 Assaf Preiss Segmentation and registration of multimodal images using physiological data
US8147408B2 (en) 2005-08-31 2012-04-03 Sonosite, Inc. Medical device guide locator
US8852111B2 (en) 2005-09-02 2014-10-07 Ultrasound Ventures, Llc Ultrasound guidance system
US20070135803A1 (en) 2005-09-14 2007-06-14 Amir Belson Methods and apparatus for performing transluminal and other procedures
NL1032272C2 (en) 2005-09-15 2007-05-16 Martil Instr B V Method and device for determining the flow in a blood vessel.
GB0519391D0 (en) 2005-09-22 2005-11-02 Aion Diagnostics Ltd Imaging agents
CN101695451B (en) * 2005-10-04 2012-01-18 株式会社日立医药 Ultrasonic diagnostic device
CN101631476B (en) 2005-10-05 2012-07-04 Fmc生物聚合物联合股份有限公司 Gelling compositions and methods
JP5348889B2 (en) 2005-10-06 2013-11-20 株式会社日立メディコ Puncture treatment support device
US7981038B2 (en) 2005-10-11 2011-07-19 Carnegie Mellon University Sensor guided catheter navigation system
US7988633B2 (en) 2005-10-12 2011-08-02 Volcano Corporation Apparatus and method for use of RFID catheter intelligence
DE102005050344A1 (en) 2005-10-20 2007-05-03 Siemens Ag Cryocatheter for medical investigation and treatment equipment for e.g. diagnosis and treatment of heart infarcts, has image capture device that maps region of vessel around balloon arranged near catheter tip
US7850623B2 (en) 2005-10-27 2010-12-14 Boston Scientific Scimed, Inc. Elongate medical device with continuous reinforcement member
US7774055B1 (en) 2005-11-07 2010-08-10 Pacesetter, Inc. Left atrial pressure-based criteria for monitoring intrathoracic impedance
US7574255B1 (en) 2005-11-07 2009-08-11 Pacesetter, Inc. Criteria for monitoring intrathoracic impedance
US8303505B2 (en) 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US7867169B2 (en) 2005-12-02 2011-01-11 Abbott Cardiovascular Systems Inc. Echogenic needle catheter configured to produce an improved ultrasound image
KR20070058785A (en) 2005-12-05 2007-06-11 주식회사 메디슨 Ultrasound system for interventional treatment
CA2631940C (en) 2005-12-06 2016-06-21 St. Jude Medical, Atrial Fibrillation Division, Inc. Assessment of electrode coupling for tissue ablation
DE102005059271B4 (en) 2005-12-12 2019-02-21 Siemens Healthcare Gmbh catheter device
EP1962689B1 (en) 2005-12-15 2014-02-26 Koninklijke Philips N.V. System for visualizing heart morphology during electrophysiology mapping and treatment
JP2007175431A (en) * 2005-12-28 2007-07-12 Olympus Medical Systems Corp Ultrasonograph
US7957789B2 (en) 2005-12-30 2011-06-07 Medtronic, Inc. Therapy delivery system including a navigation element
US8060214B2 (en) 2006-01-05 2011-11-15 Cardiac Pacemakers, Inc. Implantable medical device with inductive coil configurable for mechanical fixation
JP5372521B2 (en) 2006-01-12 2013-12-18 アロウ・インターナショナル・インコーポレイテッド Compatible real-time ECG trigger and its use
EP1808125A1 (en) 2006-01-13 2007-07-18 Siemens Aktiengesellschaft Electrophysiological system for analysing an intracardiac electrocardiogram
AU2007208252A1 (en) 2006-01-25 2007-08-02 Dtherapeutics Devices, systems and methods for determining sizes of vessels
US7627376B2 (en) 2006-01-30 2009-12-01 Medtronic, Inc. Intravascular medical device
US7519424B2 (en) 2006-01-30 2009-04-14 Medtronic, Inc. Intravascular medical device
US7616992B2 (en) 2006-01-30 2009-11-10 Medtronic, Inc. Intravascular medical device
WO2007149603A2 (en) 2006-02-01 2007-12-27 The General Hospital Corporation Apparatus for applying a plurality of electro-magnetic radiations to a sample
WO2007149601A2 (en) 2006-02-01 2007-12-27 The General Hospital Corporation Apparatus for controlling at least one of at least two sections of at least one fiber
US7637163B2 (en) 2006-02-02 2009-12-29 The Boeing Company Thin-film ultrasonic probe
US7869854B2 (en) 2006-02-23 2011-01-11 Magnetecs, Inc. Apparatus for magnetically deployable catheter with MOSFET sensor and method for mapping and ablation
US7729753B2 (en) 2006-03-14 2010-06-01 Cardionet, Inc. Automated analysis of a cardiac signal based on dynamical characteristics of the cardiac signal
US7792563B2 (en) 2006-03-16 2010-09-07 Massachusetts Institute Of Technology Method and apparatus for the guided ablative therapy of fast ventricular arrhythmia
US20070225610A1 (en) 2006-03-27 2007-09-27 Boston Scientific Scimed, Inc. Capturing electrical signals with a catheter needle
WO2007115174A2 (en) 2006-03-31 2007-10-11 Traxtal Inc. System, methods, and instrumentation for image guided prostate treatment
US20070244413A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Medical guidewire tip construction
US20070247454A1 (en) 2006-04-19 2007-10-25 Norbert Rahn 3D visualization with synchronous X-ray image display
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US20070255270A1 (en) 2006-04-27 2007-11-01 Medtronic Vascular, Inc. Intraluminal guidance system using bioelectric impedance
US20070265526A1 (en) 2006-05-11 2007-11-15 Assaf Govari Low-profile location pad
US20080009720A1 (en) 2006-05-12 2008-01-10 General Electric Company Catheter connector
AU2007254173B2 (en) 2006-05-17 2013-07-25 Nuvasive, Inc. Surgical trajectory monitoring system and related methods
US7774051B2 (en) 2006-05-17 2010-08-10 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for mapping electrophysiology information onto complex geometry
US8118743B2 (en) 2006-05-26 2012-02-21 Ultrasound Ventures, Llc Sterile cover
JP5143375B2 (en) 2006-05-26 2013-02-13 フクダ電子株式会社 ECG analyzer
US7727143B2 (en) 2006-05-31 2010-06-01 Allergan, Inc. Locator system for implanted access port with RFID tag
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US7515954B2 (en) 2006-06-13 2009-04-07 Rhythmia Medical, Inc. Non-contact cardiac mapping, including moving catheter and multi-beat integration
WO2007144894A1 (en) 2006-06-15 2007-12-21 Yissum Research Development Company Of The Hebrew University Of Jerusalem Hydrocolloid carrier beads with inert filler material
US8560047B2 (en) 2006-06-16 2013-10-15 Board Of Regents Of The University Of Nebraska Method and apparatus for computer aided surgery
US20080008745A1 (en) 2006-06-21 2008-01-10 University Of Kentucky Research Foundation Transdermal delivery of naltrexone hydrochloride, naltrexol hydrochloride, and bis(hydroxy-methyl)propionyl-3-0 ester naltrexone using microneedles
DE102006029122A1 (en) 2006-06-22 2007-12-27 Amedo Gmbh System for determining the position of a medical instrument
US9039712B2 (en) 2006-06-28 2015-05-26 Medtronic Cryocath Lp Shape modification system for a cooling chamber of a medical device
US8892196B2 (en) 2006-07-06 2014-11-18 Los Angeles Biomedial Research Institute At Harbor-Ucla Medical Center Device and method for screening congenital heart disease
DE102006033229B4 (en) 2006-07-18 2013-05-08 Ezono Ag Ultrasonic probe and method for the optical detection of ultrasonic waves
US20090074917A2 (en) 2006-07-26 2009-03-19 Remington Direct Lp Low-calorie, no laxation bulking system
US20080045908A1 (en) 2006-08-16 2008-02-21 Boston Scientific Scimed, Inc. Medical device including a metallic tube fillet welded to a core member
US7833564B2 (en) 2006-08-24 2010-11-16 Boston Scientific Scimed, Inc. Elongate medical device and method of coating the same
US20080051626A1 (en) 2006-08-28 2008-02-28 Olympus Medical Systems Corp. Fistulectomy method between first duct and second duct, ultrasonic endoscope, catheter with balloon, magnet retaining device, and magnet set
AU2007294408B2 (en) 2006-09-08 2013-06-13 Avent, Inc. Guide-wire and guiding insert placement assembly for over-the-wire catheter placement and method of use
JP5121201B2 (en) * 2006-09-28 2013-01-16 オリンパスメディカルシステムズ株式会社 Detector position detection system
WO2008039242A1 (en) 2006-09-28 2008-04-03 Medtronic, Inc. Implantable medical device with sensor self-test feature
JP4943796B2 (en) 2006-09-29 2012-05-30 テルモ株式会社 Medical device
US8068920B2 (en) 2006-10-03 2011-11-29 Vincent A Gaudiani Transcoronary sinus pacing system, LV summit pacing, early mitral closure pacing, and methods therefor
EP2954868A1 (en) 2006-10-18 2015-12-16 Vessix Vascular, Inc. Tuned rf energy and electrical tissue characterization for selective treatment of target tissues
WO2009100158A1 (en) 2008-02-05 2009-08-13 Rothenberg Peter M Method of locating the tip of a central venous catheter
US7794407B2 (en) 2006-10-23 2010-09-14 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US8388546B2 (en) 2006-10-23 2013-03-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9642986B2 (en) 2006-11-08 2017-05-09 C. R. Bard, Inc. Resource information key for an insertable medical device
WO2008061010A1 (en) 2006-11-10 2008-05-22 Draeger Medical Systems, Inc. An ecg system for use in ecg signal measurement of intra-cardiac ecg using a catheter
US20080119697A1 (en) 2006-11-20 2008-05-22 General Electric Company Bidirectional communication interface
JP2008136655A (en) 2006-12-01 2008-06-19 Omron Healthcare Co Ltd Sphygmometric electrode unit and sphygmometer
US7831076B2 (en) 2006-12-08 2010-11-09 Biosense Webster, Inc. Coloring electroanatomical maps to indicate ultrasound data acquisition
US20080139944A1 (en) 2006-12-08 2008-06-12 Weymer Raymond F Devices for covering ultrasound probes of ultrasound machines
US20080146941A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking for Intracardiac Catheters
US20080146942A1 (en) 2006-12-13 2008-06-19 Ep Medsystems, Inc. Catheter Position Tracking Methods Using Fluoroscopy and Rotational Sensors
US20080146940A1 (en) 2006-12-14 2008-06-19 Ep Medsystems, Inc. External and Internal Ultrasound Imaging System
EP1935334B1 (en) 2006-12-22 2015-07-01 Pulsion Medical Systems AG Patient monitoring apparatus for determining a parameter representing an intrathoracic volume compartment of a patient
US9220439B2 (en) 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
JP5154575B2 (en) 2007-01-03 2013-02-27 タイコ ヘルスケア グループ リミテッド パートナーシップ Surgical system with magnetic entrance
USD585556S1 (en) 2007-01-10 2009-01-27 Kabushiki Kaisha Toshiba Probe connector cover for an ultrasonic diagnosis apparatus
US8473030B2 (en) 2007-01-12 2013-06-25 Medtronic Vascular, Inc. Vessel position and configuration imaging apparatus and methods
WO2008089282A2 (en) 2007-01-16 2008-07-24 Silver James H Sensors for detecting subtances indicative of stroke, ischemia, infection or inflammation
US7996057B2 (en) 2007-01-31 2011-08-09 Biosense Webster, Inc. Ultrasound catheter calibration with enhanced accuracy
US20080188830A1 (en) 2007-02-06 2008-08-07 Arrow International, Inc. Selectively reinforced medical devices
US20080200913A1 (en) 2007-02-07 2008-08-21 Viswanathan Raju R Single Catheter Navigation for Diagnosis and Treatment of Arrhythmias
US20080190438A1 (en) 2007-02-08 2008-08-14 Doron Harlev Impedance registration and catheter tracking
US7665893B2 (en) 2007-02-16 2010-02-23 Parker Laboratories, Inc. Protective cover set for a medical probe
US20080200801A1 (en) 2007-02-21 2008-08-21 Douglas Glenn Wildes Mapping Movement of a Movable Transducer
US8303502B2 (en) 2007-03-06 2012-11-06 General Electric Company Method and apparatus for tracking points in an ultrasound image
US9468396B2 (en) 2007-03-19 2016-10-18 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
JP5336465B2 (en) 2007-03-26 2013-11-06 ボストン サイエンティフィック リミテッド High resolution electrophysiology catheter
US20080236598A1 (en) 2007-03-30 2008-10-02 Fred Gobel Drape for open tracheal suctioning
US20080249395A1 (en) 2007-04-06 2008-10-09 Yehoshua Shachar Method and apparatus for controlling catheter positioning and orientation
WO2008126074A2 (en) 2007-04-11 2008-10-23 Elcam Medical Agricultural Cooperative Association Ltd. System and method for accurate placement of a catheter tip in a patient
CN101687087B (en) 2007-04-16 2014-06-25 C.R.巴德有限公司 Guidewire-assisted catheter placement system
GB0707906D0 (en) 2007-04-24 2007-05-30 Apparatus for detecting the position of a catheter
EP2140235A4 (en) 2007-04-24 2014-08-20 Scisense Inc Method and apparatus for measuring blood volume
US20080269611A1 (en) 2007-04-24 2008-10-30 Gianni Pedrizzetti Flow characteristic imaging in medical diagnostic ultrasound
US8463359B2 (en) 2007-04-25 2013-06-11 Nidus Medical, Llc Shape-sensing expandable member
US20090080738A1 (en) 2007-05-01 2009-03-26 Dror Zur Edge detection in ultrasound images
US20080275765A1 (en) 2007-05-02 2008-11-06 Edward Kuchar Configurable gis data system
WO2008136008A2 (en) 2007-05-08 2008-11-13 Mediguide Ltd. Method for producing an electrophysiological map of the heart
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US8734440B2 (en) 2007-07-03 2014-05-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Magnetically guided catheter
US8480653B2 (en) 2007-05-23 2013-07-09 Biosense Webster, Inc. Magnetically guided catheter with concentric needle port
US7976469B2 (en) 2007-06-04 2011-07-12 Medtronic, Inc. Percutaneous needle guide
WO2009001266A2 (en) 2007-06-22 2008-12-31 Koninklijke Philips Electronics N.V. Acoustic offset for transducer
US8784338B2 (en) 2007-06-22 2014-07-22 Covidien Lp Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size
DE102007029229A1 (en) 2007-06-22 2008-12-24 Pajunk Gmbh & Co. Kg Besitzverwaltung Clamping adapter for a catheter
CN101821725B (en) 2007-06-25 2013-09-25 戴尔产品有限公司 Storage area network with target side recognition and routing table upload
US20100204614A1 (en) 2007-06-26 2010-08-12 Zurlin Technologies Holdings, Llc Electronic snore recording device and associated methods
JP5660890B2 (en) 2007-06-26 2015-01-28 バソノバ・インコーポレイテッドVasonova, Inc. Vascular access and guidance system
US8057394B2 (en) 2007-06-30 2011-11-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Ultrasound image processing to render three-dimensional images from two-dimensional images
WO2009009064A1 (en) 2007-07-09 2009-01-15 Orison Corporation Ultrasound coupling material
ATE512375T1 (en) 2007-07-13 2011-06-15 Ezono Ag OPTOELECTRIC ULTRASONIC SENSOR AND SYSTEM
US20090024018A1 (en) 2007-08-07 2009-01-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Anatomical imaging system
US8226562B2 (en) 2007-08-10 2012-07-24 Ultrasonix Medical Corporation Hand-held ultrasound system having sterile enclosure
WO2009029869A2 (en) 2007-08-30 2009-03-05 Syncro Medical Innovations, Inc. Guided catheter with removable magnetic guide
JP5127371B2 (en) 2007-08-31 2013-01-23 キヤノン株式会社 Ultrasound image diagnostic system and control method thereof
US7828528B2 (en) 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US20090101577A1 (en) 2007-09-28 2009-04-23 Fulkerson Barry N Methods and Systems for Controlling Ultrafiltration Using Central Venous Pressure Measurements
US20090082661A1 (en) 2007-09-20 2009-03-26 General Electric Company System and method to automatically assist mobile image acquisition
US8485980B2 (en) 2007-09-28 2013-07-16 Maquet Critical Care Ab Electrode positioning
US10398393B2 (en) 2007-10-02 2019-09-03 Stryker European Holdings I, Llc Dynamic reference method and system for interventional procedures
US8088072B2 (en) 2007-10-12 2012-01-03 Gynesonics, Inc. Methods and systems for controlled deployment of needles in tissue
WO2009057774A1 (en) 2007-10-31 2009-05-07 Olympus Corporation Drug solution-administration system and cannula for administering drug solution
US20090115406A1 (en) 2007-11-01 2009-05-07 General Electric Company System and method for minimizing mutual inductance coupling between coils in an electromagnetic tracking system
GB0722406D0 (en) * 2007-11-15 2007-12-27 Smiths Group Plc Medico-surgical assemblies and methods
WO2009067654A1 (en) 2007-11-21 2009-05-28 Edda Technology, Inc. Method and system for interactive percutaneous pre-operation surgical planning
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US8849382B2 (en) 2007-11-26 2014-09-30 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US20180116551A1 (en) 2007-11-26 2018-05-03 C. R. Bard, Inc. Needles For Use With System For Guiding A Medical Instrument
ES2651898T3 (en) 2007-11-26 2018-01-30 C.R. Bard Inc. Integrated system for intravascular catheter placement
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
EP2067498B1 (en) 2007-12-03 2012-02-01 BrainLAB AG Catheter with catheter receptacle lumen
US20090171217A1 (en) 2007-12-27 2009-07-02 Jeong Hwan Kim Ultrasound system for diagnosing breast cancer
US8255035B2 (en) 2007-12-31 2012-08-28 St. Jude Medical, Atrial Fibrillation Division, Inc. Coated hypodermic needle
CN101475790B (en) 2008-01-04 2012-10-10 杨光 Novel timber adhesive and preparation thereof
US8478382B2 (en) 2008-02-11 2013-07-02 C. R. Bard, Inc. Systems and methods for positioning a catheter
EP2259740A2 (en) 2008-02-20 2010-12-15 Guided Delivery Systems, Inc. Electrophysiology catheter system
US20090221908A1 (en) 2008-03-01 2009-09-03 Neil David Glossop System and Method for Alignment of Instrumentation in Image-Guided Intervention
US8016814B2 (en) 2008-03-10 2011-09-13 Medtronic Vascular, Inc. Guidewires and delivery catheters having fiber optic sensing components and related systems and methods
US8538509B2 (en) 2008-04-02 2013-09-17 Rhythmia Medical, Inc. Intracardiac tracking system
US8287520B2 (en) 2008-04-10 2012-10-16 Medtronic, Inc. Automated integrity tests
ES2921476T3 (en) * 2008-04-17 2022-08-26 Bard Inc C R Systems for breaking a sterile field for intravascular placement of a catheter
US8457371B2 (en) 2008-04-18 2013-06-04 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
WO2009129475A1 (en) 2008-04-18 2009-10-22 Medtronic, Inc. Method and apparatus for mapping a structure
US8494608B2 (en) 2008-04-18 2013-07-23 Medtronic, Inc. Method and apparatus for mapping a structure
US8340751B2 (en) 2008-04-18 2012-12-25 Medtronic, Inc. Method and apparatus for determining tracking a virtual point defined relative to a tracked member
EP2285287B1 (en) 2008-04-22 2015-04-01 eZono AG Ultrasound imaging system and method for providing assistance in an ultrasound imaging system
US8814798B2 (en) 2008-04-25 2014-08-26 Medtronic, Inc. Implantable device and method for monitoring venous diameter
JP5214319B2 (en) 2008-04-30 2013-06-19 オリンパスメディカルシステムズ株式会社 Imaging device
US20090275828A1 (en) 2008-05-01 2009-11-05 Magnetecs, Inc. Method and apparatus for creating a high resolution map of the electrical and mechanical properties of the heart
US8352015B2 (en) 2008-05-27 2013-01-08 Kyma Medical Technologies, Ltd. Location tracking of a metallic object in a living body using a radar detector and guiding an ultrasound probe to direct ultrasound waves at the location
US20090312629A1 (en) 2008-06-13 2009-12-17 Inneroptic Technology Inc. Correction of relative tracking errors based on a fiducial
WO2009153723A1 (en) 2008-06-20 2009-12-23 Koninklijke Philips Electronics, N.V. Method and system for performing biopsies
US20100076305A1 (en) 2008-06-25 2010-03-25 Deutsches Krebsforschungszentrum Stiftung Des Offentlichen Rechts Method, system and computer program product for targeting of a target with an elongate instrument
US20100004543A1 (en) 2008-07-03 2010-01-07 Ahlund Patrick Ultrasound probe cover and method for its manufacture
US20100010612A1 (en) 2008-07-09 2010-01-14 Daniel Gelbart Lumen diameter and stent apposition sensing
US20100016726A1 (en) 2008-07-18 2010-01-21 Meier Joseph H Handheld Imaging Device And Method For Manufacture Thereof
EP2303102A1 (en) 2008-07-23 2011-04-06 St. Jude Medical, Inc. Catheter radio frequency adapter for wireless communication
US20100041984A1 (en) 2008-08-12 2010-02-18 James Edward Shapland Impedance sensing device and catheter system
US8428220B2 (en) 2008-08-13 2013-04-23 Koninklijke Philips Electronics N.V. Dynamical visualization of coronary vessels and myocardial perfusion information
US8082025B2 (en) 2008-08-14 2011-12-20 David Amitai ECG data acquisition device
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US20100057157A1 (en) 2008-08-28 2010-03-04 Assaf Govari Pacemaker with position sensing
WO2010027349A1 (en) 2008-09-03 2010-03-11 Transdermal Innovations Inc. Multipurpose hydrogel compositions and products
JP5702723B2 (en) 2008-09-04 2015-04-15 ザ ジェネラル ホスピタル コーポレイション Hydrogels for strengthening and repairing vocal cords and soft tissues
US20100063401A1 (en) * 2008-09-09 2010-03-11 Olympus Medical Systems Corp. Ultrasound endoscope system and ultrasound observation method
US8456182B2 (en) 2008-09-30 2013-06-04 Biosense Webster, Inc. Current localization tracker
US8437833B2 (en) 2008-10-07 2013-05-07 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US20100114573A1 (en) 2008-10-30 2010-05-06 Motorola, Inc. Method and Device for Verifying a User
WO2010059375A2 (en) 2008-10-30 2010-05-27 Payner Troy D Systems and methods for guiding a medical instrument
US20140276010A1 (en) 2008-10-31 2014-09-18 General Electric Company Systems and Methods for Tracking Objects Using Magnetoresistance
US20100113917A1 (en) 2008-10-31 2010-05-06 General Electric Company System and method for tracking object
US8400164B2 (en) 2008-11-12 2013-03-19 Biosense Webster, Inc. Calibration and compensation for errors in position measurement
US20100160772A1 (en) 2008-12-18 2010-06-24 Medtronic, Inc. Adaptable Image Guided Delivery System
US20100168557A1 (en) 2008-12-30 2010-07-01 Deno D Curtis Multi-electrode ablation sensing catheter and system
USD603050S1 (en) 2009-01-06 2009-10-27 Tung Thih Electronic Co., Ltd. Ultrasound transducer
US8521122B2 (en) 2009-01-28 2013-08-27 Blackberry Limited Mobile device user interface for displaying emergency information
US8641621B2 (en) 2009-02-17 2014-02-04 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image management in image-guided medical procedures
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US8504139B2 (en) 2009-03-10 2013-08-06 Medtronic Xomed, Inc. Navigating a surgical instrument
US20100234733A1 (en) 2009-03-13 2010-09-16 Paul Wahlheim Sterile Ultrasound Probe Cover and Method of Releasing Coupling Agent from a Sealed Compartment
US20100249598A1 (en) 2009-03-25 2010-09-30 General Electric Company Ultrasound probe with replaceable head portion
US8298149B2 (en) 2009-03-31 2012-10-30 Boston Scientific Scimed, Inc. Systems and methods for making and using a motor distally-positioned within a catheter of an intravascular ultrasound imaging system
WO2010143196A1 (en) 2009-04-03 2010-12-16 Cavinkare Pvt Ltd. Novel synergistic transparent / translucent hydrogel composition; method of preparing it and a sheet / film made thereform
US8326419B2 (en) 2009-04-07 2012-12-04 Pacesetter, Inc. Therapy optimization via multi-dimensional mapping
US9398862B2 (en) 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
WO2010127033A1 (en) 2009-04-28 2010-11-04 Alltranz Inc. Formulations of cannabidiol and methods of using the same
US8608481B2 (en) 2009-05-13 2013-12-17 Medtronic Navigation, Inc. Method and apparatus for identifying an instrument location based on measuring a characteristic
WO2010132857A1 (en) 2009-05-14 2010-11-18 Central Michigan University Composition and method of preparation of polysaccharide gel-based artificial, biodegradable skin scaffolds
US10039527B2 (en) 2009-05-20 2018-08-07 Analogic Canada Corporation Ultrasound systems incorporating spatial position sensors and associated methods
US9895135B2 (en) 2009-05-20 2018-02-20 Analogic Canada Corporation Freehand ultrasound imaging systems and methods providing position quality feedback
US20100305971A1 (en) 2009-05-29 2010-12-02 Medaxion, LLC Managing Medical Case Chronology Data
ES2745861T3 (en) 2009-06-12 2020-03-03 Bard Access Systems Inc Apparatus, computer-aided data-processing algorithm, and computer storage medium for positioning an endovascular device in or near the heart
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US20110015496A1 (en) 2009-07-14 2011-01-20 Sherman Lawrence M Portable medical device
US20110015527A1 (en) 2009-07-15 2011-01-20 Cardinal Health - Neurocare Flat doppler probe and method of the same
EP2464407A4 (en) 2009-08-10 2014-04-02 Bard Access Systems Inc Devices and methods for endovascular electrography
CN102573983B (en) 2009-08-14 2015-05-20 伊西康内外科公司 Ultrasonic surgical apparatus and silicon waveguide and methods for use thereof
JP2013503206A (en) 2009-08-31 2013-01-31 オールトランツ インコーポレイティド Use of cannabidiol prodrugs for topical and transdermal administration using microneedles
US9642534B2 (en) 2009-09-11 2017-05-09 University Of Virginia Patent Foundation Systems and methods for determining location of an access needle in a subject
WO2011041450A1 (en) 2009-09-29 2011-04-07 C. R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US8215907B2 (en) 2009-09-30 2012-07-10 General Electric Company Method and apparatus for controlling acoustic emissions of a wind turbine
US11103213B2 (en) 2009-10-08 2021-08-31 C. R. Bard, Inc. Spacers for use with an ultrasound probe
US8761862B2 (en) 2009-10-09 2014-06-24 Stephen F. Ridley Ultrasound guided probe device and sterilizable shield for same
US8496592B2 (en) 2009-10-09 2013-07-30 Stephen F. Ridley Clamp for a medical probe device
WO2011053766A1 (en) 2009-10-30 2011-05-05 Advanced Bionics, Llc Steerable stylet
US20110112396A1 (en) 2009-11-09 2011-05-12 Magnetecs, Inc. System and method for targeting catheter electrodes
EP2327450A1 (en) 2009-11-27 2011-06-01 Theraclion SAS A cover, a treatment device and a method of use of such a device
AU2010339882B2 (en) 2009-12-17 2016-10-27 Cima Labs Inc. Abuse-resistant formulations
US8439873B1 (en) 2009-12-17 2013-05-14 Gail Marie Donovan Catheter with position indicator
US8706209B2 (en) 2010-02-05 2014-04-22 3Dt Holdings, Llc Devices, systems, and methods for measuring parallel tissue conductance, luminal cross-sectional areas, fluid velocity, and/or determining plaque vulnerability using temperature
USD630757S1 (en) 2010-03-10 2011-01-11 Kabushiki Kaisha Toshiba Probe for an ultrasonic diagnosis apparatus
USD630756S1 (en) 2010-03-10 2011-01-11 Kabushiki Kaisha Toshiba Probe for an ultrasonic diagnosis apparatus
US8483802B2 (en) 2010-03-25 2013-07-09 Medtronic, Inc. Method and apparatus for guiding an external needle to an implantable device
US20110245659A1 (en) 2010-04-01 2011-10-06 Sonosite, Inc. Systems and methods to assist with internal positioning of instruments
DE102010014869A1 (en) 2010-04-13 2011-10-13 Lts Lohmann Therapie-Systeme Ag Hydrogel for natural cosmetic purposes
USD684265S1 (en) 2010-04-20 2013-06-11 Ge Sensing & Inspection Technologies Gmbh Ultrasonic probe device
US20110306859A1 (en) 2010-05-06 2011-12-15 Enrique Saldivar Multipurpose, modular platform for mobile medical instrumentation
US8500768B2 (en) 2010-05-11 2013-08-06 Cardiac Inventions Unlimited Inc. Apparatus for safe performance of transseptal technique and placement and positioning of an ablation catheter
US9131869B2 (en) 2010-05-11 2015-09-15 Rhythmia Medical, Inc. Tracking using field mapping
US20110282686A1 (en) 2010-05-12 2011-11-17 General Electric Company Medical conferencing systems and methods
US8932258B2 (en) 2010-05-14 2015-01-13 C. R. Bard, Inc. Catheter placement device and method
US20130102890A1 (en) 2010-05-26 2013-04-25 Nabil Dib System and Method for Visualizing Catheter Placement in a Vasculature
EP3662827B1 (en) 2010-05-28 2021-03-03 C.R. Bard, Inc. Apparatus for use with needle insertion guidance system
USD629527S1 (en) 2010-06-04 2010-12-21 Medicis Technologies Corporation Ultrasound therapy cap connection
USD629526S1 (en) 2010-06-04 2010-12-21 Medicis Technologies Corporation Therapy cap for ultrasonic therapy head
US8700137B2 (en) 2012-08-30 2014-04-15 Alivecor, Inc. Cardiac performance monitoring system for use with mobile communications devices
EP2579767A2 (en) 2010-06-13 2013-04-17 Angiometrix Corporation Diagnostic kit and method for measuring balloon dimension in vivo
US8494794B2 (en) 2010-06-13 2013-07-23 Angiometrix Corporation Methods and systems for determining vascular bodily lumen information and guiding medical devices
US8675939B2 (en) 2010-07-13 2014-03-18 Stryker Leibinger Gmbh & Co. Kg Registration of anatomical data sets
US8532743B2 (en) 2010-08-05 2013-09-10 St. Jude Medical, Atrial Fibrillation Division, Inc. Movable magnet for magnetically guided catheter
CN103228219B (en) 2010-08-09 2016-04-27 C·R·巴德股份有限公司 For support and the covered structure of ultrasound probe head
US8244339B2 (en) 2010-08-09 2012-08-14 Medtronic, Inc. Wireless cardiac pulsatility sensing
KR101856267B1 (en) 2010-08-20 2018-05-09 씨. 알. 바드, 인크. Reconfirmation of ecg-assisted catheter tip placement
US8425425B2 (en) 2010-09-20 2013-04-23 M. Dexter Hagy Virtual image formation method for an ultrasound device
US8634896B2 (en) 2010-09-20 2014-01-21 Apn Health, Llc 3D model creation of anatomic structures using single-plane fluoroscopy
EP2433564A1 (en) 2010-09-23 2012-03-28 BIOTRONIK SE & Co. KG Positioning catheters using impedance measurement
JP6405090B2 (en) 2010-09-23 2018-10-17 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Medical system for tracking the position of a medical device within a patient's vasculature and method for operating the medical system
US8753292B2 (en) 2010-10-01 2014-06-17 Angiodynamics, Inc. Method for locating a catheter tip using audio detection
WO2012058461A1 (en) 2010-10-29 2012-05-03 C.R.Bard, Inc. Bioimpedance-assisted placement of a medical device
US8391956B2 (en) 2010-11-18 2013-03-05 Robert D. Zellers Medical device location systems, devices and methods
CN106902443B (en) 2010-12-17 2020-06-02 C·R·巴德股份有限公司 Catheter introducer device including valve and valve actuator
WO2012088535A1 (en) 2010-12-23 2012-06-28 Bard Access System, Inc. System, device, and method to guide a rigid instrument
US20120172727A1 (en) 2010-12-30 2012-07-05 Boston Scientific Scimed, Inc. Imaging system
US8792962B2 (en) 2010-12-30 2014-07-29 Biosense Webster, Inc. Catheter with single axial sensors
CN103607946A (en) 2011-01-20 2014-02-26 埃纳威医疗有限公司 System and method to estimate location and orientation of object
US20130324866A1 (en) 2011-02-14 2013-12-05 Vita-Sentry Ltd. Indications of cross-section of small branched blood vessels
US10039502B2 (en) 2011-04-12 2018-08-07 Medtronic Ablation Frontiers Llc Electrophysiological signal processing and utilization
US20150073285A1 (en) 2011-05-16 2015-03-12 Alivecor, Inc. Universal ecg electrode module for smartphone
US20120310660A1 (en) 2011-06-01 2012-12-06 Xiangdong Liu Health monitoring system and method for monitoring health using the same
EP2717759A4 (en) 2011-06-13 2014-12-10 Angiometrix Corp Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
WO2013006713A2 (en) 2011-07-05 2013-01-10 Cardioinsight Technologies, Inc. Localization for electrocardiographic mapping
RU2609203C2 (en) 2011-07-06 2017-01-30 Си.Ар. Бард, Инк. Determination and calibration of needle length for needle guidance system
US9615759B2 (en) 2011-07-12 2017-04-11 Bard Access Systems, Inc. Devices and methods for ECG guided vascular access
JP2014522713A (en) 2011-08-10 2014-09-08 カーディアック ペースメイカーズ, インコーポレイテッド Determination of physiological parameters using cervical impedance
DK2997901T3 (en) 2011-09-06 2018-05-22 Ezono Ag IMAGING PROBE
EP2753241B1 (en) 2011-09-08 2016-11-09 APN Health, LLC Automatically determining 3d catheter location and orientation using 2d fluoroscopy only
US10791950B2 (en) 2011-09-30 2020-10-06 Biosense Webster (Israel) Ltd. In-vivo calibration of contact force-sensing catheters using auto zero zones
US8793142B2 (en) 2011-10-06 2014-07-29 Harvey Abraham Fishman Methods and apparatuses for remote diagnosis and prescription
JP2015502790A (en) 2011-11-22 2015-01-29 アセンション テクノロジー コーポレイションAscension Technology Corporation Tracking guidewire
US11109835B2 (en) 2011-12-18 2021-09-07 Metritrack Llc Three dimensional mapping display system for diagnostic ultrasound machines
US9427172B2 (en) 2011-12-30 2016-08-30 Mediguide Ltd. Roll detection and six degrees of freedom sensor assembly
US8663116B2 (en) 2012-01-11 2014-03-04 Angiodynamics, Inc. Methods, assemblies, and devices for positioning a catheter tip using an ultrasonic imaging system
US8670816B2 (en) 2012-01-30 2014-03-11 Inneroptic Technology, Inc. Multiple medical device guidance
US10159531B2 (en) 2012-04-05 2018-12-25 C. R. Bard, Inc. Apparatus and methods relating to intravascular positioning of distal end of catheter
US20130296691A1 (en) 2012-05-04 2013-11-07 Ascension Technology Corporation Magnetically tracked surgical needle assembly
US9345447B2 (en) 2012-05-07 2016-05-24 Vasonova, Inc. Right atrium indicator
US20130303945A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Electromagnetic tip sensor
US9375195B2 (en) 2012-05-31 2016-06-28 Siemens Medical Solutions Usa, Inc. System and method for real-time ultrasound guided prostate needle biopsy based on biomechanical model of the prostate from magnetic resonance imaging data
US10820885B2 (en) 2012-06-15 2020-11-03 C. R. Bard, Inc. Apparatus and methods for detection of a removable cap on an ultrasound probe
CN104718000B (en) 2012-08-15 2017-07-28 爱康医学农业合作协会有限公司 For the accurate system and method for placing catheter tip in patient's body
KR20140037326A (en) 2012-09-17 2014-03-27 가천대학교 산학협력단 Realtime ecg monitoring system and method for personal health records
WO2014047570A1 (en) 2012-09-21 2014-03-27 Md Revolution, Inc. Systems and methods for developing and implementing personalized health and wellness programs
CN104640603B (en) 2012-09-25 2017-09-15 皇家飞利浦有限公司 Processing system
WO2014052894A2 (en) 2012-09-28 2014-04-03 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
EP2908900A4 (en) 2012-10-18 2017-02-22 C.R. Bard, Inc. Magnetic element-equipped needle assemblies
US20140128712A1 (en) 2012-11-06 2014-05-08 Perminova Inc. System for electrophysiology that includes software module and body-worn monitor
US9332941B2 (en) 2012-12-31 2016-05-10 Tosense, Inc. Body-worn sensor for characterizing patients with heart failure
US9204841B2 (en) 2012-12-31 2015-12-08 Biosense Webster (Israel) Ltd. Catheter with serially connected sensing structures and methods of calibration and detection
US10105054B2 (en) 2013-02-06 2018-10-23 Nimbleheart Inc. System, software and method of streaming ECG/EKG data over bluetooth low-energy interface
US9220432B2 (en) 2013-03-02 2015-12-29 C. R. Bard, Inc. Method and system of utilizing ECG signal for central venous catheter tip positioning
US20140257080A1 (en) 2013-03-05 2014-09-11 Ezono Ag System for ultrasound image guided procedure
US9257220B2 (en) 2013-03-05 2016-02-09 Ezono Ag Magnetization device and method
EP2964085A4 (en) 2013-03-08 2016-10-26 Bard Inc C R Iconic representations relating to systems for placing a medical device
US10660667B2 (en) 2013-03-13 2020-05-26 The University Of British Columbia Apparatus, system and method for imaging a medical instrument
US10383542B2 (en) 2013-03-14 2019-08-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Device, system, and method for intracardiac diagnosis or therapy with localization
US20140275990A1 (en) 2013-03-15 2014-09-18 Soma Access Systems, Llc Ultrasound Guidance System Including Tagged Probe Assembly
JP2015008777A (en) 2013-06-27 2015-01-19 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Ultrasonic diagnostic apparatus and control program for the same
WO2015048514A1 (en) 2013-09-27 2015-04-02 Mayo Foundation For Medical Education And Research Analyte assessment and arrhythmia risk prediction using physiological electrical data
DE102013221026A1 (en) 2013-10-16 2015-04-16 Fiagon Gmbh Field generator and position detection system
WO2015073962A1 (en) 2013-11-18 2015-05-21 Regents Of The University Of Minnesota System and method for temporal sparse promoting imaging of cardiac activation
EP3091917B1 (en) 2014-01-10 2019-09-18 Soma Research LLC Needle guidance systems for use with ultrasound devices
ES2811323T3 (en) 2014-02-06 2021-03-11 Bard Inc C R Systems for the guidance and placement of an intravascular device
US9854992B2 (en) 2014-04-04 2018-01-02 Bard Access Systems, Inc. Apparatus and method for intravascular catheter navigation using the electrical conduction system of the heart and control electrodes
US20150282734A1 (en) 2014-04-08 2015-10-08 Timothy Schweikert Medical device placement system and a method for its use
US10905348B2 (en) 2014-07-23 2021-02-02 Bard Access Systems, Inc. User interfaces for mobile and wearable medical devices
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
WO2016210325A1 (en) 2015-06-26 2016-12-29 C.R. Bard, Inc. Connector interface for ecg-based catheter positioning system
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
EP3730177B1 (en) 2016-12-14 2023-02-01 C. R. Bard, Inc. Needles for use with system for guiding a medical instrument

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6216029B1 (en) * 1995-07-16 2001-04-10 Ultraguide Ltd. Free-hand aiming of a needle guide
US5775322A (en) * 1996-06-27 1998-07-07 Lucent Medical Systems, Inc. Tracheal tube and methods related thereto
US6263230B1 (en) * 1997-05-08 2001-07-17 Lucent Medical Systems, Inc. System and method to determine the location and orientation of an indwelling medical device
US20070282197A1 (en) * 2006-05-19 2007-12-06 Siemens Aktiengesellschaft Instrument, imaging position fixing system and position fixing method

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11207496B2 (en) 2005-08-24 2021-12-28 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US10004875B2 (en) 2005-08-24 2018-06-26 C. R. Bard, Inc. Stylet apparatuses and methods of manufacture
US9345422B2 (en) 2006-10-23 2016-05-24 Bard Acess Systems, Inc. Method of locating the tip of a central venous catheter
US9265443B2 (en) 2006-10-23 2016-02-23 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US9833169B2 (en) 2006-10-23 2017-12-05 Bard Access Systems, Inc. Method of locating the tip of a central venous catheter
US10238418B2 (en) 2007-11-26 2019-03-26 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9999371B2 (en) 2007-11-26 2018-06-19 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11123099B2 (en) 2007-11-26 2021-09-21 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9456766B2 (en) 2007-11-26 2016-10-04 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US9492097B2 (en) 2007-11-26 2016-11-15 C. R. Bard, Inc. Needle length determination and calibration for insertion guidance system
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US9526440B2 (en) 2007-11-26 2016-12-27 C.R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US10966630B2 (en) 2007-11-26 2021-04-06 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US9549685B2 (en) 2007-11-26 2017-01-24 C. R. Bard, Inc. Apparatus and display methods relating to intravascular placement of a catheter
US9554716B2 (en) 2007-11-26 2017-01-31 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US9636031B2 (en) 2007-11-26 2017-05-02 C.R. Bard, Inc. Stylets for use with apparatus for intravascular placement of a catheter
US9649048B2 (en) 2007-11-26 2017-05-16 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US9681823B2 (en) 2007-11-26 2017-06-20 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US11779240B2 (en) 2007-11-26 2023-10-10 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10342575B2 (en) 2007-11-26 2019-07-09 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US11134915B2 (en) 2007-11-26 2021-10-05 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US11707205B2 (en) 2007-11-26 2023-07-25 C. R. Bard, Inc. Integrated system for intravascular placement of a catheter
US10849695B2 (en) 2007-11-26 2020-12-01 C. R. Bard, Inc. Systems and methods for breaching a sterile field for intravascular placement of a catheter
US10751509B2 (en) 2007-11-26 2020-08-25 C. R. Bard, Inc. Iconic representations for guidance of an indwelling medical device
US10602958B2 (en) 2007-11-26 2020-03-31 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US10524691B2 (en) * 2007-11-26 2020-01-07 C. R. Bard, Inc. Needle assembly including an aligned magnetic element
US10449330B2 (en) 2007-11-26 2019-10-22 C. R. Bard, Inc. Magnetic element-equipped needle assemblies
US20140031674A1 (en) * 2007-11-26 2014-01-30 C. R. Bard, Inc. Needle Assembly Including an Aligned Magnetic Element
US10165962B2 (en) 2007-11-26 2019-01-01 C. R. Bard, Inc. Integrated systems for intravascular placement of a catheter
US10231753B2 (en) 2007-11-26 2019-03-19 C. R. Bard, Inc. Insertion guidance system for needles and medical components
US11529070B2 (en) 2007-11-26 2022-12-20 C. R. Bard, Inc. System and methods for guiding a medical instrument
US10105121B2 (en) 2007-11-26 2018-10-23 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
US11027101B2 (en) 2008-08-22 2021-06-08 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9901714B2 (en) 2008-08-22 2018-02-27 C. R. Bard, Inc. Catheter assembly including ECG sensor and magnetic assemblies
US9907513B2 (en) 2008-10-07 2018-03-06 Bard Access Systems, Inc. Percutaneous magnetic gastrostomy
US9339206B2 (en) 2009-06-12 2016-05-17 Bard Access Systems, Inc. Adaptor for endovascular electrocardiography
US9125578B2 (en) 2009-06-12 2015-09-08 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US11419517B2 (en) 2009-06-12 2022-08-23 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US10231643B2 (en) 2009-06-12 2019-03-19 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10912488B2 (en) 2009-06-12 2021-02-09 Bard Access Systems, Inc. Apparatus and method for catheter navigation and tip location
US10271762B2 (en) 2009-06-12 2019-04-30 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
US9445734B2 (en) 2009-06-12 2016-09-20 Bard Access Systems, Inc. Devices and methods for endovascular electrography
US10046139B2 (en) 2010-08-20 2018-08-14 C. R. Bard, Inc. Reconfirmation of ECG-assisted catheter tip placement
US9415188B2 (en) 2010-10-29 2016-08-16 C. R. Bard, Inc. Bioimpedance-assisted placement of a medical device
US9706978B2 (en) * 2012-11-07 2017-07-18 Samsung Medison Co., Ltd. Ultrasound system and method for providing guide line of needle
US20140128728A1 (en) * 2012-11-07 2014-05-08 Samsung Medison Co., Ltd. Ultrasound system and method for providing guide line of needle
US11219428B2 (en) 2014-01-29 2022-01-11 Becton, Dickinson And Company Wearable electronic device for enhancing visualization during insertion of an invasive device
US9839372B2 (en) 2014-02-06 2017-12-12 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10863920B2 (en) 2014-02-06 2020-12-15 C. R. Bard, Inc. Systems and methods for guidance and placement of an intravascular device
US10973584B2 (en) 2015-01-19 2021-04-13 Bard Access Systems, Inc. Device and method for vascular access
US11026630B2 (en) 2015-06-26 2021-06-08 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US10349890B2 (en) 2015-06-26 2019-07-16 C. R. Bard, Inc. Connector interface for ECG-based catheter positioning system
US11504155B2 (en) 2016-01-08 2022-11-22 Boston Scientific Scimed, Inc. Surgical guidance devices, systems, and methods
US10624668B2 (en) * 2016-01-08 2020-04-21 Boston Scientific Scimed, Inc. Surgical guidance devices, systems, and methods
US20170196591A1 (en) * 2016-01-08 2017-07-13 One Scimed Place Surgical guidance devices, systems, and methods
US11000207B2 (en) 2016-01-29 2021-05-11 C. R. Bard, Inc. Multiple coil system for tracking a medical device
US11096758B2 (en) 2017-05-23 2021-08-24 Boston Scientific Limited Surgical guidance systems, devices, and methods
US11621518B2 (en) 2018-10-16 2023-04-04 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
US10992079B2 (en) 2018-10-16 2021-04-27 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections

Also Published As

Publication number Publication date
US9554716B2 (en) 2017-01-31
ES2863568T3 (en) 2021-10-11
US10231753B2 (en) 2019-03-19
ES2924130T3 (en) 2022-10-04
CA2800813A1 (en) 2011-12-01
EP2575610B1 (en) 2022-10-05
EP2913000B1 (en) 2020-02-12
ES2864665T3 (en) 2021-10-14
US20170079681A1 (en) 2017-03-23
JP2013526959A (en) 2013-06-27
CN103037762A (en) 2013-04-10
EP3662827B1 (en) 2021-03-03
JP5868961B2 (en) 2016-02-24
CA2800810A1 (en) 2011-12-01
MX2012013672A (en) 2013-02-12
EP3662827A1 (en) 2020-06-10
CA2800813C (en) 2019-10-29
ES2778041T3 (en) 2020-08-07
CA3054544A1 (en) 2011-12-01
CN103037761A (en) 2013-04-10
CN103037761B (en) 2016-11-02
JP5980201B2 (en) 2016-08-31
EP2913000A3 (en) 2015-12-02
CN103037762B (en) 2016-07-13
JP2013526961A (en) 2013-06-27
EP2913000A2 (en) 2015-09-02
CA2800810C (en) 2019-11-05
WO2011150358A1 (en) 2011-12-01
ES2929130T3 (en) 2022-11-25
EP4122385A1 (en) 2023-01-25
US20110282188A1 (en) 2011-11-17
EP2575610A1 (en) 2013-04-10
CA3054544C (en) 2022-01-04
MX2012013858A (en) 2013-04-08
JP2016104192A (en) 2016-06-09
EP2575610A4 (en) 2015-12-09

Similar Documents

Publication Publication Date Title
US10231753B2 (en) Insertion guidance system for needles and medical components
US10342575B2 (en) Apparatus for use with needle insertion guidance system
US20210401456A1 (en) Apparatus for Use with Needle Insertion Guidance System
US9492097B2 (en) Needle length determination and calibration for insertion guidance system
US20200138332A1 (en) Needle Assembly Including an Aligned Magnetic Element
US10165962B2 (en) Integrated systems for intravascular placement of a catheter

Legal Events

Date Code Title Description
AS Assignment

Owner name: C.R. BARD, INC., NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BURNSIDE, EDDIE K.;POWERS, KELLY B.;MESSERLY, SHAYNE;AND OTHERS;SIGNING DATES FROM 20110606 TO 20110610;REEL/FRAME:026554/0484

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4