US20150081067A1 - Synchronized exercise buddy headphones - Google Patents

Synchronized exercise buddy headphones Download PDF

Info

Publication number
US20150081067A1
US20150081067A1 US14/037,267 US201314037267A US2015081067A1 US 20150081067 A1 US20150081067 A1 US 20150081067A1 US 201314037267 A US201314037267 A US 201314037267A US 2015081067 A1 US2015081067 A1 US 2015081067A1
Authority
US
United States
Prior art keywords
headphone
information
processor
buddy
music
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/037,267
Inventor
Sabrina Tai-Chen Yeh
Steven Friedlander
David Andrew Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to US14/037,267 priority Critical patent/US20150081067A1/en
Assigned to SONY CORPORATION reassignment SONY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FRIEDLANDER, STEVEN, YEH, SABRINA TAI-CHEN, Young, David Andrew
Priority to KR20140120858A priority patent/KR20150032183A/en
Priority to CN201410471221.7A priority patent/CN104469585A/en
Priority to JP2014188915A priority patent/JP2015061318A/en
Publication of US20150081067A1 publication Critical patent/US20150081067A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • G06Q50/22Social work
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1123Discriminating type of movement, e.g. walking or running
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • A61B5/4815Sleep quality
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7405Details of notification to user or communication with user or patient ; user input means using sound
    • A61B5/7415Sound rendering of measured values, e.g. by pitch or volume variation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • G01S19/19Sporting applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/60Information retrieval; Database structures therefor; File system structures therefor of audio data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0484Interaction techniques based on graphical user interfaces [GUI] for the control of specific functions or operations, e.g. selecting or manipulating an object, an image or a displayed text element, setting a parameter value or selecting a range
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/16Sound input; Sound output
    • G06F3/165Management of the audio stream, e.g. setting of volume, audio stream path
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/016Personal emergency signalling and security systems
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B19/00Teaching not covered by other main groups of this subclass
    • G09B19/003Repetitive work cycles; Sequence of movements
    • G09B19/0038Sports
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L15/00Speech recognition
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive loop type
    • H04B5/0025Near field system adaptations
    • H04B5/70
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • H04L63/0853Network architectures or network communication protocols for network security for authentication of entities using an additional device, e.g. smartcard, SIM or a different communication terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1172Identification of persons based on the shapes or appearances of their bodies or parts thereof using fingerprinting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1176Recognition of faces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/72Mobile telephones; Cordless telephones, i.e. devices for establishing wireless links to base stations without route selection
    • H04M1/724User interfaces specially adapted for cordless or mobile telephones
    • H04M1/72403User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality
    • H04M1/72409User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories
    • H04M1/72412User interfaces specially adapted for cordless or mobile telephones with means for local support of applications that increase the functionality by interfacing with external accessories using two-way short-range wireless interfaces
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/02Details of telephonic subscriber devices including a Bluetooth interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/04Details of telephonic subscriber devices including near field communication means, e.g. RFID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M2250/00Details of telephonic subscriber devices
    • H04M2250/12Details of telephonic subscriber devices including a sensor for measuring a physical value, e.g. temperature or motion

Definitions

  • the present application relates generally to digital ecosystems that are configured for use when engaging in physical activity and/or fitness exercises.
  • a device includes at least one computer readable storage medium bearing instructions executable by a processor and at least one processor configured for accessing the computer readable storage medium to execute the instructions.
  • the processor Upon execution of the instructions, the processor is configured for pairing with a buddy device to establish an information-sharing near field communication (NFC) pairing, using NFC facilitated by at least one NFC element communicating with the processor.
  • NFC near field communication
  • the processor is also configured for using information from the NFC pairing and is configured for providing music information using a wireless transceiver to the buddy device.
  • the wireless transceiver can be a Bluetooth transceiver and may be used to provide music information to the buddy device.
  • the processor may be configured for playing audible exercise information in at least one speaker of the device.
  • the audible exercise information may not be sent to the buddy device.
  • the audible exercise information that may be based from a biometric sensor engaged with a user of the device can be received by the processor when executing the instructions and being configured in such a manner.
  • the instructions on the storage medium may also configure the processor to receive information from a microphone associated with the device.
  • the processor can also use information from the NFC pairing and provide the information from the microphone to the buddy device.
  • the audible information may be provided to the buddy device using Bluetooth.
  • the NFC element may not be a Bluetooth transceiver.
  • the processor when executing the instructions, may be configured for providing music information to the buddy device in response to a user selecting a play element that can be in communication with the processor.
  • the device may be a first device and the music information provided to the buddy device may be a first music piece being played on a speaker of the first device, such that the first device and buddy device play the same music piece.
  • the music information that may be provided to the buddy device by the first device can include a tempo of a first music piece being played on a speaker of the first device. Using the tempo information, both the first device and buddy device can play different music pieces from each other but at the tempo provided by the first device.
  • the instructions may otherwise configure the processor to use information from the NFC pairing to receive music information using the wireless transceiver from the buddy device and/or to receive audible information from the buddy device input at a microphone associated with the buddy device.
  • a method in another aspect, includes juxtaposing a first headphone with a buddy headphone to establish a pairing, which causes a sharing of information between the headphones automatically.
  • Use of the shared information allows for execution of automatically sending music played on the first headphone to the buddy headphone for playing thereon such that both headphones play the same music simultaneously with each other.
  • Use of the shared information also or otherwise allows for execution of automatically sending tempo information associated with music played on the first headphone to the buddy headphone such that both headphones play the different music but at the same tempo.
  • a kit of parts in another aspect, includes a first headphone that includes a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element.
  • the first headphone is configured for engagement with a person's head such that the at least one speaker is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker.
  • at least a second headphone includes a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element.
  • the second headphone is configured for engagement with a person's head such that the at least one speaker of the second headphone is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker of the second headphone.
  • FIG. 1 is a block diagram of an example system including an example CE device in accordance with present principles
  • FIG. 2 is a block diagram of an example system including a specific example CE device embodied as a music player in accordance with present principles;
  • FIGS. 3-5 illustrate logic that can be executed by various processors shown in FIG. 2 .
  • a system herein may include server and client components, connected over a network such that data may be exchanged between the client and server components.
  • the client components may include one or more computing devices including portable televisions (e.g. smart TVs, Internet-enabled TVs), portable computers such as laptops and tablet computers, and other mobile devices including smart phones and additional examples discussed below.
  • portable televisions e.g. smart TVs, Internet-enabled TVs
  • portable computers such as laptops and tablet computers
  • other mobile devices including smart phones and additional examples discussed below.
  • These client devices may employ, as non-limiting examples, operating systems from Apple, Google, or Microsoft.
  • a Unix operating system may be used.
  • These operating systems can execute one or more browsers such as a browser made by Microsoft or Google or Mozilla or other browser program that can access web applications hosted by the Internet servers over a network such as the Internet, a local intranet, or a virtual private network.
  • instructions refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware; hence, illustrative components, blocks, modules, circuits, and steps are set forth in terms of their functionality.
  • a processor may be any conventional general purpose single- or multi-chip processor that can execute logic by means of various lines such as address lines, data lines, and control lines and registers and shift registers. Moreover, any logical blocks, modules, and circuits described herein can be implemented or performed, in addition to a general purpose processor, in or by a digital signal processor (DSP), a field programmable gate array (FPGA) or other programmable logic device such as an application specific integrated circuit (ASIC), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • a processor can be implemented by a controller or state machine or a combination of computing devices.
  • Any software modules described by way of flow charts and/or user interfaces herein can include various sub-routines, procedures, etc. It is to be understood that logic divulged as being executed by a module can be redistributed to other software modules and/or combined together in a single module and/or made available in a shareable library.
  • Logic when implemented in software can be written in an appropriate language such as but not limited to C# or C++, and can be stored on or transmitted through a computer-readable storage medium such as a random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disk read-only memory (CD-ROM) or other optical disk storage such as digital versatile disc (DVD), magnetic disk storage or other magnetic storage devices including removable thumb drives, etc.
  • a connection may establish a computer-readable medium.
  • Such connections can include, as examples, hard-wired cables including fiber optics and coaxial wires and digital subscriber line (DSL) and twisted pair wires.
  • Such connections may include wireless communication connections including infrared and radio.
  • a processor can access information over its input lines from data storage, such as the computer readable storage medium, and/or the processor accesses information wirelessly from an Internet server by activating a wireless transceiver to send and receive data.
  • Data typically is converted from analog signals to digital and then to binary by circuitry between the antenna and the registers of the processor when being received and from binary to digital to analog when being transmitted.
  • the processor then processes the data through its shift registers to output calculated data on output lines, for presentation of the calculated data on the CE device.
  • a system having at least one of A, B, and C includes systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.
  • a computer ecosystem may be an adaptive and distributed socio-technical system that is characterized by its sustainability, self-organization, and scalability.
  • environmental ecosystems which consist of biotic and abiotic components that interact through nutrient cycles and energy flows
  • complete computer ecosystems consist of hardware, software, and services that in some cases may be provided by one company, such as Sony Electronics.
  • the goal of each computer ecosystem is to provide consumers with everything that may be desired, at least in part services and/or software that may be exchanged via the Internet.
  • interconnectedness and sharing among elements of an ecosystem such as applications within a computing cloud, provides consumers with increased capability to organize and access data and presents itself as the future characteristic of efficient integrative ecosystems.
  • these ecosystems may be used while engaged in physical activity to e.g. provide inspiration, goal fulfillment and/or achievement, automated coaching/training, health and exercise analysis, convenient access to data, group sharing (e.g. of fitness data), and increased accuracy of health monitoring, all while doing so in a stylish and entertaining manner.
  • the devices disclosed herein are understood to be capable of making diagnostic determinations based on data from various sensors (such as those described below in reference to FIG. 1 ) for use while exercising, for exercise monitoring (e.g. in real time), and/or for sharing of data with friends (e.g. using a social networking service) even when not all people have the same types and combinations of sensors on their respective CE devices.
  • CE devices described herein may allow for easy and simplified user interaction with the device so as to not be unduly bothersome or encumbering e.g. before, during, and after an exercise.
  • the first of the example devices included in the system 10 is an example consumer electronics (CE) device 12 that may be waterproof (e.g., for use while swimming).
  • CE device 12 may be, e.g., a computerized Internet enabled (“smart”) telephone, a tablet computer, a notebook computer, a wearable computerized device such as e.g.
  • the CE device 12 is configured to undertake present principles (e.g. communicate with other CE devices to undertake present principles, execute the logic described herein, and perform any other functions and/or operations described herein).
  • the CE device 12 can include some or all of the components shown in FIG. 1 .
  • the CE device 12 can include one or more touch-enabled displays 14 , one or more speakers 16 for outputting audio in accordance with present principles, and at least one additional input device 18 such as e.g. an audio receiver/microphone for e.g. entering audible commands to the CE device 12 to control the CE device 12 .
  • the example CE device 12 may also include one or more network interfaces 20 for communication over at least one network 22 such as the Internet, an WAN, an LAN, etc. under control of one or more processors 24 .
  • the processor 24 controls the CE device 12 to undertake present principles, including the other elements of the CE device 12 described herein such as e.g. controlling the display 14 to present images thereon and receiving input therefrom.
  • the network interface 20 may be, e.g., a wired or wireless modem or router, or other appropriate interface such as, e.g., a wireless telephony transceiver, WiFi transceiver, etc.
  • the CE device 12 may also include one or more input ports 26 such as, e.g., a USB port to physically connect (e.g. using a wired connection) to another CE device and/or a headphone port to connect headphones to the CE device 12 for presentation of audio from the CE device 12 to a user through the headphones.
  • the CE device 12 may further include one or more tangible computer readable storage medium 28 such as disk-based or solid state storage, it being understood that the computer readable storage medium 28 may not be a carrier wave.
  • the CE device 12 can include a position or location receiver such as but not limited to a GPS receiver and/or altimeter 30 that is configured to e.g.
  • the CE device 12 may include one or more scameras 32 that may be, e.g., a thermal imaging camera, a digital camera such as a webcam, and/or a camera integrated into the CE device 12 and controllable by the processor 24 to gather pictures/images and/or video in accordance with present principles (e.g. to share aspects of a physical activity such as hiking with social networking friends).
  • a Bluetooth transceiver 34 and other Near Field Communication (NFC) element 36 for communication with other devices using Bluetooth and/or NFC technology, respectively.
  • An example NFC element can be a radio frequency identification (RFID) element.
  • RFID radio frequency identification
  • the CE device 12 may include one or more motion sensors 37 (e.g., an accelerometer, gyroscope, cyclometer, magnetic sensor, infrared (IR) motion sensors such as passive IR sensors, an optical sensor, a speed and/or cadence sensor, a gesture sensor (e.g. for sensing gesture command), etc.) providing input to the processor 24 .
  • the CE device 12 may include still other sensors such as e.g. one or more climate sensors 38 (e.g. barometers, humidity sensors, wind sensors, light sensors, temperature sensors, etc.) and/or one or more biometric sensors 40 (e.g.
  • the CE device 12 may also include a kinetic energy harvester 42 to e.g. charge a battery (not shown) powering the CE device 12 .
  • the system 10 may include one or more other CE device types such as, but not limited to, a computerized Internet-enabled bracelet 44 , computerized Internet-enabled headphones and/or ear buds 46 , computerized Internet-enabled clothing 48 , a computerized Internet-enabled exercise machine 50 (e.g. a treadmill, exercise bike, elliptical machine, etc.), etc. Also shown is a computerized Internet-enabled gymnasium entry kiosk 52 permitting authorized entry to a gymnasium housing the exercise machine 50 .
  • a computerized Internet-enabled bracelet 44 computerized Internet-enabled headphones and/or ear buds 46
  • computerized Internet-enabled clothing 48 e.g. a computerized Internet-enabled exercise machine 50 (e.g. a treadmill, exercise bike, elliptical machine, etc.), etc.
  • a computerized Internet-enabled gymnasium entry kiosk 52 permitting authorized entry to a gymnasium housing the exercise machine 50 .
  • CE devices included in the system 10 may respectively include some or all of the various components described above in reference to the CE device 12 such but not limited to e.g. the biometric sensors and motion sensors described above, as well as the position receivers, cameras, input devices, and speakers also described above.
  • the headphones/ear buds 46 may include a heart rate sensor configured to sense a person's heart rate when a person is wearing the head phones
  • the clothing 48 may include sensors such as perspiration sensors, climate sensors, and heart sensors for measuring the intensity of a person's workout
  • the exercise machine 50 may include a camera mounted on a portion thereof for gathering facial images of a user so that the machine 50 may thereby determine whether a particular facial expression is indicative of a user struggling to keep the pace set by the exercise machine 50 and/or an NFC element to e.g.
  • the kiosk 52 may include an NFC element permitting entry to a person authenticated as being authorized for entry based on input received from a complimentary NFC element (such as e.g. the NFC element 36 on the device 12 ).
  • a complimentary NFC element such as e.g. the NFC element 36 on the device 12 .
  • all of the devices described in reference to FIG. 1 including a server 54 to be described shortly, may communicate with each other over the network 22 using a respective network interface included thereon, and may each also include a computer readable storage medium that may not be a carrier wave for storing logic and/or software code in accordance with present principles.
  • At least one server 54 includes at least one processor 56 , at least one tangible computer readable storage medium 58 that may not be a carrier wave such as disk-based or solid state storage, and at least one network interface 60 that, under control of the processor 56 , allows for communication with the other CE devices of FIG. 1 over the network 22 , and indeed may facilitate communication therebetween in accordance with present principles.
  • the network interface 60 may be, e.g., a wired or wireless modem or router, WiFi transceiver, or other appropriate interface such as, e.g., a wireless telephony transceiver.
  • the server 54 may be an Internet server, may facilitate fitness coordination and/or data exchange between CE device devices in accordance with present principles, and may include and perform “cloud” functions such that the CE devices of the system 10 may access a “cloud” environment via the server 54 in example embodiments to e.g. stream music to listen to while exercising and/or pair two or more devices (e.g. to “throw” music from one device to another).
  • FIG. 2 shows a specific CE device embodied as a headphone 70 which as shown implements a music player processor 72 accessing executable instructions on a computer readable storage medium 74 to output music on left and right speakers 76 , 78 .
  • the music player processor 72 may be distanced from the physical headphone shown and may communicate with it wired or wirelessly. Such a combination still is referred to herein as a “headphone”.
  • the processor 72 may also access music and other communication using a network interface 80 such as a WiFi transceiver or wireless telephony transceiver.
  • the processor may exchange information with other devices through a near field communication (NFC) element 82 and a wireless transceiver 84 such as a Bluetooth transceiver.
  • NFC near field communication
  • the headphone 70 in FIG. 2 typically includes left and right speakers 76 , 78 that may be embodied as ear buds or ear pads configured for engaging respective left and right ears of a person, with a connector 86 such as a curved head band or even a flaccid wire connecting the speakers.
  • left and right speakers 76 , 78 may be embodied as ear buds or ear pads configured for engaging respective left and right ears of a person, with a connector 86 such as a curved head band or even a flaccid wire connecting the speakers.
  • a microphone 88 which may be mounted on a stem 90 of the body of the headphone may be provided and may be electrically connected to the processor 72 to input user voice signals to the processor 72 .
  • one or more biometric sensors 92 may provide input to the processor 72 by wired or wireless link 94 and indicative of the heart rate or stride rate or perspiration rate or other biometric measure of the person wearing the headphones 70 .
  • the sensors 92 thus may include pulse sensors, stride sensors, perspiration sensors, etc.
  • a second headphone 96 with left and right speakers 98 , 100 may be worn by a second person. It is to be understood that the second headphone 96 may be substantially identical to the headphone 70 in construction and operation and so details of its construction are omitted for brevity.
  • a trainer console 102 may be provided such as at a training track and may include one or more processors 104 accessing executable instructions on a computer readable storage medium 106 to output audible information on at least one speaker 108 .
  • the processor 106 may also access network information using a network interface 110 such as a WiFi transceiver or wireless telephony transceiver.
  • the processor may exchange information with other devices through a near field communication (NFC) element 112 and a wireless transceiver 114 such as a Bluetooth transceiver.
  • NFC near field communication
  • a microphone 116 may be provided and may be electrically connected to the processor 104 to input user voice signals to the trainer console 102 .
  • Information from other devices such as the headphones 70 , 96 and biometric sensors 92 received over, e.g., Bluetooth may be presented on a visual display 118 .
  • logic that can be executed by various processors in FIG. 2 begins with the first headphone 70 being positioned close to the second headphone 96 to establish NFC pairing at block 120 .
  • the headphones 70 , 96 may automatically exchange communication information, e.g. Bluetooth parameters over NFC 82 to affect Bluetooth pairing, at block 122 .
  • Logic may proceed one of two ways with the first beginning with the user selecting “play” on the first headphone 70 and the processor 72 sending music currently playing on first headphone 70 to the second headphone 96 via Bluetooth 94 at block 124 . Music can subsequently be played on second headphone 96 at block 126 .
  • Biometric information e.g. pulse rate, stride rate, etc. may be received from the biometric sensor 92 at the first headphone 70 at block 128 and audibly played on first headphone 70 but not the second headphone 96 at block 130 .
  • the second route outlined with the dashed lines in FIG. 3 , in which logic may flow following block 122 begins with block 132 when the user of the first headphone 70 can select “play” and the processor 72 may access the metadata of the music currently playing to find the tempo of the music and then send the tempo data to the second headphone 96 .
  • the second headphone 96 then can play music different from that of the first headphone 70 but at the same tempo as the music from the first headphone 70 at block 134 , thereby slowing down or speeding up the music.
  • Logic of this second route then returns to block 128 and merges with logic of the first route to receive biometric information from the sensor 92 at first headphone 70 and then to audibly play that information on first headphone 70 but not second headphone 96 at block 130 .
  • the logic illustrated in FIG. 4 begins at block 136 with the reception of the first user voice at the microphone 88 of the first headphone 70 . That voice data may then be sent to the second headphone 96 via Bluetooth 94 at block 138 and subsequently played on the second headphone 96 over the music currently playing on the second headphone 96 at block 140 .
  • block 142 illustrates that the voice data may be played on the second headphone 96 while the music currently playing on the second headphone 96 is suppressed or lowered.
  • an NFC pairing may be established between the headphone NFC element 82 and the trainer console NFC element 112 at block 144 .
  • Bluetooth information may be exchanged at block 146 , thereby establishing a Bluetooth pairing between the headphone Bluetooth transceiver 94 and trainer console Bluetooth 114 .
  • Biometric information obtained by the sensor 92 on headphone 70 may be sent to the trainer console 102 for presentation on the display 118 via Bluetooth pairing communication at block 148 .
  • Trainer command input into the console 102 at block 150 can be sent via Bluetooth pairing communication and played on headphone 70 .
  • the same logic described in this FIG. 5 may apply to the second headphone 96 .
  • CE devices in communication with each other such that e.g. a group communicating with each other using the CE devices may include one CE device designated as the “leader” and hence is associated with a group leader.
  • the group leader's CE device may provide information to the other CE devices of the group so that multiple people in the group may follow the leader's instructions, information, etc. but each person may still be presented with their own personalized statistics and notifications over their own CE device while e.g. nonetheless hearing the leader/instructor's voice and shared music.

Abstract

A headphone device is positioned close to a buddy headphone to establish a pairing to share transmission information between the headphones automatically. When one of the headphones starts playing music, using the transmission information the music is sent to the other headphone, which plays the music so that both headphone wearers listen to the same music simultaneously with each other. Also, each headphone may include a microphone and the users of the headphones can communicate with each other using the microphones in a walkie-talkie fashion, which is facilitated by the transmission information from the pairing.

Description

  • This application claims priority to U.S. provisional patent application Ser. No. 61/878,835, filed Sep. 17, 2013.
  • I. FIELD OF THE INVENTION
  • The present application relates generally to digital ecosystems that are configured for use when engaging in physical activity and/or fitness exercises.
  • II. BACKGROUND OF THE INVENTION
  • Society is becoming increasingly health-conscious. A wide variety of exercise and workouts are now offered to encourage people to stay fit through exercise. As understood herein, while stationary exercise equipment often comes equipped with data displays for the information of the exerciser, the information is not tailored to the individual and is frequently repetitive and monotonous. As further understood herein, people enjoy listening to music as workout aids but the music typically is whatever is broadcast within a gymnasium or provided on a recording device the user may wear, again being potentially monotonous and unchanging in pattern.
  • SUMMARY OF THE INVENTION
  • Present principles understand that in addition to the above, a user may wish to tie his or her performance and/or workout music to an exercise buddy's listening experience. A device includes at least one computer readable storage medium bearing instructions executable by a processor and at least one processor configured for accessing the computer readable storage medium to execute the instructions. Upon execution of the instructions, the processor is configured for pairing with a buddy device to establish an information-sharing near field communication (NFC) pairing, using NFC facilitated by at least one NFC element communicating with the processor. The processor is also configured for using information from the NFC pairing and is configured for providing music information using a wireless transceiver to the buddy device.
  • The wireless transceiver can be a Bluetooth transceiver and may be used to provide music information to the buddy device. Upon execution of the instructions stored on the storage medium, the processor may be configured for playing audible exercise information in at least one speaker of the device. The audible exercise information may not be sent to the buddy device. The audible exercise information that may be based from a biometric sensor engaged with a user of the device can be received by the processor when executing the instructions and being configured in such a manner.
  • The instructions on the storage medium may also configure the processor to receive information from a microphone associated with the device. The processor can also use information from the NFC pairing and provide the information from the microphone to the buddy device. The audible information may be provided to the buddy device using Bluetooth.
  • Alternatively, the NFC element may not be a Bluetooth transceiver.
  • The processor, when executing the instructions, may be configured for providing music information to the buddy device in response to a user selecting a play element that can be in communication with the processor. The device may be a first device and the music information provided to the buddy device may be a first music piece being played on a speaker of the first device, such that the first device and buddy device play the same music piece. Furthermore, the music information that may be provided to the buddy device by the first device can include a tempo of a first music piece being played on a speaker of the first device. Using the tempo information, both the first device and buddy device can play different music pieces from each other but at the tempo provided by the first device.
  • The instructions may otherwise configure the processor to use information from the NFC pairing to receive music information using the wireless transceiver from the buddy device and/or to receive audible information from the buddy device input at a microphone associated with the buddy device.
  • In another aspect, a method includes juxtaposing a first headphone with a buddy headphone to establish a pairing, which causes a sharing of information between the headphones automatically. Use of the shared information allows for execution of automatically sending music played on the first headphone to the buddy headphone for playing thereon such that both headphones play the same music simultaneously with each other. Use of the shared information also or otherwise allows for execution of automatically sending tempo information associated with music played on the first headphone to the buddy headphone such that both headphones play the different music but at the same tempo.
  • In another aspect, a kit of parts includes a first headphone that includes a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element. The first headphone is configured for engagement with a person's head such that the at least one speaker is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker. Furthermore, at least a second headphone includes a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element. The second headphone is configured for engagement with a person's head such that the at least one speaker of the second headphone is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker of the second headphone.
  • The details of the present invention, both as to its structure and operation, can best be understood in reference to the accompanying drawings, in which like reference numerals refer to like parts, and in which:
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an example system including an example CE device in accordance with present principles;
  • FIG. 2 is a block diagram of an example system including a specific example CE device embodied as a music player in accordance with present principles; and
  • FIGS. 3-5 illustrate logic that can be executed by various processors shown in FIG. 2.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • This disclosure relates generally to consumer electronics (CE) device based user information. With respect to any computer systems discussed herein, a system herein may include server and client components, connected over a network such that data may be exchanged between the client and server components. The client components may include one or more computing devices including portable televisions (e.g. smart TVs, Internet-enabled TVs), portable computers such as laptops and tablet computers, and other mobile devices including smart phones and additional examples discussed below. These client devices may employ, as non-limiting examples, operating systems from Apple, Google, or Microsoft. A Unix operating system may be used. These operating systems can execute one or more browsers such as a browser made by Microsoft or Google or Mozilla or other browser program that can access web applications hosted by the Internet servers over a network such as the Internet, a local intranet, or a virtual private network.
  • As used herein, instructions refer to computer-implemented steps for processing information in the system. Instructions can be implemented in software, firmware or hardware; hence, illustrative components, blocks, modules, circuits, and steps are set forth in terms of their functionality.
  • A processor may be any conventional general purpose single- or multi-chip processor that can execute logic by means of various lines such as address lines, data lines, and control lines and registers and shift registers. Moreover, any logical blocks, modules, and circuits described herein can be implemented or performed, in addition to a general purpose processor, in or by a digital signal processor (DSP), a field programmable gate array (FPGA) or other programmable logic device such as an application specific integrated circuit (ASIC), discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A processor can be implemented by a controller or state machine or a combination of computing devices.
  • Any software modules described by way of flow charts and/or user interfaces herein can include various sub-routines, procedures, etc. It is to be understood that logic divulged as being executed by a module can be redistributed to other software modules and/or combined together in a single module and/or made available in a shareable library.
  • Logic when implemented in software, can be written in an appropriate language such as but not limited to C# or C++, and can be stored on or transmitted through a computer-readable storage medium such as a random access memory (RAM), read-only memory (ROM), electrically erasable programmable read-only memory (EEPROM), compact disk read-only memory (CD-ROM) or other optical disk storage such as digital versatile disc (DVD), magnetic disk storage or other magnetic storage devices including removable thumb drives, etc. A connection may establish a computer-readable medium. Such connections can include, as examples, hard-wired cables including fiber optics and coaxial wires and digital subscriber line (DSL) and twisted pair wires. Such connections may include wireless communication connections including infrared and radio.
  • In an example, a processor can access information over its input lines from data storage, such as the computer readable storage medium, and/or the processor accesses information wirelessly from an Internet server by activating a wireless transceiver to send and receive data. Data typically is converted from analog signals to digital and then to binary by circuitry between the antenna and the registers of the processor when being received and from binary to digital to analog when being transmitted. The processor then processes the data through its shift registers to output calculated data on output lines, for presentation of the calculated data on the CE device.
  • Components included in one embodiment can be used in other embodiments in any appropriate combination. For example, any of the various components described herein and/or depicted in the Figures may be combined, interchanged or excluded from other embodiments.
  • “A system having at least one of A, B, and C” (likewise “a system having at least one of A, B, or C” and “a system having at least one of A, B, C”) includes systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.
  • Before describing FIG. 1, it is to be understood that the CE devices and software described herein are understood to be usable in the context of a digital ecosystem. Thus, as understood herein, a computer ecosystem, or digital ecosystem, may be an adaptive and distributed socio-technical system that is characterized by its sustainability, self-organization, and scalability. Inspired by environmental ecosystems, which consist of biotic and abiotic components that interact through nutrient cycles and energy flows, complete computer ecosystems consist of hardware, software, and services that in some cases may be provided by one company, such as Sony Electronics. The goal of each computer ecosystem is to provide consumers with everything that may be desired, at least in part services and/or software that may be exchanged via the Internet. Moreover, interconnectedness and sharing among elements of an ecosystem, such as applications within a computing cloud, provides consumers with increased capability to organize and access data and presents itself as the future characteristic of efficient integrative ecosystems.
  • Two general types of computer ecosystems exist: vertical and horizontal computer ecosystems. In the vertical approach, virtually all aspects of the ecosystem are associated with the same company (e.g. produced by the same manufacturer), and are specifically designed to seamlessly interact with one another. Horizontal ecosystems, one the other hand, integrate aspects such as hardware and software that are created by differing entities into one unified ecosystem. The horizontal approach allows for greater variety of input from consumers and manufactures, increasing the capacity for novel innovations and adaptations to changing demands. But regardless, it is to be understood that some digital ecosystems, including those referenced herein, may embody characteristics of both the horizontal and vertical ecosystems described above.
  • Accordingly, it is to be further understood that these ecosystems may be used while engaged in physical activity to e.g. provide inspiration, goal fulfillment and/or achievement, automated coaching/training, health and exercise analysis, convenient access to data, group sharing (e.g. of fitness data), and increased accuracy of health monitoring, all while doing so in a stylish and entertaining manner. Further still, the devices disclosed herein are understood to be capable of making diagnostic determinations based on data from various sensors (such as those described below in reference to FIG. 1) for use while exercising, for exercise monitoring (e.g. in real time), and/or for sharing of data with friends (e.g. using a social networking service) even when not all people have the same types and combinations of sensors on their respective CE devices.
  • Thus, it is to be understood that the CE devices described herein may allow for easy and simplified user interaction with the device so as to not be unduly bothersome or encumbering e.g. before, during, and after an exercise.
  • Now specifically referring to FIG. 1, an example system 10 is shown, which may include one or more of the example devices mentioned above and described further below to enhance fitness experiences in accordance with present principles. The first of the example devices included in the system 10 is an example consumer electronics (CE) device 12 that may be waterproof (e.g., for use while swimming). The CE device 12 may be, e.g., a computerized Internet enabled (“smart”) telephone, a tablet computer, a notebook computer, a wearable computerized device such as e.g. computerized Internet-enabled watch, a computerized Internet-enabled bracelet, other computerized Internet-enabled fitness devices, a computerized Internet-enabled music player, computerized Internet-enabled head phones, a computerized Internet-enabled implantable device such as an implantable skin device, etc., and even e.g. a computerized Internet-enabled television (TV). Regardless, it is to be understood that the CE device 12 is configured to undertake present principles (e.g. communicate with other CE devices to undertake present principles, execute the logic described herein, and perform any other functions and/or operations described herein).
  • Accordingly, to undertake such principles the CE device 12 can include some or all of the components shown in FIG. 1. For example, the CE device 12 can include one or more touch-enabled displays 14, one or more speakers 16 for outputting audio in accordance with present principles, and at least one additional input device 18 such as e.g. an audio receiver/microphone for e.g. entering audible commands to the CE device 12 to control the CE device 12. The example CE device 12 may also include one or more network interfaces 20 for communication over at least one network 22 such as the Internet, an WAN, an LAN, etc. under control of one or more processors 24. It is to be understood that the processor 24 controls the CE device 12 to undertake present principles, including the other elements of the CE device 12 described herein such as e.g. controlling the display 14 to present images thereon and receiving input therefrom. Furthermore, note the network interface 20 may be, e.g., a wired or wireless modem or router, or other appropriate interface such as, e.g., a wireless telephony transceiver, WiFi transceiver, etc.
  • In addition to the foregoing, the CE device 12 may also include one or more input ports 26 such as, e.g., a USB port to physically connect (e.g. using a wired connection) to another CE device and/or a headphone port to connect headphones to the CE device 12 for presentation of audio from the CE device 12 to a user through the headphones. The CE device 12 may further include one or more tangible computer readable storage medium 28 such as disk-based or solid state storage, it being understood that the computer readable storage medium 28 may not be a carrier wave. Also in some embodiments, the CE device 12 can include a position or location receiver such as but not limited to a GPS receiver and/or altimeter 30 that is configured to e.g. receive geographic position information from at least one satellite and provide the information to the processor 24 and/or determine an altitude at which the CE device 12 is disposed in conjunction with the processor 24. However, it is to be understood that that another suitable position receiver other than a GPS receiver and/or altimeter may be used in accordance with present principles to e.g. determine the location of the CE device 12 in e.g. all three dimensions.
  • Continuing the description of the CE device 12, in some embodiments the CE device 12 may include one or more scameras 32 that may be, e.g., a thermal imaging camera, a digital camera such as a webcam, and/or a camera integrated into the CE device 12 and controllable by the processor 24 to gather pictures/images and/or video in accordance with present principles (e.g. to share aspects of a physical activity such as hiking with social networking friends). Also included on the CE device 12 may be a Bluetooth transceiver 34 and other Near Field Communication (NFC) element 36 for communication with other devices using Bluetooth and/or NFC technology, respectively. An example NFC element can be a radio frequency identification (RFID) element.
  • Further still, the CE device 12 may include one or more motion sensors 37 (e.g., an accelerometer, gyroscope, cyclometer, magnetic sensor, infrared (IR) motion sensors such as passive IR sensors, an optical sensor, a speed and/or cadence sensor, a gesture sensor (e.g. for sensing gesture command), etc.) providing input to the processor 24. The CE device 12 may include still other sensors such as e.g. one or more climate sensors 38 (e.g. barometers, humidity sensors, wind sensors, light sensors, temperature sensors, etc.) and/or one or more biometric sensors 40 (e.g. heart rate sensors and/or heart monitors, calorie counters, blood pressure sensors, perspiration sensors, odor and/or scent detectors, fingerprint sensors, facial recognition sensors, iris and/or retina detectors, DNA sensors, oxygen sensors (e.g. blood oxygen sensors and/or VO2 max sensors), glucose and/or blood sugar sensors, sleep sensors (e.g. a sleep tracker), pedometers and/or speed sensors, body temperature sensors, nutrient and metabolic rate sensors, voice sensors, lung input/output and other cardiovascular sensors, etc.) also providing input to the processor 24. In addition to the foregoing, it is noted that in some embodiments the CE device 12 may also include a kinetic energy harvester 42 to e.g. charge a battery (not shown) powering the CE device 12.
  • Still referring to FIG. 1, in addition to the CE device 12, the system 10 may include one or more other CE device types such as, but not limited to, a computerized Internet-enabled bracelet 44, computerized Internet-enabled headphones and/or ear buds 46, computerized Internet-enabled clothing 48, a computerized Internet-enabled exercise machine 50 (e.g. a treadmill, exercise bike, elliptical machine, etc.), etc. Also shown is a computerized Internet-enabled gymnasium entry kiosk 52 permitting authorized entry to a gymnasium housing the exercise machine 50. It is to be understood that other CE devices included in the system 10 including those described in this paragraph may respectively include some or all of the various components described above in reference to the CE device 12 such but not limited to e.g. the biometric sensors and motion sensors described above, as well as the position receivers, cameras, input devices, and speakers also described above.
  • Thus, for instance, the headphones/ear buds 46 may include a heart rate sensor configured to sense a person's heart rate when a person is wearing the head phones, the clothing 48 may include sensors such as perspiration sensors, climate sensors, and heart sensors for measuring the intensity of a person's workout, and the exercise machine 50 may include a camera mounted on a portion thereof for gathering facial images of a user so that the machine 50 may thereby determine whether a particular facial expression is indicative of a user struggling to keep the pace set by the exercise machine 50 and/or an NFC element to e.g. pair the machine 50 with the CE device 12 and hence access a database of preset workout routines, and the kiosk 52 may include an NFC element permitting entry to a person authenticated as being authorized for entry based on input received from a complimentary NFC element (such as e.g. the NFC element 36 on the device 12). Also note that all of the devices described in reference to FIG. 1, including a server 54 to be described shortly, may communicate with each other over the network 22 using a respective network interface included thereon, and may each also include a computer readable storage medium that may not be a carrier wave for storing logic and/or software code in accordance with present principles.
  • Now in reference to the afore-mentioned at least one server 54, it includes at least one processor 56, at least one tangible computer readable storage medium 58 that may not be a carrier wave such as disk-based or solid state storage, and at least one network interface 60 that, under control of the processor 56, allows for communication with the other CE devices of FIG. 1 over the network 22, and indeed may facilitate communication therebetween in accordance with present principles. Note that the network interface 60 may be, e.g., a wired or wireless modem or router, WiFi transceiver, or other appropriate interface such as, e.g., a wireless telephony transceiver.
  • Accordingly, in some embodiments the server 54 may be an Internet server, may facilitate fitness coordination and/or data exchange between CE device devices in accordance with present principles, and may include and perform “cloud” functions such that the CE devices of the system 10 may access a “cloud” environment via the server 54 in example embodiments to e.g. stream music to listen to while exercising and/or pair two or more devices (e.g. to “throw” music from one device to another).
  • FIG. 2 shows a specific CE device embodied as a headphone 70 which as shown implements a music player processor 72 accessing executable instructions on a computer readable storage medium 74 to output music on left and right speakers 76, 78. It is to be understood that the music player processor 72 may be distanced from the physical headphone shown and may communicate with it wired or wirelessly. Such a combination still is referred to herein as a “headphone”. The processor 72 may also access music and other communication using a network interface 80 such as a WiFi transceiver or wireless telephony transceiver. The processor may exchange information with other devices through a near field communication (NFC) element 82 and a wireless transceiver 84 such as a Bluetooth transceiver.
  • Thus, the headphone 70 in FIG. 2 typically includes left and right speakers 76, 78 that may be embodied as ear buds or ear pads configured for engaging respective left and right ears of a person, with a connector 86 such as a curved head band or even a flaccid wire connecting the speakers.
  • Additionally, a microphone 88 which may be mounted on a stem 90 of the body of the headphone may be provided and may be electrically connected to the processor 72 to input user voice signals to the processor 72. Furthermore, one or more biometric sensors 92 may provide input to the processor 72 by wired or wireless link 94 and indicative of the heart rate or stride rate or perspiration rate or other biometric measure of the person wearing the headphones 70. The sensors 92 thus may include pulse sensors, stride sensors, perspiration sensors, etc.
  • A second headphone 96 with left and right speakers 98, 100 may be worn by a second person. It is to be understood that the second headphone 96 may be substantially identical to the headphone 70 in construction and operation and so details of its construction are omitted for brevity.
  • In some implementations a trainer console 102 may be provided such as at a training track and may include one or more processors 104 accessing executable instructions on a computer readable storage medium 106 to output audible information on at least one speaker 108. The processor 106 may also access network information using a network interface 110 such as a WiFi transceiver or wireless telephony transceiver. The processor may exchange information with other devices through a near field communication (NFC) element 112 and a wireless transceiver 114 such as a Bluetooth transceiver. Additionally, a microphone 116 may be provided and may be electrically connected to the processor 104 to input user voice signals to the trainer console 102. Information from other devices such as the headphones 70, 96 and biometric sensors 92 received over, e.g., Bluetooth may be presented on a visual display 118.
  • Now referring to FIG. 3, logic that can be executed by various processors in FIG. 2 begins with the first headphone 70 being positioned close to the second headphone 96 to establish NFC pairing at block 120. The headphones 70, 96 may automatically exchange communication information, e.g. Bluetooth parameters over NFC 82 to affect Bluetooth pairing, at block 122. Logic may proceed one of two ways with the first beginning with the user selecting “play” on the first headphone 70 and the processor 72 sending music currently playing on first headphone 70 to the second headphone 96 via Bluetooth 94 at block 124. Music can subsequently be played on second headphone 96 at block 126. Biometric information, e.g. pulse rate, stride rate, etc. may be received from the biometric sensor 92 at the first headphone 70 at block 128 and audibly played on first headphone 70 but not the second headphone 96 at block 130.
  • The second route, outlined with the dashed lines in FIG. 3, in which logic may flow following block 122 begins with block 132 when the user of the first headphone 70 can select “play” and the processor 72 may access the metadata of the music currently playing to find the tempo of the music and then send the tempo data to the second headphone 96. The second headphone 96 then can play music different from that of the first headphone 70 but at the same tempo as the music from the first headphone 70 at block 134, thereby slowing down or speeding up the music. Logic of this second route then returns to block 128 and merges with logic of the first route to receive biometric information from the sensor 92 at first headphone 70 and then to audibly play that information on first headphone 70 but not second headphone 96 at block 130.
  • The logic illustrated in FIG. 4 begins at block 136 with the reception of the first user voice at the microphone 88 of the first headphone 70. That voice data may then be sent to the second headphone 96 via Bluetooth 94 at block 138 and subsequently played on the second headphone 96 over the music currently playing on the second headphone 96 at block 140. As an alternative to the voice data from the microphone 88 on the first headphone 70 being played over the music currently playing on the second headphone 96, block 142, outlined by dashed lines, illustrates that the voice data may be played on the second headphone 96 while the music currently playing on the second headphone 96 is suppressed or lowered.
  • Now referring to the logic of FIG. 5, an NFC pairing may be established between the headphone NFC element 82 and the trainer console NFC element 112 at block 144. Using that NFC pairing, Bluetooth information may be exchanged at block 146, thereby establishing a Bluetooth pairing between the headphone Bluetooth transceiver 94 and trainer console Bluetooth 114. Biometric information obtained by the sensor 92 on headphone 70 may be sent to the trainer console 102 for presentation on the display 118 via Bluetooth pairing communication at block 148. Trainer command input into the console 102 at block 150 can be sent via Bluetooth pairing communication and played on headphone 70. The same logic described in this FIG. 5 may apply to the second headphone 96.
  • With no particular reference to any figure, it is to be understood that present principles may apply to CE devices in communication with each other such that e.g. a group communicating with each other using the CE devices may include one CE device designated as the “leader” and hence is associated with a group leader. The group leader's CE device may provide information to the other CE devices of the group so that multiple people in the group may follow the leader's instructions, information, etc. but each person may still be presented with their own personalized statistics and notifications over their own CE device while e.g. nonetheless hearing the leader/instructor's voice and shared music.
  • Also without reference to any particular figure, it is to be understood that although present principles have been described in reference to exercising, present principles may apply to other instances where e.g. groups of CE devices are in communication with each other such as group communication on a guided museum tour, or any other tour/group experience where communication in accordance with present principles may be used and/or leveraged e.g. by a group leader.
  • While the particular SYNCHRONIZED EXERCISE BUDDY HEADPHONES is herein shown and described in detail, it is to be understood that the subject matter which is encompassed by the present invention is limited only by the claims.

Claims (20)

What is claimed is:
1. A device comprising:
at least one computer readable storage medium bearing instructions executable by a processor;
at least one processor configured for accessing the computer readable storage medium to execute the instructions to configure the processor for:
pairing, using near field communication (NFC) facilitated by at least one NFC element communicating with the processor, with a buddy device to establish an information-sharing NFC pairing; and
using information from the NFC pairing, providing music information using a wireless transceiver to the buddy device.
2. The device of claim 1, wherein the wireless transceiver is a Bluetooth transceiver.
3. The device of claim 1, wherein the processor when executing the instructions is configured for:
playing audible exercise information in at least one speaker of the device, the audible exercise information not being sent to the buddy device.
4. The device of claim 3, wherein the processor when executing the instructions is configured for receiving information on which the audible exercise information is based from a biometric sensor engaged with a user of the device.
5. The device of claim 1, wherein the processor when executing the instructions is configured for:
receiving information from a microphone associated with the device; and
using information from the NFC pairing, providing the information from the microphone to the buddy device.
6. The device of claim 5, wherein the audible information is provided to the buddy device using Bluetooth.
7. The device of claim 1, wherein the NFC element is not a Bluetooth transceiver.
8. The device of claim 1, wherein the processor when executing the instructions is configured for providing the music information to the buddy device responsive to a user selecting a play element communicating with the processor.
9. The device of claim 1, wherein the device is a first device and the music information provided to the buddy device is a first music piece being played on a speaker of the first device, such that the first device and buddy device play the same music piece.
10. The device of claim 1, wherein the device is a first device and the music information provided to the buddy device includes a tempo of a first music piece being played on a speaker of the first device, such that the first device and buddy device play different music pieces from each other but at the tempo provided by the first device to the buddy device.
11. The device of claim 1, wherein the processor when executing the instructions is configured for using information from the NFC pairing to receive music information using the wireless transceiver from the buddy device.
12. The device of claim 1, wherein the processor when executing the instructions is configured for:
using information from the NFC pairing, receiving audible information from the buddy device input at a microphone associated with the buddy device.
13. Method comprising:
juxtaposing a first headphone with a buddy headphone to establish a pairing, the pairing causing a sharing of information between the headphones automatically;
using the information, executing at least one of the following:
(a) automatically sending music played on the first headphone to the buddy headphone for playing thereon such that both headphones play the same music simultaneously with each other;
(b) automatically sending tempo information associated with music played on the first headphone to the buddy headphone such that both headphones play the different music but at the same tempo.
14. The method of claim 13, wherein the pairing is established using near field communication (NFC) and the sending is executed using a wireless transmission protocol that is different from the NFC.
15. The method of claim 13, further comprising:
communicating user voice information input at a microphone associated with the first headphone to the buddy headphone using the information from the pairing.
16. A kit of parts comprising:
a first headphone including a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element, the first headphone being configured for engagement with a person's head such that the at least one speaker is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker; and
at least a second headphone including a microphone, at least one speaker, at least one near field communication (NFC) element, and at least one wireless transceiver different from the NFC element, the second headphone being configured for engagement with a person's head such that the at least one speaker of the second headphone is juxtaposed with an ear of the person to enable the person to listen to music played by the speaker of the second headphone.
17. The kit of claim 16, wherein the first headphone includes at least one computer readable storage medium bearing instructions executable by a processor, the processor of the first headphone being configured for accessing the computer readable storage medium to execute the instructions to configure the processor of the first headphone for:
pairing, using the NFC element, with the second headphone to establish an information-sharing NFC pairing; and
using information from the NFC pairing, providing music information using the wireless transceiver to the second headphone.
18. The kit of claim 17, wherein the processor of the first headphone when executing the instructions is configured for:
playing audible exercise information in the least one speaker of the first headphone, the audible exercise information not being sent to the second headphone.
19. The kit of claim 17, wherein the processor of the first headphone when executing the instructions is configured for:
receiving information from the microphone of the first headphone; and
using information from the NFC pairing, providing the information from the microphone of the first headphone to the second headphone.
20. The kit of claim 17, wherein the processor of the first headphone when executing the instructions is configured for providing the music information to the second headphone responsive to a user selecting a play element communicating with the processor of the first headphone.
US14/037,267 2013-09-17 2013-09-25 Synchronized exercise buddy headphones Abandoned US20150081067A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/037,267 US20150081067A1 (en) 2013-09-17 2013-09-25 Synchronized exercise buddy headphones
KR20140120858A KR20150032183A (en) 2013-09-17 2014-09-12 Synchronized exercise buddy headphones
CN201410471221.7A CN104469585A (en) 2013-09-17 2014-09-16 Synchronous physical training partner earphone
JP2014188915A JP2015061318A (en) 2013-09-17 2014-09-17 Synchronized exercise buddy headphones

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361878835P 2013-09-17 2013-09-17
US14/037,267 US20150081067A1 (en) 2013-09-17 2013-09-25 Synchronized exercise buddy headphones

Publications (1)

Publication Number Publication Date
US20150081067A1 true US20150081067A1 (en) 2015-03-19

Family

ID=51228977

Family Applications (10)

Application Number Title Priority Date Filing Date
US14/037,267 Abandoned US20150081067A1 (en) 2013-09-17 2013-09-25 Synchronized exercise buddy headphones
US14/037,286 Abandoned US20150081210A1 (en) 2013-09-17 2013-09-25 Altering exercise routes based on device determined information
US14/037,224 Active US8795138B1 (en) 2013-09-17 2013-09-25 Combining data sources to provide accurate effort monitoring
US14/037,252 Abandoned US20150081066A1 (en) 2013-09-17 2013-09-25 Presenting audio based on biometrics parameters
US14/037,263 Abandoned US20150082408A1 (en) 2013-09-17 2013-09-25 Quick login to user profile on exercise machine
US14/037,278 Abandoned US20150079563A1 (en) 2013-09-17 2013-09-25 Nonverbal audio cues during physical activity
US14/037,276 Active US9142141B2 (en) 2013-09-17 2013-09-25 Determining exercise routes based on device determined information
US14/037,271 Abandoned US20150079562A1 (en) 2013-09-17 2013-09-25 Presenting audio based on biometrics parameters
US14/037,228 Abandoned US20150082167A1 (en) 2013-09-17 2013-09-25 Intelligent device mode shifting based on activity
US14/255,663 Active US9224311B2 (en) 2013-09-17 2014-04-17 Combining data sources to provide accurate effort monitoring

Family Applications After (9)

Application Number Title Priority Date Filing Date
US14/037,286 Abandoned US20150081210A1 (en) 2013-09-17 2013-09-25 Altering exercise routes based on device determined information
US14/037,224 Active US8795138B1 (en) 2013-09-17 2013-09-25 Combining data sources to provide accurate effort monitoring
US14/037,252 Abandoned US20150081066A1 (en) 2013-09-17 2013-09-25 Presenting audio based on biometrics parameters
US14/037,263 Abandoned US20150082408A1 (en) 2013-09-17 2013-09-25 Quick login to user profile on exercise machine
US14/037,278 Abandoned US20150079563A1 (en) 2013-09-17 2013-09-25 Nonverbal audio cues during physical activity
US14/037,276 Active US9142141B2 (en) 2013-09-17 2013-09-25 Determining exercise routes based on device determined information
US14/037,271 Abandoned US20150079562A1 (en) 2013-09-17 2013-09-25 Presenting audio based on biometrics parameters
US14/037,228 Abandoned US20150082167A1 (en) 2013-09-17 2013-09-25 Intelligent device mode shifting based on activity
US14/255,663 Active US9224311B2 (en) 2013-09-17 2014-04-17 Combining data sources to provide accurate effort monitoring

Country Status (7)

Country Link
US (10) US20150081067A1 (en)
EP (1) EP3020253A4 (en)
JP (6) JP2016533237A (en)
KR (7) KR20150032170A (en)
CN (7) CN104460980B (en)
CA (1) CA2917927A1 (en)
WO (2) WO2015041971A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668290B1 (en) 2016-05-24 2017-05-30 Ronald Snagg Wireless communication headset system
CN107270887A (en) * 2017-07-13 2017-10-20 青岛海通胜行智能科技有限公司 A kind of alignment sensor being combined based on wireless and magnetic field induction technology and method
US10348878B2 (en) 2017-12-12 2019-07-09 Ronald Snagg Wireless communication headset system
US11013050B2 (en) 2019-10-01 2021-05-18 Ronald Snagg Wireless communication headset system

Families Citing this family (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002255568B8 (en) * 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US10314533B2 (en) * 2009-08-28 2019-06-11 Samsung Electronics Co., Ltd Method and apparatus for recommending a route
US9886871B1 (en) 2011-12-27 2018-02-06 PEAR Sports LLC Fitness and wellness system with dynamically adjusting guidance
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
US9123317B2 (en) * 2012-04-06 2015-09-01 Icon Health & Fitness, Inc. Using music to motivate a user during exercise
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9582035B2 (en) 2014-02-25 2017-02-28 Medibotics Llc Wearable computing devices and methods for the wrist and/or forearm
US10124255B2 (en) 2012-08-31 2018-11-13 Blue Goji Llc. Multiple electronic control and tracking devices for mixed-reality interaction
US8864587B2 (en) 2012-10-03 2014-10-21 Sony Corporation User device position indication for security and distributed race challenges
US11083344B2 (en) 2012-10-11 2021-08-10 Roman Tsibulevskiy Partition technologies
KR101968621B1 (en) * 2012-11-16 2019-04-12 삼성전자주식회사 1rm presume device and method
US9254409B2 (en) 2013-03-14 2016-02-09 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
WO2014143776A2 (en) 2013-03-15 2014-09-18 Bodhi Technology Ventures Llc Providing remote interactions with host device using a wireless device
US9424348B1 (en) 2013-05-08 2016-08-23 Rock My World, Inc. Sensor-driven audio playback modification
US10643483B2 (en) 2013-07-19 2020-05-05 PEAR Sports LLC Physical activity coaching platform with dynamically changing workout content
US9514620B2 (en) * 2013-09-06 2016-12-06 Immersion Corporation Spatialized haptic feedback based on dynamically scaled values
US20150081067A1 (en) 2013-09-17 2015-03-19 Sony Corporation Synchronized exercise buddy headphones
GB201317033D0 (en) * 2013-09-25 2013-11-06 Naylor David Selecting routes
AU2014246686A1 (en) * 2013-10-14 2015-04-30 Extronics Pty Ltd An interactive system for monitoring and assisting the physical activity of a user within a gym environment
US9535505B2 (en) 2013-11-08 2017-01-03 Polar Electro Oy User interface control in portable system
KR102061913B1 (en) 2013-12-12 2020-01-02 삼성전자주식회사 Method and apparatus for controlling operations of electronic device
WO2015100429A1 (en) 2013-12-26 2015-07-02 Icon Health & Fitness, Inc. Magnetic resistance mechanism in a cable machine
US9269119B2 (en) 2014-01-22 2016-02-23 Sony Corporation Devices and methods for health tracking and providing information for improving health
JP6586274B2 (en) * 2014-01-24 2019-10-02 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Cooking apparatus, cooking method, cooking control program, and cooking information providing method
US10429888B2 (en) 2014-02-25 2019-10-01 Medibotics Llc Wearable computer display devices for the forearm, wrist, and/or hand
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9996442B2 (en) * 2014-03-25 2018-06-12 Krystallize Technologies, Inc. Cloud computing benchmarking
CN106416063A (en) * 2014-04-10 2017-02-15 弗劳恩霍夫应用研究促进协会 Audio system and method for adaptive sound playback during physical activities
DE202015010002U1 (en) * 2014-05-21 2022-12-12 Abbott Diabetes Care, Inc. Management of multiple devices within an analyte monitoring environment
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US9672482B2 (en) * 2014-06-11 2017-06-06 Palo Alto Research Center Incorporated System and method for automatic objective reporting via wearable sensors
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US9612862B2 (en) * 2014-06-24 2017-04-04 Google Inc. Performing an operation during inferred periods of non-use of a wearable device
EP3166698B1 (en) * 2014-07-07 2019-10-30 Leila Benedicte Habiche Device for practising sport activities
US9838858B2 (en) 2014-07-08 2017-12-05 Rapidsos, Inc. System and method for call management
US10229192B2 (en) * 2014-07-14 2019-03-12 Under Armour, Inc. Hierarchical de-duplication techniques for tracking fitness metrics
WO2016014601A2 (en) 2014-07-21 2016-01-28 Apple Inc. Remote user interface
US9852264B1 (en) * 2014-07-21 2017-12-26 Padmanabaiah Srirama Authentic and verifiable electronic wellness record
US20160058335A1 (en) * 2014-08-29 2016-03-03 Icon Health & Fitness, Inc. Sensor Incorporated into an Exercise Garment
WO2016036541A2 (en) 2014-09-02 2016-03-10 Apple Inc. Phone user interface
WO2016036603A1 (en) 2014-09-02 2016-03-10 Apple Inc. Reduced size configuration interface
WO2016044540A1 (en) 2014-09-19 2016-03-24 Rapidsos, Inc. Method and system for emergency call management
US20170165525A1 (en) * 2014-10-16 2017-06-15 Manuel Eduardo Tellez Adrenaline Junkie
JP6405893B2 (en) * 2014-10-30 2018-10-17 オムロンヘルスケア株式会社 Exercise information measuring device, exercise support method, exercise support program
KR102246559B1 (en) * 2014-11-17 2021-04-30 엘지전자 주식회사 IoT management device capable of executing condition modification mode and its control method
EP3222205A4 (en) * 2014-11-18 2018-07-04 Sony Corporation Information processing device, information processing system, information processing method, and program
SE1451410A1 (en) * 2014-11-21 2016-05-17 Melaud Ab Earphones with sensor controlled audio output
US9691023B2 (en) * 2014-11-30 2017-06-27 WiseWear Corporation Exercise behavior prediction
US11182870B2 (en) * 2014-12-24 2021-11-23 Mcafee, Llc System and method for collective and collaborative navigation by a group of individuals
US20160189039A1 (en) * 2014-12-31 2016-06-30 Nokia Corporation Clothing selection
WO2016128862A1 (en) * 2015-02-09 2016-08-18 Koninklijke Philips N.V. Sequence of contexts wearable
US11351420B2 (en) 2015-02-23 2022-06-07 Smartweights, Inc. Method and system for virtual fitness training and tracking devices
EP3261730A4 (en) * 2015-02-23 2018-08-08 Smartweights, Inc. Method and system for virtual fitness training and tracking services
KR102587532B1 (en) 2015-02-27 2023-10-11 킴벌리-클라크 월드와이드, 인크. Absorbent Article Leakage Evaluation System
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
CN104837083B (en) * 2015-04-11 2019-01-11 黄银桃 Multifunctional intellectual neck ring
US9563268B2 (en) 2015-05-19 2017-02-07 Spotify Ab Heart rate control based upon media content selection
US9563700B2 (en) * 2015-05-19 2017-02-07 Spotify Ab Cadence-based playlists management system
US9536560B2 (en) * 2015-05-19 2017-01-03 Spotify Ab Cadence determination and media content selection
US9570059B2 (en) 2015-05-19 2017-02-14 Spotify Ab Cadence-based selection, playback, and transition between song versions
US10055413B2 (en) 2015-05-19 2018-08-21 Spotify Ab Identifying media content
US10372757B2 (en) * 2015-05-19 2019-08-06 Spotify Ab Search media content based upon tempo
US9978426B2 (en) * 2015-05-19 2018-05-22 Spotify Ab Repetitive-motion activity enhancement based upon media content selection
US20160346612A1 (en) * 2015-05-29 2016-12-01 Nike, Inc. Enhancing Exercise Through Augmented Reality
EP3101612A1 (en) 2015-06-03 2016-12-07 Skullcandy, Inc. Audio devices and related methods for acquiring audio device use information
KR102335011B1 (en) * 2015-06-26 2021-12-06 삼성전자주식회사 Method and Apparatus for Providing Workout Guide Information
US9737759B2 (en) * 2015-07-17 2017-08-22 Genesant Technologies, Inc. Automatic application-based exercise tracking system and method
WO2017027420A1 (en) * 2015-08-07 2017-02-16 Crume Ryan K Functional garments and methods thereof
CN105892628A (en) * 2015-08-11 2016-08-24 乐视体育文化产业发展(北京)有限公司 Music recommendation method and device as well as bicycle
US9966056B2 (en) * 2015-08-24 2018-05-08 Plantronics, Inc. Biometrics-based dynamic sound masking
KR20170027999A (en) * 2015-09-03 2017-03-13 삼성전자주식회사 User terminal apparatus, system and the controlling method thereof
US9605970B1 (en) * 2015-09-03 2017-03-28 Harman International Industries, Incorporated Methods and systems for driver assistance
CN105182729A (en) * 2015-09-22 2015-12-23 电子科技大学中山学院 Wearable night running safety metronome
CN105160941A (en) * 2015-09-30 2015-12-16 宇龙计算机通信科技(深圳)有限公司 Information prompting method, information prompting device and mobile terminal
US9828060B2 (en) * 2015-10-13 2017-11-28 GM Global Technology Operations LLC Automated e-assist adjustment to prevent user perspiration
JP2018538645A (en) 2015-11-02 2018-12-27 ラピッドエスオーエス,インク. Method and system for situational awareness for emergency response
US9936385B2 (en) * 2015-12-04 2018-04-03 Lenovo (Singapore) Pte. Ltd. Initial access to network that is permitted from within a threshold distance
CN105549740B (en) * 2015-12-10 2019-05-07 广州酷狗计算机科技有限公司 A kind of method and apparatus of playing audio-fequency data
US10200380B2 (en) 2015-12-16 2019-02-05 At&T Intellectual Property I, L.P. System for providing layered security
US9736670B2 (en) 2015-12-17 2017-08-15 Rapidsos, Inc. Devices and methods for efficient emergency calling
US10171971B2 (en) * 2015-12-21 2019-01-01 Skullcandy, Inc. Electrical systems and related methods for providing smart mobile electronic device features to a user of a wearable device
WO2017112820A1 (en) 2015-12-22 2017-06-29 Rapidsos, Inc. Systems and methods for robust and persistent emergency communications
WO2017108138A1 (en) * 2015-12-23 2017-06-29 Intel Corporation Biometric information for dialog system
KR20170076281A (en) 2015-12-24 2017-07-04 삼성전자주식회사 Electronic device and method for providing of personalized workout guide therof
TWI588745B (en) * 2015-12-31 2017-06-21 Fuelstation Inc E-commerce system that can automatically record and update the information in the embedded electronic device by the cloud
US20170200085A1 (en) * 2016-01-11 2017-07-13 Anuthep Benja-Athon Creation of Abiotic-Biotic Civilization
KR102511518B1 (en) * 2016-01-12 2023-03-20 삼성전자주식회사 Display apparatus and control method of the same
CN105657127B (en) * 2016-01-18 2019-06-11 宇龙计算机通信科技(深圳)有限公司 A kind of method, earphone and terminal that sound is shared
WO2017136151A1 (en) * 2016-02-02 2017-08-10 Gaming Grids Wearables, Llc Esports fitness and training system
US20170235460A1 (en) * 2016-02-11 2017-08-17 Symbol Technologies, Llc Methods and systems for implementing an always-on-top data-acquisition button
KR102564468B1 (en) 2016-02-11 2023-08-08 삼성전자주식회사 Electronic device and method for providing route information
US9986404B2 (en) 2016-02-26 2018-05-29 Rapidsos, Inc. Systems and methods for emergency communications amongst groups of devices based on shared data
CN105701249B (en) * 2016-03-04 2020-12-25 上海救要救信息科技有限公司 Method and device for determining position information of emergency supplies
US20170262589A1 (en) * 2016-03-14 2017-09-14 Mesa Digital, Llc Systems and methods for physically supporting users during exercise while enhanced oxygen treatment
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
CN105744420A (en) * 2016-03-23 2016-07-06 惠州Tcl移动通信有限公司 Smart sports headphones and smart sports system
JP6728863B2 (en) * 2016-03-25 2020-07-22 富士ゼロックス株式会社 Information processing system
CN105744421A (en) * 2016-03-31 2016-07-06 惠州Tcl移动通信有限公司 System and method for intelligent recommendation of music through Bluetooth headset
US10114607B1 (en) * 2016-03-31 2018-10-30 Rock My World, Inc. Physiological state-driven playback tempo modification
CN105868382A (en) * 2016-04-08 2016-08-17 惠州Tcl移动通信有限公司 Music recommendation method and system
US9924043B2 (en) 2016-04-26 2018-03-20 Rapidsos, Inc. Systems and methods for emergency communications
CA3023982A1 (en) 2016-05-09 2017-11-16 Rapidsos, Inc. Systems and methods for emergency communications
US10748658B2 (en) * 2016-05-13 2020-08-18 WellDoc, Inc. Database management and graphical user interfaces for measurements collected by analyzing blood
CN107450940A (en) * 2016-06-01 2017-12-08 北京小米移动软件有限公司 Intelligent terminal opens the method and device of application program
CN107450880A (en) * 2016-06-01 2017-12-08 北京小米移动软件有限公司 Update the method and device of display content
CN106066780B (en) * 2016-06-06 2020-01-21 杭州网易云音乐科技有限公司 Running data processing method and device
CN106067308A (en) * 2016-06-07 2016-11-02 四川长虹网络科技有限责任公司 The regulation equipment of music speed, system and method is changed by human heart rate
TWI601155B (en) * 2016-06-08 2017-10-01 群聯電子股份有限公司 Memory interface, memory control circuit unit, memory storage device and clock generation method
WO2017214411A1 (en) 2016-06-09 2017-12-14 Tristan Jehan Search media content based upon tempo
WO2017214408A1 (en) 2016-06-09 2017-12-14 Tristan Jehan Identifying media content
JP2018015187A (en) * 2016-07-27 2018-02-01 セイコーエプソン株式会社 Swimming information processing system, information processing device, swimming information processing method, and program
WO2018039142A1 (en) 2016-08-22 2018-03-01 Rapidsos, Inc. Predictive analytics for emergency detection and response management
US10628663B2 (en) 2016-08-26 2020-04-21 International Business Machines Corporation Adapting physical activities and exercises based on physiological parameter analysis
US11003762B2 (en) * 2016-09-15 2021-05-11 William John McIntosh Password hidden characters
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
US10492519B2 (en) 2016-09-28 2019-12-03 Icon Health & Fitness, Inc. Customizing nutritional supplement shake recommendations
US9794752B1 (en) * 2016-09-29 2017-10-17 International Business Machines Corporation Dynamically creating fitness groups
US20180101777A1 (en) * 2016-10-12 2018-04-12 Anuthep Benja-Athon EM Oracle
JP7024722B2 (en) * 2016-10-26 2022-02-24 Jsr株式会社 Exercise support devices, exercise support systems, exercise support methods, and non-transitional substantive recording media
CN106598537A (en) * 2016-11-16 2017-04-26 上海斐讯数据通信技术有限公司 Mobile terminal music play control method and system and mobile terminal
US10878947B2 (en) 2016-11-18 2020-12-29 International Business Machines Corporation Triggered sensor data capture in a mobile device environment
US10559297B2 (en) 2016-11-28 2020-02-11 Microsoft Technology Licensing, Llc Audio landmarking for aural user interface
TWI655929B (en) * 2016-12-01 2019-04-11 深禾醫學科技股份有限公司 Wearable device with blood pressure measurement function
JP2018093979A (en) * 2016-12-09 2018-06-21 セイコーエプソン株式会社 Exercise diagnostic device, exercise diagnosis system, program, recording medium and exercise diagnosis method
US11211157B2 (en) * 2016-12-30 2021-12-28 Intel Corporation Using emotional maps and dialog display technology to improve workout experiences
EP3573422B1 (en) * 2017-01-17 2024-02-21 Sony Group Corporation Pairing of wireless nodes
JP6864824B2 (en) * 2017-01-31 2021-04-28 株式会社Jvcケンウッド Music playback program, music playback device, music playback method
US10402417B2 (en) 2017-02-09 2019-09-03 Microsoft Technology Licensing, Llc Synthesizing data sources
WO2018169684A1 (en) * 2017-03-13 2018-09-20 Brunswick Corporation Systems and methods for improving advertising in fitness centers based on traffic
CN110446996A (en) * 2017-03-21 2019-11-12 华为技术有限公司 A kind of control method, terminal and system
US20180293980A1 (en) * 2017-04-05 2018-10-11 Kumar Narasimhan Dwarakanath Visually impaired augmented reality
MX2019010970A (en) 2017-04-05 2019-12-16 Kimberly Clark Co Garment for detecting absorbent article leakage and methods of detecting absorbent article leakage utilizing the same.
US10648821B2 (en) 2017-04-17 2020-05-12 Toyota Motor Engineering & Manufacturing North America, Inc. Systems and methodologies for route planning
US10942520B1 (en) * 2017-04-20 2021-03-09 Wells Fargo Bank, N.A. Creating trip routes for autonomous vehicles
WO2018200418A1 (en) 2017-04-24 2018-11-01 Rapidsos, Inc. Modular emergency communication flow management system
JP2018191159A (en) * 2017-05-08 2018-11-29 山▲崎▼ 薫 Moving image distribution method
US10845955B2 (en) 2017-05-15 2020-11-24 Apple Inc. Displaying a scrollable list of affordances associated with physical activities
US20220279063A1 (en) 2017-05-16 2022-09-01 Apple Inc. Methods and interfaces for home media control
CN111343060B (en) 2017-05-16 2022-02-11 苹果公司 Method and interface for home media control
US10591972B2 (en) * 2017-05-22 2020-03-17 Gao Shu An Fu (Hangzhou) Technology Adaptively controlling a tradeoff between computational accuracy and power consumption of a mobile device that operates to select a condition of a subject or device
US10650918B2 (en) * 2017-06-01 2020-05-12 International Business Machines Corporation Crowdsourcing health improvements routes
CN107277233A (en) * 2017-06-01 2017-10-20 深圳天珑无线科技有限公司 Method, equipment and the readable storage medium storing program for executing of intelligent Matching ring of alarm clock
US10987006B2 (en) 2017-06-02 2021-04-27 Apple Inc. Wearable computer with fitness machine connectivity for improved activity monitoring using caloric expenditure models
US10814167B2 (en) * 2017-06-02 2020-10-27 Apple Inc. Wearable computer with fitness machine connectivity for improved activity monitoring
US10874313B2 (en) 2017-06-04 2020-12-29 Apple Inc. Heartrate tracking techniques
US10746556B2 (en) * 2017-06-16 2020-08-18 Walkspan, Inc. Recommendation system and method to evaluate the quality of sidewalks and other pedestrian flow zones as a means to operationalize walkability
US11561109B2 (en) 2017-07-17 2023-01-24 International Business Machines Corporation Route accessibility for users of mobility assistive technology
CN107249083A (en) * 2017-07-27 2017-10-13 广东小天才科技有限公司 A kind of method, device, equipment and the storage medium of the tinkle of bells switching at runtime
US11185254B2 (en) 2017-08-21 2021-11-30 Muvik Labs, Llc Entrainment sonification techniques
WO2019040524A1 (en) 2017-08-21 2019-02-28 Muvik Labs, Llc Method and system for musical communication
JP2019041362A (en) 2017-08-29 2019-03-14 株式会社東芝 Microphone cooperation device
US10515637B1 (en) * 2017-09-19 2019-12-24 Amazon Technologies, Inc. Dynamic speech processing
FI20175862A1 (en) * 2017-09-28 2019-03-29 Kipuwex Oy System for determining sound source
CN109728831A (en) * 2017-10-27 2019-05-07 北京金锐德路科技有限公司 The face-to-face device for tone frequencies together of formula interactive voice earphone is worn for neck
CN107564550A (en) * 2017-10-27 2018-01-09 安徽硕威智能科技有限公司 A kind of card machine people that music is played according to detection children's heartbeat
US20190138095A1 (en) * 2017-11-03 2019-05-09 Qualcomm Incorporated Descriptive text-based input based on non-audible sensor data
CN109817334A (en) * 2017-11-21 2019-05-28 中国平安人寿保险股份有限公司 Detection method, device, equipment and the readable storage medium storing program for executing in workout data source
WO2019113129A1 (en) 2017-12-05 2019-06-13 Rapidsos, Inc. Social media content for emergency management
US10691789B2 (en) * 2017-12-19 2020-06-23 International Business Machines Corporation Authentication/security using user activity mining based live question-answering
CN108199936B (en) * 2018-01-25 2021-02-19 平果县科力屋智能科技有限责任公司 Smart home
US20190237168A1 (en) * 2018-01-29 2019-08-01 Anuthep Benja-Athon Abiotic Intelligence-Rendered Pay
US10820181B2 (en) 2018-02-09 2020-10-27 Rapidsos, Inc. Emergency location analysis system
DK180241B1 (en) * 2018-03-12 2020-09-08 Apple Inc User interfaces for health monitoring
WO2019204228A1 (en) 2018-04-16 2019-10-24 Rapidsos, Inc. Emergency data management and access system
CN110411460B (en) * 2018-04-27 2021-08-27 高树安弗(杭州)科技有限公司 Method and system for adaptively controlling tracking device
US10958466B2 (en) 2018-05-03 2021-03-23 Plantronics, Inc. Environmental control systems utilizing user monitoring
US11317833B2 (en) 2018-05-07 2022-05-03 Apple Inc. Displaying user interfaces associated with physical activities
DK201870378A1 (en) 2018-05-07 2020-01-13 Apple Inc. Displaying user interfaces associated with physical activities
US10688867B2 (en) * 2018-05-22 2020-06-23 International Business Machines Corporation Vehicular medical assistant
US11204251B2 (en) * 2018-05-25 2021-12-21 The University Of Chicago Routing in navigation applications based on restorative score
MX2020012885A (en) 2018-05-29 2021-09-02 Curiouser Products Inc A reflective video display apparatus for interactive training and demonstration and methods of using same.
US10805786B2 (en) 2018-06-11 2020-10-13 Rapidsos, Inc. Systems and user interfaces for emergency data integration
US11740630B2 (en) * 2018-06-12 2023-08-29 Skydio, Inc. Fitness and sports applications for an autonomous unmanned aerial vehicle
JP7044646B2 (en) * 2018-06-22 2022-03-30 東芝テック株式会社 Information processing equipment and programs
US11567632B2 (en) 2018-07-03 2023-01-31 Apple Inc. Systems and methods for exploring a geographic region
US11145313B2 (en) * 2018-07-06 2021-10-12 Michael Bond System and method for assisting communication through predictive speech
IT201800007296A1 (en) * 2018-07-19 2020-01-19 GARMENT WITH GRAPHENE CIRCUITS AND SENSORS EQUIPPED WITH AN ELECTRONIC PERSONAL SAFETY AND ENVIRONMENTAL MONITORING SYSTEM
US11917514B2 (en) 2018-08-14 2024-02-27 Rapidsos, Inc. Systems and methods for intelligently managing multimedia for emergency response
US10956115B2 (en) * 2018-08-22 2021-03-23 International Business Machines Corporation Intelligent exercise music synchronization
US11034360B2 (en) * 2018-10-11 2021-06-15 GM Global Technology Operations LLC Method and apparatus that address motion sickness
PT3867896T (en) * 2018-10-17 2023-08-21 Sphery Ag Training module
US10977927B2 (en) 2018-10-24 2021-04-13 Rapidsos, Inc. Emergency communication flow management and notification system
CN109599007A (en) * 2018-10-26 2019-04-09 深圳点猫科技有限公司 A kind of implementation method and intellectual education paintbrush of intellectual education paintbrush
US11619747B2 (en) 2018-11-04 2023-04-04 Chenyu Wang Location monitoring apparatuses configured for low-power operation
JP7351078B2 (en) * 2018-11-14 2023-09-27 オムロン株式会社 Habit improvement devices, methods and programs
US20220277254A1 (en) * 2018-12-27 2022-09-01 Aptima, Inc. Contextualized sensor systems
CN109718530B (en) * 2018-12-29 2021-08-24 咪咕互动娱乐有限公司 Movement route obtaining method and device and storage medium
US11382510B2 (en) 2019-02-13 2022-07-12 Sports Data Labs, Inc. Biological data tracking system and method
US20210225505A1 (en) * 2019-02-13 2021-07-22 Sports Data Labs, Inc. Biological data tracking system and method
US11218584B2 (en) 2019-02-22 2022-01-04 Rapidsos, Inc. Systems and methods for automated emergency response
US11146680B2 (en) 2019-03-29 2021-10-12 Rapidsos, Inc. Systems and methods for emergency data integration
CA3135274C (en) 2019-03-29 2024-01-16 Rapidsos, Inc. Systems and methods for emergency data integration
KR102371399B1 (en) * 2019-05-13 2022-03-08 주식회사 바디프랜드 A water purification device with a function of outputting a brain sound for user's mental health and brain stimulation and the method thereof
US11344786B2 (en) * 2019-05-15 2022-05-31 Peloton Interactive, Inc. User interface with interactive mapping and segmented timeline
JP7097515B2 (en) * 2019-05-31 2022-07-07 アップル インコーポレイテッド Methods and user interfaces for sharing audio
KR20220027295A (en) 2019-05-31 2022-03-07 애플 인크. User interfaces for audio media control
US11010121B2 (en) 2019-05-31 2021-05-18 Apple Inc. User interfaces for audio media control
DK201970533A1 (en) 2019-05-31 2021-02-15 Apple Inc Methods and user interfaces for sharing audio
DK201970534A1 (en) 2019-06-01 2021-02-16 Apple Inc User interfaces for monitoring noise exposure levels
US11234077B2 (en) 2019-06-01 2022-01-25 Apple Inc. User interfaces for managing audio exposure
US11152100B2 (en) 2019-06-01 2021-10-19 Apple Inc. Health application user interfaces
US11228835B2 (en) 2019-06-01 2022-01-18 Apple Inc. User interfaces for managing audio exposure
US11209957B2 (en) 2019-06-01 2021-12-28 Apple Inc. User interfaces for cycle tracking
US11228891B2 (en) 2019-07-03 2022-01-18 Rapidsos, Inc. Systems and methods for emergency medical communications
CN114286975A (en) 2019-09-09 2022-04-05 苹果公司 Research user interface
WO2021049164A1 (en) * 2019-09-13 2021-03-18 ソニー株式会社 Information processing device, information processing method, and program
CN110660411B (en) * 2019-09-17 2021-11-02 北京声智科技有限公司 Body-building safety prompting method, device, equipment and medium based on voice recognition
US11195152B2 (en) * 2019-10-21 2021-12-07 International Business Machines Corporation Calendar aware activity planner
CN112972746A (en) * 2019-12-18 2021-06-18 深圳富泰宏精密工业有限公司 Wearable device and fragrance release control method thereof
TW202143063A (en) * 2019-12-31 2021-11-16 芬蘭商亞瑪芬體育數字服務公司 Apparatus and method for presenting thematic maps
CN111121814A (en) * 2020-01-08 2020-05-08 百度在线网络技术(北京)有限公司 Navigation method, navigation device, electronic equipment and computer readable storage medium
CN111202509B (en) * 2020-01-17 2023-07-04 山东中医药大学 Target rate monitoring method and device based on hearing performance strategy
RU2763923C2 (en) * 2020-03-23 2022-01-11 Наталия Яковлевна Карасик Training class of radio communication and telegraph alphabet
JP6811349B1 (en) * 2020-03-31 2021-01-13 株式会社三菱ケミカルホールディングス Information processing equipment, methods, programs
WO2021222497A1 (en) 2020-04-30 2021-11-04 Curiouser Products Inc. Reflective video display apparatus for interactive training and demonstration and methods of using same
US11513667B2 (en) 2020-05-11 2022-11-29 Apple Inc. User interface for audio message
US11796334B2 (en) * 2020-05-15 2023-10-24 Apple Inc. User interfaces for providing navigation directions
DK181037B1 (en) 2020-06-02 2022-10-10 Apple Inc User interfaces for health applications
US11788851B2 (en) 2020-06-11 2023-10-17 Apple Inc. User interfaces for customized navigation routes
KR20220003197A (en) * 2020-07-01 2022-01-10 삼성전자주식회사 Electronic apparatus and method for controlling thereof
US11698710B2 (en) 2020-08-31 2023-07-11 Apple Inc. User interfaces for logging user activities
US11167172B1 (en) 2020-09-04 2021-11-09 Curiouser Products Inc. Video rebroadcasting with multiplexed communications and display via smart mirrors
US11392291B2 (en) 2020-09-25 2022-07-19 Apple Inc. Methods and interfaces for media control with dynamic feedback
CA3195169A1 (en) * 2020-10-07 2022-04-14 Pave Routes, Llc Computerized route building system and method
US11330664B1 (en) 2020-12-31 2022-05-10 Rapidsos, Inc. Apparatus and method for obtaining emergency data and providing a map view
US11847378B2 (en) 2021-06-06 2023-12-19 Apple Inc. User interfaces for audio routing
US20220390248A1 (en) 2021-06-07 2022-12-08 Apple Inc. User interfaces for maps and navigation
WO2023001710A1 (en) * 2021-07-19 2023-01-26 Intelligent Training Group ApS Music based exercise program
WO2023112081A1 (en) * 2021-12-13 2023-06-22 日本電信電話株式会社 Learning device, recommendation device, methods therefor, and program
CN114288632A (en) * 2021-12-31 2022-04-08 深圳市大数据研究院 Interactive running path covering display method
KR102486726B1 (en) * 2022-06-27 2023-01-11 아주대학교산학협력단 Method for providing recommended exercise route information, server and system using the same
JP7368578B1 (en) * 2022-10-14 2023-10-24 医療法人社団M-Forest Respiratory and circulatory system measurement data management system and respiratory and circulatory system measurement data management program
KR102632475B1 (en) * 2022-11-15 2024-01-31 광운대학교 산학협력단 Application and methods of Sound play according to exercise speed

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097672A1 (en) * 2004-11-12 2009-04-16 Koninklijke Philips Electronics, N.V. Apparatus and method for sharing contents via headphone set
US20100088023A1 (en) * 2008-10-03 2010-04-08 Adidas Ag Program Products, Methods, and Systems for Providing Location-Aware Fitness Monitoring Services
US20120214644A1 (en) * 2011-02-22 2012-08-23 Yamaha Corporation Notification signal control apparatus and method
US20130045681A1 (en) * 2005-05-12 2013-02-21 Robin Dua Wireless media system and player and method of operation

Family Cites Families (323)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4278095A (en) 1977-09-12 1981-07-14 Lapeyre Pierre A Exercise monitor system and method
US4566461A (en) 1983-02-15 1986-01-28 Michael Lubell Health fitness monitor
US4625962A (en) 1984-10-22 1986-12-02 The Cleveland Clinic Foundation Upper body exercise apparatus
US5111818A (en) 1985-10-08 1992-05-12 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
US4920969A (en) 1985-10-08 1990-05-01 Capintec, Inc. Ambulatory physiological evaluation system including cardiac monitoring
GB2184361B (en) 1985-12-20 1989-10-11 Ind Tech Res Inst Automatic treadmill
US4728100A (en) 1986-03-13 1988-03-01 Smith Robert S Exercise pacer
US5474083A (en) 1986-12-08 1995-12-12 Empi, Inc. Lifting monitoring and exercise training system
US5277197A (en) 1986-12-08 1994-01-11 Physical Health Device, Inc. Microprocessor controlled system for unsupervised EMG feedback and exercise training
US4869497A (en) 1987-01-20 1989-09-26 Universal Gym Equipment, Inc. Computer controlled exercise machine
US5072458A (en) 1987-05-07 1991-12-17 Capintec, Inc. Vest for use in an ambulatory physiological evaluation system including cardiac monitoring
US4916628A (en) 1988-07-08 1990-04-10 Commonwealth Edison Company Microprocessor-based control/status monitoring arrangement
EP0404932A4 (en) 1989-01-13 1993-01-27 The Scott Fetzer Company Apparatus and method for controlling and monitoring the exercise session for remotely located patients
US5410472A (en) 1989-03-06 1995-04-25 Ergometrx Corporation Method for conditioning or rehabilitating using a prescribed exercise program
US5052375A (en) 1990-02-21 1991-10-01 John G. Stark Instrumented orthopedic restraining device and method of use
US5207621A (en) 1991-02-07 1993-05-04 Integral Products Stair climbing exercise machine
IL97526A0 (en) 1991-03-12 1992-06-21 Tius Elcon Ltd Exercise monitor
JPH05220120A (en) 1992-02-18 1993-08-31 Casio Comput Co Ltd Kinetic intensity display device
US5598849A (en) 1992-07-21 1997-02-04 Hayle Brainpower P/L Interactive exercise monitoring system and method
US20010011224A1 (en) 1995-06-07 2001-08-02 Stephen James Brown Modular microprocessor-based health monitoring system
US5400794A (en) * 1993-03-19 1995-03-28 Gorman; Peter G. Biomedical response monitor and technique using error correction
US5433683A (en) 1993-11-15 1995-07-18 Stevens; Clive G. Ski exerciser with sensor system
US5454770A (en) 1993-11-15 1995-10-03 Stevens; Clive G. Stepper with sensor system
US5516334A (en) 1994-01-28 1996-05-14 Easton; Gregory D. Interactive exercise monitor
US5524637A (en) 1994-06-29 1996-06-11 Erickson; Jon W. Interactive system for measuring physiological exertion
US6515593B1 (en) 1995-02-15 2003-02-04 Izex Technologies, Inc. Communication system for an instrumented orthopedic restraining device and method therefor
AUPN127195A0 (en) 1995-02-21 1995-03-16 Hayle Brainpower Pty Ltd Adaptive interactive exercise system
JPH08241496A (en) 1995-03-06 1996-09-17 Toyota Motor Corp Schedule setting processing system for vehicle
US6171218B1 (en) 1995-06-22 2001-01-09 Michael J. Shea Exercise apparatus
US7824310B1 (en) 1995-06-22 2010-11-02 Shea Michael J Exercise apparatus providing mental activity for an exerciser
US6231527B1 (en) * 1995-09-29 2001-05-15 Nicholas Sol Method and apparatus for biomechanical correction of gait and posture
US6749537B1 (en) 1995-12-14 2004-06-15 Hickman Paul L Method and apparatus for remote interactive exercise and health equipment
US6220865B1 (en) 1996-01-22 2001-04-24 Vincent J. Macri Instruction for groups of users interactively controlling groups of images to make idiosyncratic, simulated, physical movements
US5706822A (en) 1996-03-29 1998-01-13 Kozz Incorporated Method and computer program for creating individualized exercise protocols
US6106297A (en) 1996-11-12 2000-08-22 Lockheed Martin Corporation Distributed interactive simulation exercise manager system and method
US5704067A (en) 1997-01-31 1998-01-06 Brady; Philip Exercise organizer sweatband
US6540707B1 (en) 1997-03-24 2003-04-01 Izex Technologies, Inc. Orthoses
JPH10281790A (en) 1997-04-08 1998-10-23 Aisin Aw Co Ltd Route search device, navigation apparatus and medium on which computer program for navigation processing is stored
US7056265B1 (en) 1997-04-28 2006-06-06 Shea Michael J Exercise system
US6050924A (en) 1997-04-28 2000-04-18 Shea; Michael J. Exercise system
US5857939A (en) 1997-06-05 1999-01-12 Talking Counter, Inc. Exercise device with audible electronic monitor
US6582342B2 (en) 1999-01-12 2003-06-24 Epm Development Systems Corporation Audible electronic exercise monitor
US20030171189A1 (en) 1997-06-05 2003-09-11 Kaufman Arthur H. Audible electronic exercise monitor
US6251048B1 (en) 1997-06-05 2001-06-26 Epm Develoment Systems Corporation Electronic exercise monitor
US7438670B2 (en) 1997-10-17 2008-10-21 True Fitness Technology, Inc. Exercise device for side-to-side stepping motion
IL122597A0 (en) 1997-12-14 1998-06-15 Pylon Inc System and method for monitoring activity
US6013007A (en) 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6032108A (en) 1998-07-08 2000-02-29 Seiple; Ronald Sports performance computer system and method
US6280363B1 (en) 1999-08-11 2001-08-28 Osborn Medical Corporation Reciprocating therapeutic exerciser
US6198431B1 (en) 1998-08-27 2001-03-06 Maptrek Llc Compact GPS tracker and customized mapping system
WO2000038725A1 (en) 1998-12-23 2000-07-06 G.D. Searle Llc Combinations for cardiovascular indications
US6244988B1 (en) 1999-06-28 2001-06-12 David H. Delman Interactive exercise system and attachment module for same
US6447424B1 (en) * 2000-02-02 2002-09-10 Icon Health & Fitness Inc System and method for selective adjustment of exercise apparatus
US6811516B1 (en) 1999-10-29 2004-11-02 Brian M. Dugan Methods and apparatus for monitoring and encouraging health and fitness
US6602191B2 (en) 1999-12-17 2003-08-05 Q-Tec Systems Llp Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
JP3489817B2 (en) * 2000-04-28 2004-01-26 牟田 文夫 Headphone transceiver
US6746371B1 (en) 2000-04-28 2004-06-08 International Business Machines Corporation Managing fitness activity across diverse exercise machines utilizing a portable computer system
US6702719B1 (en) 2000-04-28 2004-03-09 International Business Machines Corporation Exercise machine
US6601016B1 (en) 2000-04-28 2003-07-29 International Business Machines Corporation Monitoring fitness activity across diverse exercise machines utilizing a universally accessible server system
US20020108000A1 (en) * 2000-05-04 2002-08-08 Marco Iori User recognition system for automatically controlling accesse, apparatuses and the like equipment
EP1283689A4 (en) * 2000-05-25 2005-03-09 Healthetech Inc Weight control method using physical activity based parameters
US7024369B1 (en) 2000-05-31 2006-04-04 International Business Machines Corporation Balancing the comprehensive health of a user
US6447425B1 (en) 2000-06-14 2002-09-10 Paracomp, Inc. Range of motion device
US6659946B1 (en) 2000-06-30 2003-12-09 Intel Corporation Training system
US20020072932A1 (en) 2000-12-11 2002-06-13 Bala Swamy Health personal digital assistant
US7223215B2 (en) 2000-12-14 2007-05-29 Bastyr Charles A Exercise device with true pivot point
US6561951B2 (en) 2000-12-21 2003-05-13 Agere Systems, Inc. Networked biometrically secured fitness device scheduler
US8462994B2 (en) * 2001-01-10 2013-06-11 Random Biometrics, Llc Methods and systems for providing enhanced security over, while also facilitating access through, secured points of entry
AU2002255568B8 (en) * 2001-02-20 2014-01-09 Adidas Ag Modular personal network systems and methods
US20020156392A1 (en) 2001-03-06 2002-10-24 Mitsubishi Chemical Corporation Method and apparatus for inspecting biological rhythms
US6542814B2 (en) * 2001-03-07 2003-04-01 Horizon Navigation, Inc. Methods and apparatus for dynamic point of interest display
JP2002263213A (en) * 2001-03-08 2002-09-17 Combi Corp Training apparatus operation system and its method
US6672991B2 (en) 2001-03-28 2004-01-06 O'malley Sean M. Guided instructional cardiovascular exercise with accompaniment
US7699754B2 (en) 2001-05-24 2010-04-20 Kenneth George Schneider Complete body fitness machine
US6605044B2 (en) 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
US6882883B2 (en) 2001-08-31 2005-04-19 Medtronic, Inc. Implantable medical device (IMD) system configurable to subject a patient to a stress test and to detect myocardial ischemia within the patient
JP2003102868A (en) 2001-09-28 2003-04-08 Konami Co Ltd Exercising support method and apparatus therefor
US6921351B1 (en) 2001-10-19 2005-07-26 Cybergym, Inc. Method and apparatus for remote interactive exercise and health equipment
JP2003131785A (en) 2001-10-22 2003-05-09 Toshiba Corp Interface device, operation control method and program product
US20030088196A1 (en) * 2001-11-02 2003-05-08 Epm Development Systems Corporation Customized physiological monitor
JP2003163959A (en) 2001-11-28 2003-06-06 Nec Corp Mobile radio communication equipment and mobile radio communication system
US6997882B1 (en) 2001-12-21 2006-02-14 Barron Associates, Inc. 6-DOF subject-monitoring device and method
US6901330B1 (en) * 2001-12-21 2005-05-31 Garmin Ltd. Navigation system, method and device with voice guidance
US6793607B2 (en) 2002-01-22 2004-09-21 Kinetic Sports Interactive Workout assistant
US6873905B2 (en) * 2002-03-19 2005-03-29 Opnext Japan, Inc. Communications type navigation device
US20030211916A1 (en) * 2002-04-23 2003-11-13 Capuano Patrick J. Exercise parameters monitoring, recording and reporting system for free weight, weight stack, and sport-simulation exercise machines
US20040006425A1 (en) * 2002-07-03 2004-01-08 Terragraphix, Inc. System for communicating and associating information with a geographic location
FI20025038A0 (en) 2002-08-16 2002-08-16 Joni Kettunen Method for analyzing a physiological signal
US7480512B2 (en) * 2004-01-16 2009-01-20 Bones In Motion, Inc. Wireless device, program products and methods of using a wireless device to deliver services
US7521623B2 (en) * 2004-11-24 2009-04-21 Apple Inc. Music synchronization arrangement
US7507183B2 (en) 2003-04-07 2009-03-24 Brent Anderson Health club exercise records system
US7699752B1 (en) 2003-04-07 2010-04-20 Brent Anderson Exercise activity recording system
US20130090565A1 (en) 2003-04-18 2013-04-11 Q-Tec Systems Llc Method and apparatus for monitoring exercise with wireless internet connectivity
FI118745B (en) 2003-07-09 2008-02-29 Newtest Oy Automatic exercise detection method and exercise detector
US8128532B2 (en) * 2003-07-10 2012-03-06 International Business Machines Corporation Workout processing system
US20050070809A1 (en) 2003-09-29 2005-03-31 Acres John F. System for regulating exercise and exercise network
JP4503262B2 (en) * 2003-10-10 2010-07-14 株式会社デンソー Physical condition management device
US20060252602A1 (en) * 2003-10-14 2006-11-09 Brown Michael W Program and system for managing fitness activity across diverse exercise machines utilizing a portable computer system
US7505756B2 (en) * 2003-10-15 2009-03-17 Microsoft Corporation Dynamic online subscription for wireless wide-area networks
US20060111944A1 (en) 2003-10-31 2006-05-25 Sirmans James R Jr System and method for encouraging performance of health-promoting measures
WO2005044090A2 (en) 2003-11-04 2005-05-19 General Hospital Corporation Respiration motion detection and health state assessment system
US7664292B2 (en) 2003-12-03 2010-02-16 Safehouse International, Inc. Monitoring an output from a camera
US8712510B2 (en) 2004-02-06 2014-04-29 Q-Tec Systems Llc Method and apparatus for exercise monitoring combining exercise monitoring and visual data with wireless internet connectivity
FI119718B (en) 2003-12-22 2009-02-27 Suunto Oy A method of measuring exercise performance
JP4126500B2 (en) * 2004-10-08 2008-07-30 カシオ計算機株式会社 Ear-mounted electronic devices
JP2005224318A (en) 2004-02-10 2005-08-25 Rikogaku Shinkokai Pacemaker
US7914381B2 (en) 2004-03-16 2011-03-29 Xfire, Inc. System and method for facilitating multiplayer online gaming
CN1980714B (en) 2004-04-09 2011-07-06 康纳尔·奥布赖恩 Exercise monitor
US7057551B1 (en) 2004-04-27 2006-06-06 Garmin Ltd. Electronic exercise monitor and method using a location determining component and a pedometer
US20050272561A1 (en) 2004-06-07 2005-12-08 Cammerata Gregory T Electronic data gathering and processing for fitness machines
US20060020216A1 (en) 2004-07-20 2006-01-26 Sharp Kabushiki Kaisha Medical information detection apparatus and health management system using the medical information detection apparatus
US8109858B2 (en) 2004-07-28 2012-02-07 William G Redmann Device and method for exercise prescription, detection of successful performance, and provision of reward therefore
US20060058156A1 (en) 2004-09-15 2006-03-16 International Business Machines Corporation Systems, methods, and computer readable media for determining a circuit training path in a smart gym
US7227468B1 (en) * 2004-09-30 2007-06-05 Erik David Florio Object information retrieval system
US20060111621A1 (en) * 2004-11-03 2006-05-25 Andreas Coppi Musical personal trainer
US20060113381A1 (en) 2004-11-29 2006-06-01 John Hochstein Batteryless contact fingerprint-enabled smartcard that enables contactless capability
US7370763B1 (en) 2004-12-08 2008-05-13 Pascucci Cheryl L Health management kit
US7254516B2 (en) * 2004-12-17 2007-08-07 Nike, Inc. Multi-sensor monitoring of athletic performance
JP2008538295A (en) * 2005-01-10 2008-10-23 アイポイント リミテッド Music pacemaker for physical fitness training
US20070266065A1 (en) 2006-05-12 2007-11-15 Outland Research, Llc System, Method and Computer Program Product for Intelligent Groupwise Media Selection
US7638252B2 (en) 2005-01-28 2009-12-29 Hewlett-Packard Development Company, L.P. Electrophotographic printing of electronic devices
US9165280B2 (en) * 2005-02-22 2015-10-20 International Business Machines Corporation Predictive user modeling in user interface design
US7627423B2 (en) * 2005-03-10 2009-12-01 Wright Ventures, Llc Route based on distance
JP2006297069A (en) * 2005-03-24 2006-11-02 Jun Kawahara Walking guidance device, walking guidance method, program and recording medium
SE530842C2 (en) 2005-04-05 2008-09-23 Yoyo Technology Ab Procedure for muscle training and implements for this
US20060240959A1 (en) 2005-04-22 2006-10-26 Hsien-Ting Huang Dumbbell that can respond to exercise status and play music
US20070042868A1 (en) 2005-05-11 2007-02-22 John Fisher Cardio-fitness station with virtual- reality capability
TWI262782B (en) 2005-06-07 2006-10-01 Nat Applied Res Lab Nat Ce Method for exercise tolerance measurement
US20060288846A1 (en) 2005-06-27 2006-12-28 Logan Beth T Music-based exercise motivation aid
US8740751B2 (en) * 2005-07-25 2014-06-03 Nike, Inc. Interfaces and systems for displaying athletic performance information on electronic devices
US20070032345A1 (en) 2005-08-08 2007-02-08 Ramanath Padmanabhan Methods and apparatus for monitoring quality of service for an exercise machine communication network
US20090131224A1 (en) 2005-08-08 2009-05-21 Dayton Technologies Limited Performance Monitoring Apparatus
JP2007075172A (en) * 2005-09-12 2007-03-29 Sony Corp Sound output control device, method and program
US7633076B2 (en) 2005-09-30 2009-12-15 Apple Inc. Automated response to and sensing of user activity in portable devices
US20130228063A1 (en) * 2005-10-06 2013-09-05 William D. Turner System and method for pacing repetitive motion activities
US20070083092A1 (en) 2005-10-07 2007-04-12 Rippo Anthony J External exercise monitor
US20070083095A1 (en) 2005-10-07 2007-04-12 Rippo Anthony J External exercise monitor
WO2007043970A1 (en) 2005-10-12 2007-04-19 Sensyact Ab A method, a computer program and a device for controlling a movable resistance element in a training device
US7351187B2 (en) 2005-10-22 2008-04-01 Joseph Seliber Resistance and power monitoring device and system for exercise equipment
US7728214B2 (en) 2005-11-23 2010-06-01 Microsoft Corporation Using music to influence a person's exercise performance
US7683252B2 (en) 2005-11-23 2010-03-23 Microsoft Corporation Algorithm for providing music to influence a user's exercise performance
US8390456B2 (en) * 2008-12-03 2013-03-05 Tego Inc. RFID tag facility with access to external devices
US8333874B2 (en) 2005-12-09 2012-12-18 Flexible Medical Systems, Llc Flexible apparatus and method for monitoring and delivery
US20070146116A1 (en) * 2005-12-22 2007-06-28 Sony Ericsson Mobile Communications Ab Wireless communications device with integrated user activity module
GB2434461A (en) 2006-01-24 2007-07-25 Hawkgrove Ltd System for monitoring the performance of the components of a software system by detecting the messages between the components and decoding them
US8055469B2 (en) * 2006-03-03 2011-11-08 Garmin Switzerland Gmbh Method and apparatus for determining the attachment position of a motion sensing apparatus
WO2007127536A1 (en) * 2006-03-15 2007-11-08 Qualcomm Incorporated Method anb apparatus for determining relevant point of interest information based upon route of user
JP2007250053A (en) * 2006-03-15 2007-09-27 Sony Corp Contents reproducing device and contents reproducing method
US20070219059A1 (en) * 2006-03-17 2007-09-20 Schwartz Mark H Method and system for continuous monitoring and training of exercise
JP2007267818A (en) * 2006-03-30 2007-10-18 Duskin Healthcare:Kk Aerobics exercise maintenance apparatus
KR100807736B1 (en) 2006-04-21 2008-02-28 삼성전자주식회사 Exercise assistant apparatus and method for directing exercise pace in conjunction with music
US20070249468A1 (en) 2006-04-24 2007-10-25 Min-Chang Chen System for monitoring exercise performance
US8684922B2 (en) 2006-05-12 2014-04-01 Bao Tran Health monitoring system
JP4231876B2 (en) 2006-05-18 2009-03-04 株式会社コナミスポーツ&ライフ Training system, operation terminal, and computer-readable recording medium recording training support program
US7643895B2 (en) * 2006-05-22 2010-01-05 Apple Inc. Portable media device with workout support
JP2007322172A (en) * 2006-05-30 2007-12-13 Nissan Motor Co Ltd Bypass proposal system and method
US20070300185A1 (en) 2006-06-27 2007-12-27 Microsoft Corporation Activity-centric adaptive user interface
US8052580B2 (en) * 2006-07-04 2011-11-08 Firstbeat Technologies Oy Method and system for guiding a person in physical exercise
CN101489469B (en) 2006-07-10 2012-12-12 埃森哲环球服务有限公司 Mobile personal services platform for providing feedback
JP4749273B2 (en) * 2006-08-10 2011-08-17 三洋電機株式会社 Electric bicycle
JP4305671B2 (en) 2006-08-22 2009-07-29 ソニー株式会社 HEALTH EXERCISE SUPPORT SYSTEM, PORTABLE MUSIC REPRODUCTION DEVICE, SERVICE INFORMATION PROVIDING DEVICE, INFORMATION PROCESSING DEVICE, HEALTH EXERCISE SUPPORT METHOD
CN1912862A (en) * 2006-08-25 2007-02-14 中山大学 Device and method for dynamic playing music and video according to body physiological state
WO2008038868A1 (en) 2006-09-29 2008-04-03 Electronics And Telecommunications Research Institute System for managing physical training and method thereof
TW200820225A (en) 2006-10-25 2008-05-01 Taiwan Chest Disease Ass Home-based exercise tranining method and system guided by automatically assessment and selecting music
US20080103022A1 (en) 2006-10-31 2008-05-01 Motorola, Inc. Method and system for dynamic music tempo tracking based on exercise equipment pace
US20080147502A1 (en) 2006-11-06 2008-06-19 Baker Steve G Exercise incenting methods and devices
US20080110115A1 (en) * 2006-11-13 2008-05-15 French Barry J Exercise facility and method
US7586418B2 (en) 2006-11-17 2009-09-08 General Electric Company Multifunctional personal emergency response system
WO2008069966A2 (en) 2006-12-01 2008-06-12 Fitistics, Llc System and method for processing information
US20080176713A1 (en) 2006-12-05 2008-07-24 Pablo Olivera Brizzio Method and apparatus for selecting a condition of a fitness machine in relation to a user
US8157730B2 (en) 2006-12-19 2012-04-17 Valencell, Inc. Physiological and environmental monitoring systems and methods
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
US20080162186A1 (en) 2006-12-28 2008-07-03 Michael Jones System and method for diet and exercise
US7840031B2 (en) 2007-01-12 2010-11-23 International Business Machines Corporation Tracking a range of body movement based on 3D captured image streams of a user
US7841966B2 (en) 2007-01-29 2010-11-30 At&T Intellectual Property I, L.P. Methods, systems, and products for monitoring athletic performance
CN101244310B (en) * 2007-02-15 2010-12-01 李隆 Music interference electric therapeutic equipment
US20080204225A1 (en) 2007-02-22 2008-08-28 David Kitchen System for measuring and analyzing human movement
WO2008105651A1 (en) * 2007-03-01 2008-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Mobile service for keeping track of competitors during a race
US7931563B2 (en) 2007-03-08 2011-04-26 Health Hero Network, Inc. Virtual trainer system and method
JP4941037B2 (en) * 2007-03-22 2012-05-30 ヤマハ株式会社 Training support apparatus, training support method, and program for training support apparatus
JP4697165B2 (en) 2007-03-27 2011-06-08 ヤマハ株式会社 Music playback control device
JP4311467B2 (en) * 2007-03-28 2009-08-12 ヤマハ株式会社 Performance apparatus and program for realizing the control method
US7987046B1 (en) * 2007-04-04 2011-07-26 Garmin Switzerland Gmbh Navigation device with improved user interface and mounting features
US20080262918A1 (en) 2007-04-19 2008-10-23 Jay Wiener Exercise recommendation engine and internet business model
US8709709B2 (en) 2007-05-18 2014-04-29 Luoxis Diagnostics, Inc. Measurement and uses of oxidative status
US7970532B2 (en) * 2007-05-24 2011-06-28 Honeywell International Inc. Flight path planning to reduce detection of an unmanned aerial vehicle
US8199014B1 (en) * 2007-06-29 2012-06-12 Sony Ericsson Mobile Communications Ab System, device and method for keeping track of portable items by means of a mobile electronic device
JP5221074B2 (en) * 2007-08-07 2013-06-26 株式会社ゼンリンデータコム GUIDANCE INFORMATION GENERATION DEVICE, GUIDE INFORMATION GENERATION METHOD, AND COMPUTER PROGRAM
EP2175941B1 (en) 2007-08-08 2012-05-30 Koninklijke Philips Electronics N.V. Process and system for monitoring exercise motions of a person
US20090044687A1 (en) 2007-08-13 2009-02-19 Kevin Sorber System for integrating music with an exercise regimen
US8221290B2 (en) * 2007-08-17 2012-07-17 Adidas International Marketing B.V. Sports electronic training system with electronic gaming features, and applications thereof
JP2009050368A (en) * 2007-08-24 2009-03-12 Masashi Hosoya Swimming distance measuring apparatus
US7996080B1 (en) 2007-10-16 2011-08-09 Customkynetics, Inc. Recumbent stepping exercise device with stimulation and related methods
ITBO20070701A1 (en) * 2007-10-19 2009-04-20 Technogym Spa DEVICE FOR ANALYSIS AND MONITORING OF THE PHYSICAL ACTIVITY OF A USER.
CA2704923C (en) * 2007-11-09 2016-04-05 Google, Inc. Activating applications based on accelerometer data
US7979136B2 (en) 2007-12-07 2011-07-12 Roche Diagnostics Operation, Inc Method and system for multi-device communication
US8103241B2 (en) 2007-12-07 2012-01-24 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
JP2009142333A (en) 2007-12-11 2009-07-02 Sharp Corp Exercise supporting device, exercise supporting method, exercise supporting system, exercise supporting control program and recording medium
WO2009075493A2 (en) * 2007-12-12 2009-06-18 Kyong Am An Upper/lower body exercise machine usable in state of being held by user's hands or feet
US8123660B2 (en) * 2007-12-28 2012-02-28 Immersion Corporation Method and apparatus for providing communications with haptic cues
US20110098583A1 (en) 2009-09-15 2011-04-28 Texas Instruments Incorporated Heart monitors and processes with accelerometer motion artifact cancellation, and other electronic systems
US8125314B2 (en) 2008-02-05 2012-02-28 International Business Machines Corporation Distinguishing between user physical exertion biometric feedback and user emotional interest in a media stream
JP4769827B2 (en) * 2008-02-15 2011-09-07 富士通株式会社 RFID tag
JP2009206600A (en) * 2008-02-26 2009-09-10 Sharp Corp Portable equipment, processing determination method and program
CN106139548A (en) * 2008-02-27 2016-11-23 耐克创新有限合伙公司 Movable information system and method
US8047966B2 (en) * 2008-02-29 2011-11-01 Apple Inc. Interfacing portable media devices and sports equipment
US7951046B1 (en) 2008-03-17 2011-05-31 Barber Jr Ulysses Device, method and computer program product for tracking and monitoring an exercise regimen
US8182424B2 (en) 2008-03-19 2012-05-22 Microsoft Corporation Diary-free calorimeter
US20090247366A1 (en) * 2008-03-26 2009-10-01 Frumer John D Method and apparatus for configuring fitness equipment
US20090247368A1 (en) 2008-03-31 2009-10-01 Boson Technology Co., Ltd. Sports health care apparatus with physiological monitoring function
FI20085398A0 (en) 2008-04-30 2008-04-30 Polar Electro Oy Method and apparatus in conjunction with training
US8254829B1 (en) * 2008-05-09 2012-08-28 Sprint Communications Company L.P. Network media service with track delivery adapted to a user cadence
US20090287103A1 (en) 2008-05-14 2009-11-19 Pacesetter, Inc. Systems and methods for monitoring patient activity and/or exercise and displaying information about the same
US20090292178A1 (en) 2008-05-21 2009-11-26 Qualcomm Incorporated System and method of monitoring users during an interactive activity
US8401468B2 (en) * 2008-05-28 2013-03-19 Sharp Laboratories Of America, Inc. Method and system for facilitating scheduling using a mobile device
JP5332313B2 (en) * 2008-05-29 2013-11-06 富士通株式会社 Mobile terminal and stride calculation method
US8781564B2 (en) 2008-06-02 2014-07-15 Polar Electro Oy Method and apparatus in connection with exercise
US7617615B1 (en) 2008-06-03 2009-11-17 Jonathan Martorell Belt or band-like exercise result measurement article with selectable display aspect
CN101428163B (en) * 2008-06-17 2010-10-20 李隆 Adjusting apparatus for states of examination, athletics and sports
US8996332B2 (en) * 2008-06-24 2015-03-31 Dp Technologies, Inc. Program setting adjustments based on activity identification
KR101054287B1 (en) * 2008-07-03 2011-08-08 삼성전자주식회사 Method for providing location information based service in mobile terminal and mobile terminal implementing same
US8021270B2 (en) 2008-07-03 2011-09-20 D Eredita Michael Online sporting system
US20100035726A1 (en) 2008-08-07 2010-02-11 John Fisher Cardio-fitness station with virtual-reality capability
US20100190607A1 (en) 2008-08-22 2010-07-29 Thinkfit, Llc Exercise device integrally incorporating digital capabilities for music, light, video and still imagery, heart rate measurement and caloric consumption
US20110195819A1 (en) 2008-08-22 2011-08-11 James Shaw Adaptive exercise equipment apparatus and method of use thereof
US20110165996A1 (en) 2008-08-22 2011-07-07 David Paulus Computer controlled exercise equipment apparatus and method of use thereof
JP2010088886A (en) 2008-10-03 2010-04-22 Adidas Ag Program products, methods, and systems for providing location-aware fitness monitoring services
US20100167876A1 (en) 2008-12-29 2010-07-01 Tzu Chi University Radio frequency identification based exercise behavior management system
CA2787623C (en) 2009-01-20 2018-07-31 Beyond Access, Inc. Personal portable secured network access system
US8467860B2 (en) * 2009-01-20 2013-06-18 Alexandria Salazar Portable system and method for monitoring of a heart and other body functions
US20100191454A1 (en) * 2009-01-29 2010-07-29 Sony Corporation Location based personal organizer
JP2010192012A (en) * 2009-02-16 2010-09-02 Fujifilm Corp Portable music reproducing device
US8062182B2 (en) 2009-02-24 2011-11-22 Tuffstuff Fitness Equipment, Inc. Exercise monitoring system
EP3357419A1 (en) 2009-02-25 2018-08-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
GB0903601D0 (en) 2009-03-03 2009-04-08 Bigger Than The Wheel Ltd Automated weightlifting spotting machine
JP5310194B2 (en) * 2009-03-31 2013-10-09 サクサ株式会社 Terminal location system and method
FI20095386A0 (en) * 2009-04-08 2009-04-08 Polar Electro Oy Portable device
CA2760158C (en) * 2009-04-26 2016-08-02 Nike International Ltd. Gps features and functionality in an athletic watch system
CN105107185B (en) * 2009-04-27 2018-12-14 耐克创新有限合伙公司 Equipment for generating drill program and music playlist
US8033959B2 (en) * 2009-05-18 2011-10-11 Adidas Ag Portable fitness monitoring systems, and applications thereof
US8438256B2 (en) * 2009-06-26 2013-05-07 Vmware, Inc. Migrating functionality in virtualized mobile devices
DE102009027365A1 (en) 2009-07-01 2011-01-05 Robert Bosch Gmbh Motion sensor and system for detecting a movement profile
CN101954171A (en) * 2009-07-16 2011-01-26 英业达股份有限公司 Body-building program real-time adjusting system and method thereof
US8622873B2 (en) 2009-07-27 2014-01-07 Rhoderick Euan MCGOWN Exercise equipment usage monitoring method and apparatus
KR101390957B1 (en) 2009-09-04 2014-05-02 나이키 인터내셔널 엘티디. Monitoring and tracking athletic activity
US11232671B1 (en) 2009-09-30 2022-01-25 Zynga Inc. Socially-based dynamic rewards in multiuser online games
EP2482722B1 (en) 2009-10-02 2016-12-07 Kiio Inc. Exercise devices with force sensors
US8902050B2 (en) * 2009-10-29 2014-12-02 Immersion Corporation Systems and methods for haptic augmentation of voice-to-text conversion
FI20096168A0 (en) * 2009-11-10 2009-11-10 Polar Electro Oy Many user profiles on a portable device
FI122770B (en) 2009-11-11 2012-06-29 Adfore Technologies Oy A mobile device controlled by context awareness
WO2011066252A2 (en) 2009-11-25 2011-06-03 The Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Systems and methods for providing an activity monitor and analyzer with voice direction for exercise
US8406085B2 (en) 2009-12-21 2013-03-26 Masami Sakita Swim device
US20110152696A1 (en) * 2009-12-22 2011-06-23 Hall Ryan Laboratories, Inc. Audible biofeedback heart rate monitor with virtual coach
US20110165998A1 (en) 2010-01-07 2011-07-07 Perception Digital Limited Method For Monitoring Exercise, And Apparatus And System Thereof
US20110179068A1 (en) 2010-01-21 2011-07-21 O'brien John Patrick Computer implemented process for creating an overall health wellness database for a plurality of patients
CA2731025C (en) 2010-02-05 2014-10-07 Fletcher Lu Mobile social fitness networked game
US20110275042A1 (en) 2010-02-22 2011-11-10 Warman David J Human-motion-training system
US8670709B2 (en) 2010-02-26 2014-03-11 Blackberry Limited Near-field communication (NFC) system providing mobile wireless communications device operations based upon timing and sequence of NFC sensor communication and related methods
US8521316B2 (en) * 2010-03-31 2013-08-27 Apple Inc. Coordinated group musical experience
US8893022B2 (en) 2010-04-01 2014-11-18 Microsoft Corporation Interactive and shared viewing experience
US20110261079A1 (en) 2010-04-21 2011-10-27 Apple Inc. Automatic adjustment of a user interface composition
US20110288381A1 (en) 2010-05-24 2011-11-24 Jesse Bartholomew System And Apparatus For Correlating Heart Rate To Exercise Parameters
FI20105796A0 (en) 2010-07-12 2010-07-12 Polar Electro Oy Analysis of a physiological condition for a cardio exercise
JP2012019811A (en) * 2010-07-12 2012-02-02 Rohm Co Ltd Biological data measuring device
US9392941B2 (en) * 2010-07-14 2016-07-19 Adidas Ag Fitness monitoring methods, systems, and program products, and applications thereof
US9532734B2 (en) 2010-08-09 2017-01-03 Nike, Inc. Monitoring fitness using a mobile device
US8983785B2 (en) * 2010-08-18 2015-03-17 Snap-On Incorporated System and method for simultaneous display of waveforms generated from input signals received at a data acquisition device
CN101934111A (en) * 2010-09-10 2011-01-05 李隆 Music chromatic light physical factor physical and mental health system based on computer
US9167991B2 (en) * 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US9089733B2 (en) 2010-10-21 2015-07-28 Benaaron, Llc Systems and methods for exercise in an interactive virtual environment
US9223936B2 (en) * 2010-11-24 2015-12-29 Nike, Inc. Fatigue indices and uses thereof
JP2012108801A (en) * 2010-11-18 2012-06-07 Toshiba Tec Corp Portable information terminal device and control program
US9541411B2 (en) * 2010-11-20 2017-01-10 Telenav, Inc. Navigation system with destination travel category extraction measurement capture mechanism and method of operation thereof
US20140124570A1 (en) 2010-11-23 2014-05-08 Michael Anderson Franklin System and method for authentication, usage, monitoring and management within a health care facility
US20120142429A1 (en) 2010-12-03 2012-06-07 Muller Marcus S Collaborative electronic game play employing player classification and aggregation
CN103403723B (en) * 2010-12-16 2016-09-28 耐克创新有限合伙公司 For the method and system that stimulus movement is movable
US8655345B2 (en) 2011-01-08 2014-02-18 Steven K. Gold Proximity-enabled remote control
US20120184871A1 (en) 2011-01-14 2012-07-19 Seungjin Jang Exercise monitor and method for monitoring exercise
US20120190502A1 (en) 2011-01-21 2012-07-26 David Paulus Adaptive exercise profile apparatus and method of use thereof
CN102654911A (en) * 2011-03-04 2012-09-05 北京网秦天下科技有限公司 Method and system for schedule management
JP2012189415A (en) 2011-03-10 2012-10-04 Clarion Co Ltd Portable navigation device
US20130090213A1 (en) 2011-03-25 2013-04-11 Regents Of The University Of California Exercise-Based Entertainment And Game Controller To Improve Health And Manage Obesity
JP5724602B2 (en) * 2011-05-10 2015-05-27 オンキヨー株式会社 Receiver
CN102198301B (en) * 2011-05-20 2012-12-12 哈尔滨工业大学 Music playing system based on body feature monitoring
US20120309321A1 (en) * 2011-05-31 2012-12-06 Broadcom Corporation Synchronized calibration for wireless communication devices
US20120308192A1 (en) 2011-05-31 2012-12-06 United Video Properties, Inc. Systems and methods for selecting videos for display to a player based on a duration of using exercise equipment
US20140089672A1 (en) * 2012-09-25 2014-03-27 Aliphcom Wearable device and method to generate biometric identifier for authentication using near-field communications
CA2839954A1 (en) 2011-06-20 2012-12-27 Yoram Romem Independent non-interfering wearable health monitoring and alert system
US8821351B2 (en) * 2011-08-02 2014-09-02 International Business Machines Corporation Routine-based management of exercise equipment access
US9367860B2 (en) * 2011-08-05 2016-06-14 Sean McKirdy Barcode generation and implementation method and system for processing information
US8514067B2 (en) 2011-08-16 2013-08-20 Elwha Llc Systematic distillation of status data relating to regimen compliance
US9819710B2 (en) * 2011-08-25 2017-11-14 Logitech Europe S.A. Easy sharing of wireless audio signals
JP5892305B2 (en) * 2011-08-26 2016-03-23 セイコーエプソン株式会社 Activity amount measuring device, activity amount measuring system, program and recording medium
CN202342650U (en) * 2011-09-15 2012-07-25 王彤 Synchronous-synthesis device of heart-rate audio and music
US20130080120A1 (en) * 2011-09-23 2013-03-28 Honeywell International Inc. Method for Optimal and Efficient Guard Tour Configuration Utilizing Building Information Model and Adjacency Information
CN103918344A (en) 2011-10-13 2014-07-09 英特尔公司 Detection of user activities by portable device
JP5418567B2 (en) * 2011-10-14 2014-02-19 オンキヨー株式会社 Receiver
EP2608090B1 (en) 2011-11-01 2019-03-13 Polar Electro Oy Performance intensity zones
US20130155251A1 (en) 2011-12-16 2013-06-20 Oren Moravchik Monitoring system accomodating multiple imagers
US20130178960A1 (en) 2012-01-10 2013-07-11 University Of Washington Through Its Center For Commercialization Systems and methods for remote monitoring of exercise performance metrics
US20130196821A1 (en) * 2012-01-31 2013-08-01 Icon Health & Fitness, Inc. Systems and Methods to Generate a Customized Workout Routine
US20130218309A1 (en) 2012-02-03 2013-08-22 Frank Napolitano Apparatus, system and method for improving user fitness by tracking activity time
JP2013169611A (en) * 2012-02-20 2013-09-02 Vstone Kk Robot system, and robot
US8947239B1 (en) * 2012-03-05 2015-02-03 Fitbit, Inc. Near field communication system, and method of operating same
US9305141B2 (en) * 2012-03-13 2016-04-05 Technogym S.P.A. Method, system and program product for identifying a user on an exercise equipment
US20130268101A1 (en) * 2012-04-09 2013-10-10 Icon Health & Fitness, Inc. Exercise Device Audio Cue System
US10617351B2 (en) * 2012-04-23 2020-04-14 Sackett Solutions & Innovations Llc Cognitive biometric systems to monitor emotions and stress
US8655591B2 (en) * 2012-05-09 2014-02-18 Mitac International Corp. Method of creating varied exercise routes for a user
JP2013238709A (en) 2012-05-15 2013-11-28 Sony Corp Optical laminated body, optical element, and projection device
US9183822B2 (en) * 2012-05-23 2015-11-10 Google Inc. Music selection and adaptation for exercising
US9222787B2 (en) * 2012-06-05 2015-12-29 Apple Inc. System and method for acquiring map portions based on expected signal strength of route segments
US9005129B2 (en) * 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US8854207B2 (en) 2012-07-02 2014-10-07 Donald S. Williams Mobile lock with retractable cable
US9909875B2 (en) * 2012-09-11 2018-03-06 Nokia Technologies Oy Method and apparatus for providing alternate route recommendations
US8744605B2 (en) * 2012-09-14 2014-06-03 Cycling & Health Tech Industry R & D Center Handheld device workout coach system
US20140100835A1 (en) * 2012-10-04 2014-04-10 Futurewei Technologies, Inc. User Behavior Modeling for Intelligent Mobile Companions
US10866100B2 (en) * 2012-10-15 2020-12-15 Kamino Labs, Inc. Method of providing urban hiking trails
CN202802459U (en) * 2012-10-25 2013-03-20 黑龙江工程学院 Musical device used for psychological regulation
US9381399B2 (en) 2013-03-04 2016-07-05 Cellco Partnership Exercise recordation method and system
US9510193B2 (en) * 2013-03-15 2016-11-29 Qualcomm Incorporated Wireless networking-enabled personal identification system
US20140316701A1 (en) * 2013-04-18 2014-10-23 International Business Machines Corporation Control system for indicating if people can reach locations that satisfy a predetermined set of conditions and requirements
US9454913B2 (en) * 2013-06-17 2016-09-27 Polar Electro Oy Simulator tool for physical exercise device
US20150081067A1 (en) 2013-09-17 2015-03-19 Sony Corporation Synchronized exercise buddy headphones

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090097672A1 (en) * 2004-11-12 2009-04-16 Koninklijke Philips Electronics, N.V. Apparatus and method for sharing contents via headphone set
US20130045681A1 (en) * 2005-05-12 2013-02-21 Robin Dua Wireless media system and player and method of operation
US20100088023A1 (en) * 2008-10-03 2010-04-08 Adidas Ag Program Products, Methods, and Systems for Providing Location-Aware Fitness Monitoring Services
US20120214644A1 (en) * 2011-02-22 2012-08-23 Yamaha Corporation Notification signal control apparatus and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9668290B1 (en) 2016-05-24 2017-05-30 Ronald Snagg Wireless communication headset system
CN107270887A (en) * 2017-07-13 2017-10-20 青岛海通胜行智能科技有限公司 A kind of alignment sensor being combined based on wireless and magnetic field induction technology and method
US10348878B2 (en) 2017-12-12 2019-07-09 Ronald Snagg Wireless communication headset system
US11013050B2 (en) 2019-10-01 2021-05-18 Ronald Snagg Wireless communication headset system

Also Published As

Publication number Publication date
US9224311B2 (en) 2015-12-29
KR101788485B1 (en) 2017-10-19
US20150081209A1 (en) 2015-03-19
US20150081066A1 (en) 2015-03-19
JP2015058364A (en) 2015-03-30
CN104436615B (en) 2018-09-04
CN105393637A (en) 2016-03-09
EP3020253A1 (en) 2016-05-18
KR101640667B1 (en) 2016-07-18
CN104460980A (en) 2015-03-25
KR20150032170A (en) 2015-03-25
CN108428473B (en) 2022-02-22
US20150079563A1 (en) 2015-03-19
JP5896344B2 (en) 2016-03-30
KR20150032182A (en) 2015-03-25
KR20150032184A (en) 2015-03-25
US20150082408A1 (en) 2015-03-19
CN104460980B (en) 2018-03-30
CN104460981A (en) 2015-03-25
US9142141B2 (en) 2015-09-22
CN104460982A (en) 2015-03-25
US8795138B1 (en) 2014-08-05
US20150079562A1 (en) 2015-03-19
CN104469585A (en) 2015-03-25
KR20160023818A (en) 2016-03-03
CA2917927A1 (en) 2015-03-26
JP2016533237A (en) 2016-10-27
JP2015058363A (en) 2015-03-30
US20150081056A1 (en) 2015-03-19
CN108428473A (en) 2018-08-21
EP3020253A4 (en) 2017-04-26
US20150082167A1 (en) 2015-03-19
KR20160105373A (en) 2016-09-06
JP2015061318A (en) 2015-03-30
CN104436615A (en) 2015-03-25
KR20150032183A (en) 2015-03-25
WO2015041970A1 (en) 2015-03-26
JP2015059935A (en) 2015-03-30
JP2015058362A (en) 2015-03-30
KR20150032169A (en) 2015-03-25
US20150081210A1 (en) 2015-03-19
WO2015041971A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
US20150081067A1 (en) Synchronized exercise buddy headphones
US20170333754A1 (en) Multi-sport biometric feedback device, system, and method for adaptive coaching
US9269119B2 (en) Devices and methods for health tracking and providing information for improving health
US11779807B2 (en) Information processing system
US20180124497A1 (en) Augmented Reality Sharing for Wearable Devices
US20150258415A1 (en) Physiological rate coaching by modifying media content based on sensor data
TW201923758A (en) Audio activity tracking and summaries
WO2021218940A1 (en) Workout class recommendation method and apparatus
CN113655935A (en) User determination method, electronic device and computer readable storage medium
US20150150032A1 (en) Computer ecosystem with automatic "like" tagging
JP2020024680A (en) Real-time augmented reality activity feedback
US20150314165A1 (en) Using pressure signal from racket to advise player
WO2023001165A1 (en) Exercise guidance method and related apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: SONY CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YEH, SABRINA TAI-CHEN;FRIEDLANDER, STEVEN;YOUNG, DAVID ANDREW;REEL/FRAME:031287/0036

Effective date: 20130925

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION