US20150035457A1 - Furniture arrangement and a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement - Google Patents

Furniture arrangement and a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement Download PDF

Info

Publication number
US20150035457A1
US20150035457A1 US14/381,900 US201314381900A US2015035457A1 US 20150035457 A1 US20150035457 A1 US 20150035457A1 US 201314381900 A US201314381900 A US 201314381900A US 2015035457 A1 US2015035457 A1 US 2015035457A1
Authority
US
United States
Prior art keywords
furniture
drive
drives
adjusting
electromotive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/381,900
Inventor
Armin Hille
Steffen Loley
Karsten Gehrke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dewertokin GmbH
Original Assignee
Dewertokin GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47845975&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150035457(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Dewertokin GmbH filed Critical Dewertokin GmbH
Assigned to DEWERTOKIN GMBH reassignment DEWERTOKIN GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GEHRKE, KARSTEN, HILLE, ARMIN, LOLEY, STEFFEN
Publication of US20150035457A1 publication Critical patent/US20150035457A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C20/00Head -, foot -, or like rests for beds, sofas or the like
    • A47C20/08Head -, foot -, or like rests for beds, sofas or the like with means for adjusting two or more rests simultaneously
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47CCHAIRS; SOFAS; BEDS
    • A47C20/00Head -, foot -, or like rests for beds, sofas or the like
    • A47C20/04Head -, foot -, or like rests for beds, sofas or the like with adjustable inclination
    • A47C20/041Head -, foot -, or like rests for beds, sofas or the like with adjustable inclination by electric motors

Definitions

  • the invention relates to a furniture arrangement, comprising at least two pieces of furniture according to the preamble of claim 1 .
  • the invention also relates to a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement.
  • Furniture with several supporting surfaces for supporting a person situated on the piece of furniture is widely known and used as beds, sofas, chairs and the like.
  • These pieces of furniture comprise at least one movable supporting surface which is movably mounted relative to at least one further supporting surface.
  • the movable supporting surface is a backrest part and/or a leg part which is adjustable by means of at least one electromotive furniture drive.
  • the movable supporting surface can be pivotable, displaceable or both by means of a suitable fitting.
  • a base element such as a bed frame is arranged in a height-adjustable fashion with one or several furniture drives.
  • An electromotive furniture drive comprises at least one electric motor, which is frequently arranged as a commutator DC motor.
  • the motor is provided downstream with a gear, wherein usually a DC gear motor is used.
  • the electromotive furniture drive further comprises an operating unit and a control unit.
  • the operating unit can be arranged in a wire-bound or wireless manner and comprise a number of pushbuttons, which upon actuation supply via signal transmission a control signal for electrically triggering the respective motor in the respective direction of rotation.
  • Furniture arrangements are arrangements of furniture such as two beds or double beds situated adjacent to each other. Every adjustable piece of furniture is usually provided with an electromotive furniture drive with at least one adjusting drive, a control device and an operating unit.
  • a number of motors are connected to a number of control units and jointly form a drive set, which is also known as an electromotive furniture drive.
  • a three-motor bed comprises a drive set (furniture drive) with three adjusting drives. There are also adjusting drives with an integrated control unit, to which further drives can be connected.
  • Synchronous control of adjusting drives comprises at least two adjusting drives of a common drive set (electromotive furniture drive) with a common control device. Both adjusting drives are activated and displaced simultaneously for example for height adjustment of a tabletop with two adjusting drives. Synchronous control is used for the purpose that both adjusting drives have the same adjusting speed, so that there is no inclined positioning of the tabletop. If the motor of the one adjusting drive has a lower speed due to higher load than the motor of the other adjusting drive, the speed of the faster motor is reduced by suitable measures of the common control device. In this process, the speed of the faster motor is reduced by means of PWM (pulse-width modulation).
  • PWM pulse-width modulation
  • At least two adjusting drives are displaced simultaneously (i.e. in parallel) in the case of parallel control.
  • Each adjusting drive comprises a separate control device.
  • Each drive set is inserted into a piece of furniture (e.g. two single beds). It is also possible to use several drive sets in a piece of furniture (e.g. double bed or concatenation of several lifting tables).
  • the control devices of the electromotive furniture drives are equipped with detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed of the electric motor of the at least one associated adjusting drive for parallel control, and can communicate among each other and with the operating unit, or among each other via the operating unit.
  • a furniture arrangement in accordance with the invention comprises at least two piece of furniture with one respective electromotive furniture drive for adjusting at least one movable part of each of the at least two pieces of furniture, wherein each electromotive furniture drive comprises a) at least one adjusting drive with at least one respective electric motor, a revolution speed reducing gear mechanism which is coupled thereto and which ensures that an output element is drivingly coupled and can be linearly displaced and/or rotatably moved, and b) at least one control device, wherein c) the furniture arrangement comprises an operating unit for actuating all electric motors of the adjusting drives of the electromotive furniture drives.
  • the control devices of the electromotive furniture drives are provided with detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed or the like of the electric motor of the at least one associated adjusting drive, and with at least one final control device for the variable setting of the operating voltage of the electric motor of the at least one associated adjusting drive for parallel control of the at least one adjusting drive of the one electromotive furniture drive and of the at least one adjusting drive of the other electromotive furniture drive.
  • the control devices are arranged for communication with the operating unit and among each other, or for communication among each other via the operating unit with at least one transmission link.
  • Each drive set comprises a bidirectional transmission link to the operating unit or also to a number of operating units, and to a number of drive sets or electromotive furniture drives.
  • At least one control device is arranged according to the detected drive-specific values for the transmission of corresponding signals via the at least one transmission link. This allows communication in a simple way.
  • each further control device and the operating unit is arranged for receiving the corresponding signals transmitted by the at least one control device.
  • At least one control device comprises a program for the variable setting of the operating voltage of at least one electric motor of the at least one adjusting drive, thus enabling simple setting of a speed of the electric motor.
  • the final control device for the variable setting of the operating voltage of the electric motor of the at least one associated adjusting drive is provided with a PWM control unit and/or with at least one switchable electric series resistor in series with the electric motor.
  • control devices can advantageously communicate among each other when the at least one control device of the one electromotive drive is coupled to the at least one control device of the other one of the electromotive drives via a transmission link.
  • the transmission links can be arranged in a wireless and/or wire-bound manner. This allows the use of even different drive sets.
  • Every drive set or every electromotive furniture drive comprises a control program. All control programs are arranged by means of the bidirectional transmission links for communication among each other. As a result, an exchange of the adjusting parameters (path, angle, current, voltage) of several “drive sets” can advantageously occur among each other. The communication can occur directly between the control units and/or via the manual switches as a common communication centre.
  • a method in accordance with the invention for the parallel control of at least two electromotive furniture drives of the furniture arrangement as described above comprises the following method steps: (S 1 ) detection of the current adjusting positions of the operated motors of the adjusting drives to be controlled in parallel; (S 2 ) communication of the current actual positions of the operating motors of the adjusting drives to be controlled in parallel between the control devices and comparison of said current actual positions; (S 3 ) parallel control of the operated motors of the adjusting drives to be controlled in parallel by throttling a recognized advancing motor of the adjusting drives to be controlled or acceleration of the trailing motor to a higher speed.
  • the actual positions are compared in the second method step (S 2 ) with previously determinable values, e.g. values in tables.
  • previously determinable values e.g. values in tables.
  • the values in tables are advantageous because they can be determined in advance in a simple way.
  • a throttling of the advancing motor or an acceleration of the respectively trailing motor occurs with the intensity of a previously determinable value, e.g. a value stored in a table. Since the values in the table have already been prepared in advance, a calculation or determination via algorithms for example is not necessary so that time is saved.
  • the communication between the control devices and the operating unit or between one of the control devices and the operating unit occurs in the second method step (S 2 ), thereby increasing the range of use.
  • FIG. 1 shows a schematic perspective view of an exemplary piece of furniture
  • FIGS. 2-2 a show schematic perspective views of embodiments of the operating units
  • FIG. 3 shows a schematic perspective view of an exemplary furniture arrangement
  • FIGS. 4-4 a show schematic block diagrams of parallel control arrangements in accordance with the invention of electromotive furniture drives with wireless operating units;
  • FIGS. 5-5 a show schematic block diagrams of parallel control arrangements in accordance with the invention of electromotive furniture drives with wire-bound operating units
  • FIG. 6 shows a schematic flowchart of a method in accordance with the invention for the parallel control of at least two electromotive furniture drives of a furniture arrangement.
  • FIG. 1 shows an embodiment of a piece of furniture 1 in accordance with the invention.
  • FIGS. 2 and 2 a show schematic perspective views of an operating unit 10 , 10 ′.
  • the piece of furniture 1 is shown as a bed in this case and comprises at least one support element 3 for accommodating items, upholstery, a mattress M and/or a person.
  • the support element 3 is arranged as a slatted base, as a flat support surface or the like for example and is attached to a base element 2 , which is a frame with feet in this case, for coupling the piece of furniture 1 to an installation site, e.g. a floor.
  • the support element 3 comprises a backrest part 4 and a leg part 5 , which are arranged in a movably mounted manner relative to the support element 3 and/or a further support element or relative to the base element 2 .
  • This movable arrangement is realized in this case by means of a so-called motion fitting 6 .
  • the movement is arranged to be displaceable and/or pivotable.
  • the piece of furniture 1 further comprises an electromotive furniture drive 100 , which in this case comprises two adjusting drives 7 and 8 , a control device 9 and an operating unit 10 .
  • the operating unit 10 is arranged in a wireless manner in this example.
  • the movably mounted backrest part 4 and the leg part 5 are respectively coupled to an adjusting drive 7 , 8 .
  • the backrest part 4 is coupled to the adjusting drive 7 .
  • the adjusting drive 8 is provided for moving or adjusting the leg part 5 .
  • the linear drives 7 , 8 are arranged as linear drives.
  • the linear drives comprise one or several electric motors, wherein each motor is provided downstream with a revolution speed reducing gear mechanism with at least one gear step.
  • the speed reducing gear mechanism can be provided downstream with a further gear, e.g. in form of a threaded spindle mechanism, which produces a linear movement of an output element 19 from the rotary movement of the motor.
  • the last gear element or any further gear element connected thereto forms the output element.
  • the output element of the respective adjusting drive is in connection with the respective furniture component (backrest part 4 , leg part 5 ) or alternatively with a component connected to the base frame 2 , so that the movable furniture components 4 , 5 are adjusted relative to each other or relative to the base frame 2 during operation of the electric motor of the respective adjusting drive 7 , 8 .
  • the adjusting drives 7 , 8 are connected to the control device 9 via a respective drive line 100 a , as shown in FIG. 4 .
  • Said drive line 100 a can be arranged as a pluggable cable connection for example.
  • the control device 9 comprises an electric supply unit (not shown), which provides electric power, e.g. from the grid, for the adjusting drives 7 , 8 .
  • the control device 9 is connectable to a mains connection via a mains cable with a mains plug.
  • the mains cable is not shown, but can easily be imagined.
  • the mains plug supplies the mains voltage on the input side via the mains cable to the electric supply unit of the control device 9 , which supplies a low voltage in form of a DC voltage on the secondary side and transmits this voltage to a motor control unit (also not shown) with control switches.
  • control device 9 is provided upstream with a mains-dependent voltage supply with mains input (not shown in closer detail) and with a low voltage output on the secondary side, which supplies a low voltage in form of a DC voltage via the line 9 d.
  • the piece of furniture 1 is further associated with an operating unit 10 , 10 ′, whose control elements 12 , 13 ( FIG. 2 ) control the adjusting drives 7 , 8 via the control device 9 .
  • the operating unit 10 is provided with a transmitter device or transmitter/receiver device for wireless transmission.
  • the wireless transmission can be a transmission link 23 , 23 ′ (see FIGS. 5 , 5 a , 5 b ) with radio transmission, optical transmission (e.g. infrared) and/or an ultrasonic sound transmission, wherein the control device 9 is provided with a respective transmission unit 9 a , 9 ′ a (see FIG. 5 for example).
  • the operating unit 10 ′ is arranged with an operating line 18 in a wire-bound form, which is shown in FIG. 2 a .
  • the operating line 18 can be connected to the control device 9 , e.g. by a plug-in connection. This is shown in FIG. 4 a by way of example.
  • the operating unit 10 , 10 ′ is provided with operating elements 12 , 13 , which are provided for operating a respective adjusting drive 7 , 8 .
  • the operating elements 12 , 13 are arranged as pushbuttons for example.
  • the operating elements 12 are used for moving the respectively movable furniture part in an upward direction for example and the operating elements 13 for lowering the respectively movable furniture part.
  • FIGS. 2 and 2 a show the operating units 10 , 10 ′ for six adjusting drives.
  • the operating unit 10 , 10 ′ is further provided with an indicator element 14 , e.g. a light-emitting diode.
  • the indicator element 14 is used for displaying functionality, feedback, error display etc.
  • An additional operating element 15 which can also consist of several operating elements and/or a combination operating element, is used for a so-called memory function of the adjusting drives 7 , 8 .
  • additional functions such as a reading lamp and/or heating can be controlled by means of further additional operating elements 16 , 17 .
  • the additional operating elements 15 , 16 , 17 can be arranged as pushbuttons and/or switches.
  • the control device 9 comprises control switches with switching elements for the electric motors of the adjusting drives 7 , 8 , which control switches convert the control signals of the transmission link into switching signals for switching the respective adjusting drive 7 , 8 .
  • the switching elements can be relay switches and/or semiconductor switches for example.
  • the operating elements 12 , 13 of the operating unit 10 which can be actuated manually, generate control signals which are converted in this case by the transmission unit 9 a , 9 ′ a of the control device 9 into control currents for the switching elements.
  • the operating elements 12 , 13 switch the control current of the relay switches or semiconductor switches.
  • the power switches of the relay switches or the semiconductor switches switch the high motor current of the respective adjusting drive 7 , 8 .
  • An embodiment is also possible in which the motor currents flow directly through the contacts of the operating elements 12 , 13 of the operating unit 10 .
  • the adjusting drives 7 , 8 are arranged as commutator DC motors or comprise such motors.
  • a back-EMF of the respective motor of an adjusting drive 7 , 8 is detected for so-called memory control and/or synchronous control for several adjusting drives 7 , 8 , wherein an evaluation of so-called ripples of the back-EMF is carried out.
  • a method in this connection is also described in closer detail in the document DE 10 2009 059 267 A1, wherein reference is made to this document.
  • a voltage, which drops at the resistor R 1 as a result of the motor current flowing through the resistor during the operation of the motor M 1 is measured at the connections of the resistor.
  • Synchronous control of adjusting drives comprises at least two adjusting drives of an electromotive furniture drive 100 with a common control device 9 . Both adjusting drives are activated and displaced simultaneously for example for height adjustment of a tabletop with two adjusting drives.
  • the synchronous control is used for the purpose that both adjusting drives have the same adjusting speed, so that there is no inclination of the tabletop. If the motor of the one adjusting drive has a lower speed due to higher load than the motor of the other adjusting drive, the speed of the faster motor is reduced by suitable measures of the common control device 9 . In this process, the speed of the faster motor is reduced by means of PWM (pulse-width modulation).
  • FIG. 3 shows a schematic perspective view of an exemplary furniture arrangement 200 with two pieces of furniture 1 , 1 ′ which are positioned adjacent to each other and which are respectively arranged as a bed according to FIG. 1 .
  • the furniture arrangement 200 comprises at least two pieces of furniture 1 and 1 ′.
  • the pieces of furniture 1 , 1 ′ are arranged identically. They can also be arranged as a double bed.
  • the piece of furniture 1 on the left side in FIG. 3 comprises an electromotive furniture drive 100 with two adjusting drives 7 , 8 and one control device 9 .
  • the piece of furniture 1 ′ on the right-hand side is provided with an electromotive furniture drive 100 ′ with two adjusting drives 7 ′, 8 ′ of a control device 9 ′.
  • Both electromotive furniture drives 100 , 100 ′ are usually equipped with an operating unit 10 . In this case, only one operating unit 10 is provided with which both electromotive furniture drives 100 and 100 ′ can be operated. The other operating unit is not needed.
  • a parallel control in accordance with the invention of at least two adjusting drives 7 , 7 ′ is provided.
  • the adjusting drives 7 , 7 ′ belong to different electromotive furniture drives 1 and 1 ′.
  • This means that the one adjusting drive 7 of the first electromotive furniture drive 1 is connected to the control device 9 of the first electromotive furniture drive 1 , wherein the other adjusting drive 7 ′ of the second electromotive furniture drive 1 ′ is connected to the control device 9 ′ of the second electromotive furniture drive 1 ′.
  • This configuration is shown in FIGS. 4 , 4 a and 4 b and will be explained below in closer detail in connection with these drawings.
  • Parallel control is provided in this example both for the adjusting drives 7 and 7 ′ and also for the adjusting drives 8 and 8 ′ for one respective leg part 5 , 5 ′ of a piece of furniture 1 , 1 ′.
  • the adjusting drives 7 and 7 ′ and also the adjusting drives 8 and 8 ′ can respectively be actuated by a single operating unit 10 simultaneously. It is necessary in this respect that both the backrest parts 4 , 4 ′ and also the leg parts 5 , 5 ′ are respectively adjusted at the same speed or at least at very similar speeds. In the event of an advancing adjusting drive 7 , the adjusting speed (i.e. the speed of this motor) is reduced in relation to the motor of the slower adjusting drive 7 ′.
  • FIGS. 4 to 4 b show schematic block diagrams of embodiments of parallel control arrangements in accordance with the invention of electromotive furniture drives 100 , 100 ′ with wireless operating units 10 .
  • FIGS. 5 to 5 a show schematic block diagrams of embodiments of parallel control arrangements in accordance with the invention of electromotive furniture drives 100 , 100 ′ with wire-bound operating units 10 .
  • the one adjusting drive 7 is connected via the drive line 100 a to the first control device 9 .
  • the other adjusting drive 7 ′ is connected via the drive line 100 ′ a to the second control device 9 ′.
  • FIG. 4 shows a first embodiment in which the operating unit 10 communicates with the two control devices 9 and 9 ′.
  • a first wireless transmission link 23 is arranged between the operating unit 10 and a transmission unit 9 a of the first control device 9 .
  • a second wireless transmission link 23 ′ exists between the operating unit 10 and a transmission unit 9 ′ a of the second control device 9 ′.
  • the wireless transmission links 23 and 23 ′ are bidirectional transmission links, wherein the transmission units 9 a and 9 ′ a are arranged for transmitting and receiving data.
  • control signals are transmitted simultaneously via the two transmission links 23 and 23 ′ to the control devices 9 and 9 ′ in order to simultaneously activate and deactivate the adjusting drives 7 and 7 ′.
  • FIG. 4 a shows a second embodiment, wherein only one bidirectional transmission link 23 is arranged between the operating unit 10 and the transmission unit 9 a of the first control device 9 .
  • a connection to the second control device 9 ′ is provided by means of a bidirectional wireless transmission link 21 between transmission units 9 b and 9 ′ b of the first control device 9 and second control device 9 ′.
  • a control signal is transmitted at first via the transmission link 23 to the transmission unit 9 a of the first control device 9 , which then relays this signal to the connected adjusting drive 7 and via the transmission unit 9 b to the second control device 9 ′, which on its part simultaneously controls the second adjusting drive 7 ′.
  • the transmission link 21 between the control devices 9 and 9 ′ is arranged in a wire-bound way.
  • Only the first control device 9 comprises a wireless transmission unit 9 a for communication with the operating unit 10 .
  • the operating unit 10 ′ is connected with its operating line 18 to a distributor unit 20 .
  • the distributor unit 20 is connected via a first control line 19 to the first control device 9 and via a second control line 19 ′ to the second control device 9 ′. All connecting lines 18 , 19 , 19 ′ can be connected to the distributor unit 20 in a pluggable fashion or in a permanently-wired way.
  • the function of the distributor unit 20 is that every single conductor of the operating line 18 is connected to a conductor of the first control line 19 and simultaneously to a conductor of the second control line 19 ′. This allows parallel control of the adjusting drives 7 and 7 ′ in such a way that they can be activated and deactivated simultaneously by means of the operating unit 10 ′.
  • the first control line 19 forms a first transmission link 23 , wherein the second control line 19 ′ forms a second transmission link 23 ′.
  • the operating line 18 is a further common transmission link 23 a in this case.
  • a wire-bound transmission link 21 is provided between the control devices 9 and 9 ′, wherein the operating unit 10 ′ is connected with its operating line 18 to the first control device 9 .
  • the operating line 18 forms a transmission link 23 in this case.
  • the wire-bound transmission links 23 a , 23 , 23 ′ in form of wire lines 18 , 19 , 19 ′ can be bidirectional transmission links.
  • Each control device 9 , 9 ′ is equipped with a microprocessor or microcomputer for example and comprises a control program. All control programs are arranged by means of the bidirectional transmission links 21 , 22 between the control devices 9 and 9 ′ for communication among each other.
  • An exchange of adjusting parameters of the electromotive furniture drives 100 , 100 ′ can occur among each other (adjusting path, adjusting angle, motor current, motor voltage), whose number is not limited to the two furniture drives 100 , 100 ′ which are shown in the embodiments.
  • This exchange of adjusting parameters of the electromotive furniture drives 100 , 100 ′ can also occur via the operating unit 10 , 10 ′ as a common communication center.
  • the operating unit 10 , 10 ′ is provided with a respective intelligent control unit, i.e. a microprocessor or microcomputer.
  • Throttling of a motor occurs via a PWM control, reduction of the operating voltage of the respective motor, or two-point controller (brief deactivation), three-point controller (intermediate stage with heating resistor or other voltage or current flow limiting means), n-point controller with more than three points.
  • the detection of the drive-specific values is realized with detection means by measuring the motor current via the voltage drop of a resistor in the motor line.
  • the motor speed can occur via incremental rotary pulse generators or by counting ripples of the back-EMF of the respective motor.
  • An adjusting position is determined via the potentiometer (rotary potentiometer, linear potentiometer) and communication with further electromotive furniture drives 100 , 100 ′.
  • the furniture arrangement 200 according to FIG. 3 is produced by simple collation or assembly.
  • the operating unit 10 is subjected to an assignment process, in which so-called pairing occurs.
  • the respective operating elements 12 , 13 ( FIG. 2 ) are assigned to the respective piece of furniture 1 , 1 ′ or the respective electromotive furniture drive 100 , 100 ′.
  • Each electromotive furniture drive 100 , 100 ′ has a separate address.
  • the operating unit 10 , 10 ′ arranges the pairing.
  • FIG. 6 shows a schematic flowchart of a method in accordance with the invention for the parallel control of at least two electromotive furniture drives 100 , 100 ′ of a furniture arrangement 200 .
  • the current adjusting positions of the operated motors of the adjusting drives 7 , 7 ′ controlled in parallel are detected in a first method step S 1 .
  • step S 2 This is followed in a second method step S 2 by a communication of the actual positions between the control devices 9 , 9 ′, wherein they are compared to each other.
  • the motor of said advancing drive is throttled by the associated control device 9 , 9 ′ in a third method step S 3 , or the other motor is accelerated to a higher speed.
  • the actual positions are compared in the second method step S 2 to previously determinable values such as values in a table.
  • a third method step S 3 by the throttling of the advancing motor or an acceleration of the respectively trailing motor with the intensity of a previously determined value, e.g. a value stored in a table.
  • one of the additional operating elements 15 , 16 , 17 is arranged as a button or switch for only the one electromotive furniture drive 100 , 100 ′ and is provided for switching over.
  • an operating unit 10 , 10 ′ can be used with a plurality of operating elements 12 , 13 for operating all electromotive furniture drives 100 , 100 ′.
  • Adjusting path information can be obtained by counting ripples of the back-EMF of the associated motor.
  • Hall sensors potentiometers, light barrier generators are used. It is also obviously possible that limit switches are arranged along the adjusting path at specific positions which produce path information or can be used for correcting an adjusting path value.
  • control devices ( 9 , 9 ′) of the electromotive furniture drives ( 100 , 100 ′) comprise detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed or the like of the electric motor of the at least one associated adjusting drive ( 7 , 7 ′; 8 , 8 ′), or are connected to such detection means.
  • drive-specific values are the adjusting path of a linearly displaceable output element of an adjusting drive ( 7 , 7 ′; 8 , 8 ′) or the adjusting angle of a rotating or pivoting output element of another adjusting drive which is not described here in closer detail.
  • an alternative embodiment provides a plurality of operating units 10 which control the furniture arrangement 200 .
  • the at least one adjusting drive 7 , 7 ′, 8 , 8 ′ can contain a control device 9 , 9 ′, wherein the adjusting drive 7 , 7 ′, 8 , 8 ′ and the control device 9 , 9 ′ have a common housing.

Abstract

The invention relates to a furniture arrangement (200) comprising at least two pieces of furniture (1, 1′), each respectively having an electromotive furniture drive (100, 100′) for adjusting at least one movable part (4, 5) of each at least two pieces of furniture (1, 1′), wherein each electromotive furniture drive (100, 100′) comprises a) at least one adjusting drive (7, 7′; 8, 8′) with respectively at least one electric motor, a speed-reducing gear mechanism coupled thereto and to which an output element is drivingly coupled, said output element being linearly displaceable and/or can be rotated, and b) at least one control device (9, 9′), wherein c) the furniture arrangement (200) comprises an operating unit (10) for actuating all the electric motors of the adjusting drive (7, 7′; 8, 8′) of the electromotive furniture drive (100, 100′). Said control devices (9, 9′) of electromotive furniture drives (100, 100′) are equipped with detection means for detecting actuation-specific values such as the motor current, motor operating voltage, motor speed or similar of the electric motor of the at least one associated adjusting drive (7, 7′; 8, 8′) and comprising at least one controlling device for variably controlling the operating voltage of the electric motor of the at least one associated adjusting drive (7, 7′; 8, 8′) for a parallel control of the at least one adjusting drive (7, 8) of one of the electromotive furniture drives (100) and of the at least one adjusting drive (7′, 8′) of the other electromotive furniture drive (100′). Said control devices (9, 9′) are designed to communicate with the operating unit (10, 10′) and between themselves, or to communicate between themselves by means of the operating unit (10, 10′) with at least one transmission path (21, 22, 23, 23 a , 23′). The invention also relates to the parallel control of at least two electromotive furniture drives (100, 100′) of a furniture arrangement (200).

Description

  • The invention relates to a furniture arrangement, comprising at least two pieces of furniture according to the preamble of claim 1. The invention also relates to a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement.
  • Furniture with several supporting surfaces for supporting a person situated on the piece of furniture is widely known and used as beds, sofas, chairs and the like. These pieces of furniture comprise at least one movable supporting surface which is movably mounted relative to at least one further supporting surface. The movable supporting surface is a backrest part and/or a leg part which is adjustable by means of at least one electromotive furniture drive. For this purpose, the movable supporting surface can be pivotable, displaceable or both by means of a suitable fitting. It is also possible that a base element such as a bed frame is arranged in a height-adjustable fashion with one or several furniture drives.
  • An electromotive furniture drive comprises at least one electric motor, which is frequently arranged as a commutator DC motor. The motor is provided downstream with a gear, wherein usually a DC gear motor is used. The electromotive furniture drive further comprises an operating unit and a control unit. The operating unit can be arranged in a wire-bound or wireless manner and comprise a number of pushbuttons, which upon actuation supply via signal transmission a control signal for electrically triggering the respective motor in the respective direction of rotation.
  • Furniture arrangements are arrangements of furniture such as two beds or double beds situated adjacent to each other. Every adjustable piece of furniture is usually provided with an electromotive furniture drive with at least one adjusting drive, a control device and an operating unit.
  • A number of motors are connected to a number of control units and jointly form a drive set, which is also known as an electromotive furniture drive. A three-motor bed comprises a drive set (furniture drive) with three adjusting drives. There are also adjusting drives with an integrated control unit, to which further drives can be connected.
  • DE 93 194 84 U1 describes two individual beds with one respective electromotive furniture drive each. The furniture drives or drive sets are connected to each other in a controlled fashion by a line for power supply, wherein additional contacts for the conduction of switching signals to the power supply connections are provided. It is possible in this process to control with an operating unit the adjusting drives of both electromotive furniture drives and drive sets.
  • Synchronous control of adjusting drives comprises at least two adjusting drives of a common drive set (electromotive furniture drive) with a common control device. Both adjusting drives are activated and displaced simultaneously for example for height adjustment of a tabletop with two adjusting drives. Synchronous control is used for the purpose that both adjusting drives have the same adjusting speed, so that there is no inclined positioning of the tabletop. If the motor of the one adjusting drive has a lower speed due to higher load than the motor of the other adjusting drive, the speed of the faster motor is reduced by suitable measures of the common control device. In this process, the speed of the faster motor is reduced by means of PWM (pulse-width modulation).
  • In contrast to synchronous control, at least two adjusting drives, of which each belongs to a separate drive set, are displaced simultaneously (i.e. in parallel) in the case of parallel control. Each adjusting drive comprises a separate control device.
  • Several drive sets can only be connected with difficulty to each other according to the state of the art because
      • the level of mounting work increases extremely (additional plug connections for each control unit, additional cable connections between the control units, additional mounting work for laying cables between two or more pieces of furniture);
      • increased level of programming work (synchronous controls according to the state of the art are implemented by microprocessor control, the communication with a further control unit must be adjusted according to the criteria of the bus connection for example).
  • Each drive set is inserted into a piece of furniture (e.g. two single beds). It is also possible to use several drive sets in a piece of furniture (e.g. double bed or concatenation of several lifting tables).
  • It is the object of the present invention to provide an improved furniture arrangement with the parallel control of at least two electromotive furniture drives (i.e. drive sets).
  • This object is achieved by a furniture arrangement with the features of claim 1.
  • It is a further object of the invention to provide an improved method for parallel control.
  • This object is achieved by a method with the features of claim 9.
  • The control devices of the electromotive furniture drives are equipped with detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed of the electric motor of the at least one associated adjusting drive for parallel control, and can communicate among each other and with the operating unit, or among each other via the operating unit. This provides a simple solution, wherein the same drive sets can be connected in furniture arrangements for parallel control.
  • Accordingly, a furniture arrangement in accordance with the invention comprises at least two piece of furniture with one respective electromotive furniture drive for adjusting at least one movable part of each of the at least two pieces of furniture, wherein each electromotive furniture drive comprises a) at least one adjusting drive with at least one respective electric motor, a revolution speed reducing gear mechanism which is coupled thereto and which ensures that an output element is drivingly coupled and can be linearly displaced and/or rotatably moved, and b) at least one control device, wherein c) the furniture arrangement comprises an operating unit for actuating all electric motors of the adjusting drives of the electromotive furniture drives. The control devices of the electromotive furniture drives are provided with detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed or the like of the electric motor of the at least one associated adjusting drive, and with at least one final control device for the variable setting of the operating voltage of the electric motor of the at least one associated adjusting drive for parallel control of the at least one adjusting drive of the one electromotive furniture drive and of the at least one adjusting drive of the other electromotive furniture drive. The control devices are arranged for communication with the operating unit and among each other, or for communication among each other via the operating unit with at least one transmission link.
  • This allows simple connection of the control signals originating from a number of manual switches to the respective pieces of furniture or to the respective drive set.
  • It is advantageous if at least one transmission link is arranged in a bidirectional manner. Each drive set comprises a bidirectional transmission link to the operating unit or also to a number of operating units, and to a number of drive sets or electromotive furniture drives.
  • In one embodiment, at least one control device is arranged according to the detected drive-specific values for the transmission of corresponding signals via the at least one transmission link. This allows communication in a simple way.
  • It is further advantageous if each further control device and the operating unit is arranged for receiving the corresponding signals transmitted by the at least one control device.
  • It is provided in a further embodiment that at least one control device comprises a program for the variable setting of the operating voltage of at least one electric motor of the at least one adjusting drive, thus enabling simple setting of a speed of the electric motor.
  • It is further provided that the final control device for the variable setting of the operating voltage of the electric motor of the at least one associated adjusting drive is provided with a PWM control unit and/or with at least one switchable electric series resistor in series with the electric motor.
  • The control devices can advantageously communicate among each other when the at least one control device of the one electromotive drive is coupled to the at least one control device of the other one of the electromotive drives via a transmission link.
  • The transmission links can be arranged in a wireless and/or wire-bound manner. This allows the use of even different drive sets.
  • Every drive set or every electromotive furniture drive comprises a control program. All control programs are arranged by means of the bidirectional transmission links for communication among each other. As a result, an exchange of the adjusting parameters (path, angle, current, voltage) of several “drive sets” can advantageously occur among each other. The communication can occur directly between the control units and/or via the manual switches as a common communication centre.
  • A method in accordance with the invention for the parallel control of at least two electromotive furniture drives of the furniture arrangement as described above comprises the following method steps: (S1) detection of the current adjusting positions of the operated motors of the adjusting drives to be controlled in parallel; (S2) communication of the current actual positions of the operating motors of the adjusting drives to be controlled in parallel between the control devices and comparison of said current actual positions; (S3) parallel control of the operated motors of the adjusting drives to be controlled in parallel by throttling a recognized advancing motor of the adjusting drives to be controlled or acceleration of the trailing motor to a higher speed.
  • In one embodiment, the actual positions are compared in the second method step (S2) with previously determinable values, e.g. values in tables. The values in tables are advantageous because they can be determined in advance in a simple way.
  • It is provided in a further embodiment that in the third method step (S3) a throttling of the advancing motor or an acceleration of the respectively trailing motor occurs with the intensity of a previously determinable value, e.g. a value stored in a table. Since the values in the table have already been prepared in advance, a calculation or determination via algorithms for example is not necessary so that time is saved.
  • In yet a further embodiment, the communication between the control devices and the operating unit or between one of the control devices and the operating unit occurs in the second method step (S2), thereby increasing the range of use.
  • The invention will be explained in closer detail by reference to the enclosed drawings wherein:
  • FIG. 1 shows a schematic perspective view of an exemplary piece of furniture;
  • FIGS. 2-2 a show schematic perspective views of embodiments of the operating units;
  • FIG. 3 shows a schematic perspective view of an exemplary furniture arrangement;
  • FIGS. 4-4 a show schematic block diagrams of parallel control arrangements in accordance with the invention of electromotive furniture drives with wireless operating units;
  • FIGS. 5-5 a show schematic block diagrams of parallel control arrangements in accordance with the invention of electromotive furniture drives with wire-bound operating units, and
  • FIG. 6 shows a schematic flowchart of a method in accordance with the invention for the parallel control of at least two electromotive furniture drives of a furniture arrangement.
  • FIG. 1 shows an embodiment of a piece of furniture 1 in accordance with the invention. FIGS. 2 and 2 a show schematic perspective views of an operating unit 10, 10′.
  • The piece of furniture 1 is shown as a bed in this case and comprises at least one support element 3 for accommodating items, upholstery, a mattress M and/or a person. The support element 3 is arranged as a slatted base, as a flat support surface or the like for example and is attached to a base element 2, which is a frame with feet in this case, for coupling the piece of furniture 1 to an installation site, e.g. a floor.
  • The support element 3 comprises a backrest part 4 and a leg part 5, which are arranged in a movably mounted manner relative to the support element 3 and/or a further support element or relative to the base element 2. This movable arrangement is realized in this case by means of a so-called motion fitting 6. The movement is arranged to be displaceable and/or pivotable.
  • The piece of furniture 1 further comprises an electromotive furniture drive 100, which in this case comprises two adjusting drives 7 and 8, a control device 9 and an operating unit 10. The operating unit 10 is arranged in a wireless manner in this example.
  • The movably mounted backrest part 4 and the leg part 5 are respectively coupled to an adjusting drive 7, 8. As a result, the backrest part 4 is coupled to the adjusting drive 7. The adjusting drive 8 is provided for moving or adjusting the leg part 5.
  • The linear drives 7, 8 are arranged as linear drives. The linear drives comprise one or several electric motors, wherein each motor is provided downstream with a revolution speed reducing gear mechanism with at least one gear step. The speed reducing gear mechanism can be provided downstream with a further gear, e.g. in form of a threaded spindle mechanism, which produces a linear movement of an output element 19 from the rotary movement of the motor. The last gear element or any further gear element connected thereto forms the output element. The output element of the respective adjusting drive is in connection with the respective furniture component (backrest part 4, leg part 5) or alternatively with a component connected to the base frame 2, so that the movable furniture components 4, 5 are adjusted relative to each other or relative to the base frame 2 during operation of the electric motor of the respective adjusting drive 7, 8.
  • The adjusting drives 7, 8 are connected to the control device 9 via a respective drive line 100 a, as shown in FIG. 4. Said drive line 100 a can be arranged as a pluggable cable connection for example. The control device 9 comprises an electric supply unit (not shown), which provides electric power, e.g. from the grid, for the adjusting drives 7, 8. For this purpose, the control device 9 is connectable to a mains connection via a mains cable with a mains plug. The mains cable is not shown, but can easily be imagined. The mains plug supplies the mains voltage on the input side via the mains cable to the electric supply unit of the control device 9, which supplies a low voltage in form of a DC voltage on the secondary side and transmits this voltage to a motor control unit (also not shown) with control switches.
  • As an alternative, the control device 9 is provided upstream with a mains-dependent voltage supply with mains input (not shown in closer detail) and with a low voltage output on the secondary side, which supplies a low voltage in form of a DC voltage via the line 9 d.
  • The piece of furniture 1 is further associated with an operating unit 10, 10′, whose control elements 12, 13 (FIG. 2) control the adjusting drives 7, 8 via the control device 9.
  • The operating unit 10 according to FIG. 2 is provided with a transmitter device or transmitter/receiver device for wireless transmission. The wireless transmission can be a transmission link 23, 23′ (see FIGS. 5, 5 a, 5 b) with radio transmission, optical transmission (e.g. infrared) and/or an ultrasonic sound transmission, wherein the control device 9 is provided with a respective transmission unit 9 a, 9a (see FIG. 5 for example).
  • In another embodiment, the operating unit 10′ is arranged with an operating line 18 in a wire-bound form, which is shown in FIG. 2 a. The operating line 18 can be connected to the control device 9, e.g. by a plug-in connection. This is shown in FIG. 4 a by way of example.
  • The operating unit 10, 10′ is provided with operating elements 12, 13, which are provided for operating a respective adjusting drive 7, 8. The operating elements 12, 13 are arranged as pushbuttons for example. The operating elements 12 are used for moving the respectively movable furniture part in an upward direction for example and the operating elements 13 for lowering the respectively movable furniture part. FIGS. 2 and 2 a show the operating units 10, 10′ for six adjusting drives.
  • The operating unit 10, 10′ is further provided with an indicator element 14, e.g. a light-emitting diode. The indicator element 14 is used for displaying functionality, feedback, error display etc.
  • An additional operating element 15, which can also consist of several operating elements and/or a combination operating element, is used for a so-called memory function of the adjusting drives 7, 8.
  • Furthermore, additional functions such as a reading lamp and/or heating can be controlled by means of further additional operating elements 16, 17.
  • The additional operating elements 15, 16, 17 can be arranged as pushbuttons and/or switches.
  • When an operating element 12, 13 is actuated, a control signal is transmitted for triggering the respective adjusting drive 7, 8 via the transmission link 23, 23′ in a wireless or wired-bound fashion to the control device 9. The control device 9 comprises control switches with switching elements for the electric motors of the adjusting drives 7, 8, which control switches convert the control signals of the transmission link into switching signals for switching the respective adjusting drive 7, 8. The switching elements can be relay switches and/or semiconductor switches for example. The operating elements 12, 13 of the operating unit 10, which can be actuated manually, generate control signals which are converted in this case by the transmission unit 9 a, 9a of the control device 9 into control currents for the switching elements. In the case of the wire-bound operating unit 10′, the operating elements 12, 13 switch the control current of the relay switches or semiconductor switches. In both cases, the power switches of the relay switches or the semiconductor switches switch the high motor current of the respective adjusting drive 7, 8. An embodiment is also possible in which the motor currents flow directly through the contacts of the operating elements 12, 13 of the operating unit 10.
  • The adjusting drives 7, 8 are arranged as commutator DC motors or comprise such motors.
  • A back-EMF of the respective motor of an adjusting drive 7, 8 is detected for so-called memory control and/or synchronous control for several adjusting drives 7, 8, wherein an evaluation of so-called ripples of the back-EMF is carried out. A method in this connection is also described in closer detail in the document DE 10 2009 059 267 A1, wherein reference is made to this document.
  • For the purpose of detecting the back-EMF of the motor M1, a voltage, which drops at the resistor R1 as a result of the motor current flowing through the resistor during the operation of the motor M1, is measured at the connections of the resistor.
  • Synchronous control of adjusting drives comprises at least two adjusting drives of an electromotive furniture drive 100 with a common control device 9. Both adjusting drives are activated and displaced simultaneously for example for height adjustment of a tabletop with two adjusting drives. The synchronous control is used for the purpose that both adjusting drives have the same adjusting speed, so that there is no inclination of the tabletop. If the motor of the one adjusting drive has a lower speed due to higher load than the motor of the other adjusting drive, the speed of the faster motor is reduced by suitable measures of the common control device 9. In this process, the speed of the faster motor is reduced by means of PWM (pulse-width modulation).
  • In contrast to synchronous control, parallel control will now be explained in connection with FIG. 3.
  • FIG. 3 shows a schematic perspective view of an exemplary furniture arrangement 200 with two pieces of furniture 1, 1′ which are positioned adjacent to each other and which are respectively arranged as a bed according to FIG. 1.
  • The furniture arrangement 200 comprises at least two pieces of furniture 1 and 1′. The pieces of furniture 1, 1′ are arranged identically. They can also be arranged as a double bed. The piece of furniture 1 on the left side in FIG. 3 comprises an electromotive furniture drive 100 with two adjusting drives 7, 8 and one control device 9. Similarly, the piece of furniture 1′ on the right-hand side is provided with an electromotive furniture drive 100′ with two adjusting drives 7′, 8′ of a control device 9′. Both electromotive furniture drives 100, 100′ are usually equipped with an operating unit 10. In this case, only one operating unit 10 is provided with which both electromotive furniture drives 100 and 100′ can be operated. The other operating unit is not needed.
  • For this purpose, a parallel control in accordance with the invention of at least two adjusting drives 7, 7′ is provided. The adjusting drives 7, 7′ belong to different electromotive furniture drives 1 and 1′. This means that the one adjusting drive 7 of the first electromotive furniture drive 1 is connected to the control device 9 of the first electromotive furniture drive 1, wherein the other adjusting drive 7′ of the second electromotive furniture drive 1′ is connected to the control device 9′ of the second electromotive furniture drive 1′. This configuration is shown in FIGS. 4, 4 a and 4 b and will be explained below in closer detail in connection with these drawings.
  • Parallel control is provided in this example both for the adjusting drives 7 and 7′ and also for the adjusting drives 8 and 8′ for one respective leg part 5, 5′ of a piece of furniture 1, 1′. In other words, the adjusting drives 7 and 7′ and also the adjusting drives 8 and 8′ can respectively be actuated by a single operating unit 10 simultaneously. It is necessary in this respect that both the backrest parts 4, 4′ and also the leg parts 5, 5′ are respectively adjusted at the same speed or at least at very similar speeds. In the event of an advancing adjusting drive 7, the adjusting speed (i.e. the speed of this motor) is reduced in relation to the motor of the slower adjusting drive 7′.
  • FIGS. 4 to 4 b show schematic block diagrams of embodiments of parallel control arrangements in accordance with the invention of electromotive furniture drives 100, 100′ with wireless operating units 10. FIGS. 5 to 5 a show schematic block diagrams of embodiments of parallel control arrangements in accordance with the invention of electromotive furniture drives 100, 100′ with wire-bound operating units 10.
  • The one adjusting drive 7 is connected via the drive line 100 a to the first control device 9. The other adjusting drive 7′ is connected via the drive line 100a to the second control device 9′.
  • FIG. 4 shows a first embodiment in which the operating unit 10 communicates with the two control devices 9 and 9′. A first wireless transmission link 23 is arranged between the operating unit 10 and a transmission unit 9 a of the first control device 9. A second wireless transmission link 23′ exists between the operating unit 10 and a transmission unit 9a of the second control device 9′.
  • The wireless transmission links 23 and 23′ are bidirectional transmission links, wherein the transmission units 9 a and 9a are arranged for transmitting and receiving data.
  • By actuating the operating unit 10, the control signals are transmitted simultaneously via the two transmission links 23 and 23′ to the control devices 9 and 9′ in order to simultaneously activate and deactivate the adjusting drives 7 and 7′.
  • FIG. 4 a shows a second embodiment, wherein only one bidirectional transmission link 23 is arranged between the operating unit 10 and the transmission unit 9 a of the first control device 9. A connection to the second control device 9′ is provided by means of a bidirectional wireless transmission link 21 between transmission units 9 b and 9b of the first control device 9 and second control device 9′.
  • When the operating unit 10 is actuated, a control signal is transmitted at first via the transmission link 23 to the transmission unit 9 a of the first control device 9, which then relays this signal to the connected adjusting drive 7 and via the transmission unit 9 b to the second control device 9′, which on its part simultaneously controls the second adjusting drive 7′.
  • In the embodiment according to FIG. 4 b, the transmission link 21 between the control devices 9 and 9′ is arranged in a wire-bound way. Only the first control device 9 comprises a wireless transmission unit 9 a for communication with the operating unit 10.
  • FIG. 5 shows a parallel control arrangement of two electromotive furniture drives 100, 100′ with the respective control device 9, 9′ and one respective adjusting drive 7, 7′. The adjusting drives 7, 7′ are respectively connected (as already shown in FIGS. 4 to 4 b) to one of the control devices 9, 9′ by one respective drive line 100 a, 100a. This connection can also be arranged rigidly as a pluggable connection, which is not shown here in closer detail.
  • The operating unit 10′ is connected with its operating line 18 to a distributor unit 20. The distributor unit 20 is connected via a first control line 19 to the first control device 9 and via a second control line 19′ to the second control device 9′. All connecting lines 18, 19, 19′ can be connected to the distributor unit 20 in a pluggable fashion or in a permanently-wired way.
  • The function of the distributor unit 20 is that every single conductor of the operating line 18 is connected to a conductor of the first control line 19 and simultaneously to a conductor of the second control line 19′. This allows parallel control of the adjusting drives 7 and 7′ in such a way that they can be activated and deactivated simultaneously by means of the operating unit 10′.
  • The first control line 19 forms a first transmission link 23, wherein the second control line 19′ forms a second transmission link 23′. The operating line 18 is a further common transmission link 23 a in this case.
  • In the embodiment according to FIG. 5 a, a wire-bound transmission link 21 is provided between the control devices 9 and 9′, wherein the operating unit 10′ is connected with its operating line 18 to the first control device 9. The operating line 18 forms a transmission link 23 in this case.
  • The wire-bound transmission links 23 a, 23, 23′ in form of wire lines 18, 19, 19′ can be bidirectional transmission links.
  • The lines 18, 19, 19′ of the two embodiments according to FIGS. 5 and 5 a can both be control lines and also power lines which conduct motor current.
  • Each control device 9, 9′ is equipped with a microprocessor or microcomputer for example and comprises a control program. All control programs are arranged by means of the bidirectional transmission links 21, 22 between the control devices 9 and 9′ for communication among each other. An exchange of adjusting parameters of the electromotive furniture drives 100, 100′ can occur among each other (adjusting path, adjusting angle, motor current, motor voltage), whose number is not limited to the two furniture drives 100, 100′ which are shown in the embodiments.
  • This exchange of adjusting parameters of the electromotive furniture drives 100, 100′ can also occur via the operating unit 10, 10′ as a common communication center. The operating unit 10, 10′ is provided with a respective intelligent control unit, i.e. a microprocessor or microcomputer.
  • A very simple configuration is possible because all control devices 9, 9′ and all control programs of every single electromotive furniture drive 100, 100′ can be arranged identically. A further piece of furniture 1, 1′ in the furniture arrangement 200 can be added at any time.
  • If both adjusting drives 7, 7′ are switched on simultaneously, communication of drive-specific values such as motors speed, motor current, motor voltage occurs between the control devices 9 and 9′. These drive-specific values are detected by detection means of the respective control device 9, 9′. A control program can detect the advancement of the respectively connected motor of the adjusting drives 7, 7′. The advancing motor is then automatically throttled by its associated control device 9, 9′.
  • Throttling of a motor occurs via a PWM control, reduction of the operating voltage of the respective motor, or two-point controller (brief deactivation), three-point controller (intermediate stage with heating resistor or other voltage or current flow limiting means), n-point controller with more than three points.
  • The detection of the drive-specific values is realized with detection means by measuring the motor current via the voltage drop of a resistor in the motor line. The motor speed can occur via incremental rotary pulse generators or by counting ripples of the back-EMF of the respective motor.
  • An adjusting position is determined via the potentiometer (rotary potentiometer, linear potentiometer) and communication with further electromotive furniture drives 100, 100′.
  • The furniture arrangement 200 according to FIG. 3 is produced by simple collation or assembly. The operating unit 10 is subjected to an assignment process, in which so-called pairing occurs. In this process, the respective operating elements 12, 13 (FIG. 2) are assigned to the respective piece of furniture 1, 1′ or the respective electromotive furniture drive 100, 100′.
  • Each electromotive furniture drive 100, 100′ has a separate address.
      • The address is determined by way of a random generator, wherein there are approximately 24 million possibilities.
      • This address is preferably the series number of the respective electromotive furniture drive 100, 100′.
      • Automatic assignment of the address can occur during mounting.
      • Automatic assignment of the address can also be made during first start-up.
  • The operating unit 10, 10′ arranges the pairing.
      • Seeking is performed for existing electromotive furniture drives 100, 100′. This is followed by synchronization with all found electromotive furniture drives 100, 100′ (see cordless phone and logging on to base station).
      • Assignment of the respective electromotive furniture drive 100, 100′ to the key assignment in the operating unit 10, 10′ occurs by key combination of the operating unit 10, 10′.
  • FIG. 6 shows a schematic flowchart of a method in accordance with the invention for the parallel control of at least two electromotive furniture drives 100, 100′ of a furniture arrangement 200.
  • The current adjusting positions of the operated motors of the adjusting drives 7, 7′ controlled in parallel are detected in a first method step S1.
  • This is followed in a second method step S2 by a communication of the actual positions between the control devices 9, 9′, wherein they are compared to each other.
  • If a difference is determined, i.e. an advancing drive is recognized, the motor of said advancing drive is throttled by the associated control device 9, 9′ in a third method step S3, or the other motor is accelerated to a higher speed.
  • In an alternative embodiment, the actual positions are compared in the second method step S2 to previously determinable values such as values in a table.
  • This is followed in a third method step S3 by the throttling of the advancing motor or an acceleration of the respectively trailing motor with the intensity of a previously determined value, e.g. a value stored in a table.
  • The invention is not limited to the embodiments as described above. It can be modified within the scope of the enclosed claims.
  • It is thus possible for example that in the case of an operating unit 10, 10′ with a number of operating elements 12, 13 one of the additional operating elements 15, 16, 17 (see FIG. 2) is arranged as a button or switch for only the one electromotive furniture drive 100, 100′ and is provided for switching over.
  • In an alternative embodiment, an operating unit 10, 10′ can be used with a plurality of operating elements 12, 13 for operating all electromotive furniture drives 100, 100′.
  • For the purpose of throttling an advancing motor, it can also be deactivated briefly. It is obviously also possible that temporarily a series resistor is switched into the motor line in series with the associated motor. This is possible in such a way that said series resistor is bridged during operation by a relay switch for example which is opened for throttling.
  • Adjusting path information can be obtained by counting ripples of the back-EMF of the associated motor.
  • It is also possible that Hall sensors, potentiometers, light barrier generators are used. It is also obviously possible that limit switches are arranged along the adjusting path at specific positions which produce path information or can be used for correcting an adjusting path value.
  • As described initially, the control devices (9, 9′) of the electromotive furniture drives (100, 100′) comprise detection means for detecting drive-specific values such as motor current, motor operating voltage, motor speed or the like of the electric motor of the at least one associated adjusting drive (7, 7′; 8, 8′), or are connected to such detection means. Alternative drive-specific values are the adjusting path of a linearly displaceable output element of an adjusting drive (7, 7′; 8, 8′) or the adjusting angle of a rotating or pivoting output element of another adjusting drive which is not described here in closer detail.
  • Furthermore, an alternative embodiment provides a plurality of operating units 10 which control the furniture arrangement 200. According to another alternative embodiment, the at least one adjusting drive 7, 7′, 8, 8′ can contain a control device 9, 9′, wherein the adjusting drive 7, 7′, 8, 8′ and the control device 9, 9′ have a common housing.
  • LIST OF REFERENCE NUMERALS
    • 1, 1′ Piece of furniture
    • 2, 2′ Base element
    • 3, 3′ Support element
    • 4, 4′ Backrest part
    • 5, 5′ Leg part
    • 6, 6 Motion fitting
    • 7, 7′; 8, 8′ Adjusting drive
    • 9, 9′ Control device
    • 9 a, 9a; 9 b, 9b Receiver
    • 10, 10′ Operating unit
    • 11 Housing
    • 12, 13 Operating element
    • 14 Indicator element
    • 15, 16, 17 Additional operating element
    • 18 Operating line
    • 19, 19′ Control line
    • 20 Distributor unit
    • 21, 22 Transmission link
    • 23, 23′ Transmission link
    • 100, 100′ Electromotive furniture drive
    • 100 a, 100a Drive line
    • 200 Furniture arrangement
    • M, M′ Mattress
    • S1 . . . 3 Method step

Claims (15)

1.-12. (canceled)
13. A furniture arrangement, comprising:
at least two pieces of furniture;
at least two electromotive furniture drives respectively provided for the two pieces of furniture for adjusting at least one movable part of the at least two pieces of furniture, each said electromotive furniture drive comprising at least one adjusting drive having at least one electric motor, a revolution speed reducing gear mechanism coupled to the at least one electric motor and coupled in driving relationship to an output element for linear displacement and/or rotatably movement of the output element, and at least one control device; and
an operating unit configured to actuate the electric motors of the adjusting drives of the electromotive furniture drives,
wherein the control devices of the electromotive furniture drives have detectors for detecting drive-specific values of the at least one associated adjusting drive and with at least one final control device for a variable setting of an operating voltage of the electric motor of the at least one associated adjusting drive for parallel control of the at least one adjusting drive of the one electromotive furniture drive and the at least one adjusting drive of the other electromotive furniture drive,
wherein the control devices are configured for communication with the operating unit and among each other, or for communication among each other via the operating unit with at least one transmission link.
14. The furniture arrangement of claim 13, wherein the at least one transmission link is bidirectional.
15. The furniture arrangement of claim 13, wherein at least one control device is configured according to the detected drive-specific values for transmission of corresponding signals via the at least one transmission link.
16. The furniture arrangement of claim 15, wherein each further control device and the operating unit are configured to receive corresponding signals transmitted by the at least one control device.
17. The furniture arrangement of claim 16, wherein at least one control device comprises a program for the variable setting of the operating voltage of the at least one electric motor of the at least one adjusting drive.
18. The furniture arrangement of claim 13, wherein the final control device for the variable setting of the operating voltage of the electric motor of the at least one associated adjusting drive includes a PWM control unit and/or at least one switchable electric series resistor connected in series with the electric motor.
19. The furniture arrangement of claim 13, wherein the at least one control device of the one of the electromotive drives is coupled via a transmission link to the at least one control device of the other one of the electromotive drives.
20. The furniture arrangement of claim 13, wherein the transmission link is wireless and/or wire-bound.
21. A method for the parallel control of at least two electromotive furniture drives of a furniture arrangement, each of the electromotive furniture drives having an adjusting drive, comprising the steps of:
detecting current adjusting positions of operated motors of the adjusting drives to be controlled in parallel;
communicating the current actual positions of the operating motors of the adjusting drives to be controlled in parallel between control devices of the electromotive furniture drives and comparing the current actual positions; and
controlling the operated motors of the adjusting drives in parallel by throttling a recognized advancing motor of the adjusting drives to be controlled in parallel, or accelerating of a trailing one of the motors to a higher speed.
22. The method of claim 21, wherein the actual positions are compared with previously determinable values.
23. The method of claim 22, wherein the previously determinable values are values in a table.
24. The method of claim 21, wherein the controlling step includes a throttling of an advancing one of the motors or an acceleration of a trailing one of the motors at an intensity of a previously determinable value.
25. The method of claim 24, wherein the previously determinable value is a value stored in a table.
26. The method of claim 21, wherein the communicating step is implemented between the control devices and an operating unit or between one of the control devices and the operating unit.
US14/381,900 2012-02-28 2013-02-28 Furniture arrangement and a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement Abandoned US20150035457A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012101623.2 2012-02-28
DE102012101623 2012-02-28
PCT/EP2013/054086 WO2013127950A1 (en) 2012-02-28 2013-02-28 Furniture arrangement and method for the parallel control of at least two electromotive furniture drives of a furniture arrangement

Publications (1)

Publication Number Publication Date
US20150035457A1 true US20150035457A1 (en) 2015-02-05

Family

ID=47845975

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/381,900 Abandoned US20150035457A1 (en) 2012-02-28 2013-02-28 Furniture arrangement and a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement

Country Status (6)

Country Link
US (1) US20150035457A1 (en)
EP (1) EP2819548B1 (en)
CN (1) CN104302211B (en)
DK (1) DK2819548T3 (en)
ES (1) ES2568922T3 (en)
WO (1) WO2013127950A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170258239A1 (en) * 2015-11-06 2017-09-14 Shanghai Sinco Furniture Products Co., Ltd. Electric Mattress
US9792810B2 (en) 2013-11-04 2017-10-17 Dewertokin Gmbh Handheld remote control unit for electrical devices, and an electromotive furniture drive with a handheld remote control unit
EP3285391A1 (en) * 2016-08-17 2018-02-21 LOGICDATA Electronic & Software Entwicklungs GmbH Furniture control system and method for controlling an adjustable furniture system
CN108983694A (en) * 2018-07-13 2018-12-11 深圳市晓控通信科技有限公司 A kind of multifunctional intellectual home equipment that space occupied is small
USD885350S1 (en) * 2018-09-28 2020-05-26 Dewertokin Gmbh Electrical switch points
CN113645596A (en) * 2021-07-14 2021-11-12 麒盛科技股份有限公司 Networking pairing method and device for electric bed based on Internet of things
US11419554B2 (en) 2015-12-30 2022-08-23 Dewertokin Technology Group Co., Ltd Sleeping or reclining furniture and electric motor furniture drive for such furniture
US11517122B2 (en) * 2018-04-13 2022-12-06 Dewertokin Technology Group Co., Ltd Furniture drive and piece of furniture having such a furniture drive
US11684163B2 (en) 2014-08-27 2023-06-27 Dewertokin Technology Group Co., Ltd Electromotive furniture drive, and item of functional furniture having an electromotive furniture drive
USD995137S1 (en) * 2020-07-01 2023-08-15 Keeson Technology Corporation Limited Adjustable bed with audio equipment
USD1000149S1 (en) * 2020-07-28 2023-10-03 Keeson Technology Corporation Limited Adjustable bed
US20240023720A1 (en) * 2022-07-21 2024-01-25 Chuan-Hang Shih Electric bed

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387663B2 (en) 2017-03-06 2022-07-12 Dewertokin Technology Group Co., Ltd Piece of furniture and electromotive furniture drive comprising a charging apparatus
US10537184B2 (en) * 2017-11-07 2020-01-21 Dreamwell, Ltd. Split adjustable mattress foundation for multiple users
DE102018108867A1 (en) * 2018-04-13 2019-10-17 Dewertokin Gmbh Control device for a furniture drive and method for controlling a furniture drive
CN111671269A (en) * 2020-06-11 2020-09-18 天柱县老本家具有限责任公司 Device and method for driving multiple electric furniture in parallel control

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008598A (en) * 1998-04-22 1999-12-28 Patmark Company, Inc. Hand-held controller for bed and mattress assembly
US6079065A (en) * 1998-04-22 2000-06-27 Patmark Company, Inc. Bed assembly with an air mattress and controller
US20030006869A1 (en) * 2000-03-20 2003-01-09 Dewert Antriebs- Und Systemtechnik Gmbh & Co. Kg, Electromotive linear drive
US20050012477A1 (en) * 2003-07-18 2005-01-20 Piana Joseph M. JBOX and safety zone PIR system
US20050219059A1 (en) * 1993-07-12 2005-10-06 Ulrich Daniel J Bed status information system for hospital beds
US7080994B1 (en) * 2005-06-09 2006-07-25 Lewis Jeremy L Adjustable power outlet
US20070210917A1 (en) * 2004-08-02 2007-09-13 Collins Williams F Jr Wireless bed connectivity
US7319386B2 (en) * 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US7321811B1 (en) * 2006-09-14 2008-01-22 Rawls-Meehan Martin B Methods and systems of adjustable bed position control
US20080262657A1 (en) * 2007-04-17 2008-10-23 L&P Property Management Company System and method for controlling adjustable furniture
US20090038074A1 (en) * 2005-04-21 2009-02-12 Hans-Peter Barthelt Hospital Bed with Double-Motor Drive
US20090100599A1 (en) * 2006-09-14 2009-04-23 Rawls-Meehan Martin B Adjustable bed position control
US20090119843A1 (en) * 2007-11-12 2009-05-14 Valence Broadband, Inc. Monitoring patient support exiting and initiating response
US20090139029A1 (en) * 2006-09-14 2009-06-04 Rawls-Meehan Martin B Adjustable bed frame
US20090267420A1 (en) * 2006-03-18 2009-10-29 Henning Kristensen off-Mains Switch and a Control Box for Electrically Driven Articles of Furniture
US7702481B2 (en) * 2005-02-23 2010-04-20 Stryker Canadian Management Inc. Diagnostic and control system for a patient support
US20100199432A1 (en) * 2008-12-04 2010-08-12 Rawls-Meehan Martin B Truss-reinforced adjustable bed frame
US20100231421A1 (en) * 2006-09-14 2010-09-16 Rawls-Meehan Martin B Adjustable bed position control
US7868740B2 (en) * 2007-08-29 2011-01-11 Hill-Rom Services, Inc. Association of support surfaces and beds
US20110205061A1 (en) * 2010-02-19 2011-08-25 Wilson Bradley T Patient room and bed management apparatus and system
US20110208541A1 (en) * 2010-02-19 2011-08-25 Wilson Bradley T Patient room and bed management apparatus and system
US20120138067A1 (en) * 2007-09-14 2012-06-07 Rawls-Meehan Martin B System and method for mitigating snoring in an adjustable bed
US8821418B2 (en) * 2007-05-02 2014-09-02 Earlysense Ltd. Monitoring, predicting and treating clinical episodes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9319484U1 (en) * 1993-12-20 1994-04-28 Koch Dietmar Adjustment device for baby carriers in beds
FR2753893A1 (en) * 1996-01-16 1998-04-03 Bm Sieges Bed-settee with electrically operated conversion and reconfiguration
US20030115672A1 (en) * 2001-12-21 2003-06-26 Newkirk David C. Dual patient support control system
DE20207509U1 (en) * 2002-05-14 2002-09-05 Dewert Antriebs Systemtech Electromotive actuator
DE202004018913U1 (en) * 2004-04-01 2005-08-11 Cimosys Ag Modular power-operated furniture framework for support of seat upholstery has two parallel rails for sliding carriages hinged to longitudinal frame members carrying pockets for ends of slats
SE527764C2 (en) 2004-10-19 2006-05-30 Oestergrens Elmotor Ab Height adjustable furniture and method of raising and lowering height adjustable furniture
DE102009059267A1 (en) 2009-12-22 2011-06-30 Dewert Antriebs- und Systemtechnik GmbH, 32278 Method and device for positioning an output member of an electric motor drive, in particular for a piece of furniture

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050219059A1 (en) * 1993-07-12 2005-10-06 Ulrich Daniel J Bed status information system for hospital beds
US20070247310A1 (en) * 1993-07-12 2007-10-25 Ulrich Daniel J Bed status information system for hospital beds
US6008598A (en) * 1998-04-22 1999-12-28 Patmark Company, Inc. Hand-held controller for bed and mattress assembly
US6079065A (en) * 1998-04-22 2000-06-27 Patmark Company, Inc. Bed assembly with an air mattress and controller
US6311348B1 (en) * 1998-04-22 2001-11-06 Hill-Rom Services, Inc. Bed assembly with an air mattress and controller
US6396224B1 (en) * 1998-04-22 2002-05-28 Hill-Rom Services, Inc. Hand-held controller for bed and mattress assembly
US20030006869A1 (en) * 2000-03-20 2003-01-09 Dewert Antriebs- Und Systemtechnik Gmbh & Co. Kg, Electromotive linear drive
US6879073B2 (en) * 2000-03-20 2005-04-12 Dewert Antriebs- Und Systemtechnik Gmbh & Co. Kg Electromotive linear drive
US20050012477A1 (en) * 2003-07-18 2005-01-20 Piana Joseph M. JBOX and safety zone PIR system
US7319386B2 (en) * 2004-08-02 2008-01-15 Hill-Rom Services, Inc. Configurable system for alerting caregivers
US20110074571A1 (en) * 2004-08-02 2011-03-31 Collins Jr Williams F Wireless bed connectivity
US7852208B2 (en) * 2004-08-02 2010-12-14 Hill-Rom Services, Inc. Wireless bed connectivity
US20070210917A1 (en) * 2004-08-02 2007-09-13 Collins Williams F Jr Wireless bed connectivity
US7702481B2 (en) * 2005-02-23 2010-04-20 Stryker Canadian Management Inc. Diagnostic and control system for a patient support
US20090038074A1 (en) * 2005-04-21 2009-02-12 Hans-Peter Barthelt Hospital Bed with Double-Motor Drive
US7080994B1 (en) * 2005-06-09 2006-07-25 Lewis Jeremy L Adjustable power outlet
US20090267420A1 (en) * 2006-03-18 2009-10-29 Henning Kristensen off-Mains Switch and a Control Box for Electrically Driven Articles of Furniture
US20080120776A1 (en) * 2006-08-29 2008-05-29 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104758A1 (en) * 2006-08-29 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20120110738A1 (en) * 2006-08-29 2012-05-10 Rawls-Meehan Martin B Adjustable bed with an actuator safety slot
US20080127418A1 (en) * 2006-08-29 2008-06-05 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20090100599A1 (en) * 2006-09-14 2009-04-23 Rawls-Meehan Martin B Adjustable bed position control
US7933669B2 (en) * 2006-09-14 2011-04-26 Martin B Rawls-Meehan Control of an adjustable bed and a multimedia device associated with the bed
US20080104757A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104750A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104759A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104756A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080109959A1 (en) * 2006-09-14 2008-05-15 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115272A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115282A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115275A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115280A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115281A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115273A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115277A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115276A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115279A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115274A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080115278A1 (en) * 2006-09-14 2008-05-22 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104755A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080120775A1 (en) * 2006-09-14 2008-05-29 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080120778A1 (en) * 2006-09-14 2008-05-29 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080120777A1 (en) * 2006-09-14 2008-05-29 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080120779A1 (en) * 2006-09-14 2008-05-29 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080104760A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US8926535B2 (en) * 2006-09-14 2015-01-06 Martin B. Rawls-Meehan Adjustable bed position control
US7465280B2 (en) * 2006-09-14 2008-12-16 Rawls-Meehan Martin B Methods and systems of mounting a vibration motor to an adjustable bed
US20080104761A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080092294A1 (en) * 2006-09-14 2008-04-24 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20090121660A1 (en) * 2006-09-14 2009-05-14 Rawls-Meehan Martin B Controlling adjustable bed features with a hand-held remote control
US8909378B2 (en) * 2006-09-14 2014-12-09 Martin B Rawls-Meehan Adjustable bed position control
US20090139029A1 (en) * 2006-09-14 2009-06-04 Rawls-Meehan Martin B Adjustable bed frame
US20080092291A1 (en) * 2006-09-14 2008-04-24 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US20080092293A1 (en) * 2006-09-14 2008-04-24 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US8869328B2 (en) * 2006-09-14 2014-10-28 Martin B Rawls-Meehan System of two-way communication in an adjustable bed with memory
US20100231421A1 (en) * 2006-09-14 2010-09-16 Rawls-Meehan Martin B Adjustable bed position control
US7805785B2 (en) * 2006-09-14 2010-10-05 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US20080092292A1 (en) * 2006-09-14 2008-04-24 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US8375488B2 (en) * 2006-09-14 2013-02-19 Martin B. Rawls-Meehan Adjustable bed frame
US20120119887A1 (en) * 2006-09-14 2012-05-17 Rawls-Meehan Martin B System of two-way wireless adjustable bed control via a home network
US20080071200A1 (en) * 2006-09-14 2008-03-20 Rawls-Meehan Martin B Methods and systems of mounting a vibration motor to an adjustable bed
US20080104754A1 (en) * 2006-09-14 2008-05-08 Rawls-Meehan Martin B Methods and systems of an adjustable bed
US7979169B2 (en) * 2006-09-14 2011-07-12 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US20120119886A1 (en) * 2006-09-14 2012-05-17 Rawls-Meehan Martin B Closed feedback loop to verify a position of an adjustable bed
US20120112890A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B System of adjustable bed control via a home network
US8019486B2 (en) * 2006-09-14 2011-09-13 Martin B Rawls-Meehan Voice command control of adjustable bed functions
US8032263B2 (en) * 2006-09-14 2011-10-04 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US20120112891A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B System of secondary device control and adjustable bed control via a feedback loop
US8032960B2 (en) * 2006-09-14 2011-10-11 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US8046115B2 (en) * 2006-09-14 2011-10-25 Martin B Rawls-Meehan Common control of an adjustable bed and a second system using stored preferences
US8046114B2 (en) * 2006-09-14 2011-10-25 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US8046117B2 (en) * 2006-09-14 2011-10-25 Martin B Rawls-Meehan Wireless control of an adjustable bed
US8050805B2 (en) * 2006-09-14 2011-11-01 Martin B Rawls-Meehan Methods and systems of an adjustable bed
US20110291795A1 (en) * 2006-09-14 2011-12-01 Rawls-Meehan Martin B Wireless control of an adjustable bed
US8069512B2 (en) * 2006-09-14 2011-12-06 Martin B Rawls-Meehan Adjustable bed frame
US8078336B2 (en) * 2006-09-14 2011-12-13 Martin B Rawls-Meehan Two-way communication between a bed facility controller and a remote control for the bed facility
US7321811B1 (en) * 2006-09-14 2008-01-22 Rawls-Meehan Martin B Methods and systems of adjustable bed position control
US20120057685A1 (en) * 2006-09-14 2012-03-08 Rawls-Meehan Martin B Control of an adjustable bed through a network
US20120056729A1 (en) * 2006-09-14 2012-03-08 Rawls-Meehan Martin B Two-way communication between a bed facility controller and a remote control for the bed facility
US20120110740A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B Adjustable bed frame
US20120116591A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B Feedback loop in control of an adjustable bed including a memory
US20120112892A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B System of adjustable bed control to a memory position via a home network
US20120110739A1 (en) * 2006-09-14 2012-05-10 Rawls-Meehan Martin B Closed feedback loop for touch screen of an adjustable bed
US20080262657A1 (en) * 2007-04-17 2008-10-23 L&P Property Management Company System and method for controlling adjustable furniture
US8821418B2 (en) * 2007-05-02 2014-09-02 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US7868740B2 (en) * 2007-08-29 2011-01-11 Hill-Rom Services, Inc. Association of support surfaces and beds
US20120013452A1 (en) * 2007-08-29 2012-01-19 Mcneely Craig A Association of support surfaces and beds
US20110072583A1 (en) * 2007-08-29 2011-03-31 Mcneely Craig A Association of support surfaces and beds
US8031057B2 (en) * 2007-08-29 2011-10-04 Hill-Rom Services, Inc. Association of support surfaces and beds
US8604916B2 (en) * 2007-08-29 2013-12-10 Hill-Rom Services, Inc. Association of support surfaces and beds
US20120186019A1 (en) * 2007-09-14 2012-07-26 Rawls-Meehan Martin B System for tandem bed communication
US20120138067A1 (en) * 2007-09-14 2012-06-07 Rawls-Meehan Martin B System and method for mitigating snoring in an adjustable bed
US20090119843A1 (en) * 2007-11-12 2009-05-14 Valence Broadband, Inc. Monitoring patient support exiting and initiating response
US20100199432A1 (en) * 2008-12-04 2010-08-12 Rawls-Meehan Martin B Truss-reinforced adjustable bed frame
US8334777B2 (en) * 2010-02-19 2012-12-18 Hill-Rom Services, Inc. Patient room and bed management apparatus and system
US20110205061A1 (en) * 2010-02-19 2011-08-25 Wilson Bradley T Patient room and bed management apparatus and system
US8799011B2 (en) * 2010-02-19 2014-08-05 Hill-Rom Services, Inc. Patient room and bed management apparatus and system
US20110208541A1 (en) * 2010-02-19 2011-08-25 Wilson Bradley T Patient room and bed management apparatus and system
US20140343968A1 (en) * 2010-02-19 2014-11-20 Hill-Rom Services, Inc. Patient Room and Bed Management Apparatus and System

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9792810B2 (en) 2013-11-04 2017-10-17 Dewertokin Gmbh Handheld remote control unit for electrical devices, and an electromotive furniture drive with a handheld remote control unit
US11684163B2 (en) 2014-08-27 2023-06-27 Dewertokin Technology Group Co., Ltd Electromotive furniture drive, and item of functional furniture having an electromotive furniture drive
US20170258239A1 (en) * 2015-11-06 2017-09-14 Shanghai Sinco Furniture Products Co., Ltd. Electric Mattress
US11419554B2 (en) 2015-12-30 2022-08-23 Dewertokin Technology Group Co., Ltd Sleeping or reclining furniture and electric motor furniture drive for such furniture
US11419553B2 (en) 2015-12-30 2022-08-23 Dewertokin Technology Group Co., Ltd Sleeping or reclining furniture, analyzing unit for a sensor of sleeping or reclining furniture, and method for analyzing signals of a sensor
US11638559B2 (en) 2015-12-30 2023-05-02 Dewertokin Technology Group Co., Ltd Sleeping or reclining furniture with a sensor
US20190183239A1 (en) * 2016-08-17 2019-06-20 Logicdata Electronic & Software Entwicklungs Gmbh Furniture control system and method for controlling an adjustable furniture system
WO2018033421A1 (en) * 2016-08-17 2018-02-22 Logicdata Electronic & Software Entwicklungs Gmbh Furniture control system and method for controlling an adjustable furniture system
EP3285391A1 (en) * 2016-08-17 2018-02-21 LOGICDATA Electronic & Software Entwicklungs GmbH Furniture control system and method for controlling an adjustable furniture system
US11517122B2 (en) * 2018-04-13 2022-12-06 Dewertokin Technology Group Co., Ltd Furniture drive and piece of furniture having such a furniture drive
CN108983694A (en) * 2018-07-13 2018-12-11 深圳市晓控通信科技有限公司 A kind of multifunctional intellectual home equipment that space occupied is small
USD885350S1 (en) * 2018-09-28 2020-05-26 Dewertokin Gmbh Electrical switch points
USD995137S1 (en) * 2020-07-01 2023-08-15 Keeson Technology Corporation Limited Adjustable bed with audio equipment
USD1000149S1 (en) * 2020-07-28 2023-10-03 Keeson Technology Corporation Limited Adjustable bed
CN113645596A (en) * 2021-07-14 2021-11-12 麒盛科技股份有限公司 Networking pairing method and device for electric bed based on Internet of things
US20240023720A1 (en) * 2022-07-21 2024-01-25 Chuan-Hang Shih Electric bed

Also Published As

Publication number Publication date
WO2013127950A1 (en) 2013-09-06
EP2819548A1 (en) 2015-01-07
CN104302211B (en) 2016-11-16
ES2568922T3 (en) 2016-05-05
DK2819548T3 (en) 2016-05-17
EP2819548B1 (en) 2016-02-24
CN104302211A (en) 2015-01-21

Similar Documents

Publication Publication Date Title
US20150035457A1 (en) Furniture arrangement and a method for the parallel control of at least two electromotive furniture drives of a furniture arrangement
US9836034B2 (en) Control unit for a piece of furniture
CN111163664A (en) Electrically adjustable furniture with a drive motor
US9713387B2 (en) Electromotive furniture drive for a piece of furniture, a method for monitoring a pulse-width ratio of an electromotive furniture drive, and a corresponding piece of furniture
US9265131B2 (en) Intelligent lighting device with multiple luminaires, in particular free-standing luminaires or desk-mounted luminaires and a method for operating a lighting device of this type
CA3066765C (en) Motor control device
DK2673878T3 (en) Electromotive furniture drive with a power supply unit
US6069465A (en) Group control system for light regulating devices
US20070056781A1 (en) Power driven wheelchair
US10376075B2 (en) Electromotive furniture drive, furniture and methods for controlling an electromotive furniture drive
CA2982701C (en) Device for controlling height-adjustable tables
AU2015333588A1 (en) An operating system for, and a method of, operating an article of furniture
CN111511253B (en) Electromotive furniture drive, piece of furniture and method for detecting the position of an electromotive furniture drive
CN111671269A (en) Device and method for driving multiple electric furniture in parallel control
JP2022523178A (en) Modular furniture system
JP7108438B2 (en) cooking device
CN101267704B (en) Pneumatically-operated switch system
JP3691390B2 (en) Electric blind device
KR102600536B1 (en) Control method for controlling modular furniture system
DE60031802T2 (en) vacuum cleaner
JP2020035697A (en) Induction heating cooking device and control method thereof
CN116540613A (en) Intelligent control equipment for electric appliance
JPH0652678B2 (en) Central control device

Legal Events

Date Code Title Description
AS Assignment

Owner name: DEWERTOKIN GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HILLE, ARMIN;LOLEY, STEFFEN;GEHRKE, KARSTEN;REEL/FRAME:034234/0616

Effective date: 20140909

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION