US20150072001A1 - Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative - Google Patents

Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative Download PDF

Info

Publication number
US20150072001A1
US20150072001A1 US14/203,268 US201414203268A US2015072001A1 US 20150072001 A1 US20150072001 A1 US 20150072001A1 US 201414203268 A US201414203268 A US 201414203268A US 2015072001 A1 US2015072001 A1 US 2015072001A1
Authority
US
United States
Prior art keywords
dosage form
thiazolidinedione
tablet
usp
minutes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/203,268
Inventor
Unchalee Kositprapa
Robert I. Goldfarb
John R. Cardinal
Avinash Nangia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Finance LLC
Original Assignee
Watson Pharmaceuticals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=35060820&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150072001(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US10/664,803 external-priority patent/US7785627B2/en
Application filed by Watson Pharmaceuticals Inc filed Critical Watson Pharmaceuticals Inc
Priority to US14/203,268 priority Critical patent/US20150072001A1/en
Publication of US20150072001A1 publication Critical patent/US20150072001A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • A61K9/209Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat containing drug in at least two layers or in the core and in at least one outer layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/155Amidines (), e.g. guanidine (H2N—C(=NH)—NH2), isourea (N=C(OH)—NH2), isothiourea (—N=C(SH)—NH2)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/4261,3-Thiazoles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0004Osmotic delivery systems; Sustained release driven by osmosis, thermal energy or gas
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2027Organic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/282Organic compounds, e.g. fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2806Coating materials
    • A61K9/2833Organic macromolecular compounds
    • A61K9/286Polysaccharides, e.g. gums; Cyclodextrin
    • A61K9/2866Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics

Definitions

  • the present invention relates to a pharmaceutical dosage form comprising an antihyperglycemic drug, in combination with a thiazolidinedione derivative. More specifically, the present invention relates to an oral dosage form comprising a biguanide e.g. metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts described in U.S. Pat. Nos. 3,957,853 and 4,080,472 which are incorporated herein by reference in combination with a thiazolidinedione derivative as described in U.S. Pat. No. 4,687,777 also incorporated herein by reference.
  • a biguanide e.g. metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts described in U.S. Pat. Nos. 3,957,853 and 4,080,472 which are incorporated herein by reference in combination with a
  • extended release tablets which have an osmotically active drug core surrounded by a semi-permeable membrane. These tablets function by allowing the aqueous components of a fluid such as gastric or intestinal fluid to permeate the coating membrane and dissolve the active ingredient so the resultant drug solution can be released through a passageway in the coating membrane.
  • a fluid such as gastric or intestinal fluid
  • the active ingredient is insoluble in the permeating fluid, it can be pushed through the passageway by an expanding agent such as a hydrogel.
  • Some representative examples of these osmotic tablet systems can be found in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,034,758; 4,077,407 and 4,783,337.
  • U.S. Pat. No. 3,952,741 teaches an osmotic device wherein the active agent is released from a core surrounded by a semipermeable membrane only after sufficient pressure has developed within the membrane to burst or rupture the membrane at a weak portion of the membrane
  • U.S. Pat. Nos. 4,777,049 and 4,851,229 describe osmotic dosage forms comprising a semipermeable wall surrounding a core.
  • the core contains an active ingredient and a modulating agent wherein the modulating agent causes the active ingredient to be released through a passageway in the semipermeable membrane in a pulsed manner.
  • Further refinements have included modifications to the semipermeable membrane surrounding the active core such as varying the proportions of the components that form the membrane, e.g. U.S. Pat. Nos. 5,178,867, 4,587,117 and 4,522,625 or increasing the number of coatings surrounding the active core, e.g. U.S. Pat. Nos. 5,650,170 and 4,892,739.
  • Certain controlled or sustained release formulations that employ antihyperglycemic drugs such as metformin hydrochloride have been limited to the use of an expanding or gelling agent to control the release of the drug from the dosage form.
  • This limited research is exemplified by the teachings of WO 96/08243 and by the GLUCOPHAGETM XR product insert which is a controlled release metformin HCl product commercially available from Bristol-Myers Squibb Co.
  • EPO 0 749 751 (which is incorporated herein by reference) teaches pharmaceutical compositions comprising an insulin sensitivity enhancer, which could be a thiazolidinedione compound, in combination with other antidiabetics. More specifically, EPO 0 749 751 teaches that the preferred insulin sensitivity enhancer is pioglitazone, which can be combined with other antidiabetics such as metformin, phenformin or buformin, and further that these drugs can be associated (mixed and/or coated) with conventional excipients to provide taste masking or sustained release behavior.
  • the first active drug is an antihyperglycemic compound.
  • the present invention further provides for a second active drug which preferably is a thiazolidinedione derivative.
  • the novel dosage form described herein provides for delivery of first and second active drugs such that the bioavailability of either drug is not decreased by the presence of food.
  • the present invention relates to a pharmaceutical dosage form comprising a first active drug, preferably an antihyperglycemic drug, in combination with a second active drug, preferably a thiazolidinedione derivative. More specifically, the present invention relates to an oral dosage form comprising a first active drug comprising a biguanide such as metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts, in combination with a second active drug comprising a thiazolidinedione derivative
  • a biguanide such as metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts
  • a dosage form comprising a first and second active drug, wherein the first active drug is formulated as a controlled release core, preferably an osmotic tablet, with or without a gelling or expanding polymer.
  • the second active ingredient may be part of the controlled release core or it may preferably be combined with the controlled release core in a manner that provides for immediate release of the second active ingredient.
  • the second active ingredient can be incorporated into a membrane that is applied to the core or the second active ingredient may be applied to a coated or uncoated controlled release core.
  • the second active drug which may be the thiazolidinedione derivative
  • the antihyperglycemic component is provided as a controlled release formulation in the dosage form.
  • This immediate release portion of the formulation should provide peak plasma levels (T max ) of 1-12 hours preferably, 1-4 hours of the thiazolidinedione derivative, while the controlled release portion of the formulation may provide peak plasma levels (T max ) of 8-12 hours of the antihyperglycemic component.
  • the dosage form according to the subject invention may be administered once a day, preferably with or after a meal, and most preferably with or after the evening meal.
  • the subject dosage form can provide therapeutic levels of the drug throughout the day with peak plasma levels (T max ) of the antihyperglycemic drug being obtained between 8-12 hours after administration.
  • the subject invention concerns a pharmaceutical formulation or dosage form comprising a first active drug comprising an antihyperglycemic drug in combination with a second active drug comprising a thiazolidinedione derivative.
  • the antihyperglycemic drug is a biguanide e.g. metformin or buformin or a pharmaceutically acceptable salt thereof.
  • the antihyperglycemic drug is delivered in a controlled release manner from a tablet core, preferably an osmotic tablet core with or without a gelling or swelling polymer.
  • the tablet core should include the antihyperglycemic drug and at least one pharmaceutically acceptable excipient.
  • the tablet core includes the antihyperglycemic drug, a binding agent and an absorption enhancer, and the tablet core is preferably coated with a polymeric coating to form a membrane around the tablet and drilled to create one passageway on each side of the membrane.
  • the second active drug comprises a thiazolidinedione derivative, and is preferably applied to the membrane of the tablet core and provides for either immediate or controlled release of said thiazolidinedione derivative.
  • antihyperglycemic drugs refers to drugs that are useful in controlling or managing noninsulin-dependent diabetes mellitus (NIDDM).
  • NIDDM noninsulin-dependent diabetes mellitus
  • Antihyperglycemic drugs include the biguanides such as metformin, phenformin or buformin or the like, and pharmaceutically acceptable salts, isomers or derivatives thereof.
  • thiazolidinedione derivative refers to drugs that are useful for controlling or managing NIDDM. These include, but are not limited to, troglitazone, rosiglitazone, pioglitazone, ciglitazone or the like, and pharmaceutically acceptable salts, isomers or derivatives thereof.
  • binding agent refers to any conventionally known pharmaceutically acceptable binder such as polyvinyl pyrrolidone, hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, ethylcellulose, polymethacrylate, polyvinylalcohol, waxes and the like. Mixtures of the aforementioned binding agents may also be used.
  • the preferred binding agents are water soluble materials such as polyvinyl pyrrolidone having a weight average molecular weight of 25,000 to 3,000,000.
  • the binding agent may comprise approximately about 0 to about 40% of the total weight of the core and preferably about 3% to about 15% of the total weight of the core. In one embodiment, the use of a binding agent in the core is optional.
  • the core may optionally comprise an absorption enhancer.
  • the absorption enhancer can be any type of absorption enhancer commonly known in the art such as a fatty acid, a surfactant (anionic, cationic, amphoteric), a chelating agent, a bile salt or mixtures thereof.
  • absorption enhancers examples include lecithin, fatty acids such as capric acid, oleic acid and their monoglycerides, surfactants such as sodium lauryl sulfate, sodium taurocholate and polysorbate 80, chelating agents such as citric acid, phytic acid, ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis( ⁇ -aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA).
  • the core may comprise approximately 0 to about 20% of the absorption enhancer based on the total weight of the core and most preferably about 2% to about 10% of the total weight of the core.
  • the core of the present invention is preferably formed by granulating an antihyperglycemic drug with a binding agent and compressing the granules with the addition of a lubricant and absorption enhancer into a tablet.
  • the core may also be formed by dry granulating the core ingredients by passing them through a roller compactor and compressing the granules with the addition of a lubricant into tablets. Direct compression may also be employed for tabletting. Other commonly known granulation procedures are known in the art. Additionally, other excipients such as lubricants, pigments or dyes may also be employed in the formulation of the subject invention.
  • gelling or swelling polymer refers to polymers that gel, swell or expand in the presence of water or biological fluids.
  • Representative examples of gelling or swelling polymers are high molecular weight hydroxpropyl methylcellulose (such as METHOCEL® K 100M, which is commercially available from Dow Chemical) and high molecular weight polyethylene oxides (such as POLYOX WSR 301, WSR 303 or WSR COAGULANT).
  • METHOCEL® K 100M which is commercially available from Dow Chemical
  • high molecular weight polyethylene oxides such as POLYOX WSR 301, WSR 303 or WSR COAGULANT.
  • Other gelling or swelling polymers are described in U.S. Pat. No. 4,522,625 (which is incorporated herein by reference).
  • the core formed as described herein can be coated with a membrane or sustained release coating.
  • Materials that are useful in forming the membrane or sustained release coating are ethylcellulose, cellulose esters, cellulose diesters, cellulose triesters, cellulose ethers, cellulose ester-ether, cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate and cellulose acetate butyrate.
  • Other suitable polymers are described in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,008,719; 4,036,228 and 4,612,008 (which are incorporated herein by reference).
  • the most preferred membrane or sustained release coating material is cellulose acetate comprising an acetyl content of 39.3 to 40.3%, and is commercially available from Eastman Fine Chemicals.
  • the membrane or sustained release coating can include one of the above-described polymers and a flux-enhancing agent.
  • the flux enhancing agent can increase the volume of fluid imbibed into the core to enable the dosage form to dispense substantially all of the antihyperglycemic drug through the passageway and/or the porous membrane.
  • the flux-enhancing agent can be a water-soluble material or an enteric material.
  • Examples of the preferred materials that are useful as flux enhancers are sodium chloride, potassium chloride, sucrose, sorbitol, mannitol, polyethylene glycols (PEG), propylene glycol, hydroxypropyl cellulose, hydroxypropyl methycellulose, hydroxypropyl methycellulose phthalate, cellulose acetate phthalate, polyvinyl alcohols, methacrylic acid copolymers, poloxamers (such as LUTROL F68, LUTROL F127, LUTROL F108 which are commercially available from BASF) and mixtures thereof.
  • a preferred flux-enhancer is PEG 400.
  • the flux enhancer may also be a drug that is water soluble such as metformin or its pharmaceutically acceptable salts, or the flux enhancer may be a drug that is soluble under intestinal conditions. If the flux enhancer is a drug, the present dosage form has the added advantage of providing an immediate release of the drug, that has been selected as the flux enhancer.
  • the flux enhancing agent comprises approximately 0 to about 40% of the total weight of the coating, most preferably about 2% to about 20% of the total weight of the coating.
  • the flux enhancing agent dissolves or leaches from the membrane or sustained release coating to form channels in the membrane or sustained release coating which enables fluid to enter the core and dissolve the active ingredient.
  • the membrane or sustained release coating may also be formed using a commonly known excipient such as a plasticizer.
  • plasticizers include adipate, azelate, enzoate, citrate, stearate, isoebucate, sebacate, triethyl citrate, tri-n-butyl citrate, acetyl tri-n-butyl citrate, citric acid esters, and those described in the Encyclopedia of Polymer Science and Technology, Vol. 10 (1969), published by John Wiley & Sons.
  • the preferred plasticizers are triacetin, acetylated monoglyceride, grape seed oil, olive oil, sesame oil, acetyltributylcitrate, acetyltriethylcitrate, glycerin sorbitol, diethyloxalate, diethylmalate, diethylfumarate, dibutylsuccinate, diethylmalonate, dioctylphthalate, dibutylsebacate, triethylcitrate, tributylcitrate, glyceroltributyrate and the like.
  • amounts from about 0 to about 25%, and preferably about 2% to about 15% of the plasticizer can be used based upon the total weight of the membrane or sustained release coating.
  • the membrane or sustained release coating around the core will comprise from about 1% to about 10% and preferably about 2% to about 5% based upon the total weight of the core and coating.
  • the membrane or sustained release coating surrounding the core further comprises a passageway that will allow for controlled release of the drug from the core.
  • passageway includes an aperture, orifice, bore, hole, weakened area or an erodible element such as a gelatin plug that erodes to form an osmotic passageway for the release of the antihyperglycemic drug from the dosage form.
  • Passageways used in accordance with the subject invention are well known and are described in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,034,758; 4,077,407; 4,783,337 and 5,071,607.
  • a second active drug preferably a thiazolidinedione derivative.
  • This second active drug may be formulated to provide an immediate release of the thiazolidinedione derivative.
  • the thiazolidinedione derivative is applied in the form of a layer to a controlled or sustained released core comprising the antihyperglycemic drug as a layer using a binder and other conventional pharmaceutical excipients such as absorption enhancers, surfactants, plasticizers, antifoaming agents and combinations of the foregoing.
  • An absorption enhancer may be present in the thiazolidinedione derivative layer in an amount up to about 30% w/w in comparison to the weight of the thiazolidinedione derivative.
  • a binding agent may be present in an amount up to 150% w/w of the thiazolidinedione derivative.
  • a second active drug immediate release formulation may be incorporated into a single dosage form by coating onto the membrane or sustained release coating of the dosage form by conventional methods. Alternatively, it may be incorporated by any pharmaceutically acceptable method into a single dosage form with the first active drug. The incorporation of the second active drug may be performed by, but would not be limited to, the processes selected from the group consisting of drug layering, lamination, dry compression, deposition and printing.
  • the thiazolidinedione coating should be applied from a coating solution or suspension that employs an aqueous solvent, an organic solvent or a mixture of an aqueous and an organic solvent.
  • Typical organic solvents include acetone, isopropyl alcohol, methanol and ethanol. If a mixture of aqueous and organic solvents is employed, the ratio of water to organic solvent should range from 98:2 to 2:98, preferably 50:50 to 2:98, most preferably 30:70 to 20:80 and ideally about 25:75 to 20:80.
  • a mixed solvent system is employed, the amount of binder required for coating the thiazolidinedione derivative onto the membrane or sustained release coating may be reduced.
  • successful coatings have been obtained from a mixed solvent system where the ratio of binder to thiazolidinedione derivative is 1:9 to 1:11.
  • a preferred approach is to first coat the membrane or sustained release coating with a seal coat prior to the application of the thiazolidinedione coating.
  • a seal coat is a coating that does not contain an active pharmaceutical ingredient and that rapidly disperses or dissolves in water.
  • the thiazolidinedione coating solution or suspension may also contain a surfactant and a pore forming agent.
  • a pore forming is preferably a water-soluble material such as sodium chloride, potassium chloride, sucrose, sorbitol, mannitol, polyethylene glycols (PEG), propylene glycol, hydroxypropyl cellulose, hydroxypropyl methycellulose, hydroxypropyl methycellulose phthalate, cellulose acetate phthalate, polyvinyl alcohols, methacrylic acid copolymers, poloxamers (such as LUTROL F68, LUTROL F127, LUTROL F108 which are commercially available from BASF) and mixtures thereof.
  • the dosage form of the present invention may also comprise an effective immediate release amount of the antihyperglycemic drug.
  • the effective immediate release amount of antihyperglycemic drug may be coated onto the membrane or sustained release coating of the dosage form or it may be incorporated into the membrane or sustained release coating.
  • Biguanides such as metformin are commonly administered in dosage forms containing 500 mg, 750 mg, 850 mg, and 1000 mg.
  • Thiazolidinedione derivatives for example pioglitizone, are commonly administered in dosage forms containing 15 mg, 30 mg and 45 mg.
  • the present invention is intended to encompass the above listed therapeutic combinations, without providing a specific example of each possible combination of compounds and their respective dosage amounts.
  • FIRST ACTIVE DRUG Core Amount (% of core) drug 50-98% (75-95% preferred) binder 0.1-40% (3-15% preferred) absorption enhancer 0-20% (2-10% preferred) lubricant 0-5% (0.5-1% preferred)
  • Coating Amount (% of coating) polymer 50-99% (75-95% preferred) flux enhancer 0-40% (2-20% preferred) plasticizer 0-25% (2-15% preferred)
  • SECOND ACTIVE DRUG Amount (% of total dosage form) drug 0.1-20% (1-10% preferred) binder 0.1-30% (1-15% preferred) surfactant 0-20% (0.1-15% preferred) pore former 0-25% (0.1-15% preferred) polymer (optional) 0-30% (0.1-20% preferred)
  • the dosage forms prepared according to the present invention exhibit the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpm in 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) and at 37° C.:
  • NLT NOT LESS THAN
  • the composition of the thiazolidinedione component of the present invention should be selected so that not less than 85%, preferably not less than 90% and most preferably not less than 95% of the thiazolidinedione is released from the dosage form within 45 minutes, preferably within 40 minutes and most preferably within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
  • USP United States Pharmacopeia
  • excipients for use in the thiazolidinedione component of the dosage form should be selected so that the total thiazolidinedione related compounds or impurities in the final dosage form are not more than 0.6%, preferably not more than 0.5% and most preferably not more than 0.25% and each individual thiazolidinedione related compound or impurity in the final dosage form is not more than 0.25%, preferably not more than 0.2% and most preferably not more than 0.1%.
  • the thiazolidinedione related compounds or impurities in the final dosage form are determined by High Performance Liquid Chromatography (HPLC) using a YMC-ODS-AQ, 5 ⁇ m, 120 ⁇ , 4.6 ⁇ 250 mm or equivalent column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, about a 40 ⁇ L injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.
  • HPLC High Performance Liquid Chromatography
  • a controlled release tablet containing 850 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • the metformin HCl is delumped by passing it through a 40 mesh screen and collecting it in a clean, polyethylene-lined container.
  • the povidone, K-30, and sodium tribasic phosphate are dissolved in purified water.
  • the delumped metformin HCl is then added to a top-spray fluidized bed granulator and granulated by spraying the binding solution of povidone and sodium tribasic phosphate under the following conditions: inlet air temperature of 50-70° C.; atomization air pressure of 1-3 bars and spray rate of 10-100 ml/min.
  • the granules are dried in the granulator until the loss on drying is less than 2%.
  • the dried granules are passed through a comil equipped with the equivalent of an 18 mesh screen.
  • the magnesium stearate is passed through a 40 mesh stainless steel screen and blended with the metformin HCl granules for approximately five (5) minutes. After blending, the granules are compressed on a rotary press fitted with 15/32′′ round standard concave punches (plain lower punch, upper punch with an approximately 1 mm indentation pin).
  • the orifice may be formed by any means commonly employed in the pharmaceutical industry.
  • the core tablet can be seal coated with an Opadry material or other suitable water-soluble material by first dissolving the Opadry material, preferably Opadry Clear, in purified water. The Opadry solution is then sprayed onto the core tablet using a pan coater under the following conditions: exhaust air temperature of 38-42° C.; atomization pressure of 28-40 psi and spray rate of 10-15 ml/min. The core tablet is coated with the sealing solution until a theoretical coating level of approximately 2-4% is obtained.
  • an Opadry material preferably Opadry Clear
  • the cellulose acetate is dissolved in acetone while stirring with a homogenizer.
  • the polyethylene glycol 400 and triacetin are added to the cellulose acetate solution and stirred until a clear solution is obtained.
  • the clear membrane coating solution is then sprayed onto the seal coated tablets using a fluidized bed coater employing the following conditions: product temperature of 16-22° C.; atomization pressure of approximately 3 bars and spray rate of 120-150 ml/min.
  • the sealed core tablet is coated until a theoretical coating level of approximately 3% is obtained.
  • Tween 80 and hydroxypropyl methylcellulose are dissolved in purified water. Pioglitizone HCl is then dispersed into this solution. The resulting suspension is then sprayed onto the above-membrane-coated tablets.
  • a controlled release tablet containing 850 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • metformin HCl and sodium lauryl sulfate are delumped by passing them through a 40 mesh screen and collecting them in a clean, polyethylene-lined container.
  • the povidone, K-90 is dissolved in purified water.
  • the delumped metformin HCl and sodium lauryl sulfate are then added to a top-spray fluidized bed granulator and granulated by spraying with the binding solution of povidone under the following conditions: inlet air temperature of 50-70° C.; atomization air pressure of 1-3 bars and spray rate of 10-100 ml/min.
  • the granules are dried in the granulator until the loss on drying is less than 2%.
  • the dried granules are passed through a comil equipped with the equivalent of an 18 mesh screen.
  • the magnesium stearate is passed through a 40 mesh stainless steel screen and blended with the metformin HCl granules for approximately five (5) minutes. After blending, the granules are compressed on a rotary press fitted with 15/32′′ round standard concave punches (plain lower punch, upper punch with an approximately 1 mm indentation pin).
  • the orifice may be formed by any means commonly employed in the pharmaceutical industry.
  • the core tablet is seal coated with an Opadry material or other suitable water-soluble material by first dissolving the Opadry material, preferably Opadry Clear in purified water.
  • the Opadry solution is then sprayed onto the core tablet using a pan coater under the following conditions: exhaust air temperature of 38-42° C.; atomization pressure of 28-40 psi and spray rate of 10-15 ml/min.
  • the core tablet is coated with the sealing solution until a theoretical coating level of approximately 2% is obtained.
  • the cellulose acetate is dissolved in acetone while stirring with a homogenizer.
  • the polyethylene glycol 400 and triacetin are added to the cellulose acetate solution and stirred.
  • the coating solution is then sprayed onto the seal coated tablets in a fluidized bed coater employing the following conditions: product temperature of 16-22° C.; atomization pressure of approximately 3 bars and spray rate of 120-150 ml/min.
  • the sealed core tablet is coated until a theoretical coating level of approximately 3% is obtained.
  • Pioglitizone HCl 43.5% Tween 80 2.0% Hydroxypropyl methylcellulose 54.5% Tween 80 and hydroxypropyl methylcellulose are dissolved in purified water. Pioglitizone HCl is then dispersed into this solution. The resulting suspension is then sprayed onto the above described tablets.
  • a controlled release tablet containing 500 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • a 500 mg metformin membrane coated tablet is prepared as described in Example 2 above except that compound cup toolings are used during tableting.
  • the 500 mg metformin membrane coated tablet has the following composition:
  • the pioglitazone coating is directly applied to the 500 mg metformin HCl membrane coated tablets.
  • the pioglitazone coating is prepared by dissolving 0.252 kg of Opadry Clear, 0.269 kg of Polyplasdone XL and 0.036 kg of Tween 80 in 9.908 kg of purified water using a homogenizer. Once these ingredients are dissolved, 0.296 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then directly applied to the 500 mg metformin HCl membrane coated tablets using a 24′′ O'Hara Labcoat III pan coater with the following conditions:
  • an aesthetic or color coating of Opadry white is applied to the pioglitazone coated tablet.
  • the color coating is prepared by dispersing 0.179 kg of Opadry White in 1.791 kg of purified water.
  • the Opadry White suspension is applied to the pioglitazone coated tablet using a 24′′ O'Hara Labcoat III pan coater under the following conditions:
  • the tablets are polished using 0.036 kg of Candelilla wax powder.
  • a controlled release tablet containing 500 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • a 500 mg membrane coated tablet is prepared as described in Example 2 above except that compound cup toolings are used during tableting.
  • the 500 mg membrane coated tablet has the following composition:
  • the seal coating solution is prepared by dissolving 0.258 kg of Opadry Clear in 2.576 kg of purified water and spraying the solution onto approximately 12.088 kg of the 500 mg membrane coated metformin HCl tablet cores using a 24′′ O'Hara Labcoat III pan coater.
  • the seal coat is applied under the following conditions:
  • the pioglitazone coating is applied to the seal coated 500 mg metformin HCl membrane coated tablets.
  • the pioglitazone coating is prepared by dissolving 0.040 kg of Opadry Clear, 0.085 kg of sodium chloride and 0.040 kg of Tween 80 in 4.915 kg of purified water using a homogenizer. Once these ingredients are dissolved, 0.328 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then applied to the seal coated 500 mg metformin HCl membrane coated tablets using a 24′′ O'Hara Labcoat III pan coater with the following conditions:
  • an aesthetic or color coating of Opadry White is applied to the pioglitazone coated tablet.
  • the color coating is prepared by dispersing 0.159 kg of Opadry White in 1.585 kg of purified water.
  • the Opadry White suspension is applied to the pioglitazone coated tablet using conditions similar to those described above for application of the seal coating.
  • the tablets are polished using 0.004 kg of Candelilla wax powder.
  • a controlled release tablet containing 1000 mg of metformin HCl and 30 mg pioglitazone is prepared as follows:
  • a 1000 mg metformin membrane coated tablet is prepared as described in Example 3 above.
  • the 1000 mg membrane coated tablet has the following composition:
  • the seal coating is prepared by dispersing 0.174 kg of Opadry Clear in 3.478 kg of ethanol and mixing the dispersion for 15 minutes. The dispersion is than sprayed onto approximately 13.174 kg of the 1000 mg metformin HCl membrane coated tablets using a 24′′ O'Hara Labcoat III pan coater. The seal coat is applied to the 1000 mg metformin HCl membrane coated tablets with the following conditions:
  • the pioglitazone coating then is applied to the seal coated 1000 mg metformin HCl membrane coated tablets.
  • the pioglitazone coating is prepared by dissolving 0.036 kg of Opadry Clear and 0.046 kg of sodium chloride in 5.344 kg of ethanol using a homogenizer. Once the ingredients are dispersed, 0.359 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then applied to the seal coated 1000 mg metformin HCl membrane coated tablets using a 24′′ O'Hara Labcoat III pan coater with the following conditions:
  • Opadry II White is applied to the pioglitazone coated tablets.
  • the color coating is prepared by dispersing 0.220 kg of Opadry II White in 4.407 kg of ethanol.
  • the Opadry II White suspension is than applied to the pioglitazone HCl coated tablets using a 24′′ O'Hara Labcoat III pan coater using conditions similar to those described above for the seal coating.
  • the tablets are polished using 0.004 kg of Candelilla wax powder.
  • a controlled release tablet containing 1000 mg of metformin HCl and 30 mg pioglitazone is prepared as follows:
  • a 1000 mg membrane coated tablet is prepared as described in Example 3 above.
  • the 1000 mg membrane coated tablet has the following composition:
  • the seal coat is applied to the 1000 mg metformin HCl membrane coated tablet.
  • the seal coating is prepared by dispersing 0.229 kg of Opadry Clear in 4.573 kg of alcohol USP and mixing the dispersion for 15 minutes. The dispersion is then sprayed onto approximately 13.08 kg of the 1000 mg metformin HCl tablet cores using a 24′′ O'Hara Labcoat III pan coater with the nozzle tip set 4 ⁇ 2′′ from the top of the static bed and the following conditions:
  • the seal coating dispersion is continuously stirred until it is consumed during the coating process.
  • the pioglitazone coating then is applied to the seal coated 1000 mg metformin HCl membrane coated tablets.
  • the pioglitazone coating is prepared by mixing 4.434 kg of alcohol USP and 1.250 kg of purified water (approximately a 78:22 alcohol to purified water ratio) and slowly dispersing 0.040 kg of Opadry Clear into the solvent mixture. Once the Opadry Clear is dispersed, it is homogenized for about 10 minutes. Once the Opadry Clear dispersion is homogenized, 0.054 kg of sodium chloride is added to the dispersion and homogenized for about 2 minutes.
  • pioglitazone HCl is slowly dispersed into the solvent mix and then homogenized for about 10 minutes.
  • the homogenizer is removed from the mixing vessel and replaced with an air mixer and mixed for an additional 15 minutes.
  • the pioglitazone suspension is stirred until the suspension is consumed during the coating process.
  • the pioglitazone HCl suspension is applied to the seal coated 1000 mg metformin HCl membrane coated tablet cores using a 24′′ O'Hara Labcoat III pan coater with the nozzle tip set 4 ⁇ 2′′ above the top of the static bed with the following conditions:
  • an aesthetic coating of Opadry II White is applied to the pioglitazone coated tablet.
  • the aesthetic coating is prepared by dispersing 0.235 kg of Opadry II White (Y-22-7719) in 4.691 kg of alcohol USP and mixing the dispersion for about 1 hour.
  • the Opadry II White dispersion is than sprayed onto the pioglitazone HCl coated tablets using a 24′′ O'Hara Labcoat III pan coater with the nozzle tip set 4 ⁇ 2′′ from the top of the static bed and the following conditions:
  • the color coating dispersion is continuously stirred until the dispersion is consumed during the coating process.
  • the tablets are dried in the coating pan for about 5 minutes with a pan speed of about 2-8 rpms and an exhaust temperature of 25 ⁇ 5° C. Once the tablets are dried, the exhaust air is turned off and the pan speed is adjusted to about 3-4 rpms and 0.004 kg of Candellia wax powder that had been passed through a 60 mesh screen is sprinkled onto the tablets. After the tablets have rolled in the wax for about 5 minutes the exhaust air is turned on and the tablets are rolled for an additional 10 minutes.
  • the finished polished tablet exhibited the following pioglitazone HCl dissolution profile when tested in a USP apparatus type 1 at 100 rpm in a pH 2.0 HCl-0.3M KCl buffer solution:
  • the finished polished tablet also contained the following pioglitazone related compounds when tested by HPLC using a YMC-ODS-AQ, 5 ⁇ m, 120 ⁇ , 4.6 ⁇ 250 mm column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, a 40 ⁇ L injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.
  • RS-3 is (+/ ⁇ )-5-[p-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]-3-[2-(5-ethyl-2-pyridyl)ethyl]-2,4-thiazolidinedione.
  • RS-4 is (+/ ⁇ )-ethyl-2-carbamoyltio-3-[4-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl-]propionate.
  • RS-5 is ethyl-3-p-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl-propionate.
  • the final polished tablet was packaged in a 100 cc HDPE bottle containing one (1) 2 g SORB-IT® desiccant canister and subjected to accelerated stability conditions of 40° C. and 75% relative humidity for three (3) months. After storage, the final polished tablet was tested and exhibited the following pioglitazone HCl dissolution profile when tested in a USP apparatus type 1 at 100 rpm in a pH 2.0 HCl-0.3M KCl buffer solution:
  • the stored final polished tablet also contained the following pioglitazone related compounds when tested by HPLC using a YMC-ODS-AQ, 5 nm, 120 ⁇ , 4.6 ⁇ 250 mm column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, a 40 ⁇ L injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.

Abstract

A pharmaceutical dosage form comprising a controlled release component comprising an antihyperglycemic drug in combination with a second component comprising a thiazolidinedione derivative is herein disclosed and described.

Description

  • This application is a continuation application of U.S. patent application Ser. No. 13/889,441, filed on May 8, 2013, which is a continuation application of U.S. patent application Ser. No. 13/151,653 filed on Jun. 2, 2011, which is a continuation application of U.S. patent application Ser. No. 10/777,542 filed on Feb. 12, 2004, which is in turn a continuation-in-part application of U.S. patent application Ser. No. 10/664,803 filed on Sep. 19, 2003 which claims the benefit of U.S. provisional patent application Ser. Nos. 60/412,180 and 60/412,181 filed on Sep. 20, 2002.
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a pharmaceutical dosage form comprising an antihyperglycemic drug, in combination with a thiazolidinedione derivative. More specifically, the present invention relates to an oral dosage form comprising a biguanide e.g. metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts described in U.S. Pat. Nos. 3,957,853 and 4,080,472 which are incorporated herein by reference in combination with a thiazolidinedione derivative as described in U.S. Pat. No. 4,687,777 also incorporated herein by reference.
  • Many techniques have been used to provide controlled and extended-release pharmaceutical dosage forms in order to maintain therapeutic serum levels of medicaments and to minimize the effects of missed doses of drugs caused by a lack of patient compliance.
  • For example, extended release tablets have been described which have an osmotically active drug core surrounded by a semi-permeable membrane. These tablets function by allowing the aqueous components of a fluid such as gastric or intestinal fluid to permeate the coating membrane and dissolve the active ingredient so the resultant drug solution can be released through a passageway in the coating membrane. Alternatively, if the active ingredient is insoluble in the permeating fluid, it can be pushed through the passageway by an expanding agent such as a hydrogel. Some representative examples of these osmotic tablet systems can be found in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,034,758; 4,077,407 and 4,783,337. U.S. Pat. No. 3,952,741 teaches an osmotic device wherein the active agent is released from a core surrounded by a semipermeable membrane only after sufficient pressure has developed within the membrane to burst or rupture the membrane at a weak portion of the membrane.
  • The basic osmotic device described in the above cited patents have been refined over time in an effort to provide greater control of the release of the active ingredient. For example, U.S. Pat. Nos. 4,777,049 and 4,851,229 describe osmotic dosage forms comprising a semipermeable wall surrounding a core. The core contains an active ingredient and a modulating agent wherein the modulating agent causes the active ingredient to be released through a passageway in the semipermeable membrane in a pulsed manner. Further refinements have included modifications to the semipermeable membrane surrounding the active core such as varying the proportions of the components that form the membrane, e.g. U.S. Pat. Nos. 5,178,867, 4,587,117 and 4,522,625 or increasing the number of coatings surrounding the active core, e.g. U.S. Pat. Nos. 5,650,170 and 4,892,739.
  • Certain controlled or sustained release formulations that employ antihyperglycemic drugs such as metformin hydrochloride have been limited to the use of an expanding or gelling agent to control the release of the drug from the dosage form. This limited research is exemplified by the teachings of WO 96/08243 and by the GLUCOPHAGE™ XR product insert which is a controlled release metformin HCl product commercially available from Bristol-Myers Squibb Co.
  • Thiazolidinedione derivatives have been described in U.S. Pat. No. 4,687,777. The therapeutic value of these compounds in combination therapy has further been described in U.S. Pat. Nos. 5,859,037; 5,952,356; 5,965,584; 6,150,384 and 6,172,090. However, none of these patents describe a dosage form having the advantages of the subject invention.
  • Pharmaceutical dosage forms containing combinations of antihyperglycemic drugs and thiazolidinedione derivatives have been proposed in the art. For example, EPO 0 749 751 (which is incorporated herein by reference) teaches pharmaceutical compositions comprising an insulin sensitivity enhancer, which could be a thiazolidinedione compound, in combination with other antidiabetics. More specifically, EPO 0 749 751 teaches that the preferred insulin sensitivity enhancer is pioglitazone, which can be combined with other antidiabetics such as metformin, phenformin or buformin, and further that these drugs can be associated (mixed and/or coated) with conventional excipients to provide taste masking or sustained release behavior. Another example of a combination of antihyperglycemic drugs and thiazolidinedione derivatives is U.S. Pat. No. 6,011,049, (which is incorporated herein by reference). This patent teaches a single pharmaceutical composition that contains pioglitazone or troglitazone and metformin in slow release forms such as osmotic pumps or skin patches. Other combinations of antihyperglycemic drugs and thiazolidinedione derivatives can be found in U.S. Pat. Nos. 6,524,621; 6,475,521; 6,451,342 and 6,153,632 and PCT patent applications WO 01/35940 and WO 01/35941, which are incorporated herein by reference.
  • Also known in the art is WO 99/47125 and U.S. Pat. No. 6,099,862 that disclose a metformin osmotic tablet coated with an immediate release coating containing an antihyperglycemic or an hypoglycemic drug.
  • Although the prior art teaches pharmaceutical dosage formulations that contain both an antihyperglycemic compound and thiazolidinedione derivatives, the present invention provides numerous benefits over the prior art teachings as will be described below.
  • It is an object of the present invention to provide a dosage form comprising a first active drug, which is formulated to provide a controlled or sustained release delivery. Preferably, the first active drug is an antihyperglycemic compound. The present invention further provides for a second active drug which preferably is a thiazolidinedione derivative. The novel dosage form described herein provides for delivery of first and second active drugs such that the bioavailability of either drug is not decreased by the presence of food.
  • It is a further object of the present invention to provide a dosage form, as described above, comprising delivery of a first active drug as a controlled or sustained release formulation for an antihyperglycemic compound, wherein said controlled or sustained release mechanism is not regulated by an expanding polymer, in combination with delivery of a second active drug by immediate release comprising a thiazolidinedione derivative.
  • It is also a further object of the present invention to provide a dosage form as described above, comprising delivery of a first active drug as a controlled or sustained release formulation for an antihyperglycemic compound in combination with delivery of a second active drug by immediate release comprising a thiazolidinedione derivative that can provide continuous and non-pulsating therapeutic levels of said antihyperglycemic drug to an animal or human in need of such treatment over a eight hour to twenty-four hour period.
  • It is an additional object of the present invention to provide a dosage form comprising delivery of a first active drug as a controlled or sustained release formulation for an antihyperglycemic compound in combination with delivery of a second active drug by immediate release comprising a thiazolidinedione derivative that obtains peak plasma levels of the antihyperglycemic compound approximately 8-12 hours after administration and peak plasma levels of thiazolidinedione derivative approximately 1-4 hours after dosing.
  • It is also an object of the present invention to provide a dosage form comprising a first active drug as a controlled or sustained release pharmaceutical core tablet having only a homogeneous osmotic core wherein the osmotic core component may be made using ordinary tablet compression techniques.
  • It is an additional object of the present invention to provide a dosage form comprising delivery of a first active drug as a controlled or sustained release formulation for an antihyperglycemic compound in combination with delivery of a second active drug by immediate release comprising a thiazolidinedione derivative that obtains peak plasma levels of the antihyperglycemic compound approximately 8-12 hours after administration and peak plasma levels of thiazolidinedione derivative approximately 1-4 hours after dosing.
  • It is a further object of the present invention to provide a dosage form comprising an antihyperglycemic drug as a controlled or sustained release component and a thiazolidinedione derivative as a immediate release component, wherein not less than 85% of the total amount of the thiazolidinedione derivative is released from the dosage form within 45 minutes or less.
  • It is a further additional object of the present invention to provide a shelf stable dosage form comprising an antihyperglycemic drug as a controlled or sustained release component and a thiazolidinedione derivative as a immediate release component, wherein the total amount of thiazolidinedione related compounds or impurities are not more than 0.6% after two years of storage and no individual related compound or impurity is more than 0.2%.
  • SUMMARY OF THE INVENTION
  • The present invention relates to a pharmaceutical dosage form comprising a first active drug, preferably an antihyperglycemic drug, in combination with a second active drug, preferably a thiazolidinedione derivative. More specifically, the present invention relates to an oral dosage form comprising a first active drug comprising a biguanide such as metformin or buformin or a pharmaceutically acceptable salt thereof e.g., metformin hydrochloride or the metformin salts, in combination with a second active drug comprising a thiazolidinedione derivative
  • The foregoing objectives are met by a dosage form comprising a first and second active drug, wherein the first active drug is formulated as a controlled release core, preferably an osmotic tablet, with or without a gelling or expanding polymer. The second active ingredient may be part of the controlled release core or it may preferably be combined with the controlled release core in a manner that provides for immediate release of the second active ingredient. For example, the second active ingredient can be incorporated into a membrane that is applied to the core or the second active ingredient may be applied to a coated or uncoated controlled release core.
  • In one embodiment the second active drug, which may be the thiazolidinedione derivative, is provided as an immediate release formulation in the dosage form whereas the antihyperglycemic component is provided as a controlled release formulation in the dosage form. This immediate release portion of the formulation should provide peak plasma levels (Tmax) of 1-12 hours preferably, 1-4 hours of the thiazolidinedione derivative, while the controlled release portion of the formulation may provide peak plasma levels (Tmax) of 8-12 hours of the antihyperglycemic component.
  • Preferably, the dosage form according to the subject invention may be administered once a day, preferably with or after a meal, and most preferably with or after the evening meal. The subject dosage form can provide therapeutic levels of the drug throughout the day with peak plasma levels (Tmax) of the antihyperglycemic drug being obtained between 8-12 hours after administration.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The subject invention concerns a pharmaceutical formulation or dosage form comprising a first active drug comprising an antihyperglycemic drug in combination with a second active drug comprising a thiazolidinedione derivative. Preferably, the antihyperglycemic drug is a biguanide e.g. metformin or buformin or a pharmaceutically acceptable salt thereof. The antihyperglycemic drug is delivered in a controlled release manner from a tablet core, preferably an osmotic tablet core with or without a gelling or swelling polymer. The tablet core should include the antihyperglycemic drug and at least one pharmaceutically acceptable excipient. In one embodiment of the present invention the tablet core includes the antihyperglycemic drug, a binding agent and an absorption enhancer, and the tablet core is preferably coated with a polymeric coating to form a membrane around the tablet and drilled to create one passageway on each side of the membrane. The second active drug comprises a thiazolidinedione derivative, and is preferably applied to the membrane of the tablet core and provides for either immediate or controlled release of said thiazolidinedione derivative.
  • The term, antihyperglycemic drugs as used in this specification, refers to drugs that are useful in controlling or managing noninsulin-dependent diabetes mellitus (NIDDM). Antihyperglycemic drugs include the biguanides such as metformin, phenformin or buformin or the like, and pharmaceutically acceptable salts, isomers or derivatives thereof.
  • The term thiazolidinedione derivative as used in this specification refers to drugs that are useful for controlling or managing NIDDM. These include, but are not limited to, troglitazone, rosiglitazone, pioglitazone, ciglitazone or the like, and pharmaceutically acceptable salts, isomers or derivatives thereof.
  • The term binding agent refers to any conventionally known pharmaceutically acceptable binder such as polyvinyl pyrrolidone, hydroxypropyl cellulose, hydroxyethyl cellulose, hydroxypropyl methylcellulose, ethylcellulose, polymethacrylate, polyvinylalcohol, waxes and the like. Mixtures of the aforementioned binding agents may also be used. The preferred binding agents are water soluble materials such as polyvinyl pyrrolidone having a weight average molecular weight of 25,000 to 3,000,000. The binding agent may comprise approximately about 0 to about 40% of the total weight of the core and preferably about 3% to about 15% of the total weight of the core. In one embodiment, the use of a binding agent in the core is optional.
  • In a preferred embodiment, the core may optionally comprise an absorption enhancer. The absorption enhancer can be any type of absorption enhancer commonly known in the art such as a fatty acid, a surfactant (anionic, cationic, amphoteric), a chelating agent, a bile salt or mixtures thereof. Examples of some preferred absorption enhancers are lecithin, fatty acids such as capric acid, oleic acid and their monoglycerides, surfactants such as sodium lauryl sulfate, sodium taurocholate and polysorbate 80, chelating agents such as citric acid, phytic acid, ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis(β-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA). The core may comprise approximately 0 to about 20% of the absorption enhancer based on the total weight of the core and most preferably about 2% to about 10% of the total weight of the core.
  • In one embodiment of the present invention, which does not employ a gelling or swelling polymer, the core of the present invention is preferably formed by granulating an antihyperglycemic drug with a binding agent and compressing the granules with the addition of a lubricant and absorption enhancer into a tablet. The core may also be formed by dry granulating the core ingredients by passing them through a roller compactor and compressing the granules with the addition of a lubricant into tablets. Direct compression may also be employed for tabletting. Other commonly known granulation procedures are known in the art. Additionally, other excipients such as lubricants, pigments or dyes may also be employed in the formulation of the subject invention.
  • The term gelling or swelling polymer refers to polymers that gel, swell or expand in the presence of water or biological fluids. Representative examples of gelling or swelling polymers are high molecular weight hydroxpropyl methylcellulose (such as METHOCEL® K 100M, which is commercially available from Dow Chemical) and high molecular weight polyethylene oxides (such as POLYOX WSR 301, WSR 303 or WSR COAGULANT). Other gelling or swelling polymers are described in U.S. Pat. No. 4,522,625 (which is incorporated herein by reference).
  • The core formed as described herein, can be coated with a membrane or sustained release coating. Materials that are useful in forming the membrane or sustained release coating are ethylcellulose, cellulose esters, cellulose diesters, cellulose triesters, cellulose ethers, cellulose ester-ether, cellulose acylate, cellulose diacylate, cellulose triacylate, cellulose acetate, cellulose diacetate, cellulose triacetate, cellulose acetate propionate and cellulose acetate butyrate. Other suitable polymers are described in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,008,719; 4,036,228 and 4,612,008 (which are incorporated herein by reference). The most preferred membrane or sustained release coating material is cellulose acetate comprising an acetyl content of 39.3 to 40.3%, and is commercially available from Eastman Fine Chemicals.
  • In an alternative embodiment, the membrane or sustained release coating can include one of the above-described polymers and a flux-enhancing agent. The flux enhancing agent can increase the volume of fluid imbibed into the core to enable the dosage form to dispense substantially all of the antihyperglycemic drug through the passageway and/or the porous membrane. The flux-enhancing agent can be a water-soluble material or an enteric material. Examples of the preferred materials that are useful as flux enhancers are sodium chloride, potassium chloride, sucrose, sorbitol, mannitol, polyethylene glycols (PEG), propylene glycol, hydroxypropyl cellulose, hydroxypropyl methycellulose, hydroxypropyl methycellulose phthalate, cellulose acetate phthalate, polyvinyl alcohols, methacrylic acid copolymers, poloxamers (such as LUTROL F68, LUTROL F127, LUTROL F108 which are commercially available from BASF) and mixtures thereof. A preferred flux-enhancer is PEG 400.
  • The flux enhancer may also be a drug that is water soluble such as metformin or its pharmaceutically acceptable salts, or the flux enhancer may be a drug that is soluble under intestinal conditions. If the flux enhancer is a drug, the present dosage form has the added advantage of providing an immediate release of the drug, that has been selected as the flux enhancer.
  • The flux enhancing agent comprises approximately 0 to about 40% of the total weight of the coating, most preferably about 2% to about 20% of the total weight of the coating. The flux enhancing agent dissolves or leaches from the membrane or sustained release coating to form channels in the membrane or sustained release coating which enables fluid to enter the core and dissolve the active ingredient.
  • The membrane or sustained release coating may also be formed using a commonly known excipient such as a plasticizer. Some commonly known plasticizers include adipate, azelate, enzoate, citrate, stearate, isoebucate, sebacate, triethyl citrate, tri-n-butyl citrate, acetyl tri-n-butyl citrate, citric acid esters, and those described in the Encyclopedia of Polymer Science and Technology, Vol. 10 (1969), published by John Wiley & Sons. The preferred plasticizers are triacetin, acetylated monoglyceride, grape seed oil, olive oil, sesame oil, acetyltributylcitrate, acetyltriethylcitrate, glycerin sorbitol, diethyloxalate, diethylmalate, diethylfumarate, dibutylsuccinate, diethylmalonate, dioctylphthalate, dibutylsebacate, triethylcitrate, tributylcitrate, glyceroltributyrate and the like. Depending on the particular plasticizer, amounts from about 0 to about 25%, and preferably about 2% to about 15% of the plasticizer can be used based upon the total weight of the membrane or sustained release coating.
  • Generally, the membrane or sustained release coating around the core will comprise from about 1% to about 10% and preferably about 2% to about 5% based upon the total weight of the core and coating.
  • In a preferred embodiment, the membrane or sustained release coating surrounding the core further comprises a passageway that will allow for controlled release of the drug from the core. As used herein the term passageway includes an aperture, orifice, bore, hole, weakened area or an erodible element such as a gelatin plug that erodes to form an osmotic passageway for the release of the antihyperglycemic drug from the dosage form. Passageways used in accordance with the subject invention are well known and are described in U.S. Pat. Nos. 3,845,770; 3,916,899; 4,034,758; 4,077,407; 4,783,337 and 5,071,607.
  • Independent of the antihyperglycemic is a second active drug, preferably a thiazolidinedione derivative. This second active drug may be formulated to provide an immediate release of the thiazolidinedione derivative. In one embodiment of the present invention the thiazolidinedione derivative is applied in the form of a layer to a controlled or sustained released core comprising the antihyperglycemic drug as a layer using a binder and other conventional pharmaceutical excipients such as absorption enhancers, surfactants, plasticizers, antifoaming agents and combinations of the foregoing. An absorption enhancer may be present in the thiazolidinedione derivative layer in an amount up to about 30% w/w in comparison to the weight of the thiazolidinedione derivative. A binding agent may be present in an amount up to 150% w/w of the thiazolidinedione derivative. A second active drug immediate release formulation may be incorporated into a single dosage form by coating onto the membrane or sustained release coating of the dosage form by conventional methods. Alternatively, it may be incorporated by any pharmaceutically acceptable method into a single dosage form with the first active drug. The incorporation of the second active drug may be performed by, but would not be limited to, the processes selected from the group consisting of drug layering, lamination, dry compression, deposition and printing.
  • When the thiazolidinedione derivative is coated onto a membrane or sustained release coating of an osmotic tablet core, the thiazolidinedione coating should be applied from a coating solution or suspension that employs an aqueous solvent, an organic solvent or a mixture of an aqueous and an organic solvent. Typical organic solvents include acetone, isopropyl alcohol, methanol and ethanol. If a mixture of aqueous and organic solvents is employed, the ratio of water to organic solvent should range from 98:2 to 2:98, preferably 50:50 to 2:98, most preferably 30:70 to 20:80 and ideally about 25:75 to 20:80. If a mixed solvent system is employed, the amount of binder required for coating the thiazolidinedione derivative onto the membrane or sustained release coating may be reduced. For example, successful coatings have been obtained from a mixed solvent system where the ratio of binder to thiazolidinedione derivative is 1:9 to 1:11. Although acceptable coatings can be obtained when the thiazolidinedione coat is applied directly to the membrane or sustained release coating, a preferred approach is to first coat the membrane or sustained release coating with a seal coat prior to the application of the thiazolidinedione coating. As used herein a seal coat is a coating that does not contain an active pharmaceutical ingredient and that rapidly disperses or dissolves in water.
  • The thiazolidinedione coating solution or suspension may also contain a surfactant and a pore forming agent. A pore forming is preferably a water-soluble material such as sodium chloride, potassium chloride, sucrose, sorbitol, mannitol, polyethylene glycols (PEG), propylene glycol, hydroxypropyl cellulose, hydroxypropyl methycellulose, hydroxypropyl methycellulose phthalate, cellulose acetate phthalate, polyvinyl alcohols, methacrylic acid copolymers, poloxamers (such as LUTROL F68, LUTROL F127, LUTROL F108 which are commercially available from BASF) and mixtures thereof. In an alternative embodiment, the dosage form of the present invention may also comprise an effective immediate release amount of the antihyperglycemic drug. The effective immediate release amount of antihyperglycemic drug may be coated onto the membrane or sustained release coating of the dosage form or it may be incorporated into the membrane or sustained release coating.
  • In addition, various diluents, excipients, lubricants, dyes, pigments, dispersants, etc., which are disclosed in Remington's Pharmaceutical Sciences (1995), may be used to optimize the above listed formulations of the subject invention.
  • Biguanides, such as metformin are commonly administered in dosage forms containing 500 mg, 750 mg, 850 mg, and 1000 mg. Thiazolidinedione derivatives, for example pioglitizone, are commonly administered in dosage forms containing 15 mg, 30 mg and 45 mg. The present invention is intended to encompass the above listed therapeutic combinations, without providing a specific example of each possible combination of compounds and their respective dosage amounts.
  • A preferred embodiment the dosage form will have the following composition:
  • FIRST ACTIVE DRUG
    Core: Amount (% of core)
    drug  50-98%  (75-95% preferred)
    binder 0.1-40%   (3-15% preferred)
    absorption enhancer   0-20%   (2-10% preferred)
    lubricant   0-5%  (0.5-1% preferred)
    Coating: Amount (% of coating)
    polymer  50-99%  (75-95% preferred)
    flux enhancer   0-40%   (2-20% preferred)
    plasticizer   0-25%   (2-15% preferred)
    SECOND ACTIVE DRUG Amount (% of total dosage form)
    drug 0.1-20%   (1-10% preferred)
    binder 0.1-30%   (1-15% preferred)
    surfactant   0-20% (0.1-15% preferred)
    pore former   0-25% (0.1-15% preferred)
    polymer (optional)   0-30% (0.1-20% preferred)
  • The dosage forms prepared according to the present invention exhibit the following dissolution profile when tested in a USP Type 2 apparatus at 75 rpm in 900 ml of simulated intestinal fluid (pH 7.5 phosphate buffer) and at 37° C.:
  • Release of First Active Drug
    Time (hours) % release
    2  0-25%  (0-15% preferred)
    4 10-45% (20-40% preferred)
    8 30-90% (45-90% preferred)
    12 NLT 50% (NLT 60% preferred)
    16 NLT 60% (NLT 70% preferred)
    20 NLT 70% (NLT 80% preferred)
    NLT = NOT LESS THAN
  • Release of Second Active Drug
    Time (hours) % release
    0.5 NLT 60% (NLT 75% preferred)
  • It has been discovered that the selection of the excipients for use in the thiazolidinedione component of the dosage form can greatly affect the release characteristics, potency and stability of the thiazolidinedione. Therefore, in an alternate embodiment of the present invention, the composition of the thiazolidinedione component of the present invention should be selected so that not less than 85%, preferably not less than 90% and most preferably not less than 95% of the thiazolidinedione is released from the dosage form within 45 minutes, preferably within 40 minutes and most preferably within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
  • Further the excipients for use in the thiazolidinedione component of the dosage form should be selected so that the total thiazolidinedione related compounds or impurities in the final dosage form are not more than 0.6%, preferably not more than 0.5% and most preferably not more than 0.25% and each individual thiazolidinedione related compound or impurity in the final dosage form is not more than 0.25%, preferably not more than 0.2% and most preferably not more than 0.1%. The thiazolidinedione related compounds or impurities in the final dosage form are determined by High Performance Liquid Chromatography (HPLC) using a YMC-ODS-AQ, 5 μm, 120 Å, 4.6×250 mm or equivalent column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, about a 40 μL injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.
  • EXAMPLES
  • The following are provided by way of example only and are in no means intended to be limiting.
  • Example 1
  • A controlled release tablet containing 850 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • First Active Drug
    I. Core (% composition of core)
    Metformin HCl 90.54%
    Povidone K-301, USP  4.38%
    Sodium Tribasic Phosphate  4.58%
    Magnesium stearate  0.5%
    1approximate molecular weight = 50,000; dynamic viscosity (10% w/v solution at 20° C.) = 5.5-8.5 mPa · s.
  • (a) Granulation
  • The metformin HCl is delumped by passing it through a 40 mesh screen and collecting it in a clean, polyethylene-lined container. The povidone, K-30, and sodium tribasic phosphate are dissolved in purified water. The delumped metformin HCl is then added to a top-spray fluidized bed granulator and granulated by spraying the binding solution of povidone and sodium tribasic phosphate under the following conditions: inlet air temperature of 50-70° C.; atomization air pressure of 1-3 bars and spray rate of 10-100 ml/min.
  • Once the binding solution is depleted, the granules are dried in the granulator until the loss on drying is less than 2%. The dried granules are passed through a comil equipped with the equivalent of an 18 mesh screen.
  • (b) Tableting
  • The magnesium stearate is passed through a 40 mesh stainless steel screen and blended with the metformin HCl granules for approximately five (5) minutes. After blending, the granules are compressed on a rotary press fitted with 15/32″ round standard concave punches (plain lower punch, upper punch with an approximately 1 mm indentation pin).
  • As stated above, the orifice may be formed by any means commonly employed in the pharmaceutical industry.
  • (c) Seal Coating (Optional)
  • The core tablet can be seal coated with an Opadry material or other suitable water-soluble material by first dissolving the Opadry material, preferably Opadry Clear, in purified water. The Opadry solution is then sprayed onto the core tablet using a pan coater under the following conditions: exhaust air temperature of 38-42° C.; atomization pressure of 28-40 psi and spray rate of 10-15 ml/min. The core tablet is coated with the sealing solution until a theoretical coating level of approximately 2-4% is obtained.
  • II Membrane (% composition of membrane)
    Cellulose Acetate (398-10)2 85%
    Triacetin  5%
    PEG 400 10%
    2acetyl content 39.3-40.3%
  • (a) Membrane Coating Process
  • The cellulose acetate is dissolved in acetone while stirring with a homogenizer. The polyethylene glycol 400 and triacetin are added to the cellulose acetate solution and stirred until a clear solution is obtained. The clear membrane coating solution is then sprayed onto the seal coated tablets using a fluidized bed coater employing the following conditions: product temperature of 16-22° C.; atomization pressure of approximately 3 bars and spray rate of 120-150 ml/min. The sealed core tablet is coated until a theoretical coating level of approximately 3% is obtained.
  • (% composition of
    III. Second Active Drug Layering second component)
    Pioglitizone HCl 43.5%
    Tween 80  2.0%
    Hydroxypropyl methylcellulose 54.5%
  • Tween 80 and hydroxypropyl methylcellulose are dissolved in purified water. Pioglitizone HCl is then dispersed into this solution. The resulting suspension is then sprayed onto the above-membrane-coated tablets.
  • Example 2
  • A controlled release tablet containing 850 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • First Active Drug
    I. Core (% composition of core)
    Metformin HCl 88.555%
    Povidone K-903, USP  6.368%
    Sodium Lauryl Sulfate  4.577%
    Magnesium Stearate   0.5%
    3approximate molecular weight = 1,000,000, dynamic viscosity (10% w/v solution) 300-700 mPa · s at 20° C.
  • (a) Granulation
  • The metformin HCl and sodium lauryl sulfate are delumped by passing them through a 40 mesh screen and collecting them in a clean, polyethylene-lined container. The povidone, K-90, is dissolved in purified water. The delumped metformin HCl and sodium lauryl sulfate are then added to a top-spray fluidized bed granulator and granulated by spraying with the binding solution of povidone under the following conditions: inlet air temperature of 50-70° C.; atomization air pressure of 1-3 bars and spray rate of 10-100 ml/min.
  • Once the binding solution is depleted, the granules are dried in the granulator until the loss on drying is less than 2%. The dried granules are passed through a comil equipped with the equivalent of an 18 mesh screen.
  • (b) Tableting
  • The magnesium stearate is passed through a 40 mesh stainless steel screen and blended with the metformin HCl granules for approximately five (5) minutes. After blending, the granules are compressed on a rotary press fitted with 15/32″ round standard concave punches (plain lower punch, upper punch with an approximately 1 mm indentation pin).
  • As stated above, the orifice may be formed by any means commonly employed in the pharmaceutical industry.
  • (c) Seal Coating (Optional)
  • The core tablet is seal coated with an Opadry material or other suitable water-soluble material by first dissolving the Opadry material, preferably Opadry Clear in purified water. The Opadry solution is then sprayed onto the core tablet using a pan coater under the following conditions: exhaust air temperature of 38-42° C.; atomization pressure of 28-40 psi and spray rate of 10-15 ml/min. The core tablet is coated with the sealing solution until a theoretical coating level of approximately 2% is obtained.
  • II Membrane (% composition of membrane)
    Cellulose Acetate (398-10)4 85%
    Triacetin  5%
    PEG 400 10%
    4acetyl content 39.3-40.3%
  • (a) Membrane Coating Process
  • The cellulose acetate is dissolved in acetone while stirring with a homogenizer. The polyethylene glycol 400 and triacetin are added to the cellulose acetate solution and stirred. The coating solution is then sprayed onto the seal coated tablets in a fluidized bed coater employing the following conditions: product temperature of 16-22° C.; atomization pressure of approximately 3 bars and spray rate of 120-150 ml/min. The sealed core tablet is coated until a theoretical coating level of approximately 3% is obtained.
  • (% composition of
    III. Second Active Drug Layering second component)
    Pioglitizone HCl 43.5%
    Tween 80  2.0%
    Hydroxypropyl methylcellulose 54.5%

    Tween 80 and hydroxypropyl methylcellulose are dissolved in purified water. Pioglitizone HCl is then dispersed into this solution. The resulting suspension is then sprayed onto the above described tablets.
  • Example 3
  • A controlled release tablet containing 500 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • I. First Active Drug
  • A 500 mg metformin membrane coated tablet is prepared as described in Example 2 above except that compound cup toolings are used during tableting. The 500 mg metformin membrane coated tablet has the following composition:
  • CORE
    Metformin HCl   500 mg/tablet
    Povidone K-90, USP  35.96 mg/tablet
    Sodium lauryl sulfate, NF  25.84 mg/tablet
    Magnesium stearate, NF  2.82 mg/tablet
    SEAL COATING
    Opadry Clear (YS-1-7006)  23.53 mg/tablet
    MEMBRANE COATING
    Cellulose Aacetate, 398-10, NF  23.56 mg/tablet
    Triacetin, USP  1.39 mg/tablet
    Polyethylene Glycol 400, NF  2.77 mg/tablet
    Total weight 615.87 mg/tablet
  • II. Second Active Drug Layering
      • An immediate release amount of pioglitiazone HCL is applied to the 500 mg metformin HCl membrane coated tablet prepared in step I. The final tablet has the following composition:
  • Metformin HCl membrane coated 615.87 mg/tablet
    Pioglitazone Coating
    Pioglitazone HCl  16.53 mg/tablet
    Tween 80   2.0 mg/tablet
    Polyplasdone XL  15.0 mg/tablet
    Opadry Clear (YS-1-7006)  8.47 mg/tablet
    Color Coating
    Opadry White  10.0 mg/tablet
    Polishing Coat
    Candelilla Wax Powder   2.0 mg/tablet
  • The pioglitazone coating is directly applied to the 500 mg metformin HCl membrane coated tablets. The pioglitazone coating is prepared by dissolving 0.252 kg of Opadry Clear, 0.269 kg of Polyplasdone XL and 0.036 kg of Tween 80 in 9.908 kg of purified water using a homogenizer. Once these ingredients are dissolved, 0.296 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then directly applied to the 500 mg metformin HCl membrane coated tablets using a 24″ O'Hara Labcoat III pan coater with the following conditions:
  • Spray Rate 15-27 mL/min
    Exhaust Temperature 42-47° C.
    Atomization Air Pressure 25 psi
    Pan Speed 5-9 rpm
    Inlet Air Flow 300-400 CFM
  • Once the pioglitazone coating has been applied to the 500 mg metformin HCl membrane coated tablet, an aesthetic or color coating of Opadry white is applied to the pioglitazone coated tablet. The color coating is prepared by dispersing 0.179 kg of Opadry White in 1.791 kg of purified water. The Opadry White suspension is applied to the pioglitazone coated tablet using a 24″ O'Hara Labcoat III pan coater under the following conditions:
  • Spray Rate 20-35 mL/min
    Exhaust Temperature 35-45° C.
    Atomization Air Pressure 25 psi
    Pan Speed 9 rpm
    Inlet Air Flow 390-500 CFM
  • Once the color coating is applied, the tablets are polished using 0.036 kg of Candelilla wax powder.
  • Example 4
  • A controlled release tablet containing 500 mg of metformin HCl and 15 mg pioglitazone is prepared as follows:
  • I. First Active Drug
  • A 500 mg membrane coated tablet is prepared as described in Example 2 above except that compound cup toolings are used during tableting. The 500 mg membrane coated tablet has the following composition:
  • CORE
    Metformin HCl   500 mg/tablet
    Povidone K-90, USP  35.96 mg/tablet
    Sodium Lauryl Sulfate, NF  25.84 mg/tablet
    Magnesium Stearate, NF  2.82 mg/tablet
    SEAL COATING
    Opadry Clear (YS-1-7006)  23.53 mg/tablet
    MEMBRANE COATING
    Cellulose Acetate, 398-10, NF  23.56 mg/tablet
    Triacetin, USP  1.39 mg/tablet
    Polyethylene Glycol 400, NF  2.77 mg/tablet
    Total weight 615.87 mg/tablet
  • II. Second Active Drug Layering
      • An immediate release amount of pioglitiazone HCL is applied to the 500 mg metformin HCl seal coated tablet prepared in Step I. The final tablet has the following composition:
  • Metformin HCl membrane coated tablet 615.87 mg/tablet
    Seal Coat
    Opadry Clear (YS-1-7006)  13.8 mg/tablet
    Pioglitazone Coating
    Pioglitazone HCl  16.53 mg/tablet
    Tween 80   2.0 mg/tablet
    Sodium Chloride  4.27 mg/tablet
    Opadry Clear (YS-1-7006)   2.0 mg/tablet
    Color Coating
    Opadry White  8.10 mg/tablet
    Polishing Coat
    Candelilla Wax  0.20 mg/tablet
  • The seal coating solution is prepared by dissolving 0.258 kg of Opadry Clear in 2.576 kg of purified water and spraying the solution onto approximately 12.088 kg of the 500 mg membrane coated metformin HCl tablet cores using a 24″ O'Hara Labcoat III pan coater. The seal coat is applied under the following conditions:
  • Spray Rate 20-35 mL/min
    Exhaust Temperature 35-45° C.
    Atomization Air Pressure 25 psi
    Pan Speed 9 rpm
    Inlet Air Flow 390-500 CFM
  • The pioglitazone coating is applied to the seal coated 500 mg metformin HCl membrane coated tablets. The pioglitazone coating is prepared by dissolving 0.040 kg of Opadry Clear, 0.085 kg of sodium chloride and 0.040 kg of Tween 80 in 4.915 kg of purified water using a homogenizer. Once these ingredients are dissolved, 0.328 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then applied to the seal coated 500 mg metformin HCl membrane coated tablets using a 24″ O'Hara Labcoat III pan coater with the following conditions:
  • Spray Rate 10-30 mL/gun/min
    Exhaust Temperature 35-45° C.
    Atomization Air Pressure 20-40 psi
    Pattern Air Pressure 20-40 psi
    Pan Speed 8-12 rpm
    Inlet Air Flow 250-450 CFM.
  • Once the pioglitazone coating has been applied to the seal coated 500 mg metformin HCl membrane coated tablets, an aesthetic or color coating of Opadry White is applied to the pioglitazone coated tablet. The color coating is prepared by dispersing 0.159 kg of Opadry White in 1.585 kg of purified water. The Opadry White suspension is applied to the pioglitazone coated tablet using conditions similar to those described above for application of the seal coating. Once the color coating is applied, the tablets are polished using 0.004 kg of Candelilla wax powder.
  • Example 5
  • A controlled release tablet containing 1000 mg of metformin HCl and 30 mg pioglitazone is prepared as follows:
  • I. First Active Drug
  • A 1000 mg metformin membrane coated tablet is prepared as described in Example 3 above. The 1000 mg membrane coated tablet has the following composition:
  • CORE
    Metformin HCl 1000 mg/tablet
    Povidone K-90, USP 78.0 mg/tablet
    Sodium Lauryl Sulfate, NF 51.69 mg/tablet
    Magnesium Stearate, NF 5.66 mg/tablet
    SEAL COATING
    Opadry Clear (YS-1-7006) 47.05 mg/tablet
    MEMBRANRE COATING
    Cellulose Acetate, 398-10, NF 15.77 mg/tablet
    Triacetin, USP 0.92 mg/tablet
    Polyethylene Glycol 400, NF 1.85 mg/tablet
    Total weight 1201.0 mg/tablet
  • II. Second Active Drug
      • An immediate release amount of pioglitazone HCL is applied to the 1000 mg metformin HCl membrane coated tablets prepared in step I. The final tablet has the following composition:
  • Metformin HCl membrane coated tablet 1201.0 mg/tablet
    Seal Coating
    Opadry Clear (YS-1-7006) 16.0 mg/tablet
    Pioglitazone Coating
    Pioglitazone HCl 33.06 mg/tablet
    Sodium Chloride 4.27 mg/tablet
    Opadry Clear (YS-1-7006) 3.0 mg/tablet
    Color Coating
    Opadry II White (Y-22-7719) 20.27 mg/tablet
    Polishing Coat
    Candelilla Wax Powder 0.40 mg/tablet
  • The seal coating is prepared by dispersing 0.174 kg of Opadry Clear in 3.478 kg of ethanol and mixing the dispersion for 15 minutes. The dispersion is than sprayed onto approximately 13.174 kg of the 1000 mg metformin HCl membrane coated tablets using a 24″ O'Hara Labcoat III pan coater. The seal coat is applied to the 1000 mg metformin HCl membrane coated tablets with the following conditions:
  • Spray Rate 10-30 ml/gun/min
    Exhaust Temperature 25-45° C.
    Atomization Air Pressure 20-40 psi
    Pan Speed 6-12 rpms
    Pattern Air Pressure 20-40 psi
    Inlet Air Flow 250-450 CFM
  • The pioglitazone coating then is applied to the seal coated 1000 mg metformin HCl membrane coated tablets. The pioglitazone coating is prepared by dissolving 0.036 kg of Opadry Clear and 0.046 kg of sodium chloride in 5.344 kg of ethanol using a homogenizer. Once the ingredients are dispersed, 0.359 kg of pioglitazone HCl is dispersed into the solution and homogenized. The homogenized dispersion is then applied to the seal coated 1000 mg metformin HCl membrane coated tablets using a 24″ O'Hara Labcoat III pan coater with the following conditions:
  • Spray Rate 10-30 mL/gun/min
    Exhaust Temperature 25-45° C.
    Atomization Air Pressure 20-40 psi
    Pan Speed 6-12 rpm
    Pattern Air Pressure 20-40 psi
    Inlet Air Flow 250-450 CFM
  • Once the pioglitazone coating has been applied, an aesthetic or color coating of Opadry II White is applied to the pioglitazone coated tablets. The color coating is prepared by dispersing 0.220 kg of Opadry II White in 4.407 kg of ethanol. The Opadry II White suspension is than applied to the pioglitazone HCl coated tablets using a 24″ O'Hara Labcoat III pan coater using conditions similar to those described above for the seal coating. Once the color coating is applied, the tablets are polished using 0.004 kg of Candelilla wax powder.
  • Example 6
  • A controlled release tablet containing 1000 mg of metformin HCl and 30 mg pioglitazone is prepared as follows:
  • I. First Active Drug
  • A 1000 mg membrane coated tablet is prepared as described in Example 3 above. The 1000 mg membrane coated tablet has the following composition:
  • CORE
    Metformin HCl 1000 mg/tablet
    Povidone K-90, USP 78.0 mg/tablet
    Sodium Lauryl Sulfate, NF 51.69 mg/tablet
    Magnesium Stearate, NF 5.65 mg/tablet
    SEAL COATING
    Opadry Clear (YS-1-7006) 47.05 mg/tablet
    MEMBRANE COATING
    Cellulose Acetate, 398-10, NF 15.77 mg/tablet
    Triacetin, USP 0.92 mg/tablet
    Polyethylene Glycol 400, NF 1.85 mg/tablet
    Total weight 1201.0 mg/tablet
  • II. Second Active Drug
      • An immediate release amount of pioglitazone HCL is applied to the 1000 mg metformin HCl membrane coated tablets prepared in step I. The final tablet has the following composition:
  • Metformin HCl membrane coated tablet 1201.0 mg/tablet
    Seal Coat
    Opadry Clear (YS-1-7006) 21.0 mg/tablet
    Pioglitazone Coating
    Pioglitazone HCl 33.06 mg/tablet
    Sodium Chloride 5.0 mg/tablet
    Opadry Clear (YS-1-7006) 3.7 mg/tablet
    Color Coating
    Opadry II White (Y-22-7719) 21.54 mg/tablet
    Polishing Coat
    Candelilla Wax Powder 0.40 mg/tablet
  • The seal coat is applied to the 1000 mg metformin HCl membrane coated tablet. The seal coating is prepared by dispersing 0.229 kg of Opadry Clear in 4.573 kg of alcohol USP and mixing the dispersion for 15 minutes. The dispersion is then sprayed onto approximately 13.08 kg of the 1000 mg metformin HCl tablet cores using a 24″ O'Hara Labcoat III pan coater with the nozzle tip set 4±2″ from the top of the static bed and the following conditions:
  • Spray Rate 25 ± 10 mL/gun/min
    Exhaust Temperature 25° C. ± 5° C.
    Atomization Air Pressure 10-40 psi
    Pan Speed 4-9 rpm
    Supply Air Flow 200 ± 100 CFM
    Pattern Air Pressure 10-40 psi
  • The seal coating dispersion is continuously stirred until it is consumed during the coating process.
  • The pioglitazone coating then is applied to the seal coated 1000 mg metformin HCl membrane coated tablets. The pioglitazone coating is prepared by mixing 4.434 kg of alcohol USP and 1.250 kg of purified water (approximately a 78:22 alcohol to purified water ratio) and slowly dispersing 0.040 kg of Opadry Clear into the solvent mixture. Once the Opadry Clear is dispersed, it is homogenized for about 10 minutes. Once the Opadry Clear dispersion is homogenized, 0.054 kg of sodium chloride is added to the dispersion and homogenized for about 2 minutes. After the sodium chloride is homogenized, 0.360 kg of pioglitazone HCl is slowly dispersed into the solvent mix and then homogenized for about 10 minutes. Once the pioglitazone HCl is homogenized, the homogenizer is removed from the mixing vessel and replaced with an air mixer and mixed for an additional 15 minutes. The pioglitazone suspension is stirred until the suspension is consumed during the coating process. The pioglitazone HCl suspension is applied to the seal coated 1000 mg metformin HCl membrane coated tablet cores using a 24″ O'Hara Labcoat III pan coater with the nozzle tip set 4±2″ above the top of the static bed with the following conditions:
  • Spray Rate 25 ± 10 mL/gun/min
    Exhaust Temperature 25° C. ± 5° C
    Atomization Air Pressure 10-40 psi
    Pan Speed 4-9 rpms
    Pattern Air Pressure 10-40 psi
    Supply Air Flow 200 ± 100 CFM
  • Once the pioglitazone coating has been applied to the seal coated 1000 mg metformin HCl membrane coated tablets, an aesthetic coating of Opadry II White is applied to the pioglitazone coated tablet. The aesthetic coating is prepared by dispersing 0.235 kg of Opadry II White (Y-22-7719) in 4.691 kg of alcohol USP and mixing the dispersion for about 1 hour. The Opadry II White dispersion is than sprayed onto the pioglitazone HCl coated tablets using a 24″ O'Hara Labcoat III pan coater with the nozzle tip set 4±2″ from the top of the static bed and the following conditions:
  • Spray Rate 25 ± 10 mL/gun/min
    Exhaust Temperature 25° C. ± 5° C.
    Atomization Air Pressure 10-40 psi
    Pan Speed 4-9 rpm
    Supply Air Flow 200 ± 100 CFM
    Pattern Air Pressure 10-40 psi
  • The color coating dispersion is continuously stirred until the dispersion is consumed during the coating process.
  • Once the aesthetic coating suspension is consumed, the tablets are dried in the coating pan for about 5 minutes with a pan speed of about 2-8 rpms and an exhaust temperature of 25±5° C. Once the tablets are dried, the exhaust air is turned off and the pan speed is adjusted to about 3-4 rpms and 0.004 kg of Candellia wax powder that had been passed through a 60 mesh screen is sprinkled onto the tablets. After the tablets have rolled in the wax for about 5 minutes the exhaust air is turned on and the tablets are rolled for an additional 10 minutes.
  • The finished polished tablet exhibited the following pioglitazone HCl dissolution profile when tested in a USP apparatus type 1 at 100 rpm in a pH 2.0 HCl-0.3M KCl buffer solution:
  • Time % Pioglitazone Released
    10 min.  42%
    20 min  79%
    30 min  95%
    45 min 102%
  • The finished polished tablet also contained the following pioglitazone related compounds when tested by HPLC using a YMC-ODS-AQ, 5 μm, 120 Å, 4.6×250 mm column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, a 40 μL injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.
  • Name Relative Retention Time Amount (%)
    RS-1 0.7 N.D*.
    Pioglitazone 1.0
    RS-2 1.5 0.03
    RS-3 3.4 0.04
    RS-4 1.2 0.03
    RS-5 2.8 0.04
    *N.D. = none detected
    RS-1 is (+/−)-5-[p-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]-5-hydroxy-2,4-thiazolidinedione.
    RS-2 is (z)-5-[p-[2-(5-ethyl-2-pyridyl)ethoxy]benzylidene]-2,4-thiazolidinedione.
    RS-3 is (+/−)-5-[p-[2-(5-ethyl-2-pyridyl)ethoxy]benzyl]-3-[2-(5-ethyl-2-pyridyl)ethyl]-2,4-thiazolidinedione.
    RS-4 is (+/−)-ethyl-2-carbamoyltio-3-[4-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl-]propionate.
    RS-5 is ethyl-3-p-[2-(5-ethyl-2-pyridyl)ethoxy]phenyl-propionate.
  • The final polished tablet was packaged in a 100 cc HDPE bottle containing one (1) 2 g SORB-IT® desiccant canister and subjected to accelerated stability conditions of 40° C. and 75% relative humidity for three (3) months. After storage, the final polished tablet was tested and exhibited the following pioglitazone HCl dissolution profile when tested in a USP apparatus type 1 at 100 rpm in a pH 2.0 HCl-0.3M KCl buffer solution:
  • Time % Pioglitazone Released
    10 min.  38%
    20 min  73%
    30 min  92%
    45 min 101%
  • The stored final polished tablet also contained the following pioglitazone related compounds when tested by HPLC using a YMC-ODS-AQ, 5 nm, 120 Å, 4.6×250 mm column, a 0.1 M ammonium acetate buffer:acetonitrile:glacial acetic acid (25:25:1) mobile phase, a 40 μL injection volume, 0.7 mL/min flow rate, 25° C. column temperature and 269 nm wavelength for the UV detector.
  • Name Relative Retention Time Amount (%)
    RS-1 0.7 N.D.*
    Pioglitazone 1.0
    RS-2 1.5 0.03
    RS-3 3.4 0.05
    RS-4 1.2 0.02
    RS-5 2.8 0.04
    *N.D. = none detected
  • While certain preferred and alternative embodiments of the invention have been set forth for purposes of disclosing the invention, modifications to the disclosed embodiments may occur to those who are skilled in the art. Accordingly, the appended claims are intended to cover all embodiments of the invention and modifications thereof which do not depart from the spirit and scope of the invention.

Claims (21)

1. A pharmaceutical dosage form having a first and second active drug, said dosage form comprising:
(a) a controlled release core comprising an antihyperglycemic drug and at least one pharmaceutically acceptable excipient; and
(b) an immediate release thiazolidinedione derivative containing component wherein not less than 85%, of the thiazolidinedione is released from the dosage form within 45 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
2. The pharmaceutical dosage form as defined in claim 1 wherein not less than 90%, of the thiazolidinedione is released from the dosage form within 45 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
3. The pharmaceutical dosage form as defined in claim 1 wherein not less than 95%, of the thiazolidinedione is released from the dosage form within 45 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
4. The pharmaceutical dosage form as defined in claim 1 wherein not less than 100%, of the thiazolidinedione is released from the dosage form within 45 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
5. The pharmaceutical dosage form as defined in claim 1 wherein not less than 85%, of the thiazolidinedione is released from the dosage form within 40 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
6. The pharmaceutical dosage form as defined in claim 1 wherein not less than 90%, of the thiazolidinedione is released from the dosage form within 40 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
7. The pharmaceutical dosage form as defined in claim 1 wherein not less than 95%, of the thiazolidinedione is released from the dosage form within 40 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
8. The pharmaceutical dosage form as defined in claim 1 wherein not less than 100%, of the thiazolidinedione is released from the dosage form within 40 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
9. The pharmaceutical dosage form as defined in claim 1 wherein not less than 85%, of the thiazolidinedione is released from the dosage form within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
10. The pharmaceutical dosage form as defined in claim 1 wherein not less than 90%, of the thiazolidinedione is released from the dosage form within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
11. The pharmaceutical dosage form as defined in claim 1 wherein not less than 95%, of the thiazolidinedione is released from the dosage form within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
12. The pharmaceutical dosage form as defined in claim 1 wherein not less than 100%, of the thiazolidinedione is released from the dosage form within 30 minutes when tested according to the United States Pharmacopeia (USP) 26, with Apparatus 1 at 100 rpm, 37° C. and 900 ml of 0.3 M KCl—HCl Buffer, pH 2.0.
13. A pharmaceutical dosage form having a first and second active drug, said dosage form comprising:
(a) a controlled release core comprising an antihyperglycemic drug and at least one pharmaceutically acceptable excipient; and
(b) an immediate release thiazolidinedione derivative containing component wherein the total thiazolidinedione related compounds or impurities in the final dosage form are not more than 0.6 as determined by high performance liquid chromatography.
14. The pharmaceutical dosage form as defined in claim 13 wherein the total thiazolidinedione related compounds are not more than 0.5%.
15. The pharmaceutical dosage form as defined in claim 13 wherein the total thiazolidinedione related compounds are not more than 0.5%.
16. The pharmaceutical dosage form as defined in claim 13 wherein each individual thiazolidinedione related compound or impurity in the final dosage form is not more than 0.25%.
17. The pharmaceutical dosage form as defined in claim 16 wherein each individual thiazolidinedione related compound or impurity in the final dosage form is not more than 0.20%.
18. The pharmaceutical dosage form as defined in claim 17 wherein each individual thiazolidinedione related compound or impurity in the final dosage form is not more than 0.10%.
19. The dosage form of claim 1 wherein said controlled release core is an osmotic tablet.
20. The dosage form of claim 19 wherein the osmotic tablet comprises:
(a) a core comprising:
(i) 50-98% of said antihyperglycemic drug;
(ii) 0.1-40% of a binding agent;
(iii) 0-20% of an absorption enhancer; and
(iv) 0-5% of a lubricant;
(b) optionally a seal coat surrounding the core; and
(c) a sustained release membrane comprising:
(i) 50-99% of a polymer;
(ii) 0-40% of a flux enhancer and
(iii) 0-25% of a plasticizer, said membrane having at least one passageway formed therein for release of the antihyperglycemic drug.
21-34. (canceled)
US14/203,268 2002-09-20 2014-03-10 Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative Abandoned US20150072001A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/203,268 US20150072001A1 (en) 2002-09-20 2014-03-10 Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US41218002P 2002-09-20 2002-09-20
US41218102P 2002-09-20 2002-09-20
US10/664,803 US7785627B2 (en) 2002-09-20 2003-09-19 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US10/777,542 US7959946B2 (en) 2002-09-20 2004-02-12 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/151,653 US8470368B2 (en) 2002-09-20 2011-06-02 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/889,441 US8668931B2 (en) 2002-09-20 2013-05-08 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US14/203,268 US20150072001A1 (en) 2002-09-20 2014-03-10 Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/889,441 Continuation US8668931B2 (en) 2002-09-20 2013-05-08 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Publications (1)

Publication Number Publication Date
US20150072001A1 true US20150072001A1 (en) 2015-03-12

Family

ID=35060820

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/777,542 Active 2028-11-17 US7959946B2 (en) 2002-09-20 2004-02-12 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/151,653 Expired - Lifetime US8470368B2 (en) 2002-09-20 2011-06-02 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/889,441 Expired - Lifetime US8668931B2 (en) 2002-09-20 2013-05-08 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US14/203,268 Abandoned US20150072001A1 (en) 2002-09-20 2014-03-10 Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US10/777,542 Active 2028-11-17 US7959946B2 (en) 2002-09-20 2004-02-12 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/151,653 Expired - Lifetime US8470368B2 (en) 2002-09-20 2011-06-02 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US13/889,441 Expired - Lifetime US8668931B2 (en) 2002-09-20 2013-05-08 Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Country Status (1)

Country Link
US (4) US7959946B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004006921A1 (en) * 2002-07-11 2004-01-22 Takeda Pharmaceutical Company Limited Process for producing coated preparation
US9060941B2 (en) * 2002-09-20 2015-06-23 Actavis, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US7785627B2 (en) * 2002-09-20 2010-08-31 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US7959946B2 (en) * 2002-09-20 2011-06-14 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
EP1588708A4 (en) 2003-01-29 2006-03-01 Takeda Pharmaceutical Process for producing coated preparation
WO2005117591A2 (en) * 2004-05-28 2005-12-15 Andrx Labs Llc Novel pharmaceutical formulation containing a biguanide and an angiotensin antagonist
JP5545952B2 (en) * 2007-08-31 2014-07-09 第一三共株式会社 Sustained release preparation and method for producing the same
BR112012026005A2 (en) * 2010-04-13 2015-09-08 Nucitec Sa De Cv compositions and methods for treating type ii diabetes and related disorders
WO2012028934A1 (en) 2010-09-01 2012-03-08 Lupin Limited Pharmaceutical composition comprising metformin and pioglitazone
WO2014184742A1 (en) 2013-05-13 2014-11-20 Ranbaxy Laboratories Limited Pharmaceutical compositions containing a biguanide and a low dose antidiabetic agent

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785627B2 (en) * 2002-09-20 2010-08-31 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US7959946B2 (en) * 2002-09-20 2011-06-14 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US8084058B2 (en) * 2002-09-20 2011-12-27 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Family Cites Families (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3174901A (en) 1963-01-31 1965-03-23 Jan Marcel Didier Aron Samuel Process for the oral treatment of diabetes
US3621097A (en) 1970-03-30 1971-11-16 Jan Marcel Didier Aron Samuel Method and compositions for treatment of mental illness
US3960949A (en) 1971-04-02 1976-06-01 Schering Aktiengesellschaft 1,2-Biguanides
US3845770A (en) 1972-06-05 1974-11-05 Alza Corp Osmatic dispensing device for releasing beneficial agent
US3916899A (en) 1973-04-25 1975-11-04 Alza Corp Osmotic dispensing device with maximum and minimum sizes for the passageway
US4080472A (en) 1974-03-22 1978-03-21 Societe D'etudes Et D'exploitation De Marques Et Brevets S.E.M.S. Metformin 2-(p-chlorophenoxy)-2-methylpropionate
US4034758A (en) 1975-09-08 1977-07-12 Alza Corporation Osmotic therapeutic system for administering medicament
US4077407A (en) 1975-11-24 1978-03-07 Alza Corporation Osmotic devices having composite walls
US4058122A (en) 1976-02-02 1977-11-15 Alza Corporation Osmotic system with laminated wall formed of different materials
US4166800A (en) 1977-08-25 1979-09-04 Sandoz, Inc. Processes for preparation of microspheres
US4220648A (en) 1979-01-22 1980-09-02 The Upjohn Company Antidiabetic 1,2-dihydro-2-oxo-6-neopentyl-nicotinic acids
US4389330A (en) 1980-10-06 1983-06-21 Stolle Research And Development Corporation Microencapsulation process
US4783337A (en) 1983-05-11 1988-11-08 Alza Corporation Osmotic system comprising plurality of members for dispensing drug
CA1266827A (en) 1984-06-20 1990-03-20 Merck & Co., Inc. Controlled porosity osmotic pump
US4968507A (en) 1984-06-20 1990-11-06 Merck & Co., Inc. Controlled porosity osmotic pump
AR240698A1 (en) 1985-01-19 1990-09-28 Takeda Chemical Industries Ltd Process for the preparation of 5-(4-(2-(5-ethyl-2-pyridil)-ethoxy)benzyl)-2,4-thiazolodinedione and their salts
IT1188212B (en) 1985-12-20 1988-01-07 Paolo Colombo SYSTEM FOR THE RELEASE SPEED OF ACTIVE SUBSTANCES
GB8618811D0 (en) 1986-08-01 1986-09-10 Approved Prescription Services Sustained release ibuprofen formulation
CH668187A5 (en) 1986-08-07 1988-12-15 Ciba Geigy Ag THERAPEUTIC SYSTEM WITH SYSTEMIC EFFECT.
FR2611500B1 (en) 1987-03-06 1990-05-04 Lipha USE OF BIGUANIDE DERIVATIVES IN THE PREPARATION OF MEDICINES
US4891223A (en) 1987-09-03 1990-01-02 Air Products And Chemicals, Inc. Controlled release delivery coating formulation for bioactive substances
GB8724763D0 (en) 1987-10-22 1987-11-25 Aps Research Ltd Sustained-release formulations
US4857337A (en) 1988-05-24 1989-08-15 American Home Products Corp. (Del) Enteric coated aspirin tablets
US5612059A (en) 1988-08-30 1997-03-18 Pfizer Inc. Use of asymmetric membranes in delivery devices
FI900470A0 (en) 1989-01-31 1990-01-30 Int Pharma Agentur AKTIVAEMNEN KONTROLLERAT AVGIVANDE SYSTEM OCH FOERFARANDE FOER DESS FRAMSTAELLNING.
DD295760A5 (en) 1989-01-31 1991-11-14 Martin-Luther-Universitaet Halle Wittenberg,De DRUG DISTRIBUTION SYSTEM WITH COTROLLED ACTIVE INGREDIENT TRANSFER
US5356913A (en) 1990-02-09 1994-10-18 The Upjohn Company Use of insulin sensitizing agents to treat hypertension
US5200194A (en) 1991-12-18 1993-04-06 Alza Corporation Oral osmotic device
US5294770A (en) 1992-01-14 1994-03-15 Alza Corporation Laser tablet treatment system with dual access to tablet
US5376771A (en) 1992-07-07 1994-12-27 Merck & Co., Inc. High speed process for preparing orifices in pharmaceutical dosage forms
EP0621032B1 (en) 1993-04-23 2000-08-09 Novartis AG Controlled release drug delivery device
DE69432199T2 (en) 1993-05-24 2004-01-08 Sun Microsystems, Inc., Mountain View Graphical user interface with methods for interfacing with remote control devices
US5365913A (en) * 1993-07-20 1994-11-22 Walton Garry L Rupture disc gas launcher
US5457109A (en) 1993-09-15 1995-10-10 Warner-Lambert Company Use of thiazolidinedione derivatives and related antihyperglycemic agents in the treatment of disease states at risk for progressing to noninsulin-dependent diabetes mellitus
DE4432757A1 (en) 1994-09-14 1996-03-21 Boehringer Mannheim Gmbh Pharmaceutical preparation containing metformin and process for its preparation
US5917052A (en) 1994-09-28 1999-06-29 Shaman Pharmaceuticals, Inc. Hypoglycemic agent from cryptolepis
AUPM897594A0 (en) 1994-10-25 1994-11-17 Daratech Pty Ltd Controlled release container
US5858398A (en) 1994-11-03 1999-01-12 Isomed Inc. Microparticular pharmaceutical compositions
US5658474A (en) 1994-12-16 1997-08-19 Alza Corporation Method and apparatus for forming dispenser delivery ports
TW438587B (en) 1995-06-20 2001-06-07 Takeda Chemical Industries Ltd A pharmaceutical composition for prophylaxis and treatment of diabetes
NZ286920A (en) 1995-07-03 1997-06-24 Sankyo Co Use of combination of hmg-coa reductase inhibitors and of insulin sensitizers for the prevention/treatment of arteriosclerosis or xanthoma
US5972389A (en) 1996-09-19 1999-10-26 Depomed, Inc. Gastric-retentive, oral drug dosage forms for the controlled-release of sparingly soluble drugs and insoluble matter
US5859037A (en) 1997-02-19 1999-01-12 Warner-Lambert Company Sulfonylurea-glitazone combinations for diabetes
US6011049A (en) 1997-02-19 2000-01-04 Warner-Lambert Company Combinations for diabetes
US6153632A (en) 1997-02-24 2000-11-28 Rieveley; Robert B. Method and composition for the treatment of diabetes
US6291495B1 (en) 1997-02-24 2001-09-18 Robert B. Rieveley Method and composition for the treatment of diabetes
ATE302597T1 (en) 1997-06-06 2005-09-15 Depomed Inc STOMACH-RESIDENT ORAL DOSAGE FORMS OF WATER-SOLUBLE DRUGS WITH CONTROLLED RELEASE
US6056977A (en) 1997-10-15 2000-05-02 Edward Mendell Co., Inc. Once-a-day controlled release sulfonylurea formulation
ATE261935T1 (en) 1997-12-08 2004-04-15 Bristol Myers Squibb Co NEW METFORMIN SALTS AND METHODS
US5948440A (en) 1997-12-17 1999-09-07 Ranbaxy Laboratories Limited Modified release matrix formulation of cefaclor and cephalexin
US6032004A (en) 1998-01-08 2000-02-29 Xerox Corporation Integral safety interlock latch mechanism
AP1224A (en) 1998-03-19 2003-11-14 Bristol Myers Squibb Co Biphasic controlled release delivery system for high solubility pharmaceuticals and method.
US6099859A (en) 1998-03-20 2000-08-08 Andrx Pharmaceuticals, Inc. Controlled release oral tablet having a unitary core
CA2330485C (en) 1998-04-29 2008-07-08 Sumitomo Pharmaceuticals Co., Ltd. Oral formulation comprising biguanide and an organic acid
US6191162B1 (en) 1998-05-28 2001-02-20 Medical Research Institute Method of reducing serum glucose levels
BR9911656A (en) 1998-06-30 2001-03-20 Takeda Chemical Industries Ltd Pharmaceutical composition, processes for the prevention or treatment of diabetes in a mammal, for the prevention or treatment of diabetic complications in a mammal and for the prevention or treatment of impaired glucose tolerance in a mammal, use of an insulin sensitizer, and, process to reduce the side effects of an insulin sensitizer or / and an anoretic administered to a diabetic mammal
US6099862A (en) 1998-08-31 2000-08-08 Andrx Corporation Oral dosage form for the controlled release of a biguanide and sulfonylurea
EA200601145A1 (en) 1998-11-12 2009-04-28 Смитклайн Бичам П.Л.С. TABLET OF SLOW-DIVISION OF INSULIN SENSITIZER AND OTHER ANTI-DIABETIC AGENTS
US20040081697A1 (en) 1998-11-12 2004-04-29 Smithkline Beecham P.L.C. Pharmaceutical composition for modified release of an insulin sensitiser and another antidiabetic agent
US6342249B1 (en) 1998-12-23 2002-01-29 Alza Corporation Controlled release liquid active agent formulation dosage forms
US6153832A (en) * 1999-02-08 2000-11-28 Hewlett-Packard Company Z-fold printhead carriage trailing cable for optimized panelization
US6248363B1 (en) 1999-11-23 2001-06-19 Lipocine, Inc. Solid carriers for improved delivery of active ingredients in pharmaceutical compositions
US7374779B2 (en) 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6383471B1 (en) 1999-04-06 2002-05-07 Lipocine, Inc. Compositions and methods for improved delivery of ionizable hydrophobic therapeutic agents
KR100883477B1 (en) 1999-05-27 2009-02-16 아쿠스피어 인코포레이티드. Pharmaceutical composition of porous drug matrices
WO2001035940A2 (en) 1999-11-16 2001-05-25 Smithkline Beecham P.L.C. Pharmaceutical composition comprising a thiazolidinedione-metformin hydrochloride
AR030920A1 (en) 1999-11-16 2003-09-03 Smithkline Beecham Plc PHARMACEUTICAL COMPOSITIONS FOR THE TREATMENT OF MELLITUS DIABETES AND CONDITIONS ASSOCIATED WITH MELLITUS DIABETES, AND PROCEDURES FOR PREPARING SUCH COMPOSITIONS
MXPA02006031A (en) 1999-12-16 2003-01-28 Alza Corp Dosage forms having a barrier layer to laser ablation.
BR0007360A (en) 1999-12-23 2001-08-14 Johnson & Johnson Controlled release composition
WO2001047498A2 (en) 1999-12-23 2001-07-05 Pfizer Products Inc. Hydrogel-driven layered drug dosage form comprising sertraline
AR026148A1 (en) 2000-01-21 2003-01-29 Osmotica Argentina S A OSMOTIC DEVICE WITH PREFORMED PASSAGE THAT INCREASES SIZE
SE0001151D0 (en) 2000-03-31 2000-03-31 Amarin Dev Ab Method of producing a controlled-release composition
US6296874B1 (en) 2000-05-01 2001-10-02 Aeropharm Technology Incorporated Core formulation comprising troglitazone and abiguanide
US6524621B2 (en) 2000-05-01 2003-02-25 Aeropharm Technology Inc. Core formulation
US6403121B1 (en) * 2000-05-01 2002-06-11 Aeropharm Technology Incorporated Core formulation
US6451342B2 (en) 2000-05-01 2002-09-17 Aeropharm Technology Incorporated Core formulation comprised of troglitazone and a biguanide
US6780432B1 (en) 2000-05-01 2004-08-24 Aeropharm Technology, Inc. Core formulation
DE10025946A1 (en) 2000-05-26 2001-11-29 Gruenenthal Gmbh drug combination
US20030086972A1 (en) 2000-08-09 2003-05-08 Appel Leah E. Hydrogel-driven drug dosage form
EP1322158B1 (en) 2000-10-02 2012-08-08 USV Ltd. Sustained release pharmaceutical compositions containing metformin and method of their production
US20060034922A1 (en) 2000-11-03 2006-02-16 Andrx Labs, Llc Controlled release metformin compositions
US6790459B1 (en) 2000-11-03 2004-09-14 Andrx Labs, Llc Methods for treating diabetes via administration of controlled release metformin
US6866866B1 (en) 2000-11-03 2005-03-15 Andrx Labs, Llc Controlled release metformin compositions
WO2002060043A1 (en) * 2001-01-23 2002-08-01 Koninklijke Philips Electronics N.V. A digitally controlled dc/dc converter
US7071181B2 (en) 2001-01-26 2006-07-04 Schering Corporation Methods and therapeutic combinations for the treatment of diabetes using sterol absorption inhibitors
US6838093B2 (en) 2001-06-01 2005-01-04 Shire Laboratories, Inc. System for osmotic delivery of pharmaceutically active agents
WO2003004009A1 (en) 2001-07-02 2003-01-16 Geneva Pharmaceuticals, Inc. Pharmaceutical composition
DE10132282A1 (en) 2001-07-06 2003-01-16 Deutsche Lufthansa Passenger seat for a means of transportation
US6703045B2 (en) 2001-08-21 2004-03-09 Council Of Scientific & Industrial Research Composition and method for maintaining blood glucose level
US20030118649A1 (en) 2001-10-04 2003-06-26 Jinming Gao Drug delivery devices and methods
US20030091630A1 (en) 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US20030185882A1 (en) 2001-11-06 2003-10-02 Vergez Juan A. Pharmaceutical compositions containing oxybutynin
US8329217B2 (en) * 2001-11-06 2012-12-11 Osmotica Kereskedelmi Es Szolgaltato Kft Dual controlled release dosage form
US20030118647A1 (en) 2001-12-04 2003-06-26 Pawan Seth Extended release tablet of metformin
US20030224046A1 (en) 2002-06-03 2003-12-04 Vinay Rao Unit-dose combination composition for the simultaneous delivery of a short-acting and a long-acting oral hypoglycemic agent
US8911781B2 (en) 2002-06-17 2014-12-16 Inventia Healthcare Private Limited Process of manufacture of novel drug delivery system: multilayer tablet composition of thiazolidinedione and biguanides
WO2004006921A1 (en) 2002-07-11 2004-01-22 Takeda Pharmaceutical Company Limited Process for producing coated preparation
IN192749B (en) 2002-11-15 2004-05-15 Ranbaxy Lab Ltd
EP1588708A4 (en) 2003-01-29 2006-03-01 Takeda Pharmaceutical Process for producing coated preparation
MXPA06007100A (en) 2003-12-19 2007-01-19 Omega Bio Pharma Ip3 Ltd Compositions and methods for treating diabetes.
RU2006139930A (en) 2004-05-03 2008-06-10 Дюк Юниверсити (Сша/Сша) (Us) COMPOSITIONS FOR PROMOTING WEIGHT LOSS
CN1327840C (en) 2004-06-08 2007-07-25 天津药物研究院 Medicinal composition and its use in treatment of diabetes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7785627B2 (en) * 2002-09-20 2010-08-31 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US7959946B2 (en) * 2002-09-20 2011-06-14 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US8084058B2 (en) * 2002-09-20 2011-12-27 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US8470368B2 (en) * 2002-09-20 2013-06-25 Watson Pharmaceuticals, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US8668931B2 (en) * 2002-09-20 2014-03-11 Actavis, Inc. Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Also Published As

Publication number Publication date
US8668931B2 (en) 2014-03-11
US8470368B2 (en) 2013-06-25
US7959946B2 (en) 2011-06-14
US20130266647A1 (en) 2013-10-10
US20040161462A1 (en) 2004-08-19
US20110262538A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
AU2011202162B2 (en) Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
CA2601501C (en) Novel pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
US8668931B2 (en) Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative
EP1539144B1 (en) Multistage formulation containing a biguanide and a thiazolidinedione derivative
US8084058B2 (en) Pharmaceutical formulation containing a biguanide and a thiazolidinedione derivative

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION