US20140170365A1 - Decorative insulative products for construction - Google Patents

Decorative insulative products for construction Download PDF

Info

Publication number
US20140170365A1
US20140170365A1 US14/235,851 US201114235851A US2014170365A1 US 20140170365 A1 US20140170365 A1 US 20140170365A1 US 201114235851 A US201114235851 A US 201114235851A US 2014170365 A1 US2014170365 A1 US 2014170365A1
Authority
US
United States
Prior art keywords
product
base layer
layers
insulative
inches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/235,851
Inventor
Mihai Gavris
Tiberius Ioan Oltean
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VALHALL LLC
Original Assignee
Owens Corning Intellectual Capital LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Owens Corning Intellectual Capital LLC filed Critical Owens Corning Intellectual Capital LLC
Assigned to OWENS CORNING INTELLECTUAL CAPITAL, LLC reassignment OWENS CORNING INTELLECTUAL CAPITAL, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GAVRIS, Mihai, OLTEAN, TIBERIUS IOAN
Publication of US20140170365A1 publication Critical patent/US20140170365A1/en
Assigned to VALHALL LLC reassignment VALHALL LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OWENS CORNING INTELLECTUAL CAPITAL LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/88Insulating elements for both heat and sound
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0875Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having a basic insulating layer and at least one covering layer
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/0875Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having a basic insulating layer and at least one covering layer
    • E04F13/0876Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements having a basic insulating layer and at least one covering layer the covering layer comprising mutual alignment or interlocking means
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F13/00Coverings or linings, e.g. for walls or ceilings
    • E04F13/07Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor
    • E04F13/08Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements
    • E04F13/18Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles
    • E04F13/185Coverings or linings, e.g. for walls or ceilings composed of covering or lining elements; Sub-structures therefor; Fastening means therefor composed of a plurality of similar covering or lining elements of organic plastics with or without reinforcements or filling materials or with an outer layer of organic plastics with or without reinforcements or filling materials; plastic tiles with an outer layer imitating natural stone, brick work, tiled surface or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23Sheet including cover or casing
    • Y10T428/233Foamed or expanded material encased
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249987With nonvoid component of specified composition
    • Y10T428/249991Synthetic resin or natural rubbers
    • Y10T428/249992Linear or thermoplastic

Definitions

  • the exterior and interior surfaces of a building can be covered by many materials including natural materials, manufactured materials and materials simulating natural or manufactured materials.
  • natural materials include wood and stone.
  • manufactured materials include siding, stucco and masonry.
  • materials simulating natural and manufactured materials include simulated stone, simulated wood, simulated siding, simulated stucco and simulated brick.
  • the exterior coverings of a building are configured to repel weather elements and protect the interior of the building or structure from the effects of weather. Additionally, the exterior and interior coverings of a building can present a desired aesthetic appearance to the building or structure.
  • Simulated materials can take many forms including the non-limiting examples of individual pieces or panels formed to represent the combination of individual pieces. Simulated materials can be applied to various types of building structures. Some examples of building structures configured to support simulated materials include wood or metal framing members (studs) or framing members covered by layers of sheet material (sheathing) and subsequently covered by one or more layers of insulation.
  • a decorative, insulative product configured for application to the interior or exterior surfaces of a building structure.
  • the product includes one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer configured to support the one or more layers.
  • the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • a method of manufacturing a decorative, insulative product configured for application to the interior or exterior surfaces of a building structure.
  • the method includes the steps of forming one or more layers within a mold, the one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and applying a base layer over the one or more layers configured to support the one or more layers.
  • the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • the building wall includes a plurality of framing members forming an exterior or interior surface and a plurality of decorative, insulative product covering the exterior or interior surface formed by the framing members.
  • the decorative, insulative product includes one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer configured to support the one or more layers forming the outer protective surface.
  • the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the exterior or interior surface of the building wall and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • FIG. 1 is a perspective view of a decorative, insulative product.
  • FIG. 2 is a front view, in elevation, of a plurality of decorative, insulative products of FIG. 1 combined such as to cover a building wall.
  • FIG. 3 is a perspective view of a plurality of decorative, insulative products of FIG. 1 combined such as to cover building corner.
  • FIG. 4 is a side view, in elevation, of a mold for forming the decorative, insulative product of FIG. 1 .
  • the description and figures disclose decorative, insulative products configured for forming portions of interior or external walls for a building and methods for the production of the decorative, insulative products.
  • the decorative, insulative products can be in the form of panels, corner pieces, or architectural trim pieces.
  • the decorative, insulative products are manufactured using a mold filled with various layers of materials.
  • a decorative, insulative product is shown generally at 10 .
  • the decorative, insulative product 10 (hereafter product 10 ) is configured to provide both a decorative siding material and an insulative siding material for application to external and internal surfaces of a building.
  • the product 10 includes layers of resin-based material applied over a base of foam-based insulative material.
  • the term “decorative”, as used herein, is defined to mean providing an ornamental appearance.
  • insulative material as used herein, is defined to mean any material configured to provide a thermal insulative value (R) or an acoustic insulative value.
  • product as used herein, is defined to mean any desired form including panels, corner pieces and trim pieces.
  • the term “layer”, as used herein, is defined to mean a quantity or thickness of material.
  • the term “resin-based”, as used herein, is defined to mean a material having a polymeric base.
  • the product 10 has a front face 12 , a rear face 14 , a top edge 16 , a bottom edge 18 , a first side edge 20 and a second side edge 22 .
  • the product 10 formed from a mold filled with various layers of material.
  • the front face 12 has a textured surface that simulates a plurality of natural stones.
  • the term “textured surface”, as used herein, is defined to mean an imitation of the tactile quality of a represented object.
  • the front face 12 can have textured surfaces that simulate other materials, such as the non-limiting example of brick, natural wood, stucco or siding.
  • the front face 12 can have a non-textured or smooth surface.
  • the term “smooth” surface is defined to mean a substantially continuous even surface.
  • the top edge 16 , bottom edge 18 and opposing first and second side edges 20 and 22 have a smooth surface.
  • the top edge 16 , bottom edge 18 and opposing first and second side edges 20 and 22 can have textured surfaces that simulate other materials as discussed above for the front face 12 .
  • the back face 14 of the product 10 has a non-textured surface.
  • the back face 14 can have any other texture, such as a scratch coat, conducive for application to a structural surface.
  • the product 10 has a length LP and a height HP.
  • the length LP of the product 10 is in a range of from about 12.0 inches (30.5 cm) to about 48.0 inches (121.9 cm) and the height HP of the product 10 is in a range of from about 4.0 inches (10.2 cm) to about 16.0 inches (40.6 cm).
  • the length LP of the product 10 can be less than about 12.0 inches (30.5 cm) or more than about 48.0 inches (121.9 cm) and the height HP of the product 10 can be less than about 4.0 inches (10.2 cm) or more than about 16.0 inches (40.6 cm).
  • the product 10 illustrated in FIG. 1 is shown as having a generally rectangular shape, it should be appreciated that in other embodiments, the product 10 can have other desired shapes, including the non-limiting example of an irregular shape.
  • the product 10 includes an outer layer 30 , an optional intermediate layer 32 and a base layer 34 .
  • the outer layer 30 is configured to provide a protective surface and decorative surface to the product 10 .
  • the product 10 can be applied to the exterior surfaces of a building.
  • the outer layer 30 of the product 10 can be in contact with environmental conditions such as rain, sleet, hail and snow. Accordingly, the outer layer 30 is configured to substantially protect the product from damage from the environmental conditions.
  • the outer layer 30 is configured to provide a decorative surface to the product 10 . Accordingly, the surface of the outer layer 30 can have various coloring agents and patterns.
  • the material forming the outer layer 30 is formed from an unsaturated polymeric-based material, such as the non-limiting example of polyester resin or epoxy resin. However, other desired materials can also be used, sufficient to provide a protective surface and decorative surface to the product 10 . As will be discussed in more detail below, in the illustrated embodiment, the outer layer 30 is formed by spraying the unsaturated polymeric-based material into a mold. However, in other embodiments, the outer layer 30 can be formed by other desired methods, including the use of castable unsaturated polymeric-based materials.
  • the outer layer 30 can include reinforcing materials (not shown).
  • the reinforcing materials are configured to provide the outer layer 30 with desired levels of hardness and puncture resistance.
  • the reinforcing materials can be fibrous materials such as the non-limiting examples of fiberglass or carbon fibers.
  • the reinforcing materials can be other materials, such as for example sand, quartz, ground up rubber tire and sawdust. In still other embodiments, other suitable reinforcing materials can be used.
  • the outer layer 30 can include various additives or coatings configured to impart desired characteristics to the product 10 .
  • the outer layer 30 can include a fire retardant material.
  • fire retardant material include aluminum hydroxide and boron.
  • Other additives or protective coatings can be added to tailor the outer layer 30 to specialized conditions, such as extreme exposures of ultraviolet light, solar radiation, and/or temperature.
  • the protective coating can also contain other additives such as algaecides or fungicides.
  • the outer layer 30 has a thickness T 1 .
  • the thickness T 1 of the outer layer 30 is configured to provide the outer layer 30 with desired levels of strength and puncture resistance.
  • the thickness T 1 is in a range of from about 0.02 inches (0.5 mm) to about 0.12 inches (3.0 mm). In other embodiments, the thickness T 1 of the outer layer can be less than about 0.02 inches (0.5 mm) or more than about 0.12 inches (3.0 mm).
  • the product 10 includes the optional intermediate layer 32 .
  • the optional intermediate layer 32 is configured to provide support to the outer layer 30 , such as to improve the rigidity and puncture resistance of the outer layer 30 .
  • the size and shape of the product 10 coupled with the configuration of the outer layer 30 , may provide the product 10 with sufficient rigidity and puncture resistance so as to eliminate the need for the intermediate layer 32 .
  • the material forming the intermediate layer 32 is an unsaturated polymeric-based material, such as the non-limiting example of polyester resin, epoxy resin or high density polyurethane foam.
  • unsaturated polymeric-based material such as the non-limiting example of polyester resin, epoxy resin or high density polyurethane foam.
  • other desired materials can also be used, sufficient to provide a support to the outer layer 30 .
  • the intermediate layer 32 is formed by spraying the unsaturated polymeric-based material into the mold and over the inner surface formed by the outer layer 30 .
  • the intermediate layer 32 can be formed by other desired methods, including the use of castable unsaturated polymeric-based materials.
  • the intermediate layer 32 can include reinforcing materials (not shown).
  • the reinforcing materials are configured to provide the intermediate layer 32 with desired levels of strength and puncture resistance.
  • the reinforcing materials can be the same reinforcing materials used for the outer layer 30 , such as fiberglass or carbon fibers. In other embodiments, the reinforcing materials can be other desired materials.
  • the intermediate layer 32 has a thickness T 2 .
  • the thickness T 2 of the intermediate layer 32 is configured to combine with the thickness T 1 of the outer layer 30 to provide the product 10 with layers of resin-based material having a total desired thickness.
  • the thickness T 2 is in a range of from about 0.12 inches (3.0 mm) to about 0.32 inches (8.0 mm).
  • the thickness T 2 of the intermediate layer 32 can be less than about 0.12 inches (3.0 mm) or more than about 0.32 inches (8.0 mm).
  • the thickness of the intermediate layer 32 can be varied as desired such as to improve the rigidity and puncture resistance of the outer layer 30 and to provide an overall thickness of the layers of resin-based material.
  • the combination of the thicknesses T 1 and T 2 of the outer layer 30 and the intermediate layer 32 is in a range of from about 0.14 inches (3.6 mm) to about 0.44 inches (11.2 mm). In other embodiments, the combination of the thicknesses T 1 and T 2 of the outer layer 30 and the intermediate layer 32 can be less than about 0.14 inches (3.6 mm) or more than about 0.44 inches (11.2 mm).
  • the base layer 34 is configured to provide a thermal insulative value (R) to the product 10 as well as an acoustic insulative value to the product 10 .
  • the term “insulative value”, as used herein, is defined to mean the ability of a material to substantially retard the flow of thermal energy. Factors contributing to the thermal and acoustic insulative value of the product 10 include the thicknesses of the base layer 34 and the materials used to form the base layer 32 .
  • the base layer 34 has a nominal or average thickness T 3 .
  • the thickness T 3 is in a range of from about 0.59 inches (15.0 mm) to about 11.8 inches (300.0 mm). In other embodiments, the thickness T 3 of the base layer 34 can be less than about 0.59 inches (15.0 mm) or more than about 11.8 inches (300.0 mm).
  • the material forming the base layer 34 is a polymeric-based foam material such as for example polyurethane foam.
  • the material forming the base layer 34 can be other materials or combinations of materials including the non-limiting example of polyurethane foam combined with expanded or extruded polystyrene foam. Accordingly, as one non-limiting example, a base layer 34 having a thickness T 3 of 0.79 inches (20 mm) and formed from a polymeric-based foam material yields a thermal insulative value (R) of about 20. Other combinations of the thickness of the base layer 34 and materials forming the base layer 34 can provide other desired insulative values (R).
  • a base layer 34 having a thickness T 3 of 0.79 inches (20 mm) and formed from a polymeric-based foam material yields a noise reduction coefficient (NRC) in a range of from about 0.2 to about 0.7.
  • the NRC is a single-number index determined in a lab test and used for rating how noise absorptive a particular material is. This industry standard ranges from zero (perfectly reflective) to 1 (perfectly absorptive). The NRC simply averages the mid-frequency sound absorption coefficients (250, 500, 1000 and 2000 Hertz) rounded to the nearest 5%.
  • Other combinations of the thickness of the base layer 34 and materials forming the base layer 34 can provide other desired acoustic insulative values.
  • the base layer 34 can include reinforcing materials (not shown).
  • the reinforcing materials are configured to provide the base layer 34 with desired levels of rigidity and puncture resistance.
  • the reinforcing materials can be fibrous materials such as the non-limiting examples of fiberglass or carbon fibers.
  • the reinforcing materials can be other materials, such as for example sand, quartz, ground up rubber tire and sawdust. In still other embodiments, other suitable reinforcing materials can be used.
  • the base layer 34 can include various additives or coatings configured to impart desired characteristics to the product 10 .
  • the base layer 34 can include a fire retardant material as discussed above.
  • a plurality of products 10 A- 10 G can be combined to form a wall 50 .
  • the products 10 A- 10 G can optionally be shaped in a jig-saw fashion such as to allow adjoining products 10 A- 10 G to mesh together in a more natural appearance and avoid the appearance of rectangularly-shaped panels simply stacked together.
  • the products 10 A- 10 G can have other shapes, such as the non-limiting examples of rectangular, square or irregular shape, sufficient to allow adjoining products 10 A- 10 G to mesh together in a natural appearance.
  • the adjoining side edges of the products 10 A- 10 G have substantially straight and smooth surfaces, thereby allowing a tight fit between the adjoining products 10 A- 10 G.
  • the adjoining side edges of the products 10 A- 10 G can have other surfaces sufficient to allow a tight fit between the adjoining products 10 A- 10 G.
  • an optional sealant 52 is positioned between the adjoining side edges of the products 10 A- 10 G.
  • the sealant 52 is configured to seal gaps formed between the adjoining side edges of the products 10 A- 10 G, thereby substantially preventing the flow of acoustic energy, thermal energy and moisture through the wall 50 .
  • the sealant 52 is a polymeric material, such as for example polyurethane.
  • the sealant 52 can be other desired materials.
  • wall 50 illustrated in FIG. 2 is shown to have a quantity of seven products 10 A- 10 G and have a generally rectangular shape, it should be appreciated that in other embodiments, a wall can have any desired number of products 10 and can have any desired shape, including an irregular shape.
  • a plurality of products 110 A- 110 E can be combined to form a corner 150 .
  • the products 110 A- 110 E can optionally be shaped in a jig-saw fashion such as to allow adjoining products 110 A- 110 E to mesh together in a more natural appearance and avoid the appearance of rectangularly-shaped panels simply stacked together.
  • the products 110 A- 110 E can have other shapes, such as the non-limiting examples of rectangular, square or irregular shape, sufficient to allow adjoining products 110 A- 110 E to mesh together in a natural appearance.
  • the adjoining side edges of the products 110 A- 110 E have substantially straight and smooth surfaces, thereby allowing a tight fit between the adjoining products 110 A- 110 E.
  • the adjoining side edges of the products 110 A- 110 E can have other surfaces sufficient to allow a tight fit between the adjoining products 110 A- 110 E.
  • an optional sealant 152 is positioned between the adjoining side edges of the products 110 A- 110 E.
  • the sealant 152 is the same as, or similar to, the sealant 52 illustrated in FIG. 2 and discussed above. In other embodiments, the sealant 152 can be different from the sealant 52 illustrated in FIG. 2 and discussed above.
  • corner 150 illustrated in FIG. 3 is shown to have a quantity of five products 110 A- 110 E, it should be appreciated that in other embodiments, the corner 150 can have any desired number of products. Also, while the corner 150 illustrated in FIG. 3 is shown such that the sides of the corner have a generally right-angle orientation to each other, it should be appreciated that in other embodiments, the sides of the corner can have any desired orientation to each other.
  • the production mold 60 is configured to manufacture the products 10 .
  • the production mold 60 includes a mold frame 62 and structural material 64 .
  • the production mold 60 forms a mold cavity 70 within the structural material 64 .
  • the mold cavity 70 is oriented such that the outer layer 30 of the product 10 is arranged in a substantially horizontal orientation.
  • the mold cavity 70 can be oriented such that the outer layer 30 of the product 10 is arranged in a substantially vertical orientation.
  • production mold 60 illustrated in FIG. 4 shows a lone mold cavity 70
  • the production mold 60 can include any desired quantity of mold cavities 70 .
  • the mold frame 62 is configured to support the structural material 64 .
  • the mold frame 62 is made of a rigid material, such as for example metal.
  • the mold frame 62 can be made of other rigid materials, such as reinforced plastic, sufficient to hold the structural material 64 .
  • the structural material 64 is positioned within the mold frame 62 and is configured to form the mold cavity 70 .
  • the structural material 64 is configured to support the load formed during the forming of the product 10 .
  • the structural material 64 is a flexible material and in other embodiments, the structural material 64 can be a rigid material.
  • Non-limiting examples of a flexible material forming the structural material 64 include silicone rubber and polyurethane.
  • Non-limiting examples of rigid materials forming the structural material 64 include epoxy-based resins, Teflon®, polypropylene and polyurethane-based resins.
  • other desired materials can be used to form the structural material 64 , sufficient to be a load supporting material capable of providing substantially rigid structural support during the formation of the product 10 .
  • the production mold 60 can be made from a solid block of material.
  • the production mold 60 material can be any material suitable to form a mold 60 containing mold cavities 70 .
  • suitable material include latex rubber, elastomers such as polyurethane, and thermoplastics such as polyvinyl chloride.
  • the production mold 60 is positioned on a mold support (not shown).
  • the mold support is configured to retain the production mold 60 is a rigid and fixed position during the mold process.
  • the mold support can have any desired structure.
  • the mold support can be supported by mold isolation mechanisms (not shown).
  • the mold isolation mechanisms are configured to isolate the production mold 60 as the production mold 60 is vibrated by an optional mold vibrator (not shown).
  • the mold isolation mechanisms can be any desired structure, mechanism or device, or combination thereof, such as for example elastomeric isolators or air bags, sufficient to isolate the production mold 60 as the production mold 60 is vibrated by the mold vibrator.
  • the mold support can be configured for vertical movement as may be required for positioning the production mold 60 relative to dosing apparatus (not shown).
  • the mold support can be connected to a hydraulic lift cylinder (not shown), configured to facilitate the vertical movement of the production mold 60 .
  • the mold support can be connected to other structure or mechanisms, such as for example pneumatic or electric cylinders, or rack and pinion mechanisms, sufficient to vertically raise and lower the mold support.
  • a mold vibrator (not shown) can be connected to the mold support.
  • the mold vibrator is configured to vibrate the production mold 60 . Vibration of the production mold 60 can promote a flow of the materials forming the layers 30 , 32 and 34 of the product 10 into all portions of the mold cavity 70 .
  • the mold vibrator can be a pneumatic, high-amplitude piston-type vibrator providing a liner force.
  • a pneumatic, piston-type vibrator is model VTS 50/10, marketed by Powtek Corporation, headquartered in Bensalem, Pa.
  • the mold vibrator can be other suitable vibrators, such as for example electric or rotary vibrators, sufficient to promote a flow of materials into all portions of the mold cavity 70 .
  • the production mold 60 is secured to the mold support.
  • the mold cavity 70 can be colored or painted with one or more layers of suitable stone-colored paints.
  • the paint can be applied with any desired manual or automatic mechanism or device.
  • the mold support including the production mold 60 is positioned relative to one or more dosing apparatus (not shown).
  • dosing is defined to mean the use of defined quantities of material to manufacture the products 10 .
  • the dosing apparatus is configured to allow a flow of material to the mold cavity 70 .
  • the dosing apparatus can have any desired structure, mechanism or device or combinations thereof.
  • a lone dosing apparatus can be configured to sequentially apply the material for the outer layer 30 and the intermediate layer 32 .
  • separate dosing apparatus can be used for application of the outer layer 30 and the intermediate layer 32 .
  • the dosing apparatus can be connected to supply hoppers (not shown).
  • the supply hoppers are configured to supply material for the layers 30 and 32 to the dosing apparatus.
  • the supply hoppers can be any desired structure, mechanism or device or combination thereof.
  • a desired quantity of material forming the outer layer 30 flows through the supply hopper and into the dosing apparatus.
  • the material forming the outer layer 30 can be sprayable, such as to be sprayed into the mold cavity 70 .
  • the material forming the outer layer 30 can be deposited or cast into the mold cavity 70 .
  • the quantity of material is sufficient when the formed outer layer 30 has a thickness T 1 in the range as discussed above.
  • the material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator. Activation of the mold vibrator can change the rheological properties of the material and allow the material to flow more easily into all portions of the mold cavity 70 .
  • the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to harden.
  • any desired apparatus and any desired methods can be used to facilitate the hardening of the material forming the outer layer 30 .
  • a desired quantity of material forming the intermediate layer 32 flows through a supply hopper and into a dosing apparatus.
  • the material forming the intermediate layer 32 can be sprayable, such as to be sprayed over the outer layer 30 in the mold cavity 70 .
  • the material forming the intermediate layer 32 can be deposited or cast over the outer layer 30 in the mold cavity 70 .
  • the quantity of material is sufficient when the formed intermediate layer 32 has a thickness T 2 in the range as discussed above.
  • the material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator, as discussed above.
  • the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to harden.
  • any desired apparatus and any desired methods can be used to facilitate the hardening of the material forming the intermediate layer 32 , such as the non-limiting example of a curing chamber.
  • the thicknesses T 1 and T 2 are determined using any desired method. If the thicknesses T 1 and T 2 are not sufficient to provide the thickness of the resin-based layers as discussed above, then additional material is added to the intermediate layer 32 using the apparatus and methods described above.
  • the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to set to a gel condition.
  • any desired apparatus and any desired methods can be used to facilitate the setting of the material forming the intermediate layer 32 .
  • the material forming the base layer 34 is deposited within the mold cavity 70 by a foam dosing apparatus (not shown).
  • a desired quantity of foam material forming the base layer 34 flows through the dosing apparatus.
  • the quantity of foam material is sufficient when the base layer 34 is formed having a thickness T 3 in the range as discussed above.
  • the deposited material forming the base layer 34 contacts and bonds with the intermediate layer 32 .
  • the foam material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator, as discussed above.
  • the top of the mold cavity 70 cavity can be enclosed by a cap (not shown).
  • the cap can be configured such as to control the vertical expansion of the foam material forming the base layer 34 .
  • the optional cap can be any desired structure, mechanism or device sufficient to control the vertical expansion of the foam material forming the base layer 34 .
  • the cap is optional, and that the decorative, insulative product 10 can be practiced without the cap.
  • the material in the mold cavity 70 becomes the product 10 .
  • the product 10 is removed from the mold cavity 70 in a suitable manner, including passing the production mold 60 over rollers (not shown).
  • any other method of removing the product 10 from the production mold 60 such as introducing a pressurized fluid such as air between the outer layer 30 and the structural material 64 , or vacuum absorption can be used.
  • a removal or release agent can be applied to the mold cavity 70 prior to the deposition of the materials.
  • the removal or release agent is configured to facilitate removal of the product 10 from the mold cavity 70 .
  • the removal or release agent can be any desired material or combination of materials.
  • the product 10 can be further thermally cured using any desired curing apparatus or method, such as for example a curing oven (not shown).
  • the optional curing can also be used to substantially reduce or eliminate any residual odors.
  • the base layer 34 can be formed by introducing foam material forming the base layer 34 into a mold (not shown) having a mold cavity.
  • the mold cavity can have a textured surface that simulates a plurality of natural stones.
  • the mold cavity can have textured surfaces that simulate other materials, such as the non-limiting example of brick, natural wood, stucco or siding.
  • the mold cavity can have a non-textured or smooth surface.
  • smooth surface is defined to mean a substantially continuous even surface.
  • the foam material can be the same as the foam material discussed above, however other foam materials can be used.
  • the foam material can be urged to flow into all portions of the mold cavity by activation of the mold vibrator, as discussed above, or by other desired methods including pressure formed by apparatus in the form of a press.
  • the foam material forming the base layer having the optional textured surface is removed from the mold cavity.
  • An outer layer and optionally an intermediate layer can be applied to the base layer.
  • the outer layer and optional intermediate layer can be applied to the base layer in any desired manner, including spraying, casting or depositing, using any desired structures, mechanisms or devices.
  • the outer layer and optional intermediate layer assume the optional textured surface of the base layer.
  • the outer layer can be aesthetically finished as desired.

Abstract

A decorative, insulative product configured for application to the interior or exterior surfaces of a building structure is provided. The product includes one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer configured to support the one or more layers. The one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.

Description

    BACKGROUND
  • The exterior and interior surfaces of a building can be covered by many materials including natural materials, manufactured materials and materials simulating natural or manufactured materials. Non-limiting examples of natural materials include wood and stone. Non-limiting examples of manufactured materials include siding, stucco and masonry. Examples of materials simulating natural and manufactured materials include simulated stone, simulated wood, simulated siding, simulated stucco and simulated brick.
  • The exterior coverings of a building are configured to repel weather elements and protect the interior of the building or structure from the effects of weather. Additionally, the exterior and interior coverings of a building can present a desired aesthetic appearance to the building or structure.
  • Simulated materials can take many forms including the non-limiting examples of individual pieces or panels formed to represent the combination of individual pieces. Simulated materials can be applied to various types of building structures. Some examples of building structures configured to support simulated materials include wood or metal framing members (studs) or framing members covered by layers of sheet material (sheathing) and subsequently covered by one or more layers of insulation.
  • It would be advantageous if simulated materials could be improved.
  • SUMMARY OF THE INVENTION
  • The above objects as well as other objects not specifically enumerated are achieved by a decorative, insulative product configured for application to the interior or exterior surfaces of a building structure. The product includes one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer configured to support the one or more layers. The one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • According to this invention there is also provided a method of manufacturing a decorative, insulative product configured for application to the interior or exterior surfaces of a building structure. The method includes the steps of forming one or more layers within a mold, the one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and applying a base layer over the one or more layers configured to support the one or more layers. The one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • According to this invention there is also provided a building wall covered with decorative, insulative product. The building wall includes a plurality of framing members forming an exterior or interior surface and a plurality of decorative, insulative product covering the exterior or interior surface formed by the framing members. The decorative, insulative product includes one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer configured to support the one or more layers forming the outer protective surface. The one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the exterior or interior surface of the building wall and the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
  • Various objects and advantages of this invention will become apparent to those skilled in the art from the following detailed description of the various embodiments, when read in light of the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a perspective view of a decorative, insulative product.
  • FIG. 2 is a front view, in elevation, of a plurality of decorative, insulative products of FIG. 1 combined such as to cover a building wall.
  • FIG. 3 is a perspective view of a plurality of decorative, insulative products of FIG. 1 combined such as to cover building corner.
  • FIG. 4 is a side view, in elevation, of a mold for forming the decorative, insulative product of FIG. 1.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention will now be described with occasional reference to the specific embodiments of the invention. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
  • Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. The terminology used in the description of the invention herein is for describing particular embodiments only and is not intended to be limiting of the invention. As used in the description of the invention and the appended claims, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • Unless otherwise indicated, all numbers expressing quantities of dimensions such as length, width, height, and so forth as used in the specification and claims are to be understood as being modified in all instances by the term “about.” Accordingly, unless otherwise indicated, the numerical properties set forth in the specification and claims are approximations that may vary depending on the desired properties sought to be obtained in embodiments of the present invention. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as possible. Any numerical values, however, inherently contain certain errors necessarily resulting from error found in their respective measurements.
  • The description and figures disclose decorative, insulative products configured for forming portions of interior or external walls for a building and methods for the production of the decorative, insulative products. The decorative, insulative products can be in the form of panels, corner pieces, or architectural trim pieces. As will be discussed below, the decorative, insulative products are manufactured using a mold filled with various layers of materials.
  • Referring now to the figures, a decorative, insulative product is shown generally at 10. Generally, the decorative, insulative product 10 (hereafter product 10) is configured to provide both a decorative siding material and an insulative siding material for application to external and internal surfaces of a building. The product 10 includes layers of resin-based material applied over a base of foam-based insulative material. The term “decorative”, as used herein, is defined to mean providing an ornamental appearance. The term “insulative material”, as used herein, is defined to mean any material configured to provide a thermal insulative value (R) or an acoustic insulative value. The term “product”, as used herein, is defined to mean any desired form including panels, corner pieces and trim pieces. The term “layer”, as used herein, is defined to mean a quantity or thickness of material. The term “resin-based”, as used herein, is defined to mean a material having a polymeric base.
  • As shown in FIG. 1, the product 10 has a front face 12, a rear face 14, a top edge 16, a bottom edge 18, a first side edge 20 and a second side edge 22. As will be explained in more detail below, the product 10 formed from a mold filled with various layers of material. In the illustrated embodiment, the front face 12 has a textured surface that simulates a plurality of natural stones. The term “textured surface”, as used herein, is defined to mean an imitation of the tactile quality of a represented object. In other embodiments, the front face 12 can have textured surfaces that simulate other materials, such as the non-limiting example of brick, natural wood, stucco or siding. However, it should be appreciated that still in other embodiments, the front face 12 can have a non-textured or smooth surface. The term “smooth” surface, as used herein, is defined to mean a substantially continuous even surface.
  • In the embodiment illustrated in FIG. 1, the top edge 16, bottom edge 18 and opposing first and second side edges 20 and 22 have a smooth surface. Alternatively, in other embodiments, the top edge 16, bottom edge 18 and opposing first and second side edges 20 and 22 can have textured surfaces that simulate other materials as discussed above for the front face 12.
  • In the illustrated embodiment, the back face 14 of the product 10 has a non-textured surface. Alternatively, the back face 14 can have any other texture, such as a scratch coat, conducive for application to a structural surface.
  • Referring again to FIG. 1, the product 10 has a length LP and a height HP. In the illustrated embodiment, the length LP of the product 10 is in a range of from about 12.0 inches (30.5 cm) to about 48.0 inches (121.9 cm) and the height HP of the product 10 is in a range of from about 4.0 inches (10.2 cm) to about 16.0 inches (40.6 cm). In other embodiments, the length LP of the product 10 can be less than about 12.0 inches (30.5 cm) or more than about 48.0 inches (121.9 cm) and the height HP of the product 10 can be less than about 4.0 inches (10.2 cm) or more than about 16.0 inches (40.6 cm). While the product 10 illustrated in FIG. 1 is shown as having a generally rectangular shape, it should be appreciated that in other embodiments, the product 10 can have other desired shapes, including the non-limiting example of an irregular shape.
  • Referring again to FIG. 1, the product 10 includes an outer layer 30, an optional intermediate layer 32 and a base layer 34.
  • The outer layer 30 is configured to provide a protective surface and decorative surface to the product 10. In certain instances, the product 10 can be applied to the exterior surfaces of a building. Under these circumstances, the outer layer 30 of the product 10 can be in contact with environmental conditions such as rain, sleet, hail and snow. Accordingly, the outer layer 30 is configured to substantially protect the product from damage from the environmental conditions.
  • As discussed above, the outer layer 30 is configured to provide a decorative surface to the product 10. Accordingly, the surface of the outer layer 30 can have various coloring agents and patterns.
  • In the illustrated embodiment, the material forming the outer layer 30 is formed from an unsaturated polymeric-based material, such as the non-limiting example of polyester resin or epoxy resin. However, other desired materials can also be used, sufficient to provide a protective surface and decorative surface to the product 10. As will be discussed in more detail below, in the illustrated embodiment, the outer layer 30 is formed by spraying the unsaturated polymeric-based material into a mold. However, in other embodiments, the outer layer 30 can be formed by other desired methods, including the use of castable unsaturated polymeric-based materials.
  • Optionally, the outer layer 30 can include reinforcing materials (not shown). The reinforcing materials are configured to provide the outer layer 30 with desired levels of hardness and puncture resistance. In certain embodiments, the reinforcing materials can be fibrous materials such as the non-limiting examples of fiberglass or carbon fibers. In other embodiments, the reinforcing materials can be other materials, such as for example sand, quartz, ground up rubber tire and sawdust. In still other embodiments, other suitable reinforcing materials can be used.
  • Optionally, the outer layer 30 can include various additives or coatings configured to impart desired characteristics to the product 10. As one non-limiting example, the outer layer 30 can include a fire retardant material. Examples of fire retardant material include aluminum hydroxide and boron. Other additives or protective coatings can be added to tailor the outer layer 30 to specialized conditions, such as extreme exposures of ultraviolet light, solar radiation, and/or temperature. The protective coating can also contain other additives such as algaecides or fungicides.
  • The outer layer 30 has a thickness T1. The thickness T1 of the outer layer 30 is configured to provide the outer layer 30 with desired levels of strength and puncture resistance. In the illustrated embodiment, the thickness T1 is in a range of from about 0.02 inches (0.5 mm) to about 0.12 inches (3.0 mm). In other embodiments, the thickness T1 of the outer layer can be less than about 0.02 inches (0.5 mm) or more than about 0.12 inches (3.0 mm).
  • Referring again to embodiment illustrated in FIG. 1, the product 10 includes the optional intermediate layer 32. The optional intermediate layer 32 is configured to provide support to the outer layer 30, such as to improve the rigidity and puncture resistance of the outer layer 30. However, it should be appreciated that in other embodiments, the size and shape of the product 10, coupled with the configuration of the outer layer 30, may provide the product 10 with sufficient rigidity and puncture resistance so as to eliminate the need for the intermediate layer 32.
  • In the illustrated embodiment, the material forming the intermediate layer 32 is an unsaturated polymeric-based material, such as the non-limiting example of polyester resin, epoxy resin or high density polyurethane foam. However, other desired materials can also be used, sufficient to provide a support to the outer layer 30. As will also be discussed in more detail below, in the illustrated embodiment, the intermediate layer 32 is formed by spraying the unsaturated polymeric-based material into the mold and over the inner surface formed by the outer layer 30. However, in other embodiments, the intermediate layer 32 can be formed by other desired methods, including the use of castable unsaturated polymeric-based materials.
  • Optionally, the intermediate layer 32 can include reinforcing materials (not shown). The reinforcing materials are configured to provide the intermediate layer 32 with desired levels of strength and puncture resistance. In certain embodiments, the reinforcing materials can be the same reinforcing materials used for the outer layer 30, such as fiberglass or carbon fibers. In other embodiments, the reinforcing materials can be other desired materials.
  • The intermediate layer 32 has a thickness T2. The thickness T2 of the intermediate layer 32 is configured to combine with the thickness T1 of the outer layer 30 to provide the product 10 with layers of resin-based material having a total desired thickness. In the illustrated embodiment, the thickness T2 is in a range of from about 0.12 inches (3.0 mm) to about 0.32 inches (8.0 mm). In other embodiments, the thickness T2 of the intermediate layer 32 can be less than about 0.12 inches (3.0 mm) or more than about 0.32 inches (8.0 mm). Optionally, if needed, the thickness of the intermediate layer 32 can be varied as desired such as to improve the rigidity and puncture resistance of the outer layer 30 and to provide an overall thickness of the layers of resin-based material.
  • In the illustrated embodiment, the combination of the thicknesses T1 and T2 of the outer layer 30 and the intermediate layer 32 is in a range of from about 0.14 inches (3.6 mm) to about 0.44 inches (11.2 mm). In other embodiments, the combination of the thicknesses T1 and T2 of the outer layer 30 and the intermediate layer 32 can be less than about 0.14 inches (3.6 mm) or more than about 0.44 inches (11.2 mm).
  • Referring again to FIG. 1, the base layer 34 is configured to provide a thermal insulative value (R) to the product 10 as well as an acoustic insulative value to the product 10. The term “insulative value”, as used herein, is defined to mean the ability of a material to substantially retard the flow of thermal energy. Factors contributing to the thermal and acoustic insulative value of the product 10 include the thicknesses of the base layer 34 and the materials used to form the base layer 32.
  • The base layer 34 has a nominal or average thickness T3. In the illustrated embodiment, the thickness T3 is in a range of from about 0.59 inches (15.0 mm) to about 11.8 inches (300.0 mm). In other embodiments, the thickness T3 of the base layer 34 can be less than about 0.59 inches (15.0 mm) or more than about 11.8 inches (300.0 mm).
  • In the illustrated embodiment, the material forming the base layer 34 is a polymeric-based foam material such as for example polyurethane foam. In other embodiments, the material forming the base layer 34 can be other materials or combinations of materials including the non-limiting example of polyurethane foam combined with expanded or extruded polystyrene foam. Accordingly, as one non-limiting example, a base layer 34 having a thickness T3 of 0.79 inches (20 mm) and formed from a polymeric-based foam material yields a thermal insulative value (R) of about 20. Other combinations of the thickness of the base layer 34 and materials forming the base layer 34 can provide other desired insulative values (R).
  • In a similar manner, a base layer 34 having a thickness T3 of 0.79 inches (20 mm) and formed from a polymeric-based foam material yields a noise reduction coefficient (NRC) in a range of from about 0.2 to about 0.7. The NRC is a single-number index determined in a lab test and used for rating how noise absorptive a particular material is. This industry standard ranges from zero (perfectly reflective) to 1 (perfectly absorptive). The NRC simply averages the mid-frequency sound absorption coefficients (250, 500, 1000 and 2000 Hertz) rounded to the nearest 5%. Other combinations of the thickness of the base layer 34 and materials forming the base layer 34 can provide other desired acoustic insulative values.
  • Optionally, the base layer 34 can include reinforcing materials (not shown). The reinforcing materials are configured to provide the base layer 34 with desired levels of rigidity and puncture resistance. In certain embodiments, the reinforcing materials can be fibrous materials such as the non-limiting examples of fiberglass or carbon fibers. In other embodiments, the reinforcing materials can be other materials, such as for example sand, quartz, ground up rubber tire and sawdust. In still other embodiments, other suitable reinforcing materials can be used.
  • Optionally, the base layer 34 can include various additives or coatings configured to impart desired characteristics to the product 10. As one non-limiting example, the base layer 34 can include a fire retardant material as discussed above.
  • Referring now to FIG. 2, a plurality of products 10A-10G can be combined to form a wall 50. In the embodiment as shown in FIG. 2, the products 10A-10G can optionally be shaped in a jig-saw fashion such as to allow adjoining products 10A-10G to mesh together in a more natural appearance and avoid the appearance of rectangularly-shaped panels simply stacked together. In other embodiments, the products 10A-10G can have other shapes, such as the non-limiting examples of rectangular, square or irregular shape, sufficient to allow adjoining products 10A-10G to mesh together in a natural appearance.
  • In the illustrated embodiment, the adjoining side edges of the products 10A-10G have substantially straight and smooth surfaces, thereby allowing a tight fit between the adjoining products 10A-10G. In other embodiments, the adjoining side edges of the products 10A-10G can have other surfaces sufficient to allow a tight fit between the adjoining products 10A-10G.
  • As shown in FIG. 2, an optional sealant 52 is positioned between the adjoining side edges of the products 10A-10G. The sealant 52 is configured to seal gaps formed between the adjoining side edges of the products 10A-10G, thereby substantially preventing the flow of acoustic energy, thermal energy and moisture through the wall 50. In the illustrated embodiment, the sealant 52 is a polymeric material, such as for example polyurethane. However, the sealant 52 can be other desired materials.
  • While the wall 50 illustrated in FIG. 2 is shown to have a quantity of seven products 10A-10G and have a generally rectangular shape, it should be appreciated that in other embodiments, a wall can have any desired number of products 10 and can have any desired shape, including an irregular shape.
  • Referring now to FIG. 3, a plurality of products 110A-110E can be combined to form a corner 150. In the embodiment as shown in FIG. 3, the products 110A-110E can optionally be shaped in a jig-saw fashion such as to allow adjoining products 110A-110E to mesh together in a more natural appearance and avoid the appearance of rectangularly-shaped panels simply stacked together. In other embodiments, the products 110A-110E can have other shapes, such as the non-limiting examples of rectangular, square or irregular shape, sufficient to allow adjoining products 110A-110E to mesh together in a natural appearance.
  • In the illustrated embodiment, the adjoining side edges of the products 110A-110E have substantially straight and smooth surfaces, thereby allowing a tight fit between the adjoining products 110A-110E. In other embodiments, the adjoining side edges of the products 110A-110E can have other surfaces sufficient to allow a tight fit between the adjoining products 110A-110E.
  • As shown in FIG. 3, an optional sealant 152 is positioned between the adjoining side edges of the products 110A-110E. In the illustrated embodiment, the sealant 152 is the same as, or similar to, the sealant 52 illustrated in FIG. 2 and discussed above. In other embodiments, the sealant 152 can be different from the sealant 52 illustrated in FIG. 2 and discussed above.
  • While the corner 150 illustrated in FIG. 3 is shown to have a quantity of five products 110A-110E, it should be appreciated that in other embodiments, the corner 150 can have any desired number of products. Also, while the corner 150 illustrated in FIG. 3 is shown such that the sides of the corner have a generally right-angle orientation to each other, it should be appreciated that in other embodiments, the sides of the corner can have any desired orientation to each other.
  • Referring now to FIG. 4, a production mold is illustrated generally at 60. The production mold 60 is configured to manufacture the products 10. The production mold 60 includes a mold frame 62 and structural material 64.
  • As illustrated in FIG. 4, the production mold 60 forms a mold cavity 70 within the structural material 64. In the illustrated embodiment, the mold cavity 70 is oriented such that the outer layer 30 of the product 10 is arranged in a substantially horizontal orientation. Alternatively, in other embodiments the mold cavity 70 can be oriented such that the outer layer 30 of the product 10 is arranged in a substantially vertical orientation.
  • While the production mold 60 illustrated in FIG. 4 shows a lone mold cavity 70, it should be appreciated that the production mold 60 can include any desired quantity of mold cavities 70.
  • The mold frame 62 is configured to support the structural material 64. In the illustrated embodiment, the mold frame 62 is made of a rigid material, such as for example metal. In other embodiments, the mold frame 62 can be made of other rigid materials, such as reinforced plastic, sufficient to hold the structural material 64.
  • Referring again to FIG. 4, the structural material 64 is positioned within the mold frame 62 and is configured to form the mold cavity 70. The structural material 64 is configured to support the load formed during the forming of the product 10. In certain embodiments, the structural material 64 is a flexible material and in other embodiments, the structural material 64 can be a rigid material. Non-limiting examples of a flexible material forming the structural material 64 include silicone rubber and polyurethane. Non-limiting examples of rigid materials forming the structural material 64 include epoxy-based resins, Teflon®, polypropylene and polyurethane-based resins. In still other embodiments, other desired materials can be used to form the structural material 64, sufficient to be a load supporting material capable of providing substantially rigid structural support during the formation of the product 10.
  • In other embodiments, the production mold 60 can be made from a solid block of material. The production mold 60 material can be any material suitable to form a mold 60 containing mold cavities 70. Non-limiting examples of suitable material include latex rubber, elastomers such as polyurethane, and thermoplastics such as polyvinyl chloride.
  • Having described the structure of the production mold 60, the process for forming the product 10 will now be described. Initially, the production mold 60 is positioned on a mold support (not shown). The mold support is configured to retain the production mold 60 is a rigid and fixed position during the mold process. The mold support can have any desired structure.
  • Optionally, the mold support can be supported by mold isolation mechanisms (not shown). The mold isolation mechanisms are configured to isolate the production mold 60 as the production mold 60 is vibrated by an optional mold vibrator (not shown). The mold isolation mechanisms can be any desired structure, mechanism or device, or combination thereof, such as for example elastomeric isolators or air bags, sufficient to isolate the production mold 60 as the production mold 60 is vibrated by the mold vibrator.
  • Optionally, the mold support can be configured for vertical movement as may be required for positioning the production mold 60 relative to dosing apparatus (not shown). In certain embodiments, the mold support can be connected to a hydraulic lift cylinder (not shown), configured to facilitate the vertical movement of the production mold 60. In other embodiments, the mold support can be connected to other structure or mechanisms, such as for example pneumatic or electric cylinders, or rack and pinion mechanisms, sufficient to vertically raise and lower the mold support.
  • Referring again to FIG. 4, optionally, a mold vibrator (not shown) can be connected to the mold support. The mold vibrator is configured to vibrate the production mold 60. Vibration of the production mold 60 can promote a flow of the materials forming the layers 30, 32 and 34 of the product 10 into all portions of the mold cavity 70. In certain embodiments, the mold vibrator can be a pneumatic, high-amplitude piston-type vibrator providing a liner force. One example of a pneumatic, piston-type vibrator is model VTS 50/10, marketed by Powtek Corporation, headquartered in Bensalem, Pa. In other embodiments, the mold vibrator can be other suitable vibrators, such as for example electric or rotary vibrators, sufficient to promote a flow of materials into all portions of the mold cavity 70.
  • In operation, the production mold 60 is secured to the mold support. Optionally, the mold cavity 70 can be colored or painted with one or more layers of suitable stone-colored paints. The paint can be applied with any desired manual or automatic mechanism or device.
  • Next the mold support, including the production mold 60 is positioned relative to one or more dosing apparatus (not shown). The term “dosing” as used herein, is defined to mean the use of defined quantities of material to manufacture the products 10. Generally, the dosing apparatus is configured to allow a flow of material to the mold cavity 70. The dosing apparatus can have any desired structure, mechanism or device or combinations thereof. In certain embodiments, a lone dosing apparatus can be configured to sequentially apply the material for the outer layer 30 and the intermediate layer 32. In other embodiments, separate dosing apparatus can be used for application of the outer layer 30 and the intermediate layer 32.
  • Optionally, the dosing apparatus can be connected to supply hoppers (not shown). The supply hoppers are configured to supply material for the layers 30 and 32 to the dosing apparatus. The supply hoppers can be any desired structure, mechanism or device or combination thereof.
  • Next, a desired quantity of material forming the outer layer 30 flows through the supply hopper and into the dosing apparatus. As discussed earlier, in certain embodiments the material forming the outer layer 30 can be sprayable, such as to be sprayed into the mold cavity 70. In other embodiments, the material forming the outer layer 30 can be deposited or cast into the mold cavity 70. The quantity of material is sufficient when the formed outer layer 30 has a thickness T1 in the range as discussed above. Optionally, the material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator. Activation of the mold vibrator can change the rheological properties of the material and allow the material to flow more easily into all portions of the mold cavity 70.
  • After the mold cavity 70 has received the desired quantity of material forming the outer layer 30, the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to harden. Optionally, any desired apparatus and any desired methods can be used to facilitate the hardening of the material forming the outer layer 30.
  • Next, a desired quantity of material forming the intermediate layer 32 flows through a supply hopper and into a dosing apparatus. As discussed earlier, in certain embodiments the material forming the intermediate layer 32 can be sprayable, such as to be sprayed over the outer layer 30 in the mold cavity 70. In other embodiments, the material forming the intermediate layer 32 can be deposited or cast over the outer layer 30 in the mold cavity 70. The quantity of material is sufficient when the formed intermediate layer 32 has a thickness T2 in the range as discussed above. Optionally, the material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator, as discussed above.
  • After the mold cavity 70 has received the desired quantity of material forming the intermediate layer 32, the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to harden. Optionally, any desired apparatus and any desired methods can be used to facilitate the hardening of the material forming the intermediate layer 32, such as the non-limiting example of a curing chamber.
  • Prior to the hardening of the intermediate layer 32, the thicknesses T1 and T2 are determined using any desired method. If the thicknesses T1 and T2 are not sufficient to provide the thickness of the resin-based layers as discussed above, then additional material is added to the intermediate layer 32 using the apparatus and methods described above.
  • After the mold cavity 70 has received the desired quantity of material forming the intermediate layer 32, the dosing apparatus and the mold vibrator are deactivated and the material within the mold cavity 70 is allowed to set to a gel condition. Optionally, any desired apparatus and any desired methods can be used to facilitate the setting of the material forming the intermediate layer 32.
  • After the intermediate layer 32 has set to a gel condition, the material forming the base layer 34 is deposited within the mold cavity 70 by a foam dosing apparatus (not shown). A desired quantity of foam material forming the base layer 34 flows through the dosing apparatus. The quantity of foam material is sufficient when the base layer 34 is formed having a thickness T3 in the range as discussed above. The deposited material forming the base layer 34 contacts and bonds with the intermediate layer 32. Optionally, the foam material can be urged to flow into all portions of the mold cavity 70 by activation of the mold vibrator, as discussed above.
  • Optionally, the top of the mold cavity 70 cavity can be enclosed by a cap (not shown). The cap can be configured such as to control the vertical expansion of the foam material forming the base layer 34. The optional cap can be any desired structure, mechanism or device sufficient to control the vertical expansion of the foam material forming the base layer 34. However, it should be understood that the cap is optional, and that the decorative, insulative product 10 can be practiced without the cap.
  • Upon hardening of the base layer 34, the outer layer 30, and intermediate layer 32, the material in the mold cavity 70 becomes the product 10. After hardening, the product 10 is removed from the mold cavity 70 in a suitable manner, including passing the production mold 60 over rollers (not shown). Alternatively, any other method of removing the product 10 from the production mold 60, such as introducing a pressurized fluid such as air between the outer layer 30 and the structural material 64, or vacuum absorption can be used.
  • Referring again to FIG. 4, optionally, a removal or release agent can be applied to the mold cavity 70 prior to the deposition of the materials. The removal or release agent is configured to facilitate removal of the product 10 from the mold cavity 70. The removal or release agent can be any desired material or combination of materials.
  • Optionally, after the product 10 has been removed from the mold 60, the product 10 can be further thermally cured using any desired curing apparatus or method, such as for example a curing oven (not shown). In certain embodiments, the optional curing can also be used to substantially reduce or eliminate any residual odors.
  • While the production mold 60 illustrated in FIG. 4 has been described above as one method of forming the product 10, it should be appreciated that other methods of manufacturing the product 10 can be used. As one non-limiting example of another method of forming the product 10, the following production steps can be used. First, the base layer 34 can be formed by introducing foam material forming the base layer 34 into a mold (not shown) having a mold cavity. The mold cavity can have a textured surface that simulates a plurality of natural stones. In other embodiments, the mold cavity can have textured surfaces that simulate other materials, such as the non-limiting example of brick, natural wood, stucco or siding. However, it should be appreciated that still in other embodiments, the mold cavity can have a non-textured or smooth surface. The term “smooth” surface, as used herein, is defined to mean a substantially continuous even surface.
  • The foam material can be the same as the foam material discussed above, however other foam materials can be used. Optionally, the foam material can be urged to flow into all portions of the mold cavity by activation of the mold vibrator, as discussed above, or by other desired methods including pressure formed by apparatus in the form of a press.
  • Upon hardening, the foam material forming the base layer having the optional textured surface, is removed from the mold cavity. An outer layer and optionally an intermediate layer can be applied to the base layer. The outer layer and optional intermediate layer can be applied to the base layer in any desired manner, including spraying, casting or depositing, using any desired structures, mechanisms or devices. Upon application, the outer layer and optional intermediate layer assume the optional textured surface of the base layer. Optionally, the outer layer can be aesthetically finished as desired.
  • The principle of the decorative, insulative product and methods for the production of the decorative, insulative product have been described in certain embodiments. However, it should be noted that the decorative, insulative product and methods for the production of the decorative, insulative product may be practiced otherwise than as specifically illustrated and described without departing from its scope.

Claims (23)

1. A decorative, insulative product configured for application to an interior or exterior wall of a building structure, the product comprising: one or more layers configured to form a rigid, puncture resistant outer protective surface for the product; and
a base layer co-molded with and configured to support the one or more layers forming the outer protective surface;
wherein the one or more layers forming the outer protective surface covers an entire front face of the base layer;
wherein the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure; and
wherein the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
2. The product of claim 1, wherein the one or more layers forming the outer protective surface are formed from unsaturated polymeric-based materials.
3. (canceled)
4. (canceled)
5. The product of claim 1, wherein the one or more layers forming the outer protective surface have a thickness in a range of from about 0.02 inches (0.5 mm) to about 0.44 inches (11.2 mm).
6. The product of claim 1, wherein the one or more layers are configured to have a textured surface that simulates a plurality of natural stones.
7. The product of claim 1, wherein the base layer is formed from polymeric-based foam materials.
8. The product of claim 1, wherein the base layer has an average thickness in a range of from about 0.59 inches (15.0 mm) to about 11.8 inches (300.0 mm).
9. The product of claim 1, wherein the base layer provides an insulative value (R) of 20 at an average thickness of 0.79 inches (20.0 mm).
10. The product of claim 1, wherein the base layer and the one or more layers forming the outer surface combine to product a noise reduction coefficient in a range of from about 0.2 to about 0.7.
11. A method of manufacturing a decorative, insulative product configured for application to the interior or exterior surfaces of a building structure, the method comprising the steps of:
forming one or more layers within a mold, the one or more layers configured to form a rigid, puncture resistant outer protective surface for the product; and
applying a base layer in the mold over the one or more layers configured to support the one or more layers;
wherein the one or more layers forming the protective outer surface covers an entire front face of the base layer;
wherein the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the building or structure; and
wherein the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
12. The method of claim 11, wherein the one or more layers forming the outer protective surface are formed from unsaturated polymeric-based materials.
13. (canceled)
14. (canceled)
15. The method of claim 11, wherein the one or more layers forming the outer protective surface have a thickness in a range of from about 0.02 inches (0.5 mm) to about 0.44 inches (11.2 mm).
16. The method of claim 11, wherein the one or more layers are configured to have a textured surface that simulates a plurality of natural stones.
17. The method of claim 11, wherein the base layer is formed from polymeric-based foam materials.
18. The method of claim 11, wherein the base layer has an average thickness in a range of from about 0.59 inches (15.0 mm) to about 11.8 inches (300.0 mm).
19. The product of claim 11, wherein the base layer provides an insulative value (R) of 20 at an average thickness of 0.79 inches (20.0 mm).
20. A building wall covered with decorative, insulative product, the building wall comprising:
a plurality of framing members forming an exterior or interior surface; and
a plurality of decorative, insulative product covering the exterior or interior surface formed by the framing members, the decorative, insulative product including one or more layers configured to form a rigid, puncture resistant outer protective surface for the product and a base layer co-molded and configured to support the one or more layers forming the outer protective surface;
wherein the one or more layers forming the outer protective surface covers an entire front face of the base layer;
wherein the one or more layers forming the outer surface of the product are configured to provide a desired aesthetic appearance to the exterior or interior surface of the building wall; and
wherein the base layer is configured to provide a thermal insulative value and an acoustic insulative value to the product.
21. The building wall of claim 20 wherein the outer protective surface covers the top edge and the bottom edge of the base layer.
22. The product of claim 1 wherein the outer protective surface covers a top edge and a bottom edge of the base layer.
23. The method of claim 11 wherein the outer protective surface covers a top edge and a bottom edge of the base layer.
US14/235,851 2011-08-10 2011-08-10 Decorative insulative products for construction Abandoned US20140170365A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/047219 WO2013022445A1 (en) 2011-08-10 2011-08-10 Decorative insulative products for construction

Publications (1)

Publication Number Publication Date
US20140170365A1 true US20140170365A1 (en) 2014-06-19

Family

ID=47668741

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/235,851 Abandoned US20140170365A1 (en) 2011-08-10 2011-08-10 Decorative insulative products for construction

Country Status (7)

Country Link
US (1) US20140170365A1 (en)
EP (1) EP2742194A4 (en)
CN (1) CN104040088A (en)
CA (1) CA2844657A1 (en)
IL (1) IL230740A0 (en)
RU (1) RU2014108210A (en)
WO (1) WO2013022445A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018009324A (en) * 2016-07-12 2018-01-18 旭トステム外装株式会社 Wall Panel
US20180056559A1 (en) * 2013-03-15 2018-03-01 Certainteed Corporation Variegated building product and method
FR3069561A1 (en) * 2017-07-26 2019-02-01 Orsol Production SET OF STONE MODELS FOR DECORATIVE DECORATIVE
US20190301178A1 (en) * 2018-03-30 2019-10-03 Certainteed Corporation Individual polymer masonry panels, and methods of manufacture and installation
US10557272B1 (en) * 2018-12-21 2020-02-11 Associated Materials, Llc Siding panel assembly
US10753101B1 (en) * 2016-12-09 2020-08-25 Baton, LLC Artificial lightweight stone
US11007690B2 (en) 2013-03-15 2021-05-18 Certainteed Corporation System, method and article for siding corner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3347544B1 (en) * 2015-09-01 2022-06-08 Dryvit Systems, Inc Exterior polymer-based brick building material

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099948A (en) * 1997-05-08 2000-08-08 Henkel Corporation Encapsulation of pre-expanded elastomeric foam with a thermoplastic
US6113199A (en) * 1997-11-20 2000-09-05 Kewaunee Scientific Corporation Laboratory countertop
US6280551B1 (en) * 2000-05-30 2001-08-28 Patent Holding Company Method and system for producing a 3-D deep-drawn article using a thermoplastic sandwich material
US20030198775A1 (en) * 2002-04-19 2003-10-23 Roth Arthur J. Composite structural material and method of making same
US20070141316A1 (en) * 2005-12-19 2007-06-21 Mcgrath Ralph D Tri-extruded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US20090308001A1 (en) * 2008-06-16 2009-12-17 Shaobing Wu Substrate and the application
US20110185662A1 (en) * 2003-10-24 2011-08-04 Exterior Portfolio, Llc Foaming of simulated stone structures
US8158249B2 (en) * 2007-05-21 2012-04-17 Featherlyte, Llc Multi-layered foam furniture method and apparatus
US8181580B2 (en) * 2004-12-29 2012-05-22 Coda Capital Mangement Group, LLC Composite structural material and method of making the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3940528A (en) * 1965-05-14 1976-02-24 Roberts Arthur H Rigid plastics tile with textured surface
US3646715A (en) * 1970-04-06 1972-03-07 Du Pont Canada Prefabricated building panel
EP0314625B1 (en) * 1987-10-30 1990-11-07 Ciba-Geigy Ag Composite panel for cladding of buildings
US4818603A (en) * 1987-11-12 1989-04-04 Ethyl Corporation Thermal-acoustic insulation composite panel
CN1131143C (en) * 1997-12-10 2003-12-17 王品伦 Fireproof and waterproof light reinforced decorative board
US20020178672A1 (en) * 2000-09-25 2002-12-05 Robinson Michael G. Composite hybrid resin panels, molded parts and filler enhanced polymers therefor
CN1186511C (en) * 2003-05-06 2005-01-26 巢启 Resin faced decoration material with stonelike face for building and making method thereof
US20050064128A1 (en) * 2003-06-24 2005-03-24 Lane John Clinton Method and apparatus for forming building panels and components which simulate man-made tiles and natural stones
US20090062413A1 (en) * 2003-10-24 2009-03-05 Crane Building Products Llc Composition of fillers with plastics for producing superior building materials
CN101124087A (en) * 2005-02-23 2008-02-13 大日本油墨化学工业株式会社 Laminated sheet for heat molding, molding, injection molding and its manufacturing process
ES2294955B1 (en) * 2006-09-29 2009-08-07 Purstone Systems, S.L PROCEDURE FOR OBTAINING A PREFABRICATED PANEL FOR DECORATION OF OUTDOORS AND INTERIOR.
CN101086183A (en) * 2007-07-31 2007-12-12 任丙辉 Multifunctional external wall panel and its mounting method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6099948A (en) * 1997-05-08 2000-08-08 Henkel Corporation Encapsulation of pre-expanded elastomeric foam with a thermoplastic
US6113199A (en) * 1997-11-20 2000-09-05 Kewaunee Scientific Corporation Laboratory countertop
US6280551B1 (en) * 2000-05-30 2001-08-28 Patent Holding Company Method and system for producing a 3-D deep-drawn article using a thermoplastic sandwich material
US20030198775A1 (en) * 2002-04-19 2003-10-23 Roth Arthur J. Composite structural material and method of making same
US20110185662A1 (en) * 2003-10-24 2011-08-04 Exterior Portfolio, Llc Foaming of simulated stone structures
US8181580B2 (en) * 2004-12-29 2012-05-22 Coda Capital Mangement Group, LLC Composite structural material and method of making the same
US20070141316A1 (en) * 2005-12-19 2007-06-21 Mcgrath Ralph D Tri-extruded WUCS glass fiber reinforced plastic composite articles and methods for making such articles
US8158249B2 (en) * 2007-05-21 2012-04-17 Featherlyte, Llc Multi-layered foam furniture method and apparatus
US20090308001A1 (en) * 2008-06-16 2009-12-17 Shaobing Wu Substrate and the application

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180056559A1 (en) * 2013-03-15 2018-03-01 Certainteed Corporation Variegated building product and method
US10668655B2 (en) * 2013-03-15 2020-06-02 Certainteed Corporation Variegated building product and method
US10882232B2 (en) 2013-03-15 2021-01-05 Certainteed Corporation Variegated building product and method
US11007690B2 (en) 2013-03-15 2021-05-18 Certainteed Corporation System, method and article for siding corner
JP2018009324A (en) * 2016-07-12 2018-01-18 旭トステム外装株式会社 Wall Panel
JP7062353B2 (en) 2016-07-12 2022-05-06 旭トステム外装株式会社 Wall panel
US10753101B1 (en) * 2016-12-09 2020-08-25 Baton, LLC Artificial lightweight stone
FR3069561A1 (en) * 2017-07-26 2019-02-01 Orsol Production SET OF STONE MODELS FOR DECORATIVE DECORATIVE
US20190301178A1 (en) * 2018-03-30 2019-10-03 Certainteed Corporation Individual polymer masonry panels, and methods of manufacture and installation
US10870993B2 (en) * 2018-03-30 2020-12-22 Certainteed Llc Individual polymer masonry panels, and methods of manufacture and installation
US10557272B1 (en) * 2018-12-21 2020-02-11 Associated Materials, Llc Siding panel assembly
US10590658B1 (en) 2018-12-21 2020-03-17 Associated Materials, Llc Siding panel assembly

Also Published As

Publication number Publication date
CA2844657A1 (en) 2013-02-14
EP2742194A4 (en) 2015-06-03
WO2013022445A1 (en) 2013-02-14
CN104040088A (en) 2014-09-10
RU2014108210A (en) 2015-09-20
WO2013022445A8 (en) 2014-07-10
IL230740A0 (en) 2014-03-31
EP2742194A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
US20140170365A1 (en) Decorative insulative products for construction
US9649662B2 (en) Seamless reinforced concrete structural insulated panel
US6355193B1 (en) Method for making a faux stone concrete panel
AU2012200827B2 (en) Building board and method for manufacturing the same
US20090235600A1 (en) Stone work simulation system
CN100528545C (en) Metal composite plate with hollow mesh core layer and manufacturing method thereof
US20140331585A1 (en) Decorative panel and method for manufacturing the same
JP2003504541A (en) Building panel and its manufacturing equipment
AU2013362686B2 (en) Flow-guide-type foamed structure and prefab composite wall panel, and preparation method thereof
US20050242468A1 (en) Composite capping block
CA2728355A1 (en) Mold carrier for supporting a mold
KR101060401B1 (en) Manufacturing method of lightweight DS molding for exterior wall decoration in buildings
KR100818888B1 (en) Fiber glass reinforced plastic sandwiches panel with a built-in polypropylene honeycomb and manufacture method thereof
US7419130B2 (en) Rustication for architectural molding
US7931248B2 (en) Flat mold for corner-shaped simulated stone products
EP2055456A2 (en) Flat mold for stone products
RU177907U1 (en) ENERGY EFFICIENT FOAM POLYURETHANE MULTI-LAYER ENCLOSURE CONSTRUCTION
JP2014529695A (en) Cosmetic insulation products for buildings
CN101525936A (en) Tile composite sheet and production method thereof
CN211396253U (en) Glass fiber reinforced concrete veneer composite exterior wall cladding
RU32154U1 (en) Decorative panel
CN2679276Y (en) Metal casing composite wall bricks
WO1997039205A1 (en) Composite skin panels
CN202108184U (en) Inorganic heat-insulation anti-flaming decorative plate for outer wall of building
KR101083765B1 (en) Frp product with venner and the manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: OWENS CORNING INTELLECTUAL CAPITAL, LLC, OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GAVRIS, MIHAI;OLTEAN, TIBERIUS IOAN;REEL/FRAME:032341/0439

Effective date: 20140219

AS Assignment

Owner name: VALHALL LLC, DELAWARE

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OWENS CORNING INTELLECTUAL CAPITAL LLC;REEL/FRAME:036254/0401

Effective date: 20140925

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION