US20140284643A1 - Power surface mount light emitting die package - Google Patents

Power surface mount light emitting die package Download PDF

Info

Publication number
US20140284643A1
US20140284643A1 US14/221,982 US201414221982A US2014284643A1 US 20140284643 A1 US20140284643 A1 US 20140284643A1 US 201414221982 A US201414221982 A US 201414221982A US 2014284643 A1 US2014284643 A1 US 2014284643A1
Authority
US
United States
Prior art keywords
package
substrate
led
traces
solder pads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/221,982
Inventor
Peter Scott Andrews
Ban P. Loh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/446,532 external-priority patent/US7264378B2/en
Application filed by Cree Inc filed Critical Cree Inc
Priority to US14/221,982 priority Critical patent/US20140284643A1/en
Publication of US20140284643A1 publication Critical patent/US20140284643A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/642Heat extraction or cooling elements characterized by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01025Manganese [Mn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/54Encapsulations having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/641Heat extraction or cooling elements characterized by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • Example embodiments in general relate to packaging semiconductor devices which include light emitting diodes.
  • a leadframe package typically includes a molded or cast plastic body that encapsulates an LED, a lens portion, and thin metal leads connected to the LED and extending outside the body.
  • the metal leads of the leadframe package serve as the conduit to supply the LED with electrical power and, at the same time, may act to draw heat away from the LED. Heat is generated by the LED when power is applied to the LED to produce light.
  • a portion of the leads extends out from the package body for connection to circuits external to the leadframe package.
  • the heat generated by the LED is dissipated by the plastic package body; however, most of the heat is drawn away from the LED via the metal components of the package.
  • the metal leads are typically very thin and has a small cross section. For this reason, capacity of the metal leads to remove heat from the LED is limited. This limits the amount of power that can be sent to the LED thereby limiting the amount of light that can be generated by the LED.
  • a heat sink slug is introduced into the package.
  • the heat sink slug draws heat from the LED chip.
  • this design introduces empty spaces within the package that is be filled with an encapsulant to protect the LED chip.
  • CTE coefficient of thermal expansion
  • bubbles tend to form inside the encapsulant or the encapsulant tends to delaminate from various portions within the package. This adversely affects the light output and reliability of the product.
  • this design includes a pair of flimsy leads which are typically soldered by a hot-iron. This manufacturing process is incompatible with convenient surface mounting technology (SMT) that is popular in the art of electronic board assembly.
  • SMT surface mounting technology
  • the leads of the leadframe package have differing thicknesses extended (in various shapes and configurations) beyond the immediate edge of the LED package body.
  • a thicker lead is utilized as a heat-spreader and the LED chip is mounted on it. This arrangement allows heat generated by the LED chip to dissipate through the thicker lead which is often connected to an external heat sink.
  • This design is inherently unreliable due to significant difference in coefficient of thermal expansion (CTE) between the plastic body and the leadframe material. When subjected to temperature cycles, its rigid plastic body that adheres to the metal leads experiences high degree of thermal stresses in many directions.
  • CTE coefficient of thermal expansion
  • An example embodiment of the present invention is directed to a light emitting die package.
  • the package includes a substrate having a first surface and a first conductive lead on the first surface that is insulated from the substrate by an insulating film.
  • the first conductive lead forms a mounting pad for mounting a light emitting device.
  • the package includes a lead electrically connected to the first conductive lead and extending away from the first surface.
  • the package includes a substrate having a first surface and a second surface opposite the first surface, a via hole through the substrate, and a conductive lead extending from the first surface to the second surface.
  • the conductive lead is insulated from the substrate by an insulating film.
  • the package includes a metal contact pad on one of the first and second surfaces electrically connected to the conductive lead.
  • the metal contact pad has a light emitting diode (LED) mounted thereon.
  • LED light emitting diode
  • Another example embodiment is directed to a LED package including a substrate having a first surface, a second surface opposite the first surface, and a first conductive lead on the first surface that is insulated from the substrate by a first insulating film.
  • the first conductive lead forms a mounting pad for mounting a light emitting device.
  • the package includes at least one via hold formed through the substrate. A surface of the via hole is coated with a second insulating film.
  • Another example embodiment is directed to a LED package including a substrate having a top surface, a bottom surface, at least one conductive element on the top surface connected to a LED and at least one conductive element attached to the bottom surface.
  • the package includes at least two via holes formed through the substrate. Each via hole includes an electrical conductor therein which electrically connects the at least one conductive elements on the top and bottom surfaces of the substrate.
  • FIG. 1A is a perspective view of a semiconductor die package according to one embodiment of the present invention.
  • FIG. 1B is an exploded perspective view of the semiconductor package of FIG. 1A .
  • FIG. 2A is a top view of a portion of the semiconductor package of FIG. 1A .
  • FIG. 2B is a side view of a portion of the semiconductor package of FIG. 1A .
  • FIG. 2C is a front view of a portion of the semiconductor package of FIG. 1A .
  • FIG. 2D is a bottom view of a portion of the semiconductor package of FIG. 1A .
  • FIG. 3 is a cut-away side view of portions of the semiconductor package of FIG. 1A .
  • FIG. 4 is a side view of the semiconductor package of FIG. 1A with additional elements.
  • FIG. 5 an exploded perspective view of a semiconductor die package according to another embodiment of the present invention.
  • FIG. 6A is a top view of a portion of the semiconductor package of FIG. 5 .
  • FIG. 6B is a side view of a portion of the semiconductor package of FIG. 5 .
  • FIG. 6C is a front view of a portion of the semiconductor package of FIG. 5 .
  • FIG. 6D is a bottom view of a portion of the semiconductor package of FIG. 5 .
  • FIG. 7A is a top view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 7B is a front view of the portion of a semiconductor package of FIG. 7A .
  • FIG. 7C is a cut-away front view of the portion of a semiconductor package of FIG. 7A taken along line A-A.
  • FIG. 8 is a side view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 9 is a side view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 10A is a top view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 10B is a top view of a portion of a semiconductor package according to another example embodiment.
  • Example embodiments will now be described with reference to FIGS. 1 through 10B .
  • the sizes of layers or regions are exaggerated for illustrative purposes and, thus, are provided to illustrate the general structures of the present invention.
  • various aspects in the example embodiments are described with reference to a layer or structure being formed on a substrate or other layer or structure.
  • references to a layer being formed “on” another layer or substrate contemplates that additional layers may intervene.
  • References to a layer being formed on another layer or substrate without an intervening layer are described herein as being formed “directly on” the layer or substrate.
  • relative terms such as beneath may be used herein to describe one layer or regions relationship to another layer or region as illustrated in the Figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, layers or regions described as “beneath” other layers or regions would now be oriented “above” these other layers or regions. The term “beneath” is intended to encompass both above and beneath in this situation. Like numbers refer to like elements throughout.
  • example embodiments of the present invention are exemplified by a light emitting die package including a bottom heat sink (substrate) having traces for connecting to a light emitting diode at a mounting pad and a top heat sink (reflector plate) substantially surrounding the mounting pad.
  • a lens covers the mounting pad.
  • an example die package comprises a two part heat sink with the bottom heat sink utilized (in addition to its utility for drawing and dissipating heat) as the substrate on which the LED is mounted and connected, and with the top heat sink utilized (in addition to its utility for drawing and dissipating heat) as a reflector plate to direct light produced by the LED. Because both the bottom and the top heat sinks draw heat away from the LED, more power can be delivered to the LED, and the LED can thereby produce more light.
  • the body of the die package itself may act as the heat sink removing heat from the LED and dissipating it. For this reason, the example LED die package may not require separate heat sink slugs or leads that extend away from the package. Accordingly, the LED die package may be more compact, more reliable, and less costly to manufacture than die packages of the prior art.
  • FIG. 1A is a perspective view of a semiconductor die package 10 according to one embodiment of the present invention and FIG. 1B is an exploded perspective view of the semiconductor package of FIG. 1A .
  • the light emitting die package 10 of the present invention includes a bottom heat sink 20 , a top heat sink 40 , and a lens 50 .
  • FIGS. 2A through 2D The bottom heat sink 20 is illustrated in more detail in FIGS. 2A through 2D .
  • FIGS. 2A , 2 B, 2 C, and 2 D provide, respectively, a top view, a side view, a front view, and a bottom view of the bottom heat sink 20 of FIG. 1A .
  • FIG. 2C also shows an LED assembly 60 in addition to the front view of the bottom heat sink 20 .
  • the LED assembly 60 is also illustrated in FIG. 1B .
  • the bottom heat sink 20 provides support for electrical traces 22 and 24 ; for solder pads 26 , 32 , and 34 ; and for the LED assembly 60 .
  • the bottom heat sink 20 is also referred to as a substrate 20 .
  • solder pads 26 , 32 , and 34 are indicated with reference numbers.
  • the traces 22 and 24 and the solder pads 32 , 34 , and 36 can be fabricated using conductive material. Further, additional traces and connections can be fabricated on the top, side, or bottom of the substrate 20 , or layered within the substrate 20 .
  • the traces 22 and 24 , the solder pads 32 , 34 , and 36 , and any other connections can be interconnected to each other in any combination using known methods, for example via holes.
  • the substrate 20 is made of material having high thermal conductivity but is electrically insulating, for example, aluminum nitride (AlN) or alumina (Al.sub.2O.sub.3). Dimensions of the substrate 20 can vary widely depending on application and processes used to manufacture the die package 10 . For example, in the illustrated embodiment, the substrate 20 may have dimensions ranging from fractions of millimeters (mm) to tens of millimeters. Although the present invention is not limited to particular dimensions, one specific embodiment of the die package 10 of the present invention is illustrated in Figures with the dimensions denoted therein. All dimensions shown in the Figures are in millimeters (for lengths, widths, heights, and radii) and degrees (for angles) except as otherwise designated in the Figures, in the Specification herein, or both.
  • the substrate 20 has a top surface 21 , the top surface 21 including the electrical traces 22 and 24 .
  • the traces 22 and 24 provide electrical connections from the solder pads (for example top solder pads 26 ) to a mounting pad 28 .
  • the top solder pads 26 are portions of the traces 22 and 24 generally proximal to sides of the substrate 20 .
  • the top solder pads 26 are electrically connected to side solder pads 32 .
  • the mounting pad 28 is a portion of the top surface (including portions of the trace 22 , the trace 24 , or both) where the LED assembly 60 is mounted.
  • the mounting pad 28 is generally located proximal to center of the top surface 21 .
  • the LED assembly 60 can be replaced by other semiconductor circuits or chips.
  • the traces 22 and 24 provide electrical routes to allow the LED assembly 60 to electrically connect to the solder pads 26 , 32 , or 34 . Accordingly, some of the traces are referred to as first traces 22 , while other traces are referred to as second traces 24 .
  • the mounting pad 28 includes portions of both the first traces 22 and the second traces 24 .
  • the LED assembly 60 is placed on the first trace 22 portion of the mounting pad 28 thereby making contact with the first trace 22 .
  • a top of the LED assembly 60 and the second traces 24 are connected to each other via a bond wire 62 .
  • first traces 22 may provide anode (positive) connections and second traces 24 may comprise cathode (negative) connections for the LED assembly 60 (or vice versa).
  • the LED assembly 60 can include additional elements.
  • the LED assembly 60 is illustrated including an LED bond wire 62 , an LED subassembly 64 , and a light emitting diode (LED) 66 .
  • LED light emitting diode
  • Such an LED subassembly 64 is known in the art and is illustrated for the purposes of discussing the invention and is not meant to be a limitation of the present invention.
  • the LED assembly 60 is shown die-attached to the substrate 20 .
  • the mounting pad 28 can be configured to allow flip-chip attachment of the LED assembly 60 .
  • multiple LED assemblies can be mounted on the mounting pad 28 .
  • the LED assembly 60 can be mounted over multiple traces. This is especially true if flip-chip technology is used.
  • the topology of the traces 22 and 24 can vary widely from the topology illustrated in the Figures while still remaining within the scope of the example embodiments of the present invention.
  • three separate cathode (negative) traces 24 are shown to illustrate that three LED assemblies can be placed on the mounting pad 28 , each connected to a different cathode (negative) trace; thus, the three LED assemblies may be separately electrically controllable.
  • the traces 22 and 24 are made of conductive material such as gold, silver, tin, or other metals.
  • the traces 22 and 24 can have dimensions as illustrated in the Figures and are of a thickness on the order of microns or tens of microns, depending on application. In an example, the traces 22 and 24 can be 15 microns thick.
  • FIG. 1A and 2A illustrate an orientation marking 27 . Such markings can be used to identify the proper orientation of the die package 10 even after assembling the die package 10 .
  • the traces 22 and 24 as illustrated, can extend from the mounting pad 28 to sides of the substrate 20 .
  • the substrate 20 defines semi-cylindrical spaces 23 and quarter-cylindrical spaces 25 proximal to its sides.
  • the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 provide spaces for solder to flow-through and solidify-in when the die package 10 is attached to a printed circuit board (PCB) or another apparatus (not shown) to which the die package 10 is a component thereof.
  • the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 provide convenient delineation and break points during the manufacturing process.
  • the substrate 20 can be manufactured as one individual section of a strip or a plate having a plurality of adjacent sections, each section being a substrate 20 .
  • the substrate 20 can be manufactured as one individual section of an array of sections, the array having multiple rows and columns of adjacent sections.
  • the semi-cylindrical spaces 23 and quarter-cylindrical spaces 25 can be utilized as tooling holes for the strip, the plate, or the array during the manufacturing process.
  • the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 assist in separating each individual substrate from the strip, the plate, or the wafer.
  • the separation can be accomplished by introducing physical stress to the perforation (semi through holes at a close pitch) or scribe lines made by laser, or premolded, or etched lines (crossing the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 ) by bending the strip, the plate, or the wafer.
  • the substrate 20 has a bottom surface 29 including a thermal contact pad 36 .
  • the thermal contact pad 36 can be fabricated using a material having a high thermally and electrically conductive properties such as gold, silver, tin, or another material including but not limited to precious metals.
  • FIG. 3 illustrates a cut-away side view of portions of the semiconductor package of FIGS. 1A and 1B .
  • the FIG. 3 illustrates a cut-away side view of the top heat sink 40 and the lens 50 .
  • the top heat sink 40 is made from a material having high thermal conductivity such as aluminum, copper, ceramics, plastics, composites, or a combination of these materials.
  • a high temperature, mechanically tough, dielectric material can be used to overcoat the traces 22 and 24 (with the exception of the central die-attach area) to seal the traces 22 and 24 and provide protection from physical and environmental harm such as scratches and oxidation.
  • the overcoating process can be a part of the substrate manufacturing process.
  • the overcoat when used, may insulate the substrate 20 from the top heat sink 40 .
  • the overcoat may then be covered with a high temperature adhesive such as thermal interface material manufactured by THERMOSET that bonds the substrate 20 to the top heat sink 40 .
  • the top heat sink 40 may include a reflective surface 42 substantially surrounding the LED assembly 60 mounted on the mounting pad 28 (of FIGS. 2A and 2C ).
  • the top heat sink 40 When the top heat sink 40 is used to dissipate heat generated by the LED in the die package 10 , it can be “top-mounted” directly onto an external heat sink by an adhesive or solder joint to dissipate heat efficiently.
  • the top heat sink 40 may be equipped with cooling fins or any feature that will enhance heat transfer between the top heat sink 40 and the cooling medium.
  • the electrical terminals and the bottom heat sink 20 of the die package 10 can still be connected to its application printed circuit board (PCB) using, for example, the normal surface-mount-technology (SMT) method.
  • PCB application printed circuit board
  • the reflective surface 42 reflects portions of light from the LED assembly 60 as illustrated by sample light rays 63 . Other portions of the light are not reflected by the reflective surface 42 as illustrated by sample light ray 61 . Illustrative light rays 61 and 63 are not meant to represent light traces often use in the optical arts.
  • the top heat sink 40 is preferably made from material that can be polished, coined, molded, or any combination of these. Alternatively, to achieve high reflectivity, the optical reflective surface 42 or the entire heat sink 40 can be plated or deposited with high reflective material such as silver, aluminum, or any substance that serves the purpose. For this reason, the top heat sink 40 is also referred to as a reflector plate 40 .
  • the reflector plate 40 is made of material having high thermal conductivity if and when required by the thermal performance of the package 10 .
  • the reflective surface 42 is illustrated as a flat surface at an angle, for example 45 degrees, relative to the reflective plate's horizontal plane.
  • the example embodiments are not limited to the illustrated embodiment.
  • the reflective surface 42 can be at a different angle relative to the reflective plate's horizontal plane.
  • the reflective plate can have a parabolic, toroid or any other shape that helps to meet the desired spectral luminous performance of the package.
  • the reflective plate 40 includes a ledge 44 for supporting and coupling with the lens 50 .
  • the LED assembly 60 is encapsulated within the die package 10 (of FIGS. 1A and 1B ) using encapsulation material 46 such as, for example only, soft and elastic silicones or polymers.
  • the encapsulation material 46 can be a high temperature polymer with high light transmissivity and refractive index that matches or closely matches refractive index of the lens 50 , for example.
  • the encapsulant 46 is not affected by most wavelengths that alter its light transmissivity or clarity.
  • the lens 50 is made from material having high light transmissivity such as, for example only, glass, quartz, high temperature and transparent plastic, or a combination of these materials.
  • the lens 50 is placed on top of and adheres to the encapsulation material 46 .
  • the lens 50 is not rigidly bonded to the reflector 40 . This “floating lens” design enables the encapsulant 46 to expand and contract under high and low temperature conditions without difficulty.
  • the encapsulant 46 experiences greater volumetric expansion than the cavity space that contains it.
  • the lens 50 By allowing the lens 50 to float up somewhat freely on top of the encapsulant 46 , no encapsulant will be squeezed out of its cavity space.
  • the encapsulant 46 will contract more than the other components that make up the cavity space for the encapsulant 46 ; the lens will float freely on top of the encapsulant 46 as the latter shrinks and its level drops.
  • the reliability of the die package 10 is maintained over relatively large temperature ranges as the thermal stresses induced on the encapsulant 46 is reduced by the floating lens design.
  • the lens 50 defines a recess 52 (See FIG. 3 ) having a curved, hemispherical, or other geometry, which can be filled with optical materials intended to influence or change the nature of the light emitted by the LED chip(s) before it leaves the die package 10 .
  • optical materials include luminescence converting phosphors, dyes, fluorescent polymers or other materials which absorb some of the light emitted by the chip(s) and re-emit light of different wavelengths.
  • Examples of another type of optical materials include light diffusants such as calcium carbonate, scattering particles (such as Titanium oxides) or voids which disperse or scatter light. Any one or a combination of the above materials can be applied on the lens 50 to obtain certain spectral luminous performance.
  • FIG. 4 illustrates the die package 10 coupled to an external heat sink 70 .
  • the thermal contact pad 36 can be attached to the external heat sink 70 using epoxy, solder, or any other thermally conductive adhesive, electrically conductive adhesive, or thermally and electrically conductive adhesive 74 .
  • the external heat sink 70 can be a printed circuit board (PCB) or other structure that draws heat from the die package 10 .
  • the external heat sink can include circuit elements (not shown) or heat dissipation fins 72 in various configurations.
  • FIGS. 5 through 6D An example embodiment having an alternate configuration is shown in FIGS. 5 through 6D . Portions of this second embodiment are similar to corresponding portions of the first embodiment illustrated in FIGS. 1A through 4 . For convenience, portions of the second embodiment as illustrated in FIGS. 5 through 6D that are similar to portions of the first embodiment are assigned the same reference numerals, analogous but changed portions are assigned the same reference numerals accompanied by letter “a,” and different portions are assigned different reference numerals.
  • FIG. 5 is an exploded perspective view of an LED die package 10 a in accordance with other embodiments of the present invention.
  • the light emitting die package 10 a of the present invention includes a bottom heat sink (substrate) 20 a , a top heat sink (reflector plate) 40 a , and a lens 50 .
  • FIGS. 6A , 6 B, 6 C, and 6 D provide, respectively, a top view, a side view, a front view, and a bottom view of the substrate 20 a of FIG. 5 .
  • the substrate 20 a includes one first trace 22 a and four second traces 24 a . Traces 22 a and 24 a are configured differently than traces 22 and 24 of FIG. 2A .
  • the substrate 20 a includes flanges 31 that define latch spaces 33 for reception of legs 35 of the reflector plate 40 a , thereby mechanically engaging the reflector plate 40 a with the substrate 20 a.
  • a substrate for a high power light emitting device includes a thermally and electrically conductive plate having first and second surfaces.
  • the plate may comprise a metal such as copper, aluminum or alloys of either.
  • a thin, thermally conductive insulating film is formed on the first surface of the metal plate.
  • the thermally conductive insulating film comprises a ceramic/polymer film such as the Thermal Clad film available from by The Bergquist Company of Chanhassen, Minn., USA.
  • Conductive elements such as metal traces and/or metal leads may be formed on the ceramic/polymer film. Since the ceramic/polymer film is insulating, the conductive traces are not in electrical contact with the metal plate. A conductive element may form or be electrically connected to a mounting pad adapted to receive an electronic device. As discussed above in connection with the embodiments illustrated in FIGS. 1-6 , the topology of the metal traces may vary widely while still remaining within the scope of the example embodiments.
  • An LED assembly may be bonded to the mounting pad for example by means of soldering, thermo-sonic bonding or thermo-compression bonding. Heat generated by the LED may be dissipated at least in part through the metal plate. Since the substrate itself may act as a heat sink, the need for bonding an additional heat sink to the structure may be reduced or eliminated. However, an additional heat sink may be placed in thermal communication with the metal plate so that heat may be drawn away from the operating device more efficiently.
  • one or more via holes may be formed through the insulating film and the metal plate.
  • the via holes may be internally coated with an insulating material such as the ceramic/polymer film.
  • Electrical conductors such as electrically conductive traces may be formed in the via hole to electrically connect conductive elements on the first surface of the substrate to conductive elements on the second surface of the substrate.
  • a substrate according to such an embodiment may be mounted on a surface such as a printed circuit board without the use of metal leads, which may result in a more mechanically robust package.
  • a substrate according to example embodiments may also include electronic circuitry such as a discrete zener diode and/or a resistor network for electrostatic discharge (ESD) and/or over-voltage protection.
  • ESD electrostatic discharge
  • the substrate may further include features such as the semi-cylindrical and quarter-cylindrical spaces, orientation markings, side bond pads, flanges and other features illustrated in FIGS. 1-6 .
  • Portions of the embodiments illustrated in FIGS. 7A through 10B are similar to corresponding portions of the embodiments illustrated in FIGS. 1 through 6D .
  • portions of the embodiment as illustrated in FIGS. 7A through 10B that are similar to portions of the first embodiment are assigned the same reference numerals, analogous but changed portions are assigned the same reference numerals accompanied by letter “b,” and different portions are assigned different reference numerals.
  • FIG. 7A a substrate 20 b according to another embodiments of the present invention is illustrated.
  • FIGS. 7A and 7B provide, respectively, a top view and a front view of the substrate 20 b . Further, FIG. 7B also shows an LED assembly 60 in addition to the front view of the substrate 20 b .
  • the substrate 20 b includes a thermally and electrically conductive plate 51 having first and second surfaces 51 a and 51 b .
  • the plate 51 may comprise a metal such as copper, aluminum or alloys of either.
  • a thin, thermally conductive insulating film 48 is formed on at least portions of the first surface 51 a of the metal plate 51 .
  • the thermally conductive insulating film 48 comprises a ceramic/polymer film such as the Thermal Clad film available from by The Bergquist Company of Chanhassen, Minn., USA.
  • a thermally conductive insulating film 49 may be formed on the second surface 51 b of plate 51 , as well as side surfaces.
  • the substrate 20 b provides support for electrically conductive elements such as electrical traces 22 and 24 ; for solder pads 26 ; and for the LED assembly 60 . Further, additional traces and connections can be fabricated on the top, side, or bottom of the substrate 20 b , or layered within the substrate 20 b . The traces 22 and 24 , the solder pads 26 , and any other connections can be interconnected to each other in any combinations using known methods, for example via holes.
  • the substrate 20 b has a top surface 21 b , the top surface 21 b including the electrical traces 22 and 24 .
  • the traces 22 and 24 provide electrical connections from the solder pads (for example top solder pads 26 ) to a mounting pad 28 .
  • the top solder pads 26 may comprise portions of the traces 22 and 24 generally proximal to sides of the substrate 20 b .
  • the mounting pad 28 is a portion of the top surface (including portions of the trace 22 , the trace 24 , or both) where the LED assembly 60 is mounted.
  • the mounting pad 28 is generally located proximal to center of the top surface 21 b .
  • the LED assembly 60 can be replaced by other semiconductor circuits or chips.
  • the topology of the traces 22 and 24 can vary widely from the topology illustrated in the Figures while still remaining within the scope of the example embodiments. In the Figures, only one cathode (negative) and one anode (positive) trace is shown. However, multiple cathode or anode traces may be included on the substrate 20 b to facilitate the mounting of plural LED assemblies on the mounting pad 28 , each connected to a different cathode or anode trace; thus, the three LED assemblies may be separately electrically controllable.
  • the traces 22 and 24 are made of conductive material such as gold, silver, tin, or other metals.
  • the substrate 20 b has a bottom surface 29 b including a thermal contact pad 36 .
  • the thermal contact pad can be fabricated using material having high heat conductivity such as gold, silver, tin, or other material including but not limited to precious metals.
  • FIG. 7C illustrates a cut-away front view of portions of the substrate 20 b taken along section line A-A of FIG. 7A .
  • one or more via holes 45 a , 45 b may be formed through the substrate 20 b .
  • the via holes 45 a , 45 b may be internally coated with an insulating material such as the ceramic/polymer film.
  • Electrical conductors such as electrically conductive traces 47 a , 47 b may be formed in the via holes and may electrically connect conductive elements on the first surface of the substrate to conductive elements on the second surface of the substrate. As illustrated in FIG.
  • a conductive trace 47 a in via hole 45 a connects trace 24 on the first side 21 b , or the top surface 21 b , of the substrate 20 b to solder pad 34 on the second side 29 b , or the bottom surface 29 b , of the substrate 20 b .
  • a conductive trace 47 b extending through via hole 45 b connects conductive trace 22 to a bond pad 38 .
  • a substrate according to such an embodiment may be mounted on a surface such as a printed circuit board without the use of metal leads, which may result in a more mechanically robust package.
  • a high temperature, mechanically tough, dielectric material can be used to overcoat the traces 22 and 24 (with the exception of the central die-attach area 28 ) to seal the traces 22 and 24 and provide protection from physical and environmental harm such as scratches and oxidation.
  • the overcoating process can be a part of the substrate manufacturing process.
  • the overcoat when used, also insulates the traces 22 and 24 from the top heat sink 40 .
  • the overcoat may then be covered with a high temperature adhesive such as thermal interface material manufactured by THERMOSET that bonds the substrate 20 b with the top heat sink 40 .
  • FIGS. 8 and 9 Other embodiments that do not utilize via holes are illustrated in FIGS. 8 and 9 .
  • the conductive traces 22 , 24 may form or be attached to metal leads 39 , 41 which extend away from the package and which may be mounted directly to a circuit board.
  • only the first surface 21 b of the substrate 20 b may include an electrically insulating, thermally conductive film 48 .
  • FIG. 9 illustrates an embodiment in which conductive traces 22 , 24 extend down the sidewalls of the substrate 20 b to contact bond pads 34 and 38 on the second surface of the substrate 20 b .
  • Such a configuration may permit the package to be mounted directly onto a circuit board without the use of metal leads or via holes.
  • the substrate 20 b may be configured to include electronic circuitry such as a discrete zener 65 diode, a resistor network 67 , other electronic elements, or any combination of these.
  • electronic circuitry can be connected between the traces 22 and 24 which may operate as anode/or cathode elements.
  • the electronic circuitry can be used for various purposes, for example, to prevent electrostatic discharge (ESD), for over-voltage protection, or both.
  • ESD electrostatic discharge
  • the zener diode D1 65 connected between the trace 22 and the trace 24 as illustrated in FIG. 10B may prevent an excessive reverse voltage from being applied to an optoelectronic device mounted on the substrate 20 b .
  • the resistor network 67 such as printed resistor 67 may provide ESD protection to a device mounted on the substrate 20 .

Abstract

A light emitting die package is provided which includes a metal substrate having a first surface and a first conductive lead on the first surface. The first conductive lead is insulated from the substrate by an insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes a metal lead electrically connected to the first conductive lead and extending away from the first surface.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of and claims priority to U.S. patent application Ser. No. 13/481,334, filed May 25, 2012, which is a continuation of and claims priority to U.S. patent application Ser. No. 11/689,868 entitled “Power Surface Mount Light Emitting Die Package” filed Mar. 22, 2007, now U.S. Pat. No. 8,188,488, which is a continuation of U.S. patent application Ser. No. 10/692,351 entitled “Power Surface Mount Light Emitting Die Package” filed Oct. 22, 2003, now U.S. Pat. No. 7,244,965, which is a continuation-in-part of U.S. patent application Ser. No. 10/446,532 entitled “Power Surface Mount Light Emitting Die Package” filed May 27, 2003, now U.S. Pat. No. 7,264,378, which claims the benefit of U.S. Provisional Application Ser. No. 60/408,254 filed Sep. 4, 2002. The entire contents of the above Applications and Patents are incorporated by reference herein.
  • BACKGROUND
  • Example embodiments in general relate to packaging semiconductor devices which include light emitting diodes.
  • Light emitting diodes (LEDs) are often packaged within leadframe packages. A leadframe package typically includes a molded or cast plastic body that encapsulates an LED, a lens portion, and thin metal leads connected to the LED and extending outside the body. The metal leads of the leadframe package serve as the conduit to supply the LED with electrical power and, at the same time, may act to draw heat away from the LED. Heat is generated by the LED when power is applied to the LED to produce light. A portion of the leads extends out from the package body for connection to circuits external to the leadframe package.
  • Some of the heat generated by the LED is dissipated by the plastic package body; however, most of the heat is drawn away from the LED via the metal components of the package. The metal leads are typically very thin and has a small cross section. For this reason, capacity of the metal leads to remove heat from the LED is limited. This limits the amount of power that can be sent to the LED thereby limiting the amount of light that can be generated by the LED.
  • To increase the capacity of an LED package to dissipate heat, in one LED package design, a heat sink slug is introduced into the package. The heat sink slug draws heat from the LED chip. Hence, it increases the capacity of the LED package to dissipate heat. However, this design introduces empty spaces within the package that is be filled with an encapsulant to protect the LED chip. Furthermore, due to significant differences in CTE (coefficient of thermal expansion) between various components inside the LED package, bubbles tend to form inside the encapsulant or the encapsulant tends to delaminate from various portions within the package. This adversely affects the light output and reliability of the product. In addition, this design includes a pair of flimsy leads which are typically soldered by a hot-iron. This manufacturing process is incompatible with convenient surface mounting technology (SMT) that is popular in the art of electronic board assembly.
  • In another LED package design, the leads of the leadframe package have differing thicknesses extended (in various shapes and configurations) beyond the immediate edge of the LED package body. A thicker lead is utilized as a heat-spreader and the LED chip is mounted on it. This arrangement allows heat generated by the LED chip to dissipate through the thicker lead which is often connected to an external heat sink. This design is inherently unreliable due to significant difference in coefficient of thermal expansion (CTE) between the plastic body and the leadframe material. When subjected to temperature cycles, its rigid plastic body that adheres to the metal leads experiences high degree of thermal stresses in many directions. This potentially leads to various undesirable results such as cracking of the plastic body, separation of the plastic body from the LED chip, breaking of the bond wires, delaminating of the plastic body at the interfaces where it bonds to various parts, or resulting in a combination of these outcomes. In addition, the extended leads increase the package size and its footprint. For this reason, it is difficult to populate these LED packages in a dense cluster on a printed circuit board (PCB) to generate brighter light.
  • Another disadvantage of conventional leadframe design is that the thick lead cannot be made or stamped into a fine circuit for flip-chip mounting of a LED—which is commonly used by some manufacturers for cost-effective manufacturing and device performance.
  • SUMMARY
  • An example embodiment of the present invention is directed to a light emitting die package. The package includes a substrate having a first surface and a first conductive lead on the first surface that is insulated from the substrate by an insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes a lead electrically connected to the first conductive lead and extending away from the first surface.
  • Another example embodiment is directed to a light emitting die package. The package includes a substrate having a first surface and a second surface opposite the first surface, a via hole through the substrate, and a conductive lead extending from the first surface to the second surface. The conductive lead is insulated from the substrate by an insulating film. The package includes a metal contact pad on one of the first and second surfaces electrically connected to the conductive lead. The metal contact pad has a light emitting diode (LED) mounted thereon.
  • Another example embodiment is directed to a LED package including a substrate having a first surface, a second surface opposite the first surface, and a first conductive lead on the first surface that is insulated from the substrate by a first insulating film. The first conductive lead forms a mounting pad for mounting a light emitting device. The package includes at least one via hold formed through the substrate. A surface of the via hole is coated with a second insulating film.
  • Another example embodiment is directed to a LED package including a substrate having a top surface, a bottom surface, at least one conductive element on the top surface connected to a LED and at least one conductive element attached to the bottom surface. The package includes at least two via holes formed through the substrate. Each via hole includes an electrical conductor therein which electrically connects the at least one conductive elements on the top and bottom surfaces of the substrate.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Example embodiments will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference numerals, which are given by way of illustration only and thus are not limitative of the example embodiments.
  • FIG. 1A is a perspective view of a semiconductor die package according to one embodiment of the present invention.
  • FIG. 1B is an exploded perspective view of the semiconductor package of FIG. 1A.
  • FIG. 2A is a top view of a portion of the semiconductor package of FIG. 1A.
  • FIG. 2B is a side view of a portion of the semiconductor package of FIG. 1A.
  • FIG. 2C is a front view of a portion of the semiconductor package of FIG. 1A.
  • FIG. 2D is a bottom view of a portion of the semiconductor package of FIG. 1A.
  • FIG. 3 is a cut-away side view of portions of the semiconductor package of FIG. 1A.
  • FIG. 4 is a side view of the semiconductor package of FIG. 1A with additional elements.
  • FIG. 5 an exploded perspective view of a semiconductor die package according to another embodiment of the present invention.
  • FIG. 6A is a top view of a portion of the semiconductor package of FIG. 5.
  • FIG. 6B is a side view of a portion of the semiconductor package of FIG. 5.
  • FIG. 6C is a front view of a portion of the semiconductor package of FIG. 5.
  • FIG. 6D is a bottom view of a portion of the semiconductor package of FIG. 5.
  • FIG. 7A is a top view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 7B is a front view of the portion of a semiconductor package of FIG. 7A.
  • FIG. 7C is a cut-away front view of the portion of a semiconductor package of FIG. 7A taken along line A-A.
  • FIG. 8 is a side view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 9 is a side view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 10A is a top view of a portion of a semiconductor package according to another example embodiment.
  • FIG. 10B is a top view of a portion of a semiconductor package according to another example embodiment.
  • DETAILED DESCRIPTION
  • Example embodiments will now be described with reference to FIGS. 1 through 10B. As illustrated in the Figures, the sizes of layers or regions are exaggerated for illustrative purposes and, thus, are provided to illustrate the general structures of the present invention. Furthermore, various aspects in the example embodiments are described with reference to a layer or structure being formed on a substrate or other layer or structure. As will be appreciated by those of skill in the art, references to a layer being formed “on” another layer or substrate contemplates that additional layers may intervene. References to a layer being formed on another layer or substrate without an intervening layer are described herein as being formed “directly on” the layer or substrate.
  • Furthermore, relative terms such as beneath may be used herein to describe one layer or regions relationship to another layer or region as illustrated in the Figures. It will be understood that these terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in the Figures is turned over, layers or regions described as “beneath” other layers or regions would now be oriented “above” these other layers or regions. The term “beneath” is intended to encompass both above and beneath in this situation. Like numbers refer to like elements throughout.
  • As shown in the figures for the purposes of illustration, example embodiments of the present invention are exemplified by a light emitting die package including a bottom heat sink (substrate) having traces for connecting to a light emitting diode at a mounting pad and a top heat sink (reflector plate) substantially surrounding the mounting pad. A lens covers the mounting pad. In effect, an example die package comprises a two part heat sink with the bottom heat sink utilized (in addition to its utility for drawing and dissipating heat) as the substrate on which the LED is mounted and connected, and with the top heat sink utilized (in addition to its utility for drawing and dissipating heat) as a reflector plate to direct light produced by the LED. Because both the bottom and the top heat sinks draw heat away from the LED, more power can be delivered to the LED, and the LED can thereby produce more light.
  • Further, the body of the die package itself may act as the heat sink removing heat from the LED and dissipating it. For this reason, the example LED die package may not require separate heat sink slugs or leads that extend away from the package. Accordingly, the LED die package may be more compact, more reliable, and less costly to manufacture than die packages of the prior art.
  • FIG. 1A is a perspective view of a semiconductor die package 10 according to one embodiment of the present invention and FIG. 1B is an exploded perspective view of the semiconductor package of FIG. 1A. Referring to FIGS. 1A and 1B, the light emitting die package 10 of the present invention includes a bottom heat sink 20, a top heat sink 40, and a lens 50.
  • The bottom heat sink 20 is illustrated in more detail in FIGS. 2A through 2D. FIGS. 2A, 2B, 2C, and 2D provide, respectively, a top view, a side view, a front view, and a bottom view of the bottom heat sink 20 of FIG. 1A. Further, FIG. 2C also shows an LED assembly 60 in addition to the front view of the bottom heat sink 20. The LED assembly 60 is also illustrated in FIG. 1B. Referring to FIGS. 1A through 2D, the bottom heat sink 20 provides support for electrical traces 22 and 24; for solder pads 26, 32, and 34; and for the LED assembly 60. For this reason, the bottom heat sink 20 is also referred to as a substrate 20. In the Figures, to avoid clutter, only representative solder pads 26, 32, and 34 are indicated with reference numbers. The traces 22 and 24 and the solder pads 32, 34, and 36 can be fabricated using conductive material. Further, additional traces and connections can be fabricated on the top, side, or bottom of the substrate 20, or layered within the substrate 20. The traces 22 and 24, the solder pads 32, 34, and 36, and any other connections can be interconnected to each other in any combination using known methods, for example via holes.
  • The substrate 20 is made of material having high thermal conductivity but is electrically insulating, for example, aluminum nitride (AlN) or alumina (Al.sub.2O.sub.3). Dimensions of the substrate 20 can vary widely depending on application and processes used to manufacture the die package 10. For example, in the illustrated embodiment, the substrate 20 may have dimensions ranging from fractions of millimeters (mm) to tens of millimeters. Although the present invention is not limited to particular dimensions, one specific embodiment of the die package 10 of the present invention is illustrated in Figures with the dimensions denoted therein. All dimensions shown in the Figures are in millimeters (for lengths, widths, heights, and radii) and degrees (for angles) except as otherwise designated in the Figures, in the Specification herein, or both.
  • The substrate 20 has a top surface 21, the top surface 21 including the electrical traces 22 and 24. The traces 22 and 24 provide electrical connections from the solder pads (for example top solder pads 26) to a mounting pad 28. The top solder pads 26 are portions of the traces 22 and 24 generally proximal to sides of the substrate 20. The top solder pads 26 are electrically connected to side solder pads 32. The mounting pad 28 is a portion of the top surface (including portions of the trace 22, the trace 24, or both) where the LED assembly 60 is mounted. Typically the mounting pad 28 is generally located proximal to center of the top surface 21. In alternative embodiments of the present invention, the LED assembly 60 can be replaced by other semiconductor circuits or chips.
  • The traces 22 and 24 provide electrical routes to allow the LED assembly 60 to electrically connect to the solder pads 26, 32, or 34. Accordingly, some of the traces are referred to as first traces 22, while other traces are referred to as second traces 24. In the illustrated embodiment, the mounting pad 28 includes portions of both the first traces 22 and the second traces 24. In the illustrated example, the LED assembly 60 is placed on the first trace 22 portion of the mounting pad 28 thereby making contact with the first trace 22. In the illustrated embodiment, a top of the LED assembly 60 and the second traces 24 are connected to each other via a bond wire 62. Depending on the construction and orientation of LED assembly 60, first traces 22 may provide anode (positive) connections and second traces 24 may comprise cathode (negative) connections for the LED assembly 60 (or vice versa).
  • The LED assembly 60 can include additional elements. For example, in FIGS. 1B and 2C, the LED assembly 60 is illustrated including an LED bond wire 62, an LED subassembly 64, and a light emitting diode (LED) 66. Such an LED subassembly 64 is known in the art and is illustrated for the purposes of discussing the invention and is not meant to be a limitation of the present invention. In the Figures, the LED assembly 60 is shown die-attached to the substrate 20. In alternative embodiments, the mounting pad 28 can be configured to allow flip-chip attachment of the LED assembly 60. Additionally, multiple LED assemblies can be mounted on the mounting pad 28. In alternative embodiments, the LED assembly 60 can be mounted over multiple traces. This is especially true if flip-chip technology is used.
  • The topology of the traces 22 and 24 can vary widely from the topology illustrated in the Figures while still remaining within the scope of the example embodiments of the present invention. In the Figures, three separate cathode (negative) traces 24 are shown to illustrate that three LED assemblies can be placed on the mounting pad 28, each connected to a different cathode (negative) trace; thus, the three LED assemblies may be separately electrically controllable. The traces 22 and 24 are made of conductive material such as gold, silver, tin, or other metals. The traces 22 and 24 can have dimensions as illustrated in the Figures and are of a thickness on the order of microns or tens of microns, depending on application. In an example, the traces 22 and 24 can be 15 microns thick. FIGS. 1A and 2A illustrate an orientation marking 27. Such markings can be used to identify the proper orientation of the die package 10 even after assembling the die package 10. The traces 22 and 24, as illustrated, can extend from the mounting pad 28 to sides of the substrate 20.
  • Continuing to refer to FIGS. 1A through 2D, the substrate 20 defines semi-cylindrical spaces 23 and quarter-cylindrical spaces 25 proximal to its sides. In the Figures, to avoid clutter, only representative spaces 23 and 25 are indicated with reference numbers. The semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 provide spaces for solder to flow-through and solidify-in when the die package 10 is attached to a printed circuit board (PCB) or another apparatus (not shown) to which the die package 10 is a component thereof. Moreover, the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 provide convenient delineation and break points during the manufacturing process.
  • The substrate 20 can be manufactured as one individual section of a strip or a plate having a plurality of adjacent sections, each section being a substrate 20. Alternatively, the substrate 20 can be manufactured as one individual section of an array of sections, the array having multiple rows and columns of adjacent sections. In this configuration, the semi-cylindrical spaces 23 and quarter-cylindrical spaces 25 can be utilized as tooling holes for the strip, the plate, or the array during the manufacturing process.
  • Furthermore, the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25, combined with scribed grooves or other etchings between the sections, assist in separating each individual substrate from the strip, the plate, or the wafer. The separation can be accomplished by introducing physical stress to the perforation (semi through holes at a close pitch) or scribe lines made by laser, or premolded, or etched lines (crossing the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25) by bending the strip, the plate, or the wafer. These features simplify the manufacturing process and thus reduce costs by eliminating the need for special carrier fixtures to handle individual unit of the substrate 20 during the manufacturing process. Furthermore, the semi-cylindrical spaces 23 and the quarter-cylindrical spaces 25 serve as via holes connecting the top solder pads 26, the side solder pads 32, and the bottom solder pads 34.
  • The substrate 20 has a bottom surface 29 including a thermal contact pad 36. The thermal contact pad 36 can be fabricated using a material having a high thermally and electrically conductive properties such as gold, silver, tin, or another material including but not limited to precious metals.
  • FIG. 3 illustrates a cut-away side view of portions of the semiconductor package of FIGS. 1A and 1B. In particular, the FIG. 3 illustrates a cut-away side view of the top heat sink 40 and the lens 50. Referring to FIGS. 1A, 1B, and 3, the top heat sink 40 is made from a material having high thermal conductivity such as aluminum, copper, ceramics, plastics, composites, or a combination of these materials. A high temperature, mechanically tough, dielectric material can be used to overcoat the traces 22 and 24 (with the exception of the central die-attach area) to seal the traces 22 and 24 and provide protection from physical and environmental harm such as scratches and oxidation. The overcoating process can be a part of the substrate manufacturing process. The overcoat, when used, may insulate the substrate 20 from the top heat sink 40. The overcoat may then be covered with a high temperature adhesive such as thermal interface material manufactured by THERMOSET that bonds the substrate 20 to the top heat sink 40.
  • The top heat sink 40 may include a reflective surface 42 substantially surrounding the LED assembly 60 mounted on the mounting pad 28 (of FIGS. 2A and 2C). When the top heat sink 40 is used to dissipate heat generated by the LED in the die package 10, it can be “top-mounted” directly onto an external heat sink by an adhesive or solder joint to dissipate heat efficiently. In another embodiment, if heat has to be dissipated by either a compressible or non-compressible medium such as air or cooling fluid, the top heat sink 40 may be equipped with cooling fins or any feature that will enhance heat transfer between the top heat sink 40 and the cooling medium. In both of these embodiments, the electrical terminals and the bottom heat sink 20 of the die package 10 can still be connected to its application printed circuit board (PCB) using, for example, the normal surface-mount-technology (SMT) method.
  • The reflective surface 42 reflects portions of light from the LED assembly 60 as illustrated by sample light rays 63. Other portions of the light are not reflected by the reflective surface 42 as illustrated by sample light ray 61. Illustrative light rays 61 and 63 are not meant to represent light traces often use in the optical arts. For efficient reflection of the light, the top heat sink 40 is preferably made from material that can be polished, coined, molded, or any combination of these. Alternatively, to achieve high reflectivity, the optical reflective surface 42 or the entire heat sink 40 can be plated or deposited with high reflective material such as silver, aluminum, or any substance that serves the purpose. For this reason, the top heat sink 40 is also referred to as a reflector plate 40. The reflector plate 40 is made of material having high thermal conductivity if and when required by the thermal performance of the package 10.
  • In the illustrated embodiment, the reflective surface 42 is illustrated as a flat surface at an angle, for example 45 degrees, relative to the reflective plate's horizontal plane. The example embodiments are not limited to the illustrated embodiment. For example, the reflective surface 42 can be at a different angle relative to the reflective plate's horizontal plane. Alternatively, the reflective plate can have a parabolic, toroid or any other shape that helps to meet the desired spectral luminous performance of the package.
  • The reflective plate 40 includes a ledge 44 for supporting and coupling with the lens 50. The LED assembly 60 is encapsulated within the die package 10 (of FIGS. 1A and 1B) using encapsulation material 46 such as, for example only, soft and elastic silicones or polymers. The encapsulation material 46 can be a high temperature polymer with high light transmissivity and refractive index that matches or closely matches refractive index of the lens 50, for example. The encapsulant 46 is not affected by most wavelengths that alter its light transmissivity or clarity.
  • The lens 50 is made from material having high light transmissivity such as, for example only, glass, quartz, high temperature and transparent plastic, or a combination of these materials. The lens 50 is placed on top of and adheres to the encapsulation material 46. The lens 50 is not rigidly bonded to the reflector 40. This “floating lens” design enables the encapsulant 46 to expand and contract under high and low temperature conditions without difficulty.
  • For instance, when the die package 10 is operating or being subjected to a high temperature environment, the encapsulant 46 experiences greater volumetric expansion than the cavity space that contains it. By allowing the lens 50 to float up somewhat freely on top of the encapsulant 46, no encapsulant will be squeezed out of its cavity space. Likewise, when the die package 10 is subjected to a cold temperature, the encapsulant 46 will contract more than the other components that make up the cavity space for the encapsulant 46; the lens will float freely on top of the encapsulant 46 as the latter shrinks and its level drops. Hence, the reliability of the die package 10 is maintained over relatively large temperature ranges as the thermal stresses induced on the encapsulant 46 is reduced by the floating lens design.
  • In some embodiments, the lens 50 defines a recess 52 (See FIG. 3) having a curved, hemispherical, or other geometry, which can be filled with optical materials intended to influence or change the nature of the light emitted by the LED chip(s) before it leaves the die package 10. Examples of one type of optical materials include luminescence converting phosphors, dyes, fluorescent polymers or other materials which absorb some of the light emitted by the chip(s) and re-emit light of different wavelengths. Examples of another type of optical materials include light diffusants such as calcium carbonate, scattering particles (such as Titanium oxides) or voids which disperse or scatter light. Any one or a combination of the above materials can be applied on the lens 50 to obtain certain spectral luminous performance.
  • FIG. 4 illustrates the die package 10 coupled to an external heat sink 70. Referring to FIG. 4, the thermal contact pad 36 can be attached to the external heat sink 70 using epoxy, solder, or any other thermally conductive adhesive, electrically conductive adhesive, or thermally and electrically conductive adhesive 74. The external heat sink 70 can be a printed circuit board (PCB) or other structure that draws heat from the die package 10. The external heat sink can include circuit elements (not shown) or heat dissipation fins 72 in various configurations.
  • An example embodiment having an alternate configuration is shown in FIGS. 5 through 6D. Portions of this second embodiment are similar to corresponding portions of the first embodiment illustrated in FIGS. 1A through 4. For convenience, portions of the second embodiment as illustrated in FIGS. 5 through 6D that are similar to portions of the first embodiment are assigned the same reference numerals, analogous but changed portions are assigned the same reference numerals accompanied by letter “a,” and different portions are assigned different reference numerals.
  • FIG. 5 is an exploded perspective view of an LED die package 10 a in accordance with other embodiments of the present invention. Referring to FIG. 5, the light emitting die package 10 a of the present invention includes a bottom heat sink (substrate) 20 a, a top heat sink (reflector plate) 40 a, and a lens 50.
  • FIGS. 6A, 6B, 6C, and 6D, provide, respectively, a top view, a side view, a front view, and a bottom view of the substrate 20 a of FIG. 5. Referring to FIGS. 5 through 6D, the substrate 20 a includes one first trace 22 a and four second traces 24 a. Traces 22 a and 24 a are configured differently than traces 22 and 24 of FIG. 2A. The substrate 20 a includes flanges 31 that define latch spaces 33 for reception of legs 35 of the reflector plate 40 a, thereby mechanically engaging the reflector plate 40 a with the substrate 20 a.
  • Additional example embodiments are illustrated in FIGS. 7A through 10B. According to these embodiments, a substrate for a high power light emitting device includes a thermally and electrically conductive plate having first and second surfaces. The plate may comprise a metal such as copper, aluminum or alloys of either. A thin, thermally conductive insulating film is formed on the first surface of the metal plate. In some embodiments, the thermally conductive insulating film comprises a ceramic/polymer film such as the Thermal Clad film available from by The Bergquist Company of Chanhassen, Minn., USA.
  • Conductive elements such as metal traces and/or metal leads may be formed on the ceramic/polymer film. Since the ceramic/polymer film is insulating, the conductive traces are not in electrical contact with the metal plate. A conductive element may form or be electrically connected to a mounting pad adapted to receive an electronic device. As discussed above in connection with the embodiments illustrated in FIGS. 1-6, the topology of the metal traces may vary widely while still remaining within the scope of the example embodiments.
  • An LED assembly may be bonded to the mounting pad for example by means of soldering, thermo-sonic bonding or thermo-compression bonding. Heat generated by the LED may be dissipated at least in part through the metal plate. Since the substrate itself may act as a heat sink, the need for bonding an additional heat sink to the structure may be reduced or eliminated. However, an additional heat sink may be placed in thermal communication with the metal plate so that heat may be drawn away from the operating device more efficiently.
  • In one embodiment, one or more via holes may be formed through the insulating film and the metal plate. The via holes may be internally coated with an insulating material such as the ceramic/polymer film. Electrical conductors such as electrically conductive traces may be formed in the via hole to electrically connect conductive elements on the first surface of the substrate to conductive elements on the second surface of the substrate. A substrate according to such an embodiment may be mounted on a surface such as a printed circuit board without the use of metal leads, which may result in a more mechanically robust package.
  • A substrate according to example embodiments may also include electronic circuitry such as a discrete zener diode and/or a resistor network for electrostatic discharge (ESD) and/or over-voltage protection.
  • Although not illustrated in FIGS. 7-10, the substrate may further include features such as the semi-cylindrical and quarter-cylindrical spaces, orientation markings, side bond pads, flanges and other features illustrated in FIGS. 1-6.
  • Portions of the embodiments illustrated in FIGS. 7A through 10B are similar to corresponding portions of the embodiments illustrated in FIGS. 1 through 6D. For convenience, portions of the embodiment as illustrated in FIGS. 7A through 10B that are similar to portions of the first embodiment are assigned the same reference numerals, analogous but changed portions are assigned the same reference numerals accompanied by letter “b,” and different portions are assigned different reference numerals.
  • Referring now to FIG. 7A, a substrate 20 b according to another embodiments of the present invention is illustrated. FIGS. 7A and 7B provide, respectively, a top view and a front view of the substrate 20 b. Further, FIG. 7B also shows an LED assembly 60 in addition to the front view of the substrate 20 b. The substrate 20 b includes a thermally and electrically conductive plate 51 having first and second surfaces 51 a and 51 b. The plate 51 may comprise a metal such as copper, aluminum or alloys of either. A thin, thermally conductive insulating film 48 is formed on at least portions of the first surface 51 a of the metal plate 51. In some embodiments, the thermally conductive insulating film 48 comprises a ceramic/polymer film such as the Thermal Clad film available from by The Bergquist Company of Chanhassen, Minn., USA. In addition, a thermally conductive insulating film 49 may be formed on the second surface 51 b of plate 51, as well as side surfaces.
  • The substrate 20 b provides support for electrically conductive elements such as electrical traces 22 and 24; for solder pads 26; and for the LED assembly 60. Further, additional traces and connections can be fabricated on the top, side, or bottom of the substrate 20 b, or layered within the substrate 20 b. The traces 22 and 24, the solder pads 26, and any other connections can be interconnected to each other in any combinations using known methods, for example via holes.
  • The substrate 20 b has a top surface 21 b, the top surface 21 b including the electrical traces 22 and 24. The traces 22 and 24 provide electrical connections from the solder pads (for example top solder pads 26) to a mounting pad 28. The top solder pads 26 may comprise portions of the traces 22 and 24 generally proximal to sides of the substrate 20 b. The mounting pad 28 is a portion of the top surface (including portions of the trace 22, the trace 24, or both) where the LED assembly 60 is mounted. Typically the mounting pad 28 is generally located proximal to center of the top surface 21 b. In alternative embodiments of the present invention, the LED assembly 60 can be replaced by other semiconductor circuits or chips.
  • The topology of the traces 22 and 24 can vary widely from the topology illustrated in the Figures while still remaining within the scope of the example embodiments. In the Figures, only one cathode (negative) and one anode (positive) trace is shown. However, multiple cathode or anode traces may be included on the substrate 20 b to facilitate the mounting of plural LED assemblies on the mounting pad 28, each connected to a different cathode or anode trace; thus, the three LED assemblies may be separately electrically controllable. The traces 22 and 24 are made of conductive material such as gold, silver, tin, or other metals.
  • The substrate 20 b has a bottom surface 29 b including a thermal contact pad 36. The thermal contact pad can be fabricated using material having high heat conductivity such as gold, silver, tin, or other material including but not limited to precious metals.
  • FIG. 7C illustrates a cut-away front view of portions of the substrate 20 b taken along section line A-A of FIG. 7A. As shown in FIG. 7C, one or more via holes 45 a, 45 b may be formed through the substrate 20 b. The via holes 45 a, 45 b may be internally coated with an insulating material such as the ceramic/polymer film. Electrical conductors such as electrically conductive traces 47 a, 47 b may be formed in the via holes and may electrically connect conductive elements on the first surface of the substrate to conductive elements on the second surface of the substrate. As illustrated in FIG. 7C, a conductive trace 47 a in via hole 45 a connects trace 24 on the first side 21 b, or the top surface 21 b, of the substrate 20 b to solder pad 34 on the second side 29 b, or the bottom surface 29 b, of the substrate 20 b. Likewise, a conductive trace 47 b extending through via hole 45 b connects conductive trace 22 to a bond pad 38.
  • A substrate according to such an embodiment may be mounted on a surface such as a printed circuit board without the use of metal leads, which may result in a more mechanically robust package.
  • As discussed above, a high temperature, mechanically tough, dielectric material can be used to overcoat the traces 22 and 24 (with the exception of the central die-attach area 28) to seal the traces 22 and 24 and provide protection from physical and environmental harm such as scratches and oxidation. The overcoating process can be a part of the substrate manufacturing process. The overcoat, when used, also insulates the traces 22 and 24 from the top heat sink 40. The overcoat may then be covered with a high temperature adhesive such as thermal interface material manufactured by THERMOSET that bonds the substrate 20 b with the top heat sink 40.
  • Other embodiments that do not utilize via holes are illustrated in FIGS. 8 and 9. As illustrated in FIG. 8, the conductive traces 22, 24 may form or be attached to metal leads 39, 41 which extend away from the package and which may be mounted directly to a circuit board. In such an embodiment, only the first surface 21 b of the substrate 20 b may include an electrically insulating, thermally conductive film 48.
  • FIG. 9 illustrates an embodiment in which conductive traces 22, 24 extend down the sidewalls of the substrate 20 b to contact bond pads 34 and 38 on the second surface of the substrate 20 b. Such a configuration may permit the package to be mounted directly onto a circuit board without the use of metal leads or via holes.
  • As illustrated in FIGS. 10A and 10B, the substrate 20 b may be configured to include electronic circuitry such as a discrete zener 65 diode, a resistor network 67, other electronic elements, or any combination of these. Such electronic circuitry can be connected between the traces 22 and 24 which may operate as anode/or cathode elements. The electronic circuitry can be used for various purposes, for example, to prevent electrostatic discharge (ESD), for over-voltage protection, or both. In the illustrated examples, the zener diode D1 65 connected between the trace 22 and the trace 24 as illustrated in FIG. 10B may prevent an excessive reverse voltage from being applied to an optoelectronic device mounted on the substrate 20 b. Similarly, the resistor network 67 such as printed resistor 67 may provide ESD protection to a device mounted on the substrate 20.
  • The example embodiments of the present invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the exemplary embodiments of the present invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims (19)

What is claimed is:
1. A light emitting die package, comprising:
a substrate comprising a top surface, a bottom surface and a plurality of sides;
a light emitting diode (LED) mounted on the top surface of the substrate;
a thermal pad on or exposed on the bottom surface of the substrate that opposes the surface upon which the LED is mounted; and
a plurality of solder pads spaced apart from the thermal pad on the bottom surface of the substrate.
2. The package of claim 1, further comprising a plurality of traces disposed on the top surface of the substrate.
3. The package of claim 2, wherein the LED is connected to the plurality of traces.
4. The package of claim 1, wherein at least one of the plurality of solder pads extends along one side of the plurality of sides of the substrate and between the top and bottom surfaces.
5. The package of claim 1, wherein the thermal pad comprises a metal.
7. The package of claim 1, further comprising a reflector coupled to the substrate and substantially surrounding the LED, the reflector defining a reflection surface.
8. The package of claim 7, wherein the reflector is composed of a material having high thermal conductivity.
9. The package of claim 7, wherein the reflector and substrate serve as heat sinks for dissipating heat generated by the LED.
10. The package of claim 1, further comprising an encapsulant covering the LED.
11. The package of claim 10, wherein the encapsulant is disposed within a portion of the reflector.
12. The package of claim 10, wherein the encapsulant is composed of an optically clear polymer material.
13. The package of claim 1, further comprising a lens covering the LED.
14. The package of claim 13, wherein the lens sits on and adheres to a portion of the encapsulant, the lens being movable relative to one or more portions of the package.
15. The package of claim 10, wherein the encapsulant comprises silicone.
16. The package of claim 1, wherein the substrate is electrically insulating.
17. The package of claim 16, wherein the electrically insulating substrate comprises aluminum nitride or alumina.
18. The package of claim 1, wherein some of the plurality of solder pads are disposed on opposing sides of the bottom surface of the substrate.
19. The package of claim 1, wherein some of the plurality of solder pads are disposed on opposing sides of the top surface of the substrate.
20. The package of claim 1, wherein some of the plurality of solder pads are disposed on opposite sides from other of the plurality of solder pads.
US14/221,982 2002-09-04 2014-03-21 Power surface mount light emitting die package Abandoned US20140284643A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/221,982 US20140284643A1 (en) 2002-09-04 2014-03-21 Power surface mount light emitting die package

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US40825402P 2002-09-04 2002-09-04
US10/446,532 US7264378B2 (en) 2002-09-04 2003-05-27 Power surface mount light emitting die package
US10/692,351 US7244965B2 (en) 2002-09-04 2003-10-22 Power surface mount light emitting die package
US11/689,868 US8188488B2 (en) 2003-05-27 2007-03-22 Power surface mount light emitting die package
US13/481,334 US8710514B2 (en) 2002-09-04 2012-05-25 Power surface mount light emitting die package
US14/221,982 US20140284643A1 (en) 2002-09-04 2014-03-21 Power surface mount light emitting die package

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/481,334 Continuation US8710514B2 (en) 2002-09-04 2012-05-25 Power surface mount light emitting die package

Publications (1)

Publication Number Publication Date
US20140284643A1 true US20140284643A1 (en) 2014-09-25

Family

ID=34549896

Family Applications (5)

Application Number Title Priority Date Filing Date
US10/692,351 Expired - Lifetime US7244965B2 (en) 2002-09-04 2003-10-22 Power surface mount light emitting die package
US11/689,868 Active 2024-07-23 US8188488B2 (en) 2002-09-04 2007-03-22 Power surface mount light emitting die package
US13/022,365 Expired - Lifetime US8530915B2 (en) 2002-09-04 2011-02-07 Power surface mount light emitting die package
US13/481,334 Expired - Lifetime US8710514B2 (en) 2002-09-04 2012-05-25 Power surface mount light emitting die package
US14/221,982 Abandoned US20140284643A1 (en) 2002-09-04 2014-03-21 Power surface mount light emitting die package

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US10/692,351 Expired - Lifetime US7244965B2 (en) 2002-09-04 2003-10-22 Power surface mount light emitting die package
US11/689,868 Active 2024-07-23 US8188488B2 (en) 2002-09-04 2007-03-22 Power surface mount light emitting die package
US13/022,365 Expired - Lifetime US8530915B2 (en) 2002-09-04 2011-02-07 Power surface mount light emitting die package
US13/481,334 Expired - Lifetime US8710514B2 (en) 2002-09-04 2012-05-25 Power surface mount light emitting die package

Country Status (10)

Country Link
US (5) US7244965B2 (en)
EP (2) EP1680816B1 (en)
JP (1) JP4602345B2 (en)
KR (4) KR101314986B1 (en)
CN (2) CN1871710B (en)
AT (1) ATE444568T1 (en)
CA (1) CA2549822A1 (en)
DE (1) DE602004023409D1 (en)
TW (6) TW201210061A (en)
WO (1) WO2005043627A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292747A1 (en) * 2005-06-27 2006-12-28 Loh Ban P Top-surface-mount power light emitter with integral heat sink

Families Citing this family (386)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6633120B2 (en) * 1998-11-19 2003-10-14 Unisplay S.A. LED lamps
WO2004021461A2 (en) 2002-08-30 2004-03-11 Gelcore Llc Phosphor-coated led with improved efficiency
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
US7800121B2 (en) 2002-08-30 2010-09-21 Lumination Llc Light emitting diode component
US7244965B2 (en) * 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7264378B2 (en) * 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
US7775685B2 (en) * 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
US7692206B2 (en) * 2002-12-06 2010-04-06 Cree, Inc. Composite leadframe LED package and method of making the same
US6897486B2 (en) 2002-12-06 2005-05-24 Ban P. Loh LED package die having a small footprint
EP2270887B1 (en) 2003-04-30 2020-01-22 Cree, Inc. High powered light emitter packages with compact optics
AT501081B8 (en) * 2003-07-11 2007-02-15 Tridonic Optoelectronics Gmbh LED AS WELL AS LED LIGHT SOURCE
US7183587B2 (en) * 2003-09-09 2007-02-27 Cree, Inc. Solid metal block mounting substrates for semiconductor light emitting devices
FR2862424B1 (en) * 2003-11-18 2006-10-20 Valeo Electronique Sys Liaison DEVICE FOR COOLING AN ELECTRICAL COMPONENT AND METHOD FOR MANUFACTURING THE SAME
US7518158B2 (en) * 2003-12-09 2009-04-14 Cree, Inc. Semiconductor light emitting devices and submounts
KR100586944B1 (en) * 2003-12-26 2006-06-07 삼성전기주식회사 High power light emitting diode package and method of producing the same
US7279346B2 (en) * 2004-03-31 2007-10-09 Cree, Inc. Method for packaging a light emitting device by one dispense then cure step followed by another
US7517728B2 (en) * 2004-03-31 2009-04-14 Cree, Inc. Semiconductor light emitting devices including a luminescent conversion element
KR100655894B1 (en) * 2004-05-06 2006-12-08 서울옵토디바이스주식회사 Light Emitting Device
KR100658700B1 (en) 2004-05-13 2006-12-15 서울옵토디바이스주식회사 Light emitting device with RGB diodes and phosphor converter
DE102004040468B4 (en) * 2004-05-31 2022-02-03 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component and housing base body for such a component
US8975646B2 (en) * 2004-05-31 2015-03-10 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and housing base for such a component
US7456499B2 (en) * 2004-06-04 2008-11-25 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
US7280288B2 (en) 2004-06-04 2007-10-09 Cree, Inc. Composite optical lens with an integrated reflector
KR100665298B1 (en) * 2004-06-10 2007-01-04 서울반도체 주식회사 Light emitting device
US8318044B2 (en) * 2004-06-10 2012-11-27 Seoul Semiconductor Co., Ltd. Light emitting device
KR100665299B1 (en) * 2004-06-10 2007-01-04 서울반도체 주식회사 Luminescent material
US20050280016A1 (en) * 2004-06-17 2005-12-22 Mok Thye L PCB-based surface mount LED device with silicone-based encapsulation structure
JP2008504711A (en) * 2004-06-29 2008-02-14 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Light emitting diode module
WO2006005062A2 (en) * 2004-06-30 2006-01-12 Cree, Inc. Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
US7534633B2 (en) 2004-07-02 2009-05-19 Cree, Inc. LED with substrate modifications for enhanced light extraction and method of making same
KR100604469B1 (en) * 2004-08-25 2006-07-25 박병재 light emitting device and package structure and method of manufacturing thereof
CN100433383C (en) * 2004-08-31 2008-11-12 丰田合成株式会社 Light emitting device and light emitting element
JP2006100787A (en) * 2004-08-31 2006-04-13 Toyoda Gosei Co Ltd Light emitting device and light emitting element
JP4254669B2 (en) * 2004-09-07 2009-04-15 豊田合成株式会社 Light emitting device
DE102004047061B4 (en) 2004-09-28 2018-07-26 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
EP1805809B1 (en) * 2004-10-22 2019-10-09 Signify Holding B.V. Semiconductor light emitting device with improved heatsinking
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
JP4675906B2 (en) * 2004-10-27 2011-04-27 京セラ株式会社 Light-emitting element mounting substrate, light-emitting element storage package, light-emitting device, and lighting device
US9929326B2 (en) 2004-10-29 2018-03-27 Ledengin, Inc. LED package having mushroom-shaped lens with volume diffuser
US8324641B2 (en) * 2007-06-29 2012-12-04 Ledengin, Inc. Matrix material including an embedded dispersion of beads for a light-emitting device
US8134292B2 (en) * 2004-10-29 2012-03-13 Ledengin, Inc. Light emitting device with a thermal insulating and refractive index matching material
US7670872B2 (en) * 2004-10-29 2010-03-02 LED Engin, Inc. (Cayman) Method of manufacturing ceramic LED packages
US7772609B2 (en) * 2004-10-29 2010-08-10 Ledengin, Inc. (Cayman) LED package with structure and materials for high heat dissipation
US7473933B2 (en) * 2004-10-29 2009-01-06 Ledengin, Inc. (Cayman) High power LED package with universal bonding pads and interconnect arrangement
US8816369B2 (en) * 2004-10-29 2014-08-26 Led Engin, Inc. LED packages with mushroom shaped lenses and methods of manufacturing LED light-emitting devices
CN100353577C (en) * 2004-12-14 2007-12-05 新灯源科技有限公司 Manufacturing method of light-emitting device with crystal coated light emitting diode
US20060124953A1 (en) * 2004-12-14 2006-06-15 Negley Gerald H Semiconductor light emitting device mounting substrates and packages including cavities and cover plates, and methods of packaging same
US7322732B2 (en) * 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
DE602005005223T2 (en) * 2005-01-12 2009-03-12 Neobulb Technologies Inc. Lighting device with flip-chip type LEDs and method for its manufacture
US7304694B2 (en) * 2005-01-12 2007-12-04 Cree, Inc. Solid colloidal dispersions for backlighting of liquid crystal displays
US7777247B2 (en) * 2005-01-14 2010-08-17 Cree, Inc. Semiconductor light emitting device mounting substrates including a conductive lead extending therein
US7262438B2 (en) * 2005-03-08 2007-08-28 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. LED mounting having increased heat dissipation
EP2280430B1 (en) * 2005-03-11 2020-01-01 Seoul Semiconductor Co., Ltd. LED package having an array of light emitting cells coupled in series
EP1862035B1 (en) * 2005-03-14 2013-05-15 Koninklijke Philips Electronics N.V. Phosphor in polycrystalline ceramic structure and a light-emitting element comprising same
KR100663906B1 (en) * 2005-03-14 2007-01-02 서울반도체 주식회사 Light emitting apparatus
US20080296589A1 (en) * 2005-03-24 2008-12-04 Ingo Speier Solid-State Lighting Device Package
CA2614803C (en) * 2005-04-05 2015-08-25 Tir Technology Lp Electronic device package with an integrated evaporator
JP4595665B2 (en) * 2005-05-13 2010-12-08 富士電機システムズ株式会社 Wiring board manufacturing method
CN100391018C (en) * 2005-06-07 2008-05-28 吕大明 LED device and packing method thereof
US8669572B2 (en) * 2005-06-10 2014-03-11 Cree, Inc. Power lamp package
US7980743B2 (en) 2005-06-14 2011-07-19 Cree, Inc. LED backlighting for displays
TWI422044B (en) * 2005-06-30 2014-01-01 Cree Inc Chip-scale methods for packaging light emitting devices and chip-scale packaged light emitting devices
TWI287300B (en) * 2005-06-30 2007-09-21 Lite On Technology Corp Semiconductor package structure
KR100629521B1 (en) * 2005-07-29 2006-09-28 삼성전자주식회사 Led package structure and manufacturing method, and led array module
KR100983836B1 (en) * 2005-09-20 2010-09-27 파나소닉 전공 주식회사 Led lighting fixture
JP2007088155A (en) * 2005-09-21 2007-04-05 Stanley Electric Co Ltd Surface-mounted led board
US20070080360A1 (en) * 2005-10-06 2007-04-12 Url Mirsky Microelectronic interconnect substrate and packaging techniques
KR101241650B1 (en) 2005-10-19 2013-03-08 엘지이노텍 주식회사 Package of light emitting diode
KR101258397B1 (en) * 2005-11-11 2013-04-30 서울반도체 주식회사 Copper-Alkaline-Earth-Silicate mixed crystal phosphors
WO2007059657A1 (en) * 2005-11-28 2007-05-31 Jen-Shyan Chen Package structure of light-emitting diode
DE102006010729A1 (en) 2005-12-09 2007-06-14 Osram Opto Semiconductors Gmbh Optical component, e.g. for miniature opto-electronic semi-conductor chips, comprises a composite unit of lens and mounting part in different materials
KR101055772B1 (en) * 2005-12-15 2011-08-11 서울반도체 주식회사 Light emitting device
JP2009530798A (en) 2006-01-05 2009-08-27 イルミテックス, インコーポレイテッド Independent optical device for directing light from an LED
US7465069B2 (en) * 2006-01-13 2008-12-16 Chia-Mao Li High-power LED package structure
US7528422B2 (en) * 2006-01-20 2009-05-05 Hymite A/S Package for a light emitting element with integrated electrostatic discharge protection
US8044412B2 (en) 2006-01-20 2011-10-25 Taiwan Semiconductor Manufacturing Company, Ltd Package for a light emitting element
JP4895777B2 (en) * 2006-01-27 2012-03-14 京セラ株式会社 WIRING BOARD FOR LIGHT EMITTING ELEMENT AND LIGHT EMITTING DEVICE
KR100780196B1 (en) * 2006-02-27 2007-11-27 삼성전기주식회사 Light emitting diode package, substrate for light emitting diode package and method of manufacturing the same
US7737634B2 (en) * 2006-03-06 2010-06-15 Avago Technologies General Ip (Singapore) Pte. Ltd. LED devices having improved containment for liquid encapsulant
TWI303872B (en) * 2006-03-13 2008-12-01 Ind Tech Res Inst High power light emitting device assembly with esd preotection ability and the method of manufacturing the same
KR100738933B1 (en) * 2006-03-17 2007-07-12 (주)대신엘이디 Led module for illumination
US7808004B2 (en) * 2006-03-17 2010-10-05 Edison Opto Corporation Light emitting diode package structure and method of manufacturing the same
TWI449137B (en) * 2006-03-23 2014-08-11 Ceramtec Ag Traegerkoerper fuer bauelemente oder schaltungen
US8206779B2 (en) * 2006-03-24 2012-06-26 Fujifilm Corporation Method for producing laminate, polarizing plate, and image display device
US7675145B2 (en) 2006-03-28 2010-03-09 Cree Hong Kong Limited Apparatus, system and method for use in mounting electronic elements
KR100875443B1 (en) 2006-03-31 2008-12-23 서울반도체 주식회사 Light emitting device
JP5091421B2 (en) * 2006-04-07 2012-12-05 株式会社東芝 Semiconductor light emitting device
US7863639B2 (en) * 2006-04-12 2011-01-04 Semileds Optoelectronics Co. Ltd. Light-emitting diode lamp with low thermal resistance
US8373195B2 (en) 2006-04-12 2013-02-12 SemiLEDs Optoelectronics Co., Ltd. Light-emitting diode lamp with low thermal resistance
US11210971B2 (en) 2009-07-06 2021-12-28 Cree Huizhou Solid State Lighting Company Limited Light emitting diode display with tilted peak emission pattern
US8748915B2 (en) * 2006-04-24 2014-06-10 Cree Hong Kong Limited Emitter package with angled or vertical LED
US7635915B2 (en) 2006-04-26 2009-12-22 Cree Hong Kong Limited Apparatus and method for use in mounting electronic elements
US7655957B2 (en) 2006-04-27 2010-02-02 Cree, Inc. Submounts for semiconductor light emitting device packages and semiconductor light emitting device packages including the same
US7830608B2 (en) * 2006-05-20 2010-11-09 Oclaro Photonics, Inc. Multiple emitter coupling devices and methods with beam transform system
US20070268572A1 (en) * 2006-05-20 2007-11-22 Newport Corporation Multiple emitter coupling devices and methods with beam transform system
US8033692B2 (en) * 2006-05-23 2011-10-11 Cree, Inc. Lighting device
JP2009538531A (en) * 2006-05-23 2009-11-05 クリー エル イー ディー ライティング ソリューションズ インコーポレイテッド LIGHTING DEVICE AND MANUFACTURING METHOD
US7989823B2 (en) * 2006-06-08 2011-08-02 Hong-Yuan Technology Co., Ltd. Light emitting system, light emitting apparatus and forming method thereof
US20070291373A1 (en) * 2006-06-15 2007-12-20 Newport Corporation Coupling devices and methods for laser emitters
US7680170B2 (en) * 2006-06-15 2010-03-16 Oclaro Photonics, Inc. Coupling devices and methods for stacked laser emitter arrays
US8610134B2 (en) * 2006-06-29 2013-12-17 Cree, Inc. LED package with flexible polyimide circuit and method of manufacturing LED package
US7906794B2 (en) * 2006-07-05 2011-03-15 Koninklijke Philips Electronics N.V. Light emitting device package with frame and optically transmissive element
US7960819B2 (en) * 2006-07-13 2011-06-14 Cree, Inc. Leadframe-based packages for solid state emitting devices
TWM303325U (en) * 2006-07-13 2006-12-21 Everlight Electronics Co Ltd Light emitting diode package
US8044418B2 (en) * 2006-07-13 2011-10-25 Cree, Inc. Leadframe-based packages for solid state light emitting devices
US8735920B2 (en) * 2006-07-31 2014-05-27 Cree, Inc. Light emitting diode package with optical element
US7804147B2 (en) 2006-07-31 2010-09-28 Cree, Inc. Light emitting diode package element with internal meniscus for bubble free lens placement
US8367945B2 (en) * 2006-08-16 2013-02-05 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
WO2008024761A2 (en) 2006-08-21 2008-02-28 Innotec Corporation Electrical device having boardless electrical component mounting arrangement
KR101258227B1 (en) 2006-08-29 2013-04-25 서울반도체 주식회사 Light emitting device
KR100828900B1 (en) 2006-09-04 2008-05-09 엘지이노텍 주식회사 Package of light emitting diode and manufacturing method thereof
US7842960B2 (en) 2006-09-06 2010-11-30 Lumination Llc Light emitting packages and methods of making same
US20080074884A1 (en) * 2006-09-25 2008-03-27 Thye Linn Mok Compact high-intensty LED-based light source and method for making the same
KR100774218B1 (en) * 2006-09-28 2007-11-08 엘지전자 주식회사 Lens, a method for manufacturing it and light emitting device package
WO2008042351A2 (en) 2006-10-02 2008-04-10 Illumitex, Inc. Led system and method
US20090275157A1 (en) * 2006-10-02 2009-11-05 Illumitex, Inc. Optical device shaping
US7866897B2 (en) * 2006-10-06 2011-01-11 Oclaro Photonics, Inc. Apparatus and method of coupling a fiber optic device to a laser
KR101484488B1 (en) * 2006-10-31 2015-01-20 코닌클리케 필립스 엔.브이. Lighting device package
US7808013B2 (en) * 2006-10-31 2010-10-05 Cree, Inc. Integrated heat spreaders for light emitting devices (LEDs) and related assemblies
US20080111148A1 (en) * 2006-11-09 2008-05-15 Zimmerman Michael A Led reflective package
US10295147B2 (en) 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
DE102006062066A1 (en) * 2006-12-29 2008-07-03 Osram Opto Semiconductors Gmbh Lens arrangement for light emitting diode display device, has lens with lens surface and optical axis, which penetrates lens surface of lens
US20080158886A1 (en) * 2006-12-29 2008-07-03 Siew It Pang Compact High-Intensity LED Based Light Source
US8021904B2 (en) * 2007-02-01 2011-09-20 Cree, Inc. Ohmic contacts to nitrogen polarity GaN
US9711703B2 (en) * 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US7922360B2 (en) * 2007-02-14 2011-04-12 Cree, Inc. Thermal transfer in solid state light emitting apparatus and methods of manufacturing
US8408773B2 (en) 2007-03-19 2013-04-02 Innotec Corporation Light for vehicles
US7712933B2 (en) 2007-03-19 2010-05-11 Interlum, Llc Light for vehicles
KR100850666B1 (en) * 2007-03-30 2008-08-07 서울반도체 주식회사 Led package with metal pcb
US7964888B2 (en) * 2007-04-18 2011-06-21 Cree, Inc. Semiconductor light emitting device packages and methods
US7992294B2 (en) * 2007-05-25 2011-08-09 Molex Incorporated Method of manufacturing an interconnect device which forms a heat sink and electrical connections between a heat generating device and a power source
US20090008662A1 (en) * 2007-07-05 2009-01-08 Ian Ashdown Lighting device package
US20090008671A1 (en) * 2007-07-06 2009-01-08 Lustrous Technology Ltd. LED packaging structure with aluminum board and an LED lamp with said LED packaging structure
US20090008670A1 (en) * 2007-07-06 2009-01-08 Topco Technologies Corp. LED packaging structure with aluminum board and an LED lamp with said LED packaging structure
TWI368336B (en) * 2007-07-12 2012-07-11 Chi Mei Lighting Tech Corp Light emitting diode device and applications thereof
CN201228949Y (en) * 2007-07-18 2009-04-29 胡凯 LED lamp heat radiation body
WO2009025469A2 (en) 2007-08-22 2009-02-26 Seoul Semiconductor Co., Ltd. Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
KR101055769B1 (en) 2007-08-28 2011-08-11 서울반도체 주식회사 Light-emitting device adopting non-stoichiometric tetra-alkaline earth silicate phosphor
KR101365621B1 (en) * 2007-09-04 2014-02-24 서울반도체 주식회사 Light emitting diode package having heat dissipating slugs
CN101388161A (en) * 2007-09-14 2009-03-18 科锐香港有限公司 LED surface mounting device and LED display with the device
US9593810B2 (en) * 2007-09-20 2017-03-14 Koninklijke Philips N.V. LED package and method for manufacturing the LED package
USD615504S1 (en) 2007-10-31 2010-05-11 Cree, Inc. Emitter package
US9666762B2 (en) 2007-10-31 2017-05-30 Cree, Inc. Multi-chip light emitter packages and related methods
US9172012B2 (en) * 2007-10-31 2015-10-27 Cree, Inc. Multi-chip light emitter packages and related methods
US8866169B2 (en) * 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US9082921B2 (en) 2007-10-31 2015-07-14 Cree, Inc. Multi-die LED package
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US9634191B2 (en) * 2007-11-14 2017-04-25 Cree, Inc. Wire bond free wafer level LED
US8230575B2 (en) 2007-12-12 2012-07-31 Innotec Corporation Overmolded circuit board and method
US9431589B2 (en) 2007-12-14 2016-08-30 Cree, Inc. Textured encapsulant surface in LED packages
USD633631S1 (en) 2007-12-14 2011-03-01 Cree Hong Kong Limited Light source of light emitting diode
JP2011507280A (en) * 2007-12-17 2011-03-03 オクラロ フォトニクス,インク. Laser emitter module and construction method
EP2073280A1 (en) * 2007-12-20 2009-06-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Reflective secondary optics and semiconductor components
US20090159125A1 (en) * 2007-12-21 2009-06-25 Eric Prather Solar cell package for solar concentrator
KR20090072941A (en) * 2007-12-28 2009-07-02 삼성전기주식회사 High Power LED Package and Fabricating Method thereof
USD634863S1 (en) 2008-01-10 2011-03-22 Cree Hong Kong Limited Light source of light emitting diode
US10008637B2 (en) * 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US8304660B2 (en) * 2008-02-07 2012-11-06 National Taiwan University Fully reflective and highly thermoconductive electronic module and method of manufacturing the same
WO2009100358A1 (en) 2008-02-08 2009-08-13 Illumitex, Inc. System and method for emitter layer shaping
KR100998009B1 (en) 2008-03-12 2010-12-03 삼성엘이디 주식회사 Light emitting diode package and method of manufacturing the same
US8804246B2 (en) * 2008-05-08 2014-08-12 Ii-Vi Laser Enterprise Gmbh High brightness diode output methods and devices
US8049230B2 (en) 2008-05-16 2011-11-01 Cree Huizhou Opto Limited Apparatus and system for miniature surface mount devices
JP5320560B2 (en) * 2008-05-20 2013-10-23 東芝ライテック株式会社 Light source unit and lighting device
TWI384649B (en) * 2008-06-18 2013-02-01 Harvatek Corp Light emitting diode chip encapsulation structure with embedded electrostatic protection function and its making method
JP5359045B2 (en) * 2008-06-18 2013-12-04 日亜化学工業株式会社 Semiconductor device and manufacturing method thereof
US7851818B2 (en) * 2008-06-27 2010-12-14 Taiwan Semiconductor Manufacturing Company, Ltd. Fabrication of compact opto-electronic component packages
US20110095328A1 (en) * 2008-07-01 2011-04-28 Koninklijke Philips Electronics N.V. Close proximity collimator for led
GB2462815A (en) * 2008-08-18 2010-02-24 Sensitive Electronic Co Ltd Light emitting diode lamp
JP2010067902A (en) * 2008-09-12 2010-03-25 Toshiba Corp Light-emitting device
US9252336B2 (en) * 2008-09-26 2016-02-02 Bridgelux, Inc. Multi-cup LED assembly
US20100078661A1 (en) * 2008-09-26 2010-04-01 Wei Shi Machined surface led assembly
US8049236B2 (en) * 2008-09-26 2011-11-01 Bridgelux, Inc. Non-global solder mask LED assembly
US8058664B2 (en) 2008-09-26 2011-11-15 Bridgelux, Inc. Transparent solder mask LED assembly
US7887384B2 (en) * 2008-09-26 2011-02-15 Bridgelux, Inc. Transparent ring LED assembly
TWI528508B (en) * 2008-10-13 2016-04-01 榮創能源科技股份有限公司 Method for manufacturing ceramic package structure of high power light emitting diode
US8075165B2 (en) 2008-10-14 2011-12-13 Ledengin, Inc. Total internal reflection lens and mechanical retention and locating device
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
US20100117106A1 (en) * 2008-11-07 2010-05-13 Ledengin, Inc. Led with light-conversion layer
US8791471B2 (en) * 2008-11-07 2014-07-29 Cree Hong Kong Limited Multi-chip light emitting diode modules
CN103939768B (en) * 2008-11-18 2016-11-23 皇家飞利浦电子股份有限公司 Electric light
KR101041018B1 (en) * 2008-11-21 2011-06-16 고견채 Monolithic LED lamp of reflector and lens
CN101740675B (en) * 2008-11-25 2012-02-29 亿光电子工业股份有限公司 Circuit board of light-emitting diode
JP2010153803A (en) * 2008-11-28 2010-07-08 Toshiba Lighting & Technology Corp Electronic component mounting module and electrical apparatus
US20100142198A1 (en) * 2008-12-09 2010-06-10 Chih-Wen Yang Configurable Light Emitting System
TW201034256A (en) 2008-12-11 2010-09-16 Illumitex Inc Systems and methods for packaging light-emitting diode devices
US20100149771A1 (en) 2008-12-16 2010-06-17 Cree, Inc. Methods and Apparatus for Flexible Mounting of Light Emitting Devices
CN101761795B (en) * 2008-12-23 2011-12-28 富准精密工业(深圳)有限公司 Light-emitting diode illumination device and encapsulation method thereof
US8507300B2 (en) * 2008-12-24 2013-08-13 Ledengin, Inc. Light-emitting diode with light-conversion layer
US8598602B2 (en) * 2009-01-12 2013-12-03 Cree, Inc. Light emitting device packages with improved heat transfer
US7923739B2 (en) * 2009-06-05 2011-04-12 Cree, Inc. Solid state lighting device
US20110037083A1 (en) * 2009-01-14 2011-02-17 Alex Chi Keung Chan Led package with contrasting face
US10431567B2 (en) * 2010-11-03 2019-10-01 Cree, Inc. White ceramic LED package
US8368112B2 (en) 2009-01-14 2013-02-05 Cree Huizhou Opto Limited Aligned multiple emitter package
JP5340763B2 (en) 2009-02-25 2013-11-13 ローム株式会社 LED lamp
US8269248B2 (en) * 2009-03-02 2012-09-18 Thompson Joseph B Light emitting assemblies and portions thereof
US20120061695A1 (en) * 2009-03-24 2012-03-15 Kang Kim Light-emitting diode package
US8384097B2 (en) 2009-04-08 2013-02-26 Ledengin, Inc. Package for multiple light emitting diodes
US8598793B2 (en) 2011-05-12 2013-12-03 Ledengin, Inc. Tuning of emitter with multiple LEDs to a single color bin
US7985000B2 (en) * 2009-04-08 2011-07-26 Ledengin, Inc. Lighting apparatus having multiple light-emitting diodes with individual light-conversion layers
US8957435B2 (en) * 2009-04-28 2015-02-17 Cree, Inc. Lighting device
WO2010132517A2 (en) * 2009-05-12 2010-11-18 David Gershaw Led retrofit for miniature bulbs
DE102009023854B4 (en) 2009-06-04 2023-11-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component
US8860043B2 (en) * 2009-06-05 2014-10-14 Cree, Inc. Light emitting device packages, systems and methods
US9111778B2 (en) 2009-06-05 2015-08-18 Cree, Inc. Light emitting diode (LED) devices, systems, and methods
US8686445B1 (en) 2009-06-05 2014-04-01 Cree, Inc. Solid state lighting devices and methods
TWM370182U (en) * 2009-06-09 2009-12-01 Advanced Connectek Inc LED chip holder structure
DE102009030205A1 (en) * 2009-06-24 2010-12-30 Litec-Lp Gmbh Luminescent substance with europium-doped silicate luminophore, useful in LED, comprises alkaline-, rare-earth metal orthosilicate, and solid solution in form of mixed phases arranged between alkaline- and rare-earth metal oxyorthosilicate
KR101055762B1 (en) * 2009-09-01 2011-08-11 서울반도체 주식회사 Light-emitting device employing a light-emitting material having an oxyosilicate light emitter
JP2011009519A (en) * 2009-06-26 2011-01-13 Hitachi Chem Co Ltd Optical semiconductor device and method for manufacturing the optical semiconductor device
US8415692B2 (en) 2009-07-06 2013-04-09 Cree, Inc. LED packages with scattering particle regions
US8598809B2 (en) 2009-08-19 2013-12-03 Cree, Inc. White light color changing solid state lighting and methods
US8585253B2 (en) 2009-08-20 2013-11-19 Illumitex, Inc. System and method for color mixing lens array
US8449128B2 (en) 2009-08-20 2013-05-28 Illumitex, Inc. System and method for a lens and phosphor layer
US8410371B2 (en) * 2009-09-08 2013-04-02 Cree, Inc. Electronic device submounts with thermally conductive vias and light emitting devices including the same
DE112010003715T8 (en) * 2009-09-20 2013-01-31 Viagan Ltd. Assembly of electronic components at wafer level
US8593040B2 (en) 2009-10-02 2013-11-26 Ge Lighting Solutions Llc LED lamp with surface area enhancing fins
KR101075774B1 (en) * 2009-10-29 2011-10-26 삼성전기주식회사 Luminous element package and method for manufacturing the same
US7893445B2 (en) * 2009-11-09 2011-02-22 Cree, Inc. Solid state emitter package including red and blue emitters
JP5623062B2 (en) 2009-11-13 2014-11-12 シャープ株式会社 Light emitting device and manufacturing method thereof
WO2011060319A1 (en) 2009-11-13 2011-05-19 Uni-Light Llc Led thermal management
US20110116262A1 (en) * 2009-11-13 2011-05-19 Phoseon Technology, Inc. Economical partially collimating reflective micro optical array
TWI381563B (en) * 2009-11-20 2013-01-01 Everlight Electronics Co Ltd Light emitting diode package and manufacturing method thereof
KR101163850B1 (en) * 2009-11-23 2012-07-09 엘지이노텍 주식회사 Light emitting device package
US10290788B2 (en) * 2009-11-24 2019-05-14 Luminus Devices, Inc. Systems and methods for managing heat from an LED
US8303141B2 (en) * 2009-12-17 2012-11-06 Ledengin, Inc. Total internal reflection lens with integrated lamp cover
JP2011151268A (en) 2010-01-22 2011-08-04 Sharp Corp Light-emitting device
EP2529452B1 (en) 2010-01-22 2018-05-23 II-VI Laser Enterprise GmbH Homogenization of far field fiber coupled radiation
US8350370B2 (en) 2010-01-29 2013-01-08 Cree Huizhou Opto Limited Wide angle oval light emitting diode package
US8362515B2 (en) 2010-04-07 2013-01-29 Chia-Ming Cheng Chip package and method for forming the same
US9345095B2 (en) 2010-04-08 2016-05-17 Ledengin, Inc. Tunable multi-LED emitter module
US8858022B2 (en) 2011-05-05 2014-10-14 Ledengin, Inc. Spot TIR lens system for small high-power emitter
US9080729B2 (en) 2010-04-08 2015-07-14 Ledengin, Inc. Multiple-LED emitter for A-19 lamps
CN102834942B (en) * 2010-04-09 2016-04-13 罗姆股份有限公司 Led module
US9012938B2 (en) 2010-04-09 2015-04-21 Cree, Inc. High reflective substrate of light emitting devices with improved light output
US8901583B2 (en) 2010-04-12 2014-12-02 Cree Huizhou Opto Limited Surface mount device thin package
US9240526B2 (en) 2010-04-23 2016-01-19 Cree, Inc. Solid state light emitting diode packages with leadframes and ceramic material
US8329482B2 (en) 2010-04-30 2012-12-11 Cree, Inc. White-emitting LED chips and method for making same
TWI599859B (en) 2010-06-11 2017-09-21 理光股份有限公司 Shutter,toner container, and image forming apparatus
DE102010024862A1 (en) * 2010-06-24 2011-12-29 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component
US8648359B2 (en) 2010-06-28 2014-02-11 Cree, Inc. Light emitting devices and methods
US8269244B2 (en) 2010-06-28 2012-09-18 Cree, Inc. LED package with efficient, isolated thermal path
USD643819S1 (en) 2010-07-16 2011-08-23 Cree, Inc. Package for light emitting diode (LED) lighting
US9831393B2 (en) * 2010-07-30 2017-11-28 Cree Hong Kong Limited Water resistant surface mount device package
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US20120074432A1 (en) * 2010-09-29 2012-03-29 Amtran Technology Co., Ltd Led package module and manufacturing method thereof
US8455882B2 (en) 2010-10-15 2013-06-04 Cree, Inc. High efficiency LEDs
CN102456803A (en) * 2010-10-20 2012-05-16 展晶科技(深圳)有限公司 Packaging structure of light emitting diode
US8564000B2 (en) 2010-11-22 2013-10-22 Cree, Inc. Light emitting devices for light emitting diodes (LEDs)
US9000470B2 (en) 2010-11-22 2015-04-07 Cree, Inc. Light emitter devices
US8624271B2 (en) 2010-11-22 2014-01-07 Cree, Inc. Light emitting devices
US9300062B2 (en) 2010-11-22 2016-03-29 Cree, Inc. Attachment devices and methods for light emitting devices
US9490235B2 (en) 2010-11-22 2016-11-08 Cree, Inc. Light emitting devices, systems, and methods
TWI405936B (en) 2010-11-23 2013-08-21 Ind Tech Res Inst Lens holder and led light board thereof
US9240395B2 (en) 2010-11-30 2016-01-19 Cree Huizhou Opto Limited Waterproof surface mount device package and method
US10309627B2 (en) 2012-11-08 2019-06-04 Cree, Inc. Light fixture retrofit kit with integrated light bar
US9822951B2 (en) 2010-12-06 2017-11-21 Cree, Inc. LED retrofit lens for fluorescent tube
USD679842S1 (en) 2011-01-03 2013-04-09 Cree, Inc. High brightness LED package
US8610140B2 (en) 2010-12-15 2013-12-17 Cree, Inc. Light emitting diode (LED) packages, systems, devices and related methods
US11101408B2 (en) 2011-02-07 2021-08-24 Creeled, Inc. Components and methods for light emitting diode (LED) lighting
CN102142508A (en) * 2010-12-16 2011-08-03 西安炬光科技有限公司 Encapsulation structure and encapsulation method for high-power and high-brightness LED light source
US8772817B2 (en) 2010-12-22 2014-07-08 Cree, Inc. Electronic device submounts including substrates with thermally conductive vias
US8644357B2 (en) 2011-01-11 2014-02-04 Ii-Vi Incorporated High reliability laser emitter modules
TW201251140A (en) 2011-01-31 2012-12-16 Cree Inc High brightness light emitting diode (LED) packages, systems and methods with improved resin filling and high adhesion
USD702653S1 (en) 2011-10-26 2014-04-15 Cree, Inc. Light emitting device component
TWI424544B (en) * 2011-03-31 2014-01-21 Novatek Microelectronics Corp Integral circuit device
EP2695189A1 (en) * 2011-04-04 2014-02-12 CeramTec GmbH Ceramic printed circuit board comprising an al cooling body
US9518723B2 (en) 2011-04-08 2016-12-13 Brite Shot, Inc. Lighting fixture extension
CN102769089B (en) * 2011-05-06 2015-01-07 展晶科技(深圳)有限公司 Semiconductor packaging structure
DE102011101052A1 (en) * 2011-05-09 2012-11-15 Heraeus Materials Technology Gmbh & Co. Kg Substrate with electrically neutral region
US8513900B2 (en) 2011-05-12 2013-08-20 Ledengin, Inc. Apparatus for tuning of emitter with multiple LEDs to a single color bin
JP5968674B2 (en) * 2011-05-13 2016-08-10 エルジー イノテック カンパニー リミテッド Light emitting device package and ultraviolet lamp provided with the same
KR101869552B1 (en) * 2011-05-13 2018-06-21 엘지이노텍 주식회사 Light emitting device and ultraviolet lamp having the same
US10842016B2 (en) * 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
KR101082587B1 (en) * 2011-07-07 2011-11-17 주식회사지엘에스 Illuminator using led
US10211380B2 (en) 2011-07-21 2019-02-19 Cree, Inc. Light emitting devices and components having improved chemical resistance and related methods
US10686107B2 (en) 2011-07-21 2020-06-16 Cree, Inc. Light emitter devices and components with improved chemical resistance and related methods
JP2014525146A (en) 2011-07-21 2014-09-25 クリー インコーポレイテッド Light emitting device, package, component, and method for improved chemical resistance and related methods
US8992045B2 (en) * 2011-07-22 2015-03-31 Guardian Industries Corp. LED lighting systems and/or methods of making the same
TWI437670B (en) * 2011-08-19 2014-05-11 Subtron Technology Co Ltd Structure and process of heat dissipation substrate
JPWO2013027413A1 (en) * 2011-08-25 2015-03-05 パナソニック株式会社 Protective element and light emitting device using the same
KR101817807B1 (en) * 2011-09-20 2018-01-11 엘지이노텍 주식회사 Light emitting device package and lighting system including the same
KR20140097284A (en) 2011-11-07 2014-08-06 크리,인코포레이티드 High voltage array light emitting diode(led) devices, fixtures and methods
US20130120986A1 (en) 2011-11-12 2013-05-16 Raydex Technology, Inc. High efficiency directional light source with concentrated light output
US10043960B2 (en) * 2011-11-15 2018-08-07 Cree, Inc. Light emitting diode (LED) packages and related methods
KR101197092B1 (en) * 2011-11-24 2012-11-07 삼성전자주식회사 Light emitting diode package and method for producting the light emitting diode package
US8564004B2 (en) 2011-11-29 2013-10-22 Cree, Inc. Complex primary optics with intermediate elements
US9496466B2 (en) 2011-12-06 2016-11-15 Cree, Inc. Light emitter devices and methods, utilizing light emitting diodes (LEDs), for improved light extraction
JP6107060B2 (en) 2011-12-26 2017-04-05 日亜化学工業株式会社 Method for manufacturing light emitting device
CN103227274B (en) * 2012-01-31 2015-09-16 长春藤控股有限公司 LED wafer package and manufacture method thereof
US9240530B2 (en) 2012-02-13 2016-01-19 Cree, Inc. Light emitter devices having improved chemical and physical resistance and related methods
US9343441B2 (en) 2012-02-13 2016-05-17 Cree, Inc. Light emitter devices having improved light output and related methods
US11032884B2 (en) 2012-03-02 2021-06-08 Ledengin, Inc. Method for making tunable multi-led emitter module
US20150040388A1 (en) * 2012-03-20 2015-02-12 Applied Nanotech Holdings, Inc. Application of Dielectric Layer and Circuit Traces on Heat Sink
FR2988910B1 (en) 2012-03-28 2014-12-26 Commissariat Energie Atomique LOW-RTH LED COMPONENT WITH DISSOCATED ELECTRIC AND THERMAL WAYS
US9897284B2 (en) 2012-03-28 2018-02-20 Ledengin, Inc. LED-based MR16 replacement lamp
US10134961B2 (en) 2012-03-30 2018-11-20 Cree, Inc. Submount based surface mount device (SMD) light emitter components and methods
US9735198B2 (en) 2012-03-30 2017-08-15 Cree, Inc. Substrate based light emitter devices, components, and related methods
US10222032B2 (en) 2012-03-30 2019-03-05 Cree, Inc. Light emitter components and methods having improved electrical contacts
CN103367615B (en) * 2012-04-06 2018-02-02 日亚化学工业株式会社 Light-emitting device is with being packaged into body and used its light-emitting device
US9188290B2 (en) 2012-04-10 2015-11-17 Cree, Inc. Indirect linear fixture
US9500355B2 (en) 2012-05-04 2016-11-22 GE Lighting Solutions, LLC Lamp with light emitting elements surrounding active cooling device
DE112013002944T5 (en) 2012-06-13 2015-02-19 Innotec, Corp. Flexible hollow fiber optic cable
CN103515520B (en) * 2012-06-29 2016-03-23 展晶科技(深圳)有限公司 Package structure for LED and manufacture method thereof
FI125565B (en) * 2012-09-08 2015-11-30 Lumichip Ltd LED chip-on-board component and lighting module
KR101974348B1 (en) 2012-09-12 2019-05-02 삼성전자주식회사 Light emitting device package and method of manufacturing the same
CN103682060B (en) * 2012-09-14 2016-09-21 展晶科技(深圳)有限公司 Light-emitting diode lamp source device
CN103682066B (en) * 2012-09-21 2016-08-03 展晶科技(深圳)有限公司 Light emitting diode module and manufacture method thereof
US10788176B2 (en) 2013-02-08 2020-09-29 Ideal Industries Lighting Llc Modular LED lighting system
US9482396B2 (en) 2012-11-08 2016-11-01 Cree, Inc. Integrated linear light engine
US9494304B2 (en) 2012-11-08 2016-11-15 Cree, Inc. Recessed light fixture retrofit kit
US9441818B2 (en) 2012-11-08 2016-09-13 Cree, Inc. Uplight with suspended fixture
DE102012110774A1 (en) * 2012-11-09 2014-05-15 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor device
US8958448B2 (en) 2013-02-04 2015-02-17 Microsoft Corporation Thermal management in laser diode device
US9874333B2 (en) 2013-03-14 2018-01-23 Cree, Inc. Surface ambient wrap light fixture
USD738026S1 (en) 2013-03-14 2015-09-01 Cree, Inc. Linear wrap light fixture
US10584860B2 (en) 2013-03-14 2020-03-10 Ideal Industries, Llc Linear light fixture with interchangeable light engine unit
US9215792B2 (en) * 2013-03-15 2015-12-15 Cree, Inc. Connector devices, systems, and related methods for light emitter components
US9897267B2 (en) 2013-03-15 2018-02-20 Cree, Inc. Light emitter components, systems, and related methods
USD733952S1 (en) 2013-03-15 2015-07-07 Cree, Inc. Indirect linear fixture
US9234801B2 (en) 2013-03-15 2016-01-12 Ledengin, Inc. Manufacturing method for LED emitter with high color consistency
CN203082646U (en) * 2013-03-20 2013-07-24 厦门海莱照明有限公司 Integral forming aluminium demoulding heat dissipation device and light-emitting diode (LED) spotlight structure
DE102013103760A1 (en) * 2013-04-15 2014-10-16 Osram Opto Semiconductors Gmbh Optoelectronic component
USD735683S1 (en) 2013-05-03 2015-08-04 Cree, Inc. LED package
US9711489B2 (en) 2013-05-29 2017-07-18 Cree Huizhou Solid State Lighting Company Limited Multiple pixel surface mount device package
CN104235754B (en) * 2013-06-20 2019-06-18 欧司朗有限公司 Lens for lighting device and the lighting device with the lens
USD740453S1 (en) 2013-06-27 2015-10-06 Cree, Inc. Light emitter unit
USD739565S1 (en) 2013-06-27 2015-09-22 Cree, Inc. Light emitter unit
US9461024B2 (en) 2013-08-01 2016-10-04 Cree, Inc. Light emitter devices and methods for light emitting diode (LED) chips
USD758976S1 (en) 2013-08-08 2016-06-14 Cree, Inc. LED package
US9644495B2 (en) 2013-08-20 2017-05-09 Honeywell International Inc. Thermal isolating service tubes and assemblies thereof for gas turbine engines
DE102013110355A1 (en) * 2013-09-19 2015-03-19 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component and method for producing a lead frame composite
US10900653B2 (en) 2013-11-01 2021-01-26 Cree Hong Kong Limited LED mini-linear light engine
USD750308S1 (en) 2013-12-16 2016-02-23 Cree, Inc. Linear shelf light fixture
US10100988B2 (en) 2013-12-16 2018-10-16 Cree, Inc. Linear shelf light fixture with reflectors
US10612747B2 (en) 2013-12-16 2020-04-07 Ideal Industries Lighting Llc Linear shelf light fixture with gap filler elements
KR102188495B1 (en) * 2014-01-21 2020-12-08 삼성전자주식회사 Manufacturing Method of Semiconductor Light Emitting Devices
US9406654B2 (en) 2014-01-27 2016-08-02 Ledengin, Inc. Package for high-power LED devices
US9456201B2 (en) 2014-02-10 2016-09-27 Microsoft Technology Licensing, Llc VCSEL array for a depth camera
DE102014204116A1 (en) * 2014-03-06 2015-09-10 Osram Gmbh LED module with substrate body
JP6710641B2 (en) * 2014-04-07 2020-06-17 ルミレッズ ホールディング ベーフェー Lighting device including heat conductor and light emitting device
USD757324S1 (en) 2014-04-14 2016-05-24 Cree, Inc. Linear shelf light fixture with reflectors
CN103887420A (en) * 2014-04-18 2014-06-25 苏州东山精密制造股份有限公司 LED packaging structure and LED manufacturing method
US9577406B2 (en) 2014-06-27 2017-02-21 Microsoft Technology Licensing, Llc Edge-emitting laser diode package comprising heat spreader
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
TWI572069B (en) * 2014-07-28 2017-02-21 揚昇照明股份有限公司 Light device and heat dissipating sheet
KR20160023975A (en) * 2014-08-21 2016-03-04 삼성전자주식회사 A semiconductor package
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
USD790486S1 (en) 2014-09-30 2017-06-27 Cree, Inc. LED package with truncated encapsulant
US9379298B2 (en) * 2014-10-03 2016-06-28 Henkel IP & Holding GmbH Laminate sub-mounts for LED surface mount package
JP6451257B2 (en) * 2014-11-21 2019-01-16 富士電機株式会社 Semiconductor device
EP3224874B1 (en) 2014-11-26 2019-04-24 LedEngin, Inc. Compact emitter for warm dimming and color tunable lamp
USD826871S1 (en) * 2014-12-11 2018-08-28 Cree, Inc. Light emitting diode device
EP3238278B1 (en) * 2014-12-22 2020-03-04 MAG Instrument, Inc. Improved efficiency lighting apparatus with led directly mounted to a heatsink
US9530943B2 (en) 2015-02-27 2016-12-27 Ledengin, Inc. LED emitter packages with high CRI
USD777122S1 (en) 2015-02-27 2017-01-24 Cree, Inc. LED package
JP6415356B2 (en) * 2015-03-04 2018-10-31 東京窯業株式会社 Silicon carbide refractory block for molten iron and method for producing the same
CN113130725A (en) * 2015-03-31 2021-07-16 科锐Led公司 Light emitting diode with encapsulation and method
JP2016207739A (en) * 2015-04-17 2016-12-08 株式会社東芝 Semiconductor light emitting device and manufacturing method of the same
USD783547S1 (en) 2015-06-04 2017-04-11 Cree, Inc. LED package
US9871007B2 (en) * 2015-09-25 2018-01-16 Intel Corporation Packaged integrated circuit device with cantilever structure
US10008648B2 (en) * 2015-10-08 2018-06-26 Semicon Light Co., Ltd. Semiconductor light emitting device
KR102558280B1 (en) 2016-02-05 2023-07-25 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light source unit and light unit having thereof
US11038086B2 (en) * 2016-03-07 2021-06-15 Semicon Light Co., Ltd. Semiconductor light-emitting element and manufacturing method therefor
US10403792B2 (en) * 2016-03-07 2019-09-03 Rayvio Corporation Package for ultraviolet emitting devices
CN205944139U (en) 2016-03-30 2017-02-08 首尔伟傲世有限公司 Ultraviolet ray light -emitting diode spare and contain this emitting diode module
USD823492S1 (en) 2016-10-04 2018-07-17 Cree, Inc. Light emitting device
US10219345B2 (en) 2016-11-10 2019-02-26 Ledengin, Inc. Tunable LED emitter with continuous spectrum
DE102016125348B4 (en) * 2016-12-22 2020-06-25 Rogers Germany Gmbh Carrier substrate for electrical components and method for producing a carrier substrate
US10297724B2 (en) * 2017-07-10 2019-05-21 Ngk Spark Plug Co., Ltd. Package for mounting light-emitting device
JP2019046649A (en) * 2017-09-01 2019-03-22 株式会社エンプラス Light emitting device, surface light source device and display device
JP1618491S (en) * 2017-11-21 2018-11-19
KR102471689B1 (en) * 2017-12-22 2022-11-28 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device package
USD871485S1 (en) * 2018-01-15 2019-12-31 Axis Ab Camera
US10575374B2 (en) 2018-03-09 2020-02-25 Ledengin, Inc. Package for flip-chip LEDs with close spacing of LED chips
US10361352B1 (en) * 2018-03-22 2019-07-23 Excellence Opto, Inc. High heat dissipation light emitting diode package structure having at least two light cups and lateral light emission
JP1628923S (en) * 2018-04-26 2019-04-08
KR102607890B1 (en) * 2018-06-01 2023-11-29 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Semiconductor device package
JP6679767B1 (en) * 2019-01-07 2020-04-15 Dowaエレクトロニクス株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
US11032908B2 (en) 2019-06-07 2021-06-08 Uop Llc Circuit board, assembly and method of assembling
CN111525017B (en) * 2020-07-03 2020-10-02 华引芯(武汉)科技有限公司 Flip LED all-inorganic device and manufacturing method thereof
DE102020126391A1 (en) 2020-10-08 2022-04-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung LED PACKAGE FOR UV LIGHT AND PROCESS
TWI812124B (en) * 2022-03-28 2023-08-11 李銘洛 Electronic module and carrier structure thereof and manufacturing method thereof

Family Cites Families (157)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443140A (en) * 1965-04-06 1969-05-06 Gen Electric Light emitting semiconductor devices of improved transmission characteristics
JPS48102585A (en) * 1972-04-04 1973-12-22
US3760237A (en) * 1972-06-21 1973-09-18 Gen Electric Solid state lamp assembly having conical light director
JPS5353983U (en) * 1976-10-12 1978-05-09
JPS5936837B2 (en) * 1977-04-05 1984-09-06 株式会社東芝 Optical semiconductor device
US4267559A (en) 1979-09-24 1981-05-12 Bell Telephone Laboratories, Incorporated Low thermal impedance light-emitting diode package
EP0105967B1 (en) * 1982-10-19 1986-06-11 Kohlensà„Ure-Werke Rud. Buse Gmbh & Co. Method and apparatus for the investigation of the structure and permeability of soil and rock formations
US4603496A (en) * 1985-02-04 1986-08-05 Adaptive Micro Systems, Inc. Electronic display with lens matrix
KR910007381B1 (en) * 1987-08-26 1991-09-25 타이완 라이톤 일렉트로닉 컴패니 리미티드 Led display device
USRE37707E1 (en) 1990-02-22 2002-05-21 Stmicroelectronics S.R.L. Leadframe with heat dissipator connected to S-shaped fingers
US5119174A (en) * 1990-10-26 1992-06-02 Chen Der Jong Light emitting diode display with PCB base
US5173839A (en) 1990-12-10 1992-12-22 Grumman Aerospace Corporation Heat-dissipating method and device for led display
KR940019586A (en) * 1993-02-04 1994-09-14 휴고 라이히무트, 한스 블뢰흐레 Elevator display element
JP3420612B2 (en) 1993-06-25 2003-06-30 株式会社東芝 LED lamp
US5789772A (en) 1994-07-15 1998-08-04 The Whitaker Corporation Semi-insulating surface light emitting devices
US5506929A (en) 1994-10-19 1996-04-09 Clio Technologies, Inc. Light expanding system for producing a linear or planar light beam from a point-like light source
US5649757A (en) * 1994-11-04 1997-07-22 Aleman; Thomas M. Aquarium background illuminator
JPH0983018A (en) * 1995-09-11 1997-03-28 Nippon Denyo Kk Light emitting diode unit
US5849396A (en) * 1995-09-13 1998-12-15 Hughes Electronics Corporation Multilayer electronic structure and its preparation
JP3393247B2 (en) 1995-09-29 2003-04-07 ソニー株式会社 Optical device and method of manufacturing the same
US5633963A (en) * 1995-12-12 1997-05-27 Raytheon Company Optical rotary joint for single and multimode fibers
DE19621124A1 (en) * 1996-05-24 1997-11-27 Siemens Ag Optoelectronic converter and its manufacturing process
US5785418A (en) 1996-06-27 1998-07-28 Hochstein; Peter A. Thermally protected LED array
TW383508B (en) 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US5857767A (en) * 1996-09-23 1999-01-12 Relume Corporation Thermal management system for L.E.D. arrays
JPH1098215A (en) 1996-09-24 1998-04-14 Toyoda Gosei Co Ltd Light-emitting diode device
US6582103B1 (en) * 1996-12-12 2003-06-24 Teledyne Lighting And Display Products, Inc. Lighting apparatus
US6124635A (en) * 1997-03-21 2000-09-26 Honda Giken Kogyo Kabushiki Kaisha Functionally gradient integrated metal-ceramic member and semiconductor circuit substrate application thereof
JP3882266B2 (en) * 1997-05-19 2007-02-14 日亜化学工業株式会社 Semiconductor device
US6238599B1 (en) 1997-06-18 2001-05-29 International Business Machines Corporation High conductivity, high strength, lead-free, low cost, electrically conducting materials and applications
US5982090A (en) 1997-07-11 1999-11-09 Kaiser Aerospace And Electronics Coporation Integrated dual mode flat backlight
US5847507A (en) * 1997-07-14 1998-12-08 Hewlett-Packard Company Fluorescent dye added to epoxy of light emitting diode lens
US5869883A (en) 1997-09-26 1999-02-09 Stanley Wang, President Pantronix Corp. Packaging of semiconductor circuit in pre-molded plastic package
TW408497B (en) 1997-11-25 2000-10-11 Matsushita Electric Works Ltd LED illuminating apparatus
JPH11163419A (en) * 1997-11-26 1999-06-18 Rohm Co Ltd Light-emitting device
DE19755734A1 (en) * 1997-12-15 1999-06-24 Siemens Ag Method for producing a surface-mountable optoelectronic component
JP3329716B2 (en) 1997-12-15 2002-09-30 日亜化学工業株式会社 Chip type LED
US6469322B1 (en) * 1998-02-06 2002-10-22 General Electric Company Green emitting phosphor for use in UV light emitting diodes
US6525386B1 (en) * 1998-03-10 2003-02-25 Masimo Corporation Non-protruding optoelectronic lens
US5903052A (en) * 1998-05-12 1999-05-11 Industrial Technology Research Institute Structure for semiconductor package for improving the efficiency of spreading heat
JP2000049184A (en) 1998-05-27 2000-02-18 Hitachi Ltd Semiconductor device and production thereof
JP3334618B2 (en) 1998-06-16 2002-10-15 住友電装株式会社 Electrical junction box
JP2000037901A (en) * 1998-07-21 2000-02-08 Sanyo Electric Co Ltd Print head
US5959316A (en) 1998-09-01 1999-09-28 Hewlett-Packard Company Multiple encapsulation of phosphor-LED devices
US6335548B1 (en) 1999-03-15 2002-01-01 Gentex Corporation Semiconductor radiation emitter package
JP2000101149A (en) 1998-09-25 2000-04-07 Rohm Co Ltd Semiconductor light emitting element
JP3871820B2 (en) * 1998-10-23 2007-01-24 ローム株式会社 Semiconductor light emitting device
US6274924B1 (en) * 1998-11-05 2001-08-14 Lumileds Lighting, U.S. Llc Surface mountable LED package
US6429583B1 (en) * 1998-11-30 2002-08-06 General Electric Company Light emitting device with ba2mgsi2o7:eu2+, ba2sio4:eu2+, or (srxcay ba1-x-y)(a1zga1-z)2sr:eu2+phosphors
JP3246495B2 (en) 1999-01-01 2002-01-15 サンケン電気株式会社 Outer lens for semiconductor light emitting module
JP2000208822A (en) 1999-01-11 2000-07-28 Matsushita Electronics Industry Corp Semiconductor light-emitting device
JP2000236116A (en) * 1999-02-15 2000-08-29 Matsushita Electric Works Ltd Light source equipment
JP3553405B2 (en) * 1999-03-03 2004-08-11 ローム株式会社 Chip type electronic components
US6155699A (en) * 1999-03-15 2000-12-05 Agilent Technologies, Inc. Efficient phosphor-conversion led structure
US6521916B2 (en) 1999-03-15 2003-02-18 Gentex Corporation Radiation emitter device having an encapsulant with different zones of thermal conductivity
JP2000269551A (en) 1999-03-18 2000-09-29 Rohm Co Ltd Chip-type light emitting device
US6457645B1 (en) 1999-04-13 2002-10-01 Hewlett-Packard Company Optical assembly having lens offset from optical axis
DE19918370B4 (en) * 1999-04-22 2006-06-08 Osram Opto Semiconductors Gmbh LED white light source with lens
JP2001068742A (en) * 1999-08-25 2001-03-16 Sanyo Electric Co Ltd Hybrid integrated circuit device
US6489637B1 (en) 1999-06-09 2002-12-03 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
EP1059667A3 (en) 1999-06-09 2007-07-04 Sanyo Electric Co., Ltd. Hybrid integrated circuit device
JP3656715B2 (en) * 1999-07-23 2005-06-08 松下電工株式会社 Light source device
JP2001044452A (en) 1999-08-03 2001-02-16 Sony Corp Optical communication module
JP4330716B2 (en) 1999-08-04 2009-09-16 浜松ホトニクス株式会社 Floodlight device
KR100335480B1 (en) 1999-08-24 2002-05-04 김덕중 Leadframe using chip pad as heat spreading path and semiconductor package thereof
US6504301B1 (en) 1999-09-03 2003-01-07 Lumileds Lighting, U.S., Llc Non-incandescent lightbulb package using light emitting diodes
JP2001177136A (en) 1999-10-05 2001-06-29 Fuji Electric Co Ltd Method of manufacturing thin-film solar battery, and equipment of processing through hole and equipment of patterning the same by powder jetting method for thin-film substrate
JP3886306B2 (en) 1999-10-13 2007-02-28 ローム株式会社 Chip-type semiconductor light-emitting device
JP2001144333A (en) 1999-11-10 2001-05-25 Sharp Corp Light-emitting device and manufacturing method therefor
US6362964B1 (en) * 1999-11-17 2002-03-26 International Rectifier Corp. Flexible power assembly
US6559525B2 (en) 2000-01-13 2003-05-06 Siliconware Precision Industries Co., Ltd. Semiconductor package having heat sink at the outer surface
JP4944301B2 (en) 2000-02-01 2012-05-30 パナソニック株式会社 Optoelectronic device and manufacturing method thereof
US6456766B1 (en) 2000-02-01 2002-09-24 Cornell Research Foundation Inc. Optoelectronic packaging
US6492725B1 (en) 2000-02-04 2002-12-10 Lumileds Lighting, U.S., Llc Concentrically leaded power semiconductor device package
US6680568B2 (en) * 2000-02-09 2004-01-20 Nippon Leiz Corporation Light source
US6318886B1 (en) 2000-02-11 2001-11-20 Whelen Engineering Company High flux led assembly
JP2001326390A (en) 2000-05-18 2001-11-22 Rohm Co Ltd Rear-surface light-emitting chip type light-emitting element and insulating board used therefor
DE60137995D1 (en) 2000-08-09 2009-04-30 Avago Technologies General Ip Light-emitting devices
US6614103B1 (en) * 2000-09-01 2003-09-02 General Electric Company Plastic packaging of LED arrays
US6490104B1 (en) 2000-09-15 2002-12-03 Three-Five Systems, Inc. Illumination system for a micro display
JP2002093206A (en) * 2000-09-18 2002-03-29 Stanley Electric Co Ltd Led signal light
JP2002103977A (en) 2000-09-29 2002-04-09 Johnan Seisakusho Co Ltd Sunroof device for vehicle
US6552368B2 (en) * 2000-09-29 2003-04-22 Omron Corporation Light emission device
TW557373B (en) * 2000-10-25 2003-10-11 Lumileds Lighting Bv Illumination system and display device
US6768525B2 (en) * 2000-12-01 2004-07-27 Lumileds Lighting U.S. Llc Color isolated backlight for an LCD
JP3614776B2 (en) 2000-12-19 2005-01-26 シャープ株式会社 Chip component type LED and its manufacturing method
AT410266B (en) 2000-12-28 2003-03-25 Tridonic Optoelectronics Gmbh LIGHT SOURCE WITH A LIGHT-EMITTING ELEMENT
US6468321B2 (en) * 2001-01-10 2002-10-22 John W. Kinsel Blade and skirt assembly for directional gas cleaning and drying system
MY145695A (en) 2001-01-24 2012-03-30 Nichia Corp Light emitting diode, optical semiconductor device, epoxy resin composition suited for optical semiconductor device, and method for manufacturing the same
DE10105802A1 (en) * 2001-02-07 2002-08-08 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Semiconductor component with reflector
US6541800B2 (en) * 2001-02-22 2003-04-01 Weldon Technologies, Inc. High power LED
JP4833421B2 (en) 2001-03-08 2011-12-07 ローム株式会社 Light emitting device and mounting board
US6844903B2 (en) * 2001-04-04 2005-01-18 Lumileds Lighting U.S., Llc Blue backlight and phosphor layer for a color LCD
JP2002314139A (en) * 2001-04-09 2002-10-25 Toshiba Corp Light emitting device
US6874910B2 (en) 2001-04-12 2005-04-05 Matsushita Electric Works, Ltd. Light source device using LED, and method of producing same
JP2002319711A (en) 2001-04-20 2002-10-31 Citizen Electronics Co Ltd Surface mounting type light-emitting diode and method for manufacturing the same
US6429513B1 (en) 2001-05-25 2002-08-06 Amkor Technology, Inc. Active heat sink for cooling a semiconductor chip
JP4813691B2 (en) 2001-06-06 2011-11-09 シチズン電子株式会社 Light emitting diode
USD465207S1 (en) 2001-06-08 2002-11-05 Gem Services, Inc. Leadframe matrix for a surface mount package
TW497758U (en) 2001-07-02 2002-08-01 Chiou-Sen Hung Improvement of surface mounted light emitting diode structure
US6670648B2 (en) 2001-07-19 2003-12-30 Rohm Co., Ltd. Semiconductor light-emitting device having a reflective case
TW552726B (en) * 2001-07-26 2003-09-11 Matsushita Electric Works Ltd Light emitting device in use of LED
JP2003110146A (en) * 2001-07-26 2003-04-11 Matsushita Electric Works Ltd Light-emitting device
TW498516B (en) 2001-08-08 2002-08-11 Siliconware Precision Industries Co Ltd Manufacturing method for semiconductor package with heat sink
JP3989794B2 (en) * 2001-08-09 2007-10-10 松下電器産業株式会社 LED illumination device and LED illumination light source
EP3078899B1 (en) * 2001-08-09 2020-02-12 Everlight Electronics Co., Ltd Led illuminator and card type led illuminating light source
JP4045781B2 (en) * 2001-08-28 2008-02-13 松下電工株式会社 Light emitting device
US20030058650A1 (en) * 2001-09-25 2003-03-27 Kelvin Shih Light emitting diode with integrated heat dissipater
JP2003100986A (en) 2001-09-26 2003-04-04 Toshiba Corp Semiconductor device
JP3948650B2 (en) * 2001-10-09 2007-07-25 アバゴ・テクノロジーズ・イーシービーユー・アイピー(シンガポール)プライベート・リミテッド Light emitting diode and manufacturing method thereof
US6531328B1 (en) 2001-10-11 2003-03-11 Solidlite Corporation Packaging of light-emitting diode
US6501103B1 (en) * 2001-10-23 2002-12-31 Lite-On Electronics, Inc. Light emitting diode assembly with low thermal resistance
KR100439402B1 (en) 2001-12-24 2004-07-09 삼성전기주식회사 Light emission diode package
US6480389B1 (en) 2002-01-04 2002-11-12 Opto Tech Corporation Heat dissipation structure for solid-state light emitting device package
TW518775B (en) 2002-01-29 2003-01-21 Chi-Hsing Hsu Immersion cooling type light emitting diode and its packaging method
JP4269709B2 (en) 2002-02-19 2009-05-27 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP4211359B2 (en) 2002-03-06 2009-01-21 日亜化学工業株式会社 Manufacturing method of semiconductor device
JP4172196B2 (en) 2002-04-05 2008-10-29 豊田合成株式会社 Light emitting diode
JP2003309292A (en) 2002-04-15 2003-10-31 Citizen Electronics Co Ltd Metal core substrate of surface mounting light emitting diode and its manufacturing method
US7122884B2 (en) 2002-04-16 2006-10-17 Fairchild Semiconductor Corporation Robust leaded molded packages and methods for forming the same
KR20050044865A (en) * 2002-05-08 2005-05-13 포세온 테크날러지 인코퍼레이티드 High efficiency solid-state light source and methods of use and manufacture
US7122844B2 (en) * 2002-05-13 2006-10-17 Cree, Inc. Susceptor for MOCVD reactor
US7775685B2 (en) * 2003-05-27 2010-08-17 Cree, Inc. Power surface mount light emitting die package
US7264378B2 (en) 2002-09-04 2007-09-04 Cree, Inc. Power surface mount light emitting die package
US7244965B2 (en) 2002-09-04 2007-07-17 Cree Inc, Power surface mount light emitting die package
US7692206B2 (en) * 2002-12-06 2010-04-06 Cree, Inc. Composite leadframe LED package and method of making the same
US6897486B2 (en) * 2002-12-06 2005-05-24 Ban P. Loh LED package die having a small footprint
KR20050113200A (en) * 2003-02-26 2005-12-01 크리, 인코포레이티드 Composite white light source and method for fabricating
TW560813U (en) 2003-03-06 2003-11-01 Shang-Hua You Improved LED seat
US6789921B1 (en) * 2003-03-25 2004-09-14 Rockwell Collins Method and apparatus for backlighting a dual mode liquid crystal display
US7002727B2 (en) * 2003-03-31 2006-02-21 Reflectivity, Inc. Optical materials in packaging micromirror devices
US6903380B2 (en) * 2003-04-11 2005-06-07 Weldon Technologies, Inc. High power light emitting diode
US20050001433A1 (en) * 2003-04-30 2005-01-06 Seelink Technology Corporation Display system having uniform luminosity and wind generator
US7095053B2 (en) * 2003-05-05 2006-08-22 Lamina Ceramics, Inc. Light emitting diodes packaged for high temperature operation
US7164197B2 (en) * 2003-06-19 2007-01-16 3M Innovative Properties Company Dielectric composite material
JP4360858B2 (en) * 2003-07-29 2009-11-11 シチズン電子株式会社 Surface mount type LED and light emitting device using the same
US7102177B2 (en) * 2003-08-26 2006-09-05 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Light-emitting diode incorporating gradient index element
FR2859202B1 (en) * 2003-08-29 2005-10-14 Commissariat Energie Atomique HYDROGEN TRAP COMPOUND, METHOD OF MANUFACTURE AND USES
TW200531315A (en) * 2004-01-26 2005-09-16 Kyocera Corp Wavelength converter, light-emitting device, method of producing wavelength converter and method of producing light-emitting device
US7044620B2 (en) * 2004-04-30 2006-05-16 Guide Corporation LED assembly with reverse circuit board
US7997771B2 (en) 2004-06-01 2011-08-16 3M Innovative Properties Company LED array systems
US7456499B2 (en) 2004-06-04 2008-11-25 Cree, Inc. Power light emitting die package with reflecting lens and the method of making the same
US7280288B2 (en) 2004-06-04 2007-10-09 Cree, Inc. Composite optical lens with an integrated reflector
US7204631B2 (en) * 2004-06-30 2007-04-17 3M Innovative Properties Company Phosphor based illumination system having a plurality of light guides and an interference reflector
US7118262B2 (en) * 2004-07-23 2006-10-10 Cree, Inc. Reflective optical elements for semiconductor light emitting devices
US20060083017A1 (en) * 2004-10-18 2006-04-20 Bwt Propety, Inc. Solid-state lighting apparatus for navigational aids
US20060097385A1 (en) * 2004-10-25 2006-05-11 Negley Gerald H Solid metal block semiconductor light emitting device mounting substrates and packages including cavities and heat sinks, and methods of packaging same
TWI255377B (en) * 2004-11-05 2006-05-21 Au Optronics Corp Backlight module
US7322732B2 (en) * 2004-12-23 2008-01-29 Cree, Inc. Light emitting diode arrays for direct backlighting of liquid crystal displays
KR101115800B1 (en) * 2004-12-27 2012-03-08 엘지디스플레이 주식회사 Light-emitting device package, method for fabricating the same and backlight unit
US20060215075A1 (en) * 2005-03-23 2006-09-28 Chi-Jen Huang Backlight Module of LCD Device
WO2006112039A1 (en) * 2005-04-01 2006-10-26 Matsushita Electric Industrial Co., Ltd. Surface mounting optical semiconductor device and method for manufacturing same
US7297380B2 (en) 2005-05-20 2007-11-20 General Electric Company Light-diffusing films, backlight display devices comprising the light-diffusing films, and methods of making the same
US7980743B2 (en) 2005-06-14 2011-07-19 Cree, Inc. LED backlighting for displays
US20060292747A1 (en) 2005-06-27 2006-12-28 Loh Ban P Top-surface-mount power light emitter with integral heat sink
US20070054149A1 (en) * 2005-08-23 2007-03-08 Chi-Ming Cheng Substrate assembly of a display device and method of manufacturing the same
US7735543B2 (en) 2006-07-25 2010-06-15 Metal Casting Technology, Inc. Method of compacting support particulates

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060292747A1 (en) * 2005-06-27 2006-12-28 Loh Ban P Top-surface-mount power light emitter with integral heat sink

Also Published As

Publication number Publication date
TW201210061A (en) 2012-03-01
US20110121345A1 (en) 2011-05-26
EP1680816B1 (en) 2009-09-30
EP1680816A4 (en) 2007-04-04
KR101386846B1 (en) 2014-04-17
EP2139051B1 (en) 2014-06-04
EP1680816A1 (en) 2006-07-19
ATE444568T1 (en) 2009-10-15
TWI392105B (en) 2013-04-01
KR20130056339A (en) 2013-05-29
US20070200127A1 (en) 2007-08-30
KR20070090071A (en) 2007-09-05
CN1871710A (en) 2006-11-29
TWI538255B (en) 2016-06-11
KR20110020950A (en) 2011-03-03
CN102148316A (en) 2011-08-10
TW201212297A (en) 2012-03-16
KR101244075B1 (en) 2013-03-25
CN1871710B (en) 2011-03-23
TW200522395A (en) 2005-07-01
US7244965B2 (en) 2007-07-17
TW201338194A (en) 2013-09-16
CN102148316B (en) 2016-01-20
US8530915B2 (en) 2013-09-10
JP4602345B2 (en) 2010-12-22
TWI550897B (en) 2016-09-21
JP2007509505A (en) 2007-04-12
US8188488B2 (en) 2012-05-29
TWI495143B (en) 2015-08-01
TW201210062A (en) 2012-03-01
US20120235199A1 (en) 2012-09-20
KR20120132567A (en) 2012-12-05
KR101314986B1 (en) 2013-10-04
CA2549822A1 (en) 2005-05-12
KR101160037B1 (en) 2012-06-26
US20040079957A1 (en) 2004-04-29
TW201320385A (en) 2013-05-16
EP2139051A1 (en) 2009-12-30
DE602004023409D1 (en) 2009-11-12
US8710514B2 (en) 2014-04-29
WO2005043627A1 (en) 2005-05-12

Similar Documents

Publication Publication Date Title
US8710514B2 (en) Power surface mount light emitting die package
US8622582B2 (en) Power surface mount light emitting die package
EP1953825B1 (en) Power surface mount light emitting die package

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION