US20140194253A1 - Pedal motion path adjustable elliptical trainer - Google Patents

Pedal motion path adjustable elliptical trainer Download PDF

Info

Publication number
US20140194253A1
US20140194253A1 US13/800,742 US201313800742A US2014194253A1 US 20140194253 A1 US20140194253 A1 US 20140194253A1 US 201313800742 A US201313800742 A US 201313800742A US 2014194253 A1 US2014194253 A1 US 2014194253A1
Authority
US
United States
Prior art keywords
support
motion path
elliptical trainer
sliding
pedal motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/800,742
Inventor
Hsuan-Fu HUANG
Han-Lin Liu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dyaco International Inc
Original Assignee
Dyaco International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyaco International Inc filed Critical Dyaco International Inc
Assigned to DYACO INTERNATIONAL INC. reassignment DYACO INTERNATIONAL INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUANG, HSUAN-FU, LIU, Han-lin
Publication of US20140194253A1 publication Critical patent/US20140194253A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0002Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms
    • A63B22/001Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements involving an exercising of arms by simultaneously exercising arms and legs, e.g. diagonally in anti-phase
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B23/00Exercising apparatus specially adapted for particular parts of the body
    • A63B23/035Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously
    • A63B23/04Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs
    • A63B23/0405Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously
    • A63B23/0423Exercising apparatus specially adapted for particular parts of the body for limbs, i.e. upper or lower limbs, e.g. simultaneously for lower limbs involving a bending of the knee and hip joints simultaneously with guided foot supports moving parallel to the body-symmetrical-plane, one end executing a complete circular movement, the other end translating almost linearly, e.g. giving an elliptical movement to the foot
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0015Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements
    • A63B22/0023Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with an adjustable movement path of the support elements the inclination of the main axis of the movement path being adjustable, e.g. the inclination of an endless band
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/0025Particular aspects relating to the orientation of movement paths of the limbs relative to the body; Relative relationship between the movements of the limbs
    • A63B2022/0028Particular aspects relating to the orientation of movement paths of the limbs relative to the body; Relative relationship between the movements of the limbs the movement path being non-parallel to the body-symmetrical-plane, e.g. support elements moving at an angle to the body-symmetrical-plane
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0664Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement
    • A63B2022/0676Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing an elliptic movement with crank and handles being on the same side of the exercising apparatus with respect to the frontal body-plane of the user, e.g. crank and handles are in front of the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/20Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising
    • A63B22/201Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track
    • A63B22/205Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements using rollers, wheels, castors or the like, e.g. gliding means, to be moved over the floor or other surface, e.g. guide tracks, during exercising for moving a support element in reciprocating translation, i.e. for sliding back and forth on a guide track in a substantially vertical plane, e.g. for exercising against gravity

Definitions

  • the present invention relates to elliptical machines and more particularly, to a pedal motion path adjustable elliptical trainer, which allows change of pedal motion paths.
  • Elliptical trainer is a stationary exercise machine used to simulate walking that move along a smooth, elliptical path. Elliptical trainers offer a non-impact cardiovascular workout that can help you reach your health and fitness goals. The pedal motion paths of conventional elliptical trainers are constant, hence, the entire exercise will seem tedious, and will be unable to train all different muscles of the legs.
  • Taiwan Patent 1294294 discloses an elliptical trainer entitled “LEG-TRAINING ELLIPTICAL MACHINE”, which uses a screw rod of a slope control mechanism to control movement of a female screw member, causing the female screw member to bias a drag bar. When biasing the drag bar, the angle of a rail holder is changed relative to the floor to adjust the slope of the pedal motion paths.
  • Taiwan Patent M403355 discloses a lifting mechanism for elliptical trainer, which uses a retractable rod of a linear actuator to adjust the angular position of a lift frame relative to the floor, thereby changing the pedal motion paths. The aforesaid two prior art patents allow control of the elevation of pedals to change the motion paths of sliding bars subject different requirements from different users.
  • Taiwan Patent M407086 discloses an elliptical trainer, entitled “Improved structure of fitness elliptical machine”, which uses two sliding guide rails to control variation of the sliding motion path.
  • the two sliding guide rails are formed of one single tubular member that is bent into a predetermined shape defining a parallel part and a splayed part.
  • this design simply allows the machine to perform one specific motion model. If the user wishes to change the outward expansion angle, the user must purchase a different model of elliptical trainer or a different type of sliding rails, causing so much inconvenience.
  • the present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a pedal motion path adjustable elliptical trainer, which allows quick adjustment of forward-backward pedal motion paths as well as left-right pedal motion paths, achieving training of different groups of the muscles of the legs.
  • a pedal motion path adjustable elliptical trainer comprises a base frame, a support mechanism, a rotating mechanism set, a linkage mechanism set and a sliding mechanism.
  • the base frame is supported on a support surface.
  • the support mechanism comprises a rail holder, a support member and two sliding rails.
  • the rail holder is pivotally coupled to the base frame.
  • Each sliding rail comprises a pivot portion and a sliding portion.
  • the pivot portion is axially connected to the support member.
  • the rotating mechanism set comprises two cranks and two support links.
  • the cranks are coaxially and pivotally coupled to the base frame.
  • Each support link comprises a first end portion and a second end portion. The first end portion is pivotally connected to one respective crank.
  • the second end portion is slidably coupled to one respective sliding rail and movable along a closed-loop motion path.
  • the linkage mechanism set comprises two handlebars and two links.
  • the handlebars are respectively pivotally mounted at the left and right sides of the base frame.
  • Each link has its one end pivoted to one respective handlebar and its other end pivoted to the second end portion of one respective support link.
  • the sliding mechanism is mounted at the rail holder, comprising a transmission member, two follower members and a first drive source for rotating the transmission member.
  • the transmission member comprises two first stop blocks and two second stop blocks.
  • the follower members are respectively mounted on two opposite ends of the transmission member and movable relative to each other along the transmission member between one respective first stop block and one respective second stop block.
  • the elliptical trainer allows the user to change the left-right pedal motion paths or the front-back pedal motion paths for training different groups of muscles of the legs.
  • FIG. 1 is an oblique left top elevational view of a pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 2 is a left side view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 3 is a top view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 4 is a rear side view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 5 is an enlarged view of a part of the present invention, illustrating the status of the support mechanism before lift and the status of the sliding mechanism before lateral displacement.
  • FIG. 6 is a top view, in an enlarged scale, of a part of the present invention, illustrating lateral displacement of the pedal motion path adjustable elliptical trainer.
  • FIG. 7 is an enlarged view of a part of the present invention, illustrating the status of the support mechanism of the elliptical trainer before lift.
  • FIG. 8 corresponds to FIG. 7 , illustrating the lifted status of the support mechanism of the elliptical trainer.
  • FIG. 9 is an oblique top elevation of a part of an alternate form of the elliptical trainer in accordance with the present invention.
  • FIG. 10 is a top view of a part of an alternate form of the present invention, illustrating the status of the sliding mechanism before lateral displacement.
  • an elliptical trainer 10 in accordance with the present invention is shown comprising a base frame 20 , a support mechanism 30 , a rotating mechanism set 40 , a linkage mechanism set 50 , and a sliding mechanism 60 .
  • the base frame 20 is mounted at a support surface G.
  • the support mechanism 30 comprises a rail holder 31 , a support member 32 , two sliding rails 33 , a bracket 34 , a second drive source 35 , and a drive rod 36 movable back and forth relative to the second drive source 35 .
  • the rail holder 31 is pivotally mounted at the base frame 20 .
  • Each sliding rail 33 comprises a pivot portion 332 axially connected to the front side of the support member 32 , and a sliding portion 334 .
  • the second drive source 35 is affixed to the support member 32 .
  • the bracket 34 is mounted at the support member 32 with the front side thereof stopped against the support surface G and the rear side thereof pivoted to the front side of the drive rod 36 . More specifically, as shown in FIG.
  • the drive rod 36 comprises a screw rod 362 and a socket nut 364 .
  • the screw rod 362 has its one end connected to the second drive source 35 and rotatable on its own axis by the second drive source 35 .
  • the bracket 34 comprises a main rod member 342 , a wheel axle 344 , and two rollers 346 .
  • the main rod member 342 is connected to the support member 32 of the support mechanism 30 .
  • the screw nut 364 is threaded onto the screw rod 362 and pivotally connected to the top end of the main rod member 342 .
  • the wheel axle 344 is connected to the bottom end of the main rod member 342 .
  • the rollers 346 are respectively rotatably mounted at the two opposite ends of the wheel axle 344 and supported on the support surface G.
  • the rotating mechanism set 40 comprises two opposing cranks 42 and support links 44 .
  • the cranks 42 are respectively coaxially pivoted to the base frame 20 .
  • Each support link 44 has opposing first end portion 442 and second end portion 444 .
  • the first end portions 442 of the support links 44 are respectively pivotally connected to the cranks 42 .
  • the second end portions 444 of the support links 44 are respectively slidably coupled to the sliding rails 33 by a respective pulley block 446 .
  • a pedal 448 is provided at the top side of the second end portion 444 of each support link 44 .
  • Each pedal 448 is turnable back and forth on the longitudinal axis thereof. Thus, the user can step the pedals 448 alternatively up and down along a closed-loop path.
  • the linkage mechanism set 50 comprises two handlebars 52 , and two links 54 .
  • the handlebars 52 are respectively pivotally mounted at two opposite lateral sides of the base frame 20 .
  • the links 54 are respectively pivotally connected between the handlebars 52 and the second end portions 444 of the support links 44 .
  • the sliding mechanism 60 is supported on the rail holder 31 , comprising a transmission member 62 , two follower members 64 , and a first drive source 66 adapted to rotate the transmission member 62 .
  • the transmission member 62 comprises two first stop blocks 622 and two second stop blocks 624 .
  • the follower members 64 are respectively sleeved onto the two opposite ends of the transmission member 62 , and movable relative to each other between a respective first stop block 622 and a respective second stop block 624 .
  • the transmission member 62 is a bi-directional guide screw rod having a left handed thread on its one end and a right handed thread on its other end;
  • the follower members 64 are screw nuts respectively threaded onto the left handed thread and right handed thread of the guide screw rod 62 ;
  • the first drive source 66 is a reversible motor.
  • the sliding portions 334 of the sliding rails 33 that are respectively pivotally connected to the screw nuts (follower members) 64 will be biased outwardly on the axes of the associating pivot portions 332 .
  • the pulley blocks 446 are moved along the respective sliding rails 33 , producing an expansion pattern of elliptical motion path.
  • the sliding portions 334 of the sliding rails 33 will be moved in direction from the respective second stop blocks 624 toward the respective first stop blocks 622 , returning the expansion pattern of elliptical motion path to the original status.
  • the first drive source 66 ′ of the sliding mechanism is a grip operable to rotate the transmission member 62 .
  • the screw rod 62 is rotated with the grip 66 ′, moving the screw nuts 64 along the screw rod 62 between the respective first stop blocks 622 and the respective second stop blocks 624 , and the sliding portions 334 of the sliding rails 33 that are respectively pivoted to the screw nuts 64 are biased on the axes of the associating pivot portions 332 outwards or inwards, achieving the objects of the present invention.
  • the invention allows the user to alter the forward and backward biasing motion paths as well as the leftward and rightward biasing motion paths to train the muscles of different parts of the legs.

Abstract

A pedal motion path adjustable elliptical trainer includes a base frame , a support mechanism including a rail holder pivoted to the base frame, a support member and two sliding rails, a rotating mechanism set mounted at the left and right sides of the base frame and movable along a respective closed-loop motion path with a respective support link thereof respectively slidably coupled to one respective sliding rail, a linkage mechanism set mounted at the left and right sides of the base frame, and a sliding mechanism mounted at the rail holder and including a transmission member, two follower members respectively mounted on two opposite ends of the transmission member and movable relative to each other. Thus, the elliptical trainer allows the user to change forward-backward pedal motion paths or left-right pedal motion paths, achieving training of different groups of the muscles of the legs.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to elliptical machines and more particularly, to a pedal motion path adjustable elliptical trainer, which allows change of pedal motion paths.
  • 2. Description of the Related Art
  • Elliptical trainer is a stationary exercise machine used to simulate walking that move along a smooth, elliptical path. Elliptical trainers offer a non-impact cardiovascular workout that can help you reach your health and fitness goals. The pedal motion paths of conventional elliptical trainers are constant, hence, the entire exercise will seem tedious, and will be unable to train all different muscles of the legs.
  • Taiwan Patent 1294294 discloses an elliptical trainer entitled “LEG-TRAINING ELLIPTICAL MACHINE”, which uses a screw rod of a slope control mechanism to control movement of a female screw member, causing the female screw member to bias a drag bar. When biasing the drag bar, the angle of a rail holder is changed relative to the floor to adjust the slope of the pedal motion paths. Further, Taiwan Patent M403355 discloses a lifting mechanism for elliptical trainer, which uses a retractable rod of a linear actuator to adjust the angular position of a lift frame relative to the floor, thereby changing the pedal motion paths. The aforesaid two prior art patents allow control of the elevation of pedals to change the motion paths of sliding bars subject different requirements from different users. However, the axis of rotation of each pedal is kept in parallel to the reference axis of the rotating mechanism. When viewed from the top side, the left and right pedals can simply biased in a front-rear direction. Thus, only a small part of the muscles of the legs can be trained during exercise, resulting in poor effects of exercise. In order to improve the drawbacks of the aforesaid two prior art designs, Taiwan Patent M407086 discloses an elliptical trainer, entitled “Improved structure of fitness elliptical machine”, which uses two sliding guide rails to control variation of the sliding motion path. The two sliding guide rails are formed of one single tubular member that is bent into a predetermined shape defining a parallel part and a splayed part. However, this design simply allows the machine to perform one specific motion model. If the user wishes to change the outward expansion angle, the user must purchase a different model of elliptical trainer or a different type of sliding rails, causing so much inconvenience.
  • SUMMARY OF THE INVENTION
  • The present invention has been accomplished under the circumstances in view. It is the main object of the present invention to provide a pedal motion path adjustable elliptical trainer, which allows quick adjustment of forward-backward pedal motion paths as well as left-right pedal motion paths, achieving training of different groups of the muscles of the legs.
  • To achieve this and other objects of the present invention, a pedal motion path adjustable elliptical trainer comprises a base frame, a support mechanism, a rotating mechanism set, a linkage mechanism set and a sliding mechanism. The base frame is supported on a support surface. The support mechanism comprises a rail holder, a support member and two sliding rails. The rail holder is pivotally coupled to the base frame. Each sliding rail comprises a pivot portion and a sliding portion. The pivot portion is axially connected to the support member. The rotating mechanism set comprises two cranks and two support links. The cranks are coaxially and pivotally coupled to the base frame. Each support link comprises a first end portion and a second end portion. The first end portion is pivotally connected to one respective crank. The second end portion is slidably coupled to one respective sliding rail and movable along a closed-loop motion path. The linkage mechanism set comprises two handlebars and two links. The handlebars are respectively pivotally mounted at the left and right sides of the base frame. Each link has its one end pivoted to one respective handlebar and its other end pivoted to the second end portion of one respective support link. The sliding mechanism is mounted at the rail holder, comprising a transmission member, two follower members and a first drive source for rotating the transmission member. The transmission member comprises two first stop blocks and two second stop blocks. The follower members are respectively mounted on two opposite ends of the transmission member and movable relative to each other along the transmission member between one respective first stop block and one respective second stop block.
  • Thus, by means of lateral displacement of the sliding mechanism and vertical displacement of the support mechanism, the elliptical trainer allows the user to change the left-right pedal motion paths or the front-back pedal motion paths for training different groups of muscles of the legs.
  • Other advantages and features of the present invention will be fully accompanying drawings, in which like reference signs denote like components of structure.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an oblique left top elevational view of a pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 2 is a left side view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 3 is a top view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 4 is a rear side view of the pedal motion path adjustable elliptical trainer in accordance with the present invention.
  • FIG. 5 is an enlarged view of a part of the present invention, illustrating the status of the support mechanism before lift and the status of the sliding mechanism before lateral displacement.
  • FIG. 6 is a top view, in an enlarged scale, of a part of the present invention, illustrating lateral displacement of the pedal motion path adjustable elliptical trainer.
  • FIG. 7 is an enlarged view of a part of the present invention, illustrating the status of the support mechanism of the elliptical trainer before lift.
  • FIG. 8 corresponds to FIG. 7, illustrating the lifted status of the support mechanism of the elliptical trainer.
  • FIG. 9 is an oblique top elevation of a part of an alternate form of the elliptical trainer in accordance with the present invention.
  • FIG. 10 is a top view of a part of an alternate form of the present invention, illustrating the status of the sliding mechanism before lateral displacement.
  • DETAILED DESCRIPTION OF TILE INVENTION
  • Referring to FIGS. 1-4, an elliptical trainer 10 in accordance with the present invention is shown comprising a base frame 20, a support mechanism 30, a rotating mechanism set 40, a linkage mechanism set 50, and a sliding mechanism 60.
  • The base frame 20 is mounted at a support surface G.
  • The support mechanism 30 comprises a rail holder 31, a support member 32, two sliding rails 33, a bracket 34, a second drive source 35, and a drive rod 36 movable back and forth relative to the second drive source 35. The rail holder 31 is pivotally mounted at the base frame 20. Each sliding rail 33 comprises a pivot portion 332 axially connected to the front side of the support member 32, and a sliding portion 334. The second drive source 35 is affixed to the support member 32. The bracket 34 is mounted at the support member 32 with the front side thereof stopped against the support surface G and the rear side thereof pivoted to the front side of the drive rod 36. More specifically, as shown in FIG. 8, the drive rod 36 comprises a screw rod 362 and a socket nut 364. The screw rod 362 has its one end connected to the second drive source 35 and rotatable on its own axis by the second drive source 35. The bracket 34 comprises a main rod member 342, a wheel axle 344, and two rollers 346. The main rod member 342 is connected to the support member 32 of the support mechanism 30. The screw nut 364 is threaded onto the screw rod 362 and pivotally connected to the top end of the main rod member 342. The wheel axle 344 is connected to the bottom end of the main rod member 342. The rollers 346 are respectively rotatably mounted at the two opposite ends of the wheel axle 344 and supported on the support surface G. When going to set the support mechanism 30 at a predetermined angle of inclination relative to the support surface G, start the second drive source 35 to rotate the screw rod 362, causing the screw nut 364 to move axially and forwardly along the screw rod 362 and to further push the top end of the main rod member 342. At this time, the bottom end of the main rod member 342 and the rollers 346 will be moved along the support surface C toward the rail holder 31, causing the rail holder 31 of the support mechanism 30 to be biased relative to the base frame 20, and therefore, the support mechanism 30 can be moved to the desired angular position relative to the support surface G.
  • The rotating mechanism set 40 comprises two opposing cranks 42 and support links 44. The cranks 42 are respectively coaxially pivoted to the base frame 20. Each support link 44 has opposing first end portion 442 and second end portion 444. The first end portions 442 of the support links 44 are respectively pivotally connected to the cranks 42. The second end portions 444 of the support links 44 are respectively slidably coupled to the sliding rails 33 by a respective pulley block 446. Further, a pedal 448 is provided at the top side of the second end portion 444 of each support link 44. Each pedal 448 is turnable back and forth on the longitudinal axis thereof. Thus, the user can step the pedals 448 alternatively up and down along a closed-loop path.
  • The linkage mechanism set 50 comprises two handlebars 52, and two links 54. The handlebars 52 are respectively pivotally mounted at two opposite lateral sides of the base frame 20. The links 54 are respectively pivotally connected between the handlebars 52 and the second end portions 444 of the support links 44.
  • The sliding mechanism 60 is supported on the rail holder 31, comprising a transmission member 62, two follower members 64, and a first drive source 66 adapted to rotate the transmission member 62. The transmission member 62 comprises two first stop blocks 622 and two second stop blocks 624. The follower members 64 are respectively sleeved onto the two opposite ends of the transmission member 62, and movable relative to each other between a respective first stop block 622 and a respective second stop block 624.
  • Referring to FIGS. 5 and 6, in this embodiment, the transmission member 62 is a bi-directional guide screw rod having a left handed thread on its one end and a right handed thread on its other end; the follower members 64 are screw nuts respectively threaded onto the left handed thread and right handed thread of the guide screw rod 62; the first drive source 66 is a reversible motor. When the user wishes to change the lateral motion path, start the motor 66 to rotate the guide screw rod 62 clockwise, causing the screw nuts (follower members) 64 to move in direction from the respective first stop blocks 622 toward the respective second stop blocks 624. At this time, the sliding portions 334 of the sliding rails 33 that are respectively pivotally connected to the screw nuts (follower members) 64 will be biased outwardly on the axes of the associating pivot portions 332. Thus, when the user is pedaling the pedals 448, the pulley blocks 446 are moved along the respective sliding rails 33, producing an expansion pattern of elliptical motion path. On the contrary, when controlling the motor 66 to reverse the guide screw rod 62, the sliding portions 334 of the sliding rails 33 will be moved in direction from the respective second stop blocks 624 toward the respective first stop blocks 622, returning the expansion pattern of elliptical motion path to the original status.
  • Referring to FIGS. 7 and 8, when the user wishes to exercise along a simple up and down motion path, start the second drive source 35 to rotate the screw rod 362 of the drive rod 36 clockwise, moving the screw nut 364 of the drive rod 36 toward the top side of the main rod member 342 of the bracket 34. Because the main rod member 342 is pivotally connected to the support member 32, the bottom side of the main rod member 342 and the rollers 346 will be stopped against the support surface G and moved toward the rail holder 31 subject to the lever principle. At this time, the support mechanism 30 will be biased on the axis of the rail holder 31 to an inclination angle relative to the support surface G. On the contrary, when wishing to return the support mechanism 30 to its former position, reversely rotate the screw rod 362 to move the screw nut 364 along the screw rod 362, pulling the top side of the main rod member 342 of the bracket 34 backwardly. Thus, the bottom side of the main rod member 342 and the rollers 346 will be stopped against the support surface G and moved toward the rail holder 31 subject to the lever principle, lowering the support mechanism 30 to the original start point.
  • Referring to FIGS. 9 and 10, an alternate form of the elliptical trainer in accordance with the present invention is shown. In this alternate form, the first drive source 66′ of the sliding mechanism is a grip operable to rotate the transmission member 62. Thus, when the user applies a clockwise or counter-clockwise rotating force to the grip 66′, the screw rod 62 is rotated with the grip 66′, moving the screw nuts 64 along the screw rod 62 between the respective first stop blocks 622 and the respective second stop blocks 624, and the sliding portions 334 of the sliding rails 33 that are respectively pivoted to the screw nuts 64 are biased on the axes of the associating pivot portions 332 outwards or inwards, achieving the objects of the present invention.
  • In conclusion, the invention allows the user to alter the forward and backward biasing motion paths as well as the leftward and rightward biasing motion paths to train the muscles of different parts of the legs.
  • Although particular embodiments of the invention have been described in detail for purposes of illustration, various modifications and enhancements may be made without departing from the spirit and scope of the invention. Accordingly, the invention is not to be limited except as by the appended claims.

Claims (9)

What is claimed is:
1. A pedal motion path adjustable elliptical trainer, comprising:
a base frame mounted on a support surface;
a support mechanism comprising a rail holder, a support member and two sliding rails, said rail holder being pivotally mounted at said base frame, each said sliding rail comprising a pivot portion and a sliding portion, said pivot portion being axially connected to said support member;
a rotating mechanism set comprising two cranks and two support links, said cranks being coaxially and pivotally coupled to said base frame, each said support link comprising opposing first end portion and second end portion, said first end portion being pivoted to one said crank, said second end portion being slidably coupled to one said sliding rail for moving along a closed-loop motion path;
a linkage mechanism set comprising two handlebars respectively pivotally mounted at opposing left side and right side of said base frame and two links respectively pivotally coupled between said handlebars and the second end portions of said support links;
a sliding mechanism mounted at said rail holder, said sliding mechanism comprising a transmission member, two follower member and a first drive source for rotating said transmission member, said transmission member comprising two first stop blocks and two second stop blocks, said follower members being respectively mounted around two opposite ends of said transmission member and movable relative to each other between one respective said first stop block and one respective said second stop block.
2. The pedal motion path adjustable elliptical trainer as claimed in claim 1, wherein said first drive source of said sliding mechanism is a reversible motor.
3. The pedal motion path adjustable elliptical trainer as claimed in claim 1, wherein said first drive source of said sliding mechanism is a grip operable to rotate said transmission member on the axis thereof.
4. The pedal motion path adjustable elliptical trainer as claimed in claim 3, wherein said transmission member of said sliding mechanism is a screw rod having a left handed thread on one end thereof and a right handed thread on an opposite end thereof; said follower members are screw nuts respectively threaded onto the left handed thread and right handed thread of the screw rod of said transmission member.
5. The pedal motion path adjustable elliptical trainer as claimed in claim 1, wherein said support mechanism further comprises a bracket, a second drive source and a drive rod movable forward and backward relative to said second drive source, said second drive source being affixed to said support member, said bracket being axially connected to said support member, said bracket having a front side thereof stopped against said support surface and a rear side thereof pivotally connected to a front end of said drive rod.
6. The pedal motion path adjustable elliptical trainer as claimed in claim 5, wherein said drive rod of said support mechanism comprises a screw rod and a screw nut, the screw rod of said drive rod having one end thereof connected to said second drive source and rotatable on the axis thereof by said second drive source, the screw nut of said drive rod being threaded onto the screw rod of said drive rod and pivotally coupled with a top side of said bracket and drivable by the screw rod of said drive rod to move axially along the screw rod of said drive rod.
7. The pedal motion path adjustable elliptical trainer as claimed in claim 6, wherein said bracket comprises a main rod member, a wheel axle and two rollers, said main rod member being axially connected to said support member of said support mechanism, said wheel axle being connected to a bottom end of said main rod member, said two rollers being respectively rotatably mounted at two opposite ends of said wheel axle and adapted for stopping against said support surface.
8. The pedal motion path adjustable elliptical trainer as claimed in claim 1, wherein each said support link comprises a pedal mounted at a top side of the second end portion thereof, said pedal being turnable back and forth on the longitudinal axis thereof.
9. The pedal motion path adjustable elliptical trainer as claimed in claim 1, wherein said second end portion of each said support link comprises a pulley block supported on one said sliding rail.
US13/800,742 2013-01-07 2013-03-13 Pedal motion path adjustable elliptical trainer Abandoned US20140194253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW102100465A TW201427750A (en) 2013-01-07 2013-01-07 Elliptical machine capable of changing motion trajectory
TW102100465 2013-01-07

Publications (1)

Publication Number Publication Date
US20140194253A1 true US20140194253A1 (en) 2014-07-10

Family

ID=51061382

Family Applications (1)

Application Number Title Priority Date Filing Date
US13/800,742 Abandoned US20140194253A1 (en) 2013-01-07 2013-03-13 Pedal motion path adjustable elliptical trainer

Country Status (2)

Country Link
US (1) US20140194253A1 (en)
TW (1) TW201427750A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329645A1 (en) * 2013-04-16 2014-11-06 Raffaele De Biasi Exerciser
CN105107149A (en) * 2015-09-30 2015-12-02 无锡万象工业设计有限公司 Household leg exercising device
US9259610B2 (en) * 2014-02-26 2016-02-16 Dyaco International Inc. Exercise device providing adjustable step distance
US9586085B2 (en) * 2014-06-04 2017-03-07 Precor Incorporated Exercise apparatus with non-uniform foot pad transverse spacing
USD785730S1 (en) * 2015-11-06 2017-05-02 Dyaco International Inc. Elliptical exercise machine
CN106823273A (en) * 2017-04-10 2017-06-13 广东奥玛健身器材有限公司 A kind of elliptical machine
USD792530S1 (en) * 2015-09-28 2017-07-18 Nautilus, Inc. Elliptical exercise machine
WO2017165393A1 (en) * 2016-03-25 2017-09-28 Cybex International, Inc. Exercise apparatus
US9950209B2 (en) 2013-03-15 2018-04-24 Nautilus, Inc. Exercise machine
US9987513B2 (en) 2013-03-15 2018-06-05 Nautilus, Inc. Exercise machine
EP3388113A1 (en) * 2017-04-10 2018-10-17 Oma Metal Industrial Co., Ltd. Elliptical trainer
USD853503S1 (en) * 2017-06-27 2019-07-09 Kai Bin Xing Exercise device
USD854100S1 (en) * 2017-06-27 2019-07-16 Kai Bin Xing Exercise device
US10471300B2 (en) * 2018-01-31 2019-11-12 Joong Chenn Industry Co., Ltd. Elliptical trainer
US10561891B2 (en) 2017-05-26 2020-02-18 Nautilus, Inc. Exercise machine
US10675504B2 (en) * 2016-03-22 2020-06-09 Rexon Industrial Corp., Ltd. Lateral glide elliptical exercise apparatus
DE102019135775B3 (en) * 2019-12-17 2021-03-25 Healthstream Taiwan Inc. CONNECTING MECHANISM WITH ELLIPTICAL TRAIL PROGRESS
US11020626B2 (en) * 2019-05-30 2021-06-01 Chao-Chi Yu Elliptical machine with function of freely controlling the lateral movement of the pedal
DE102019135765A1 (en) * 2019-12-17 2021-06-17 Healthstream Taiwan Inc. CONNECTING MECHANISM CONNECTED TO HANDLES FOR AN ELLIPTICAL TRAIL PROGRESS
US11198033B2 (en) 2013-03-15 2021-12-14 Nautilus, Inc. Exercise machine
US20220331651A1 (en) * 2021-04-16 2022-10-20 OMA Fitness Equipment Co., Ltd. Adjustable elliptical trainer

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708163A (en) * 1970-03-30 1973-01-02 F Hynes Parallel ski trainer and leg conditioner
US4781372A (en) * 1987-04-15 1988-11-01 Mccormack Patrick J Ice-skating exercise device
US4915373A (en) * 1988-10-26 1990-04-10 Walker Kevin W Exercising machine for ice skating
US5277681A (en) * 1992-08-05 1994-01-11 Parrsboro Metal Fabricators Limited Stretching exercise machine
US20060046902A1 (en) * 2004-09-01 2006-03-02 Huang-Tung Chang Elliptical exerciser with adjustable guiding rails
US7041036B1 (en) * 2005-03-15 2006-05-09 Hai Pin Kuo Exerciser having adjustable mechanism
US7141027B2 (en) * 2003-06-04 2006-11-28 Arthur Michael Kassel Leg stretching machine
US20070298935A1 (en) * 2003-12-22 2007-12-27 Ziad Badarneh Apparatus for Physical Exercise, and a Crank Device and Foot Supporting Platforms for Use With Such Apparatus
US7425189B1 (en) * 2007-03-09 2008-09-16 Paul William Eschenbach Elliptical skier exercise apparatus
US20090298653A1 (en) * 2007-02-10 2009-12-03 Roy Rodetsky Powered mobile lifting, gait training and omnidirectional rolling apparatus and method
US7682293B2 (en) * 2007-03-02 2010-03-23 Paul William Eschenbach Lateral elliptical exercise apparatus
US20100075813A1 (en) * 2006-12-25 2010-03-25 Kazuhiro Ochi Exercise assisting device
US7981015B2 (en) * 2009-06-22 2011-07-19 Power Stretch, Llc Apparatus and method of manufacture for an anatomical stretching device
US20130237379A1 (en) * 2012-03-06 2013-09-12 Hsuan-Fu HUANG Pedal lifting mechanism for elliptical trainer
US20130244837A1 (en) * 2012-03-14 2013-09-19 Yi-Tzu Chen Adjustable elliptical trainer
US20140051552A1 (en) * 2012-08-14 2014-02-20 Dream Visions, Llc Elliptical motion exerciser

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3708163A (en) * 1970-03-30 1973-01-02 F Hynes Parallel ski trainer and leg conditioner
US4781372A (en) * 1987-04-15 1988-11-01 Mccormack Patrick J Ice-skating exercise device
US4915373A (en) * 1988-10-26 1990-04-10 Walker Kevin W Exercising machine for ice skating
US5277681A (en) * 1992-08-05 1994-01-11 Parrsboro Metal Fabricators Limited Stretching exercise machine
US7141027B2 (en) * 2003-06-04 2006-11-28 Arthur Michael Kassel Leg stretching machine
US20070298935A1 (en) * 2003-12-22 2007-12-27 Ziad Badarneh Apparatus for Physical Exercise, and a Crank Device and Foot Supporting Platforms for Use With Such Apparatus
US20060046902A1 (en) * 2004-09-01 2006-03-02 Huang-Tung Chang Elliptical exerciser with adjustable guiding rails
US7041036B1 (en) * 2005-03-15 2006-05-09 Hai Pin Kuo Exerciser having adjustable mechanism
US20100075813A1 (en) * 2006-12-25 2010-03-25 Kazuhiro Ochi Exercise assisting device
US20090298653A1 (en) * 2007-02-10 2009-12-03 Roy Rodetsky Powered mobile lifting, gait training and omnidirectional rolling apparatus and method
US7682293B2 (en) * 2007-03-02 2010-03-23 Paul William Eschenbach Lateral elliptical exercise apparatus
US7425189B1 (en) * 2007-03-09 2008-09-16 Paul William Eschenbach Elliptical skier exercise apparatus
US7981015B2 (en) * 2009-06-22 2011-07-19 Power Stretch, Llc Apparatus and method of manufacture for an anatomical stretching device
US20130237379A1 (en) * 2012-03-06 2013-09-12 Hsuan-Fu HUANG Pedal lifting mechanism for elliptical trainer
US20130244837A1 (en) * 2012-03-14 2013-09-19 Yi-Tzu Chen Adjustable elliptical trainer
US20140051552A1 (en) * 2012-08-14 2014-02-20 Dream Visions, Llc Elliptical motion exerciser

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9950209B2 (en) 2013-03-15 2018-04-24 Nautilus, Inc. Exercise machine
US10543396B2 (en) 2013-03-15 2020-01-28 Nautilus, Inc. Exercise machine
US10252101B2 (en) 2013-03-15 2019-04-09 Nautilus, Inc. Exercise machine
US11324994B2 (en) 2013-03-15 2022-05-10 Nautilus, Inc. Exercise machine
US11198033B2 (en) 2013-03-15 2021-12-14 Nautilus, Inc. Exercise machine
US9987513B2 (en) 2013-03-15 2018-06-05 Nautilus, Inc. Exercise machine
US20140329645A1 (en) * 2013-04-16 2014-11-06 Raffaele De Biasi Exerciser
US9339712B2 (en) * 2013-04-16 2016-05-17 Raffaele De Biasi Exerciser
US9259610B2 (en) * 2014-02-26 2016-02-16 Dyaco International Inc. Exercise device providing adjustable step distance
US9586085B2 (en) * 2014-06-04 2017-03-07 Precor Incorporated Exercise apparatus with non-uniform foot pad transverse spacing
USD792530S1 (en) * 2015-09-28 2017-07-18 Nautilus, Inc. Elliptical exercise machine
CN105107149A (en) * 2015-09-30 2015-12-02 无锡万象工业设计有限公司 Household leg exercising device
USD785730S1 (en) * 2015-11-06 2017-05-02 Dyaco International Inc. Elliptical exercise machine
US10675504B2 (en) * 2016-03-22 2020-06-09 Rexon Industrial Corp., Ltd. Lateral glide elliptical exercise apparatus
WO2017165393A1 (en) * 2016-03-25 2017-09-28 Cybex International, Inc. Exercise apparatus
US10780314B2 (en) 2016-03-25 2020-09-22 Cybex International, Inc. Exercise apparatus
US10343013B2 (en) 2017-04-10 2019-07-09 Oma Metal Industrial Co., Ltd. Elliptical trainer
EP3388113A1 (en) * 2017-04-10 2018-10-17 Oma Metal Industrial Co., Ltd. Elliptical trainer
CN106823273A (en) * 2017-04-10 2017-06-13 广东奥玛健身器材有限公司 A kind of elliptical machine
US10561891B2 (en) 2017-05-26 2020-02-18 Nautilus, Inc. Exercise machine
USD854100S1 (en) * 2017-06-27 2019-07-16 Kai Bin Xing Exercise device
USD853503S1 (en) * 2017-06-27 2019-07-09 Kai Bin Xing Exercise device
US10471300B2 (en) * 2018-01-31 2019-11-12 Joong Chenn Industry Co., Ltd. Elliptical trainer
US11020626B2 (en) * 2019-05-30 2021-06-01 Chao-Chi Yu Elliptical machine with function of freely controlling the lateral movement of the pedal
DE102019135775B3 (en) * 2019-12-17 2021-03-25 Healthstream Taiwan Inc. CONNECTING MECHANISM WITH ELLIPTICAL TRAIL PROGRESS
DE102019135765A1 (en) * 2019-12-17 2021-06-17 Healthstream Taiwan Inc. CONNECTING MECHANISM CONNECTED TO HANDLES FOR AN ELLIPTICAL TRAIL PROGRESS
CN112973007A (en) * 2019-12-17 2021-06-18 清河国际股份有限公司 Link mechanism with armrest linked with elliptical motion trail
DE102019135765B4 (en) 2019-12-17 2021-08-12 Healthstream Taiwan Inc. CONNECTING MECHANISM CONNECTED TO HANDLES FOR AN ELLIPTICAL TRAIL PROGRESS
US20220331651A1 (en) * 2021-04-16 2022-10-20 OMA Fitness Equipment Co., Ltd. Adjustable elliptical trainer

Also Published As

Publication number Publication date
TW201427750A (en) 2014-07-16

Similar Documents

Publication Publication Date Title
US20140194253A1 (en) Pedal motion path adjustable elliptical trainer
US8979713B2 (en) Pedal motion path adjustable elliptical trainer
US9717947B2 (en) Climbing exerciser machine with adjustable inclination
US8210993B2 (en) Elliptical exercise apparatus
US20130237379A1 (en) Pedal lifting mechanism for elliptical trainer
US7223209B2 (en) Elliptical exercise apparatus
TWI533905B (en) Exercise device providing adjustable step distance? of moving path
US7485072B2 (en) Stationary exercise device
US7811206B2 (en) Elliptical exercise device
US8840529B2 (en) Adjustable elliptical trainer
US20090124463A1 (en) Exerciser having adjustable moving stroke
US7946963B1 (en) Exercise cycle
TWI577418B (en) Elliptical trainer with variable stride
US11944866B2 (en) Exercise machines having adjustable elliptical striding motion
US20140309086A1 (en) Oblong Orbital Exercising Machine Having Adjustable and Extendable Trace of Movement
US20150182786A1 (en) Oblong Orbital Exercising Machine with a Motion Trace that Performs Full Body Torsion and Swinging
US20150057129A1 (en) Elliptical Trainer
TWI542382B (en) Exercise device providing adjustable pace length
US20090048077A1 (en) Stationary exerciser
TWI532516B (en) Elliptical exercise machine with adjustable stride length
TWI621463B (en) Arm and leg compound exercise maching
TWI546102B (en) Elliptical exercise machine with a treading depth adjustment mechanism
CN105833464B (en) The adjustable elliptical machine for trampling depth
TWM455526U (en) Elliptical machine with changeable trajectory
CN211912579U (en) Elliptical trainer

Legal Events

Date Code Title Description
AS Assignment

Owner name: DYACO INTERNATIONAL INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUANG, HSUAN-FU;LIU, HAN-LIN;REEL/FRAME:030060/0471

Effective date: 20121213

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION