US20140330294A1 - Methods and devices for endosonography-guided fundoplexy - Google Patents

Methods and devices for endosonography-guided fundoplexy Download PDF

Info

Publication number
US20140330294A1
US20140330294A1 US14/337,014 US201414337014A US2014330294A1 US 20140330294 A1 US20140330294 A1 US 20140330294A1 US 201414337014 A US201414337014 A US 201414337014A US 2014330294 A1 US2014330294 A1 US 2014330294A1
Authority
US
United States
Prior art keywords
needle
stomach
needle tip
connecting element
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/337,014
Inventor
Kenneth F. Binmoeller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVENT MEDICAL Inc
Original Assignee
Kenneth F. Binmoeller
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenneth F. Binmoeller filed Critical Kenneth F. Binmoeller
Priority to US14/337,014 priority Critical patent/US20140330294A1/en
Publication of US20140330294A1 publication Critical patent/US20140330294A1/en
Assigned to XLUMENA, INC. reassignment XLUMENA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BINMOELLER, KENNETH F.
Assigned to BINMOELLER, KENNETH F. reassignment BINMOELLER, KENNETH F. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: XLUMENA, INC.
Assigned to ADVENT MEDICAL, INC. reassignment ADVENT MEDICAL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BINMOELLER, KENNETH F.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/12Surgical instruments, devices or methods, e.g. tourniquets for ligaturing or otherwise compressing tubular parts of the body, e.g. blood vessels, umbilical cord
    • A61B17/12009Implements for ligaturing other than by clamps or clips, e.g. using a loop with a slip knot
    • A61B17/12013Implements for ligaturing other than by clamps or clips, e.g. using a loop with a slip knot for use in minimally invasive surgery, e.g. endoscopic surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00292Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery mounted on or guided by flexible, e.g. catheter-like, means
    • A61B2017/003Steerable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00818Treatment of the gastro-intestinal system
    • A61B2017/00827Treatment of gastro-esophageal reflux
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/0401Suture anchors, buttons or pledgets, i.e. means for attaching sutures to bone, cartilage or soft tissue; Instruments for applying or removing suture anchors
    • A61B2017/0409Instruments for applying suture anchors

Definitions

  • the present invention relates to a tissue securement system, device and method for endoscopy or endosonography-guided transluminal interventions whereby a ligation or anchor is placed and secured into soft tissue.
  • Gastroesophageal reflux disease is a chronic condition caused by the failure of the anti-reflux barrier located at the gastroesophageal junction to keep the contents of the stomach from refluxing back into the esophagus.
  • Surgical fundoplication is the gold standard for anatomic correction of the cardia in patients with GERD.
  • this procedure can have a high incidence of postoperative complications and extended recovery times. Therefore endoscopic methods for enhancing the lower esophageal sphincter have been developed as an alternative to surgery. Endoscopic treatments of GERD target the esophageal and gastric wall in the region of the lower esophageal sphincter.
  • Methods including suture plication, radiofrequency energy ablation, and implant insertion are employed to prevent reflux by mechanisms that include the creation of a mechanical barrier by narrowing the lumen, altering the esophago-gastric angle (angle of His or “flap valve”), and altering the lower esophageal sphincter to enhance its function or decrease transient lower esophageal sphincter relaxations.
  • the endoscopic methods can be performed entirely through the endoscope placed transorally, avoiding any abdominal incisions.
  • Endoscopic treatment is often limited because the operator can only visualize the mucosal lining of the gastrointestinal wall that is located directly in front of the endoscope. Structures deep within the wall, and outside the wall, cannot be seen. The ability to visualize these structures may influence the proper placement of a treatment apparatus and may expand the therapeutic strategies. For example placement of a suture or ligating element through the esophageal and fundal walls that also includes placement through the diaphragmatic crura may be useful. The use of endoscopic ultrasonography may address this limitation. In this procedure a combination endoscope and ultrasound instrument called an echoendoscope is utilized.
  • LES lower esophageal sphincter
  • the diaphragmatic crura are typically seen interposed between the distal esophageal wall and the fundus of the stomach.
  • One aspect of this invention utilizes the visualization capabilities of ultrasound endoscopy to permit a novel device and method for treating GERD.
  • an objective of this invention is to provide a method to reduce gastroesophageal reflux by endosonography-guided intervention.
  • endosonography is used to insert a ligation element through the esophageal wall, through the diaphragmatic crus and into the fundus of the stomach.
  • This ligation element placed from the esophagus and around the angle of His may create a barrier to gastroesophageal reflux.
  • the present invention is directed to a device, system and method that, as embodied and broadly described herein, includes an implantable ligation element for fastening layers of tissue together.
  • the ligation element has proximal and distal ends and is suitable for insertion through the esophageal wall, the crura and into the fundus of the stomach.
  • the distal end of the ligation element can be brought from the fundus, around the gastro-esophageal flap valve and secured to the proximal end of the ligation element in the esophagus.
  • This ligating element forms a loop that can be used to draw the tissues described together.
  • a system for fastening tissue includes a tissue securement apparatus that can be initially positioned in the esophagus using an echoendoscope.
  • the securement apparatus is comprised of a hollow needle with a detachable needle tip.
  • a connecting element is positioned inside the needle and attached to the needle tip. When an inner stylet is advanced, the needle tip separates from the needle body and the needle tip with a portion of the connecting element moves apart from the needle body to reside in the fundus of the stomach.
  • the system for fastening tissue also includes a ligating element that can be attached to the proximal end of the connecting element once the hollow needle is removed.
  • the ligating element may utilize a dilating element positioned at its distal end that is sized to dilate a tissue tunnel so that the ligating element may be drawn more easily through the tissue structures.
  • the system may also utilize an endoscopically guided grasper to grasp the distal end of a connecting element and pull the ligating element across the esophageal wall and into the stomach.
  • the system may also utilize a securement element that is configured to engage the proximal and distal ends of the ligating element together. This may prevent the ligating element loop from loosening.
  • the present invention includes a method of treating gastroesophageal reflux disease.
  • a ligating element having a proximal end and a distal end is passed transorally through the esophagus to a position near the junction between the esophagus and the stomach.
  • the distal end of the ligating element is placed through the wall of the esophagus, through a portion of the diaphragmatic crura and into the gastric fundus using ultrasonic guidance.
  • the distal end of the ligating element is grasped in the fundus, wrapped around the gastro-esophageal flap valve and secured to the proximal end of the ligation element in the esophagus.
  • FIG. 1 is a cross sectional view of the esophageal-gastro-intestinal tract.
  • FIG. 2 is a view of the esophagus and stomach showing an echoendoscope placed in the distal portion of the esophagus;
  • FIG. 3 is a section view of a needle having a detachable needle tip
  • FIG. 4 is a view similar to FIG. 2 showing the needle tip detached from the needle body after placement through a tissue wall;
  • FIG. 5 is a view of a ligating element with an attached dilating element
  • FIG. 6 a is a view of a ligating element including one embodiment of a securement element
  • FIG. 6 b is a view of a ligating element showing an alternative embodiment of a securement element
  • FIG. 7 is a view showing a lower esophageal wall with a delivery needle inserted into the fundus from the esophagus;
  • FIG. 8 is a view showing a gastroscope in the stomach with an extended grasper capturing the retrieval loop on the needle tip;
  • FIG. 9 is a view showing a gastroscope in the lower esophagus with the ligating element forming a loop around the gastro-esophageal flap valve and the stomach drawn up to the lower esophageal wall.
  • This tissue securement system has several embodiments that are intended to work together to create a novel device and method for the treatment of GERD. However these embodiments also function independently and some of the embodiments of this system may be removed and the system may still achieve its desired function. Alternatively several of these embodiments may be useful as stand alone devices.
  • the principle elements of this system are; an echoendoscope, a delivery needle, a stylet, a needle tip, a connecting element, a ligating element and securement elements.
  • FIG. 1 is a cross sectional view of the esophageal-gastro-intestinal tract shown from the esophagus 1 to the stomach 2 .
  • the fundus 3 forms the superior portion of the stomach 2 .
  • the esophagus 1 enters the stomach 2 at a point below the fundus 3 forming the cardiac notch 4 and an acute angle with respect to the fundus 3 known as the Angle of His 5 .
  • the lower esophageal sphincter (LES) 6 is an important primary sphincter that controls the movement of fluids and food into the stomach.
  • the gastro-esophageal flap valve 7 includes a moveable portion and a more stationary portion.
  • the moveable portion is a moveable flap that is formed at the junction of the esophagus 1 and the stomach 2 .
  • This flap is approximately 4-5 cm long and is partially held against the opposing wall of the stomach 2 by the internal pressures of the stomach.
  • the esophageal tract is primarily controlled by the LES 6 and the gastro-esophageal flap valve 7 .
  • the condition known as Gastroesophageal Reflux Disease (GERD) can occur. It is the intent of this invention to provide a treatment method for GERD by supporting the LES 6 and the gastro-esophageal flap valve 7 .
  • a first component of the tissue securement system, the delivery needle 10 is shown in FIGS. 2 and 3 and is designed to be inserted through the instrumentation channel of an endoscope or preferably an echoendoscope 12 .
  • the delivery needle 10 can be manually advanced and retracted.
  • the proximal end of the delivery needle may include a handle (not shown) which can be secured to the inlet port of the instrumentation channel by a luer lock mechanism.
  • the delivery needle 10 can be housed in a protective outer sheath 18 which serves to protect the instrumentation channel of an endoscope or echoendoscope from damage from the sharp needle tip and to provide support as the delivery needle 10 is advanced.
  • the outer sheath 18 can be manually advanced to cover the length of the delivery needle 10 .
  • the delivery needle 10 consists of a needle body 20 which is constructed from a hollow tube and utilizes a hollow stylet 22 located coaxially inside.
  • the delivery needle 10 is sized to fit through the working channel of an echoendoscope although this system may function equally well with larger diametric requirements.
  • the size of the delivery needle 10 is preferably 18 to 26 gauge. More preferably the size is 19 to 23 gauge.
  • a needle tip 24 is located near the distal end 26 of the needle body and is detachably coupled to the needle body 20 .
  • the needle body 20 has an inner diameter 30 that provides support to the needle tip 24 during insertion.
  • the needle tip 24 has a mating retention boss 32 located on the proximal end of the needle tip that is formed so that the needle tip 24 fits snugly inside the inner diameter 30 of the needle body 20 .
  • a peg and hole arrangement is depicted in the drawings, various other features such as a tongue and groove, a bayonet and slot or other common mechanical stabilizing features could easily function with the same intended result; to hold and support the needle tip 24 in position at the end portion of the needle body 20 until the delivery needle is deployed as described later.
  • a connecting element 40 is connected to the needle tip 24 at point 41 and the connecting element 40 extends through the hollow pusher stylet 22 to the proximal end of the needle where it can be manipulated by the operator outside the patient's body.
  • the operator Upon advancement of the delivery needle 10 into soft tissue, the operator places tension on the connecting element 40 which firmly seats the needle tip 24 in the needle body 20 . This facilitates the introduction of the needle body 20 and needle tip 24 through tissue and into a targeted delivery site. Once at the delivery site, the tension can be released.
  • the connecting element 40 is preferably a suture, thread, plastic filament or wire.
  • the pusher stylet 22 extends along the length of the needle body 20 to the proximal end of the needle tip located at the retention boss 32 .
  • the stylet 22 can be used to deploy the needle tip 24 and connecting element 40 .
  • the needle tip 24 separates from the needle body 20 and the needle tip 24 and the attached connecting element 40 are delivered to the delivery site.
  • the stylet 22 is next withdrawn into the needle body 20 and the delivery needle 10 can be withdrawn into the protective sheath 18 inside the working channel of an endoscope or echoendoscope.
  • the echoendoscope along with the delivery needle 10 is then withdrawn leaving behind the needle tip 24 with the connecting element 40 extending out through the patient's mouth.
  • the needle tip 24 helps prevent inadvertently pulling out the connecting element 40 from the soft tissue as the echoendoscope 12 and the delivery needle 10 are withdrawn.
  • the connecting element 40 can be attached to the proximal end of the needle tip at 41 or can be connected to a center portion of the tip so that the tip swivels away from the connecting element 40 further preventing inadvertent pullout of the connecting element 40 .
  • the needle tip 24 may utilize a retrieval loop 44 attached near its apex 46 as illustrated in FIGS. 3 and 4 .
  • the retrieval loop 44 is a small piece of string or wire that is collapsed along the side of the needle tip 24 while the needle tip 24 is inside the protective sheath 18 .
  • the retrieval loop 44 expands once the needle tip 24 and connecting element 40 are deployed as shown in FIG. 4 .
  • the retrieval loop 44 may be positioned inside a groove 50 that is formed or cut into the side wall 52 of the needle tip 24 .
  • the retrieval loop 44 may be important to guide the needle tip 24 into the working lumen of a gastroscope as the needle tip 24 and connecting element 40 are retrieved as part of the method of this application.
  • the delivery needle 10 has several potential advantages over other delivery systems that deliver T-tags, plugs or anchors.
  • the working channel of a standard echoendoscope has a small diameter in the range of 2.8 mm. This small size limits the size of the needle and T-tag that can be delivered through the working channel.
  • a T-tag may be preloaded inside the hollow core of a needle, but this requires that the T-tag be very small for the procedure. T-tags of this size are difficult to handle by the physician and may be less effective.
  • T-tag placed within a needle requires multiple instrument exchanges whereby first a needle is delivered to the intended site, a guidewire is inserted through the needle lumen, the needle coaxially exchanged for a sheath over the guidewire and the guidewire removed so that a T-tag can be delivered with a pushing stylet.
  • the delivery needle 10 described in this application facilitates a simple delivery of a 19-23 gauge needle tip that acts like a T-tag. This delivery needle can save the operator time and permit delivery of an anchor with a single instrument.
  • the system so far described is designed to deliver a connecting element 40 and needle tip 24 through soft tissue to an intended delivery site. More preferably this system is designed to deliver the connecting element 40 and the needle tip 24 through the esophageal and stomach wall for the treatment of GERD. In this position, the connecting element 40 can be used to pull another component of the system, a ligating element 60 , through soft tissue.
  • the ligating element 60 as shown in FIG. 5 is a length of material that is suitable for long term contact with patient tissue, and is used to tie together layers of soft tissue. It may be a suture, a tie, a thread, a band, a web, a strap, a belt, an elongated piece of mesh, a wire, or a Teflon patch. It may be a single filament or may be folded or coiled up for delivery as illustrated in side “A” of FIG. 5 and then be deployed in an unfolded or uncoiled configuration as illustrated in side “B” of FIG. 5 once in position. It should have enough bulk to reduce the potential for pulling out of soft tissue when force is applied to the ligating element 60 .
  • the ligating element 60 has a proximal end 62 and a distal end 64 .
  • the distal end 64 of the ligating element 60 can be connected to the proximal end of the connecting element 40 outside the patient's body.
  • the distal end 64 of the ligating element may have a dilating element 66 that is intended to dilate and widen the initial channel through tissue formed by the connecting element 40 .
  • the dilating element 66 is a tapered element or bougie that has a diameter similar to the connecting element 40 at its distal end and a diameter similar to the ligating element 60 at its proximal end. It is formed or attached coaxially to the ligating element 60 . As the ligating element 60 is drawn into tissue, the dilating element 66 expands the lumen so that the ligating element 60 , which may have a larger profile, can transverse the lumen without high forces or causing clinically unacceptable tissue trauma.
  • the proximal end 62 and distal end 64 of the ligating element 60 may have securement elements 70 and 72 respectively as illustrated in FIGS. 6 a and 6 b.
  • the securement elements 70 and 72 are designed to connect both ends of the ligation element 60 together so that the ligation element 60 forms a loop.
  • the securement elements 70 and 72 may incorporate an additional feature which will permit one way slippage so that the diameter of the loop formed can be reduced but not increased.
  • the ligating element 60 may function equally as well without any securement elements incorporated into the ligating element 60 .
  • a simple crimping ferrule or wire clip may be utilized with similar results.
  • the securement elements 70 and 72 function similarly to a string loop secured with a slip knot that can be pulled at one end and the loop diameter reduced.
  • the securement element 70 is a suture loop 74 attached to the proximal end of the ligating element 60 formed using a slip knot.
  • the loop 74 is large enough so that a gastroscope can be introduced through the loop.
  • the loop reduces and secures the ligating element 60 in position.
  • FIG. 6 b Another embodiment of the securement element 70 , shown in FIG. 6 b, has a pre formed loop 80 attached to the proximal end 62 of the ligating element 60 .
  • the loop 80 is large enough so that a gastroscope can be introduced through the loop 80 .
  • the dilating element 66 located near the distal end 64 of the ligating element 60 has a series of grooves 82 that are formed or cut in the side of the tapered dilating element 66 . As the dilating element 66 is brought through the loop 80 , the series of grooves 82 contact the pre formed loop 80 and the loop 80 successively moves into the recesses of the grooves.
  • FIGS. 1-8 Methods of treating GERD are discussed with reference to FIGS. 1-8 . Although the invention is described in connection with the structure shown in these figures, and in connection with treating GERD, it should be understood that the system in its broadest sense is not so limited.
  • an echoendoscope 12 is positioned through the patient's esophagus 1 to a position near the lower esophageal sphincter (LES) 6 .
  • LES lower esophageal sphincter
  • an endoscope 12 may be used an echoendoscope is preferred so that structures and hollow spaces that are positioned behind tissue walls can be visualized.
  • the working channel is directed toward the inner wall of the esophagus 100 and the delivery needle 10 is advanced.
  • the delivery needle 10 pierces the esophageal wall 100 and is then directed through the diaphragmatic crura 106 under ultrasonic guidance and through the wall of the stomach 108 and into fundus 3 .
  • the delivery needle 10 transverse the diaphragmatic crura 106 because is thought that this is a stable structure that will anchor the system as opposed to anchoring to soft tissue alone.
  • the distal end 64 of the ligating element is attached to the proximal end of the connecting element 40 outside the patient's body.
  • a gastroscope 112 is then inserted into the patient's mouth down the esophagus 1 and into the stomach and positioned so that the needle tip 24 and the retrieval loop 44 can be visualized.
  • a grasper 114 is extended from the working channel of the gastroscope 112 and it grabs the retrieval loop 44 of the needle tip 24 .
  • the needle tip 24 and connecting element 40 are pulled by the grasper 114 into the working lumen of the gastroscope.
  • the connecting element 40 in turn pulls the ligating element 60 down the esophagus 1 through the esophageal wall 100 and into the fundus 3 .
  • the ligating element 60 is drawn near the end of the gastroscope and the gastroscope is withdrawn from the stomach to a position near the LES 6 as shown in FIG. 9 .
  • a loop 120 consisting primarily of the ligating element is formed. This loop 120 formed when the ligating element 60 transverses the esophageal wall 100 , the diaphragmatic crura 106 , and the fundus 3 of the stomach, around the gastro-esophageal flap valve 7 and back to the esophageal wall 100 .
  • the securement formed between the two ends of the ligating element is slidable so that the diameter of the loop 120 can be reduced to cinch various anatomical features together.
  • the fundus 3 of the stomach 2 is drawn into close proximity with the esophageal wall 100 .
  • the stomach applies a compressive force to the esophagus 1 that tends to reduce the internal luminal diameter of the esophagus.
  • the compressive force reduces the likelihood of the stomach contents being able to pass through the esophagus 1 .
  • the lower esophagus functions like a properly functioning lower esophageal sphincter.

Abstract

The present invention relates to a tissue securement system, device and method for endoscopy or endosonography-guided transluminal interventions whereby a litigation or anchor is placed and secured into soft tissue. An objective of this invention is to provide a method to reduce gastroesophageal reflux by endosonography-guided intervention. Specifically, endosonography is used to insert a litigation element through the esophageal wall, through the diaphragmatic crus and into the fundus of the stomach. This litigation element placed from the esophagus and around the angle of His that may create a barrier to gastroesophageal reflux.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 11/449,365, filed Jun. 8, 2006, which claims priority to U.S. Provisional Application No. 60/688,837, filed Jun. 9, 2005, the entire contents of which are hereby incorporated by reference.
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • FIELD
  • The present invention relates to a tissue securement system, device and method for endoscopy or endosonography-guided transluminal interventions whereby a ligation or anchor is placed and secured into soft tissue.
  • BACKGROUND
  • Gastroesophageal reflux disease (GERD) is a chronic condition caused by the failure of the anti-reflux barrier located at the gastroesophageal junction to keep the contents of the stomach from refluxing back into the esophagus.
  • Surgical fundoplication is the gold standard for anatomic correction of the cardia in patients with GERD. However this procedure can have a high incidence of postoperative complications and extended recovery times. Therefore endoscopic methods for enhancing the lower esophageal sphincter have been developed as an alternative to surgery. Endoscopic treatments of GERD target the esophageal and gastric wall in the region of the lower esophageal sphincter. Methods including suture plication, radiofrequency energy ablation, and implant insertion are employed to prevent reflux by mechanisms that include the creation of a mechanical barrier by narrowing the lumen, altering the esophago-gastric angle (angle of His or “flap valve”), and altering the lower esophageal sphincter to enhance its function or decrease transient lower esophageal sphincter relaxations. The endoscopic methods can be performed entirely through the endoscope placed transorally, avoiding any abdominal incisions.
  • Endoscopic treatment is often limited because the operator can only visualize the mucosal lining of the gastrointestinal wall that is located directly in front of the endoscope. Structures deep within the wall, and outside the wall, cannot be seen. The ability to visualize these structures may influence the proper placement of a treatment apparatus and may expand the therapeutic strategies. For example placement of a suture or ligating element through the esophageal and fundal walls that also includes placement through the diaphragmatic crura may be useful. The use of endoscopic ultrasonography may address this limitation. In this procedure a combination endoscope and ultrasound instrument called an echoendoscope is utilized. From the distal esophagus, pertinent structures visualized with the echoendoscope include the lower esophageal sphincter (LES) within the wall, the crural diaphragm, and the fundus of the stomach. The diaphragmatic crura are typically seen interposed between the distal esophageal wall and the fundus of the stomach. One aspect of this invention utilizes the visualization capabilities of ultrasound endoscopy to permit a novel device and method for treating GERD.
  • SUMMARY OF THE DISCLOSURE
  • Accordingly, an objective of this invention is to provide a method to reduce gastroesophageal reflux by endosonography-guided intervention. Specifically, endosonography is used to insert a ligation element through the esophageal wall, through the diaphragmatic crus and into the fundus of the stomach. This ligation element placed from the esophagus and around the angle of His may create a barrier to gastroesophageal reflux.
  • The present invention is directed to a device, system and method that, as embodied and broadly described herein, includes an implantable ligation element for fastening layers of tissue together. The ligation element has proximal and distal ends and is suitable for insertion through the esophageal wall, the crura and into the fundus of the stomach. The distal end of the ligation element can be brought from the fundus, around the gastro-esophageal flap valve and secured to the proximal end of the ligation element in the esophagus. This ligating element forms a loop that can be used to draw the tissues described together.
  • In a further aspect of the invention, a system for fastening tissue is provided. The system includes a tissue securement apparatus that can be initially positioned in the esophagus using an echoendoscope. The securement apparatus is comprised of a hollow needle with a detachable needle tip. A connecting element is positioned inside the needle and attached to the needle tip. When an inner stylet is advanced, the needle tip separates from the needle body and the needle tip with a portion of the connecting element moves apart from the needle body to reside in the fundus of the stomach.
  • In another aspect of the invention, the system for fastening tissue also includes a ligating element that can be attached to the proximal end of the connecting element once the hollow needle is removed. The ligating element may utilize a dilating element positioned at its distal end that is sized to dilate a tissue tunnel so that the ligating element may be drawn more easily through the tissue structures.
  • In still another aspect of the invention, the system may also utilize an endoscopically guided grasper to grasp the distal end of a connecting element and pull the ligating element across the esophageal wall and into the stomach. The system may also utilize a securement element that is configured to engage the proximal and distal ends of the ligating element together. This may prevent the ligating element loop from loosening.
  • In yet another aspect, the present invention includes a method of treating gastroesophageal reflux disease. In the method, a ligating element having a proximal end and a distal end is passed transorally through the esophagus to a position near the junction between the esophagus and the stomach. The distal end of the ligating element is placed through the wall of the esophagus, through a portion of the diaphragmatic crura and into the gastric fundus using ultrasonic guidance. The distal end of the ligating element is grasped in the fundus, wrapped around the gastro-esophageal flap valve and secured to the proximal end of the ligation element in the esophagus.
  • All of these embodiments are intended to be within the scope of the present invention herein disclosed. These and other embodiments of the present invention will become readily apparent to those skilled in the art from the following detailed description of the preferred embodiments having reference to the attached figures. The invention is not limited to any particular preferred embodiment(s) disclosed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a cross sectional view of the esophageal-gastro-intestinal tract.
  • FIG. 2 is a view of the esophagus and stomach showing an echoendoscope placed in the distal portion of the esophagus;
  • FIG. 3 is a section view of a needle having a detachable needle tip;
  • FIG. 4 is a view similar to FIG. 2 showing the needle tip detached from the needle body after placement through a tissue wall;
  • FIG. 5 is a view of a ligating element with an attached dilating element;
  • FIG. 6 a is a view of a ligating element including one embodiment of a securement element;
  • FIG. 6 b is a view of a ligating element showing an alternative embodiment of a securement element;
  • FIG. 7 is a view showing a lower esophageal wall with a delivery needle inserted into the fundus from the esophagus;
  • FIG. 8 is a view showing a gastroscope in the stomach with an extended grasper capturing the retrieval loop on the needle tip;
  • FIG. 9 is a view showing a gastroscope in the lower esophagus with the ligating element forming a loop around the gastro-esophageal flap valve and the stomach drawn up to the lower esophageal wall.
  • DETAILED DESCRIPTION
  • The system and method described herein may offer improvements over the techniques currently utilized to perform endoscopic procedures. This tissue securement system has several embodiments that are intended to work together to create a novel device and method for the treatment of GERD. However these embodiments also function independently and some of the embodiments of this system may be removed and the system may still achieve its desired function. Alternatively several of these embodiments may be useful as stand alone devices. The principle elements of this system are; an echoendoscope, a delivery needle, a stylet, a needle tip, a connecting element, a ligating element and securement elements.
  • FIG. 1 is a cross sectional view of the esophageal-gastro-intestinal tract shown from the esophagus 1 to the stomach 2. The fundus 3 forms the superior portion of the stomach 2. The esophagus 1 enters the stomach 2 at a point below the fundus 3 forming the cardiac notch 4 and an acute angle with respect to the fundus 3 known as the Angle of His 5. The lower esophageal sphincter (LES) 6 is an important primary sphincter that controls the movement of fluids and food into the stomach. The gastro-esophageal flap valve 7 includes a moveable portion and a more stationary portion. The moveable portion is a moveable flap that is formed at the junction of the esophagus 1 and the stomach 2. This flap is approximately 4-5 cm long and is partially held against the opposing wall of the stomach 2 by the internal pressures of the stomach. The esophageal tract is primarily controlled by the LES 6 and the gastro-esophageal flap valve 7. When either the LES 6 or the gastro-esophageal flap valve 7 does not close properly the condition known as Gastroesophageal Reflux Disease (GERD) can occur. It is the intent of this invention to provide a treatment method for GERD by supporting the LES 6 and the gastro-esophageal flap valve 7.
  • A first component of the tissue securement system, the delivery needle 10, is shown in FIGS. 2 and 3 and is designed to be inserted through the instrumentation channel of an endoscope or preferably an echoendoscope 12. The delivery needle 10 can be manually advanced and retracted. The proximal end of the delivery needle may include a handle (not shown) which can be secured to the inlet port of the instrumentation channel by a luer lock mechanism. The delivery needle 10 can be housed in a protective outer sheath 18 which serves to protect the instrumentation channel of an endoscope or echoendoscope from damage from the sharp needle tip and to provide support as the delivery needle 10 is advanced. The outer sheath 18 can be manually advanced to cover the length of the delivery needle 10.
  • In one embodiment shown in FIG. 3, the delivery needle 10 consists of a needle body 20 which is constructed from a hollow tube and utilizes a hollow stylet 22 located coaxially inside. The delivery needle 10 is sized to fit through the working channel of an echoendoscope although this system may function equally well with larger diametric requirements. The size of the delivery needle 10 is preferably 18 to 26 gauge. More preferably the size is 19 to 23 gauge. A needle tip 24 is located near the distal end 26 of the needle body and is detachably coupled to the needle body 20. The needle body 20 has an inner diameter 30 that provides support to the needle tip 24 during insertion. The needle tip 24 has a mating retention boss 32 located on the proximal end of the needle tip that is formed so that the needle tip 24 fits snugly inside the inner diameter 30 of the needle body 20. Although a peg and hole arrangement is depicted in the drawings, various other features such as a tongue and groove, a bayonet and slot or other common mechanical stabilizing features could easily function with the same intended result; to hold and support the needle tip 24 in position at the end portion of the needle body 20 until the delivery needle is deployed as described later.
  • A connecting element 40 is connected to the needle tip 24 at point 41 and the connecting element 40 extends through the hollow pusher stylet 22 to the proximal end of the needle where it can be manipulated by the operator outside the patient's body. Upon advancement of the delivery needle 10 into soft tissue, the operator places tension on the connecting element 40 which firmly seats the needle tip 24 in the needle body 20. This facilitates the introduction of the needle body 20 and needle tip 24 through tissue and into a targeted delivery site. Once at the delivery site, the tension can be released. The connecting element 40 is preferably a suture, thread, plastic filament or wire. The pusher stylet 22 extends along the length of the needle body 20 to the proximal end of the needle tip located at the retention boss 32.
  • Once the delivery needle 10 is advanced to a point where the needle tip 24 is at the delivery site, the stylet 22 can be used to deploy the needle tip 24 and connecting element 40. As shown in FIG. 4, when the stylet 22 is advanced the needle tip 24 separates from the needle body 20 and the needle tip 24 and the attached connecting element 40 are delivered to the delivery site. The stylet 22 is next withdrawn into the needle body 20 and the delivery needle 10 can be withdrawn into the protective sheath 18 inside the working channel of an endoscope or echoendoscope. The echoendoscope along with the delivery needle 10 is then withdrawn leaving behind the needle tip 24 with the connecting element 40 extending out through the patient's mouth. The needle tip 24 helps prevent inadvertently pulling out the connecting element 40 from the soft tissue as the echoendoscope 12 and the delivery needle 10 are withdrawn. The connecting element 40 can be attached to the proximal end of the needle tip at 41 or can be connected to a center portion of the tip so that the tip swivels away from the connecting element 40 further preventing inadvertent pullout of the connecting element 40.
  • The needle tip 24 may utilize a retrieval loop 44 attached near its apex 46 as illustrated in FIGS. 3 and 4. The retrieval loop 44 is a small piece of string or wire that is collapsed along the side of the needle tip 24 while the needle tip 24 is inside the protective sheath 18. The retrieval loop 44 expands once the needle tip 24 and connecting element 40 are deployed as shown in FIG. 4. The retrieval loop 44 may be positioned inside a groove 50 that is formed or cut into the side wall 52 of the needle tip 24. The retrieval loop 44 may be important to guide the needle tip 24 into the working lumen of a gastroscope as the needle tip 24 and connecting element 40 are retrieved as part of the method of this application.
  • The delivery needle 10 has several potential advantages over other delivery systems that deliver T-tags, plugs or anchors. First, the working channel of a standard echoendoscope has a small diameter in the range of 2.8 mm. This small size limits the size of the needle and T-tag that can be delivered through the working channel. A T-tag may be preloaded inside the hollow core of a needle, but this requires that the T-tag be very small for the procedure. T-tags of this size are difficult to handle by the physician and may be less effective. An alternative to placing the T-tag within a needle requires multiple instrument exchanges whereby first a needle is delivered to the intended site, a guidewire is inserted through the needle lumen, the needle coaxially exchanged for a sheath over the guidewire and the guidewire removed so that a T-tag can be delivered with a pushing stylet. The delivery needle 10 described in this application facilitates a simple delivery of a 19-23 gauge needle tip that acts like a T-tag. This delivery needle can save the operator time and permit delivery of an anchor with a single instrument.
  • The system so far described is designed to deliver a connecting element 40 and needle tip 24 through soft tissue to an intended delivery site. More preferably this system is designed to deliver the connecting element 40 and the needle tip 24 through the esophageal and stomach wall for the treatment of GERD. In this position, the connecting element 40 can be used to pull another component of the system, a ligating element 60, through soft tissue.
  • The ligating element 60 as shown in FIG. 5 is a length of material that is suitable for long term contact with patient tissue, and is used to tie together layers of soft tissue. It may be a suture, a tie, a thread, a band, a web, a strap, a belt, an elongated piece of mesh, a wire, or a Teflon patch. It may be a single filament or may be folded or coiled up for delivery as illustrated in side “A” of FIG. 5 and then be deployed in an unfolded or uncoiled configuration as illustrated in side “B” of FIG. 5 once in position. It should have enough bulk to reduce the potential for pulling out of soft tissue when force is applied to the ligating element 60. The ligating element 60 has a proximal end 62 and a distal end 64. The distal end 64 of the ligating element 60 can be connected to the proximal end of the connecting element 40 outside the patient's body. The distal end 64 of the ligating element may have a dilating element 66 that is intended to dilate and widen the initial channel through tissue formed by the connecting element 40. The dilating element 66 is a tapered element or bougie that has a diameter similar to the connecting element 40 at its distal end and a diameter similar to the ligating element 60 at its proximal end. It is formed or attached coaxially to the ligating element 60. As the ligating element 60 is drawn into tissue, the dilating element 66 expands the lumen so that the ligating element 60, which may have a larger profile, can transverse the lumen without high forces or causing clinically unacceptable tissue trauma.
  • The proximal end 62 and distal end 64 of the ligating element 60 may have securement elements 70 and 72 respectively as illustrated in FIGS. 6 a and 6 b. The securement elements 70 and 72 are designed to connect both ends of the ligation element 60 together so that the ligation element 60 forms a loop. The securement elements 70 and 72 may incorporate an additional feature which will permit one way slippage so that the diameter of the loop formed can be reduced but not increased. However the ligating element 60 may function equally as well without any securement elements incorporated into the ligating element 60. By example a simple crimping ferrule or wire clip may be utilized with similar results. The securement elements 70 and 72 function similarly to a string loop secured with a slip knot that can be pulled at one end and the loop diameter reduced. As shown in FIG. 6 a, the securement element 70 is a suture loop 74 attached to the proximal end of the ligating element 60 formed using a slip knot. The loop 74 is large enough so that a gastroscope can be introduced through the loop. As the distal end 64 of the ligating element is brought through the loop 74, the loop reduces and secures the ligating element 60 in position.
  • Another embodiment of the securement element 70, shown in FIG. 6 b, has a pre formed loop 80 attached to the proximal end 62 of the ligating element 60. The loop 80 is large enough so that a gastroscope can be introduced through the loop 80. The dilating element 66 located near the distal end 64 of the ligating element 60 has a series of grooves 82 that are formed or cut in the side of the tapered dilating element 66. As the dilating element 66 is brought through the loop 80, the series of grooves 82 contact the pre formed loop 80 and the loop 80 successively moves into the recesses of the grooves. This prevents the dilating element 66 from pulling out of the loop 80 but the ligating element 60 can be successively tightened as the dilating element 66 is drawn into the loop 80. Many other types of securement elements such as a rack and pinion, mechanical ratchet are possible and the examples illustrated here are not meant to be limiting. In fact many other suture retention apparatus are equally feasible as known to those in the art.
  • Methods of treating GERD are discussed with reference to FIGS. 1-8. Although the invention is described in connection with the structure shown in these figures, and in connection with treating GERD, it should be understood that the system in its broadest sense is not so limited.
  • As shown in FIG. 7, an echoendoscope 12 is positioned through the patient's esophagus 1 to a position near the lower esophageal sphincter (LES) 6. Although an endoscope 12 may be used an echoendoscope is preferred so that structures and hollow spaces that are positioned behind tissue walls can be visualized. When the echoendoscope 12 is properly positioned, the working channel is directed toward the inner wall of the esophagus 100 and the delivery needle 10 is advanced. The delivery needle 10 pierces the esophageal wall 100 and is then directed through the diaphragmatic crura 106 under ultrasonic guidance and through the wall of the stomach 108 and into fundus 3. It is important that the delivery needle 10 transverse the diaphragmatic crura 106 because is thought that this is a stable structure that will anchor the system as opposed to anchoring to soft tissue alone. Once the distal end 26 of the delivery needle is positioned in the fundus 3, the stylet 22 is advanced to separate the needle tip 24 from the needle body 20. The needle tip 24 with the attached connecting element 40 is deposited in the fundus 3 and the delivery needle 24 is withdrawn. The echoendoscope 12 can be withdrawn leaving behind the connecting element 40 extending from the fundus 3 to the mouth of the patient.
  • The distal end 64 of the ligating element is attached to the proximal end of the connecting element 40 outside the patient's body. As shown in FIG. 8, a gastroscope 112 is then inserted into the patient's mouth down the esophagus 1 and into the stomach and positioned so that the needle tip 24 and the retrieval loop 44 can be visualized. A grasper 114 is extended from the working channel of the gastroscope 112 and it grabs the retrieval loop 44 of the needle tip 24. The needle tip 24 and connecting element 40 are pulled by the grasper 114 into the working lumen of the gastroscope. The connecting element 40 in turn pulls the ligating element 60 down the esophagus 1 through the esophageal wall 100 and into the fundus 3. The ligating element 60 is drawn near the end of the gastroscope and the gastroscope is withdrawn from the stomach to a position near the LES 6 as shown in FIG. 9. When the securement elements 70 and 72 are brought into close proximity to each other, a loop 120 consisting primarily of the ligating element is formed. This loop 120 formed when the ligating element 60 transverses the esophageal wall 100, the diaphragmatic crura 106, and the fundus 3 of the stomach, around the gastro-esophageal flap valve 7 and back to the esophageal wall 100.
  • An important feature of the securement elements is that the securement formed between the two ends of the ligating element is slidable so that the diameter of the loop 120 can be reduced to cinch various anatomical features together. By cinching down the loop 120, the fundus 3 of the stomach 2 is drawn into close proximity with the esophageal wall 100. This causes the stomach 2 to be partially wrapped around the esophagus so that esophagus 1 and stomach 2 are positioned in a method similar to a Nissen fundoplication procedure. As the internal pressure of the stomach 2 increases during digestion, the stomach applies a compressive force to the esophagus 1 that tends to reduce the internal luminal diameter of the esophagus. The compressive force reduces the likelihood of the stomach contents being able to pass through the esophagus 1. In other words the lower esophagus functions like a properly functioning lower esophageal sphincter.
  • This invention has been described and specific examples of the invention have been portrayed. The use of those specifics is not intended to limit the invention in anyway. Additionally, to the extent that there are variations of the invention, which are within the spirit of the disclosure or equivalent to the inventions found in the claims, it is my intent that this patent will cover those variations as well.

Claims (1)

What is claimed is:
1. A tissue securement apparatus for creating a gastric fundoplexy comprising:
a hollow needle with proximal and distal end portions, the needle comprising a needle body and a detachable needle tip; and
a stylet positioned coaxially inside the needle body with a connecting element positioned inside the needle and extending from the proximal needle end portion to the distal needle end portion, said connecting element coupled to the needle tip at one end, the needle configured to be inserted through an esophageal and fundal wall and then withdrawn to leave behind the distal portion of the connecting element in the fundus.
US14/337,014 2005-06-09 2014-07-21 Methods and devices for endosonography-guided fundoplexy Abandoned US20140330294A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/337,014 US20140330294A1 (en) 2005-06-09 2014-07-21 Methods and devices for endosonography-guided fundoplexy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US68883705P 2005-06-09 2005-06-09
US11/449,365 US8784437B2 (en) 2005-06-09 2006-06-08 Methods and devices for endosonography-guided fundoplexy
US14/337,014 US20140330294A1 (en) 2005-06-09 2014-07-21 Methods and devices for endosonography-guided fundoplexy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US11/449,365 Continuation US8784437B2 (en) 2005-06-09 2006-06-08 Methods and devices for endosonography-guided fundoplexy

Publications (1)

Publication Number Publication Date
US20140330294A1 true US20140330294A1 (en) 2014-11-06

Family

ID=46205962

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/449,365 Active 2028-01-19 US8784437B2 (en) 2005-06-09 2006-06-08 Methods and devices for endosonography-guided fundoplexy
US14/337,014 Abandoned US20140330294A1 (en) 2005-06-09 2014-07-21 Methods and devices for endosonography-guided fundoplexy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US11/449,365 Active 2028-01-19 US8784437B2 (en) 2005-06-09 2006-06-08 Methods and devices for endosonography-guided fundoplexy

Country Status (1)

Country Link
US (2) US8784437B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004514462A (en) 2000-03-03 2004-05-20 シー・アール・バード・インク Tissue adhesion device for endoscope with multiple suction ports
ES2435094T3 (en) 2000-05-19 2013-12-18 C.R. Bard, Inc. Device and method of tissue capture and suturing
US7737109B2 (en) 2000-08-11 2010-06-15 Temple University Of The Commonwealth System Of Higher Education Obesity controlling method
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
US8172857B2 (en) 2004-08-27 2012-05-08 Davol, Inc. Endoscopic tissue apposition device and method of use
US8328837B2 (en) 2004-12-08 2012-12-11 Xlumena, Inc. Method and apparatus for performing needle guided interventions
US8088132B2 (en) 2004-12-21 2012-01-03 Davol, Inc. (a C.R. Bard Company) Anastomotic outlet revision
US8087413B2 (en) * 2005-01-14 2012-01-03 Usgi Medical Inc. Attenuation of environmental parameters on a gastric lumen
US8777967B2 (en) 2005-06-09 2014-07-15 Xlumena, Inc. Methods and devices for anchoring to tissue
US8092472B2 (en) * 2007-02-22 2012-01-10 Cerier Jeffrey C Methods and devices for endoscopic treatment of organs
US8034063B2 (en) * 2007-07-13 2011-10-11 Xlumena, Inc. Methods and systems for treating hiatal hernias
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US9278019B2 (en) 2009-04-03 2016-03-08 Metamodix, Inc Anchors and methods for intestinal bypass sleeves
US8211186B2 (en) 2009-04-03 2012-07-03 Metamodix, Inc. Modular gastrointestinal prostheses
US9173760B2 (en) 2009-04-03 2015-11-03 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
US8702641B2 (en) 2009-04-03 2014-04-22 Metamodix, Inc. Gastrointestinal prostheses having partial bypass configurations
US9364259B2 (en) 2009-04-21 2016-06-14 Xlumena, Inc. System and method for delivering expanding trocar through a sheath
EP2434961B1 (en) 2009-05-29 2015-01-14 Xlumena, Inc. Apparatus and method for deploying stent across adjacent tissue layers
CN102470038A (en) 2009-07-10 2012-05-23 美特默迪克斯公司 External anchoring configurations for modular gastrointestinal prostheses
US8968362B2 (en) 2010-04-08 2015-03-03 Covidien Lp Coated looped suture
EP3636164A1 (en) 2012-05-17 2020-04-15 Boston Scientific Scimed Inc. Devices for access across adjacent tissue layers
WO2014113483A1 (en) 2013-01-15 2014-07-24 Metamodix, Inc. System and method for affecting intestinal microbial flora
EP2958527B1 (en) 2013-02-21 2020-07-22 Boston Scientific Scimed, Inc. Devices for forming an anastomosis
US9622897B1 (en) 2016-03-03 2017-04-18 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
US10751209B2 (en) 2016-05-19 2020-08-25 Metamodix, Inc. Pyloric anchor retrieval tools and methods
CA3129020A1 (en) 2019-02-07 2020-08-13 Nxt Biomedical, Llc Rivet shunt and method of deployment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382257A (en) * 1990-09-06 1995-01-17 United States Surgical Corporation Implant assist apparatus

Family Cites Families (284)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2127903A (en) 1936-05-05 1938-08-23 Davis & Geck Inc Tube for surgical purposes and method of preparing and using the same
US3039468A (en) 1959-01-07 1962-06-19 Joseph L Price Trocar and method of treating bloat
US3717151A (en) 1971-03-11 1973-02-20 R Collett Flesh penetrating apparatus
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3970090A (en) 1975-02-03 1976-07-20 Physio Medics, Inc. Catheter
US4173392A (en) 1977-07-20 1979-11-06 American Hospital Supply Corporation Glass fiber light guide and method of making the same
US4235238A (en) 1978-05-11 1980-11-25 Olympus Optical Co., Ltd. Apparatus for suturing coeliac tissues
DE2821048C2 (en) 1978-05-13 1980-07-17 Willy Ruesch Gmbh & Co Kg, 7053 Kernen Medical instrument
US6656182B1 (en) * 1982-05-20 2003-12-02 John O. Hayhurst Tissue manipulation
US4587972A (en) 1984-07-16 1986-05-13 Morantte Jr Bernardo D Device for diagnostic and therapeutic intravascular intervention
US4790813A (en) 1984-12-17 1988-12-13 Intravascular Surgical Instruments, Inc. Method and apparatus for surgically removing remote deposits
US4608965A (en) 1985-03-27 1986-09-02 Anspach Jr William E Endoscope retainer and tissue retracting device
US4705040A (en) 1985-11-18 1987-11-10 Medi-Tech, Incorporated Percutaneous fixation of hollow organs
US5000185A (en) 1986-02-28 1991-03-19 Cardiovascular Imaging Systems, Inc. Method for intravascular two-dimensional ultrasonography and recanalization
US4920967A (en) 1986-07-18 1990-05-01 Pfizer Hospital Products Group, Inc. Doppler tip wire guide
US4990139A (en) 1986-09-10 1991-02-05 Jang G David Tandem independently inflatable/deflatable multiple diameter balloon angioplasty catheter systems
JPH0755222B2 (en) 1986-12-12 1995-06-14 オリンパス光学工業株式会社 Treatment tool
US4917097A (en) 1987-10-27 1990-04-17 Endosonics Corporation Apparatus and method for imaging small cavities
US5180392A (en) 1988-02-01 1993-01-19 Einar Skeie Anastomotic device
US4869263A (en) 1988-02-04 1989-09-26 Cardiometrics, Inc. Device and method for measuring volumetric blood flow in a vessel
US5588432A (en) 1988-03-21 1996-12-31 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials, and ablating tissue
US4973317A (en) 1989-07-14 1990-11-27 Bobrove Arthur M Automatic sheath protection of hypodermic needle
ES2074130T3 (en) 1989-08-09 1995-09-01 Bard Inc C R GUIDE CATHETER SYSTEM AND CHUCKS FOR QUICK CATHETER EXCHANGE.
US5211651A (en) 1989-08-18 1993-05-18 Evi Corporation Catheter atherotome
US5024655A (en) 1989-09-05 1991-06-18 Freeman Andrew B Epidural catheter apparatus and associated method
US5330497A (en) 1989-11-22 1994-07-19 Dexide, Inc. Locking trocar sleeve
US4950285A (en) * 1989-11-27 1990-08-21 Wilk Peter J Suture device
US5207229A (en) 1989-12-21 1993-05-04 Advanced Biomedical Devices, Inc. Flexibility steerable guidewire with inflatable balloon
US5197971A (en) 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5234447A (en) 1990-08-28 1993-08-10 Robert L. Kaster Side-to-end vascular anastomotic staple apparatus
US5368595A (en) * 1990-09-06 1994-11-29 United States Surgical Corporation Implant assist apparatus
DE59105247D1 (en) 1990-10-04 1995-05-24 Schneider Europ Ag Balloon dilatation catheter.
CA2052310A1 (en) 1990-10-09 1992-04-10 Thomas L. Foster Surgical access sheath
EP0558642B1 (en) 1990-11-20 1997-01-02 InnerDyne, Inc. Tension guide and dilator
US5221258A (en) 1991-01-22 1993-06-22 Shturman Technologies, Inc. Introduction balloon catheter
US5275610A (en) 1991-05-13 1994-01-04 Cook Incorporated Surgical retractors and method of use
US5183464A (en) 1991-05-17 1993-02-02 Interventional Thermodynamics, Inc. Radially expandable dilator
US5183033A (en) 1991-07-15 1993-02-02 Wilk Peter J Surgical instrument assembly and apparatus and surgical method
EP0533321A3 (en) 1991-07-22 1993-05-12 Dow Corning Wright Corporation Expanding atherectomy device
US5199419A (en) 1991-08-05 1993-04-06 United States Surgical Corporation Surgical retractor
US5258000A (en) 1991-11-25 1993-11-02 Cook Incorporated Tissue aperture repair device
US5713870A (en) 1991-11-27 1998-02-03 Yoon; Inbae Retractable safety penetrating instrument with laterally extendable spring strip
US5395349A (en) 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5224945A (en) 1992-01-13 1993-07-06 Interventional Technologies, Inc. Compressible/expandable atherectomy cutter
US5209727A (en) 1992-01-29 1993-05-11 Interventional Technologies, Inc. Guide wire with integral angioplasty balloon
US5257990A (en) 1992-02-24 1993-11-02 Kensey Nash Corporation Electrosurgical catheter instrument with impacting working head and method of use
US5226421A (en) 1992-03-06 1993-07-13 Cardiometrics, Inc. Doppler elongate flexible member having an inflatable balloon mounted thereon
US5246007A (en) 1992-03-13 1993-09-21 Cardiometrics, Inc. Vascular catheter for measuring flow characteristics and method
US5707362A (en) 1992-04-15 1998-01-13 Yoon; Inbae Penetrating instrument having an expandable anchoring portion for triggering protrusion of a safety member and/or retraction of a penetrating member
US5536248A (en) 1992-05-11 1996-07-16 Arrow Precision Products, Inc. Method and apparatus for electrosurgically obtaining access to the biliary tree and placing a stent therein
US5443484A (en) 1992-06-16 1995-08-22 Loma Linda University Medical Center Trocar and method for endoscopic surgery
DE4221390C1 (en) 1992-06-30 1993-04-01 Haindl, Hans, Dr.Med., 3015 Wennigsen, De
US5261920A (en) 1992-08-21 1993-11-16 Ethicon, Inc. Anvil bushing for circular stapler
US5458131A (en) 1992-08-25 1995-10-17 Wilk; Peter J. Method for use in intra-abdominal surgery
US5364408A (en) 1992-09-04 1994-11-15 Laurus Medical Corporation Endoscopic suture system
EP0596162B1 (en) 1992-11-06 2002-08-21 Texas Instruments Incorporated hypodermic needle with a protrusion
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
US5304198A (en) 1992-11-13 1994-04-19 Target Therapeutics Single-lumen balloon catheter having a directional valve
IL103737A (en) 1992-11-13 1997-02-18 Technion Res & Dev Foundation Stapler device particularly useful in medical suturing
US5372588A (en) 1992-11-24 1994-12-13 Farley; Kevin Trocar having blunt tip
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
WO1994023786A1 (en) 1993-04-13 1994-10-27 Boston Scientific Corporation Prosthesis delivery system
US5897567A (en) 1993-04-29 1999-04-27 Scimed Life Systems, Inc. Expandable intravascular occlusion material removal devices and methods of use
US5417687A (en) 1993-04-30 1995-05-23 Medical Scientific, Inc. Bipolar electrosurgical trocar
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5449355A (en) 1993-11-24 1995-09-12 Valleylab Inc. Retrograde tissue splitter and method
RU2089131C1 (en) 1993-12-28 1997-09-10 Сергей Апполонович Пульнев Stent-expander
US5728122A (en) 1994-01-18 1998-03-17 Datascope Investment Corp. Guide wire with releaseable barb anchor
US5843116A (en) 1996-05-02 1998-12-01 Cardiovascular Dynamics, Inc. Focalized intraluminal balloons
US5415664A (en) 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US5470337A (en) 1994-05-17 1995-11-28 Moss; Gerald Surgical fastener
EP0765137B1 (en) 1994-06-17 2003-07-30 Heartport, Inc. Surgical stapling instrument
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5843127A (en) 1994-08-22 1998-12-01 Le Medical Technologies, Inc. Fixation device and method for installing same
US5531699A (en) 1994-09-19 1996-07-02 Abbott Laboratories Spring-loaded reciprocable stylet holder
JP3614943B2 (en) 1994-09-29 2005-01-26 オリンパス株式会社 Endoscopic puncture needle
US5620457A (en) 1994-11-23 1997-04-15 Medinol Ltd. Catheter balloon
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5749851A (en) 1995-03-02 1998-05-12 Scimed Life Systems, Inc. Stent installation method using balloon catheter having stepped compliance curve
US5495851A (en) 1995-03-23 1996-03-05 Roanoke Gastroenterology, P.C. Use of endoscopic ultrasound and stimulated bilary drainage in the diagnosis of cholecystitis and microlithiasis
US5868740A (en) 1995-03-24 1999-02-09 Board Of Regents-Univ Of Nebraska Method for volumetric tissue ablation
US6575967B1 (en) 1995-03-24 2003-06-10 The Board Of Regents Of The University Of Nebraska Method and systems for volumetric tissue ablation
US5857999A (en) 1995-05-05 1999-01-12 Imagyn Medical Technologies, Inc. Small diameter introducer for laparoscopic instruments
US5702418A (en) 1995-09-12 1997-12-30 Boston Scientific Corporation Stent delivery system
CA2234389A1 (en) 1995-10-13 1997-04-17 Transvascular, Inc. A device, system and method for interstitial transvascular intervention
ATE275880T1 (en) 1995-10-13 2004-10-15 Transvascular Inc DEVICE FOR BYPASSING ARTERIAL Narrowings AND/OR FOR PERFORMING OTHER TRANSVASCULAR PROCEDURES
US5709671A (en) 1995-10-16 1998-01-20 Ethicon Endo-Surgery, Inc. Trocar having an improved tip configuration
US5620456A (en) 1995-10-20 1997-04-15 Lasersurge, Inc. Trocar assembly
WO1997016119A1 (en) 1995-10-30 1997-05-09 Children's Medical Center Corporation Self-centering umbrella-type septal closure device
US5632762A (en) 1995-11-09 1997-05-27 Hemodynamics, Inc. Ostial stent balloon
US5697944A (en) 1995-11-15 1997-12-16 Interventional Technologies Inc. Universal dilator with expandable incisor
CN1218414A (en) 1996-02-02 1999-06-02 血管转换公司 Methods and apparatus for blocking flow through blood vessels
US5951588A (en) 1996-02-29 1999-09-14 Moenning; Stephen P. Apparatus and method for protecting a port site opening in the wall of a body cavity
US5817062A (en) 1996-03-12 1998-10-06 Heartport, Inc. Trocar
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5893856A (en) 1996-06-12 1999-04-13 Mitek Surgical Products, Inc. Apparatus and method for binding a first layer of material to a second layer of material
US6007544A (en) 1996-06-14 1999-12-28 Beth Israel Deaconess Medical Center Catheter apparatus having an improved shape-memory alloy cuff and inflatable on-demand balloon for creating a bypass graft in-vivo
US6358264B2 (en) 1996-07-24 2002-03-19 Surgical Design Corporation Surgical instruments with movable member
US5993447A (en) 1996-08-16 1999-11-30 United States Surgical Apparatus for thermal treatment of tissue
US6007522A (en) 1996-09-13 1999-12-28 Boston Scientific Corporation Single operator exchange biliary catheter
US5935107A (en) 1996-10-07 1999-08-10 Applied Medical Resources Corporation Apparatus and method for surgically accessing a body cavity
US6379319B1 (en) 1996-10-11 2002-04-30 Transvascular, Inc. Systems and methods for directing and snaring guidewires
US6682536B2 (en) 2000-03-22 2004-01-27 Advanced Stent Technologies, Inc. Guidewire introducer sheath
AU721415B2 (en) 1996-11-08 2000-07-06 Converge Medical, Inc. Percutaneous bypass graft and securing system
US6458069B1 (en) 1998-02-19 2002-10-01 Endology, Inc. Multi layer radiation delivery balloon
DE29708149U1 (en) 1997-05-07 1997-09-25 Binmoeller Kenneth F Dr Biopsy device
US6071292A (en) 1997-06-28 2000-06-06 Transvascular, Inc. Transluminal methods and devices for closing, forming attachments to, and/or forming anastomotic junctions in, luminal anatomical structures
US6017352A (en) 1997-09-04 2000-01-25 Kensey Nash Corporation Systems for intravascular procedures and methods of use
JP4205306B2 (en) 1997-09-26 2009-01-07 クリオライフ,インコーポレイティド Technique for anastomosing using bioadhesive without stitching and apparatus therefor
US6074416A (en) 1997-10-09 2000-06-13 St. Jude Medical Cardiovascular Group, Inc. Wire connector structures for tubular grafts
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
DE69839888D1 (en) 1997-11-12 2008-09-25 Genesis Technologies Llc DEVICE FOR REMOVING OCCLUSIONS IN BIOLOGICAL PASSES
US6626919B1 (en) 1997-12-29 2003-09-30 Lee L. Swanstrom Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall
US5989231A (en) 1998-01-15 1999-11-23 Scimed Life Systems, Inc. Optical gastrostomy and jejunostomy
JP4187411B2 (en) 1998-01-30 2008-11-26 セント ジュード メディカル エーティージー, インコーポレイテッド Device for use in closing a septal defect
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
WO1999039649A1 (en) 1998-02-10 1999-08-12 Dubrul William R Occlusion, anchoring, tensioning and flow direction apparatus and methods for use
US7027398B2 (en) 2001-04-12 2006-04-11 General Instrument Corporation Method and apparatus for monitoring voice conversations from customer premises equipment
US5951576A (en) 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
CA2333121C (en) 1998-05-21 2006-07-25 Christopher J. Walshe A tissue anchor system
US6113609A (en) 1998-05-26 2000-09-05 Scimed Life Systems, Inc. Implantable tissue fastener and system for treating gastroesophageal reflux disease
US6113611A (en) 1998-05-28 2000-09-05 Advanced Vascular Technologies, Llc Surgical fastener and delivery system
US6402770B1 (en) 1998-06-01 2002-06-11 Avatar Design & Development, Inc. Method and apparatus for placing and maintaining a percutaneous tube into a body cavity
US6514265B2 (en) 1999-03-01 2003-02-04 Coalescent Surgical, Inc. Tissue connector apparatus with cable release
US6187000B1 (en) 1998-08-20 2001-02-13 Endius Incorporated Cannula for receiving surgical instruments
US6746489B2 (en) 1998-08-31 2004-06-08 Wilson-Cook Medical Incorporated Prosthesis having a sleeve valve
US6022362A (en) 1998-09-03 2000-02-08 Rubicor Medical, Inc. Excisional biopsy devices and methods
JP3581591B2 (en) 1999-02-25 2004-10-27 ペンタックス株式会社 Drainage tube indwelling device for endoscope
US6290728B1 (en) 1998-09-10 2001-09-18 Percardia, Inc. Designs for left ventricular conduit
US6036698A (en) 1998-10-30 2000-03-14 Vivant Medical, Inc. Expandable ring percutaneous tissue removal device
US6508252B1 (en) 1998-11-06 2003-01-21 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
US6475222B1 (en) 1998-11-06 2002-11-05 St. Jude Medical Atg, Inc. Minimally invasive revascularization apparatus and methods
US20030032975A1 (en) 1999-01-06 2003-02-13 Bonutti Peter M. Arthroscopic retractors
US6022359A (en) 1999-01-13 2000-02-08 Frantzen; John J. Stent delivery system featuring a flexible balloon
US6231515B1 (en) 1999-01-13 2001-05-15 Scimed Life Systems, Inc. Safety mechanism and method to prevent rotating imaging guide device from exiting a catheter
WO2000041633A1 (en) 1999-01-15 2000-07-20 Ventrica, Inc. Methods and devices for forming vascular anastomoses
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
US6632197B2 (en) 1999-04-16 2003-10-14 Thomas R. Lyon Clear view cannula
US6656206B2 (en) 1999-05-13 2003-12-02 Cardia, Inc. Occlusion device with non-thrombogenic properties
US6428550B1 (en) 1999-05-18 2002-08-06 Cardica, Inc. Sutureless closure and deployment system for connecting blood vessels
US6241758B1 (en) 1999-05-28 2001-06-05 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system and method of use
US6375668B1 (en) 1999-06-02 2002-04-23 Hanson S. Gifford Devices and methods for treating vascular malformations
US6494888B1 (en) 1999-06-22 2002-12-17 Ndo Surgical, Inc. Tissue reconfiguration
US20040122456A1 (en) 2002-12-11 2004-06-24 Saadat Vahid C. Methods and apparatus for gastric reduction
US7416554B2 (en) * 2002-12-11 2008-08-26 Usgi Medical Inc Apparatus and methods for forming and securing gastrointestinal tissue folds
CA2379670A1 (en) 1999-08-12 2001-02-22 Wilson-Cook Medical Inc. Dilation balloon having multiple diameters
EP1210014A1 (en) 1999-09-07 2002-06-05 Microvena Corporation Retrievable septal defect closure device
WO2001021247A1 (en) 1999-09-20 2001-03-29 Appriva Medical, Inc. Method and apparatus for closing a body lumen
US6964674B1 (en) 1999-09-20 2005-11-15 Nuvasive, Inc. Annulotomy closure device
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
JP2001095747A (en) 1999-09-30 2001-04-10 Olympus Optical Co Ltd Electronic endoscope
US6436119B1 (en) 1999-09-30 2002-08-20 Raymedica, Inc. Adjustable surgical dilator
WO2001030245A1 (en) 1999-10-26 2001-05-03 H Randall Craig Helical suture instrument
US6669708B1 (en) 1999-12-09 2003-12-30 Michael Nissenbaum Devices, systems and methods for creating sutureless on-demand vascular anastomoses and hollow organ communication channels
US6547776B1 (en) 2000-01-03 2003-04-15 Curon Medical, Inc. Systems and methods for treating tissue in the crura
US6264675B1 (en) * 2000-02-04 2001-07-24 Gregory R. Brotz Single suture structure
US6475185B1 (en) 2000-02-24 2002-11-05 Scimed Life Systems, Inc. Occlusion device
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6592596B1 (en) 2000-05-10 2003-07-15 Scimed Life Systems, Inc. Devices and related methods for securing a tissue fold
US8105351B2 (en) 2001-05-18 2012-01-31 C.R. Bard, Inc. Method of promoting tissue adhesion
US6921361B2 (en) * 2000-07-24 2005-07-26 Olympus Corporation Endoscopic instrument for forming an artificial valve
US6506210B1 (en) 2000-09-01 2003-01-14 Angiolink Corporation Wound site management and wound closure device
US6432040B1 (en) * 2000-09-14 2002-08-13 Nizam N. Meah Implantable esophageal sphincter apparatus for gastroesophageal reflux disease and method
US7037324B2 (en) 2000-09-15 2006-05-02 United States Surgical Corporation Knotless tissue anchor
US6736828B1 (en) 2000-09-29 2004-05-18 Scimed Life Systems, Inc. Method for performing endoluminal fundoplication and apparatus for use in the method
JP2002177201A (en) 2000-10-02 2002-06-25 Olympus Optical Co Ltd Endoscope
US6447524B1 (en) 2000-10-19 2002-09-10 Ethicon Endo-Surgery, Inc. Fastener for hernia mesh fixation
US6966917B1 (en) 2000-11-09 2005-11-22 Innovation Interventional Technologies B.V. Deformable connector for mechanically connecting hollow structures
US6475168B1 (en) 2000-11-10 2002-11-05 Scimed Life Systems, Inc. Guide wire having x-ray transparent window for x-ray catheter
US6614595B2 (en) 2001-02-16 2003-09-02 Olympus Optical Co., Ltd. Stereo endoscope
JP4261814B2 (en) 2001-04-04 2009-04-30 オリンパス株式会社 Tissue puncture system
US6620122B2 (en) 2001-04-26 2003-09-16 Scimed Life Systems, Inc. Gastric pseudocyst drainage and stent delivery system for use therein
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
AU2002257241A1 (en) 2001-05-01 2002-11-11 Mayo Foundation For Medical Education And Research Vascular needle
US6916332B2 (en) 2001-05-23 2005-07-12 Scimed Life Systems, Inc. Endoluminal fundoplication device and related method for installing tissue fastener
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
US20020188301A1 (en) 2001-06-11 2002-12-12 Dallara Mark Douglas Tissue anchor insertion system
US7115136B2 (en) 2001-06-20 2006-10-03 Park Medical Llc Anastomotic device
US6645205B2 (en) 2001-08-15 2003-11-11 Core Medical, Inc. Apparatus and methods for reducing lung volume
US20030040803A1 (en) 2001-08-23 2003-02-27 Rioux Robert F. Maintaining an open passageway through a body lumen
US6629988B2 (en) 2001-08-28 2003-10-07 Ethicon, Inc. Composite staple for completing an anastomosis
US6702835B2 (en) 2001-09-07 2004-03-09 Core Medical, Inc. Needle apparatus for closing septal defects and methods for using such apparatus
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US7736336B2 (en) 2001-09-13 2010-06-15 Allegiance Corporation Paracentesis device having multiple detachable components
AU2002336575A1 (en) 2001-09-14 2003-04-01 Arthrocare Corporation Electrosurgical apparatus and methods for tissue treatment and removal
US7892247B2 (en) 2001-10-03 2011-02-22 Bioconnect Systems, Inc. Devices and methods for interconnecting vessels
JP2003116982A (en) 2001-10-10 2003-04-22 Medicos Hirata:Kk System for drainage of gallbladder through duodenum under endoscope
US6893431B2 (en) 2001-10-15 2005-05-17 Scimed Life Systems, Inc. Medical device for delivering patches
US20040249985A1 (en) 2001-10-18 2004-12-09 Toshiaki Mori Host network interface device and drive network interface device
US6942678B2 (en) 2001-11-06 2005-09-13 Possis Medical, Inc. Gas inflation/evacuation system and sealing system for guidewire assembly having occlusive device
US7169161B2 (en) 2001-11-06 2007-01-30 Possis Medical, Inc. Guidewire having occlusive device and repeatably crimpable proximal end
US7150723B2 (en) 2001-11-29 2006-12-19 C-I-Medic Co., Ltd. Medical device including guide wire and balloon catheter for curing a coronary artery
US7182771B1 (en) 2001-12-20 2007-02-27 Russell A. Houser Vascular couplers, techniques, methods, and accessories
US6749621B2 (en) 2002-02-21 2004-06-15 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
DE60333344D1 (en) 2002-02-25 2010-08-26 Teresa T Yeung SPREADABLE FASTENING ELEMENT WITH COMPREHENSIVE GRIP ELEMENTS
US6960233B1 (en) 2002-12-10 2005-11-01 Torax Medical, Inc. Methods and apparatus for improving the function of biological passages
US7077850B2 (en) 2002-05-01 2006-07-18 Scimed Life Systems, Inc. Tissue fastening devices and related insertion tools and methods
US7377897B1 (en) 2002-05-02 2008-05-27 Kunkel Sanford S Portal device
US7070606B2 (en) 2002-05-28 2006-07-04 Mercator Medsystems, Inc. Methods and apparatus for aspiration and priming of inflatable structures in catheters
US7182756B2 (en) 2002-05-29 2007-02-27 Wilson-Cook Medical, Inc. Device for directing a wire guide
EP1513440A2 (en) 2002-05-30 2005-03-16 The Board of Trustees of The Leland Stanford Junior University Apparatus and method for coronary sinus access
US7125413B2 (en) 2002-06-20 2006-10-24 Scimed Life Systems, Inc. Endoscopic fundoplication devices and methods for treatment of gastroesophageal reflux disease
WO2004000093A2 (en) 2002-06-20 2003-12-31 Tyco Healthcare Group, Lp Method and apparatus for anastomosis including annular joining member
US6773440B2 (en) 2002-07-02 2004-08-10 Satiety, Inc. Method and device for use in tissue approximation and fixation
US7309334B2 (en) 2002-07-23 2007-12-18 Von Hoffmann Gerard Intracranial aspiration catheter
US6902535B2 (en) 2002-08-26 2005-06-07 Kansey Nash Corporation Guide-wire mounted balloon modulation device and methods of use
US6835189B2 (en) 2002-10-15 2004-12-28 Scimed Life Systems, Inc. Controlled deployment balloon
US6974467B1 (en) 2002-11-04 2005-12-13 Gonzales Jr Antonio Method and apparatus for making a precise surgical incision
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
DE10302447B4 (en) 2003-01-21 2007-12-06 pfm Produkte für die Medizin AG Occlusion device, placement system, set of such a placement system and such occlusion device and method for producing an occlusion device
US8021359B2 (en) 2003-02-13 2011-09-20 Coaptus Medical Corporation Transseptal closure of a patent foramen ovale and other cardiac defects
JP4477382B2 (en) 2003-03-04 2010-06-09 オリンパス株式会社 Endoscopic intraperitoneal treatment system
GB0307715D0 (en) 2003-04-03 2003-05-07 Ethicon Endo Surgery Inc Guide wire structure for insertion into an internal space
GB0307826D0 (en) 2003-04-04 2003-05-07 Univ London A device for transfixing and joining tissue
US7621924B2 (en) 2003-04-16 2009-11-24 Tyco Healthcare Group Lp Method and apparatus for radical prostatectomy anastomosis including an anchor for engaging a body vessel and deployable sutures
US7985213B2 (en) 2003-04-25 2011-07-26 Cook Medical Technologies Llc Delivery catheter and method of manufacture
DE602004014283D1 (en) 2003-07-31 2008-07-17 Wilson Cook Medical Inc System for the introduction of several medical devices
CA2482707C (en) 2003-09-30 2013-07-02 Ethicon Endo-Surgery, Inc. Applier having automated release of surgical device
CA2482697C (en) 2003-09-30 2012-11-20 Ethicon Endo-Surgery, Inc. Applier for a surgical device
US8211142B2 (en) 2003-09-30 2012-07-03 Ortiz Mark S Method for hybrid gastro-jejunostomy
US7309341B2 (en) 2003-09-30 2007-12-18 Ethicon Endo-Surgery, Inc. Single lumen anastomosis applier for self-deploying fastener
US20050075654A1 (en) * 2003-10-06 2005-04-07 Brian Kelleher Methods and devices for soft tissue securement
US20050080444A1 (en) 2003-10-14 2005-04-14 Kraemer Stefan J.M. Transesophageal gastric reduction device, system and method
US7229457B2 (en) 2003-10-31 2007-06-12 Medtronic, Inc. Surgical instrument with adjustable rotary cutting tool and method of cutting
WO2005055834A1 (en) 2003-11-20 2005-06-23 Nmt Medical, Inc. Device, with electrospun fabric, for a percutaneous transluminal procedure, and methods thereof
US7361180B2 (en) * 2004-05-07 2008-04-22 Usgi Medical, Inc. Apparatus for manipulating and securing tissue
US7632287B2 (en) 2004-02-20 2009-12-15 Endogastric Solutions, Inc. Tissue fixation devices and assemblies for deploying the same
US20060142790A1 (en) 2004-03-23 2006-06-29 Michael Gertner Methods and devices to facilitate connections between body lumens
WO2005096953A1 (en) 2004-03-31 2005-10-20 Wilson-Cook Medical Inc. Biopsy needle system
US20050228413A1 (en) 2004-04-12 2005-10-13 Binmoeller Kenneth F Automated transluminal tissue targeting and anchoring devices and methods
US8425539B2 (en) 2004-04-12 2013-04-23 Xlumena, Inc. Luminal structure anchoring devices and methods
US7803150B2 (en) 2004-04-21 2010-09-28 Acclarent, Inc. Devices, systems and methods useable for treating sinusitis
US20050251208A1 (en) 2004-05-07 2005-11-10 Usgi Medical Inc. Linear anchors for anchoring to tissue
US20050251159A1 (en) * 2004-05-07 2005-11-10 Usgi Medical Inc. Methods and apparatus for grasping and cinching tissue anchors
US20070179426A1 (en) 2004-05-11 2007-08-02 Selden Nathan R Interfacial stent and method of maintaining patency of surgical fenestrations
US8475476B2 (en) 2004-06-01 2013-07-02 Cook Medical Technologies Llc System and method for accessing a body cavity
US7678135B2 (en) 2004-06-09 2010-03-16 Usgi Medical, Inc. Compressible tissue anchor assemblies
US8206417B2 (en) 2004-06-09 2012-06-26 Usgi Medical Inc. Apparatus and methods for optimizing anchoring force
US7429264B2 (en) 2004-06-15 2008-09-30 Warsaw Orthopedic, Inc. Minimally invasive deployable cutting instrument
EP1607036A1 (en) 2004-06-18 2005-12-21 Universite Libre De Bruxelles Toolholder mountable on an endoscope and comprising a ring
US20060062996A1 (en) 2004-09-22 2006-03-23 Yun-Chao Yeh Resin matrix composite with aluminum for lubrication in drilling
US9326756B2 (en) 2006-05-17 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. Transseptal catheterization assembly and methods
US7845536B2 (en) 2004-10-18 2010-12-07 Tyco Healthcare Group Lp Annular adhesive structure
ITMI20042129A1 (en) 2004-11-05 2005-02-05 Ethicon Endo Surgery Inc DEVICE AND METHOD FOR OBESITY THERAPY
US20060116697A1 (en) 2004-11-30 2006-06-01 Esophyx, Inc. Flexible transoral endoscopic gastroesophageal flap valve restoration device and method
US20060142703A1 (en) 2004-12-07 2006-06-29 Cook Incorporated Catheter aperture with related structures and method
US8328837B2 (en) 2004-12-08 2012-12-11 Xlumena, Inc. Method and apparatus for performing needle guided interventions
ES2370923T3 (en) 2005-01-06 2011-12-23 G.I. View Ltd. GASTROINTESTINAL INSTRUMENT ON GUIDING ELEMENT.
JP4751401B2 (en) 2005-01-27 2011-08-17 ウィルソン−クック・メディカル・インコーポレーテッド Endoscopic cutting instrument
US10080481B2 (en) 2005-02-10 2018-09-25 G.I. View Ltd. Advancement techniques for gastrointestinal tool with guiding element
JP2006223338A (en) 2005-02-15 2006-08-31 Humed Co Ltd Catheter
US20060190021A1 (en) 2005-02-18 2006-08-24 Michael Hausman Cutting device for subcutaneous incisions
US20060259074A1 (en) 2005-02-22 2006-11-16 Brian Kelleher Methods and devices for anchoring to soft tissue
US7942890B2 (en) 2005-03-15 2011-05-17 Tyco Healthcare Group Lp Anastomosis composite gasket
DE102005016103B4 (en) 2005-04-08 2014-10-09 Merit Medical Systems, Inc. Duodenumstent
US7534247B2 (en) 2005-05-03 2009-05-19 Ethicon Endo-Surgery, Inc. Sheathless anastomotic ring applier device
US8777967B2 (en) 2005-06-09 2014-07-15 Xlumena, Inc. Methods and devices for anchoring to tissue
US7591828B2 (en) 2005-07-22 2009-09-22 Ethicon Endo-Surgery, Inc. Resposable anastomotic ring applier device
EP1906844A1 (en) 2005-07-25 2008-04-09 Endogun Medical Systems Ltd. Anastomosis device and system
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
JP5144515B2 (en) 2005-08-08 2013-02-13 スマート・メディカル・システムズ・リミテッド Endoscope assembly
US20070078297A1 (en) 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
US20070123934A1 (en) 2005-09-26 2007-05-31 Whisenant Brian K Delivery system for patent foramen ovale closure device
US7758565B2 (en) 2005-10-18 2010-07-20 Cook Incorporated Identifiable wire guide
US20070123840A1 (en) 2005-10-18 2007-05-31 Usgi Medical, Inc. Instrument assisted abdominal access
US7731693B2 (en) 2005-10-27 2010-06-08 Cook Incorporated Coupling wire guide
EP2243507A1 (en) 2005-10-29 2010-10-27 PNN Medical SA Stent with anchoring portion
US7815659B2 (en) 2005-11-15 2010-10-19 Ethicon Endo-Surgery, Inc. Suture anchor applicator
US20070112363A1 (en) 2005-11-15 2007-05-17 Endogastric Solutions, Inc. Apparatus including multiple invaginators for restoring a gastroesophageal flap valve and method
US20070123917A1 (en) 2005-11-29 2007-05-31 Ortiz Mark S Anastomotic device promoting tissue necrosis
WO2007086073A2 (en) 2006-01-30 2007-08-02 Vision - Sciences Inc. Controllable endoscope
US7785275B2 (en) 2006-01-31 2010-08-31 Cook Incorporated Wire guide having distal coupling tip
US8109946B2 (en) 2006-03-31 2012-02-07 W.L. Gore & Associates, Inc. Adjustable length patent foramen ovale (PFO) occluder and catch system
US20070260273A1 (en) 2006-05-08 2007-11-08 Ethicon Endo-Surgery, Inc. Endoscopic Translumenal Surgical Systems
US7993302B2 (en) 2006-05-09 2011-08-09 Stephen Hebert Clot retrieval device
US8034063B2 (en) 2007-07-13 2011-10-11 Xlumena, Inc. Methods and systems for treating hiatal hernias
US20090281379A1 (en) 2008-05-12 2009-11-12 Xlumena, Inc. System and method for transluminal access
US8454632B2 (en) 2008-05-12 2013-06-04 Xlumena, Inc. Tissue anchor for securing tissue layers
US20100268029A1 (en) 2009-04-21 2010-10-21 Xlumena, Inc. Methods and apparatus for advancing a device from one body lumen to another
US9364259B2 (en) 2009-04-21 2016-06-14 Xlumena, Inc. System and method for delivering expanding trocar through a sheath
US20110137394A1 (en) 2009-05-29 2011-06-09 Xlumena, Inc. Methods and systems for penetrating adjacent tissue layers
EP2434961B1 (en) 2009-05-29 2015-01-14 Xlumena, Inc. Apparatus and method for deploying stent across adjacent tissue layers

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5382257A (en) * 1990-09-06 1995-01-17 United States Surgical Corporation Implant assist apparatus

Also Published As

Publication number Publication date
US20060282087A1 (en) 2006-12-14
US8784437B2 (en) 2014-07-22

Similar Documents

Publication Publication Date Title
US8784437B2 (en) Methods and devices for endosonography-guided fundoplexy
US8777967B2 (en) Methods and devices for anchoring to tissue
US10350050B2 (en) Method for gastric volume reduction surgery
US8551118B2 (en) Hybrid endoscopic/laparoscopic method for forming serosa to serosa plications in a gastric cavity
US8979895B2 (en) Method and apparatus of endoscopic suturing
US8556934B2 (en) Article, system, and method for securing medical devices to treat obesity, gastro-esophageal reflux disease (GERD) and irritable bowel syndrome (IBS) reversibly
EP2222230B1 (en) Apparatuses for delivering anchoring devices into body passage walls
EP1937156B1 (en) Invaginator for gastroesophageal flap valve restoration device
US20090024144A1 (en) Hybrid endoscopic/laparoscopic device for forming serosa to serosa plications in a gastric cavity
US8187176B2 (en) Device for insufflating the interior of a gastric cavity of a patient
US20060235446A1 (en) Article, system, and method for securing medical device to tissue or organ
US20040162568A1 (en) Apparatus and methods for forming and securing gastrointestinal tissue folds
BR112021010505A2 (en) Endoscopic tissue approximation system and methods
JP2009532074A (en) Systems and procedures for gastrointestinal treatment with minimal invasiveness
US20130217957A1 (en) Devices and methods for the endolumenal treatment of obesity
EP2307081B1 (en) A device for insufflating the interior of a gastric cavity of a patient
EP2023828A2 (en) Methods and devices for anchoring to soft tissue
US20090024077A1 (en) Method of insufflating the interior of a gastric cavity of a patient.
EP2016909A2 (en) Device for insufflating the interior of a gastric cavity of a patient
US20090138093A1 (en) System and method for esophageal sphincter repair

Legal Events

Date Code Title Description
AS Assignment

Owner name: XLUMENA, INC., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BINMOELLER, KENNETH F.;REEL/FRAME:035144/0600

Effective date: 20071204

Owner name: BINMOELLER, KENNETH F., CALIFORNIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:XLUMENA, INC.;REEL/FRAME:035144/0605

Effective date: 20140818

Owner name: ADVENT MEDICAL, INC., NEVADA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BINMOELLER, KENNETH F.;REEL/FRAME:035144/0642

Effective date: 20141231

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION