US20150026248A1 - Data communication coordination with sequence numbers - Google Patents

Data communication coordination with sequence numbers Download PDF

Info

Publication number
US20150026248A1
US20150026248A1 US14/473,488 US201414473488A US2015026248A1 US 20150026248 A1 US20150026248 A1 US 20150026248A1 US 201414473488 A US201414473488 A US 201414473488A US 2015026248 A1 US2015026248 A1 US 2015026248A1
Authority
US
United States
Prior art keywords
client
server
sequence number
command
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/473,488
Other versions
US9071661B2 (en
Inventor
David Kruse
Ahmed Mohamed
Balan Sethu Raman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Microsoft Technology Licensing LLC
Original Assignee
Microsoft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Microsoft Corp filed Critical Microsoft Corp
Priority to US14/473,488 priority Critical patent/US9071661B2/en
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Assigned to MICROSOFT TECHNOLOGY LICENSING, LLC reassignment MICROSOFT TECHNOLOGY LICENSING, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MICROSOFT CORPORATION
Publication of US20150026248A1 publication Critical patent/US20150026248A1/en
Priority to US14/720,083 priority patent/US9332089B2/en
Application granted granted Critical
Publication of US9071661B2 publication Critical patent/US9071661B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/123Applying verification of the received information received data contents, e.g. message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/42
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/18File system types
    • G06F16/182Distributed file systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/10Network architectures or network communication protocols for network security for controlling access to devices or network resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/06Protocols specially adapted for file transfer, e.g. file transfer protocol [FTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1097Protocols in which an application is distributed across nodes in the network for distributed storage of data in networks, e.g. transport arrangements for network file system [NFS], storage area networks [SAN] or network attached storage [NAS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/14Session management
    • H04L67/147Signalling methods or messages providing extensions to protocols defined by standardisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/02Protocol performance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/14Multichannel or multilink protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/18Multiprotocol handlers, e.g. single devices capable of handling multiple protocols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/24Negotiation of communication capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/30Definitions, standards or architectural aspects of layered protocol stacks
    • H04L69/32Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
    • H04L69/322Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
    • H04L69/329Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • SMB Server Message Block
  • the existing SMB protocol has other limitations that have become apparent over time.
  • the existing SMB protocol is susceptible to denial of service attacks; the design of the protocol makes it difficult to fight these attacks.
  • the method for ensuring packet security is cumbersome.
  • there is no current mechanism for performing quality of service-like operations in that a trusted client, for example, obtains the same server resources as an untrusted client.
  • existing SMB versions are less than ideal when used with contemporary network resources.
  • sequence numbers for client-server communication, such as incorporated into a data communication protocol, to control a client's use of server resources.
  • Various aspects apply the use of sequence numbers to a protocol where ordering is not important, but provide for quality of service, denial of service combating, division of server resources, secure message signing, and other numerous benefits.
  • a server grants the client credits, and the client uses a credit for sending each command to the server.
  • Each credit corresponds to a sequence number, with the set of sequence numbers forming a valid command window.
  • the server enforces that for each received command, the command includes a sequence number that is within the valid command window and that the sequence number has not been used with another command.
  • the server may also maintain a maximum window size, such that even a client that has credits cannot send a command with a sequence number that beyond a maximum sequence number corresponding to the maximum window size.
  • the server upon receiving a command from the client, the server verifies that the sequence number is within the window and has not been used before. The server then eliminates the corresponding sequence number from among those that the client can use, thereby consuming one credit. The server then determines whether to grant the client one or more other credits.
  • a mechanism for limiting use of server resources by controlling a number of credits granted to the client, via a valid operation window containing a unique number for each credit granted to the client.
  • An enforcement mechanism ensures that to allow further server operations on a received command, the command includes a sequence number that is within the valid operation window and that the unique number has not been used with another command
  • An allocation mechanism that controls credits granted to the client and the unique numbers within the valid operation window.
  • FIG. 1 shows an illustrative example of a general-purpose computing environment into which various aspects of the present invention may be incorporated.
  • FIG. 2 is a block diagram representing an example network environment in which a client communicates with a server in accordance with various aspects of the present invention.
  • FIGS. 3-13 are representations of client and server data maintained for using sequence numbers, in accordance with various aspects of the present invention.
  • FIG. 1 illustrates an example of a suitable computing system environment 100 on which the invention may be implemented.
  • the computing system environment 100 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 100 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 100 .
  • the invention is operational with numerous other general purpose or special purpose computing system environments or configurations.
  • Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • the invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer.
  • program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types.
  • the invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network.
  • program modules may be located in local and/or remote computer storage media including memory storage devices.
  • an exemplary system for implementing the invention includes a general purpose computing device in the form of a computer 110 .
  • Components of the computer 110 may include, but are not limited to, a processing unit 120 , a system memory 130 , and a system bus 121 that couples various system components including the system memory to the processing unit 120 .
  • the system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures.
  • such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
  • ISA Industry Standard Architecture
  • MCA Micro Channel Architecture
  • EISA Enhanced ISA
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • the computer 110 typically includes a variety of computer-readable media.
  • Computer-readable media can be any available media that can be accessed by the computer 110 and includes both volatile and nonvolatile media, and removable and non-removable media.
  • Computer-readable media may comprise computer storage media and communication media.
  • Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 110 .
  • Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media.
  • modulated data signal means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal.
  • communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
  • the system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132 .
  • ROM read only memory
  • RAM random access memory
  • BIOS basic input/output system
  • RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120 .
  • FIG. 1 illustrates operating system 134 , application programs 135 , other program modules 136 and program data 137 .
  • the computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media.
  • FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152 , and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media.
  • removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like.
  • the hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface 140
  • magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface, such as interface 150 .
  • the drives and their associated computer storage media provide storage of computer-readable instructions, data structures, program modules and other data for the computer 110 .
  • hard disk drive 141 is illustrated as storing operating system 144 , application programs 145 , other program modules 146 and program data 147 .
  • operating system 144 application programs 145 , other program modules 146 and program data 147 .
  • these components can either be the same as or different from operating system 134 , application programs 135 , other program modules 136 , and program data 137 .
  • Operating system 144 , application programs 145 , other program modules 146 , and program data 147 are given different numbers herein to illustrate that, at a minimum, they are different copies.
  • a user may enter commands and information into the computer 110 through input devices such as a tablet, or electronic digitizer, 164 , a microphone 163 , a keyboard 162 and pointing device 161 , commonly referred to as mouse, trackball or touch pad.
  • Other input devices not shown in FIG. 1 may include a joystick, game pad, satellite dish, scanner, or the like.
  • These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB).
  • a monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190 .
  • the monitor 191 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which the computing device 110 is incorporated, such as in a tablet-type personal computer. In addition, computers such as the computing device 110 may also include other peripheral output devices such as speakers 195 and printer 196 , which may be connected through an output peripheral interface 194 or the like.
  • the computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180 .
  • the remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110 , although only a memory storage device 181 has been illustrated in FIG. 1 .
  • the logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173 , but may also include other networks.
  • LAN local area network
  • WAN wide area network
  • Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
  • the computer 110 When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170 .
  • the computer 110 When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173 , such as the Internet.
  • the modem 172 which may be internal or external, may be connected to the system bus 121 via the user input interface 160 or other appropriate mechanism.
  • program modules depicted relative to the computer 110 may be stored in the remote memory storage device.
  • FIG. 1 illustrates remote application programs 185 as residing on memory device 181 . It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • a mechanism that may be employed in a data communication protocol, such as a modified version (2.x or greater) of the SMB protocol.
  • the mechanism controls data/command flow in this revised SMB protocol, which is used for Windows®-based file sharing.
  • the present invention is not limited to Windows®-based systems or the SMB protocol, but rather, the example technique is applicable to other file sharing protocols and data communication protocols in general, including those that do not necessarily deal with file data.
  • numerous ways to implement the present invention are feasible, including for use in communication with printers, named data pipes, generic devices and so forth.
  • the present invention is not limited to any of the particular file-based or other examples used herein, but rather may be used numerous ways that provide benefits and advantages in computing in general.
  • FIG. 2 of the drawings there is shown a block diagram representing an example networking environment in which a client 202 communicates with a server 204 through one or more communication channels.
  • client machine 202 and the server 204 are described as being located within two separate computers, such as the main computer system 110 and remote computer system 180 of FIG. 1 , the components of these two computers or the functions performed thereby may be provided on one machine, or may be distributed over a number of computers.
  • a computer system may comprise one of variety of network appliance devices, such as print servers or printers themselves, as well as NAS storage devices, and the like.
  • Network file system commands from an application program 206 are handled by a client redirector component 208 , which communicates with a counterpart common network module (SRVNET) 210 to carry out the commands on the file system 212 .
  • the client 202 establishes a connection and then negotiates with the server 204 to ultimately set up a session.
  • the client and server agree upon a communication protocol.
  • the agreed-upon protocol for this connection/session is SMB 2.0, whereby a client-side SMB engine 220 employs an SMB 2.0 driver for communications to and from the server 204 .
  • the common network module (SRVNET) 210 similarly employs an SMB 2.0 provider 226 for handling client communications over this connection.
  • the provider 226 includes or is otherwise associated with the enforcement mechanism and data structures that ensure that a client uses a proper sequence number, as described below.
  • sequence numbers provide a mechanism by which a server may throttle the amount of work a given client can issue against the server. As will be understood, this is accomplished by having the server provide a window of available sequence numbers that the client is allowed to use when identifying a given command.
  • the concept of credits is employed, where a credit grants the client the right to consume a portion of server-side resources, including the memory required to back an operation and the CPU cycles it may consume.
  • a client consumes a credit on each command sent, and depending on the server's response, may be granted zero, one or more additional credits.
  • a client is not allowed to reuse a sequence number, and thus the number of commands a client can issue is controlled. Note that monotonically increasing sequence numbers are used for convenience, however any unique (per session/connection) number is equivalent.
  • a server grants a client five credits
  • the server is giving the client the right to submit up to five operations simultaneously.
  • the server does so by reducing the available credits to that client.
  • the server does so by granting credits.
  • the server By granting zero credits to a client, the server runs down the resources allocated to that client. Alternatively, by returning one credit, the server maintains the previous window size. By returning more than one credit, the server allows the client more resources for executing commands.
  • One restriction is that the server cannot allow the window size to hit zero (no valid sequence numbers), unless the server has a method of granting a credit out of band, assuming that the protocol is strictly a command-response protocol. Note that if there is a method of granting a client credits without requiring the client to ask for them in the protocol that is using this method, then the restriction does not apply.
  • a negotiate request/response has a sequence number, (also referred to as a message identifier, or MID) of zero, and a window size of one.
  • sequence number also referred to as a message identifier, or MID
  • window size of one.
  • the client requests as many credits as desired, however the server is in control of granting credits to the client.
  • the server thus has the ability to shrink or grow the window based on the client's identity, behavior, or any other attributes or criteria. Sequence numbers also provide a way to uniquely identify a command sent from the client to the server for a given connection.
  • the client and server begin by establishing a command window.
  • the command window starts by using either a default or a negotiated initial sequence number (ISN) (also referred to as an initial message identifier, or MID) and number of credits (NoC), which represents the range of allowable numbers the server will accept to identify a given command.
  • ISN initial sequence number
  • NoC number of credits
  • the command window initially comprises [ISN, ISN+NoC ⁇ 1].
  • the client moves the down the numbers in the window by using up numbers within the range. Once a number is used, it cannot be reused, as this is enforced by the server.
  • the server may, as determined by the server, extend the end of the window by granting more credits to the client. For example, if the command window is [A, B], when the client sends command A, the valid command window becomes essentially [A+1, B]. When the server responds to command A, it can grant the client anywhere from zero to any practical number of credits. Thus, if the server returned N credits, the valid command window becomes [A+1, B+N].
  • the server may grant credits back allowing for a window of [1,8] except ⁇ 2, 3, 4 ⁇ (meaning all numbers between 1 and 8 except 2 thru 4). Eventually, the server will likely stop granting credits until packet 1 is sent and the window is allowed to slide. If at this point, the client sends 1, and the server responds granting a credit, than the window becomes [5,9].
  • the enforcement of the valid command window is done on the server side.
  • This system permits a client-side structure to be as simple as having the current sequence number and the max sequence number, and using interlocked compares and increments as the only required synchronization method.
  • a valid command window also referred to as a valid operation or Valid Op window
  • a valid operation or Valid Op window comprises the window of valid identifiers that the server will accept.
  • the client sends each subsequent command with the next valid sequence number, (up to its valid credits), and need not maintain a view of the valid window.
  • the client is required to understand the concept of a “Maximum Window Size” as described below). Examples of the use of the valid command/operation window are set forth below.
  • Any operation that could block for an indefinite amount of time such as a change-notify or a named-pipe read, or create (as it may pend on an oplock break), is considered a blocking operation.
  • the client may supply an “operation context” value, i.e., a blocking flag, in the command send.
  • the server will then respond when it successfully initiates the operation, allowing the sequence number to be incremented, even though the operation is still in process on the server side.
  • the resources held by such long-running operations can often be a subset of the resources required for a normal command.
  • a server is allowed to determine the maximum number of “Blocking Op Credits” (also referred to as long-operation credits, or LOC) that a client is allowed to consume. Sequence numbers also allow for long-running commands and commands with multiple responses from the server, balanced by controlling how many resources the client can consume.
  • an extension to the valid command window is to allow the window to continue to slide as normal, and not be held up by operations that may take an indefinite amount of time.
  • the client is granted a given number of Blocking Op credits by the server and any operation issued with the Blocking Op flag will consume a Blocking Op credit.
  • the server may send an interim response back to the client with such a flag set that acknowledges the receipt of a long-standing command, and returns a long-standing command ID, also referred to as an asynchronous identifier (AsyncID). This response allows the valid command window to slide as it normally would.
  • Alternative implementations include a protocol that allows the client to hint to the server that a long-standing command may be coming.
  • Another implementation of the asynchronous concept also may have the client issue an interim “accept” or the like, such that an async/blocking operation takes the form, “send-rec-send-rec” as opposed to simply send-rec-rec.
  • some underlying transports e.g., TCP
  • TCP are often tuned for request-response traffic, and may introduce delays in a request-response-response situation.
  • the server may place a limit on how large this valid window can grow before it is stopped from growing. Continuing with the above example, the server may specify that the maximum window size is ten (10). This means that the valid operation (command) window may grow to [1,10] if the server receives and processes packets 2, 3, 4, 5, and 6 before its receives or completes processing of packet 1. Thus, the sequence numbers that would be valid are 1, 7, 8, 9, 10.
  • Tracking the valid command window on the server side may be computationally expensive as the server needs to keep track of intersecting sets.
  • one example implementation will establish the maximum window size described above, as the largest the server will ever let the command window become. Once this is established, the server allocates a buffer representing this size, and as commands come in, the value at that location in the buffer is changed. As long as the window size remains less than or equal to the maximum window size, then as the start of the window moves forward, the server moves its buffer pointer forward. Likewise, when the end grows as credits are granted, the server moves its end pointer along the buffer. Arithmetic handles situations where the buffer “wraps” the maximum window size.
  • Another alternative allows for the server to revoke credits via an alternate channel or through unsequenced communication. For example, consider that the server has granted the client ten credits, but wants to trim the client down to five credits, which ordinarily will not happen until the client uses five commands. If the client is idle, the server may indicate to the client that it must use five credits in the next N seconds, or it will be in violation and terminated (or lose the credits). This allows the server to throttle down clients without relying on the client to move their own window.
  • the Min column shows the lowest unused client sequence number that the client is allowed to use; current credits are how many credits are granted to the client, in the form (normal credits, blocking op credits). A client consumes a credit on a send, and possibly re-increments on the receive (depending on the response).
  • the next column, simply “Credits” shows the current maximum number of credits the client is allowed.
  • Valid and Max represent server-side structures for sequence identifier validation; (note that the client need not have any idea about these).
  • Valid shows the Valid Op Window along with the exceptions of sequence identifiers that were already used (e.g., tracked by bitmap), and Max shows the MaxCommandWindow that the client can ever fill before completing the first operation, that is, the operation that would cause the window to shift.
  • FIGS. 3-9 represent an example on how the valid operation (Valid Op) window 330 s grows as maintained at the server 204 ; (note that in FIGS. 3-9 , as the valid operation window changes, the first digit of its label changes, e.g., FIG. 3 has a valid operation window labeled 330 s , FIG. 4 has a valid operation window labeled 430 s , and so forth.
  • a client is granted 5 credits and a starting sequence number (or MID) of 1.
  • Some criteria 320 as generally described above, e.g., the type of client, is used by an allocator component 322 to determine the amount to grant the client.
  • the current valid operation window is thus [1,5], as represented vertically in FIG. 5 by individual digits in the window 330 s .
  • the server 204 thus will accept a packet with sequence number 1, 2, 3, 4 or 5 from this client 202 . This is alternatively represented in the above-described format as follows:
  • the valid op window 320 s is used to trivially reject packets; if they lie within the valid op window 320 s , the server 204 than checks an internal exception map to guarantee a sequence number has not been already used.
  • the client now has a valid window of [2,6].
  • an out-of-order receive occurs, e.g., the asynchronous send on the transport is such that the server received command 3 before command 2 (and responds to it).
  • the valid op window 630 s would then conceptually exist as represented in FIG. 6 and as follows:
  • the valid window extends, but the maximum window does not slide.
  • the window 730 s will slide over both, as in FIG. 7 and as below:
  • FIGS. 10-13 and similar tables are used.
  • a malicious client trying to send a packet N+1 and beyond, without sending us packet N.
  • the examples of FIGS. 10-13 will start at the state before the last attacker, that is, FIG. 10 is essentially FIG. 7 :
  • the client sends commands 5, 6, 7, 8, 9, 10, and the server responds, but without sending command 4. This state is shown in FIG. 11 and in the table below:
  • command 4 the only command the server will accept from the client is command 4, as represented in FIG. 13 .
  • the attributes of a window of sequence numbers are very advantageous in a number of desirable scenarios. Some of these scenarios include preventing denial-of-service, allowing quality-of-service, providing a common language for the client and server to reference commands that were executed over a given connection, allow for long-running commands and commands with multiple responses from the server, but balance it with controlling how many resources the client can consume, and allowing for continuous use of security signatures.
  • the server may limit the amount of resources a given client connection may consume, until the server has authenticated the client and the client is behaving correctly. For example, by allowing the server to control the resources allocated to a client, when an apparent attack is detected, the server can enter a “panic mode” where it reduces resources available to its clients to a minimum, and grants them back on a trust-basis. The server gives each client a small enough window to allow work to happen, but prevents any single client from overwhelming essentially all of the resources. When the attack is over or reduced, the server can begin re-granting resources to clients that prove trustworthy.
  • variable window scheme allows the server to scale the amounts of resources allocated to clients based on their identity and/or their behavior. For example, the server may allot more resources to a web server connecting to the file server than to a single user accessing individual documents. As another example, if another server is a database server that is accessing a file server, the file server may weight the number of credits granted higher than that granted to an average user.
  • the allocation of resources to clients may be dynamically altered based on the clients' various needs. This allows the server to grant credits in a completely fair manner, or to take other information into account.
  • An administrator may configure machines on resource priority basis, and this may be utilized and change dynamically as users connect and disconnect.
  • Sequence numbers also provide a common language for the client and server to reference commands that were executed over a given connection. This assists in the building of various features, including persistent handles. For example, because both the client and the server have agreed on a common language for identifying commands as they are sent and received, that is, the sequence number mechanism, when a disconnect occurs there is a straightforward way upon connection reestablishment for the server and client to determine which commands were received and which were not. Without such a set scheme, it is more difficult to track, particularly when the command identifier is chosen by the client and potentially re-used.
  • Sequence numbers further allow for continuous use of security signatures, without the extreme performance problems of current models; the sends need not be sequenced, (although the checksum of the whole packet will still need to be calculated, and entire packet received before issuing).
  • packet signing replayability is not possible. More particularly, a network protocol that does signing needs to embed an index number into the packet to prevent replayability of the signed packet, otherwise an attacker simply reissues the packet without having to resign it, and the packet remains valid.
  • Other methods include timestamps and the like, however these require some form of synchronization between client and server. If index numbers are used, often the network traffic between the client and the server becomes serialized, because the client must ensure the server receives packet 1 before it sends packet 2.

Abstract

Described are sequence numbers for client-server communication, to control a client's use of server resources. A server grants the client credits, and the client consumes a credit for sending each command to the server. Each credit corresponds to a sequence number, with the set of sequence numbers forming a valid command window. The server enforces that for each received command, the command includes a sequence number that is within the valid command window and that the sequence number has not been used with another command. The server may also maintain a maximum window size, such that clients with credits cannot send a command with a sequence number that beyond a maximum sequence number. When incorporated into a data communication protocol, quality of service, combating denial of service, detection of message loss, division of server resources, secure message signing, and other numerous benefits result.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • The present application claims priority to U.S. provisional patent application Ser. No. 60/685,008, filed May 25, 2005, and herein incorporated by reference. The present application is related to copending United States patent application entitled “Data Communication Protocol” attorney docket number 5612/311754, filed concurrently herewith, assigned to the assignee of the present invention, and hereby incorporated by reference.
  • BACKGROUND
  • Many data communication protocols that are still in use today, such as the SMB (Server Message Block) protocol, were developed at a time when computing resources were very different, e.g., network bandwidth was typically limited and memory was very precious. As a result, when used in contemporary networks, such protocols may limit overall performance. For example, because of having been designed when memory was limited, small buffer sizes are used, requiring more round trips to communicate large amounts of data.
  • Moreover, the existing SMB protocol has other limitations that have become apparent over time. For example, the existing SMB protocol is susceptible to denial of service attacks; the design of the protocol makes it difficult to fight these attacks. Likewise, the method for ensuring packet security is cumbersome. Also, there is no current mechanism for performing quality of service-like operations, in that a trusted client, for example, obtains the same server resources as an untrusted client. In sum, while still a frequently-used and valuable protocol, existing SMB versions are less than ideal when used with contemporary network resources.
  • SUMMARY
  • Briefly, various aspects of the present invention are directed towards the use of sequence numbers for client-server communication, such as incorporated into a data communication protocol, to control a client's use of server resources. Various aspects apply the use of sequence numbers to a protocol where ordering is not important, but provide for quality of service, denial of service combating, division of server resources, secure message signing, and other numerous benefits.
  • A server grants the client credits, and the client uses a credit for sending each command to the server. Each credit corresponds to a sequence number, with the set of sequence numbers forming a valid command window. The server enforces that for each received command, the command includes a sequence number that is within the valid command window and that the sequence number has not been used with another command. The server may also maintain a maximum window size, such that even a client that has credits cannot send a command with a sequence number that beyond a maximum sequence number corresponding to the maximum window size.
  • In general, upon receiving a command from the client, the server verifies that the sequence number is within the window and has not been used before. The server then eliminates the corresponding sequence number from among those that the client can use, thereby consuming one credit. The server then determines whether to grant the client one or more other credits.
  • Thus, there is provided a mechanism for limiting use of server resources by controlling a number of credits granted to the client, via a valid operation window containing a unique number for each credit granted to the client. An enforcement mechanism ensures that to allow further server operations on a received command, the command includes a sequence number that is within the valid operation window and that the unique number has not been used with another command An allocation mechanism that controls credits granted to the client and the unique numbers within the valid operation window.
  • Other advantages will become apparent from the following detailed description when taken in conjunction with the drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is illustrated by way of example and not limited in the accompanying figures in which like reference numerals indicate similar elements and in which:
  • FIG. 1 shows an illustrative example of a general-purpose computing environment into which various aspects of the present invention may be incorporated.
  • FIG. 2 is a block diagram representing an example network environment in which a client communicates with a server in accordance with various aspects of the present invention.
  • FIGS. 3-13 are representations of client and server data maintained for using sequence numbers, in accordance with various aspects of the present invention.
  • DETAILED DESCRIPTION Exemplary Operating Environment
  • FIG. 1 illustrates an example of a suitable computing system environment 100 on which the invention may be implemented. The computing system environment 100 is only one example of a suitable computing environment and is not intended to suggest any limitation as to the scope of use or functionality of the invention. Neither should the computing environment 100 be interpreted as having any dependency or requirement relating to any one or combination of components illustrated in the exemplary operating environment 100.
  • The invention is operational with numerous other general purpose or special purpose computing system environments or configurations. Examples of well known computing systems, environments, and/or configurations that may be suitable for use with the invention include, but are not limited to: personal computers, server computers, hand-held or laptop devices, tablet devices, multiprocessor systems, microprocessor-based systems, set top boxes, programmable consumer electronics, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, and the like.
  • The invention may be described in the general context of computer-executable instructions, such as program modules, being executed by a computer. Generally, program modules include routines, programs, objects, components, data structures, and so forth, which perform particular tasks or implement particular abstract data types. The invention may also be practiced in distributed computing environments where tasks are performed by remote processing devices that are linked through a communications network. In a distributed computing environment, program modules may be located in local and/or remote computer storage media including memory storage devices.
  • With reference to FIG. 1, an exemplary system for implementing the invention includes a general purpose computing device in the form of a computer 110. Components of the computer 110 may include, but are not limited to, a processing unit 120, a system memory 130, and a system bus 121 that couples various system components including the system memory to the processing unit 120. The system bus 121 may be any of several types of bus structures including a memory bus or memory controller, a peripheral bus, and a local bus using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus also known as Mezzanine bus.
  • The computer 110 typically includes a variety of computer-readable media. Computer-readable media can be any available media that can be accessed by the computer 110 and includes both volatile and nonvolatile media, and removable and non-removable media. By way of example, and not limitation, computer-readable media may comprise computer storage media and communication media. Computer storage media includes volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information such as computer-readable instructions, data structures, program modules or other data. Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other medium which can be used to store the desired information and which can accessed by the computer 110. Communication media typically embodies computer-readable instructions, data structures, program modules or other data in a modulated data signal such as a carrier wave or other transport mechanism and includes any information delivery media. The term “modulated data signal” means a signal that has one or more of its characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared and other wireless media. Combinations of the any of the above should also be included within the scope of computer-readable media.
  • The system memory 130 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 131 and random access memory (RAM) 132. A basic input/output system 133 (BIOS), containing the basic routines that help to transfer information between elements within computer 110, such as during start-up, is typically stored in ROM 131. RAM 132 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 120. By way of example, and not limitation, FIG. 1 illustrates operating system 134, application programs 135, other program modules 136 and program data 137.
  • The computer 110 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only, FIG. 1 illustrates a hard disk drive 141 that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk drive 151 that reads from or writes to a removable, nonvolatile magnetic disk 152, and an optical disk drive 155 that reads from or writes to a removable, nonvolatile optical disk 156 such as a CD ROM or other optical media. Other removable/non-removable, volatile/nonvolatile computer storage media that can be used in the exemplary operating environment include, but are not limited to, magnetic tape cassettes, flash memory cards, digital versatile disks, digital video tape, solid state RAM, solid state ROM, and the like. The hard disk drive 141 is typically connected to the system bus 121 through a non-removable memory interface such as interface 140, and magnetic disk drive 151 and optical disk drive 155 are typically connected to the system bus 121 by a removable memory interface, such as interface 150.
  • The drives and their associated computer storage media, described above and illustrated in FIG. 1, provide storage of computer-readable instructions, data structures, program modules and other data for the computer 110. In FIG. 1, for example, hard disk drive 141 is illustrated as storing operating system 144, application programs 145, other program modules 146 and program data 147. Note that these components can either be the same as or different from operating system 134, application programs 135, other program modules 136, and program data 137. Operating system 144, application programs 145, other program modules 146, and program data 147 are given different numbers herein to illustrate that, at a minimum, they are different copies. A user may enter commands and information into the computer 110 through input devices such as a tablet, or electronic digitizer, 164, a microphone 163, a keyboard 162 and pointing device 161, commonly referred to as mouse, trackball or touch pad. Other input devices not shown in FIG. 1 may include a joystick, game pad, satellite dish, scanner, or the like. These and other input devices are often connected to the processing unit 120 through a user input interface 160 that is coupled to the system bus, but may be connected by other interface and bus structures, such as a parallel port, game port or a universal serial bus (USB). A monitor 191 or other type of display device is also connected to the system bus 121 via an interface, such as a video interface 190. The monitor 191 may also be integrated with a touch-screen panel or the like. Note that the monitor and/or touch screen panel can be physically coupled to a housing in which the computing device 110 is incorporated, such as in a tablet-type personal computer. In addition, computers such as the computing device 110 may also include other peripheral output devices such as speakers 195 and printer 196, which may be connected through an output peripheral interface 194 or the like.
  • The computer 110 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 180. The remote computer 180 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 110, although only a memory storage device 181 has been illustrated in FIG. 1. The logical connections depicted in FIG. 1 include a local area network (LAN) 171 and a wide area network (WAN) 173, but may also include other networks. Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets and the Internet.
  • When used in a LAN networking environment, the computer 110 is connected to the LAN 171 through a network interface or adapter 170. When used in a WAN networking environment, the computer 110 typically includes a modem 172 or other means for establishing communications over the WAN 173, such as the Internet. The modem 172, which may be internal or external, may be connected to the system bus 121 via the user input interface 160 or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 110, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation, FIG. 1 illustrates remote application programs 185 as residing on memory device 181. It will be appreciated that the network connections shown are exemplary and other means of establishing a communications link between the computers may be used.
  • Data Communication Coordination with Sequence Numbers
  • Various aspects of the technology described herein are directed towards a mechanism that may be employed in a data communication protocol, such as a modified version (2.x or greater) of the SMB protocol. In one example implementation generally described herein, the mechanism controls data/command flow in this revised SMB protocol, which is used for Windows®-based file sharing. However, as can be readily appreciated, the present invention is not limited to Windows®-based systems or the SMB protocol, but rather, the example technique is applicable to other file sharing protocols and data communication protocols in general, including those that do not necessarily deal with file data. For example, numerous ways to implement the present invention are feasible, including for use in communication with printers, named data pipes, generic devices and so forth. As such, the present invention is not limited to any of the particular file-based or other examples used herein, but rather may be used numerous ways that provide benefits and advantages in computing in general.
  • Turning to FIG. 2 of the drawings, there is shown a block diagram representing an example networking environment in which a client 202 communicates with a server 204 through one or more communication channels. Although the functions and components of the client machine 202 and the server 204 are described as being located within two separate computers, such as the main computer system 110 and remote computer system 180 of FIG. 1, the components of these two computers or the functions performed thereby may be provided on one machine, or may be distributed over a number of computers. For example, a computer system may comprise one of variety of network appliance devices, such as print servers or printers themselves, as well as NAS storage devices, and the like.
  • Network file system commands from an application program 206 are handled by a client redirector component 208, which communicates with a counterpart common network module (SRVNET) 210 to carry out the commands on the file system 212. In general, the client 202 establishes a connection and then negotiates with the server 204 to ultimately set up a session. As part of this, before file system-directed commands are processed, the client and server agree upon a communication protocol. In this example, the agreed-upon protocol for this connection/session is SMB 2.0, whereby a client-side SMB engine 220 employs an SMB 2.0 driver for communications to and from the server 204. The common network module (SRVNET) 210 similarly employs an SMB 2.0 provider 226 for handling client communications over this connection. The provider 226 includes or is otherwise associated with the enforcement mechanism and data structures that ensure that a client uses a proper sequence number, as described below.
  • Turning to the concept of data communication coordination with sequence numbers, sequence numbers provide a mechanism by which a server may throttle the amount of work a given client can issue against the server. As will be understood, this is accomplished by having the server provide a window of available sequence numbers that the client is allowed to use when identifying a given command. To implement sequence numbers and the desired behavior, the concept of credits is employed, where a credit grants the client the right to consume a portion of server-side resources, including the memory required to back an operation and the CPU cycles it may consume. A client consumes a credit on each command sent, and depending on the server's response, may be granted zero, one or more additional credits. A client is not allowed to reuse a sequence number, and thus the number of commands a client can issue is controlled. Note that monotonically increasing sequence numbers are used for convenience, however any unique (per session/connection) number is equivalent.
  • For example, if a server grants a client five credits, the server is giving the client the right to submit up to five operations simultaneously. When a server needs to throttle a client, the server does so by reducing the available credits to that client. When a server wants to give a client more resources to work with, the server does so by granting credits.
  • This gives the server several options. By granting zero credits to a client, the server runs down the resources allocated to that client. Alternatively, by returning one credit, the server maintains the previous window size. By returning more than one credit, the server allows the client more resources for executing commands. One restriction is that the server cannot allow the window size to hit zero (no valid sequence numbers), unless the server has a method of granting a credit out of band, assuming that the protocol is strictly a command-response protocol. Note that if there is a method of granting a client credits without requiring the client to ask for them in the protocol that is using this method, then the restriction does not apply.
  • Note that a negotiate request/response has a sequence number, (also referred to as a message identifier, or MID) of zero, and a window size of one. In SMB 2.0, the following header facilitates the passing of such information, as further described in the aforementioned related, copending United States patent application entitled “Data Communication Protocol”:
  • typedef struct _SMB2_HEADER {
      UCHAR Protocol[4]; // Contains 0xFE, ‘S’,‘M’,‘B’
      USHORT StructureSize; // =
    sizeof(SMB2_HEADER).
    //  (versioning)
      USHORT Epoch; // incremented every time the
    // server restarts
      NTSTATUS Status; // Status of the command
      USHORT Command; // The command for this
    // packet union
      {
        USHORT CreditsRequested; // On client send, request for
    // more credits
        USHORT CreditsGranted; // On server response, credits
    // granted to client
      };
      ULONG Flags;
      ULONG Reserved;
      UINT64 MessageId; // Identifies this message
    // send/response
      union
      {
        struct
        {
           UINT64 ProcessId; // Process identifier
           UINT64 SessionId; // Session identifier
           ULONG TreeId; // Tree Connect
    identifier
        };
        struct
        {
           UINT64 AsyncId; // Used to identify long
    // standing commands
        };
      };
      UCHAR Signature[8]; // Signature for the packet
      ULONG NextCommand; // Offset from to next
    } _SMB2_HEADER, *PSMB2_HEADER;
  • As can be seen from the above header structure, the client requests as many credits as desired, however the server is in control of granting credits to the client. The server thus has the ability to shrink or grow the window based on the client's identity, behavior, or any other attributes or criteria. Sequence numbers also provide a way to uniquely identify a command sent from the client to the server for a given connection.
  • The client and server begin by establishing a command window. The command window starts by using either a default or a negotiated initial sequence number (ISN) (also referred to as an initial message identifier, or MID) and number of credits (NoC), which represents the range of allowable numbers the server will accept to identify a given command. Thus, the command window initially comprises [ISN, ISN+NoC−1]. For most protocols, the default may be ISN=1, NoC=1, so when first negotiated the command window is simply [1,1], representing that the only sequence number the server will accept to identify a command is one (1).
  • As communications progress, the client moves the down the numbers in the window by using up numbers within the range. Once a number is used, it cannot be reused, as this is enforced by the server. At the same time, the server may, as determined by the server, extend the end of the window by granting more credits to the client. For example, if the command window is [A, B], when the client sends command A, the valid command window becomes essentially [A+1, B]. When the server responds to command A, it can grant the client anywhere from zero to any practical number of credits. Thus, if the server returned N credits, the valid command window becomes [A+1, B+N].
  • The use of the sequence numbers in the allowable range is not required to be in order. The protocol is setup to facilitate asynchronous use of the sequence numbers, as long as the number being used is within the valid range. This allows the network protocol to send packets as they are available, instead of trying to force ordered sends. Thus, if sequence number A is claimed for a very large packet, but while the buffers are being prepared sends for A+1 and A+2 come in and are very small, it is legal to send A+1 and A+2 (as long as the end of the window is >=A+2) without waiting for the send of A to start.
  • Note that if there is a valid command window of [1,5], and packets 2, 3, 4 are sent, the server may grant credits back allowing for a window of [1,8] except {2, 3, 4}(meaning all numbers between 1 and 8 except 2 thru 4). Eventually, the server will likely stop granting credits until packet 1 is sent and the window is allowed to slide. If at this point, the client sends 1, and the server responds granting a credit, than the window becomes [5,9].
  • The enforcement of the valid command window is done on the server side. This system permits a client-side structure to be as simple as having the current sequence number and the max sequence number, and using interlocked compares and increments as the only required synchronization method.
  • Thus, a valid command window, also referred to as a valid operation or Valid Op window) comprises the window of valid identifiers that the server will accept. The client sends each subsequent command with the next valid sequence number, (up to its valid credits), and need not maintain a view of the valid window. The client is required to understand the concept of a “Maximum Window Size” as described below). Examples of the use of the valid command/operation window are set forth below.
  • Any operation that could block for an indefinite amount of time, such as a change-notify or a named-pipe read, or create (as it may pend on an oplock break), is considered a blocking operation. To facilitate such operations, the client may supply an “operation context” value, i.e., a blocking flag, in the command send. The server will then respond when it successfully initiates the operation, allowing the sequence number to be incremented, even though the operation is still in process on the server side. However, the resources held by such long-running operations can often be a subset of the resources required for a normal command. Thus, a server is allowed to determine the maximum number of “Blocking Op Credits” (also referred to as long-operation credits, or LOC) that a client is allowed to consume. Sequence numbers also allow for long-running commands and commands with multiple responses from the server, balanced by controlling how many resources the client can consume.
  • Thus, an extension to the valid command window is to allow the window to continue to slide as normal, and not be held up by operations that may take an indefinite amount of time. To this end, the client is granted a given number of Blocking Op credits by the server and any operation issued with the Blocking Op flag will consume a Blocking Op credit. When the server receives a command, the server may send an interim response back to the client with such a flag set that acknowledges the receipt of a long-standing command, and returns a long-standing command ID, also referred to as an asynchronous identifier (AsyncID). This response allows the valid command window to slide as it normally would. When the long-standing command is completed, a new response is sent back to the client using the long standing command ID to indicate to which packet it is responding. This send-response-response architecture allows the window to continue to move, and the credit mechanism allows the server to retain control over how many resources the client can consume. The server can even shrink the valid command window if there are a large number of long standing operations in progress from the client.
  • Alternative implementations include a protocol that allows the client to hint to the server that a long-standing command may be coming. Another implementation of the asynchronous concept also may have the client issue an interim “accept” or the like, such that an async/blocking operation takes the form, “send-rec-send-rec” as opposed to simply send-rec-rec. Note that some underlying transports (e.g., TCP) are often tuned for request-response traffic, and may introduce delays in a request-response-response situation.
  • Due to the asynchronous nature of the protocol and the transports, the current valid window will not be directly equal to the current minimum sequence ID plus the credits, since some intermediate commands may be received first, or, for example, the command with sequence ID=1 may take a long time to process. However, the server may place a limit on how large this valid window can grow before it is stopped from growing. Continuing with the above example, the server may specify that the maximum window size is ten (10). This means that the valid operation (command) window may grow to [1,10] if the server receives and processes packets 2, 3, 4, 5, and 6 before its receives or completes processing of packet 1. Thus, the sequence numbers that would be valid are 1, 7, 8, 9, 10. However, if the server then receives packet 7 and processes it, the valid operation (command) window will not slide to [1,11], but remains at [1,10] with acceptable sequence numbers of 1, 8, 9, 10. The response on command 8 would indicate a (−1) credit to tell the client that the client is reaching the end of its acceptable limits, that is, its Credits value is now 4. This is one way in which the server prevents the client from ever skipping a given number in the sequence that would prevent the window from sliding nicely. This also demonstrates the value of issuing “Blocking Ops” against a server for commands that will take a long time.
  • Tracking the valid command window on the server side may be computationally expensive as the server needs to keep track of intersecting sets. To simplify this, one example implementation will establish the maximum window size described above, as the largest the server will ever let the command window become. Once this is established, the server allocates a buffer representing this size, and as commands come in, the value at that location in the buffer is changed. As long as the window size remains less than or equal to the maximum window size, then as the start of the window moves forward, the server moves its buffer pointer forward. Likewise, when the end grows as credits are granted, the server moves its end pointer along the buffer. Arithmetic handles situations where the buffer “wraps” the maximum window size. It is possible to grow the maximum window size dynamically, by allocating a larger buffer and copying the current values into it. Interlocked operations are used to track the status of the valid commands within the window, starting as AVAILABLE. Upon receiving the command from the client, they transition to IN_PROGRESS, and when the response (or interim response for a long-running command case) is sent, it transitions to USED. If the value transitioning to USED is the first value in the window, the window is slid forward until a non-USED value is encountered.
  • Another alternative allows for the server to revoke credits via an alternate channel or through unsequenced communication. For example, consider that the server has granted the client ten credits, but wants to trim the client down to five credits, which ordinarily will not happen until the client uses five commands. If the client is idle, the server may indicate to the client that it must use five credits in the next N seconds, or it will be in violation and terminated (or lose the credits). This allows the server to throttle down clients without relying on the client to move their own window.
  • Turning to an explanation of the operation of the invention via the use of various examples, the current state will be set forth in the format below:
  • Min: Current Credits: Credits: Valid: [1, 5] Max:
    1 (5, 1) (5, 1) except { } [1, 11]
  • The Min column shows the lowest unused client sequence number that the client is allowed to use; current credits are how many credits are granted to the client, in the form (normal credits, blocking op credits). A client consumes a credit on a send, and possibly re-increments on the receive (depending on the response). The next column, simply “Credits” shows the current maximum number of credits the client is allowed.
  • Valid and Max represent server-side structures for sequence identifier validation; (note that the client need not have any idea about these). Valid shows the Valid Op Window along with the exceptions of sequence identifiers that were already used (e.g., tracked by bitmap), and Max shows the MaxCommandWindow that the client can ever fill before completing the first operation, that is, the operation that would cause the window to shift.
  • FIGS. 3-9 represent an example on how the valid operation (Valid Op) window 330 s grows as maintained at the server 204; (note that in FIGS. 3-9, as the valid operation window changes, the first digit of its label changes, e.g., FIG. 3 has a valid operation window labeled 330 s, FIG. 4 has a valid operation window labeled 430 s, and so forth.
  • In FIG. 3, a client is granted 5 credits and a starting sequence number (or MID) of 1. Some criteria 320 as generally described above, e.g., the type of client, is used by an allocator component 322 to determine the amount to grant the client. In this example, the current valid operation window is thus [1,5], as represented vertically in FIG. 5 by individual digits in the window 330 s. The server 204 thus will accept a packet with sequence number 1, 2, 3, 4 or 5 from this client 202. This is alternatively represented in the above-described format as follows:
  • Min: Current Credits: Credits: Valid: [1, 5] Max:
    1 (5, 1) (5, 1) except { } [1, 11]
  • The valid op window 320 s is used to trivially reject packets; if they lie within the valid op window 320 s, the server 204 than checks an internal exception map to guarantee a sequence number has not been already used.
  • In the typical event of a monotonically increasing receive, the client sends a packet with MID=1, and the client and server transition to the state represented in FIG. 4 and in the table below; (note that [1,5] are considered valid, but 1 is only truly valid for a response from the server, not for another receipt from the client, which would fail against the Min=2 check first).
  • Min: Current Credits: Credits: Valid: [1, 5] Max:
    2 (4, 1) (5, 1) except {1} [1, 11]
  • In FIG. 4, the server receives and processes the command with sequence number=1. This means that 1 is no longer a valid sequence number for subsequent commands, as represented by the bracketed {1} in the valid/exception column in the table above and in the valid operation window labeled 430 s in FIG. 4.
  • When the server responds, it grants the client an additional (+1) credit on the response, and slides the window, as represented in FIG. 5 and in the table below:
  • Min: Current Credits: Credits: Valid: [2, 6] Max:
    2 (5, 1) (5, 1) except { } [2, 12]
  • The client now has a valid window of [2,6]. Consider when an out-of-order receive occurs, e.g., the asynchronous send on the transport is such that the server received command 3 before command 2 (and responds to it). The valid op window 630 s would then conceptually exist as represented in FIG. 6 and as follows:
  • Min: Current Credits: Credits: Valid: [2, 7] Max:
    2 (5, 1) (5, 1) except {3} [2, 12]
  • Note that in the table, the valid window extends, but the maximum window does not slide. However, when the server receives command 2 and responds, the window 730 s will slide over both, as in FIG. 7 and as below:
  • Min: Current Credits: Credits: Valid: [4, 8] Max:
    4 (5, 1) (5, 1) except { } [4, 14]
  • Consider next a malicious client attempting to use up resources on the server by sending commands and refusing the responses. Here the client has sent the server commands 4 and 5, and is refusing the responses. The state becomes as represented in FIG. 8 and as below:
  • Min: Current Credits: Credits: Valid: [4, 8] Max:
    6 (3, 1) (5, 1) except {4, 5} [4, 14]
  • After commands with sequence identifiers 6, 7, 8 are sent, because of credit enforcement, the client is out of credits and all packets are refused, as represented in FIG. 9 and in the table below:
  • Min: Current Credits: Credits: Valid: [4, 8] Max:
    9 (0, 1) (5, 1) except {4, 5, 6, 7, 8} [4, 14]
  • Turning to examples of maximum window enforcement, FIGS. 10-13 and similar tables are used. Consider a malicious client trying to send a packet N+1 and beyond, without sending us packet N. The examples of FIGS. 10-13 will start at the state before the last attacker, that is, FIG. 10 is essentially FIG. 7:
  • Min: Current Credits: Credits: Valid: [4, 8] Max:
    4 (5, 1) (5, 1) except { } [4, 14]
  • The client sends commands 5, 6, 7, 8, 9, 10, and the server responds, but without sending command 4. This state is shown in FIG. 11 and in the table below:
  • Min: Current Credits: Credits: Valid: [4, 14] Max:
    4 (5, 1) (5, 1) except [4, 14]
    {5, 6, 7, 8, 9, 10}
  • Note that the client still has five credits because there are still five viable slots in the command window. However, when the client sends, and the server responds, to command 11, the state in FIG. 12 and in the table below exists:
  • Min: Current Credits: Credits: Valid: [4, 14] Max:
    4 (4, 1) (5, 1) except [4, 14]
    {5, 6, 7, 8, 9, 10, 11}
  • Note that the client then continues with 12, 13, 14. The client's available number of credits has been reduced by one for each command because there is not an available slot in the MaxWindow. This will continue for commands 12, 13, 14:
  • Min: Current Credits: Credits: Valid: [4, 14] Max:
    4 (1, 1) (5, 1) except {5, 6, 7, 8, 9, [4, 14]
    10, 11, 12, 13, 14}
  • Now the only command the server will accept from the client is command 4, as represented in FIG. 13.
  • As can be readily appreciated, the attributes of a window of sequence numbers are very advantageous in a number of desirable scenarios. Some of these scenarios include preventing denial-of-service, allowing quality-of-service, providing a common language for the client and server to reference commands that were executed over a given connection, allow for long-running commands and commands with multiple responses from the server, but balance it with controlling how many resources the client can consume, and allowing for continuous use of security signatures.
  • With respect to preventing denial-of-service, the server may limit the amount of resources a given client connection may consume, until the server has authenticated the client and the client is behaving correctly. For example, by allowing the server to control the resources allocated to a client, when an apparent attack is detected, the server can enter a “panic mode” where it reduces resources available to its clients to a minimum, and grants them back on a trust-basis. The server gives each client a small enough window to allow work to happen, but prevents any single client from overwhelming essentially all of the resources. When the attack is over or reduced, the server can begin re-granting resources to clients that prove trustworthy.
  • With respect to allowing quality-of-service, the variable window scheme allows the server to scale the amounts of resources allocated to clients based on their identity and/or their behavior. For example, the server may allot more resources to a web server connecting to the file server than to a single user accessing individual documents. As another example, if another server is a database server that is accessing a file server, the file server may weight the number of credits granted higher than that granted to an average user.
  • Moreover, when controlling quality of service, the allocation of resources to clients may be dynamically altered based on the clients' various needs. This allows the server to grant credits in a completely fair manner, or to take other information into account. An administrator may configure machines on resource priority basis, and this may be utilized and change dynamically as users connect and disconnect.
  • Sequence numbers also provide a common language for the client and server to reference commands that were executed over a given connection. This assists in the building of various features, including persistent handles. For example, because both the client and the server have agreed on a common language for identifying commands as they are sent and received, that is, the sequence number mechanism, when a disconnect occurs there is a straightforward way upon connection reestablishment for the server and client to determine which commands were received and which were not. Without such a set scheme, it is more difficult to track, particularly when the command identifier is chosen by the client and potentially re-used.
  • Sequence numbers further allow for continuous use of security signatures, without the extreme performance problems of current models; the sends need not be sequenced, (although the checksum of the whole packet will still need to be calculated, and entire packet received before issuing). With respect to packet signing, replayability is not possible. More particularly, a network protocol that does signing needs to embed an index number into the packet to prevent replayability of the signed packet, otherwise an attacker simply reissues the packet without having to resign it, and the packet remains valid. Other methods include timestamps and the like, however these require some form of synchronization between client and server. If index numbers are used, often the network traffic between the client and the server becomes serialized, because the client must ensure the server receives packet 1 before it sends packet 2.
  • With a sequence number embedded as the command identifier, and a valid window supported on the server, parallel command sends with sequence numbers in them occur naturally. The server enforces the valid window, so each command can only be issued once, whereby replayability is not a problem, as long as the protocol ensures that the key used for signing is unique for each authenticated connection. Note that if the command identifier rolls over, then replayability could become a problem, and thus sequence numbers on the order of 32 bits or 64 bits are desirable to prevent this, with 64 bits likely more desirable if the re-establishment of broken connections is allowed.
  • While the invention is susceptible to various modifications and alternative constructions, certain illustrated embodiments thereof are shown in the drawings and have been described above in detail. It should be understood, however, that there is no intention to limit the invention to the specific forms disclosed, but on the contrary, the intention is to cover all modifications, alternative constructions, and equivalents falling within the spirit and scope of the invention.

Claims (21)

1-20. (canceled)
21. A method comprising:
establishing, by a server, a valid command window comprising at least one sequence number;
granting the client a maximum number of one or more blocking operation credits;
receiving, at the server, a file system command that consumes at least one server resource, the file system command including an associated first sequence number and an operation context value indicating that the file system command is a blocking operation;
determining whether the associated first sequence number is within the valid command window and whether the client has exceeded the maximum number of one or more blocking operation credits;
processing the file system command when it is determined that the associated sequence number is within the valid command window and the client has not exceeded the maximum number of one or more blocking operation credits; and
adjusting the valid command window to include an additional unused sequence number.
22. The method of claim 21, further comprising:
returning data indicating the blocking operation's progress; and
returning an identifier for the blocking operation.
23. The method of claim 22, wherein adjusting comprises adjusting the valid command window to include the additional unused sequence number before the blocking operation is completed by the server.
24. The method of claim 21, wherein the blocking operation comprises a long-running operation.
25. The method of claim 21, further comprising rejecting the file system command if the client has insufficient blocking operation credits.
26. The method of claim 21, further comprising decrementing the blocking operation credits granted to the client upon processing the file system command.
27. The method of claim 21, further comprising shrinking the valid command window upon determining that the client currently has too many blocking operations in progress.
28. The method of claim 21, further comprising:
receiving a second file system command with a second associated sequence number;
processing the second file system command;
further adjusting the valid command window only when such further adjusting will not cause the valid command window to exceed a maximum size.
29. A computer readable memory, comprising instructions that, when executed by at least one processor, cause the at least one processor to perform a method, the method comprising:
establishing, by a server, a valid command window comprising at least one sequence number;
granting the client a maximum number of one or more blocking operation credits;
receiving, at the server, a file system command that consumes at least one server resource, the file system command including an associated first sequence number and an operation context value indicating that the file system command is a blocking operation;
determining whether the associated first sequence number is within the valid command window and whether the client has exceeded the maximum number of one or more blocking operation credits;
processing the file system command when it is determined that the associated sequence number is within the valid command window and the client has not exceeded the maximum number of one or more blocking operation credits; and
adjusting the valid command window to include an additional unused sequence number.
30. The computer readable memory of claim 29, further comprising:
returning data indicating the blocking operation's progress; and
returning an identifier for the blocking operation.
31. The computer readable memory of claim 30, wherein adjusting comprises adjusting the valid command window to include the additional unused sequence number before the blocking operation is completed by the server.
32. The computer readable memory of claim 29, wherein the blocking operation comprises a long-running operation.
33. The computer readable memory of claim 29, the method further comprising rejecting the file system command if the client has insufficient blocking operation credits.
34. The computer readable memory of claim 29, the method further comprising decrementing the blocking operation credits granted to the client upon processing the file system command.
35. The computer readable memory of claim 29, the method further comprising shrinking the valid command window upon determining that the client currently has too many blocking operations in progress.
36. The computer readable memory of claim 29, the method further comprising:
receiving a second file system command with a second associated sequence number;
processing the second file system command;
further adjusting the valid command window only when such further adjusting will not cause the valid command window to exceed a maximum size.
37. A system comprising:
at least one processor;
a computer readable memory, operatively connected to the at least one processor and containing instructions that, when executed by the at least one processor, cause the at least one processor to perform a method, the method comprising:
establishing, by a server, a valid command window comprising at least one sequence number;
granting the client a maximum number of one or more blocking operation credits;
receiving, at the server, a file system command that consumes at least one server resource, the file system command including an associated first sequence number and an operation context value indicating that the file system command is a blocking operation;
determining whether the associated first sequence number is within the valid command window and whether the client has exceeded the maximum number of one or more blocking operation credits;
processing the file system command when it is determined that the associated sequence number is within the valid command window and the client has not exceeded the maximum number of one or more blocking operation credits; and
adjusting the valid command window to include an additional unused sequence number.
38. The system of claim 37, the method further comprising:
returning data indicating the blocking operation's progress; and
returning an identifier for the blocking operation.
39. The system of claim 38, wherein adjusting comprises adjusting the valid command window to include the additional unused sequence number before the blocking operation is completed by the server.
40. The system of claim 37, the method further comprising:
receiving a second file system command with a second associated sequence number;
processing the second file system command;
further adjusting the valid command window only when such further adjusting will not cause the valid command window to exceed a maximum size.
US14/473,488 2005-05-25 2014-08-29 Data communication coordination with sequence numbers Active US9071661B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/473,488 US9071661B2 (en) 2005-05-25 2014-08-29 Data communication coordination with sequence numbers
US14/720,083 US9332089B2 (en) 2005-05-25 2015-05-22 Data communication coordination with sequence numbers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US68500805P 2005-05-25 2005-05-25
US11/182,989 US8316129B2 (en) 2005-05-25 2005-07-15 Data communication coordination with sequence numbers
US13/664,012 US8850025B2 (en) 2005-05-25 2012-10-30 Data communication coordination with sequence numbers
US14/473,488 US9071661B2 (en) 2005-05-25 2014-08-29 Data communication coordination with sequence numbers

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/664,012 Continuation US8850025B2 (en) 2005-05-25 2012-10-30 Data communication coordination with sequence numbers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/720,083 Continuation US9332089B2 (en) 2005-05-25 2015-05-22 Data communication coordination with sequence numbers

Publications (2)

Publication Number Publication Date
US20150026248A1 true US20150026248A1 (en) 2015-01-22
US9071661B2 US9071661B2 (en) 2015-06-30

Family

ID=35520984

Family Applications (7)

Application Number Title Priority Date Filing Date
US11/182,989 Active 2028-11-04 US8316129B2 (en) 2005-05-25 2005-07-15 Data communication coordination with sequence numbers
US11/182,251 Active 2028-03-27 US8332526B2 (en) 2005-05-25 2005-07-15 Data communication protocol including negotiation and command compounding
US13/663,827 Active US8825885B2 (en) 2005-05-25 2012-10-30 Data communication protocol
US13/664,012 Active US8850025B2 (en) 2005-05-25 2012-10-30 Data communication coordination with sequence numbers
US13/946,550 Active 2026-05-24 US9438696B2 (en) 2005-05-25 2013-07-19 Data communication protocol
US14/473,488 Active US9071661B2 (en) 2005-05-25 2014-08-29 Data communication coordination with sequence numbers
US14/720,083 Active US9332089B2 (en) 2005-05-25 2015-05-22 Data communication coordination with sequence numbers

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US11/182,989 Active 2028-11-04 US8316129B2 (en) 2005-05-25 2005-07-15 Data communication coordination with sequence numbers
US11/182,251 Active 2028-03-27 US8332526B2 (en) 2005-05-25 2005-07-15 Data communication protocol including negotiation and command compounding
US13/663,827 Active US8825885B2 (en) 2005-05-25 2012-10-30 Data communication protocol
US13/664,012 Active US8850025B2 (en) 2005-05-25 2012-10-30 Data communication coordination with sequence numbers
US13/946,550 Active 2026-05-24 US9438696B2 (en) 2005-05-25 2013-07-19 Data communication protocol

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/720,083 Active US9332089B2 (en) 2005-05-25 2015-05-22 Data communication coordination with sequence numbers

Country Status (7)

Country Link
US (7) US8316129B2 (en)
EP (4) EP3098732B1 (en)
CN (4) CN102932457B (en)
AT (2) ATE516656T1 (en)
DE (1) DE602005010837D1 (en)
ES (1) ES2604972T3 (en)
HK (5) HK1121886A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9331955B2 (en) 2011-06-29 2016-05-03 Microsoft Technology Licensing, Llc Transporting operations of arbitrary size over remote direct memory access
US9332089B2 (en) 2005-05-25 2016-05-03 Microsoft Technology Licensing, Llc Data communication coordination with sequence numbers
US9462039B2 (en) 2011-06-30 2016-10-04 Microsoft Technology Licensing, Llc Transparent failover
US20180357890A1 (en) * 2017-06-09 2018-12-13 Here Global B.V. Reversible lane active direction detection based on gnss probe data
US10630781B2 (en) 2011-09-09 2020-04-21 Microsoft Technology Licensing, Llc SMB2 scaleout
US11647988B2 (en) 2019-11-19 2023-05-16 Siemens Medical Solutions Usa, Inc. Additional diagnostic data in parametric ultrasound medical imaging

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7529778B1 (en) 2001-12-12 2009-05-05 Microsoft Corporation System and method for providing access to consistent point-in-time file versions
US7617256B2 (en) * 2004-07-19 2009-11-10 Microsoft Corporation Remote file updates through remote protocol
US20060282545A1 (en) * 2005-06-11 2006-12-14 Arwe John E Method and apparatus for application or protocol version negotiation
US7975030B2 (en) * 2006-05-09 2011-07-05 Cisco Technology, Inc. Remote configuration of devices using a secure connection
US20080005558A1 (en) * 2006-06-29 2008-01-03 Battelle Memorial Institute Methods and apparatuses for authentication and validation of computer-processable communications
US8966000B2 (en) * 2007-06-22 2015-02-24 Microsoft Corporation Aggregation and re-ordering of input/output requests for better performance in remote file systems
US20090077248A1 (en) * 2007-09-14 2009-03-19 International Business Machines Corporation Balancing access to shared resources
US8935336B2 (en) * 2008-06-18 2015-01-13 Cisco Technology, Inc. Optimizing program requests over a wide area network
US8482766B2 (en) * 2009-01-08 2013-07-09 Infoprint Solutions Company Llc Automatic adjustment print job submission mechanism
US8078848B2 (en) 2009-01-09 2011-12-13 Micron Technology, Inc. Memory controller having front end and back end channels for modifying commands
US9325790B1 (en) 2009-02-17 2016-04-26 Netapp, Inc. Servicing of network software components of nodes of a cluster storage system
US9215279B1 (en) 2009-02-17 2015-12-15 Netapp, Inc. Servicing of storage device software components of nodes of a cluster storage system
WO2010111448A1 (en) 2009-03-25 2010-09-30 Pacid Technologies, Llc Method and system for securing communication
US8726032B2 (en) 2009-03-25 2014-05-13 Pacid Technologies, Llc System and method for protecting secrets file
US8539241B2 (en) * 2009-03-25 2013-09-17 Pacid Technologies, Llc Method and system for securing communication
US8055816B2 (en) 2009-04-09 2011-11-08 Micron Technology, Inc. Memory controllers, memory systems, solid state drives and methods for processing a number of commands
US8856349B2 (en) * 2010-02-05 2014-10-07 Sling Media Inc. Connection priority services for data communication between two devices
CN101867572B (en) * 2010-05-11 2015-08-12 中兴通讯股份有限公司 The implementation method of wireless U disk and system
JP5743469B2 (en) * 2010-09-22 2015-07-01 キヤノン株式会社 Information processing apparatus, control method thereof, and control program
US8806030B2 (en) * 2010-12-06 2014-08-12 Microsoft Corporation Multichannel connections in file system sessions
US8631277B2 (en) 2010-12-10 2014-01-14 Microsoft Corporation Providing transparent failover in a file system
US8788579B2 (en) 2011-09-09 2014-07-22 Microsoft Corporation Clustered client failover
TWI511596B (en) * 2011-11-21 2015-12-01 華碩電腦股份有限公司 Communication system for providing remote access and communication method therefor
US8924573B2 (en) * 2012-03-12 2014-12-30 Microsoft Corporation Secure capability negotiation between a client and server
US9077772B2 (en) * 2012-04-20 2015-07-07 Cisco Technology, Inc. Scalable replay counters for network security
CN102932468B (en) * 2012-11-07 2016-02-10 曙光信息产业股份有限公司 Share data access method
US10120900B1 (en) * 2013-02-25 2018-11-06 EMC IP Holding Company LLC Processing a database query using a shared metadata store
US9984083B1 (en) 2013-02-25 2018-05-29 EMC IP Holding Company LLC Pluggable storage system for parallel query engines across non-native file systems
US9424273B2 (en) * 2013-05-01 2016-08-23 Netapp, Inc. System and method for asynchronous use of a network-based file system
US9582561B2 (en) 2013-07-16 2017-02-28 Sap Se Size-based data synchronization
US9961125B2 (en) 2013-07-31 2018-05-01 Microsoft Technology Licensing, Llc Messaging API over HTTP protocol to establish context for data exchange
EP3061009B1 (en) * 2013-10-22 2021-02-17 Tata Consultancy Services Limited Window management for stream processing and stream reasoning
US10440066B2 (en) * 2013-11-15 2019-10-08 Microsoft Technology Licensing, Llc Switching of connection protocol
US9973599B2 (en) * 2013-12-04 2018-05-15 Mediatek Inc. Parser for parsing header in packet and related packet processing apparatus
CN104050284B (en) * 2014-06-27 2017-11-10 北京思特奇信息技术股份有限公司 A kind of data asynchronous query method and system based on one process
US11388265B2 (en) * 2015-01-05 2022-07-12 Convida Wireless, Llc Machine-to-machine protocol indication and negotiation
US11151082B1 (en) * 2015-03-31 2021-10-19 EMC IP Holding Company LLC File system operation cancellation
US11294862B1 (en) * 2015-03-31 2022-04-05 EMC IP Holding Company LLC Compounding file system metadata operations via buffering
US11144504B1 (en) * 2015-03-31 2021-10-12 EMC IP Holding Company LLC Eliminating redundant file system operations
US11681531B2 (en) 2015-09-19 2023-06-20 Microsoft Technology Licensing, Llc Generation and use of memory access instruction order encodings
US10810307B2 (en) 2016-03-24 2020-10-20 Spectrum Brands, Inc. Wireless lockset with anti-hacking feature
DE102016221233B3 (en) * 2016-10-27 2017-09-14 Volkswagen Aktiengesellschaft Method for managing a first communication connection, system comprising a first communication partner and a second communication partner and vehicle
CN108352995B (en) * 2016-11-25 2020-09-08 华为技术有限公司 SMB service fault processing method and storage device
US11010400B1 (en) * 2017-02-15 2021-05-18 Citigroup Technology, Inc. Computer file copy systems and methods
US10555310B2 (en) * 2017-05-01 2020-02-04 Qualcomm Incorporated Forward compatibility in new radio systems
US10965572B2 (en) 2017-05-01 2021-03-30 Bank Of America Corporation Data transfer control
CN111628845B (en) * 2017-09-01 2022-12-06 惠州市德赛西威汽车电子股份有限公司 Method for improving data transmission efficiency
US10963295B2 (en) * 2017-09-08 2021-03-30 Oracle International Corporation Hardware accelerated data processing operations for storage data
US10911547B2 (en) * 2017-12-28 2021-02-02 Dell Products L.P. Systems and methods for SMB monitor dialect
US10789200B2 (en) 2018-06-01 2020-09-29 Dell Products L.P. Server message block remote direct memory access persistent memory dialect
US20210274025A1 (en) * 2018-06-25 2021-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Communication protocol discover method in constrained application protocol (coap)
JP7077896B2 (en) * 2018-09-25 2022-05-31 ブラザー工業株式会社 Communication equipment and computer programs for communication equipment
CN109507931B (en) * 2018-12-13 2020-10-02 中电智能科技有限公司 Communication card based on CAN open communication protocol
US11301573B2 (en) 2019-08-19 2022-04-12 TADA Cognitive Solutions, LLC Data security using semantic services
EP3977260A4 (en) * 2019-05-29 2023-01-25 Tada Cognitive Solutions, LLC Digital duplicate
US10909160B2 (en) 2019-05-29 2021-02-02 TADA Cognitive Solutions, LLC Digital duplicate
US11461293B2 (en) 2019-08-19 2022-10-04 TADA Cognitive Solutions, LLC Processes and systems for onboarding data for a digital duplicate
CN111464422B (en) * 2020-03-27 2022-01-07 京东科技信息技术有限公司 Interaction method, interaction device, electronic equipment and storage medium
US11455588B2 (en) 2020-09-04 2022-09-27 TADA Cognitive Solutions, LLC Data validation and master network techniques
CN112565217B (en) * 2020-11-26 2023-01-10 北京天融信网络安全技术有限公司 Protocol-based confusion communication method, client terminal, server and storage medium
KR20220143363A (en) * 2021-04-16 2022-10-25 한국과학기술원 Protocol dialect for network system security
US11240318B1 (en) * 2021-05-11 2022-02-01 Integrity Security Services Llc Systems and methods for virtual multiplexed connections
CN113660341A (en) * 2021-08-18 2021-11-16 中电科航空电子有限公司 Communication method between airborne CMU and radio communication station

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243862B1 (en) * 1998-01-23 2001-06-05 Unisys Corporation Methods and apparatus for testing components of a distributed transaction processing system
US20020152315A1 (en) * 2001-04-11 2002-10-17 Michael Kagan Reliable message transmission with packet-level resend
US20020161980A1 (en) * 2001-04-27 2002-10-31 Fujitsu Limited Storage service method, storage service user terminal device, storage service providing device, and storage medium storing storage service program
US20030056069A1 (en) * 1999-08-20 2003-03-20 Microsoft Corporation Buffering data in a hierarchical data storage environment
US20030058277A1 (en) * 1999-08-31 2003-03-27 Bowman-Amuah Michel K. A view configurer in a presentation services patterns enviroment
US20030093643A1 (en) * 2001-11-09 2003-05-15 Britt Joe Freeman Apparatus and method for allocating memory blocks
US20030115341A1 (en) * 2001-12-17 2003-06-19 Bhaskar Sinha Method and system for authenticating a user in a web-based environment
US20040018829A1 (en) * 2002-07-25 2004-01-29 3Com Corporation Roaming and hand-off support for prepaid billing for wireless data networks
US20040103342A1 (en) * 2002-07-29 2004-05-27 Eternal Systems, Inc. Consistent message ordering for semi-active and passive replication
US20040136325A1 (en) * 2003-01-09 2004-07-15 Sun Microsytems, Inc. Method and apparatus for hardware implementation independent verification of network layers
US20050015511A1 (en) * 2003-07-02 2005-01-20 Nec Laboratories America, Inc. Accelerated large data distribution in overlay networks
US20050021832A1 (en) * 1999-10-15 2005-01-27 Bennett William E. Deferred acknowledgment communications and alarm management
US20050125378A1 (en) * 2003-11-17 2005-06-09 Jun Kawada Document management apparatus, a document management method, a document management program and a recording medium storing the document management program
US20050132077A1 (en) * 2003-12-11 2005-06-16 International Business Machines Corporation Increasing TCP re-transmission process speed
US20050131832A1 (en) * 2000-06-16 2005-06-16 Entriq Inc., Irdeto Access B.V. Separate authentication processes to secure content
US20050129045A1 (en) * 2003-12-11 2005-06-16 International Business Machines Corporation Limiting number of retransmission attempts for data transfer via network interface controller
US20050149817A1 (en) * 2003-12-11 2005-07-07 International Business Machines Corporation Data transfer error checking
US20050177635A1 (en) * 2003-12-18 2005-08-11 Roland Schmidt System and method for allocating server resources
US20050198359A1 (en) * 2000-04-07 2005-09-08 Basani Vijay R. Method and apparatus for election of group leaders in a distributed network
US20050257022A1 (en) * 2004-05-17 2005-11-17 Hughes Brian W Storage device flow control
US20060031519A1 (en) * 2004-04-30 2006-02-09 Helliwell Richard P System and method for flow control in a network
US20060085328A1 (en) * 1999-04-08 2006-04-20 Aceinc Pty Ltd. Secure online commerce transactions
US20060095382A1 (en) * 2004-11-04 2006-05-04 International Business Machines Corporation Universal DRM support for devices
US20060168262A1 (en) * 2002-07-15 2006-07-27 Soma Networks, Inc. System and method for reliable packet data transport in a computer network
US20060206705A1 (en) * 2005-03-10 2006-09-14 Hormuzd Khosravi Security protocols on incompatible transports
US20060281525A1 (en) * 2005-05-17 2006-12-14 Milo Borissov Slot type game with player input opportunity
US7290141B2 (en) * 2002-06-27 2007-10-30 Nokia, Inc. Authentication of remotely originating network messages
US7318102B1 (en) * 1999-05-24 2008-01-08 Hewlett-Packard Development Company, L.P. Reliable datagram
US7330910B2 (en) * 2004-05-20 2008-02-12 International Business Machines Corporation Fencing of resources allocated to non-cooperative client computers
US7386889B2 (en) * 2002-11-18 2008-06-10 Trusted Network Technologies, Inc. System and method for intrusion prevention in a communications network
US7421502B2 (en) * 2002-12-06 2008-09-02 International Business Machines Corporation Method and system for storage-aware flow resource management
US7453879B1 (en) * 2005-04-04 2008-11-18 Sun Microsystems, Inc. Method and apparatus for determining the landing zone of a TCP packet

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH594721A5 (en) 1974-09-05 1978-01-31 Ciba Geigy Ag
JPS571681A (en) 1980-05-24 1982-01-06 Makita Electric Works Ltd Holder for attitude of nail of nail driver
US4399504A (en) 1980-10-06 1983-08-16 International Business Machines Corporation Method and means for the sharing of data resources in a multiprocessing, multiprogramming environment
JPS6019341Y2 (en) 1982-01-29 1985-06-11 エスエムケイ株式会社 Connector with lock
JPS5958597A (en) 1982-09-28 1984-04-04 富士通株式会社 Automatic deposit paying machine
JPS6019341U (en) 1983-07-19 1985-02-09 ヤンマー農機株式会社 Combine threshing equipment
JPS613496U (en) 1984-06-13 1986-01-10 株式会社東芝 Turbine missile protection device
US4825354A (en) 1985-11-12 1989-04-25 American Telephone And Telegraph Company, At&T Bell Laboratories Method of file access in a distributed processing computer network
US4736369A (en) 1986-06-13 1988-04-05 International Business Machines Corp. Adaptive session-level pacing
JPS6327678A (en) 1986-07-21 1988-02-05 清水建設株式会社 Construction of iron plate silo
US4780821A (en) 1986-07-29 1988-10-25 International Business Machines Corp. Method for multiple programs management within a network having a server computer and a plurality of remote computers
US4914570A (en) 1986-09-15 1990-04-03 Counterpoint Computers, Inc. Process distribution and sharing system for multiple processor computer system
JPS6361148U (en) 1986-10-08 1988-04-22
US4887204A (en) 1987-02-13 1989-12-12 International Business Machines Corporation System and method for accessing remote files in a distributed networking environment
JPS63205747A (en) 1987-02-13 1988-08-25 インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン Communication system
US5202971A (en) 1987-02-13 1993-04-13 International Business Machines Corporation System for file and record locking between nodes in a distributed data processing environment maintaining one copy of each file lock
US4791566A (en) 1987-03-27 1988-12-13 Digital Equipment Corporation Terminal device session management protocol
JPS63256165A (en) 1987-04-14 1988-10-24 Seiko Epson Corp Method for fixed rate discharging of anaerobic liquid
US4823554A (en) * 1987-04-22 1989-04-25 Leonard Trachtenberg Vehicle thermoelectric cooling and heating food and drink appliance
JPS6461148A (en) 1987-08-31 1989-03-08 Nec Corp Flow control system
US5008853A (en) * 1987-12-02 1991-04-16 Xerox Corporation Representation of collaborative multi-user activities relative to shared structured data objects in a networked workstation environment
US4891785A (en) 1988-07-08 1990-01-02 Donohoo Theodore J Method for transferring data files between computers in a network response to generalized application program instructions
JPH02101847A (en) 1988-10-11 1990-04-13 Nec Corp Communication control system
US5124909A (en) 1988-10-31 1992-06-23 Hewlett-Packard Company Software program for providing cooperative processing between personal computers and a host computer
JPH02101847U (en) 1989-01-24 1990-08-14
CA1323448C (en) * 1989-02-24 1993-10-19 Terrence C. Miller Method and apparatus for translucent file system
US5109519A (en) * 1989-03-28 1992-04-28 Wang Laboratories, Inc. Local computer participating in mail delivery system abstracts from directory of all eligible mail recipients only served by local computer
US5560008A (en) 1989-05-15 1996-09-24 International Business Machines Corporation Remote authentication and authorization in a distributed data processing system
US5113519A (en) * 1989-05-15 1992-05-12 International Business Machines Corporation Maintenance of file attributes in a distributed data processing system
US5218696A (en) * 1989-07-24 1993-06-08 International Business Machines Corporation Method for dynamically expanding and rapidly accessing file directories
US5261051A (en) 1989-08-14 1993-11-09 Microsoft Corporation Method and system for open file caching in a networked computer system
US5265261A (en) * 1989-08-14 1993-11-23 Microsoft Corporation Method and system for network communications using raw mode protocols
JPH0754462Y2 (en) 1989-11-10 1995-12-18 株式会社竹中工務店 Connecting device for connected members
JP2575543B2 (en) * 1990-04-04 1997-01-29 インターナショナル・ビジネス・マシーンズ・コーポレイション Simultaneous access management method
US5130986A (en) 1990-04-27 1992-07-14 At&T Bell Laboratories High speed transport protocol with two windows
JPH0675890B2 (en) 1990-06-25 1994-09-28 河村化工株式会社 Method of manufacturing fishing rod
JPH04172039A (en) 1990-11-05 1992-06-19 Matsushita Electric Ind Co Ltd Packet communication device
JPH0589048A (en) 1991-09-25 1993-04-09 Nec Corp Command processing system
JPH05143488A (en) 1991-11-18 1993-06-11 Nippon Telegr & Teleph Corp <Ntt> Transfer method for plural commands
JPH0619771A (en) * 1992-04-20 1994-01-28 Internatl Business Mach Corp <Ibm> File management system of shared file by different kinds of clients
JPH0589048U (en) 1992-05-08 1993-12-03 関東自動車工業株式会社 Belt molding for automobiles
US5349642A (en) 1992-11-03 1994-09-20 Novell, Inc. Method and apparatus for authentication of client server communication
US5452447A (en) * 1992-12-21 1995-09-19 Sun Microsystems, Inc. Method and apparatus for a caching file server
US5493728A (en) 1993-02-19 1996-02-20 Borland International, Inc. System and methods for optimized access in a multi-user environment
US5491752A (en) * 1993-03-18 1996-02-13 Digital Equipment Corporation, Patent Law Group System for increasing the difficulty of password guessing attacks in a distributed authentication scheme employing authentication tokens
JPH0675890U (en) 1993-04-02 1994-10-25 市光工業株式会社 Cornering lamp lighting circuit
US5522042A (en) 1994-01-28 1996-05-28 Cabletron Systems, Inc. Distributed chassis agent for distributed network management
US5588117A (en) 1994-05-23 1996-12-24 Hewlett-Packard Company Sender-selective send/receive order processing on a per message basis
US5513314A (en) 1995-01-27 1996-04-30 Auspex Systems, Inc. Fault tolerant NFS server system and mirroring protocol
US5628005A (en) 1995-06-07 1997-05-06 Microsoft Corporation System and method for providing opportunistic file access in a network environment
US5826027A (en) * 1995-10-11 1998-10-20 Citrix Systems, Inc. Method for supporting an extensible and dynamically bindable protocol stack in a distrubited process system
US5764887A (en) * 1995-12-11 1998-06-09 International Business Machines Corporation System and method for supporting distributed computing mechanisms in a local area network server environment
US6343313B1 (en) 1996-03-26 2002-01-29 Pixion, Inc. Computer conferencing system with real-time multipoint, multi-speed, multi-stream scalability
WO1997037461A1 (en) * 1996-04-01 1997-10-09 Hewlett-Packard Company Transmitting messages over a network
RU2118051C1 (en) 1996-04-30 1998-08-20 Лихачев Александр Геннадьевич Method for access to world-wide web resources using proxy servers
US6434120B1 (en) 1998-08-25 2002-08-13 Cisco Technology, Inc. Autosensing LMI protocols in frame relay networks
US5933602A (en) * 1996-07-31 1999-08-03 Novell, Inc. System for selecting command packet and corresponding response packet from communication stream of packets by monitoring packets sent between nodes on network
US6208952B1 (en) 1996-10-24 2001-03-27 Microsoft Corporation Method and system for delayed registration of protocols
JPH10133971A (en) 1996-10-25 1998-05-22 Nec Corp File transfer processing system
US6125122A (en) 1997-01-21 2000-09-26 At&T Wireless Svcs. Inc. Dynamic protocol negotiation system
FR2759518B1 (en) 1997-02-07 1999-04-23 France Telecom METHOD AND DEVICE FOR ALLOCATING RESOURCES IN A DIGITAL PACKET TRANSMISSION NETWORK
US5987621A (en) 1997-04-25 1999-11-16 Emc Corporation Hardware and software failover services for a file server
US5931913A (en) * 1997-05-07 1999-08-03 International Business Machines Corporation Methods, system and computer program products for establishing a session between a host and a terminal using a reduced protocol
US6219799B1 (en) * 1997-07-01 2001-04-17 Unisys Corporation Technique to support pseudo-names
US6092199A (en) * 1997-07-07 2000-07-18 International Business Machines Corporation Dynamic creation of a user account in a client following authentication from a non-native server domain
JPH1155314A (en) 1997-07-30 1999-02-26 Nippon Telegr & Teleph Corp <Ntt> Method for controlling data transfer
US6275953B1 (en) 1997-09-26 2001-08-14 Emc Corporation Recovery from failure of a data processor in a network server
US6247139B1 (en) 1997-11-11 2001-06-12 Compaq Computer Corp. Filesystem failover in a single system image environment
US6131125A (en) * 1997-11-14 2000-10-10 Kawasaki Lsi U.S.A., Inc. Plug-and-play data cable with protocol translation
US6085247A (en) * 1998-06-08 2000-07-04 Microsoft Corporation Server operating system for supporting multiple client-server sessions and dynamic reconnection of users to previous sessions using different computers
US6516351B2 (en) * 1997-12-05 2003-02-04 Network Appliance, Inc. Enforcing uniform file-locking for diverse file-locking protocols
US7010532B1 (en) 1997-12-31 2006-03-07 International Business Machines Corporation Low overhead methods and apparatus for shared access storage devices
US6317844B1 (en) 1998-03-10 2001-11-13 Network Appliance, Inc. File server storage arrangement
US6230190B1 (en) 1998-10-09 2001-05-08 Openwave Systems Inc. Shared-everything file storage for clustered system
US6401123B1 (en) 1998-11-24 2002-06-04 International Busines Machines Corporation Systems, methods and computer program products for employing presumptive negotiation in a data communications protocol
US6883000B1 (en) 1999-02-12 2005-04-19 Robert L. Gropper Business card and contact management system
US6324581B1 (en) 1999-03-03 2001-11-27 Emc Corporation File server system using file system storage, data movers, and an exchange of meta data among data movers for file locking and direct access to shared file systems
US6453354B1 (en) 1999-03-03 2002-09-17 Emc Corporation File server system using connection-oriented protocol and sharing data sets among data movers
US6938096B1 (en) * 1999-04-12 2005-08-30 Softricity, Inc. Method and system for remote networking using port proxying by detecting if the designated port on a client computer is blocked, then encapsulating the communications in a different format and redirecting to an open port
US7562129B1 (en) 1999-04-15 2009-07-14 Alcatel-Lucent Canada Inc. Subscription management system for data communication network
US6349350B1 (en) * 1999-05-04 2002-02-19 International Business Machines Corporation System, method, and program for handling failed connections in an input/output (I/O) system
AU4839300A (en) 1999-05-11 2000-11-21 Webvan Group, Inc. Electronic commerce enabled delivery system and method
US6430691B1 (en) * 1999-06-21 2002-08-06 Copytele, Inc. Stand-alone telecommunications security device
AU6233800A (en) * 1999-07-23 2001-02-13 Merck & Co., Inc. Text influenced molecular indexing system and computer-implemented and/or computer-assisted method for same
JP2001077844A (en) 1999-09-06 2001-03-23 Axle Linkage Labo Inc Network control method, server device, client device, network control method for play table device, hall server computer and play table device
JP2001094613A (en) 1999-09-21 2001-04-06 Canon Inc Communication controller, method and recording medium
US6910082B1 (en) 1999-11-18 2005-06-21 International Business Machines Corporation Method, system and program products for reducing data movement within a computing environment by bypassing copying data between file system and non-file system buffers in a server
US6658476B1 (en) 1999-11-29 2003-12-02 Microsoft Corporation Client-server protocol support list for standard request-response protocols
US7050984B1 (en) * 1999-12-22 2006-05-23 Ge Medical Systems, Inc. Integrated interactive service to a plurality of medical diagnostic systems
US7111060B2 (en) * 2000-03-14 2006-09-19 Aep Networks, Inc. Apparatus and accompanying methods for providing, through a centralized server site, a secure, cost-effective, web-enabled, integrated virtual office environment remotely accessible through a network-connected web browser
US6883015B1 (en) 2000-03-30 2005-04-19 Cisco Technology, Inc. Apparatus and method for providing server state and attribute management for multiple-threaded voice enabled web applications
US7225244B2 (en) * 2000-05-20 2007-05-29 Ciena Corporation Common command interface
US6452903B1 (en) 2000-05-31 2002-09-17 Fujitsu Network Communications, Inc. Network switch supporting rate-based and credit-based flow control mechanisms on a link-by-link basis
ATE267502T1 (en) 2000-07-05 2004-06-15 Roke Manor Research METHOD FOR OPERATING A PACKET REASSEMBLY BUFFER AND NETWORK ROUTER
US7693976B2 (en) 2000-07-11 2010-04-06 Ciena Corporation Granular management of network resources
US6349250B1 (en) * 2000-10-26 2002-02-19 Detroit Diesel Corporation Clear historic data from a vehicle data recorder
US20020062379A1 (en) * 2000-11-06 2002-05-23 Widegren Ina B. Method and apparatus for coordinating quality of service requirements for media flows in a multimedia session with IP bearer services
JP2002183000A (en) 2000-12-11 2002-06-28 Hitachi Ltd Method and system for referring to data through network
US20020073211A1 (en) 2000-12-12 2002-06-13 Raymond Lin System and method for securely communicating between application servers and webservers
US6862692B2 (en) 2001-01-29 2005-03-01 Adaptec, Inc. Dynamic redistribution of parity groups
KR100750735B1 (en) 2001-02-03 2007-08-22 삼성전자주식회사 Apparatus and method for controlling device in home network and system employing the same
US7055036B2 (en) 2001-04-06 2006-05-30 Mcafee, Inc. System and method to verify trusted status of peer in a peer-to-peer network environment
US20030093678A1 (en) * 2001-04-23 2003-05-15 Bowe John J. Server-side digital signature system
JP3797236B2 (en) 2001-04-27 2006-07-12 日本ビクター株式会社 Recording / reproducing apparatus and recording / reproducing method
US6640226B1 (en) 2001-06-19 2003-10-28 Informatica Corporation Ranking query optimization in analytic applications
JP4249915B2 (en) 2001-07-13 2009-04-08 株式会社バンダイ Distribution system, server and accommodation device thereof, portable terminal system, and program
US7409420B2 (en) 2001-07-16 2008-08-05 Bea Systems, Inc. Method and apparatus for session replication and failover
US6944785B2 (en) 2001-07-23 2005-09-13 Network Appliance, Inc. High-availability cluster virtual server system
EP1283652A1 (en) 2001-08-07 2003-02-12 Siemens Aktiengesellschaft Method, transceiver unit and communications system for transmitting data from one transmitter to multiple receivers
JP2003069610A (en) 2001-08-22 2003-03-07 Canon Inc Communication device, its control method, communication system, and control program
JP3663627B2 (en) 2001-10-18 2005-06-22 ソニー株式会社 COMMUNICATION PROCESSING DEVICE, COMMUNICATION PROCESSING METHOD, AND COMPUTER PROGRAM
WO2003049384A1 (en) 2001-12-07 2003-06-12 Research In Motion Limited System and method of managing information distribution to mobile stations
US7394764B2 (en) * 2001-12-14 2008-07-01 Sasken Communication Technologies Limited Technique for improving transmission control protocol performance in lossy networks
US7111035B2 (en) 2001-12-26 2006-09-19 Hewlett-Packard Development Company, L.P. Fault tolerance associations for IP transport protocols
US20030140129A1 (en) * 2002-01-24 2003-07-24 Noam Livnat Installing communication protocol in a handheld device
US20030154398A1 (en) 2002-02-08 2003-08-14 Eaton Eric Thomas System for providing continuity between session clients and method therefor
US6829606B2 (en) 2002-02-14 2004-12-07 Infoglide Software Corporation Similarity search engine for use with relational databases
US7178050B2 (en) 2002-02-22 2007-02-13 Bea Systems, Inc. System for highly available transaction recovery for transaction processing systems
US7984157B2 (en) 2002-02-26 2011-07-19 Citrix Systems, Inc. Persistent and reliable session securely traversing network components using an encapsulating protocol
US7388866B2 (en) 2002-03-07 2008-06-17 Broadcom Corporation System and method for expediting upper layer protocol (ULP) connection negotiations
US7668306B2 (en) 2002-03-08 2010-02-23 Intel Corporation Method and apparatus for connecting packet telephony calls between secure and non-secure networks
JP2003281091A (en) 2002-03-25 2003-10-03 Fujitsu Ltd System for controlling simultaneous reception
JP4315696B2 (en) 2002-03-29 2009-08-19 富士通株式会社 Host terminal emulation program, relay program, and host terminal emulation method
CA2385344A1 (en) 2002-05-08 2003-11-08 Bell Globemedia Inc. Data transfer method and apparatus
JP4000905B2 (en) 2002-05-22 2007-10-31 ソニー株式会社 Information processing system and method, information processing apparatus and method, recording medium, and program
JP2003337717A (en) 2002-05-22 2003-11-28 Nec Corp Fault recovery synchronizing system of online transaction process
US20050228884A1 (en) 2002-06-10 2005-10-13 Caplin Systems Limited Resource management
US20040003210A1 (en) * 2002-06-27 2004-01-01 International Business Machines Corporation Method, system, and computer program product to generate test instruction streams while guaranteeing loop termination
AU2003246189A1 (en) 2002-07-01 2004-01-19 Kabushiki Kaisha Toshiba Seamless system, recording medium, computer system processing continuation method
US20040019660A1 (en) 2002-07-24 2004-01-29 Sandhya E. Lock holding multi-threaded processes for distibuted data systems
US7386855B2 (en) 2002-08-12 2008-06-10 Ntt Docomo, Inc. Application mobility service
US20040032876A1 (en) 2002-08-19 2004-02-19 Ajay Garg Selection of transmission channels
JP3846384B2 (en) 2002-08-28 2006-11-15 ブラザー工業株式会社 Terminal device, connection control method, connection control program, and recording medium
US6957367B2 (en) 2002-08-30 2005-10-18 Hewlett-Packard Development Company L.P. System and method for controlling activity of temporary files in a computer system
JP3938002B2 (en) 2002-10-18 2007-06-27 キヤノン株式会社 Printing system control method
US7109430B2 (en) * 2002-11-05 2006-09-19 Emrise Corporation Low profile rotary switch with detent in the bushing
US7475142B2 (en) 2002-12-06 2009-01-06 Cisco Technology, Inc. CIFS for scalable NAS architecture
US7664991B1 (en) 2002-12-17 2010-02-16 Symantec Operating Corporation System and method for distributed file system I/O recovery
JP3999135B2 (en) 2003-01-24 2007-10-31 株式会社エヌ・ティ・ティ・ドコモ COMMUNICATION SYSTEM, DATA TRANSMISSION METHOD, COMMUNICATION DEVICE, PROGRAM, AND RECORDING MEDIUM
US7519834B1 (en) 2003-01-24 2009-04-14 Nortel Networks Limited Scalable method and apparatus for transforming packets to enable secure communication between two stations
US7151939B2 (en) * 2003-02-18 2006-12-19 Qualcomm Incorporated Method, apparatus, and machine-readable medium for providing indication of location service availability and the quality of available location services
US7072807B2 (en) 2003-03-06 2006-07-04 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US7490152B2 (en) 2003-04-11 2009-02-10 Alcatel-Lucent Usa Inc. Version caching mechanism
US7339885B2 (en) * 2003-06-05 2008-03-04 International Business Machines Corporation Method and apparatus for customizable surveillance of network interfaces
US20040255202A1 (en) * 2003-06-13 2004-12-16 Alcatel Intelligent fault recovery in a line card with control plane and data plane separation
US7363629B2 (en) 2003-06-19 2008-04-22 International Business Machines Corporation Method, system, and program for remote resource management
US7693998B2 (en) * 2003-06-30 2010-04-06 Microsoft Corporation System and method for message-based scalable data transport
US7526640B2 (en) 2003-06-30 2009-04-28 Microsoft Corporation System and method for automatic negotiation of a security protocol
US7698115B2 (en) 2003-06-30 2010-04-13 Microsoft Corporation System and method for dynamically allocating resources in a client/server environment
JP4229774B2 (en) 2003-07-11 2009-02-25 日本電信電話株式会社 Session control program and communication terminal device
US7296264B2 (en) * 2003-07-18 2007-11-13 Bea Systems, Inc. System and method for performing code completion in an integrated development environment
EP1650665B1 (en) 2003-07-24 2012-07-11 Panasonic Corporation File management method and information processing device
US8028078B2 (en) 2003-08-07 2011-09-27 Teamon Systems, Inc. Communications system including protocol interface device providing enhanced operating protocol selection features and related methods
CN100547583C (en) 2003-08-14 2009-10-07 甲骨文国际公司 Database automatically and the method that dynamically provides
US7870268B2 (en) * 2003-09-15 2011-01-11 Intel Corporation Method, system, and program for managing data transmission through a network
US20050091226A1 (en) * 2003-10-23 2005-04-28 Yun Lin Persistent caching directory level support
US7539722B2 (en) 2003-10-24 2009-05-26 Microsoft Corporation Method and system for accessing a file
US7231397B2 (en) 2003-10-24 2007-06-12 Microsoft Corporation Method and system for transacted file operations over a network
US7673066B2 (en) 2003-11-07 2010-03-02 Sony Corporation File transfer protocol for mobile computer
US7188273B2 (en) 2003-11-24 2007-03-06 Tsx Inc. System and method for failover
US20050111030A1 (en) * 2003-11-25 2005-05-26 Berkema Alan C. Hard copy imaging systems, print server systems, and print server connectivity methods
FI20031779A0 (en) 2003-12-05 2003-12-05 Nokia Corp The method, system and transmitted side protocol unit for transmitting the data packets of the unacknowledged mode services
US7478381B2 (en) 2003-12-15 2009-01-13 Microsoft Corporation Managing software updates and a software distribution service
US7493394B2 (en) 2003-12-31 2009-02-17 Cisco Technology, Inc. Dynamic timeout in a client-server system
US7698361B2 (en) 2003-12-31 2010-04-13 Microsoft Corporation Lightweight input/output protocol
US7383463B2 (en) 2004-02-04 2008-06-03 Emc Corporation Internet protocol based disaster recovery of a server
ATE406656T1 (en) 2004-03-17 2008-09-15 Koninkl Philips Electronics Nv METHOD AND DEVICE FOR SCANNING A DISK-SHAPED INFORMATION STORAGE MEDIUM
US7444536B1 (en) 2004-04-16 2008-10-28 Sun Microsystems, Inc. RMI-IIOP request failover mechanism
US20050246803A1 (en) * 2004-04-30 2005-11-03 Spencer Andrew M Peripheral device for processing data from a computing device
JP2005321953A (en) 2004-05-07 2005-11-17 Hitachi Ltd Storage controller, operation program therefor and access control method
JP2005322016A (en) 2004-05-10 2005-11-17 Yokogawa Electric Corp Server device and information distribution method
US7487353B2 (en) * 2004-05-20 2009-02-03 International Business Machines Corporation System, method and program for protecting communication
US7434087B1 (en) 2004-05-21 2008-10-07 Sun Microsystems, Inc. Graceful failover using augmented stubs
US7080173B2 (en) * 2004-05-27 2006-07-18 Microsoft Corporation Reducing information reception delays
US20060059118A1 (en) 2004-08-10 2006-03-16 Byrd Stephen A Apparatus, system, and method for associating resources using a behavior based algorithm
US8023417B2 (en) 2004-08-30 2011-09-20 International Business Machines Corporation Failover mechanisms in RDMA operations
US7418709B2 (en) * 2004-08-31 2008-08-26 Microsoft Corporation URL namespace to support multiple-protocol processing within worker processes
US7418712B2 (en) * 2004-08-31 2008-08-26 Microsoft Corporation Method and system to support multiple-protocol processing within worker processes
KR20060025100A (en) 2004-09-15 2006-03-20 삼성전자주식회사 Information storage medium recording meta data supporting multi-language and manipulation method thereof
US20060067244A1 (en) 2004-09-30 2006-03-30 Microsoft Corporation Registration identifier reuse
US7451347B2 (en) 2004-10-08 2008-11-11 Microsoft Corporation Failover scopes for nodes of a computer cluster
CN1767472A (en) 2004-10-27 2006-05-03 乐金电子(天津)电器有限公司 Household network system
US7457722B1 (en) 2004-11-17 2008-11-25 Symantec Operating Corporation Correlation of application instance life cycle events in performance monitoring
JP4451293B2 (en) 2004-12-10 2010-04-14 株式会社日立製作所 Network storage system of cluster configuration sharing name space and control method thereof
US8522293B2 (en) 2004-12-15 2013-08-27 Time Warner Cable Enterprises Llc Method and apparatus for high bandwidth data transmission in content-based networks
US8515490B2 (en) 2004-12-30 2013-08-20 Alcatel Lucent Method and apparatus for providing same session switchover between end-user terminals
WO2006084503A1 (en) * 2005-02-08 2006-08-17 Telefonaktiebolaget Lm Ericsson (Publ) On-demand multi-channel streaming session over packet-switched networks
EP1727055B1 (en) 2005-05-25 2016-09-07 Microsoft Technology Licensing, LLC Data communication coordination with sequence numbers
EP1727056B1 (en) 2005-05-25 2008-11-05 Microsoft Corporation Data communication protocol
US8316129B2 (en) 2005-05-25 2012-11-20 Microsoft Corporation Data communication coordination with sequence numbers
JP2007058506A (en) 2005-08-24 2007-03-08 Ricoh Co Ltd Document management server, document management system, and document management program and its recording medium
GB0519246D0 (en) 2005-09-21 2005-10-26 Ibm A method, apparatus and computer program for handling web server failure
RU2313824C2 (en) 2005-09-26 2007-12-27 Михаил Васильевич Беляев Information client-server system and method for providing graphical user interface
US8108548B2 (en) 2005-12-22 2012-01-31 Microsoft Corporation Methodology and system for file replication based on a peergroup
US8051179B2 (en) 2006-02-01 2011-11-01 Oracle America, Inc. Distributed session failover
US8024439B2 (en) 2006-03-17 2011-09-20 Microsoft Corporation Server session management application program interface and schema
US7526668B2 (en) 2006-06-08 2009-04-28 Hitachi, Ltd. Failover method of remotely-mirrored clustered file servers
KR20080057483A (en) 2006-12-20 2008-06-25 삼성전자주식회사 Server, client, load balancing system, and load balancing method thereof
US7809828B2 (en) 2007-04-11 2010-10-05 International Business Machines Corporation Method for maintaining state consistency among multiple state-driven file system entities when entities become disconnected
WO2008130983A1 (en) * 2007-04-16 2008-10-30 Attune Systems, Inc. File aggregation in a switched file system
US20090172715A1 (en) * 2007-09-28 2009-07-02 Xcerion Ab Network operating system
EP2066101B1 (en) * 2007-11-28 2012-10-17 Alcatel Lucent System and method for an improved high availability component implementation
US20090158221A1 (en) 2007-12-17 2009-06-18 Nokia Corporation Device feature manipulation based on presented content
CN101217483A (en) 2008-01-21 2008-07-09 中兴通讯股份有限公司 A method to realize cluster server inner load sharing agent
US8458298B2 (en) 2008-03-03 2013-06-04 Microsoft Corporation Failover in an internet location coordinate enhanced domain name system
JP5054618B2 (en) 2008-06-10 2012-10-24 京セラドキュメントソリューションズ株式会社 Network file processing system
JP4549408B2 (en) 2008-06-24 2010-09-22 富士通株式会社 Cluster server control program, cluster node control method, and cluster node control device for file server
US7840730B2 (en) 2008-06-27 2010-11-23 Microsoft Corporation Cluster shared volumes
US8700760B2 (en) 2008-08-18 2014-04-15 Ge Fanuc Intelligent Platforms, Inc. Method and systems for redundant server automatic failover
US8275815B2 (en) 2008-08-25 2012-09-25 International Business Machines Corporation Transactional processing for clustered file systems
US8185566B2 (en) 2009-01-15 2012-05-22 Microsoft Corporation Client-based caching of remote files
CN101594320B (en) 2009-06-23 2012-05-09 中兴通讯股份有限公司 SNMP protocol-based method for message interaction
US9749387B2 (en) 2009-08-13 2017-08-29 Sap Se Transparently stateful execution of stateless applications
JP2011119794A (en) 2009-11-30 2011-06-16 Toshiba Corp Electronic apparatus, and communication control method
US8631277B2 (en) 2010-12-10 2014-01-14 Microsoft Corporation Providing transparent failover in a file system
US9331955B2 (en) 2011-06-29 2016-05-03 Microsoft Technology Licensing, Llc Transporting operations of arbitrary size over remote direct memory access
US8856582B2 (en) 2011-06-30 2014-10-07 Microsoft Corporation Transparent failover
US20130067095A1 (en) 2011-09-09 2013-03-14 Microsoft Corporation Smb2 scaleout
US8788579B2 (en) 2011-09-09 2014-07-22 Microsoft Corporation Clustered client failover

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243862B1 (en) * 1998-01-23 2001-06-05 Unisys Corporation Methods and apparatus for testing components of a distributed transaction processing system
US20060085328A1 (en) * 1999-04-08 2006-04-20 Aceinc Pty Ltd. Secure online commerce transactions
US7318102B1 (en) * 1999-05-24 2008-01-08 Hewlett-Packard Development Company, L.P. Reliable datagram
US20030056069A1 (en) * 1999-08-20 2003-03-20 Microsoft Corporation Buffering data in a hierarchical data storage environment
US20030058277A1 (en) * 1999-08-31 2003-03-27 Bowman-Amuah Michel K. A view configurer in a presentation services patterns enviroment
US20050021832A1 (en) * 1999-10-15 2005-01-27 Bennett William E. Deferred acknowledgment communications and alarm management
US7451221B2 (en) * 2000-04-07 2008-11-11 Network Appliance, Inc. Method and apparatus for election of group leaders in a distributed network
US20050198359A1 (en) * 2000-04-07 2005-09-08 Basani Vijay R. Method and apparatus for election of group leaders in a distributed network
US20050131832A1 (en) * 2000-06-16 2005-06-16 Entriq Inc., Irdeto Access B.V. Separate authentication processes to secure content
US20020152315A1 (en) * 2001-04-11 2002-10-17 Michael Kagan Reliable message transmission with packet-level resend
US20020161980A1 (en) * 2001-04-27 2002-10-31 Fujitsu Limited Storage service method, storage service user terminal device, storage service providing device, and storage medium storing storage service program
US20030093643A1 (en) * 2001-11-09 2003-05-15 Britt Joe Freeman Apparatus and method for allocating memory blocks
US20030115341A1 (en) * 2001-12-17 2003-06-19 Bhaskar Sinha Method and system for authenticating a user in a web-based environment
US7290141B2 (en) * 2002-06-27 2007-10-30 Nokia, Inc. Authentication of remotely originating network messages
US20060168262A1 (en) * 2002-07-15 2006-07-27 Soma Networks, Inc. System and method for reliable packet data transport in a computer network
US6829473B2 (en) * 2002-07-25 2004-12-07 Utstarcom, Inc. Roaming and hand-off support for prepaid billing for wireless data networks
US20040018829A1 (en) * 2002-07-25 2004-01-29 3Com Corporation Roaming and hand-off support for prepaid billing for wireless data networks
US20040103342A1 (en) * 2002-07-29 2004-05-27 Eternal Systems, Inc. Consistent message ordering for semi-active and passive replication
US6928577B2 (en) * 2002-07-29 2005-08-09 Eternal Systems, Inc. Consistent message ordering for semi-active and passive replication
US7386889B2 (en) * 2002-11-18 2008-06-10 Trusted Network Technologies, Inc. System and method for intrusion prevention in a communications network
US7421502B2 (en) * 2002-12-06 2008-09-02 International Business Machines Corporation Method and system for storage-aware flow resource management
US20040136325A1 (en) * 2003-01-09 2004-07-15 Sun Microsytems, Inc. Method and apparatus for hardware implementation independent verification of network layers
US20050015511A1 (en) * 2003-07-02 2005-01-20 Nec Laboratories America, Inc. Accelerated large data distribution in overlay networks
US20050125378A1 (en) * 2003-11-17 2005-06-09 Jun Kawada Document management apparatus, a document management method, a document management program and a recording medium storing the document management program
US20050149817A1 (en) * 2003-12-11 2005-07-07 International Business Machines Corporation Data transfer error checking
US20050132077A1 (en) * 2003-12-11 2005-06-16 International Business Machines Corporation Increasing TCP re-transmission process speed
US20050129045A1 (en) * 2003-12-11 2005-06-16 International Business Machines Corporation Limiting number of retransmission attempts for data transfer via network interface controller
US20050177635A1 (en) * 2003-12-18 2005-08-11 Roland Schmidt System and method for allocating server resources
US20060031519A1 (en) * 2004-04-30 2006-02-09 Helliwell Richard P System and method for flow control in a network
US7380080B2 (en) * 2004-05-17 2008-05-27 Hewlett-Packard Development Company, L.P. Calculating unneeded data storage credits for a data transmission to a pair of storage devices
US20050257022A1 (en) * 2004-05-17 2005-11-17 Hughes Brian W Storage device flow control
US7330910B2 (en) * 2004-05-20 2008-02-12 International Business Machines Corporation Fencing of resources allocated to non-cooperative client computers
US20060095382A1 (en) * 2004-11-04 2006-05-04 International Business Machines Corporation Universal DRM support for devices
US20060206705A1 (en) * 2005-03-10 2006-09-14 Hormuzd Khosravi Security protocols on incompatible transports
US7453879B1 (en) * 2005-04-04 2008-11-18 Sun Microsystems, Inc. Method and apparatus for determining the landing zone of a TCP packet
US20060281525A1 (en) * 2005-05-17 2006-12-14 Milo Borissov Slot type game with player input opportunity

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9332089B2 (en) 2005-05-25 2016-05-03 Microsoft Technology Licensing, Llc Data communication coordination with sequence numbers
US9331955B2 (en) 2011-06-29 2016-05-03 Microsoft Technology Licensing, Llc Transporting operations of arbitrary size over remote direct memory access
US10284626B2 (en) 2011-06-29 2019-05-07 Microsoft Technology Licensing, Llc Transporting operations of arbitrary size over remote direct memory access
US9462039B2 (en) 2011-06-30 2016-10-04 Microsoft Technology Licensing, Llc Transparent failover
US10630781B2 (en) 2011-09-09 2020-04-21 Microsoft Technology Licensing, Llc SMB2 scaleout
US20180357890A1 (en) * 2017-06-09 2018-12-13 Here Global B.V. Reversible lane active direction detection based on gnss probe data
US11647988B2 (en) 2019-11-19 2023-05-16 Siemens Medical Solutions Usa, Inc. Additional diagnostic data in parametric ultrasound medical imaging

Also Published As

Publication number Publication date
HK1121886A1 (en) 2009-04-30
HK1157959A1 (en) 2012-07-06
US20060271697A1 (en) 2006-11-30
US20150281404A1 (en) 2015-10-01
ES2604972T3 (en) 2017-03-10
EP2259548B1 (en) 2016-09-07
US9071661B2 (en) 2015-06-30
US20130097211A1 (en) 2013-04-18
US8316129B2 (en) 2012-11-20
HK1180855A1 (en) 2013-10-25
US20130091199A1 (en) 2013-04-11
CN102394872A (en) 2012-03-28
US8332526B2 (en) 2012-12-11
US8825885B2 (en) 2014-09-02
EP2259548A2 (en) 2010-12-08
US9332089B2 (en) 2016-05-03
US20130304932A1 (en) 2013-11-14
EP3098732A1 (en) 2016-11-30
HK1166901A1 (en) 2012-11-09
CN102932457A (en) 2013-02-13
CN1870642B (en) 2012-04-18
EP2317732A1 (en) 2011-05-04
US9438696B2 (en) 2016-09-06
CN1870643A (en) 2006-11-29
US8850025B2 (en) 2014-09-30
CN102394872B (en) 2015-09-02
EP2317732B1 (en) 2014-07-16
US20060271692A1 (en) 2006-11-30
ATE413653T1 (en) 2008-11-15
EP1950933B1 (en) 2011-07-13
EP1950933A1 (en) 2008-07-30
CN1870642A (en) 2006-11-29
CN1870643B (en) 2012-12-19
EP3098732B1 (en) 2018-10-17
ATE516656T1 (en) 2011-07-15
HK1099586A1 (en) 2007-08-17
CN102932457B (en) 2016-01-06
DE602005010837D1 (en) 2008-12-18
EP2259548A3 (en) 2011-02-09

Similar Documents

Publication Publication Date Title
US9332089B2 (en) Data communication coordination with sequence numbers
EP1727055B1 (en) Data communication coordination with sequence numbers
US8713665B2 (en) Systems, methods, and media for firewall control via remote system information
US7437547B2 (en) Method and computer program product for offloading processing tasks from software to hardware
US7398546B2 (en) Network communication with client-forced authentication
US8326993B2 (en) Techniques for managing terminal services sessions
US7451209B1 (en) Improving reliability and availability of a load balanced server
KR101036751B1 (en) Data communication protocol
US20040128545A1 (en) Host controlled dynamic firewall system
KR100895925B1 (en) Supplicant and authenticator intercommunication mechanism independent of underlying data link and physical layer protocols
KR101130475B1 (en) Data communication protocol
ES2604777T3 (en) Data communication coordination with sequence numbers
Shepler et al. RFC 5661: Network File System (NFS) Version 4 Minor Version 1 Protocol

Legal Events

Date Code Title Description
AS Assignment

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:034747/0417

Effective date: 20141014

Owner name: MICROSOFT TECHNOLOGY LICENSING, LLC, WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MICROSOFT CORPORATION;REEL/FRAME:039025/0454

Effective date: 20141014

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8