US20150122715A1 - Fluid control manifold for membrane filtration system - Google Patents

Fluid control manifold for membrane filtration system Download PDF

Info

Publication number
US20150122715A1
US20150122715A1 US14/537,576 US201414537576A US2015122715A1 US 20150122715 A1 US20150122715 A1 US 20150122715A1 US 201414537576 A US201414537576 A US 201414537576A US 2015122715 A1 US2015122715 A1 US 2015122715A1
Authority
US
United States
Prior art keywords
passageway
feed
outlet
fluid
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/537,576
Other versions
US9630147B2 (en
Inventor
Michael Collignon
Bruce Gregory Biltoft
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evoqua Water Technologies LLC
Original Assignee
Evoqua Water Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2010904334A external-priority patent/AU2010904334A0/en
Application filed by Evoqua Water Technologies LLC filed Critical Evoqua Water Technologies LLC
Priority to US14/537,576 priority Critical patent/US9630147B2/en
Publication of US20150122715A1 publication Critical patent/US20150122715A1/en
Application granted granted Critical
Publication of US9630147B2 publication Critical patent/US9630147B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/034Lumen open in more than two directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • B01D63/046Hollow fibre modules comprising multiple hollow fibre assemblies in separate housings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/10Specific supply elements
    • B01D2313/105Supply manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/12Specific discharge elements
    • B01D2313/125Discharge manifolds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/21Specific headers, end caps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/26Specific gas distributors or gas intakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/54Modularity of membrane module elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/04Elements in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2317/00Membrane module arrangements within a plant or an apparatus
    • B01D2317/06Use of membrane modules of the same kind
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/18Use of gases
    • B01D2321/185Aeration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems

Definitions

  • aspects and embodiments of the present invention relate to membrane filtration systems and, more particularly, to a manifold arrangement for such systems that is used to communicate fluids to and/or from the membranes elements.
  • a hollow fiber filtration module may comprise an elongate tubular casing enclosing a bundle of hollow fiber membranes.
  • a first header which has a feed passageway therethrough.
  • the feed passage is in fluid communication with the interior of the casing and hence the exterior of the fiber membranes.
  • a second header which has a treated feed passageway therethrough in communication with the interior of the casing and the exterior of the fiber membranes.
  • At least one of the headers may also be provided with a gas conveying passageway in fluid communication with the interior of the casing and the exterior of the fiber membranes.
  • the passageways may be formed in off-set portions of the headers.
  • the headers may have planar end faces.
  • a plurality of such modules may be joined together without interconnecting manifolds or pipe work to form a row of filter modules.
  • a number of such rows of filter modules may be inter-connected to define a bank of filter modules.
  • a manifold for a filtration module assembly comprising a body, a first fluid passageway through the body, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway adapted to selectively provide a flow of gas to a passageway of the filter module and means for introducing a pressurized gas into the first fluid passageway.
  • a manifold for a filter module assembly for attachment to first and second headers in fluid communication with filtering membranes.
  • the manifold comprises a body having opposite ends adapted to connect to a substantially similar adjacent manifold or manifolds, a first fluid passageway through the body providing communication from one end of the body to the other so as to permit fluid connection with adjacent manifolds, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway adapted to selectively provide a flow of gas to a passageway of the filter module, and means for introducing a pressurized gas into the first fluid passageway.
  • the second and third passageways comprise a single passageway.
  • the first passageway fluidly communicates with opposed ends of the header and with a third face of the header which is adapted to communicate with the filter module assembly.
  • a method of controlling a flow of gas to a membrane filtration module comprises providing a manifold for attachment to a passageway of the membrane filtration module, the manifold comprising a body, a first fluid passageway through the body for flowing a feed liquid to the module, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway, and introducing a pressurized gas into the first fluid passageway to displace feed liquid within the first fluid passageway to a level at or below the first vertically spaced opening resulting in a flow of gas through the second passageway into the passageway of the filtration module.
  • the feed liquid is displaced through the second vertically spaced opening and the third fluid passageway.
  • a filter module assembly comprising a body defining a filter chamber, a filter media in the chamber dividing the chamber into a feed side and a filtrate side, a feed inlet to the chamber and a filtrate outlet from the chamber, and a header in fluid communication with the chamber,
  • the header includes a feed passageway extending therethrough having an inlet at one end for receiving feed to be treated, an outlet at the other end adapted to be connected to the inlet of the feed passageway of an adjacent header and a discharge port for delivering feed to the chamber, and a gas distribution passageway extending therethrough and lying within the feed passageway.
  • the gas distribution passageway includes a receiving port for receiving gas from a fluid control manifold according the first aspect of the invention, an outlet at the one end adapted to be connected to an inlet of the gas distribution passageway of an adjacent header, and one or more openings for discharging gas into the feed passageway.
  • a filter module assembly comprises an elongate feed containing vessel, a bundle of hollow, porous, fiber membranes within the vessel, a potting head at one end of the vessel in which one end of the bundle of fibers is mounted whereby the potting head prevents flow of fluid out of the one end of the bundle of fibers other than through open ends of the lumens of the fibers, means for closing the other end of the vessel, and means for preventing flow of feed into the other end of the lumens of the bundle of fibers, and a header at the one end of the vessel.
  • the header includes a feed passageway extending therethrough having an inlet at one end for receiving feed to be treated, an outlet at the other end adapted to be connected to the inlet of the feed passageway of an adjacent header and a discharge port for delivering feed to the vessel, a filtrate passageway extending therethrough and lying within the feed passageway, the filtrate passageway having a receiving port for receiving filtrate from the fiber lumens, an outlet at one end for discharging filtrate and an inlet at the other end adapted to be connected to the outlet of the filtrate passageway of an adjacent first header, and a gas distribution passageway extending therethrough and lying within the feed passageway.
  • the gas distribution passageway includes a receiving port for receiving gas from a fluid control manifold according the first aspect of the invention, an outlet at the one end adapted to be connected to an inlet of the gas distribution passageway of an adjacent header and one or more openings for discharging gas into the feed passageway.
  • the module assembly is adapted for crossflow filtration and as such the means closing the other end of the casing includes a second header at the other end of the vessel and the means preventing flow of feed into the other end of the lumens is replaced by a second potting head in which the other end of the bundle of fibers is mounted whereby the second potting head permits flow of feed out of the other end of the vessel and permits filtrate to be discharged through the fiber lumens at the other end of the bundle of fibers to the second header.
  • the filter media comprises porous hollow membranes and in some embodiments, the membranes comprise hollow fiber membranes.
  • the vessel operates as a pressurized vessel during the filtration process.
  • a manifold for attachment to a header of a filter module assembly.
  • the manifold comprises an inlet in fluid communication with a source of feed liquid, a first outlet in fluid communication with the header, a first fluid passageway in fluid communication with the inlet, a source of gas, and the first outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second outlet vertically displaced from the first outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
  • the second fluid passageway is in fluid communication with an aeration system of the filter module assembly.
  • the first fluid passageway is in fluid communication with a feed inlet of the filter module assembly.
  • the manifold further comprises a control port formed in a wall of the first fluid passageway, the control port including an open lower portion defining the first outlet and a control port wall defining the second outlet.
  • the second fluid passageway comprises an open-ended conduit extending generally downward from an upper wall of the first fluid passageway, a lower end of the open-ended conduit defining the first outlet, the second outlet being defined in a wall of the open-ended conduit.
  • second outlet comprises at least one vertically extending aperture.
  • the vertically extending aperture comprises an open-ended slot contiguous with the lower end of the tube.
  • the manifold further includes a plurality of output conduits, the open-ended conduit being vertically partitioned to form a plurality of passageways within the open-ended conduit, each of the plurality of passageways being in fluid communication with a respective output conduit.
  • the manifold comprises at least two of the open-ended conduits.
  • a method of controlling a flow of gas to a membrane filtration module comprises providing a manifold for attachment to a header of the membrane filtration module.
  • the manifold includes an inlet in fluid communication with a source of feed liquid, a first outlet in fluid communication with the header, a first fluid passageway in fluid communication with the inlet, a source of gas, and the first outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second outlet vertically displaced from the first outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
  • the method further comprises introducing feed liquid into the first fluid passageway, displacing the feed liquid within the first fluid passageway to a level at or below the second outlet and above the first outlet by introducing a pressurized gas into the first fluid passageway, and flowing the pressurized gas through the first outlet and into the filtration module.
  • the method further comprises maintaining the level of the feed liquid at a level at or below the second outlet and above the first outlet while flowing the pressurized gas into the membrane filtration module.
  • the method further comprises fluidly connecting first fluid passageways of a plurality of manifolds.
  • the modular filtration system comprises a filtration module including, a chamber having a feed inlet and a filtrate outlet, a filter media in the chamber dividing the chamber into a feed side and a filtrate side, a first header in fluid communication with the chamber, and a first manifold.
  • the first manifold includes a manifold inlet in fluid communication with a source of feed liquid, a first manifold outlet in fluid communication with the first header, a first fluid passageway in fluid communication with the manifold inlet, a source of gas, and the first manifold outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second manifold outlet vertically displaced from the first manifold outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
  • the first header includes a first feed passageway in fluid communication with the first manifold outlet and extending through the first header, the first feed passageway having a feed inlet, a feed outlet, and a discharge port in fluid communication with the chamber, and a first gas distribution passageway in fluid communication with the second manifold outlet and extending through the first header and positioned within the first feed passageway, the first gas distribution passageway having a receiving port, a gas outlet, and one or more openings in fluid communication with the first feed passageway.
  • the filter media comprises hollow fiber membranes.
  • the first header further includes a first filtrate passageway extending through the first header and positioned within the first feed passageway, the first filtrate passageway having a receiving port in fluid communication with lumens of the fiber membranes, and a filtrate outlet.
  • the modular filtration system further comprises at least one additional manifold having an inlet in fluid communication with the first fluid passageway.
  • the modular filtration system further comprises at least one additional header having a filtrate passageway in fluid communication with the filtrate outlet of the first filtrate passageway.
  • the gas outlet of the first gas distribution passageway is in fluid communication with an inlet of a gas distribution passageway of the at least one additional header.
  • the feed outlet of the first feed passageway is in fluid communication with an inlet of a feed passageway of the at least one additional header.
  • FIG. 1 is an exploded perspective view of a filter module assembly for use with one embodiment of the invention
  • FIG. 2 is a partly broken away sectional view of the top portion of the module of FIG. 1 ;
  • FIG. 3 is partly exploded perspective view of a row of filter modules as shown in FIG. 1 ;
  • FIG. 4 is partly exploded perspective view of a bank of filter modules as shown in FIG. 3 ;
  • FIG. 5 is an isometric side view of a feed control manifold according to one embodiment of the present invention.
  • FIG. 6 is a simplified plan view of a bank of filter modules according to one embodiment of the invention.
  • FIG. 7 is a simplified partial end elevational view of a lower portion of the bank of filter modules of FIG. 6 ;
  • FIG. 8 is a simplified partial side elevational view of a lower portion of the bank of filter modules of FIG. 6 ;
  • FIG. 9 is a simplified broken side sectional view of the lower portion of a row of filter modules according to the embodiment of the present invention shown in FIG. 6 ;
  • FIG. 10 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules in filtration mode;
  • FIG. 11 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules at the beginning of an aeration or gas scouring mode;
  • FIG. 12 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules in an aeration or gas scouring mode;
  • FIG. 13 is perspective view of a filtration control manifold according to another embodiment of the invention.
  • FIG. 14 is an end elevational view of the filtration control manifold of FIG. 13 ;
  • FIG. 15 is a side elevational view of the filtration control manifold of FIG. 13 ;
  • FIG. 16 is sectional end elevational view taken along line A-A of FIG. 15 ;
  • FIG. 17 is perspective view of a filtration control manifold according to another embodiment of the invention.
  • FIG. 18 is an end elevational view of the filtration control manifold of FIG. 17 ;
  • FIG. 19 is a side elevational view of the filtration control manifold of FIG. 17 ;
  • FIG. 20 is sectional end elevational view taken along line A-A of FIG. 19 ;
  • FIG. 21 is perspective view of a filtration control manifold according to another embodiment of the invention.
  • FIG. 22 is an end elevational view of the filtration control manifold of FIG. 21 ;
  • FIG. 23 is a side elevational view of the filtration control manifold of FIG. 21 ;
  • FIG. 24 is sectional end elevational view taken along line A-A of FIG. 23 .
  • filter module assemblies composed of filter membrane cartridge assemblies having opposed, symmetrical potting heads attached to either end, although filter membrane cartridges having dissimilar potting heads are also contemplated.
  • aspects and embodiments of the present invention relate to filter module assemblies which utilize headers adapted to conduct fluids in the form of feed, filtrate, and gas to other headers, for example, adjacent like headers, and into and out of the filter cartridge assembly to which they are connected.
  • aspects and embodiments of the present invention relate to membrane filters whose filter modules comprise elongate bundles of permeable hollow fiber membranes wherein feed to be filtered is applied to the outside of the bundle of fiber membranes and filtrate or permeate is withdrawn from the fiber lumens.
  • a fluid control module alternatively referred to herein as a manifold, fluidly communicates a source of feed and a source of aeration gas to headers of one or more of the filtration modules in the bank.
  • the fluid control module and/or filtration module headers may include integrated feed, filtrate, and gas conduits.
  • the fluid control module may be configured to automatically deliver gas to the filtration module headers upon introduction of gas into a feed conduit included within a body of the fluid control module.
  • FIG. 1 An embodiment of a filter cartridge assembly 10 in accordance with the present invention is shown in FIG. 1 .
  • the filter cartridge assembly 10 includes a tubular casing 11 that encloses a bundle of hollow, porous, fibers.
  • the bundle of fibers forms the working part of the filter cartridge.
  • Each fiber may have an average pore size of about 0.2 micron, a wall thickness of about 200 microns and a lumen diameter of about 200 microns.
  • the upper ends 14 of the fibers are embedded in a potting head 12 , that may include, for example a polyurethane plug, that is cast into an end-piece 15 .
  • the end-piece 15 Around the periphery of the upper end of the end-piece 15 there is a pair of grooves 16 and 17 for receiving O-rings 18 and 19 respectively.
  • the lower end of the end-piece 15 receives a perforated cylindrical screen 20 which encloses the fibers.
  • the upper portion 23 of the tubular casing 11 includes an outer sleeve 21 including a pair of grooves 25 and 26 which support O-rings 27 and 28 respectively.
  • a filtrate cup or housing 31 having a neck or outlet portion 32 and a connecting flange 33 , the inner face of which seals against the O-rings 18 and 19 .
  • a pair of annular grooves 37 and 38 which support O-rings 39 and 40 .
  • the filtrate cup or housing 31 provides an outlet path for the filtrate which is discharged from the open ends 14 of the fibers embedded in the plug or potting head 12 .
  • the header 41 of the filtration cartridge 10 is adapted to permit the independent passage of at least two fluids.
  • passage of feed liquid and filtrate may be provided for.
  • passage of feed liquid and gas may be provided for.
  • filtrate liquid may also be passed through the lower header.
  • the header 41 is substantially symmetrical about planes which have the longitudinal axis of the filter cartridge assembly lying upon them, particularly the plane which passes at right angles to the predominant direction of flow of both feed and filtrate within the header 41 and the plane which is at right angles to that plane.
  • the symmetrical arrangement allows a greater packing density of modules than would otherwise be the case.
  • the symmetrical arrangement is been achieved by enclosing the filtrate discharge passageway 43 and gas distribution passageway 124 (illustrated in FIG. 9 ) entirely within the feedstock inlet passageway 42 within the header 41 .
  • Each header 41 can be abutted against a like header so as to create a row of headers to which a row of membrane cartridges can be connected.
  • a corresponding row of like headers 41 is attached to the opposite end of each module so as to form a double ended, symmetrical row of modules with the capability of passing both feed and filtrate into and out of each header at each end of each module.
  • the header 41 has a large feedstock inlet passageway 42 therethrough and a smaller filtrate discharge passageway 43 therethrough.
  • the header 41 has planar side faces and at one side of the header 41 there are grooves 44 and 45 for receiving O-rings around the ends of the passageways 42 and 43 .
  • At the opposite side of the header 41 there are annular bevelled projections 44 a and 44 b adapted to engage the O-rings of an adjacent header 41 .
  • the header 41 has a pair of downwardly extending connection flanges 46 and 47 which respectively define feedstock passageway 48 providing communication between the feedstock passageways 42 and filtrate passageway 49 providing communication between the outlet 32 of the filtrate sleeve 31 and the filtrate discharge passageway 43 .
  • the base of the flange 47 sealingly engages the O-rings 39 and 40 around the neck portion of the filtrate sleeve 31 and at the base of the flange 46 there are annular grooves 50 and 51 which support O-rings 52 and 53 respectively.
  • the outer connecting sleeve 56 constitutes a boundary for the feedstock passageway 48 and at its lower end there is a neck portion 57 having an inwardly directed shoulder 58 which engages the lower edge of outer connecting sleeve 56 on the casing 11 .
  • Rotation of the outer connecting sleeve 56 to achieve threaded engagement with, or disengagement from, the flange 46 is facilitated by the presence of profiled regions 70 and 71 around the respective perimeters of the outer connecting sleeve 56 , as indicated in FIG. 2 .
  • region 71 has a gear-tooth profile, suitable for engagement with a motorized drive
  • region 70 has a castellated profile, suitable for alternative engagement with a C-spanner.
  • An internal shoulder region 67 on the inner surface of outer connecting sleeve 56 engages with an annular clip 68 which fits around the end-piece 15 at the end of the perforated screen 20 and butts against the end of the filtrate cup 31 such that, when the outer connecting sleeve 56 is fully engaged with the flange 46 , the minor end of the filtrate cup 31 is fully inserted within the internal flange 47 of the header 41 .
  • a shut-off passageway 60 in the header 41 provides access from the exterior of the header 41 to the interior of the filtrate discharge passageway 43 and houses a shut-off valve 63 .
  • the top portion 64 of the shut-off valve 63 has an aperture for receiving an adjustment tool (not shown) and for manual activation of the valve.
  • Adjacent the central portion of the shut-off valve 63 is a seal 65 which provides a seal between the shut-off valve 63 and the shut-off passageway 60 .
  • shut-off valve 63 At the lower end of the shut-off valve 63 there is a seal 69 .
  • the seal 69 closes the port 72 to the filtrate discharge passageway 43 to prevent flow of filtrate from the cartridge 10 to the header 41 . It is to be noted, however, that closure of the port 72 does not interfere with the flow of filtrate from and to adjacent headers through the filtrate passageway 43 .
  • a plug 73 on the top of header 41 closes off the shut-off passageway 60 .
  • the valve 63 is so designed that it can be readily operated without resort to any dismantling of component parts of the filter.
  • the plug 73 cannot be replaced when the valve is in the “up” position. This provides visual indication, easily ascertainable at a distance, that the valve is shut off implying that the cartridge which it feeds is disconnected from feed.
  • the valve 63 is moved from the open position to the closed position by firstly rotating the shaft of the valve 63 through 90°, thereby allowing rectangular block component 150 (mounted on the shaft of the valve 63 ) to pass through a corresponding rectangular aperture 151 when the shaft of the valve 63 is lifted. Once the shaft of the valve is in the fully up position the shaft is rotated back through 90° once more so that inadvertent lowering of the shaft is prevented by the interaction of blocking piece 150 with the top of shut-off passageway 60 . The shut-off valve is opened by a reversal of the procedure.
  • the bottom of the cartridge 10 is similar to the top in that it has a header 41 and an outer connecting sleeve 56 .
  • the filter cartridge 10 could be simply modified to provide for a dead-end mode of operation.
  • the bottom of the cartridge 10 also differs in that it includes a header 41 having further internal gas distribution passageways 124 .
  • FIG. 3 shows a row of filter cartridges 10 connected together in parallel and having a fluid control manifold 101 configured as a feed inlet manifold, fluid control manifold 100 configured as a concentrated feed outlet manifold and fluid control manifolds 102 configured as filtrate manifolds.
  • the row of cartridges 10 are connected together by tie bars 103 which pass through apertures 104 in the header 41 .
  • Sample or dosing ports 105 may be provided in the manifolds 100 , 101 and 102 .
  • FIG. 4 shows a plurality of rows of cartridges connected together through adjacent manifolds 100 , 101 and 102 to form a bank of filter modules which are held together by tie bars 106 which pass through apertures 107 in the manifolds 100 , 101 and 102 .
  • manifolds and/or headers may also or additionally be utilized.
  • the manifolds and/or headers may be provided with clips, intersecting flanges, pressure fit couplings, or screw-like threading adapted to couple to complementary threading on adjacent modules and/or headers.
  • the fluid control manifolds 100 and 101 illustrated are of the same shape and configuration. In alternate embodiments, the different manifolds may be shaped or configured differently as desired.
  • the manifolds 100 and 101 include a body portion 110 having end faces 111 and 112 , which in some embodiments may be planar, and which facilitate connection to an adjacent similar manifold.
  • the body portion 110 defines a feed passageway 113 which extends through the body from end face 111 to end face 112 . Either or both of the end faces 111 , 112 may include a feed inlet into the feed passageway 113 .
  • annular recess for receiving an O-ring and around the opening to the passageway 113 and end face 111 there is a bevelled annular projection (not shown) adapted to engage an O-ring of an adjacent manifold.
  • Embodiments of fluid control manifolds in accordance with the present invention comprise a block shaped structure having one pair of opposed, generally parallel faces bridging a large, generally circular internal passageway.
  • the structure of the manifolds includes two additional passageways adapted to communicate between the main passageway and a third face of the manifolds. These two passageways have two important characteristics: firstly one of the additional passageways may be enclosed entirely within the large, generally circular internal passageway, and secondly, in each manifold one of the two additional passageways is blanked off from the main passageway. Which of the two additional passageways is to be blocked off is determined by whether the manifold is to be used as a feed inlet or a feed outlet manifold.
  • passageway within a passageway concept allows these manifolds to be used to connect two rows of headers 41 for the purpose of paralleling feed into rows of cartridges and paralleling the removal of filtrate from rows of modules and also for the purpose of connecting such groups of interconnected rows in series with each other.
  • filtrate may be removed through the additional passageways enclosed entirely within the large, generally circular internal passageway.
  • the fluid control manifold 101 comprises a body including side walls defining an open ended feed passageway 113 .
  • a pair of upper openings 119 are provided though it will appreciated the number and type of openings is not narrowly critical.
  • a second passageway 121 extending through and within the feed passageway 113 may be optionally provided when the manifold is also used to conduct permeate from the headers 41 .
  • FIG. 6 shows a number of fluid control manifolds 101 connected to the lower headers 41 of a bank of modules 10 .
  • the fluid control manifolds are connected to adjacent like manifolds to form a row of interconnected manifolds extending along at least one side of the module bank.
  • Each manifold 101 is further connected to the end of a row of interconnected headers 41 to form the bank structure shown in FIG. 6 .
  • At least one terminal end of the row of interconnected fluid control manifolds 101 is provided with a T-piece device 101 ′ which serves to provide fluid communication with a source of feed and a source of gas, typically pressurized air.
  • the T-piece 101 ′ has an upper vertically extending inlet 120 for the introduction of gas from the source of gas and a side, horizontally extending inlet 130 for the introduction of feed liquid.
  • the T-piece 101 ′ is typically connected to the terminal fluid control manifold in the row of interconnected manifolds though it will be appreciated that feed and gas can be introduced at any point along the row of manifolds.
  • FIG. 9 there is shown a sectional view taken through the fluid control manifolds 101 , 102 , and headers 41 of an embodiment of a filtration system in accordance with the present invention.
  • the feed passageway 113 of the fluid control manifolds 101 , 102 is connected to a source of feed liquid and the lower opening 118 is in fluid communication with a transverse branch passageway 122 which leads to face 117 of the manifold 101 to provide feed communication between the feed passageway 113 and the feed passageway 42 of the header 41 .
  • transverse branch passageway 123 leads from the upper opening 119 to face 117 of the manifold to provide fluid communication to the gas distribution passageway 124 of header 41 .
  • the terminating portions of the gas distribution passageway 124 are each fluidly connected to the end 125 of the branch passageway 123 of the fluid control manifold 101 .
  • the gas distribution passageway 124 in this embodiment, is terminated in the final manifold 102 with a blind-end connection 128 .
  • the gas distribution passageway 124 of each header 41 is provided with one or more openings 127 in its wall, typically the lower wall, to distribute gas into feed passageway 42 of the header 41 . These openings may be in the form of holes, slits, nozzles, or other structures known in the art.
  • the openings in some embodiments be of different sizes, for example increasing in size with distance from the fluid control manifold, to compensate for pressure drop along the gas distribution passageway so that an equal amount of gas is provided to each filtration manifold in a row.
  • FIG. 10 shows the manifold in the normal feed supply mode during filtration with the feed passageway 113 and feed supply passageways 42 of the header 41 being full of feed liquid.
  • the branch passageway 123 and the gas distribution passageway 124 are also filled with feed liquid. Feed flows through the feed passageway 113 , lower opening 118 , and branch passageway 122 into the feed supply passageway 42 and around the membranes of each module 10 .
  • the feed is supplied to the feed supply passageway through the T-piece 101 ′ provided at least at one end of a row of interconnected fluid control manifolds 101 as shown in FIGS. 6 and 8 .
  • gas for example, air
  • the means of introducing gas is not narrowly critical but is typically done by providing pressurized gas through the T-piece 101 ′ connected to the end of a row of the manifolds 101 as shown in FIG. 8 .
  • the introduced gas displaces the feed liquid within the feed supply passageway 113 until the level of liquid within the passageway 113 moves to a level at or below the level of the upper opening 119 .
  • gas begins to flow through branch passageway 123 and gas distribution passageway 124 and out through openings 127 to produce gas bubbles in the feed liquid in the feed supply passageways 42 of the header 41 as shown in FIG. 12 .
  • the liquid is initially displaced through both upper and lower opening 119 and 118 respectively, with the majority of the flow being through the lower opening 118 .
  • the lower opening 118 is provided with one or bleed openings 126 at, for example, an upper portion thereof, to bleed off any excess gas and prevent further displacement of feed liquid.
  • the type of bleed opening used is not narrowly critical but may include slots, grooves or indents.
  • the upper openings 119 and/or gas distribution passageways 124 are sized sufficiently large to facilitate the production of an even gas distribution amongst the modules fed by the manifolds while still allowing feed flow through the feed passageways 113 and/or 42 . Spacing between upper openings 119 and lower openings 118 and the relative positioning of these openings within the feed passageways 113 may be determined based at least in part upon the gas pressure to be used to displace feed liquid within the feed passageways 113 .
  • FIGS. 13 to 16 show another embodiment of a fluid control manifold in accordance with the present invention.
  • the feed liquid and scouring gas are fed directly into a base of one or more membrane modules from the fluid control manifold 130 .
  • the body of the fluid control manifold includes sidewalls defining the feed passageway 131 and one or more control ports 132 . Fluid communication between the membrane module (not shown) and the feed passageway 131 of the fluid control manifold 130 is provided via the control port 132 .
  • the control port 132 is generally circular in cross-section with its upper hemisphere blocked by a radially extending partition 133 and its lower portion 133 ′ open to provide an outlet to allow liquid flow therethrough.
  • the partition 133 is provided with an outlet in the form of aperture 134 , which may comprise, for example, a vertically extending slot.
  • the form of aperture 134 is not narrowly critical and a hole or series of holes may also or additionally be used.
  • the aperture 134 is typically spaced vertically from the base 135 of the partition but again this is not critical.
  • the aperture 134 may be an open ended slot with an open lower end joining the open lower portion 133 ′ of the control port.
  • a pair of control ports 132 is provided at opposed locations in the side wall of the feed passageway 131 .
  • This embodiment operates in a similar manner to the other embodiments described above.
  • feed liquid flows through the feed passageway 131 of the fluid control manifold 130 and then through the lower open portion 133 ′ of the control port 132 and into the base of the membrane modules attached thereto (not shown). From the base of the modules the feed liquid flows along the membranes, for example, through openings in the lower potting heads of the modules (not shown).
  • the liquid within the feed passageway 131 is displaced downwardly by the introduction of gas into the feed passageway 131 until the gas/liquid interface reaches the level of the aperture 134 .
  • the gas then passes through the aperture 134 and into the bases of the membrane modules (not shown).
  • the use of a slot formation or a vertically extending group of holes for the aperture 134 allows for regulation of the gas flow by increasing the gas flow through the aperture 134 as more of the liquid is displaced within the feed passageway 131 . This, in turn, reduces the displacement of liquid by allowing more gas to escape through the aperture 134 . This regulation prevents the control port 132 from becoming completely filled with gas.
  • FIGS. 17 to 20 show another embodiment of a fluid control manifold in accordance with the present invention.
  • the body of the fluid control manifold includes sidewalls defining the feed passageway 131 and a control port in the form of a conduit 138 , for example, a pipe or tube which extends generally vertically downward in a radial direction from an upper wall of the feed passageway 131 and into the feed passageway 131 .
  • Feed liquid and gas are fed into one or more, for example, a pair of output conduits 136 and 137 provided above the fluid control manifold 130 .
  • Output conduits 136 and 137 are adapted to be connected to the base of membrane modules (not shown).
  • the output conduits 136 , 137 are connected in fluid communication with the feed passageway 131 of the fluid control manifold 130 by the conduit 138 .
  • the conduit 138 is open at its lower distal end 139 to allow inflow of feed liquid from the feed passageway 131 .
  • the conduit 138 is divided into a plurality, for example, a pair of passages 140 , 141 by one or more longitudinally extending partitions 142 located along the diameter of the conduit 138 and extending upward from the lower distal end 139 .
  • the conduit passes 138 through the upper wall 143 of the feed passageway 131 and is provided with one or more apertures, for example, a pair of openings 144 , 145 in its side wall which provide fluid communication between the passages 140 and 141 and respective output conduits 136 and 137 .
  • the number of apertures in the conduit 138 may correspond to the number of passages formed therein, with at least one aperture opening into each of the passages.
  • the various apertures may in some embodiments be placed at different heights with in the fluid control manifold.
  • the conduit 138 is provided with a pair of aeration apertures 146 , 147 each communicating with a respective passage 140 , 141 of the conduit 138 .
  • the number of aeration apertures in the conduit 138 may correspond to the number of passages formed therein, with at least one aperture opening into each of the passages.
  • the aeration apertures 146 , 147 are provided at a location spaced vertically from the lower distal end 139 of the pipe or tube 138 . This allows gas to flow through the aeration openings 146 , 147 without all the liquid within the feed passageway being displaced and prevents the pipe or tube 138 from being completely filled with gas.
  • the various apertures may in some embodiments be placed at different heights with in the feed passageway 131 .
  • feed liquid flows through the feed passageway 131 and then through the lower open distal end 139 of the conduit 138 and through the passages 140 , 141 formed by the partition 142 .
  • the feed liquid then flows upward along the passages 140 , 141 and out through the respective conduits 136 and 137 .
  • the liquid within the feed passageway 131 is displaced downwardly by the introduction of gas into the feed passageway until the gas/liquid interface reaches the level of the aeration openings 146 and 147 .
  • the gas then passes through the openings 146 , 147 , along the passages 140 , 141 of the pipe or tube 138 and into the respective conduits 136 and 137 .
  • FIGS. 21 to 24 show another embodiment of a fluid control manifold in accordance with the present invention.
  • the body of the fluid control manifold includes sidewalls defining the feed passageway 131 and a control port in the form of a conduit 150 , for example, a pipe or tube, which extends generally vertically downward in a radial direction from an upper wall of the feed passageway 131 and into the feed passageway 131 .
  • the conduit 150 is adapted to be connected to the base of membrane modules (not shown). The feed liquid and gas are fed into the conduit 150 .
  • the conduit 150 may in some embodiments pass through a central portion of an upper wall of the fluid control manifold, and in other embodiments, such as illustrated in FIGS.
  • the conduit 150 is open at it lower distal end 152 to allow inflow of feed liquid from the feed passageway 131 .
  • the conduit 150 passes through the upper wall 143 of the feed passageway 131 tangentially to an inner wall of the feed passageway 131 .
  • the conduit 150 is provided with one or more aeration apertures 153 near its lower distal end 152 .
  • the apertures 153 are in some embodiments provided at equally spaced locations around the circumference of the pipe or tube 150 .
  • the apertures 153 are in some embodiments in the form of vertically extending slots, though the form of the apertures is not narrowly critical and a hole or series of spaced holes may also or additionally be used.
  • one or more of the apertures may be of different widths or lengths than one or more other of the apertures.
  • a slot it opens into the lower distal end 152 of the conduit 150 , as shown in the FIGS. 21 to 24 .
  • a pair of conduits 150 is provided at opposed locations along the inner side walls of the feed passageway 131 . In other embodiments, more than two conduits 150 may be included in the manifold.
  • feed liquid flows through the feed passageway 131 and then through the lower open distal ends 152 of the conduits 150 and upwardly through the conduits 150 for communication to connected membrane modules (not shown).
  • the liquid within the feed passageway 131 is displaced downwardly by the introduction of pressurized gas into the feed passageway until the gas/liquid interface reaches the level of the apertures 153 .
  • the gas then passes through the apertures 153 and along the conduits 150 for communication with the membrane modules connected thereto (not shown).
  • the use of a slot formation or a vertically extending group of holes for the apertures 153 allows for regulation of the gas flow by increasing the gas flow through the apertures 153 as more of the liquid is displaced within the feed passageway 131 . This, in turn, reduces the displacement of liquid by allowing more gas to escape through the apertures 153 . This regulation prevents the conduit 150 from becoming completely filled with gas.
  • the manifold arrangement described enables a single manifold to be used to selectively supply feed and/or gas bubbles to a membrane module.
  • flat sheet membranes may be prepared and used in the systems of the present disclosure.
  • the present systems and methods are directed to each individual feature, system, or method described herein.
  • any combination of two or more such features, systems, or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present disclosure.
  • the manifolds may be prepared by any fabrication technique, including injection moulding or welding techniques and be fabricated from any desired material.
  • an existing facility may be modified to utilize or incorporate any one or more aspects of the invention.
  • the systems may involve connecting or configuring an existing facility to comprise a filtration system or components of a filtration system, for example the manifolds disclosed herein. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.

Abstract

Disclosed herein are apparatus and methods for filtering a fluid including a filter module assembly coupled to a manifold. The manifold may include a manifold inlet in fluid communication with a source of feed liquid, an outlet in fluid communication with header of the filter module assembly, a fluid passageway in fluid communication with the manifold inlet, a source of gas, and the outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway and a second manifold outlet vertically displaced from the first manifold outlet and in fluid communication between the first fluid passageway and the second fluid passageway.

Description

    RELATED APPLICATIONS
  • Foreign priority benefits are claimed under 35 U.S.C. §119(a)-(d) or 35 U.S.C. §365(b) of Australian provisional application number 2010904334, filed Sep. 24, 2010, the entire contents and substance of which is hereby incorporated by reference in its entirety.
  • BACKGROUND OF INVENTION
  • 1. Field of Invention
  • Aspects and embodiments of the present invention relate to membrane filtration systems and, more particularly, to a manifold arrangement for such systems that is used to communicate fluids to and/or from the membranes elements.
  • 2. Discussion of Related Art
  • Examples of prior art filter cartridges and banks are shown in, for example, International Patent Application PCT/AU87/00309 and PCT/AU90/00470. These applications are herein incorporated by reference in their entireties for all purposes.
  • In some examples, a hollow fiber filtration module may comprise an elongate tubular casing enclosing a bundle of hollow fiber membranes. At one end of the casing there is a first header which has a feed passageway therethrough. The feed passage is in fluid communication with the interior of the casing and hence the exterior of the fiber membranes. At the other end of the casing there is a second header which has a treated feed passageway therethrough in communication with the interior of the casing and the exterior of the fiber membranes.
  • At least one of the headers, usually the lower header, may also be provided with a gas conveying passageway in fluid communication with the interior of the casing and the exterior of the fiber membranes.
  • The passageways may be formed in off-set portions of the headers. The headers may have planar end faces. A plurality of such modules may be joined together without interconnecting manifolds or pipe work to form a row of filter modules. A number of such rows of filter modules may be inter-connected to define a bank of filter modules.
  • SUMMARY OF INVENTION
  • According to a first aspect of the invention there is provided a manifold for a filtration module assembly. The manifold comprises a body, a first fluid passageway through the body, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway adapted to selectively provide a flow of gas to a passageway of the filter module and means for introducing a pressurized gas into the first fluid passageway.
  • According to another aspect of the invention there is provided a manifold for a filter module assembly for attachment to first and second headers in fluid communication with filtering membranes. The manifold comprises a body having opposite ends adapted to connect to a substantially similar adjacent manifold or manifolds, a first fluid passageway through the body providing communication from one end of the body to the other so as to permit fluid connection with adjacent manifolds, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway adapted to selectively provide a flow of gas to a passageway of the filter module, and means for introducing a pressurized gas into the first fluid passageway.
  • In some embodiments, the second and third passageways comprise a single passageway.
  • In some embodiments, the first passageway fluidly communicates with opposed ends of the header and with a third face of the header which is adapted to communicate with the filter module assembly.
  • According to another aspect of the invention there is provided a method of controlling a flow of gas to a membrane filtration module. The method comprises providing a manifold for attachment to a passageway of the membrane filtration module, the manifold comprising a body, a first fluid passageway through the body for flowing a feed liquid to the module, second and third fluid passageways in fluid communication with respective first and second vertically spaced openings in the first fluid passageway, and introducing a pressurized gas into the first fluid passageway to displace feed liquid within the first fluid passageway to a level at or below the first vertically spaced opening resulting in a flow of gas through the second passageway into the passageway of the filtration module.
  • In some embodiments, the feed liquid is displaced through the second vertically spaced opening and the third fluid passageway.
  • According to another aspect of the invention there is provided a filter module assembly. The filter module assembly comprises a body defining a filter chamber, a filter media in the chamber dividing the chamber into a feed side and a filtrate side, a feed inlet to the chamber and a filtrate outlet from the chamber, and a header in fluid communication with the chamber, The header includes a feed passageway extending therethrough having an inlet at one end for receiving feed to be treated, an outlet at the other end adapted to be connected to the inlet of the feed passageway of an adjacent header and a discharge port for delivering feed to the chamber, and a gas distribution passageway extending therethrough and lying within the feed passageway. The gas distribution passageway includes a receiving port for receiving gas from a fluid control manifold according the first aspect of the invention, an outlet at the one end adapted to be connected to an inlet of the gas distribution passageway of an adjacent header, and one or more openings for discharging gas into the feed passageway.
  • According to another aspect of the invention there is provided a filter module assembly. The filter module assembly comprises an elongate feed containing vessel, a bundle of hollow, porous, fiber membranes within the vessel, a potting head at one end of the vessel in which one end of the bundle of fibers is mounted whereby the potting head prevents flow of fluid out of the one end of the bundle of fibers other than through open ends of the lumens of the fibers, means for closing the other end of the vessel, and means for preventing flow of feed into the other end of the lumens of the bundle of fibers, and a header at the one end of the vessel. The header includes a feed passageway extending therethrough having an inlet at one end for receiving feed to be treated, an outlet at the other end adapted to be connected to the inlet of the feed passageway of an adjacent header and a discharge port for delivering feed to the vessel, a filtrate passageway extending therethrough and lying within the feed passageway, the filtrate passageway having a receiving port for receiving filtrate from the fiber lumens, an outlet at one end for discharging filtrate and an inlet at the other end adapted to be connected to the outlet of the filtrate passageway of an adjacent first header, and a gas distribution passageway extending therethrough and lying within the feed passageway. The gas distribution passageway includes a receiving port for receiving gas from a fluid control manifold according the first aspect of the invention, an outlet at the one end adapted to be connected to an inlet of the gas distribution passageway of an adjacent header and one or more openings for discharging gas into the feed passageway.
  • In some embodiments, the module assembly is adapted for crossflow filtration and as such the means closing the other end of the casing includes a second header at the other end of the vessel and the means preventing flow of feed into the other end of the lumens is replaced by a second potting head in which the other end of the bundle of fibers is mounted whereby the second potting head permits flow of feed out of the other end of the vessel and permits filtrate to be discharged through the fiber lumens at the other end of the bundle of fibers to the second header.
  • In some embodiments, the filter media comprises porous hollow membranes and in some embodiments, the membranes comprise hollow fiber membranes.
  • In some embodiments, the vessel operates as a pressurized vessel during the filtration process.
  • According to some aspects of the invention, there is provided a manifold for attachment to a header of a filter module assembly. The manifold comprises an inlet in fluid communication with a source of feed liquid, a first outlet in fluid communication with the header, a first fluid passageway in fluid communication with the inlet, a source of gas, and the first outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second outlet vertically displaced from the first outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
  • In some embodiments, the second fluid passageway is in fluid communication with an aeration system of the filter module assembly.
  • In some embodiments, the first fluid passageway is in fluid communication with a feed inlet of the filter module assembly.
  • In some embodiments, the manifold further comprises a control port formed in a wall of the first fluid passageway, the control port including an open lower portion defining the first outlet and a control port wall defining the second outlet.
  • In some embodiments, the second fluid passageway comprises an open-ended conduit extending generally downward from an upper wall of the first fluid passageway, a lower end of the open-ended conduit defining the first outlet, the second outlet being defined in a wall of the open-ended conduit.
  • In some embodiments, second outlet comprises at least one vertically extending aperture.
  • In some embodiments, the vertically extending aperture comprises an open-ended slot contiguous with the lower end of the tube.
  • In some embodiments, the manifold further includes a plurality of output conduits, the open-ended conduit being vertically partitioned to form a plurality of passageways within the open-ended conduit, each of the plurality of passageways being in fluid communication with a respective output conduit.
  • In some embodiments, the manifold comprises at least two of the open-ended conduits.
  • According to some aspects of the invention, there is provided a method of controlling a flow of gas to a membrane filtration module. The method comprises providing a manifold for attachment to a header of the membrane filtration module. The manifold includes an inlet in fluid communication with a source of feed liquid, a first outlet in fluid communication with the header, a first fluid passageway in fluid communication with the inlet, a source of gas, and the first outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second outlet vertically displaced from the first outlet and in fluid communication between the first fluid passageway and the second fluid passageway. The method further comprises introducing feed liquid into the first fluid passageway, displacing the feed liquid within the first fluid passageway to a level at or below the second outlet and above the first outlet by introducing a pressurized gas into the first fluid passageway, and flowing the pressurized gas through the first outlet and into the filtration module.
  • In some embodiments, the method further comprises maintaining the level of the feed liquid at a level at or below the second outlet and above the first outlet while flowing the pressurized gas into the membrane filtration module.
  • In some embodiments, the method further comprises fluidly connecting first fluid passageways of a plurality of manifolds.
  • According to some aspects of the invention, there is provided a modular filtration system. The modular filtration system comprises a filtration module including, a chamber having a feed inlet and a filtrate outlet, a filter media in the chamber dividing the chamber into a feed side and a filtrate side, a first header in fluid communication with the chamber, and a first manifold. The first manifold includes a manifold inlet in fluid communication with a source of feed liquid, a first manifold outlet in fluid communication with the first header, a first fluid passageway in fluid communication with the manifold inlet, a source of gas, and the first manifold outlet, a second fluid passageway in fluid communication with the header and the first fluid passageway, and a second manifold outlet vertically displaced from the first manifold outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
  • In some embodiments, the first header includes a first feed passageway in fluid communication with the first manifold outlet and extending through the first header, the first feed passageway having a feed inlet, a feed outlet, and a discharge port in fluid communication with the chamber, and a first gas distribution passageway in fluid communication with the second manifold outlet and extending through the first header and positioned within the first feed passageway, the first gas distribution passageway having a receiving port, a gas outlet, and one or more openings in fluid communication with the first feed passageway.
  • In some embodiments, the filter media comprises hollow fiber membranes.
  • In some embodiments, the first header further includes a first filtrate passageway extending through the first header and positioned within the first feed passageway, the first filtrate passageway having a receiving port in fluid communication with lumens of the fiber membranes, and a filtrate outlet.
  • In some embodiments, the modular filtration system further comprises at least one additional manifold having an inlet in fluid communication with the first fluid passageway.
  • In some embodiments, the modular filtration system further comprises at least one additional header having a filtrate passageway in fluid communication with the filtrate outlet of the first filtrate passageway.
  • In some embodiments, the gas outlet of the first gas distribution passageway is in fluid communication with an inlet of a gas distribution passageway of the at least one additional header.
  • In some embodiments, the feed outlet of the first feed passageway is in fluid communication with an inlet of a feed passageway of the at least one additional header.
  • BRIEF DESCRIPTION OF DRAWINGS
  • The accompanying drawings are not intended to be drawn to scale. In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like numeral. For purposes of clarity, not every component may be labelled in every drawing. In the drawings:
  • FIG. 1 is an exploded perspective view of a filter module assembly for use with one embodiment of the invention;
  • FIG. 2 is a partly broken away sectional view of the top portion of the module of FIG. 1;
  • FIG. 3 is partly exploded perspective view of a row of filter modules as shown in FIG. 1;
  • FIG. 4 is partly exploded perspective view of a bank of filter modules as shown in FIG. 3;
  • FIG. 5 is an isometric side view of a feed control manifold according to one embodiment of the present invention;
  • FIG. 6 is a simplified plan view of a bank of filter modules according to one embodiment of the invention;
  • FIG. 7 is a simplified partial end elevational view of a lower portion of the bank of filter modules of FIG. 6;
  • FIG. 8 is a simplified partial side elevational view of a lower portion of the bank of filter modules of FIG. 6;
  • FIG. 9 is a simplified broken side sectional view of the lower portion of a row of filter modules according to the embodiment of the present invention shown in FIG. 6;
  • FIG. 10 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules in filtration mode;
  • FIG. 11 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules at the beginning of an aeration or gas scouring mode;
  • FIG. 12 is a simplified broken side sectional view of the lower portion of a row of filter modules of FIG. 6 illustrating the modules in an aeration or gas scouring mode;
  • FIG. 13 is perspective view of a filtration control manifold according to another embodiment of the invention;
  • FIG. 14 is an end elevational view of the filtration control manifold of FIG. 13;
  • FIG. 15 is a side elevational view of the filtration control manifold of FIG. 13;
  • FIG. 16 is sectional end elevational view taken along line A-A of FIG. 15;
  • FIG. 17 is perspective view of a filtration control manifold according to another embodiment of the invention;
  • FIG. 18 is an end elevational view of the filtration control manifold of FIG. 17;
  • FIG. 19 is a side elevational view of the filtration control manifold of FIG. 17;
  • FIG. 20 is sectional end elevational view taken along line A-A of FIG. 19;
  • FIG. 21 is perspective view of a filtration control manifold according to another embodiment of the invention;
  • FIG. 22 is an end elevational view of the filtration control manifold of FIG. 21;
  • FIG. 23 is a side elevational view of the filtration control manifold of FIG. 21; and
  • FIG. 24 is sectional end elevational view taken along line A-A of FIG. 23.
  • DETAILED DESCRIPTION
  • This invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” “having,” “containing,” “involving,” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
  • Aspects and embodiments of the present invention will be described with reference to hollow fiber membranes but it is to be understood that the invention is not necessarily limited thereto as it may be applied to systems incorporating other kinds of filter membranes such as porous or permeable membranes in a spiral wound, mat, or sheet form.
  • Aspects and embodiments of the present invention relate to filter module assemblies composed of filter membrane cartridge assemblies having opposed, symmetrical potting heads attached to either end, although filter membrane cartridges having dissimilar potting heads are also contemplated.
  • Aspects and embodiments of the present invention relate to filter module assemblies which utilize headers adapted to conduct fluids in the form of feed, filtrate, and gas to other headers, for example, adjacent like headers, and into and out of the filter cartridge assembly to which they are connected.
  • Aspects and embodiments of the present invention relate to membrane filters whose filter modules comprise elongate bundles of permeable hollow fiber membranes wherein feed to be filtered is applied to the outside of the bundle of fiber membranes and filtrate or permeate is withdrawn from the fiber lumens.
  • Aspects and embodiments of the present invention relate to membrane filtration systems having multiple filtration modules connected together in a bank of filtration modules. A fluid control module, alternatively referred to herein as a manifold, fluidly communicates a source of feed and a source of aeration gas to headers of one or more of the filtration modules in the bank. The fluid control module and/or filtration module headers may include integrated feed, filtrate, and gas conduits. The fluid control module may be configured to automatically deliver gas to the filtration module headers upon introduction of gas into a feed conduit included within a body of the fluid control module.
  • An embodiment of a filter cartridge assembly 10 in accordance with the present invention is shown in FIG. 1. The filter cartridge assembly 10 includes a tubular casing 11 that encloses a bundle of hollow, porous, fibers. The bundle of fibers forms the working part of the filter cartridge. Each fiber may have an average pore size of about 0.2 micron, a wall thickness of about 200 microns and a lumen diameter of about 200 microns. There may be about 12,000 hollow fibers in the bundle, but this number, as well as the individual fiber dimensions, may be varied according to operational requirements. The upper ends 14 of the fibers are embedded in a potting head 12, that may include, for example a polyurethane plug, that is cast into an end-piece 15. Around the periphery of the upper end of the end-piece 15 there is a pair of grooves 16 and 17 for receiving O- rings 18 and 19 respectively. The lower end of the end-piece 15 receives a perforated cylindrical screen 20 which encloses the fibers.
  • The upper portion 23 of the tubular casing 11 includes an outer sleeve 21 including a pair of grooves 25 and 26 which support O- rings 27 and 28 respectively.
  • In this embodiment, there is a similar end piece (not shown) at the bottom of the tubular casing 11 but such need not be the case if the filter is to be constructed to run in a dead-end mode. In the case of a dead-end mode filter, the lower ends of the fibers may be sealed with or without being embedded in a potting head.
  • Mounted on the upper end of the end-piece 15 there is a filtrate cup or housing 31 having a neck or outlet portion 32 and a connecting flange 33, the inner face of which seals against the O- rings 18 and 19. Around the periphery of the neck portion 32 there is a pair of annular grooves 37 and 38 which support O-rings 39 and 40.
  • The filtrate cup or housing 31 provides an outlet path for the filtrate which is discharged from the open ends 14 of the fibers embedded in the plug or potting head 12.
  • At the top of the filter cartridge 10 there is a combined feedstock/filtrate header 41. As illustrated in FIG. 2, in an embodiment of the present invention, the header 41 of the filtration cartridge 10 is adapted to permit the independent passage of at least two fluids. In an upper header of the filtration cartridge, as illustrated in FIG. 2, passage of feed liquid and filtrate may be provided for. In a lower header of the filtration cartridge, passage of feed liquid and gas may be provided for. In some embodiments, filtrate liquid may also be passed through the lower header.
  • The header 41 is substantially symmetrical about planes which have the longitudinal axis of the filter cartridge assembly lying upon them, particularly the plane which passes at right angles to the predominant direction of flow of both feed and filtrate within the header 41 and the plane which is at right angles to that plane. The symmetrical arrangement allows a greater packing density of modules than would otherwise be the case. In some embodiments, the symmetrical arrangement is been achieved by enclosing the filtrate discharge passageway 43 and gas distribution passageway 124 (illustrated in FIG. 9) entirely within the feedstock inlet passageway 42 within the header 41.
  • Each header 41 can be abutted against a like header so as to create a row of headers to which a row of membrane cartridges can be connected. In some embodiments, a corresponding row of like headers 41 is attached to the opposite end of each module so as to form a double ended, symmetrical row of modules with the capability of passing both feed and filtrate into and out of each header at each end of each module.
  • The header 41 has a large feedstock inlet passageway 42 therethrough and a smaller filtrate discharge passageway 43 therethrough. The header 41 has planar side faces and at one side of the header 41 there are grooves 44 and 45 for receiving O-rings around the ends of the passageways 42 and 43. At the opposite side of the header 41 there are annular bevelled projections 44 a and 44 b adapted to engage the O-rings of an adjacent header 41.
  • The header 41 has a pair of downwardly extending connection flanges 46 and 47 which respectively define feedstock passageway 48 providing communication between the feedstock passageways 42 and filtrate passageway 49 providing communication between the outlet 32 of the filtrate sleeve 31 and the filtrate discharge passageway 43.
  • The base of the flange 47 sealingly engages the O-rings 39 and 40 around the neck portion of the filtrate sleeve 31 and at the base of the flange 46 there are annular grooves 50 and 51 which support O- rings 52 and 53 respectively. On the outer face of the flange 46 there is a threaded portion 54 for receiving a correspondingly threaded portion 55 of an outer connecting sleeve 56.
  • The outer connecting sleeve 56 constitutes a boundary for the feedstock passageway 48 and at its lower end there is a neck portion 57 having an inwardly directed shoulder 58 which engages the lower edge of outer connecting sleeve 56 on the casing 11. Rotation of the outer connecting sleeve 56 to achieve threaded engagement with, or disengagement from, the flange 46 is facilitated by the presence of profiled regions 70 and 71 around the respective perimeters of the outer connecting sleeve 56, as indicated in FIG. 2. In this instance, region 71 has a gear-tooth profile, suitable for engagement with a motorized drive, and region 70 has a castellated profile, suitable for alternative engagement with a C-spanner.
  • An internal shoulder region 67 on the inner surface of outer connecting sleeve 56 engages with an annular clip 68 which fits around the end-piece 15 at the end of the perforated screen 20 and butts against the end of the filtrate cup 31 such that, when the outer connecting sleeve 56 is fully engaged with the flange 46, the minor end of the filtrate cup 31 is fully inserted within the internal flange 47 of the header 41.
  • If the need arises to remove or replace the fiber bundle, together with the perforated screen and potted ends, this can be done without disturbing the head pieces when assembled in a filter bank or filter array. After unscrewing the outer connecting sleeve 56 from the header 41, the outer connecting sleeve 56 is slid along casing 11 towards the centre of the cartridge (together with annular clip 68 or after splitting clip 68 into constituent halves) thus permitting the filtrate cup to be drawn back over the potting sleeve for a sufficient distance to extract the minor end of the filtrate cup from the head piece internal skirt, thereby permitting subsequent removal of the filter bundle.
  • Replacement of a fiber bundle involves following the above described procedure in reverse order.
  • A shut-off passageway 60 in the header 41 provides access from the exterior of the header 41 to the interior of the filtrate discharge passageway 43 and houses a shut-off valve 63. The top portion 64 of the shut-off valve 63 has an aperture for receiving an adjustment tool (not shown) and for manual activation of the valve. Adjacent the central portion of the shut-off valve 63 is a seal 65 which provides a seal between the shut-off valve 63 and the shut-off passageway 60.
  • At the lower end of the shut-off valve 63 there is a seal 69. When the shut-off valve 63 is moved upwardly, the seal 69 closes the port 72 to the filtrate discharge passageway 43 to prevent flow of filtrate from the cartridge 10 to the header 41. It is to be noted, however, that closure of the port 72 does not interfere with the flow of filtrate from and to adjacent headers through the filtrate passageway 43. A plug 73 on the top of header 41 closes off the shut-off passageway 60. The valve 63 is so designed that it can be readily operated without resort to any dismantling of component parts of the filter.
  • In a particular embodiment of the valve arrangement, the plug 73 cannot be replaced when the valve is in the “up” position. This provides visual indication, easily ascertainable at a distance, that the valve is shut off implying that the cartridge which it feeds is disconnected from feed.
  • The valve 63 is moved from the open position to the closed position by firstly rotating the shaft of the valve 63 through 90°, thereby allowing rectangular block component 150 (mounted on the shaft of the valve 63) to pass through a corresponding rectangular aperture 151 when the shaft of the valve 63 is lifted. Once the shaft of the valve is in the fully up position the shaft is rotated back through 90° once more so that inadvertent lowering of the shaft is prevented by the interaction of blocking piece 150 with the top of shut-off passageway 60. The shut-off valve is opened by a reversal of the procedure.
  • As indicated in FIG. 1, the bottom of the cartridge 10 is similar to the top in that it has a header 41 and an outer connecting sleeve 56. The filter cartridge 10 could be simply modified to provide for a dead-end mode of operation. The bottom of the cartridge 10 also differs in that it includes a header 41 having further internal gas distribution passageways 124.
  • FIG. 3 shows a row of filter cartridges 10 connected together in parallel and having a fluid control manifold 101 configured as a feed inlet manifold, fluid control manifold 100 configured as a concentrated feed outlet manifold and fluid control manifolds 102 configured as filtrate manifolds. The row of cartridges 10 are connected together by tie bars 103 which pass through apertures 104 in the header 41. Sample or dosing ports 105 may be provided in the manifolds 100, 101 and 102. FIG. 4 shows a plurality of rows of cartridges connected together through adjacent manifolds 100, 101 and 102 to form a bank of filter modules which are held together by tie bars 106 which pass through apertures 107 in the manifolds 100, 101 and 102. Those skilled in the art will recognize that alternate mechanisms for connecting the manifolds and/or headers together may also or additionally be utilized. For example, the manifolds and/or headers may be provided with clips, intersecting flanges, pressure fit couplings, or screw-like threading adapted to couple to complementary threading on adjacent modules and/or headers.
  • The fluid control manifolds 100 and 101 illustrated are of the same shape and configuration. In alternate embodiments, the different manifolds may be shaped or configured differently as desired. The manifolds 100 and 101 include a body portion 110 having end faces 111 and 112, which in some embodiments may be planar, and which facilitate connection to an adjacent similar manifold. The body portion 110 defines a feed passageway 113 which extends through the body from end face 111 to end face 112. Either or both of the end faces 111, 112 may include a feed inlet into the feed passageway 113. Around the opening to the passageway 113 in face 112 there is an annular recess (not shown) for receiving an O-ring and around the opening to the passageway 113 and end face 111 there is a bevelled annular projection (not shown) adapted to engage an O-ring of an adjacent manifold.
  • Embodiments of fluid control manifolds in accordance with the present invention comprise a block shaped structure having one pair of opposed, generally parallel faces bridging a large, generally circular internal passageway. The structure of the manifolds includes two additional passageways adapted to communicate between the main passageway and a third face of the manifolds. These two passageways have two important characteristics: firstly one of the additional passageways may be enclosed entirely within the large, generally circular internal passageway, and secondly, in each manifold one of the two additional passageways is blanked off from the main passageway. Which of the two additional passageways is to be blocked off is determined by whether the manifold is to be used as a feed inlet or a feed outlet manifold.
  • Utilization of the passageway within a passageway concept allows these manifolds to be used to connect two rows of headers 41 for the purpose of paralleling feed into rows of cartridges and paralleling the removal of filtrate from rows of modules and also for the purpose of connecting such groups of interconnected rows in series with each other. In some embodiments, filtrate may be removed through the additional passageways enclosed entirely within the large, generally circular internal passageway.
  • Referring to FIG. 5, there is shown one embodiment of a fluid control manifold according to the invention. As shown, the fluid control manifold 101 comprises a body including side walls defining an open ended feed passageway 113. There are two vertically spaced openings 118 and 119 in one of the side walls. These openings 118 and 119 are outlets of the fluid control manifold 101. In the embodiment shown, a pair of upper openings 119 are provided though it will appreciated the number and type of openings is not narrowly critical. A second passageway 121 extending through and within the feed passageway 113 may be optionally provided when the manifold is also used to conduct permeate from the headers 41.
  • FIG. 6 shows a number of fluid control manifolds 101 connected to the lower headers 41 of a bank of modules 10. The fluid control manifolds are connected to adjacent like manifolds to form a row of interconnected manifolds extending along at least one side of the module bank. Each manifold 101 is further connected to the end of a row of interconnected headers 41 to form the bank structure shown in FIG. 6. At least one terminal end of the row of interconnected fluid control manifolds 101 is provided with a T-piece device 101′ which serves to provide fluid communication with a source of feed and a source of gas, typically pressurized air. The T-piece 101′ has an upper vertically extending inlet 120 for the introduction of gas from the source of gas and a side, horizontally extending inlet 130 for the introduction of feed liquid. The T-piece 101′ is typically connected to the terminal fluid control manifold in the row of interconnected manifolds though it will be appreciated that feed and gas can be introduced at any point along the row of manifolds.
  • Referring to FIG. 9, there is shown a sectional view taken through the fluid control manifolds 101, 102, and headers 41 of an embodiment of a filtration system in accordance with the present invention. The feed passageway 113 of the fluid control manifolds 101, 102 is connected to a source of feed liquid and the lower opening 118 is in fluid communication with a transverse branch passageway 122 which leads to face 117 of the manifold 101 to provide feed communication between the feed passageway 113 and the feed passageway 42 of the header 41. In a similar manner, transverse branch passageway 123 leads from the upper opening 119 to face 117 of the manifold to provide fluid communication to the gas distribution passageway 124 of header 41.
  • The terminating portions of the gas distribution passageway 124 are each fluidly connected to the end 125 of the branch passageway 123 of the fluid control manifold 101. The gas distribution passageway 124, in this embodiment, is terminated in the final manifold 102 with a blind-end connection 128. The gas distribution passageway 124 of each header 41 is provided with one or more openings 127 in its wall, typically the lower wall, to distribute gas into feed passageway 42 of the header 41. These openings may be in the form of holes, slits, nozzles, or other structures known in the art. The openings in some embodiments be of different sizes, for example increasing in size with distance from the fluid control manifold, to compensate for pressure drop along the gas distribution passageway so that an equal amount of gas is provided to each filtration manifold in a row.
  • The operation of the fluid control manifold 101 will now be described with reference to FIGS. 10 to 12.
  • FIG. 10 shows the manifold in the normal feed supply mode during filtration with the feed passageway 113 and feed supply passageways 42 of the header 41 being full of feed liquid. In this mode, the branch passageway 123 and the gas distribution passageway 124 are also filled with feed liquid. Feed flows through the feed passageway 113, lower opening 118, and branch passageway 122 into the feed supply passageway 42 and around the membranes of each module 10. The feed is supplied to the feed supply passageway through the T-piece 101′ provided at least at one end of a row of interconnected fluid control manifolds 101 as shown in FIGS. 6 and 8.
  • As shown in FIG. 11, when aeration or scouring of the membranes is desired, gas, for example, air, is introduced into one or more of the interconnected fluid control manifolds 101. The means of introducing gas is not narrowly critical but is typically done by providing pressurized gas through the T-piece 101′ connected to the end of a row of the manifolds 101 as shown in FIG. 8. The introduced gas displaces the feed liquid within the feed supply passageway 113 until the level of liquid within the passageway 113 moves to a level at or below the level of the upper opening 119. At this point gas begins to flow through branch passageway 123 and gas distribution passageway 124 and out through openings 127 to produce gas bubbles in the feed liquid in the feed supply passageways 42 of the header 41 as shown in FIG. 12. The liquid is initially displaced through both upper and lower opening 119 and 118 respectively, with the majority of the flow being through the lower opening 118. To prevent complete displacement of feed liquid from the passageway 113 the lower opening 118 is provided with one or bleed openings 126 at, for example, an upper portion thereof, to bleed off any excess gas and prevent further displacement of feed liquid. The type of bleed opening used is not narrowly critical but may include slots, grooves or indents. Once aeration is complete, the introduction of gas is ceased and the feed liquid rises within the feed passageway 113 and the system returns to normal operation.
  • In some embodiments, it may be desirable to place the upper openings 119 as high as possible within the feed passageways 113 to minimize the liquid displacement within the feed passageways 113 required to produce an air flow through the gas distribution passageways 124. In some embodiments, it is desirable to retain as much feed as possible within the feed passageways 113 during a gas scouring process. In some embodiments, the upper openings 119 and/or gas distribution passageways 124 are sized sufficiently large to facilitate the production of an even gas distribution amongst the modules fed by the manifolds while still allowing feed flow through the feed passageways 113 and/or 42. Spacing between upper openings 119 and lower openings 118 and the relative positioning of these openings within the feed passageways 113 may be determined based at least in part upon the gas pressure to be used to displace feed liquid within the feed passageways 113.
  • FIGS. 13 to 16 show another embodiment of a fluid control manifold in accordance with the present invention. In this embodiment, the feed liquid and scouring gas are fed directly into a base of one or more membrane modules from the fluid control manifold 130. The body of the fluid control manifold includes sidewalls defining the feed passageway 131 and one or more control ports 132. Fluid communication between the membrane module (not shown) and the feed passageway 131 of the fluid control manifold 130 is provided via the control port 132. The control port 132 is generally circular in cross-section with its upper hemisphere blocked by a radially extending partition 133 and its lower portion 133′ open to provide an outlet to allow liquid flow therethrough. It will be appreciated that the shape of the port 132 is not narrowly critical and other cross-sectional shapes would be equally applicable. The partition 133 is provided with an outlet in the form of aperture 134, which may comprise, for example, a vertically extending slot. The form of aperture 134 is not narrowly critical and a hole or series of holes may also or additionally be used. The aperture 134 is typically spaced vertically from the base 135 of the partition but again this is not critical. In some embodiments, the aperture 134 may be an open ended slot with an open lower end joining the open lower portion 133′ of the control port. In the embodiment of FIGS. 13 to 16, a pair of control ports 132 is provided at opposed locations in the side wall of the feed passageway 131.
  • This embodiment operates in a similar manner to the other embodiments described above. During filtration feed liquid flows through the feed passageway 131 of the fluid control manifold 130 and then through the lower open portion 133′ of the control port 132 and into the base of the membrane modules attached thereto (not shown). From the base of the modules the feed liquid flows along the membranes, for example, through openings in the lower potting heads of the modules (not shown).
  • When air or gas scouring is desired, the liquid within the feed passageway 131 is displaced downwardly by the introduction of gas into the feed passageway 131 until the gas/liquid interface reaches the level of the aperture 134. The gas then passes through the aperture 134 and into the bases of the membrane modules (not shown). The use of a slot formation or a vertically extending group of holes for the aperture 134 allows for regulation of the gas flow by increasing the gas flow through the aperture 134 as more of the liquid is displaced within the feed passageway 131. This, in turn, reduces the displacement of liquid by allowing more gas to escape through the aperture 134. This regulation prevents the control port 132 from becoming completely filled with gas.
  • FIGS. 17 to 20 show another embodiment of a fluid control manifold in accordance with the present invention. In this embodiment the body of the fluid control manifold includes sidewalls defining the feed passageway 131 and a control port in the form of a conduit 138, for example, a pipe or tube which extends generally vertically downward in a radial direction from an upper wall of the feed passageway 131 and into the feed passageway 131. Feed liquid and gas are fed into one or more, for example, a pair of output conduits 136 and 137 provided above the fluid control manifold 130. Output conduits 136 and 137 are adapted to be connected to the base of membrane modules (not shown). The output conduits 136, 137 are connected in fluid communication with the feed passageway 131 of the fluid control manifold 130 by the conduit 138. The conduit 138 is open at its lower distal end 139 to allow inflow of feed liquid from the feed passageway 131. The conduit 138 is divided into a plurality, for example, a pair of passages 140, 141 by one or more longitudinally extending partitions 142 located along the diameter of the conduit 138 and extending upward from the lower distal end 139. The conduit passes 138 through the upper wall 143 of the feed passageway 131 and is provided with one or more apertures, for example, a pair of openings 144, 145 in its side wall which provide fluid communication between the passages 140 and 141 and respective output conduits 136 and 137. The number of apertures in the conduit 138 may correspond to the number of passages formed therein, with at least one aperture opening into each of the passages. The various apertures may in some embodiments be placed at different heights with in the fluid control manifold.
  • The conduit 138 is provided with a pair of aeration apertures 146, 147 each communicating with a respective passage 140, 141 of the conduit 138. The number of aeration apertures in the conduit 138 may correspond to the number of passages formed therein, with at least one aperture opening into each of the passages. The aeration apertures 146, 147 are provided at a location spaced vertically from the lower distal end 139 of the pipe or tube 138. This allows gas to flow through the aeration openings 146, 147 without all the liquid within the feed passageway being displaced and prevents the pipe or tube 138 from being completely filled with gas. The various apertures may in some embodiments be placed at different heights with in the feed passageway 131.
  • This embodiment operates in a similar manner to the other embodiments described above. During filtration, feed liquid flows through the feed passageway 131 and then through the lower open distal end 139 of the conduit 138 and through the passages 140, 141 formed by the partition 142. The feed liquid then flows upward along the passages 140, 141 and out through the respective conduits 136 and 137.
  • When air or gas scouring is desired, the liquid within the feed passageway 131 is displaced downwardly by the introduction of gas into the feed passageway until the gas/liquid interface reaches the level of the aeration openings 146 and 147. The gas then passes through the openings 146, 147, along the passages 140, 141 of the pipe or tube 138 and into the respective conduits 136 and 137.
  • FIGS. 21 to 24 show another embodiment of a fluid control manifold in accordance with the present invention. In this embodiment the body of the fluid control manifold includes sidewalls defining the feed passageway 131 and a control port in the form of a conduit 150, for example, a pipe or tube, which extends generally vertically downward in a radial direction from an upper wall of the feed passageway 131 and into the feed passageway 131. The conduit 150 is adapted to be connected to the base of membrane modules (not shown). The feed liquid and gas are fed into the conduit 150. The conduit 150 may in some embodiments pass through a central portion of an upper wall of the fluid control manifold, and in other embodiments, such as illustrated in FIGS. 21 to 24 may enter the fluid control manifold proximate or in contact with a sidewall of the feed passageway 131. The conduit 150 is open at it lower distal end 152 to allow inflow of feed liquid from the feed passageway 131. In some embodiments, the conduit 150 passes through the upper wall 143 of the feed passageway 131 tangentially to an inner wall of the feed passageway 131.
  • The conduit 150 is provided with one or more aeration apertures 153 near its lower distal end 152. The apertures 153 are in some embodiments provided at equally spaced locations around the circumference of the pipe or tube 150. The apertures 153 are in some embodiments in the form of vertically extending slots, though the form of the apertures is not narrowly critical and a hole or series of spaced holes may also or additionally be used. In some embodiments, one or more of the apertures may be of different widths or lengths than one or more other of the apertures. In some embodiments, where a slot is used it opens into the lower distal end 152 of the conduit 150, as shown in the FIGS. 21 to 24. In this embodiment, a pair of conduits 150 is provided at opposed locations along the inner side walls of the feed passageway 131. In other embodiments, more than two conduits 150 may be included in the manifold.
  • This embodiment operates in a similar manner to the other embodiments described above. During filtration, feed liquid flows through the feed passageway 131 and then through the lower open distal ends 152 of the conduits 150 and upwardly through the conduits 150 for communication to connected membrane modules (not shown).
  • When air or gas scouring is desired, the liquid within the feed passageway 131 is displaced downwardly by the introduction of pressurized gas into the feed passageway until the gas/liquid interface reaches the level of the apertures 153. The gas then passes through the apertures 153 and along the conduits 150 for communication with the membrane modules connected thereto (not shown). The use of a slot formation or a vertically extending group of holes for the apertures 153 allows for regulation of the gas flow by increasing the gas flow through the apertures 153 as more of the liquid is displaced within the feed passageway 131. This, in turn, reduces the displacement of liquid by allowing more gas to escape through the apertures 153. This regulation prevents the conduit 150 from becoming completely filled with gas.
  • The manifold arrangement described enables a single manifold to be used to selectively supply feed and/or gas bubbles to a membrane module.
  • While exemplary embodiments of the disclosure have been disclosed, many modifications, additions, and deletions may be made therein without departing from the spirit and scope of the disclosure and its equivalents, as set forth in the following claims.
  • Those skilled in the art would readily appreciate that the various parameters and configurations described herein are meant to be exemplary and that actual parameters and configurations will depend upon the specific application for which the apparatus and methods of the present disclosure are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments described herein. For example, those skilled in the art may recognize that the system, and components thereof, according to the present disclosure may further comprise a network of systems or be a component of a heat exchanger system or water treatment system. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, the disclosed systems and methods may be practiced otherwise than as specifically described. For example, flat sheet membranes may be prepared and used in the systems of the present disclosure. The present systems and methods are directed to each individual feature, system, or method described herein. In addition, any combination of two or more such features, systems, or methods, if such features, systems or methods are not mutually inconsistent, is included within the scope of the present disclosure.
  • Further, it is to be appreciated various alterations, modifications, and improvements will readily occur to those skilled in the art. Such alterations, modifications, and improvements are intended to be part of this disclosure, and are intended to be within the spirit and scope of the disclosure. For example, the manifolds may be prepared by any fabrication technique, including injection moulding or welding techniques and be fabricated from any desired material. In other instances, an existing facility may be modified to utilize or incorporate any one or more aspects of the invention. Thus, in some cases, the systems may involve connecting or configuring an existing facility to comprise a filtration system or components of a filtration system, for example the manifolds disclosed herein. Accordingly, the foregoing description and drawings are by way of example only. Further, the depictions in the drawings do not limit the disclosures to the particularly illustrated representations.
  • Use of ordinal terms such as “first,” “second,” “third,” and the like in the specification and claims to modify an element does not by itself connote any priority, precedence, or order of one element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one element having a certain name from another element having a same name, but for use of the ordinal term, to distinguish the elements.

Claims (12)

What is claimed is:
1-9. (canceled)
10. A method of controlling a flow of gas to a membrane filtration module comprising:
providing a manifold for attachment to a header of the membrane filtration module, the manifold including:
an inlet in fluid communication with a source of feed liquid;
a first outlet in fluid communication with the header;
a first fluid passageway in fluid communication with the inlet, a source of gas, and the first outlet;
a second fluid passageway in fluid communication with the header and the first fluid passageway; and
a second outlet vertically displaced from the first outlet and in fluid communication between the first fluid passageway and the second fluid passageway;
introducing feed liquid into the first fluid passageway;
displacing the feed liquid within the first fluid passageway to a level at or below the second outlet and above the first outlet by introducing a pressurized gas into the first fluid passageway; and
flowing the pressurized gas through the first outlet and into the filtration module.
11. The method of claim 10, further comprising maintaining the level of the feed liquid at a level at or below the second outlet and above the first outlet while flowing the pressurized gas into the membrane filtration module.
12. The method of claim 11, further comprising fluidly connecting first fluid passageways of a plurality of manifolds.
13. A modular filtration system comprising:
a filtration module including:
a chamber having a feed inlet and a filtrate outlet;
a filter media in the chamber dividing the chamber into a feed side and a filtrate side;
a first header in fluid communication with the chamber; and
a first manifold including:
a manifold inlet in fluid communication with a source of feed liquid;
a first manifold outlet in fluid communication with the first header;
a first fluid passageway in fluid communication with the manifold inlet, a source of gas, and the first manifold outlet;
a second fluid passageway in fluid communication with the header and the first fluid passageway; and
a second manifold outlet vertically displaced from the first manifold outlet and in fluid communication between the first fluid passageway and the second fluid passageway.
14. The modular filtration system of claim 13, wherein the first header includes:
a first feed passageway in fluid communication with the first manifold outlet and extending through the first header, the first feed passageway having a feed inlet, a feed outlet, and a discharge port in fluid communication with the chamber; and
a first gas distribution passageway in fluid communication with the second manifold outlet and extending through the first header and positioned within the first feed passageway, the first gas distribution passageway having a receiving port, a gas outlet, and one or more openings in fluid communication with the first feed passageway.
15. The modular filtration system of claim 14, wherein the filter media comprises hollow fiber membranes.
16. The modular filtration system of claim 15, wherein the first header further includes:
a first filtrate passageway extending through the first header and positioned within the first feed passageway, the first filtrate passageway having a receiving port in fluid communication with lumens of the fiber membranes, and a filtrate outlet.
17. The modular filtration system of claim 16, further comprising at least one additional manifold having an inlet in fluid communication with the first fluid passageway.
18. The modular filtration system of claim 17, further comprising at least one additional header having a filtrate passageway in fluid communication with the filtrate outlet of the first filtrate passageway.
19. The modular filtration system of claim 18, wherein the gas outlet of the first gas distribution passageway is in fluid communication with an inlet of a gas distribution passageway of the at least one additional header.
20. The modular filtration system of claim 19, wherein the feed outlet of the first feed passageway is in fluid communication with an inlet of a feed passageway of the at least one additional header.
US14/537,576 2010-09-24 2014-11-10 Fluid control manifold for membrane filtration system Active 2032-02-28 US9630147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/537,576 US9630147B2 (en) 2010-09-24 2014-11-10 Fluid control manifold for membrane filtration system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
AU2010904334A AU2010904334A0 (en) 2010-09-24 Fluid control manifold for membrane filtration system
AU2010904334 2010-09-24
US13/240,190 US9022224B2 (en) 2010-09-24 2011-09-22 Fluid control manifold for membrane filtration system
US14/537,576 US9630147B2 (en) 2010-09-24 2014-11-10 Fluid control manifold for membrane filtration system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/240,190 Division US9022224B2 (en) 2010-09-24 2011-09-22 Fluid control manifold for membrane filtration system

Publications (2)

Publication Number Publication Date
US20150122715A1 true US20150122715A1 (en) 2015-05-07
US9630147B2 US9630147B2 (en) 2017-04-25

Family

ID=45869569

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/240,190 Active 2034-01-07 US9022224B2 (en) 2010-09-24 2011-09-22 Fluid control manifold for membrane filtration system
US14/537,576 Active 2032-02-28 US9630147B2 (en) 2010-09-24 2014-11-10 Fluid control manifold for membrane filtration system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/240,190 Active 2034-01-07 US9022224B2 (en) 2010-09-24 2011-09-22 Fluid control manifold for membrane filtration system

Country Status (5)

Country Link
US (2) US9022224B2 (en)
EP (1) EP2618916A4 (en)
CN (1) CN103118766B (en)
AU (1) AU2011305377B2 (en)
WO (1) WO2012040412A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020199475A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Cleansing air quantity control system and cleansing air quantity control device
WO2022120141A1 (en) * 2020-12-03 2022-06-09 Baltimore Aircoil Company, Inc. Tubular membrane heat exchanger
US20220250008A1 (en) * 2019-10-15 2022-08-11 Hainan Litree Purifying Technology Co., Ltd. External pressure type hollow fiber membrane component, filtration membrane component, and membrane filtration module
US11624558B2 (en) 2019-06-04 2023-04-11 Baltimore Aircoil Company, Inc. Tubular membrane heat exchanger

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100421772C (en) 2003-11-14 2008-10-01 西门子水技术公司 Improved module cleaning method
WO2005092799A1 (en) 2004-03-26 2005-10-06 U.S. Filter Wastewater Group, Inc. Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP4838248B2 (en) 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
CA2605757A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
WO2007022576A1 (en) 2005-08-22 2007-03-01 Siemens Water Technologies Corp. An assembly for water filtration using a tube manifold to minimise backwash
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
US9764288B2 (en) 2007-04-04 2017-09-19 Evoqua Water Technologies Llc Membrane module protection
CA3058737C (en) 2007-05-29 2022-04-26 Fufang Zha Membrane cleaning with pulsed airlift pump
KR101614520B1 (en) 2008-07-24 2016-04-21 에보쿠아 워터 테크놀로지스 엘엘씨 Frame system for membrane filtration modules
NZ591259A (en) 2008-08-20 2013-02-22 Siemens Industry Inc A hollow membrane filter backwash system using gas pressurised at at least two pressures feed from the down stream side to push water through the filter to clean it
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
WO2012040412A1 (en) * 2010-09-24 2012-03-29 Siemens Industry, Inc. Fluid control manifold for membrane filtration system
US9302227B2 (en) * 2011-09-02 2016-04-05 Membrane Technology And Research, Inc. Membrane separation assembly for fuel gas conditioning
HUE058060T2 (en) 2011-09-30 2022-07-28 Rohm & Haas Electronic Mat Isolation valve
KR101964484B1 (en) 2011-09-30 2019-04-01 에보쿠아 워터 테크놀로지스 엘엘씨 Improved manifold arrangement
CN103889537B (en) 2011-10-03 2016-10-12 恩特格里斯公司 Modular filter cassette
US9533261B2 (en) 2012-06-28 2017-01-03 Evoqua Water Technologies Llc Potting method
GB2520871B (en) 2012-09-26 2020-08-19 Evoqua Water Tech Llc Membrane securement device
AU2013231145B2 (en) 2012-09-26 2017-08-17 Evoqua Water Technologies Llc Membrane potting methods
WO2014052139A1 (en) 2012-09-27 2014-04-03 Evoqua Water Technologies Llc Gas scouring apparatus for immersed membranes
SG11201502552SA (en) * 2012-10-01 2015-04-29 Entegris Inc Purifier cassette
EP3052221B1 (en) 2013-10-02 2022-12-14 Rohm & Haas Electronic Materials Singapore Pte. Ltd Device for repairing a membrane filtration module
NL2011614C2 (en) * 2013-10-15 2015-04-16 X Flow Bv End cap filtration module, filtration module and filtration system.
US9574792B2 (en) * 2014-05-29 2017-02-21 Keltech, Inc. Modular manifold for a tankless water heater
US9505500B2 (en) * 2015-01-23 2016-11-29 Ametek, Inc. Inerting fuel systems, methods, and apparatuses
LT3053640T (en) * 2015-02-05 2019-04-10 Holger Knappe Modular distribution head for membrane housing body
SG11201707794WA (en) * 2015-04-24 2017-11-29 Evoqua Water Tech Llc Structures for normalizing multi-planar flow distribution within an electrochemical separation system
WO2017011068A1 (en) * 2015-07-14 2017-01-19 Evoqua Water Technologies Llc Aeration device for filtration system
CN108472592A (en) * 2016-01-21 2018-08-31 三菱化学株式会社 Water header, membrane module unit and method for treating water
CN106669422A (en) * 2016-03-01 2017-05-17 海南立昇净水科技实业有限公司 Composite tube, assembling type filtering membrane set, membrane filtering unit and system
CN106669425A (en) * 2016-03-01 2017-05-17 海南立昇净水科技实业有限公司 Composite end cover, split mounting type filtering membrane group, membrane filtering unit and system
WO2019016167A1 (en) * 2017-07-17 2019-01-24 Castrol Limited Replaceable fluid container with removable manifold
EP3473329A1 (en) * 2017-10-19 2019-04-24 3M Innovative Properties Company Integrated membrane module rack
DE102017127933A1 (en) 2017-11-27 2019-05-29 Sartorius Stedim Biotech Gmbh Disposable device for the filtration of a large volume of medium
CN109224694A (en) * 2018-06-23 2019-01-18 郭绍华 Handle the hollow fiber film assembly and its application structure of gas dusty
CN109692535B (en) * 2018-12-18 2024-03-22 广东风和洁净工程有限公司 Powdery resource recovery device
RU2754624C2 (en) * 2019-02-12 2021-09-06 Общество С Ограниченной Ответственностью "Аквафор" (Ооо "Аквафор") Liquid purifying system
CN115837220A (en) * 2023-02-20 2023-03-24 天津膜天膜科技股份有限公司 Frameless split pressure type membrane assembly and membrane filtration equipment system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178136A1 (en) * 2001-11-05 2004-09-16 Tohru Taniguchi Hollow fiber membrane module
US20070102339A1 (en) * 2005-11-08 2007-05-10 Cote Pierre L Membrane filtration apparatus and process optionally for sand filter retrofit
US7255788B2 (en) * 2002-02-07 2007-08-14 Mitsubishi Rayon Co., Ltd. Catchment header and membrane module unit
US20130168307A1 (en) * 2010-07-07 2013-07-04 Kristin Helen Blume Drivarbekk Pressure vessel with multi membrane modules in parallel
US20140174998A1 (en) * 2011-08-23 2014-06-26 Dow Global Technologies Llc Filtration assembly including multiple modules sharing common hollow fiber support
US20140231367A1 (en) * 2011-09-30 2014-08-21 Evoqua Water Technologies Llc Improved manifold arrangement
US9022224B2 (en) * 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system

Family Cites Families (938)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US403507A (en) 1889-05-21 Petek j
US511995A (en) 1894-01-02 Air and water purifier
US256008A (en) 1882-04-04 Posoelain and china paste boxes
US285321A (en) 1883-09-18 Pottery mold
US1997074A (en) 1930-01-24 1935-04-09 John Stogdell Stokes Method of and apparatus for molding synthetic resinous articles
US2080783A (en) 1932-03-09 1937-05-18 Celluloid Corp Method of molding thermoplastic materials
US2105700A (en) 1936-07-13 1938-01-18 William D Ramage Process for purification of beverages
US2732357A (en) 1949-11-25 1956-01-24 Suspensions of polymeric chlorotri-
US2843038A (en) 1954-01-06 1958-07-15 Robert O Manspeaker Bakery apparatus and method
US2926086A (en) 1957-07-30 1960-02-23 Universal Oil Prod Co Stabilization of non-distilled alcoholic beverages and the resulting product
US3068655A (en) 1959-12-01 1962-12-18 Standard Dredging Corp Mobile pneumatic breakwater
US3183191A (en) 1960-04-19 1965-05-11 Hach Chemical Co Stain and rust removing composition
NL269380A (en) 1960-09-19
GB996195A (en) 1961-08-03 1965-06-23 Aero Hydraulics Ltd Improvements in methods and apparatus for mixing and dispersing substances and for maintaining dispersions and emulsions
US3139401A (en) 1962-01-05 1964-06-30 Hach Chemical Co Method for removing rust from water softeners
US3198636A (en) 1962-06-08 1965-08-03 Norda Essential Oil And Chemic Preservation of wine
US3246761A (en) 1962-10-30 1966-04-19 Bryan John Gordon Liquid treating apparatus
US3191674A (en) 1963-06-18 1965-06-29 Westinghouse Electric Corp Shell-and-tube type heat exchangers
NL137371C (en) 1963-08-02
US3492698A (en) 1965-12-22 1970-02-03 Du Pont Centrifugal casting apparatus for forming a cast wall member extending transversely across an elongated bundle of substantially parallel hollow filaments of a fluid permeation separation apparatus
NL136034C (en) 1965-12-22
US3462362A (en) 1966-07-26 1969-08-19 Paul Kollsman Method of reverse osmosis
DE1642833A1 (en) 1967-03-16 1971-04-29 Yves Henderyckx Method and device for separating one or more components from a solution
AT284384B (en) 1967-04-15 1970-09-10 Ennio Carraro Hand tool for cleaning vertical flat surfaces, in particular window panes, glass walls or the like.
SE320270B (en) 1967-11-04 1970-02-02 Inoue Michiro
US3556305A (en) 1968-03-28 1971-01-19 Amicon Corp Composite membrane and process for making same
US3472765A (en) 1968-06-10 1969-10-14 Dorr Oliver Inc Membrane separation in biological-reactor systems
US3591010A (en) 1968-06-10 1971-07-06 Pall Corp Filter having a microporous layer attached thereto
US3625827A (en) 1968-09-27 1971-12-07 Monsanto Co Water-soluble polymer-enzyme products
US3505215A (en) 1968-10-10 1970-04-07 Desalination Systems Method of treatment of liquids by reverse osmosis
US3628775A (en) 1969-02-14 1971-12-21 Atara Corp Sewage-treating system
CH511629A (en) 1969-03-27 1971-08-31 Brasco Sa Device for filtering a pressurized fluid
US3700561A (en) 1969-08-11 1972-10-24 Pabst Brewing Co Recovery of enzymes
US3592450A (en) 1969-12-03 1971-07-13 George Maxwell Rippon Fluid circulator
US3693406A (en) 1970-01-26 1972-09-26 Air Intake Renu Method for inspecting filters
US3708071A (en) 1970-08-05 1973-01-02 Abcor Inc Hollow fiber membrane device and method of fabricating same
US3700591A (en) 1970-09-24 1972-10-24 Us Interior Cleaning of used membrane with oxalic acid
US3654147A (en) 1971-03-16 1972-04-04 Biospherics Inc Nitrate removal from sewage
US3728256A (en) 1971-06-22 1973-04-17 Abcor Inc Crossflow capillary dialyzer
US3763055A (en) 1971-07-07 1973-10-02 Us Interior Microporous support for reverse osmosis membranes
GB1412983A (en) 1971-11-30 1975-11-05 Debell & Richardson Method of producing porous plastic materials
US3795609A (en) 1971-12-28 1974-03-05 Administrator Environmental Pr Reverse osmosis-neutralization process for treating mineral contaminated waters
US3791631A (en) 1972-02-17 1974-02-12 Mm Ind Inc Method and apparatus for making colored expanded foam articles
US3804258A (en) 1972-08-08 1974-04-16 V Okuniewski Filtering device
US3843809A (en) 1972-08-23 1974-10-22 E Luck Manufacture of alcoholic beverages
JPS535077Y2 (en) 1973-02-14 1978-02-08
US3937015A (en) 1973-05-03 1976-02-10 Nippondenso Co., Ltd. Pleated filter in the exhaust manifold
US3955998A (en) 1973-06-21 1976-05-11 Phillips Petroleum Company Aqueous gels for plugging fractures in subterranean formation and production of said aqueous gels
US3962095A (en) 1973-06-22 1976-06-08 Sandoz Ltd. Dialyser cartridge
FR2236537B1 (en) 1973-07-11 1977-12-23 Rhone Poulenc Ind
US3876738A (en) 1973-07-18 1975-04-08 Amf Inc Process for producing microporous films and products
US3982095A (en) 1973-10-04 1976-09-21 Searle Cardio-Pulmonary Systems Inc. Respiratory humidifier
US3992301A (en) 1973-11-19 1976-11-16 Raypak, Inc. Automatic flushing system for membrane separation machines such as reverse osmosis machines
US3912624A (en) 1974-03-26 1975-10-14 Universal Oil Prod Co Cleaning of membrane surfaces
US3968192A (en) 1974-04-19 1976-07-06 The Dow Chemical Company Method of repairing leaky hollow fiber permeability separatory devices
US4016078A (en) * 1975-03-06 1977-04-05 The Dow Chemical Company Header block for tubular membrane permeator modules
US4105731A (en) 1975-05-02 1978-08-08 Nippon Zeon Co., Ltd. Method of embedding an end of a bundle of thread-like bodies in a molding material and controlling capillary action by said material
JPS51128880A (en) 1975-05-02 1976-11-10 Nippon Zeon Co Method of securing yarn bundle end to case
IT1040274B (en) 1975-07-30 1979-12-20 Consiglio Nazionale Ricerche PROCEDURE FOR PREPARATION OF ANISOTROPIC MEMBRANES SUPPORTED FOR REVERSE OSMOSIS BASED ON SYNTHETIC POLYAMIDES
GB1496805A (en) 1975-09-19 1978-01-05 Unilever Ltd Dithionite composition
JPS5278677A (en) 1975-12-25 1977-07-02 Hitachi Ltd Separation of membrane
US4105556A (en) 1976-02-18 1978-08-08 Combustion Engineering, Inc. Liquid waste processing system
JPS535077A (en) 1976-07-06 1978-01-18 Nourinshiyou Shiyokuhin Sougou Membrane separation method
US4192750A (en) 1976-08-09 1980-03-11 Massey-Ferguson Inc. Stackable filter head unit
US4247498A (en) 1976-08-30 1981-01-27 Akzona Incorporated Methods for making microporous products
US4107043A (en) 1977-03-03 1978-08-15 Creative Dispensing Systems, Inc. Inlet conduit fluid filter
US4169873A (en) 1976-12-13 1979-10-02 Aero-Hydraulics Corporation Fluid circulating device
JPS53108882A (en) 1977-03-04 1978-09-22 Kuraray Co Ltd Back washing method for hollow filament membrane
US4203848A (en) 1977-05-25 1980-05-20 Millipore Corporation Processes of making a porous membrane material from polyvinylidene fluoride, and products
US4138460A (en) 1977-06-10 1979-02-06 Cordis Dow Corp. Method for forming tubesheets on hollow fiber tows and forming hollow fiber bundle assemblies containing same
US4519909A (en) 1977-07-11 1985-05-28 Akzona Incorporated Microporous products
JPS6025194B2 (en) 1977-08-04 1985-06-17 株式会社クラレ centrifugal gluing device
US4157899A (en) 1977-10-11 1979-06-12 Cea Carter-Day Company Pulsed backflush air filter
US4183890A (en) 1977-11-30 1980-01-15 Monsanto Company Method of cutting hollow filaments embedded in resinous mass
US4204961A (en) 1978-03-15 1980-05-27 Cusato John Jr Filter apparatus with cleaning function
US4227295A (en) 1978-07-27 1980-10-14 Baxter Travenol Laboratories, Inc. Method of potting the ends of a bundle of hollow fibers positioned in a casing
US4193780A (en) 1978-03-20 1980-03-18 Industrial Air, Inc. Air filter construction
IT1114714B (en) 1978-03-25 1986-01-27 Akzo Nv POLYURETHANE INCORPORATION MASS AND RELATED PRODUCTION PROCESS
NO153836C (en) 1978-05-15 1986-06-04 Pall Corp HYDROFILE, ALCOHOLUALLY SOLUBLE POLYAMIDE MEMBRANES AND PROCEDURES FOR THEIR PREPARATION.
US4315819A (en) 1978-06-12 1982-02-16 Monsanto Company Hollow fiber permeator apparatus
JPS54162684A (en) 1978-06-14 1979-12-24 Ebara Infilco Co Ltd Preliminary treating method for contaminated membrane
JPS5535910A (en) 1978-09-06 1980-03-13 Teijin Ltd Permselectivity composite membrane and preparation thereof
SE447633B (en) 1978-09-19 1986-12-01 Albany Int Corp PROCEDURE FOR SEPARATION AND MODULE FOR IMPLEMENTATION OF THE PROCEDURE
US4190419A (en) 1978-09-22 1980-02-26 Miles Laboratories, Inc. Device for detecting serum bilirubin
DE7829409U1 (en) 1978-10-02 1986-07-31 Akzo Gmbh, 5600 Wuppertal Dialysis membrane hollow thread with a larger exchange surface
US4188817A (en) 1978-10-04 1980-02-19 Standard Oil Company (Indiana) Method for detecting membrane leakage
JPS5554004A (en) 1978-10-18 1980-04-21 Teijin Ltd Selective permeable membrane and its manufacturing
US4367139A (en) 1978-11-16 1983-01-04 Monsanto Company Hollow fiber permeator
EP0012557B1 (en) 1978-12-06 1983-02-16 Abcor, Inc. Hydrophilic polymeric membranes, process for their preparation, their use as ultrafiltration membranes, and precursor membranes adapted to be converted thereto
US4187263A (en) 1979-01-15 1980-02-05 Aero-Hydraulics Corporation Liquid circulating device
JPS5599703A (en) 1979-01-26 1980-07-30 Matsushita Electric Ind Co Ltd Preparation of anisotropic resin magnet
BE874961A (en) 1979-03-20 1979-09-20 Studiecentrum Kernenergi PROCESS FOR PREPARING A MEMBRANE, THEREFORE PREPARED MEMBRANE, ELECTROCHEMICAL CELL WITH SUCH MEMBRANE AND USING SUCH ELECTROchemical cell
JPS55129155A (en) 1979-03-28 1980-10-06 Sakai Chem Ind Co Ltd Production of catalyst
JPS55129107A (en) 1979-03-28 1980-10-06 Nitto Electric Ind Co Ltd Washing method of selective permeable membrane
US4243525A (en) 1979-03-29 1981-01-06 Fmc Corporation Method for reducing the formation of trihalomethanes in drinking water
DE2915730A1 (en) 1979-04-19 1980-10-30 Kronsbein Dirk Gustav CARTRIDGE FILTER
US4218324A (en) 1979-05-03 1980-08-19 Textron, Inc. Filter element having removable filter media member
US4226921A (en) 1979-07-16 1980-10-07 The Dow Chemical Company Selective plugging of broken fibers in tubesheet-hollow fiber assemblies
US4248648A (en) 1979-07-18 1981-02-03 Baxter Travenol Laboratories, Inc. Method of repairing leaks in a hollow capillary fiber diffusion device
JPS5621604A (en) 1979-07-27 1981-02-28 Toray Ind Inc Separation of liquid by semipermeable composite membrane
US4271026A (en) 1979-10-09 1981-06-02 Air Products And Chemicals, Inc. Control of activated sludge wastewater treating process for enhanced phosphorous removal
CA1115433A (en) 1979-10-26 1981-12-29 David C.I. Pollock Method for protecting a bioreactor pressurized head tank against extreme surges of influent waste water
US4367140A (en) 1979-11-05 1983-01-04 Sykes Ocean Water Ltd. Reverse osmosis liquid purification apparatus
JPS5695304A (en) 1979-12-28 1981-08-01 Teijin Ltd Perm selective composite membrane and its production
US4323453A (en) 1980-01-03 1982-04-06 Monsanto Company Tube sheets for permeators
JPS5944884B2 (en) 1980-02-26 1984-11-01 株式会社クラレ Hollow fiber end sealing method and device
JPS56121685A (en) 1980-02-29 1981-09-24 Ebara Infilco Co Ltd Treatment of liquid containing iron ion and manganese ion
US4629563B1 (en) 1980-03-14 1997-06-03 Memtec North America Asymmetric membranes
US4369605A (en) 1980-07-11 1983-01-25 Monsanto Company Methods for preparing tube sheets for permeators having hollow fiber membranes
DE3026718A1 (en) 1980-07-15 1982-02-04 Akzo Gmbh, 5600 Wuppertal HOLLOW FIBER MEMBRANE FOR PLASMA SEPARATION
JPS5735907A (en) 1980-07-15 1982-02-26 Toyobo Co Ltd Fluid separating element
US4889620A (en) * 1980-09-29 1989-12-26 Water Pollution Control Corporation In place gas cleaning of diffusion elements
JPS5770144A (en) 1980-10-17 1982-04-30 Asahi Glass Co Ltd Organic solution of fluorinated copolymer containing carboxyl group
US4384474A (en) 1980-10-30 1983-05-24 Amf Incorporated Method and apparatus for testing and using membrane filters in an on site of use housing
US4389363A (en) 1980-11-03 1983-06-21 Baxter Travenol Laboratories, Inc. Method of potting microporous hollow fiber bundles
JPS57102202A (en) 1980-12-18 1982-06-25 Toyobo Co Ltd Fluid separator
US4496470A (en) 1981-01-12 1985-01-29 The B. F. Goodrich Company Cleaning composition
US4545862A (en) 1981-03-17 1985-10-08 W. L. Gore & Associates, Inc. Desalination device and process
JPS57153414A (en) 1981-03-18 1982-09-22 Toshiba Corp Resin molded transformer with fuse
JPS57190697A (en) 1981-05-18 1982-11-24 Serupoole Kogyo Kk Air diffusion apparatus
JPS6059933B2 (en) 1981-05-22 1985-12-27 工業技術院長 Polymer membrane with maleic anhydride residues
US4371427A (en) 1981-06-16 1983-02-01 Phillips Petroleum Company Extractive distillation
US4387763A (en) 1981-09-14 1983-06-14 Honeywell Inc. Multistage thermostat using multirate integral action and exponential setpoint change
JPS5888007A (en) 1981-11-20 1983-05-26 Asahi Glass Co Ltd Separation of liquid mixture
US4707266A (en) 1982-02-05 1987-11-17 Pall Corporation Polyamide membrane with controlled surface properties
US4702840A (en) 1982-02-05 1987-10-27 Pall Corporation Charge modified polyamide membrane
US4405688A (en) 1982-02-18 1983-09-20 Celanese Corporation Microporous hollow fiber and process and apparatus for preparing such fiber
US4415452A (en) 1982-03-18 1983-11-15 Heil Richard W Method and apparatus for treating organic wastewater
US4812235A (en) 1982-03-29 1989-03-14 Hr Textron, Inc. Filter element assembly replaceable mesh pack
DE3381585D1 (en) 1982-03-29 1990-06-28 Hr Textron Inc FILTERS WITH INTERCHANGEABLE FILTER PACKS.
US4540490A (en) 1982-04-23 1985-09-10 Jgc Corporation Apparatus for filtration of a suspension
US4431545A (en) 1982-05-07 1984-02-14 Pall Corporation Microporous filter system and process
US4476112A (en) 1982-05-10 1984-10-09 Stay Fresh, Inc. Food preservative composition
WO1983003984A1 (en) 1982-05-13 1983-11-24 Gerhard Kunz Method for the treatment of a liquid phase, particularly method for desalting aqueous solutions, as well as device for its implementation
US4414172A (en) 1982-05-21 1983-11-08 Filtertek, Inc. Process and apparatus for sealing a plurality of filter elements
JPS5952507A (en) 1982-06-03 1984-03-27 デ−・エル・エム・ドクトル・ミユラ−・アクチエンゲゼルシヤフト Apparatus for continuously concentrating suspension
US4462855A (en) 1982-06-28 1984-07-31 Celanese Corporation Process for bonding polyester reinforcement elements to rubber
JPS5928971A (en) 1982-08-06 1984-02-15 川澄化学工業株式会社 Hollow yarn type mass transfer apparatus and production thereof
US4414113A (en) 1982-09-29 1983-11-08 Ecodyne Corporation Liquid purification using reverse osmosis hollow fibers
US4476015A (en) 1982-11-02 1984-10-09 V. J. Ciccone & Associates, Inc. Multiple element fluid separation device
JPS5992094A (en) 1982-11-18 1984-05-28 Agency Of Ind Science & Technol Anaerobic digestion of organic waste matter
GB2132366B (en) 1982-12-27 1987-04-08 Brunswick Corp Method and device for testing the permeability of membrane filters
US4467001A (en) 1982-12-27 1984-08-21 Albany International Corp. Process and device for applying, drying and curing a coating on filaments
CA1221645A (en) 1983-02-28 1987-05-12 Yoshihiro Okano Filtration apparatus using hollow fiber-membrane
DE3317396A1 (en) 1983-05-13 1984-11-15 Henkel KGaA, 4000 Düsseldorf USE OF COLOYERS FROM ESTERS AND AMIDES OF ACRYLIC AND / OR METHACRYLIC ACIDS AS STOCK POINTS LOW FOR PARAFFIN SOLUTIONS
GB8313635D0 (en) 1983-05-17 1983-06-22 Whatman Reeve Angel Plc Porosimeter
CH673275A5 (en) 1983-05-20 1990-02-28 Christ Ag
JPH0657302B2 (en) 1983-07-13 1994-08-03 株式会社東芝 Backwashing method for hollow fiber membrane filters
US4636296A (en) 1983-08-18 1987-01-13 Gerhard Kunz Process and apparatus for treatment of fluids, particularly desalinization of aqueous solutions
US4650586A (en) 1983-09-26 1987-03-17 Kinetico, Inc. Fluid treatment system
US4756875A (en) 1983-09-29 1988-07-12 Kabushiki Kaisha Toshiba Apparatus for filtering water containing radioactive substances in nuclear power plants
WO1985001449A1 (en) 1983-09-30 1985-04-11 Memtec Limited Cleaning of filters
AU563321B2 (en) 1983-09-30 1987-07-02 U.S. Filter Wastewater Group, Inc. Cleaning of filters
US4888115A (en) 1983-12-29 1989-12-19 Cuno, Incorporated Cross-flow filtration
JPS60206412A (en) 1984-03-28 1985-10-18 Nitto Electric Ind Co Ltd Method for repairing end surface of hollow yarn membrane separation module
US4749487A (en) 1984-04-11 1988-06-07 Syrinx Research Pty. Ltd. High flux membrane
JPS60176300U (en) 1984-04-23 1985-11-21 海洋工業株式会社 water pump
US4539940A (en) 1984-04-26 1985-09-10 Young Richard K Tube and shell heat exchanger with annular distributor
US4609465A (en) 1984-05-21 1986-09-02 Pall Corporation Filter cartridge with a connector seal
JPS60260628A (en) 1984-06-08 1985-12-23 Idemitsu Petrochem Co Ltd Thermoplastic resin molding coated with plasma polymer film
SE441236B (en) 1984-06-18 1985-09-23 Gambro Dialysatoren PROCEDURE FOR MANUFACTURING A DEVICE CONTAINING A HALFIBER BUNCH
DE3568946D1 (en) 1984-07-09 1989-04-27 Millipore Corp Improved electrodeionization apparatus and method
JPS6125903U (en) 1984-07-24 1986-02-15 株式会社 伊藤鉄工所 filtration equipment
DE3428307A1 (en) 1984-08-01 1986-02-13 Filterwerk Mann & Hummel Gmbh, 7140 Ludwigsburg DISPLAY DEVICE FOR THE POLLUTION LEVEL OF SUCTION AIR FILTERS
JPS6197005A (en) 1984-10-18 1986-05-15 Mitsubishi Rayon Co Ltd Manufacture of hollow yarn membrane module
JPS6197006A (en) 1984-10-18 1986-05-15 Daicel Chem Ind Ltd Repairing method of hollow yarn type module
US5192478A (en) 1984-10-22 1993-03-09 The Dow Chemical Company Method of forming tubesheet for hollow fibers
JPS61107905A (en) 1984-10-30 1986-05-26 Toshiba Corp Filter
JPS61110411A (en) 1984-11-02 1986-05-28 Denki Onkyo Co Ltd Transformer
JPS6338884Y2 (en) 1984-12-15 1988-10-13
US5198162A (en) 1984-12-19 1993-03-30 Scimat Limited Microporous films
GB2168981B (en) 1984-12-27 1988-07-06 Asahi Chemical Ind Porous fluorine resin membrane and process for preparation thereof
JPS61167406A (en) 1985-01-19 1986-07-29 Sumitomo Bakelite Co Ltd Process for bundling and fixing separation membrane
JPS61167407A (en) 1985-01-19 1986-07-29 Sumitomo Bakelite Co Ltd Preparation of hollow yarn filtration membrane module
JPS61171504A (en) 1985-01-25 1986-08-02 Agency Of Ind Science & Technol Apparatus for centrifugal molding of yarn bundle
JPS61192309A (en) 1985-02-21 1986-08-26 Asahi Chem Ind Co Ltd Hollow yarn type module
US5024762A (en) 1985-03-05 1991-06-18 Memtec Limited Concentration of solids in a suspension
AU576424B2 (en) 1985-03-05 1988-08-25 U.S. Filter Wastewater Group, Inc. Concentration of solids in a suspension
EP0213157B1 (en) 1985-03-05 1992-10-28 Memtec Limited Concentration of solids in a suspension
US4642182A (en) 1985-03-07 1987-02-10 Mordeki Drori Multiple-disc type filter with extensible support
JPS61222510A (en) 1985-03-28 1986-10-03 Nitto Electric Ind Co Ltd Hollow yarn membrane module and its preparation
WO1986005705A1 (en) 1985-03-28 1986-10-09 Memtec Limited Cooling hollow fibre cross-flow separators
US4704324A (en) 1985-04-03 1987-11-03 The Dow Chemical Company Semi-permeable membranes prepared via reaction of cationic groups with nucleophilic groups
ATE53510T1 (en) 1985-04-10 1990-06-15 Memtec Ltd VARIABLE VOLUME FILTER OR CONCENTRATOR.
JPS61242607A (en) 1985-04-22 1986-10-28 Asahi Chem Ind Co Ltd Preparation of hollow yarn type module having slit
US4610789A (en) 1985-04-22 1986-09-09 Ppg Industries, Inc. Filtration cartridge and reactor
JPS61249505A (en) 1985-04-27 1986-11-06 Toyobo Co Ltd Method for preserving fluid separator
CA1247329A (en) 1985-05-06 1988-12-28 Craig J. Brown Fluid treatment process and apparatus
JPS61257203A (en) 1985-05-10 1986-11-14 Terumo Corp Hydrophilic porous membrane and its preparation
JPS61263605A (en) 1985-05-17 1986-11-21 Toshiba Corp Hollow yarn membrane device
JPS61274709A (en) 1985-05-29 1986-12-04 Ebara Corp Hollow yarn membrane filter apparatus
US4660411A (en) 1985-05-31 1987-04-28 Reid Philip L Apparatus for measuring transmission of volatile substances through films
JPS61291007A (en) 1985-06-17 1986-12-20 Toyobo Co Ltd Hollow yarn type separation membrane element
JPS61293504A (en) 1985-06-24 1986-12-24 Kurita Water Ind Ltd Separation device utilizing hollow yarn membrane
JPS624408A (en) 1985-06-28 1987-01-10 Toshiba Corp Filtration device using hollow yarn membrane
DE3529175A1 (en) 1985-08-14 1987-02-19 Gft Ingenieurbuero DEVICE FOR SEPARATING MIXED MEANS OF THE PERVAPORATION METHOD
US4656865A (en) 1985-09-09 1987-04-14 The Dow Chemical Company System for analyzing permeation of a gas or vapor through a film or membrane
JPS6268828A (en) 1985-09-19 1987-03-28 Youbea Le-Ron Kogyo Kk Transparent cassette liner
US4908114A (en) 1985-09-27 1990-03-13 William Ayers Mobile atom insertion reaction, mobile atom transmissive membrane for carrying out the reaction, and reactor incorporating the mobile atom transmissive membrane
US4876006A (en) 1985-10-08 1989-10-24 Ebara Corporation Hollow fiber filter device
JPS62114609A (en) 1985-11-15 1987-05-26 Ebara Corp Hollow yarn membrane filter
US4824563A (en) 1985-12-04 1989-04-25 Kabushiki Kaisha Meidensha Equipment for treating waste water
US4687578A (en) 1985-12-12 1987-08-18 Monsanto Company Fluid separation membranes
JPH0613088B2 (en) 1985-12-13 1994-02-23 ダイセル化学工業株式会社 Aseptic leak detection method for hollow fiber type modules
JPS62144708A (en) 1985-12-19 1987-06-27 Daicel Chem Ind Ltd Hollow yarn mold membrane module
DE3546091A1 (en) 1985-12-24 1987-07-02 Kernforschungsz Karlsruhe CROSS-CURRENT MICROFILTER
JPS62163708A (en) 1986-01-13 1987-07-20 Ebara Corp Method for backwashing hollow yarn filter
US4779448A (en) 1986-01-28 1988-10-25 Donaldson Company, Inc. Photoelectric bubble detector apparatus and method
JPH06104753B2 (en) 1986-02-04 1994-12-21 旭化成工業株式会社 Non-adsorbing hydrophilic hollow fiber porous membrane
JPH0742861B2 (en) 1986-03-10 1995-05-15 ヤマハ発動機株式会社 Internal combustion engine intake system
US4752421A (en) 1986-04-01 1988-06-21 Kaiyo Kogyo Kabushiki Kaisha Method of supplying air masses and producing jets of water
JPS62237908A (en) 1986-04-07 1987-10-17 Kurita Water Ind Ltd Filter module for hollow yarn type membrane separation equipment
JPS62250908A (en) 1986-04-24 1987-10-31 Asahi Chem Ind Co Ltd Hollow yarn type filter
US4774132A (en) 1986-05-01 1988-09-27 Pall Corporation Polyvinylidene difluoride structure
JPH0741147B2 (en) 1986-05-09 1995-05-10 株式会社東芝 Hollow fiber membrane filtration device
JPS62187606U (en) 1986-05-21 1987-11-28
DE3617724A1 (en) 1986-05-27 1987-12-03 Akzo Gmbh METHOD FOR DETERMINING THE BLOW POINT OR THE BIGGEST PORE OF MEMBRANES OR FILTER MATERIALS
JPS631602A (en) 1986-06-19 1988-01-06 Nippon Filing Co Ltd Material storage system
FR2600265B1 (en) 1986-06-20 1991-09-06 Rhone Poulenc Rech DRY AND HYDROPHILIC SEMI-PERMEABLE MEMBRANES BASED ON VINYLIDENE POLYFLUORIDE
FR2601182B1 (en) 1986-07-07 1992-01-24 Electricite De France PROCESS FOR THE RADIOACTIVE DECONTAMINATION OF A LUBRICANT
US4839048A (en) 1986-07-08 1989-06-13 Pall Corporation Container for pressurized fluid
US4670145A (en) 1986-07-08 1987-06-02 E. I. Du Pont De Nemours And Company Multiple bundle fluid separation apparatus
ES2014516A6 (en) 1986-07-11 1990-07-16 Mentec Ltd Cleaning of filters.
JPS6338884A (en) 1986-07-30 1988-02-19 大同特殊鋼株式会社 Thermal treatment equipment
EP0280717A4 (en) 1986-09-04 1988-10-24 Memtec Ltd Cleaning of hollow fibre filters.
US5094750A (en) 1986-09-12 1992-03-10 Memtec Limited Hollow fibre filter cartridge and header
EP0282539B1 (en) 1986-09-12 1992-01-29 Memtec Limited Hollow fibre filter cartridge and header
JPS6393307A (en) 1986-10-09 1988-04-23 Asahi Chem Ind Co Ltd Hollow yarn-type filter
JPH089668B2 (en) 1986-10-14 1996-01-31 東レ株式会社 Hydrophilized film and method for producing the same
DE3636583A1 (en) 1986-10-28 1988-05-05 Draegerwerk Ag METHOD FOR PRODUCING A HOLLOW FIBER FABRIC EXCHANGE MODULE AND MODULE PRODUCED BY THIS METHOD
JPS63143905A (en) 1986-12-08 1988-06-16 Toshiba Corp Hollow yarn membrane filter
JPH0515451Y2 (en) 1986-12-09 1993-04-23
US4781831A (en) 1986-12-19 1988-11-01 Goldsmith Robert L Cross-flow filtration device with filtrate flow conduits and method of forming same
US4834998A (en) 1986-12-22 1989-05-30 Heublein, Inc. Ultrafiltration of red wines
JPS63171607A (en) 1986-12-30 1988-07-15 Sumitomo Electric Ind Ltd Method for sealing end of hollow yarn membrane
DE3855721T2 (en) 1987-01-20 1997-05-15 Terumo Corp POROUS POLYPROPYLENE MEMBRANE AND METHOD FOR THE PRODUCTION THEREOF
JPS63180254A (en) 1987-01-21 1988-07-25 Matsushita Electric Ind Co Ltd Private branch exchange
CN1004400B (en) 1987-01-27 1989-06-07 东北电力学院 Filtration method by mediums and equipment thereof
GB8704142D0 (en) 1987-02-23 1987-04-01 Whitford Plastics Ltd Protective surface treatment
US4911838A (en) 1987-02-27 1990-03-27 Kabushiki Kobe Seiko Sho Pluri-tubular aerator
US4867883A (en) 1987-04-21 1989-09-19 Hampton Roads Sanitation District Of The Commonwealth Of Virginia High-rate biological waste water treatment process using activated sludge recycle
US4846970A (en) 1987-06-22 1989-07-11 Osmonics, Inc. Cross-flow filtration membrane test unit
WO1989000880A1 (en) 1987-07-28 1989-02-09 Minntech Corporation Filter cartridge
WO1989000879A1 (en) 1987-07-30 1989-02-09 Toray Industries, Inc. Porous polymetrafluoroethylene membrane, separating apparatus using same, and process for their production
JPS6438197A (en) 1987-07-31 1989-02-08 Nishihara Env San Res Co Ltd Treatment of sewage
US4784771A (en) 1987-08-03 1988-11-15 Environmental Water Technology, Inc. Method and apparatus for purifying fluids
JPH0627215B2 (en) 1987-09-17 1994-04-13 テルモ株式会社 Method for producing hydrophilic polyvinylidene fluoride porous membrane
JPH01144409A (en) 1987-09-18 1989-06-06 Pennwalt Corp Hydrophylic sequence copolymer of vinylidene fluoride and n-alkylacrylamide and its production
JPH0610277B2 (en) 1987-09-28 1994-02-09 ジャパンゴアテックス株式会社 Membrane material
JPH054030Y2 (en) 1987-12-04 1993-02-01
JPH01151906A (en) 1987-12-08 1989-06-14 Ube Ind Ltd Production of hollow yarn membrane module cartridge
DE3803341A1 (en) 1988-02-04 1989-08-10 Sartorius Gmbh FLUID-OPEN-ENDING SITES HAVING POROESE MEMBRANE FILTERS AND THEIR USE
US5221478A (en) 1988-02-05 1993-06-22 The Dow Chemical Company Chromatographic separation using ion-exchange resins
US4904426A (en) 1988-03-31 1990-02-27 The Dow Chemical Company Process for the production of fibers from poly(etheretherketone)-type polymers
GB8807825D0 (en) 1988-03-31 1988-05-05 Romicon Inc Multiple membrane filtration systems
US5227101A (en) 1988-03-31 1993-07-13 The Dow Chemical Company Process of making microporous membranes from poly(etheretherketone)-type polymers and low melting point crystallizable polymers
DE3824359A1 (en) 1988-04-07 1989-10-19 Bayer Ag COMPOSITE MEMBRANES, METHOD FOR THEIR PRODUCTION AND THEIR USE
US4800019A (en) 1988-04-22 1989-01-24 Union Carbide Corporation Tubesheet for semipermeable membrane devices
US5147553A (en) 1988-05-04 1992-09-15 Ionics, Incorporated Selectively permeable barriers
US4966699A (en) 1988-05-25 1990-10-30 Terumo Kabushiki Kaisha Hollow fiber membrane fluid processor
US4886601A (en) 1988-05-31 1989-12-12 Japan Organo Co., Ltd. Column filter using bundles of long fibers
JP2527462B2 (en) 1988-06-03 1996-08-21 ダイセル化学工業株式会社 Hollow fiber ultrafiltration membrane module automatic leak detection and alarm system
JPH0217924A (en) 1988-07-04 1990-01-22 Toshiba Corp Method for backwashing hollow yarn membrane filter apparatus
GB8816216D0 (en) 1988-07-07 1988-08-10 Fairey Arlon Ltd Filters
JPH0217925A (en) 1988-07-07 1990-01-22 Toshiba Corp Method for backwashing hollow yarn membrane filter apparatus
JP2830080B2 (en) 1988-07-08 1998-12-02 株式会社デンソー Filter element and manufacturing method thereof
JPH0226625A (en) 1988-07-14 1990-01-29 Toshiba Corp Back washing method of hollow fiber membrane filter
JPH0760197B2 (en) 1988-07-21 1995-06-28 株式会社荏原製作所 Backwashing method for hollow fiber membrane filters
JPH0240296A (en) 1988-07-30 1990-02-09 Nippon Sharyo Seizo Kaisha Ltd Apparatus and method for treating waste water
US5075065A (en) 1988-08-01 1991-12-24 Chemical Fabrics Corporation Method for manufacturing of cast films at high productivity
US5043113A (en) 1988-08-05 1991-08-27 Hoechst Celanese Corp. Process for formation of halogenated polymeric microporous membranes having improved strength properties
DE3829766A1 (en) 1988-09-01 1990-03-22 Akzo Gmbh METHOD FOR PRODUCING MEMBRANES
US4963304A (en) 1988-09-26 1990-10-16 The Dow Chemical Company Process for preparing microporous membranes
JP2529726B2 (en) 1988-10-14 1996-09-04 ダイセル化学工業株式会社 Hollow fiber type membrane module
JPH02126922A (en) 1988-11-04 1990-05-15 Mitsui Eng & Shipbuild Co Ltd Back washing method of separating membrane
FR2639248B1 (en) 1988-11-21 1990-12-28 Lyonnaise Eaux HOUSING FOR FILTER MODULES WITH FIBER BEAMS
JPH02144132A (en) 1988-11-25 1990-06-01 Mitsubishi Rayon Co Ltd Porous polyolefin film
JPH0671540B2 (en) 1988-12-20 1994-09-14 株式会社東芝 Cleaning method of hollow fiber membrane filter
JPH0657304B2 (en) 1988-12-27 1994-08-03 三浦工業株式会社 Membrane modular water treatment system
US4919815A (en) 1989-02-06 1990-04-24 Zimpro/Passavant Inc. Two-stage anaerobic/aerobic treatment process
US4999038A (en) 1989-02-07 1991-03-12 Lundberg Bo E H Filter unit
DE3904544A1 (en) 1989-02-15 1990-08-16 Fraunhofer Ges Forschung POLYMINE MEMBRANES BASED ON POLYVINYLIDENE FLUORIDE, METHOD FOR THE PRODUCTION AND USE THEREOF
US4952317A (en) 1989-03-10 1990-08-28 Bradley Culkin Device and method for filtering a colloidal suspension
JPH02241523A (en) 1989-03-16 1990-09-26 Sumitomo Bakelite Co Ltd Hollow yarn membrane module
JP2856763B2 (en) 1989-04-20 1999-02-10 株式会社東芝 Backwashing device for hollow fiber membrane filter
JP2773231B2 (en) 1989-04-25 1998-07-09 東洋紡績株式会社 Leak test method for hydrophobic hollow fiber type porous membrane
NL8901090A (en) 1989-04-28 1990-11-16 X Flow Bv METHOD FOR MANUFACTURING A MICROPOROUS MEMBRANE AND SUCH MEMBRANE
US4988444A (en) 1989-05-12 1991-01-29 E. I. Du Pont De Nemours And Company Prevention of biofouling of reverse osmosis membranes
US5005430A (en) 1989-05-16 1991-04-09 Electric Power Research Institute, Inc. Automated membrane filter sampler
DE3916511A1 (en) 1989-05-20 1990-12-13 Seitz Filter Werke MEMBRANE FILTER DEVICE FOR MICRO AND ULTRAFILTRATION OF FLUIDS IN THE CROSSFLOW PROCESS
JPH0317647A (en) 1989-06-15 1991-01-25 Fuji Photo Film Co Ltd Packaging material for photosensitive material
JPH0318373A (en) 1989-06-16 1991-01-25 Terumo Corp Method and device for detecting leak of hollow fiber membrane type liquid processor
JPH0736039B2 (en) 1989-06-27 1995-04-19 株式会社荏原製作所 Method for removing suspended impurities from condensate by mixed bed condensate desalination system
JPH0338298A (en) 1989-07-03 1991-02-19 Pub Works Res Inst Ministry Of Constr Fluidized-bed type waste water treatment apparatus
US5138870A (en) 1989-07-10 1992-08-18 Lyssy Georges H Apparatus for measuring water vapor permeability through sheet materials
DE3923128A1 (en) 1989-07-13 1991-01-24 Akzo Gmbh FLAX OR CAPILLARY MEMBRANE BASED ON A HOMOGENEOUS MIXTURE OF POLYVINYLIDE FLUORIDE AND OF A SECOND, BY CHEMICAL IMPROVEMENT, HYDROPHILIBLABLE POLYMERS
US5015275A (en) 1989-07-14 1991-05-14 The Dow Chemical Company Isotropic microporous syndiotactic polystyrene membranes and processes for preparing the same
DE3926059C2 (en) 1989-08-07 1998-01-29 Basf Ag Phosphonomethylated polyvinylamines, process for their preparation and their use
JPH0645185B2 (en) 1989-08-30 1994-06-15 ユニチカ株式会社 Porous composite sheet and method for producing the same
US5080770A (en) 1989-09-11 1992-01-14 Culkin Joseph B Apparatus and method for separating particles
JPH03110445A (en) 1989-09-25 1991-05-10 Fuji Photo Film Co Ltd Completeness testing method
DE69029850D1 (en) 1989-09-29 1997-03-13 Memtec Ltd COLLECTION LINE FOR FILTER CARTRIDGES
US5059317A (en) 1989-10-02 1991-10-22 Dietrich Marius Transportable apparatus for producing drinking water
US5227063A (en) 1989-10-03 1993-07-13 Zenon Environmental Inc. Tubular membrane module
EP0519132A1 (en) 1989-10-18 1992-12-23 Exxon Research And Engineering Company Hollow fiber module
US5079272A (en) 1989-11-30 1992-01-07 Millipore Corporation Porous membrane formed from interpenetrating polymer network having hydrophilic surface
US5158721A (en) 1989-11-30 1992-10-27 Millipore Corporation Porous membrane formed from interpenetrating polymer network having hydrophilic surface
FR2655642B1 (en) 1989-12-11 1992-02-28 Anjou Rech WATER TREATMENT PLANT BY A TANGENTIAL FILTER LOOP.
DE3943249C2 (en) 1989-12-29 1993-11-18 Seitz Filter Werke Closed filter element
DE4000978A1 (en) 1990-01-16 1991-07-18 Basf Ag METHOD FOR REMOVING HEAVY METALIONS FROM WINE AND WINE-BASED BEVERAGES
DE69104629T3 (en) 1990-01-23 2004-08-12 Kaldnes Miljoteknologi A/S METHOD AND REACTOR FOR PURIFYING WATER.
US5066375A (en) 1990-03-19 1991-11-19 Ionics, Incorporated Introducing and removing ion-exchange and other particulates from an assembled electrodeionization stack
ES2126571T3 (en) 1990-04-20 1999-04-01 Usf Filtration Limited MICROPOROUS MODULAR FILTER ASSEMBLIES.
US5364527A (en) 1990-06-20 1994-11-15 Heinz Zimmermann Apparatus and process for treating water
IT1242864B (en) 1990-06-26 1994-05-18 Perdomini Spa AUTOMATIC CONTROL AND OPTIMIZATION SYSTEM OF ULTRAFILTRATION PROCEDURES IN INDUSTRIAL FOOD AND / OR CHEMICAL AND / OR CHEMICAL-PHARMACEUTICAL PLANTS AND ULTRAFILTRATION PROCEDURE USING SUCH SYSTEM.
DE4117281C2 (en) 1990-06-29 1996-02-22 Gore Enterprise Holdings Inc Hydrophilized, microporous membrane made of polytetrafluoroethylene and process for its production
US5104546A (en) 1990-07-03 1992-04-14 Aluminum Company Of America Pyrogens separations by ceramic ultrafiltration
US5639373A (en) 1995-08-11 1997-06-17 Zenon Environmental Inc. Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5248424A (en) 1990-08-17 1993-09-28 Zenon Environmental Inc. Frameless array of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US5104535A (en) 1990-08-17 1992-04-14 Zenon Environmental, Inc. Frameless array of hollow fiber membranes and module containing a stack of arrays
US5182019A (en) 1990-08-17 1993-01-26 Zenon Environmental Inc. Cartridge of hybrid frameless arrays of hollow fiber membranes and module containing an assembly of cartridges
FR2666245B1 (en) 1990-08-31 1992-10-23 Lyonnaise Eaux METHOD FOR CONTROLLING THE OPERATING MODES OF AN AUTOMATIC WATER FILTRATION APPARATUS ON TUBULAR MEMBRANES.
JP2904564B2 (en) 1990-08-31 1999-06-14 オルガノ株式会社 Method of scrubbing filtration tower using hollow fiber membrane
JPH0739921Y2 (en) 1990-09-03 1995-09-13 株式会社ミツテック Track buckling prevention device
JP2858913B2 (en) 1990-09-26 1999-02-17 オルガノ株式会社 Filtration method using hollow fiber membrane
US5102550A (en) 1990-11-01 1992-04-07 The United States Of America As Represented By The Secretary Of The Navy Apparatus and process for desalination of seawater
USH1045H (en) 1990-11-19 1992-05-05 The United States Of America As Represented By The Secretary Of The Army Air bubble leak detection test device
JPH04187224A (en) 1990-11-20 1992-07-03 Mitsubishi Rayon Co Ltd Production of fluorine-based porous hollow yarn membrane
JPH0815597B2 (en) 1990-11-22 1996-02-21 株式会社クボタ Operating method of sewage treatment equipment
US5176953A (en) 1990-12-21 1993-01-05 Amoco Corporation Oriented polymeric microporous films
JPH04250898A (en) 1990-12-28 1992-09-07 Yanmar Diesel Engine Co Ltd Batch-wise waste water treating device
US5069065A (en) 1991-01-16 1991-12-03 Mobil Oil Corporation Method for measuring wettability of porous rock
JP2706853B2 (en) 1991-01-16 1998-01-28 ハウス食品株式会社 Membrane filter integrity inspection method and inspection device
JPH04256425A (en) 1991-02-05 1992-09-11 Nippon Millipore Kogyo Kk Back washing device for filtration
JPH04256424A (en) 1991-02-06 1992-09-11 Nitto Denko Corp Hollow fiber membrane module
GB2253572B (en) 1991-02-11 1994-12-14 Aljac Engineering Limited Flow device in fluid circuits
US5677360A (en) 1991-02-13 1997-10-14 Mitsubishi Rayon Co., Ltd. Hydrophilic polymer alloy, fiber and porous membrane comprising this polymer alloy, and methods for preparing them
JPH084722B2 (en) 1991-02-20 1996-01-24 株式会社荏原製作所 Membrane separation device
EP0510328B1 (en) 1991-03-07 1995-10-04 Kubota Corporation Apparatus for treating activated sludge
JP3115624B2 (en) 1991-03-20 2000-12-11 ダイセル化学工業株式会社 Hollow fiber membrane module and method of manufacturing the same
FR2674448B1 (en) 1991-03-26 1994-03-25 Dumez Lyonnaise Eaux METHOD FOR CLEANING MESOPOROUS TUBULAR MEMBRANES OF ULTRAFILTRATION.
JP3093811B2 (en) 1991-04-08 2000-10-03 旭化成工業株式会社 Polyvinylidene fluoride resin film and method for producing the same
EP0509152A1 (en) 1991-04-17 1992-10-21 Ecotechniek B.V. Method and apparatus for processing manure
JPH04317793A (en) 1991-04-17 1992-11-09 Kubota Corp Water treatment apparatus
DE4113420A1 (en) 1991-04-25 1992-10-29 Bayer Ag Hollow polyacrylonitrile fibres, useful for membrane processes - mfd. by dry-wet or wet spinning from special spinning solns. contg. PAN and non-solvent etc., with simultaneous extrusion of core fluid
WO1992019547A1 (en) 1991-05-01 1992-11-12 Level Valley Dairy Company Wastewater treatment system
JPH04334530A (en) 1991-05-10 1992-11-20 Kubota Corp Filter apparatus
DE4117422C1 (en) 1991-05-28 1992-11-12 Willi Prof. Dr.-Ing. 7432 Bad Urach De Dettinger Monitoring contamination level of filter, partic. for hydraulic fluids - in which signal is produced which correlates with quotient of two pressure differences and evaluating device produces signal to change filter when quotient reaches given value
DE4119040C2 (en) 1991-06-10 1997-01-02 Pall Corp Method and device for testing the operating state of filter elements
US5211823A (en) 1991-06-19 1993-05-18 Millipore Corporation Process for purifying resins utilizing bipolar interface
TW216773B (en) 1991-06-21 1993-12-01 Johnson Filtration Systems
US5156738A (en) * 1991-06-21 1992-10-20 Johnson Filtration Systems Inc. Apparatus for uniformly distributing gas and/or liquid in an underdrain lateral system
JP2659475B2 (en) 1991-06-27 1997-09-30 株式会社クボタ Solid-liquid separator
JP3200095B2 (en) 1991-07-24 2001-08-20 旭化成株式会社 Hydrophilic heat-resistant film and method for producing the same
EP0641246B1 (en) 1991-08-07 2000-03-08 USF Filtration Limited Concentration of solids in a suspension using hollow fibre membranes
US5186821A (en) 1991-09-03 1993-02-16 D. Thomas Murphy Wastewater treatment process with cooperating velocity equalization, aeration and decanting means
JP2622044B2 (en) 1991-10-04 1997-06-18 東レ株式会社 Hollow fiber membrane module and method of using the same
US5135663A (en) 1991-10-18 1992-08-04 Loctite Corporation Method of treating (meth)acrylic monomer-containing wastewater
US5137631A (en) 1991-10-22 1992-08-11 E. I. Du Pont De Nemours And Company Multiple bundle permeator
US5180407A (en) 1991-11-14 1993-01-19 Demarco Thomas M Vacuum loader with vaned and short tangential separator
JPH05137977A (en) 1991-11-15 1993-06-01 Kubota Corp Detection of separation membrane breakage for membrane filter
US5192442A (en) 1991-12-02 1993-03-09 Zimpro Passavant Environmental Systems, Inc. Multiple zone batch treatment process
JP3111101B2 (en) 1991-12-03 2000-11-20 旭化成工業株式会社 Leak inspection method for membrane separation equipment
TW207964B (en) 1991-12-16 1993-06-21 Permea Inc
JPH05161831A (en) 1991-12-16 1993-06-29 Mitsubishi Kasei Corp Hollow yarn membrane module and separation method using the same
WO1993013489A1 (en) 1991-12-24 1993-07-08 Sierra Semiconductor Corporation An anti-aliasing method for polynomial curves using integer arithmetics
JPH05184884A (en) 1992-01-08 1993-07-27 Mitsubishi Rayon Co Ltd Method for backwashing hollow fiber membrane module
US5269919A (en) 1992-01-17 1993-12-14 Von Medlin Wallace Self-contained water treatment system
US5556591A (en) 1992-01-21 1996-09-17 Millipore S.A. Membrane sealing techniques using thermoplastic polymers
US5203405A (en) 1992-02-03 1993-04-20 Phillips Petroleum Company Two pass shell and tube heat exchanger with return annular distributor
US5198116A (en) 1992-02-10 1993-03-30 D.W. Walker & Associates Method and apparatus for measuring the fouling potential of membrane system feeds
DE69316325T2 (en) 1992-02-12 1998-05-28 Mitsubishi Rayon Co HOLLOW FIBER MEMBRANE MODULE
FR2697446B1 (en) 1992-11-03 1994-12-02 Aquasource Process for the treatment of a fluid containing suspended and dissolved materials, using separation membranes.
US5411663A (en) 1992-03-20 1995-05-02 Micron Separations, Inc. Alcohol-insoluble nylon microporous membranes
JPH05279447A (en) 1992-03-31 1993-10-26 Mitsubishi Rayon Co Ltd Silicon-based block copolymer and membrane made thereof
JPH05285348A (en) 1992-04-04 1993-11-02 Nitto Denko Corp Vertical type hollow fiber membrane module
JPH05305221A (en) 1992-04-28 1993-11-19 Toshiba Corp Membrane separation water treatment apparatus
EP0592066B1 (en) 1992-05-01 1997-09-03 Memtec Japan Limited Apparatus for testing membrane filter integrity
WO1993023152A1 (en) 1992-05-18 1993-11-25 Minntech Corporation Hollow fiber filter cartridge and method of manufacture
JPH0627215A (en) 1992-07-08 1994-02-04 Matsushita Electric Ind Co Ltd Portable gps receiver
CA2100643A1 (en) 1992-08-14 1994-02-15 Guido Sartori Fluorinated polyolefin membranes for aromatics/saturates separation
JPH0671120A (en) 1992-08-27 1994-03-15 Akai Electric Co Ltd Method for detecting blinding of filter
MY109609A (en) 1992-09-14 1997-03-31 Dowmus Pty Ltd Method and apparatus for disposal and treatment of waste
JP3250274B2 (en) 1992-10-08 2002-01-28 東レ株式会社 Filter
US5244579A (en) 1992-10-09 1993-09-14 Zenon Environmental Inc. Transportable reverse osmosis water purification unit
US5275766A (en) 1992-10-30 1994-01-04 Corning Incorporate Method for making semi-permeable polymer membranes
US5918264A (en) 1992-11-02 1999-06-29 Usf Filtration And Separations Group Inc. Fiber monitoring system
US5320760A (en) 1992-12-07 1994-06-14 E. I. Du Pont De Nemours And Company Method of determining filter pluggage by measuring pressures
JPH06170364A (en) 1992-12-07 1994-06-21 Suido Kiko Kk Filter device using permeation membrane
FR2699424B1 (en) 1992-12-21 1995-02-03 Dumez Lyonnaise Eaux Hollow fiber filtration module and its manufacturing process.
JPH06190250A (en) 1992-12-25 1994-07-12 Mitsubishi Rayon Co Ltd Washing method for membrane module
US5262054A (en) 1992-12-30 1993-11-16 E. I. Du Pont De Nemours And Company Process for opening reverse osmosis membranes
US5401401A (en) 1993-01-13 1995-03-28 Aquaria Inc. Hang on tank canister filter
US5316671A (en) 1993-01-21 1994-05-31 Murphy D Thomas Submersible aeration train and aeration apparatus for biological purification of sewage
US5374353A (en) 1993-01-21 1994-12-20 Murphy; D. Thomas Aeration train and aeration apparatus for biological purification of wastewater
JP3010951B2 (en) 1993-01-25 2000-02-21 株式会社クボタ Immersion filtration device
JPH06238273A (en) 1993-02-17 1994-08-30 Mitsubishi Rayon Eng Co Ltd Membrane separation-type water purification
US5468397A (en) 1993-03-16 1995-11-21 Memtec America Corporation Gas backwash of pleated filters
JP3289376B2 (en) 1993-03-26 2002-06-04 栗田工業株式会社 Membrane separation device
US5389260A (en) 1993-04-02 1995-02-14 Clack Corporation Brine seal for tubular filter
JPH06285496A (en) 1993-04-07 1994-10-11 Ebara Infilco Co Ltd Hollow fiber membrane separation biological treatment and device for organic drainage
JPH06292820A (en) 1993-04-09 1994-10-21 Kurita Water Ind Ltd Membrane separation device
US5514278A (en) 1993-04-12 1996-05-07 Khudenko; Boris M. Counterflow microbiological processes
US5361625A (en) 1993-04-29 1994-11-08 Ylvisaker Jon A Method and device for the measurement of barrier properties of films against gases
US5297420A (en) 1993-05-19 1994-03-29 Mobil Oil Corporation Apparatus and method for measuring relative permeability and capillary pressure of porous rock
US5401405A (en) 1993-05-24 1995-03-28 Davis Water & Waste Industries, Inc. Combined air/water backwash in a travelling bridge filter
FR2705734B1 (en) 1993-05-25 1995-06-30 Snecma Method and device for improving the safety of fluid filters.
IL105875A (en) 1993-06-01 1998-04-05 Aga Ab Selective clogging of failed fibers
JPH06343837A (en) 1993-06-02 1994-12-20 Ebara Infilco Co Ltd Hollow fiber membrane module
JPH09220569A (en) 1993-06-02 1997-08-26 Kubota Corp Solid-liquid separator
US5425415A (en) 1993-06-15 1995-06-20 Abb Lummus Crest Inc. Vertical heat exchanger
JP3273665B2 (en) 1993-06-17 2002-04-08 株式会社東芝 Hollow fiber membrane filtration device and cleaning method thereof
JP2946072B2 (en) 1993-07-09 1999-09-06 三菱レイヨン株式会社 Filtration method
JP3306794B2 (en) 1993-07-30 2002-07-24 冨士ダイス株式会社 Frame member and method of manufacturing the same
DE4326603C2 (en) 1993-08-07 1995-11-02 Kummer Karl Dankwart Dipl Ing Sewage treatment plant with aeration tank, process for wastewater treatment
US5358732A (en) 1993-08-10 1994-10-25 Albert Einstein College Of Medicine Of Yeshiva University Method and system for removing impurities from aliments
JPH07112185A (en) 1993-08-26 1995-05-02 Nitto Denko Corp Waste water treating device and washing method therefor
JP2721787B2 (en) 1993-09-06 1998-03-04 日本メムテック株式会社 Backwashing method for hollow fiber membrane module
JP3342928B2 (en) 1993-09-13 2002-11-11 オルガノ株式会社 Hanging equipment for filtration equipment using hollow fiber modules
CN1068238C (en) 1993-10-27 2001-07-11 Crc废物处理及排污控制有限公司 Method and apparatus for recovering water from sewer main
US5419816A (en) 1993-10-27 1995-05-30 Halox Technologies Corporation Electrolytic process and apparatus for the controlled oxidation of inorganic and organic species in aqueous solutions
JP3453173B2 (en) 1993-11-12 2003-10-06 三菱レイヨン株式会社 Hollow fiber membrane module with diffuser
JPH07136471A (en) 1993-11-15 1995-05-30 Toray Ind Inc Hollow yarn membrane module
FR2713220B1 (en) 1993-11-30 1996-03-08 Omnium Traitement Valorisa Installation of water purification with submerged filter membranes.
JPH07155758A (en) 1993-12-07 1995-06-20 Mitsubishi Rayon Co Ltd Waste water treating device
JPH07155564A (en) 1993-12-10 1995-06-20 Mitsubishi Rayon Co Ltd Hollow yarn membrane module and its production
US5403479A (en) 1993-12-20 1995-04-04 Zenon Environmental Inc. In situ cleaning system for fouled membranes
JP3160140B2 (en) 1993-12-22 2001-04-23 オルガノ株式会社 Filtration device using hollow fiber module
JP3341428B2 (en) 1993-12-24 2002-11-05 栗田工業株式会社 Operating method of immersion membrane device
JP3341427B2 (en) 1993-12-24 2002-11-05 栗田工業株式会社 Immersion membrane equipment
JP2763262B2 (en) 1993-12-24 1998-06-11 日本碍子株式会社 Backwashing method of ceramic membrane
JP3289457B2 (en) 1993-12-28 2002-06-04 栗田工業株式会社 Immersion membrane equipment
JPH07185268A (en) 1993-12-28 1995-07-25 Toray Ind Inc Hollow fiber filter membrane element and module
TW255835B (en) 1994-01-07 1995-09-01 Kubota Kk Filtration membrane module
JPH07204635A (en) 1994-01-21 1995-08-08 I B Ii:Kk Water purifier
JPH07251043A (en) 1994-01-28 1995-10-03 Toto Ltd Filtering method and filter device
US6036030A (en) 1994-02-02 2000-03-14 Bechtel Bwxt Idaho Llc Method for producing a selectively permeable separation module
JPH07236819A (en) 1994-02-25 1995-09-12 Nok Corp Air bubble disperser
DK175061B1 (en) 1994-03-02 2004-05-10 Apv Pasilac As Membrane filtration Event
DE4406952A1 (en) 1994-03-03 1995-09-07 Bayer Ag Process for concentrating paint overspray
US5501798A (en) 1994-04-06 1996-03-26 Zenon Environmental, Inc. Microfiltration enhanced reverse osmosis for water treatment
JP3486451B2 (en) 1994-04-12 2004-01-13 三菱レイヨン株式会社 Hollow fiber membrane module
JPH07289860A (en) 1994-04-25 1995-11-07 Toray Ind Inc Cleaning method of hollow fiber membrane module
US5556541A (en) 1994-04-26 1996-09-17 Filtertek, Inc. Process for making hermetically sealed filter units and filters made thereby
JPH07303895A (en) 1994-05-16 1995-11-21 Kubota Corp Water treatment apparatus
JP3396085B2 (en) 1994-05-24 2003-04-14 テルモ株式会社 Hollow fiber membrane type blood processor
JP3697719B2 (en) 1994-05-26 2005-09-21 松下電工株式会社 Water purifier and method for cleaning porous filtration membrane in water purifier
JPH07313850A (en) 1994-05-30 1995-12-05 Kubota Corp Method for backward washing immersion-type ceramic membrane separator
US5491023A (en) 1994-06-10 1996-02-13 Mobil Oil Corporation Film composition
JP3094407B2 (en) 1994-06-29 2000-10-03 株式会社石垣 Concentrator using hollow fiber membrane
CN2204898Y (en) 1994-06-29 1995-08-09 鹿乔 Proportional flow controlling valve
US5531900A (en) 1994-07-07 1996-07-02 University Of Arizona Modification of polyvinylidene fluoride membrane and method of filtering
US5846425A (en) 1994-07-22 1998-12-08 Whiteman; George R. Methods for treatment of waste streams
KR100378500B1 (en) 1994-07-28 2003-05-22 밀리포어 코포레이션 Porous composite menbrane and process
JPH0839089A (en) 1994-08-02 1996-02-13 Toto Ltd Purifying tank and operation thereof
US5451317A (en) 1994-09-08 1995-09-19 Kubota Corporation Solid-liquid separator
AUPM800694A0 (en) 1994-09-09 1994-10-06 Memtec Limited Cleaning of hollow fibre membranes
US5470469A (en) 1994-09-16 1995-11-28 E. I. Du Pont De Nemours And Company Hollow fiber cartridge
FR2726568B1 (en) 1994-11-08 1996-12-06 Atochem Elf Sa POLYMER MIXTURES COMPRISING A HALOGEN POLYMER AND COMPATIBILIZED BY A GRAFT ALIPHATIC POLYESTER
AUPM957194A0 (en) 1994-11-18 1994-12-15 Act Electricity & Water Wastewater treatment method and plant
CN2236049Y (en) 1994-12-01 1996-09-25 张利军 Three-way stop valve
JP3194684B2 (en) 1995-01-27 2001-07-30 ダイセル化学工業株式会社 Natural water membrane purification method
DE19503060A1 (en) 1995-02-01 1996-08-08 Henkel Ecolab Gmbh & Co Ohg Cleaning procedure for membrane filters
ES2282370T3 (en) 1995-03-15 2007-10-16 U.S. Filter Wastewater Group, Inc. FILTRATION SUPERVISION AND CONTROL SYSTEM.
AU700335B2 (en) 1995-03-22 1998-12-24 Mechano Chemical Research Institute Ltd. Method for desalinating salts-containing water and apparatus therefor
TW283657B (en) 1995-03-31 1996-08-21 Mitsui Eng & Shipbuilding Co Membrane device and its processing device
EP0820344B1 (en) 1995-04-14 1999-11-03 Aquasource Method for operating and controlling a bank of filtration membrane modules, and bank of modules therefor
US5597732A (en) 1995-04-14 1997-01-28 Bryan-Brown; Michael Composting apparatus
JP3446399B2 (en) 1995-05-31 2003-09-16 日立プラント建設株式会社 Immersion type membrane separation device and membrane separation method using the same
JPH08332357A (en) 1995-06-06 1996-12-17 Toray Ind Inc Method and apparatus for regenerating filter module
AU6251196A (en) 1995-06-07 1996-12-30 Gore Hybrid Technologies, Inc. An implantable containment apparatus for a therapeutical dev ice and method for loading and reloading the device therein
GB9511842D0 (en) 1995-06-10 1995-08-09 North West Water Group Plc Filter
JPH09890A (en) 1995-06-21 1997-01-07 Mitsubishi Kakoki Kaisha Ltd Flat membrane separation device
US5906742A (en) 1995-07-05 1999-05-25 Usf Filtration And Separations Group Inc. Microfiltration membranes having high pore density and mixed isotropic and anisotropic structure
JP3349015B2 (en) 1995-07-25 2002-11-20 株式会社日立製作所 Filtration device
JPH0938648A (en) 1995-08-02 1997-02-10 Japan Organo Co Ltd Treatment of blow water of power plant
US5670053A (en) 1995-08-07 1997-09-23 Zenon Environmental, Inc. Purification of gases from water using reverse osmosis
US5766479A (en) 1995-08-07 1998-06-16 Zenon Environmental Inc. Production of high purity water using reverse osmosis
US6863823B2 (en) 2001-03-23 2005-03-08 Zenon Environmental Inc. Inverted air box aerator and aeration method for immersed membrane
US6685832B2 (en) 1995-08-11 2004-02-03 Zenon Environmental Inc. Method of potting hollow fiber membranes
US6656356B2 (en) 1998-10-09 2003-12-02 Zenon Environmental Inc. Aerated immersed membrane system
US5944997A (en) 1995-08-11 1999-08-31 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
US6193890B1 (en) 1995-08-11 2001-02-27 Zenon Environmental Inc. System for maintaining a clean skein of hollow fibers while filtering suspended solids
DE69633806T2 (en) 1995-08-11 2005-05-12 Zenon Environmental Inc., Oakville Device for removing permeate from a liquid substrate with several components
US7087173B2 (en) 1995-08-11 2006-08-08 Zenon Environmental Inc. Inverted cavity aerator for membrane module
JP3137568B2 (en) 1995-09-07 2001-02-26 オルガノ株式会社 Method of scrubbing filtration tower using hollow fiber membrane
JPH0975682A (en) 1995-09-13 1997-03-25 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane integrated module
JP3294979B2 (en) 1995-09-14 2002-06-24 株式会社精工技研 Optical fiber ferrule assembly with angle index indicating direction of polarization plane of optical fiber
JP3583201B2 (en) 1995-09-14 2004-11-04 三菱レイヨン株式会社 Cleaning method for separation membrane module
AU696221B2 (en) 1995-09-21 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber membrane module
JP3671473B2 (en) 1995-10-05 2005-07-13 栗田工業株式会社 Immersion membrane separator
JP3671477B2 (en) 1995-10-12 2005-07-13 栗田工業株式会社 Cleaning method for submerged membrane separator
JPH09103655A (en) 1995-10-13 1997-04-22 Kanegafuchi Chem Ind Co Ltd Hollow fiber membrane filter
RU2119817C1 (en) 1995-10-23 1998-10-10 Акционерное общество открытого типа "Полимерсинтез" Porous fluorocarbon membrane, method of its preparation, and cartridge filter based on this membrane
JPH09187628A (en) 1995-10-31 1997-07-22 Nikkiso Co Ltd Hollow fiber type module and its production
US5626755A (en) 1995-11-08 1997-05-06 Micronair, Inc. Method and apparatus for waste digestion using multiple biological processes
JPH09141063A (en) 1995-11-21 1997-06-03 Mitsubishi Rayon Co Ltd Hollow fiber membrane module
FR2741280B1 (en) 1995-11-22 1997-12-19 Omnium Traitement Valorisa METHOD FOR CLEANING A FILTER SYSTEM OF THE SUBMERSIBLE MEMBRANE TYPE
US5744037A (en) 1995-11-28 1998-04-28 Ebara Corporation Method of treating foul water
JPH09155345A (en) 1995-12-01 1997-06-17 Hitachi Plant Eng & Constr Co Ltd Filtration method for hollow fiber membrane module
JPH09192458A (en) 1996-01-22 1997-07-29 Nok Corp Hollow yarn membrane module
US6074718A (en) 1996-02-06 2000-06-13 Koch Membrane Systems, Inc. Self supporting hollow fiber membrane and method of construction
US5895570A (en) 1996-02-09 1999-04-20 United States Filter Corporation Modular filtering system
US6077435A (en) 1996-03-15 2000-06-20 Usf Filtration And Separations Group Inc. Filtration monitoring and control system
JPH09271641A (en) 1996-04-04 1997-10-21 Kanegafuchi Chem Ind Co Ltd Production of hollow yarn membrane module
JPH09313902A (en) 1996-05-28 1997-12-09 Kubota Corp Chemical cleaning method for immersion type ceramic membrane separation device
JPH09324067A (en) 1996-06-05 1997-12-16 Shin Etsu Polymer Co Ltd Production of porous fluororesin
EP0814116A1 (en) 1996-06-19 1997-12-29 Hüls Aktiengesellschaft Hydrophilic coating of polymeric substrate surfaces
US5989428A (en) 1996-06-21 1999-11-23 Goronszy; Mervyn Charles Controlling wastewater treatment by monitoring oxygen utilization rates
EP0813897A3 (en) 1996-06-21 1998-06-24 Japan Pionics Co., Ltd. Dust removing apparatus and dust removing method
JP3198923B2 (en) 1996-07-04 2001-08-13 栗田工業株式会社 Cleaning method of membrane
US5958243A (en) 1996-07-11 1999-09-28 Zenon Environmental Inc. Apparatus and method for membrane filtration with enhanced net flux
JP3248611B2 (en) 1996-07-12 2002-01-21 日立プラント建設株式会社 Solid-liquid separation device
JPH1033955A (en) 1996-07-23 1998-02-10 Hitachi Zosen Corp Membrane separation apparatus
JP3278577B2 (en) 1996-07-31 2002-04-30 セイコーインスツルメンツ株式会社 Adhesive for optical connector and ferrule and optical connector using the same
US5814234A (en) 1996-08-14 1998-09-29 Prosys Corporation Integrated soil and fluid decontamination system
US5866001A (en) 1996-08-21 1999-02-02 Essef Corporation Filament wound housing for a reverse osmosis filter cartridge
JPH10110657A (en) 1996-08-22 1998-04-28 Stanadyne Automot Corp Filter assembly having matching cartridge support structure
JPH1066972A (en) 1996-08-28 1998-03-10 Nomura Micro Sci Co Ltd Cleaning and regenerating method of separation membrane for water treatment
JPH1076264A (en) 1996-09-05 1998-03-24 Kubota Corp Sewage treatment apparatus using immersion type membrane separator
JPH1076144A (en) 1996-09-05 1998-03-24 Kurita Water Ind Ltd Membrane separator by hollow tubular membranes
US5786528A (en) 1996-09-10 1998-07-28 Millipore Corporation Water intrusion test for filters
JPH1085566A (en) 1996-09-11 1998-04-07 Hitachi Ltd Pleated type filter
US5888401A (en) 1996-09-16 1999-03-30 Union Camp Corporation Method and apparatus for reducing membrane fouling
JPH1085562A (en) 1996-09-17 1998-04-07 Asahi Chem Ind Co Ltd Union restricting orifice and filtration device
JPH1085565A (en) 1996-09-19 1998-04-07 Yamada Kogyo Kk Membrane separator
JP3686918B2 (en) 1996-10-16 2005-08-24 森村興産株式会社 Filtration device for solid-liquid separation of sewage, wastewater, etc.
USD396046S (en) 1996-10-24 1998-07-14 Allen Scheel Steer device for an outboard motor
AUPO377796A0 (en) 1996-11-21 1996-12-19 Memtec America Corporation Microporous membrane filtration and backwashing process
JP3436026B2 (en) 1996-12-02 2003-08-11 エヌオーケー株式会社 Hollow fiber membrane module
WO1999067013A1 (en) 1996-12-10 1999-12-29 Asahi Kasei Kogyo Kabushiki Kaisha Porous polyvinylidene fluoride resin film and process for producing the same
AUPO412596A0 (en) 1996-12-10 1997-01-09 Memtec America Corporation Improved microporous membrane filtration assembly
US6045899A (en) 1996-12-12 2000-04-04 Usf Filtration & Separations Group, Inc. Highly assymetric, hydrophilic, microfiltration membranes having large pore diameters
AT407291B (en) 1996-12-12 2001-02-26 Andreas Weissenbacher THREE-WAY VALVE
CA2639642C (en) 1996-12-20 2013-01-15 Siemens Water Technologies Corp. Scouring method
US20040232076A1 (en) 1996-12-20 2004-11-25 Fufang Zha Scouring method
DE59707888D1 (en) 1996-12-21 2002-09-05 Mat Adsorption Technologies Gm Membrane module with layered hollow fiber membranes
JPH10180048A (en) 1996-12-27 1998-07-07 Kurita Water Ind Ltd Immersion type membrane separator
DE19700493A1 (en) 1997-01-09 1998-07-16 Bayer Ag Methods for cleaning surfaces
US6146747A (en) 1997-01-22 2000-11-14 Usf Filtration And Separations Group Inc. Highly porous polyvinylidene difluoride membranes
USD396726S (en) 1997-02-06 1998-08-04 Abc Group Combined air intake manifold and filter
JP3887072B2 (en) 1997-02-12 2007-02-28 株式会社クラレ Method for cleaning hollow fiber membrane module and filtration device used in the method
JPH10225685A (en) 1997-02-17 1998-08-25 Hitachi Ltd Water purifying treatment device
JPH10235168A (en) 1997-02-24 1998-09-08 Mitsubishi Rayon Co Ltd Filter cleaning method
US6120688A (en) 1997-02-25 2000-09-19 Zenon Environmental, Inc. Portable reverse osmosis unit for producing drinking water
US6007712A (en) 1997-02-28 1999-12-28 Kuraray Co., Ltd. Waste water treatment apparatus
US6048454A (en) 1997-03-18 2000-04-11 Jenkins; Dan Oil filter pack and assembly
JPH10249171A (en) 1997-03-18 1998-09-22 Kanegafuchi Chem Ind Co Ltd Hollow yarn membrane module
US5733456A (en) 1997-03-31 1998-03-31 Okey; Robert W. Environmental control for biological nutrient removal in water/wastewater treatment
DE19718028C1 (en) 1997-04-29 1998-06-04 Hydac Filtertechnik Gmbh Fluid filter assembly having membrane modules arranged in parallel
FR2762834B1 (en) 1997-05-05 1999-06-04 Ete Europ De Traitement Des Ea PROCESS AND PLANT FOR THE TREATMENT OF WASTEWATER AND THEIR APPLICATION TO WINE EFFLUENTS
JP2945894B2 (en) 1997-05-16 1999-09-06 日本碍子株式会社 How to remove cleaning chemicals
JPH10328538A (en) 1997-05-29 1998-12-15 Japan Organo Co Ltd Method for cleaning hollow yarn membrane filtration tower
AUPO709797A0 (en) 1997-05-30 1997-06-26 Usf Filtration And Separations Group Inc. Predicting logarithmic reduction values
JP3859816B2 (en) 1997-06-16 2006-12-20 三菱レイヨン株式会社 Hollow fiber membrane filtration device
JPH1111494A (en) 1997-06-19 1999-01-19 Takako Hashimoto Bag assembly
NL1006390C2 (en) 1997-06-25 1998-12-29 Triqua B V Cross=flow filtration process
US5914039A (en) 1997-07-01 1999-06-22 Zenon Environmental Inc. Filtration membrane with calcined α-alumina particles therein
US6354444B1 (en) 1997-07-01 2002-03-12 Zenon Environmental Inc. Hollow fiber membrane and braided tubular support therefor
JPH1128467A (en) 1997-07-08 1999-02-02 Nkk Corp Immersion type membrane separation device
JPH1131025A (en) 1997-07-11 1999-02-02 Ricoh Co Ltd Pc card slot
JPH1133365A (en) 1997-07-17 1999-02-09 Asahi Chem Ind Co Ltd Method and apparatus for two-layer centrifugal bonding of hollow yarn membrane module
JPH1133367A (en) 1997-07-24 1999-02-09 Mitsubishi Rayon Co Ltd Hollow yarn membrane module
ID20637A (en) 1997-07-29 1999-02-04 Dcv Inc METHODS FOR INHIBITING THE FORMATION OF BIOGENIC SULFIDA
US6083381A (en) 1997-08-19 2000-07-04 Donaldson Company, Inc. Fuel filter with sediment drain valve and level indicator
US5997745A (en) 1998-04-08 1999-12-07 Zenon Environmental Inc. Method for producing high purity water using triple pass reverse osmosis (TPRO)
JPH1176769A (en) 1997-09-01 1999-03-23 Daicel Chem Ind Ltd Cleaning method of filter membrane module
JPH1176770A (en) 1997-09-03 1999-03-23 Kanegafuchi Chem Ind Co Ltd Operation of hollow yarn membrane module
JPH1190189A (en) 1997-09-19 1999-04-06 Inax Corp Method for cleaning membrane with liquid chemical
US6641733B2 (en) 1998-09-25 2003-11-04 U. S. Filter Wastewater Group, Inc. Apparatus and method for cleaning membrane filtration modules
US6017451A (en) 1997-10-01 2000-01-25 Kopf; Henry B. Spider fitting for multi-module filter system, and motive cart assembly comprising same
US6039872A (en) 1997-10-27 2000-03-21 Pall Corporation Hydrophilic membrane
US6083393A (en) 1997-10-27 2000-07-04 Pall Corporation Hydrophilic membrane
US6723758B2 (en) 1997-11-12 2004-04-20 Ballard Power Systems Inc. Graft polymeric membranes and ion-exchange membranes formed therefrom
JPH11156360A (en) 1997-11-25 1999-06-15 Kubota Corp Method for operation of water treatment plant
JPH11156166A (en) 1997-11-28 1999-06-15 Mitsubishi Heavy Ind Ltd Cleaning method for hollow fiber membrane module
US6290756B1 (en) 1997-12-03 2001-09-18 Praxair Technology, Inc. Hollow fiber membrane tubesheets of variable epoxy composition and hardness
USD400890S (en) 1997-12-03 1998-11-10 Gambardella C Bruce Automotive manifold
JPH11165200A (en) 1997-12-05 1999-06-22 Mitsubishi Rayon Co Ltd Method for treating sludge
JP3866399B2 (en) 1997-12-16 2007-01-10 住友重機械工業株式会社 Membrane filtration device and operation method thereof
JPH11179171A (en) 1997-12-25 1999-07-06 Toshiba Eng Co Ltd Hollow fiber membrane filter and its operation method
EP0937494A3 (en) 1998-02-23 2000-03-01 Kubota Corporation Membrane separation system
JPH11300177A (en) 1998-02-23 1999-11-02 Kubota Corp Membrane separator
US6066401A (en) 1998-02-25 2000-05-23 National Research Council Of Canada Wide-band two-layer antireflection coating for optical surfaces
CN1294622A (en) 1998-02-27 2001-05-09 三菱丽阳株式会社 Device and method for processing crude oil
US6126819A (en) 1998-03-13 2000-10-03 Rochem Ro-Wasserbehandlung Gmbh Apparatus for the treatment of liquids contaminated by foreign substances
EP0947237B1 (en) 1998-03-13 2004-05-26 Rochem Ultrafiltrations Systeme Gesellschaft für Abwasserreinigung mbH Apparatus for separating liquid media containing impurities
US5951878A (en) 1998-03-20 1999-09-14 Aqua-Aerobic Systems, Inc. Method and apparatus for cleaning filter material in a filter apparatus utilizing a suction generating nozzle
DE69927312T2 (en) 1998-03-20 2006-05-11 Toray Industries, Inc. Separating elements for fluids
CN1167632C (en) 1998-03-31 2004-09-22 三星工程株式会社 Waste water treatment method for removing organic matter and nitrogen, carrier used thereof and method for manufacturing the carrier
JP3682897B2 (en) 1998-04-24 2005-08-17 東洋濾紙株式会社 High strength hydrophilic polyvinylidene fluoride porous membrane and method for producing the same
US6074551A (en) 1998-04-30 2000-06-13 Culligan Water Conditioning Of Fairfield County Automatic cleaning system for a reverse osmosis unit in a high purity water treatment system
JPH11309351A (en) 1998-04-30 1999-11-09 Kuraray Co Ltd Washing of hollow fiber membrane module
DE29906389U1 (en) 1998-04-30 1999-06-17 Cramer Weberei Heek Nienborg G Multi-layer textile building material
JPH11319501A (en) 1998-05-08 1999-11-24 Toray Ind Inc Hollow fiber membrane module and use applications thereof
JPH11319507A (en) 1998-05-22 1999-11-24 Toray Ind Inc Hollow fiber membrane module
JPH11333265A (en) 1998-05-26 1999-12-07 Nitto Denko Corp Membrane module
JP3924926B2 (en) 1998-06-15 2007-06-06 東レ株式会社 Hollow fiber membrane filtration membrane module
JP2000079390A (en) 1998-06-30 2000-03-21 Kikai Kagaku Kenkyusho:Kk Purified water production
FR2781168B1 (en) 1998-07-17 2000-09-15 Polymem WATER TREATMENT PROCESS AND INSTALLATION
EP1900417B1 (en) 1998-07-21 2013-09-04 Toray Industries, Inc. Method of bacteriostasis or disinfection for permselective membrane
US6113782A (en) 1998-07-28 2000-09-05 Terumo Cardiovascular Systems Corporation Potting of tubular bundles in housing
JP2000051669A (en) 1998-08-05 2000-02-22 Hitachi Ltd Hollow fiber membrane module fitted with lower cap
JP4230569B2 (en) 1998-08-07 2009-02-25 三菱レイヨン株式会社 Hollow fiber membrane module
US6280626B1 (en) 1998-08-12 2001-08-28 Mitsubishi Rayon Co., Ltd. Membrane separator assembly and method of cleaning the assembly utilizing gas diffuser underneath the assembly
US6096213A (en) 1998-08-14 2000-08-01 3M Innovative Properties Company Puncture-resistant polyolefin membranes
US6217770B1 (en) 1998-08-14 2001-04-17 Atp International Apparatus and method for treatment of water
JP2000061466A (en) 1998-08-20 2000-02-29 Nkk Corp Device for treating membrane-filtration waste water and its operation
US5968357A (en) 1998-08-27 1999-10-19 Voith Sulzer Paper Technology North America, Inc. Screen basket having a removable and replaceable cylindrical mesh liner
JP2000070684A (en) 1998-08-27 2000-03-07 Japan Organo Co Ltd Backwashing of pleated membrane filter
US6071404A (en) 1998-08-31 2000-06-06 Tsui; Tommy Water treating device
UA72220C2 (en) 1998-09-08 2005-02-15 Байоенджініерінг Рісорсиз, Інк. Water-immiscible mixture solvent/cosolvent for extracting acetic acid, a method for producing acetic acid (variants), a method for anaerobic microbial fermentation for obtaining acetic acid (variants), modified solvent and a method for obtaining thereof
TWI222895B (en) 1998-09-25 2004-11-01 Usf Filtration & Separations Apparatus and method for cleaning membrane filtration modules
JP4069226B2 (en) 1998-09-28 2008-04-02 旭化成ケミカルズ株式会社 Method for fixing cartridge type module and tank type filtration device
MXPA01003215A (en) 1998-09-28 2005-07-25 D Lindbo Glen Wastewater treatment tank with influent gates and pre-react zone with an outwardly flared lower portion.
US7014173B2 (en) 1998-10-09 2006-03-21 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
EP2204353A3 (en) 1998-10-09 2010-09-15 Zenon Technology Partnership Cyclic aeration system for submerged membrane modules
US6706189B2 (en) 1998-10-09 2004-03-16 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
US6319411B1 (en) 1998-10-09 2001-11-20 Zenon Environmental Inc. Method of maintaining clean vertical skeins of hollow fiber membranes and system therefor
US6550747B2 (en) 1998-10-09 2003-04-22 Zenon Environmental Inc. Cyclic aeration system for submerged membrane modules
NL1010544C2 (en) 1998-11-13 2000-05-16 Stork Friesland Bv Method and device for removing suspended matter and salts from a liquid by means of membrane filtration.
US20040007527A1 (en) 1998-11-23 2004-01-15 Zenon Environmental Inc. Membrane filtration device and process
CA2290053C (en) 1999-11-18 2009-10-20 Zenon Environmental Inc. Immersed membrane module and process
WO2000030742A1 (en) 1998-11-23 2000-06-02 Zenon Environmental Inc. Water filtration using immersed membranes
JP4107453B2 (en) 1998-11-26 2008-06-25 旭化成ケミカルズ株式会社 Hollow fiber membrane cartridge
JP2000157845A (en) 1998-11-26 2000-06-13 Asahi Chem Ind Co Ltd Hollow fiber membrane cartridge and its fixing structure
JP2000157850A (en) 1998-11-27 2000-06-13 Nitto Denko Corp Separating membrane preservation liquid and separating membrane module
US6162020A (en) 1998-12-04 2000-12-19 Nca2Bioprocess, Inc. Airlift pump apparatus and method
GB9826575D0 (en) 1998-12-04 1999-01-27 Oladpa Tox
US6156200A (en) 1998-12-08 2000-12-05 Usf Filtration & Separations Group, Inc. Gas-scrubbed hollow fiber membrane module
JP4012640B2 (en) 1998-12-24 2007-11-21 旭化成ケミカルズ株式会社 Hollow fiber membrane module
JP2000189958A (en) 1998-12-28 2000-07-11 Maezawa Ind Inc Immersion type membrane filter device
DE19959916A1 (en) 1998-12-30 2000-07-20 Henkel Chile Sa Aqueous polymer dispersion, useful for adhesives and coatings, contains organic and/or inorganic filler particles and organic polymer particles that are formed in presence of at least one filler
US6432310B1 (en) 1999-01-22 2002-08-13 Nitto Denko Corporation Methods of running and washing spiral wound membrane module
JP2000233020A (en) 1999-02-15 2000-08-29 Nikkiso Co Ltd Washing method and washing device for blood treating device
JP2000237548A (en) 1999-02-17 2000-09-05 Tokyo Denki Komusho Co Ltd Hollow fiber membrane type heat storage tank water purifying device
JP4200576B2 (en) 1999-02-23 2008-12-24 トヨタ自動車株式会社 Fuel cell system
JP2000254459A (en) 1999-03-05 2000-09-19 Sumitomo Heavy Ind Ltd Method for washing solid-liquid separation element and solid-liquid separator
US6149817A (en) 1999-03-08 2000-11-21 Celgard Inc. Shell-less hollow fiber membrane fluid contactor
WO2000058038A1 (en) 1999-03-26 2000-10-05 Sumitomo Heavy Industries, Ltd. Method apparatus for disposal of chlorine-containing organic compound
UA72503C2 (en) 1999-04-04 2005-03-15 Сода Клаб (Со2) Са System and method for testing of integrity of filter and water treatment system (variants)
US6770202B1 (en) 1999-04-14 2004-08-03 Pall Corporation Porous membrane
AUPP985099A0 (en) 1999-04-20 1999-05-13 Usf Filtration And Separations Group Inc. Membrane filtration manifold system
US6322703B1 (en) 1999-04-20 2001-11-27 Asahi Kasei Kabushiki Kaisha Method for purifying aqueous suspension
AU762091B2 (en) 1999-04-20 2003-06-19 Evoqua Water Technologies Llc Membrane filtration manifold system
JP3572992B2 (en) 1999-04-21 2004-10-06 日立プラント建設株式会社 Operating method of membrane filtration device
JP2000317276A (en) 1999-05-12 2000-11-21 Zenken:Kk Filtering device
JP2000334276A (en) 1999-05-25 2000-12-05 Mitsubishi Rayon Co Ltd Operation of filtration device
US6221247B1 (en) 1999-06-03 2001-04-24 Cms Technology Holdings, Inc. Dioxole coated membrane module for ultrafiltration or microfiltration of aqueous suspensions
JP2000342932A (en) 1999-06-04 2000-12-12 Mitsubishi Rayon Co Ltd Potting method for separation membrane
US6627082B2 (en) 1999-06-10 2003-09-30 Envirogen, Inc. System and method for withdrawing permeate through a filter and for cleaning the filter in situ
US6277512B1 (en) 1999-06-18 2001-08-21 3M Innovative Properties Company Polymer electrolyte membranes from mixed dispersions
US6755970B1 (en) 1999-06-22 2004-06-29 Trisep Corporation Back-flushable spiral wound filter and methods of making and using same
JP3617378B2 (en) 1999-06-25 2005-02-02 日立プラント建設株式会社 Immersion flat membrane filtration device
GB9914854D0 (en) 1999-06-25 1999-08-25 Wilkes Ian P Self cleaning membrane device for filtration used in submerged operation
WO2001005715A1 (en) 1999-07-20 2001-01-25 Zenon Environmental Inc. Biological process for removing phosphorus involving a membrane filter
US6485645B1 (en) 1999-07-20 2002-11-26 Zenon Environmental Inc Biological process for removing phosphorus involving a membrane filter
US6303035B1 (en) 1999-07-30 2001-10-16 Zenon Environmental Inc. Immersed membrane filtration process
AU6419000A (en) 1999-07-29 2001-02-19 Zenon Environmental Inc. Maintenance cleaning for membranes
US20040007525A1 (en) 1999-07-30 2004-01-15 Rabie Hamid R. Maintenance cleaning for membranes
US20010052494A1 (en) 1999-10-25 2001-12-20 Pierre Cote Chemical cleaning backwash for normally immersed membranes
FR2797198B1 (en) 1999-08-04 2002-05-03 Tami Ind MEMBRANE FOR TANGENTIAL FILTRATION AND ITS MANUFACTURING METHOD
DE19940994B4 (en) 1999-08-28 2004-02-26 Clausthaler Umwelttechnikinstitut Gmbh, (Cutec-Institut) Process for the removal of sewage sludge
US6214231B1 (en) 1999-08-27 2001-04-10 Zenon Environmental Inc. System for operation of multiple membrane filtration assemblies
JP2001070967A (en) 1999-09-02 2001-03-21 Asahi Kasei Corp Cleaning system for laundry waste water
JP2001079366A (en) 1999-09-10 2001-03-27 Asahi Kasei Corp Method for washing membrane
JP3603692B2 (en) 1999-09-14 2004-12-22 日立プラント建設株式会社 Membrane separation method and apparatus
US6468472B1 (en) 1999-09-16 2002-10-22 Metrex Research Corporation Cleaning and decontaminating dialyzers by per-compound solutions
US6589426B1 (en) 1999-09-29 2003-07-08 Zenon Environmental Inc. Ultrafiltration and microfiltration module and system
US6361695B1 (en) 1999-10-02 2002-03-26 Zenon Environmental Inc. Shipboard wastewater treatment system
JP2001104760A (en) 1999-10-05 2001-04-17 Mitsubishi Heavy Ind Ltd Immersion type membrane filtration apparatus and method for washing filtration membrane
JP4384310B2 (en) 1999-10-22 2009-12-16 メタウォーター株式会社 Membrane cleaning method
NL1013465C2 (en) 1999-11-02 2001-05-03 Stork Friesland Bv Membrane filtration element with sleeve element and sleeve members.
ES2235983T3 (en) 1999-11-18 2005-07-16 Zenon Environmental Inc. SUBMERGED MEMBRANE FILTRATION SYSTEM AND OVERFLOW PROCESS.
US6623643B2 (en) 1999-11-19 2003-09-23 Microtek Medical Holdings, Inc. Process for treatment of aqueous environments containing a water soluble polymer
US6861001B2 (en) 1999-12-02 2005-03-01 The General Hospital Corporation Methods for removal, purification, and concentration of viruses, and methods of therapy based thereupon
US6423784B1 (en) 1999-12-15 2002-07-23 3M Innovative Properties Company Acid functional fluoropolymer membranes and method of manufacture
FR2802444B1 (en) 1999-12-16 2002-06-14 Polymen HOLLOW FIBER WATER FILTRATION MODULE
EP1239942B1 (en) 1999-12-17 2005-03-23 Millipore Corporation Spiral wound hollow fiber potting
US6324898B1 (en) 1999-12-21 2001-12-04 Zenon Environmental Inc. Method and apparatus for testing the integrity of filtering membranes
JP2001179059A (en) 1999-12-27 2001-07-03 Japan Organo Co Ltd Filter of pathogenic microorganism
JP2001179060A (en) 1999-12-27 2001-07-03 Maezawa Ind Inc Internal pressure type membrane treatment device
WO2001048065A1 (en) 1999-12-28 2001-07-05 Hitoshi Kanazawa Method of modifying polymeric material and use thereof
US6635179B1 (en) 1999-12-30 2003-10-21 Nephros, Inc. Sterile fluid filtration cartridge and method for using same
US6315895B1 (en) 1999-12-30 2001-11-13 Nephros, Inc. Dual-stage hemodiafiltration cartridge
JP2001190937A (en) 2000-01-06 2001-07-17 Sumitomo Heavy Ind Ltd Water purification equipment and method of cleaning membrane element
JP2001190938A (en) 2000-01-11 2001-07-17 Miura Co Ltd Method of detecting breakage of water treating membrane
JP2001205055A (en) 2000-01-31 2001-07-31 Daicel Chem Ind Ltd Method for operating membrane separation apparatus and apparatus therefor
JP2001212587A (en) 2000-02-04 2001-08-07 Kubota Corp Method and apparatus for diffusing air of membrane separation activated sludge method
JP2001232160A (en) 2000-02-21 2001-08-28 Hitachi Plant Eng & Constr Co Ltd Membrane filter
USD478913S1 (en) 2000-02-24 2003-08-26 Usf Filtration And Separations Group, Inc. Manifold header
US6440303B2 (en) 2000-03-02 2002-08-27 Chapin Manufacturing, Inc. Fluid filter
GB0004921D0 (en) 2000-03-02 2000-04-19 Waterleau Global Water Technol System for sustainable treatment of municipal and industrial wastewater
US6926829B2 (en) 2000-03-06 2005-08-09 Kvaerner Process Systems A.S. Apparatus and method for separating fluids through a membrane
AU3716101A (en) 2000-03-08 2001-09-17 Zenon Environmental Inc. Membrane module for gas transfer and membrane supported biofilm process
US6875357B1 (en) 2000-03-15 2005-04-05 Aqua-Aerobic Systems, Inc. Process and apparatus for treatment of waste water
US6299775B1 (en) 2000-03-17 2001-10-09 Clint R. Elston Waste and wastewater treatment and recycling system
JP4527232B2 (en) 2000-03-28 2010-08-18 旭化成ケミカルズ株式会社 Rack type filter
AUPQ680100A0 (en) 2000-04-10 2000-05-11 Usf Filtration And Separations Group Inc. Hollow fibre restraining system
US6337018B1 (en) 2000-04-17 2002-01-08 The Dow Chemical Company Composite membrane and method for making the same
US6936085B2 (en) 2000-05-10 2005-08-30 Demarco Maxvac Corporation Vacuum loader
EP1156015A1 (en) 2000-05-15 2001-11-21 VA TECH WABAG ESMIL GmbH Process and plant for filtrate generation from the stream of recycled sludge
AU142387S (en) 2000-05-31 2000-11-27 Evoqua Water Tech Llc Manifold header cap
EP1166871A1 (en) 2000-06-21 2002-01-02 Fuji Photo Film B.V. Photocalytic sheet of film and its manufacturing process
JP2002011472A (en) 2000-06-28 2002-01-15 Nishihara Environ Sanit Res Corp Immersed membrane separation apparatus
EP1299170B1 (en) 2000-06-29 2010-08-11 BioGasol IPR ApS Method for withdrawing and filtering partial volumes of process fluid
US20040129637A1 (en) 2000-07-07 2004-07-08 Hidayat Husain Multi-stage filtration and softening module and reduced scaling operation
CN1386070A (en) 2000-07-07 2002-12-18 齐侬环境有限公司 Multi-stage filtration and softening module and reduced scaling operation
PT1310291E (en) 2000-07-10 2007-03-30 Asahi Chemical Ind Hollow thread film cartridge, hollow thread film module using the cartridge, and tank type filter
EP1174177A3 (en) 2000-07-18 2002-12-04 Nitto Denko Corporation Spiral wound membrane element, spiral wound membrane module and treatment system employing the same as well as running method and washing method therefor
US6517723B1 (en) 2000-07-27 2003-02-11 Ch2M Hill, Inc. Method and apparatus for treating wastewater using membrane filters
CA2385946A1 (en) 2000-08-02 2002-02-14 Toray Industries, Inc. Hollow fiber membrane module, hollow fiber membrane module unit and manufacturing method of hollow fiber membrane module
JP2002058968A (en) 2000-08-18 2002-02-26 Suehiro Tadashi Filter
JP2002143849A (en) 2000-08-31 2002-05-21 Toray Ind Inc Method for producing water
DE10045227C1 (en) 2000-09-13 2002-02-07 Vosenkaul Klaus Membrane filter for water treatment uses capillary membrane fibre bundle projecting into untreated water and fitting into permeate collection space at opposite end
FR2814454B1 (en) 2000-09-27 2002-12-20 Degremont PROCESS FOR THE PURIFICATION OF WASTEWATER FOR THE ELIMINATION OF NITROGEN AND PHOSPHATE POLLUTIONS
AT408955B (en) 2000-09-28 2002-04-25 Va Tech Wabag Gmbh MEMBRANE FILTER SYSTEM AND METHOD FOR FILTERING
US6555002B2 (en) 2000-10-06 2003-04-29 Premier Wastwater International, Llc Apparatus and method for wastewater treatment with enhanced solids reduction (ESR)
AUPR064800A0 (en) 2000-10-09 2000-11-02 Usf Filtration And Separations Group Inc. Improved membrane filtration system
AUPR094600A0 (en) 2000-10-23 2000-11-16 Usf Filtration And Separations Group Inc. Fibre membrane arrangement
AUPR143400A0 (en) 2000-11-13 2000-12-07 Usf Filtration And Separations Group Inc. Modified membranes
FR2816851B1 (en) 2000-11-20 2003-09-26 Aquasource IMPROVEMENTS IN PROCESSES FOR REPAIRING THE BLOCKED FIBERS OF THE MEMBRANES, IN PARTICULAR OF ULTRA-, NANO- AND HYPER-FILTRATION
US6525064B1 (en) 2000-12-08 2003-02-25 3M Innovative Properties Company Sulfonamido substituted imidazopyridines
FR2817768B1 (en) 2000-12-13 2003-08-29 Lyonnaise Eaux Eclairage METHOD FOR REGULATING A MEMBRANE FILTRATION SYSTEM
JP4382275B2 (en) 2000-12-15 2009-12-09 前澤工業株式会社 Membrane module cleaning method
NO318619B1 (en) 2000-12-29 2005-04-18 Norsk Hydro As Device for combustion of a carbonaceous fuel, a method for operating said device, and use of said device.
GB0100647D0 (en) 2001-01-10 2001-02-21 Walker Filtration Ltd Filter unit
EP1359995A4 (en) 2001-01-23 2004-04-07 Innovasep Technology Corp Asymmetric hollow fiber membranes
KR20020067227A (en) 2001-02-16 2002-08-22 (주)경동이엔씨 Air lifting pipe and waste or polluted water disposal plant
KR200232145Y1 (en) 2001-02-16 2001-07-19 (주)경동이엔씨 Air lifting pipe and waste or polluted water disposal plant
JP2004528163A (en) 2001-02-23 2004-09-16 ヴイ.エイ.アイ. リミテッド Method and apparatus for biological treatment of wastewater
ITMI20010421A1 (en) 2001-03-01 2002-09-02 Ausimont Spa SEMI-PERMEABLE SEMI-CRYSTALLINE FLUOROPOLYMER Porous MEMBRANES
JP3561690B2 (en) 2001-03-05 2004-09-02 三洋電機株式会社 Filtration system
US20030052055A1 (en) 2001-03-08 2003-03-20 Hiroharu Akamatsu Hollow fiber membrane, hollow fiber membrane module, and water purifier
AUPR421501A0 (en) 2001-04-04 2001-05-03 U.S. Filter Wastewater Group, Inc. Potting method
BR0209036A (en) 2001-04-18 2007-01-02 Buddy Don Gray Method and apparatus for a recirculating tangential separation system
US6757059B2 (en) 2001-04-30 2004-06-29 Therma-Wave, Inc. Wafer chuck with integrated reference sample
US6755894B2 (en) 2001-05-02 2004-06-29 Praxair Technology, Inc. Hollow fiber membrane gas separation cartridge and gas purification assembly
JP4689074B2 (en) 2001-05-17 2011-05-25 オルガノ株式会社 Filtration device
US6805806B2 (en) 2001-06-12 2004-10-19 Hydrotreat, Inc. Method and apparatus for treatment of wastewater employing membrane bioreactors
AUPR584301A0 (en) 2001-06-20 2001-07-12 U.S. Filter Wastewater Group, Inc. Membrane polymer compositions
CA2351272C (en) 2001-06-22 2009-09-15 Petro Sep International Ltd. Membrane-assisted fluid separation apparatus and method
FR2827360B1 (en) 2001-07-11 2005-10-28 Valeo Thermique Moteur Sa CONTROL VALVE FOR A FLUID CIRCUIT CIRCUIT, ESPECIALLY FOR A COOLING CIRCUIT OF AN ENGINE
JP2003024751A (en) 2001-07-11 2003-01-28 Asahi Kasei Corp Hollow fiber membrane cartridge
US6702561B2 (en) 2001-07-12 2004-03-09 Nxstage Medical, Inc. Devices for potting a filter for blood processing
JP4360057B2 (en) 2001-08-06 2009-11-11 株式会社ジーエス・ユアサコーポレーション Immersion membrane filtration apparatus and immersion membrane filtration method
JP4860843B2 (en) 2001-08-09 2012-01-25 旭化成ケミカルズ株式会社 External pressure type hollow fiber membrane module
AUPR692401A0 (en) 2001-08-09 2001-08-30 U.S. Filter Wastewater Group, Inc. Method of cleaning membrane modules
JP2003053160A (en) 2001-08-14 2003-02-25 Mitsubishi Rayon Co Ltd Cleaning method for separating membrane and membrane filtrater
JP2003062436A (en) 2001-08-23 2003-03-04 Toray Ind Inc Method for manufacturing hollow fiber membrane module
US6592762B2 (en) 2001-08-29 2003-07-15 United States Filter Corporation Process for treating BOD-containing wastewater
JP3548736B2 (en) 2001-09-03 2004-07-28 住友重機械工業株式会社 Backwashing method of separation membrane
TW536424B (en) 2001-09-05 2003-06-11 Mitsubishi Rayon Co Water-clean cartridge, water-cleaner, and washing method of water-cleaner
AUPR774201A0 (en) 2001-09-18 2001-10-11 U.S. Filter Wastewater Group, Inc. High solids module
US6721529B2 (en) 2001-09-21 2004-04-13 Nexpress Solutions Llc Release agent donor member having fluorocarbon thermoplastic random copolymer overcoat
US6673210B2 (en) 2001-09-27 2004-01-06 Voith Paper Patent Gmbh Cleaning a semipermeable membrane in a papermaking machine
KR100441208B1 (en) 2001-10-24 2004-07-22 삼성엔지니어링 주식회사 Batch style waste water treatment apparatus using biological filtering process and waste water treatment method using the same
KR20030033812A (en) 2001-10-25 2003-05-01 주식회사 제오텍 A Treatment Process For Livestock Wastewater
JP3908939B2 (en) 2001-11-02 2007-04-25 三菱レイヨン株式会社 Method for producing hollow fiber membrane module
DE60213184T2 (en) 2001-11-16 2007-06-28 U.S. Filter Wastewater Group, Inc. Method for cleaning membranes
US6761826B2 (en) 2001-11-30 2004-07-13 New Star Lasers, Inc. Pulsed blackbody radiation flux enhancement
US6790912B2 (en) 2001-12-11 2004-09-14 3M Innovative Properties Company Extrudable fluoropolymer blends
DE10161095C1 (en) 2001-12-12 2002-11-07 Klaus Vosenkaul Process for membrane filtration of liquids e.g. water, uses fiber bundle of capillary membranes having one end cast in headpiece open to permeate collecting chamber of the headpiece and a freely moving closed end
JP2003181247A (en) 2001-12-17 2003-07-02 Nitto Denko Corp Treatment system having spiral membrane element and its operating method
JP2003190976A (en) 2001-12-27 2003-07-08 Toray Ind Inc Apparatus and method for treating wastewater
CA2472490A1 (en) 2002-01-02 2003-07-24 Triple I Module with self-supporting sheet membranes
ATE508988T1 (en) 2002-01-07 2011-05-15 Berliner Wasserbetr E BIOLOGICAL WATER TREATMENT WHICH INCLUDES POST-DENITRIFICATION AND A MEMBRANE FILTER
EP1463578B1 (en) 2002-01-09 2011-09-28 Hydranautics Method for cleaning a filtration membrane module with hollow fiber membranes
KR100419259B1 (en) 2002-01-10 2004-02-21 주식회사 제닉스엔지니어링 Wastewater Treatment Method Using Membrane Bioreactor With Reduced Sludge Production
US6712970B1 (en) 2002-01-11 2004-03-30 Enviroquip, Inc. Sewage treatment process with phosphorus removal
US6890435B2 (en) 2002-01-28 2005-05-10 Koch Membrane Systems Hollow fiber microfiltration membranes and a method of making these membranes
KR100459986B1 (en) 2002-02-05 2004-12-04 강용태 Advanced Step Aeration with Media(ASA, SFC-Biofilter)
AUPS046602A0 (en) 2002-02-12 2002-03-07 U.S. Filter Wastewater Group, Inc. Halar membranes
US7247238B2 (en) 2002-02-12 2007-07-24 Siemens Water Technologies Corp. Poly(ethylene chlorotrifluoroethylene) membranes
DE10209170C1 (en) 2002-03-01 2003-08-07 Horst Chmiel Mechanically cleaning hollow fiber membranes comprises forming hollow fibers into bundles, vertically joining together on their opposite-lying ends, and grasping in center to set at angle
JP4173969B2 (en) 2002-03-14 2008-10-29 旭化成クラレメディカル株式会社 Hemodialysis filter and hemodiafiltration device
JP2003266072A (en) 2002-03-18 2003-09-24 Japan Organo Co Ltd Membrane filtration method
JP3744447B2 (en) 2002-03-20 2006-02-08 日立プラント建設株式会社 Membrane separator
JP2003275759A (en) 2002-03-20 2003-09-30 Hitachi Plant Eng & Constr Co Ltd Water treatment device
US7297255B2 (en) * 2002-03-28 2007-11-20 Entegris, Inc. Mass or energy transfer cartridge and module
US6811696B2 (en) 2002-04-12 2004-11-02 Pall Corporation Hydrophobic membrane materials for filter venting applications
US7186344B2 (en) 2002-04-17 2007-03-06 Water Visions International, Inc. Membrane based fluid treatment systems
NL1020491C2 (en) 2002-04-26 2003-10-28 Norit Membraan Tech Bv Measuring integrity of filter membrane, comprises creating volume of gas on filtrate side, increasing pressure on feed side to create pressure drop and measuring increase in pressure on filtrate side
US8668779B2 (en) 2002-04-30 2014-03-11 Nalco Company Method of simultaneously cleaning and disinfecting industrial water systems
US6869534B2 (en) 2002-05-05 2005-03-22 Brentwood Industries, Inc. Sludge digestion methods and apparatus
EP1364915A1 (en) 2002-05-22 2003-11-26 Kurita Water Industries Ltd. A biological method of phosphorus removal and biological phosphorus-removing apparatus
JP2003340250A (en) 2002-05-27 2003-12-02 Kurita Water Ind Ltd Membrane separation device
JP4530245B2 (en) 2002-06-10 2010-08-25 旭化成ケミカルズ株式会社 Membrane separator
US6863816B2 (en) 2002-06-17 2005-03-08 Dharma Living Systems, Inc. Tidal vertical flow wastewater treatment system and method
US6743362B1 (en) 2002-06-17 2004-06-01 Enviroquip Inc. Sewage treatment process
AUPS300602A0 (en) 2002-06-18 2002-07-11 U.S. Filter Wastewater Group, Inc. Methods of minimising the effect of integrity loss in hollow fibre membrane modules
KR100471419B1 (en) 2002-06-19 2005-02-21 김석기 Apparatus for treating sewage
US6994867B1 (en) 2002-06-21 2006-02-07 Advanced Cardiovascular Systems, Inc. Biocompatible carrier containing L-arginine
AU2003247229B2 (en) 2002-06-28 2009-04-30 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Process for cleaning filters
JP2004050011A (en) 2002-07-18 2004-02-19 Toray Ind Inc Method of manufacturing hollow fiber membrane module and hollow fiber membrane module
KR200295350Y1 (en) 2002-08-07 2002-11-21 서봉리사이클링(주) Sludge discharger using lumped air
JP2004073950A (en) 2002-08-13 2004-03-11 Asahi Kasei Chemicals Corp Membrane washing method
AU2002950934A0 (en) 2002-08-21 2002-09-12 U. S. Filter Wastewater Group, Inc. Aeration method
US20040035770A1 (en) 2002-08-26 2004-02-26 Edwards Haskell L. Dynamically responsive aerobic to anoxic inter-zone flow control system for single vessel multi-zone bioreactor wastewater treatment plants
WO2004024304A2 (en) 2002-09-13 2004-03-25 Pall Corporation Systems and methods for cleaning hollow fiber membranes
CA2501628C (en) * 2002-10-10 2012-12-04 U.S. Filter Wastewater Group, Inc. A filtration and backwashing arrangement for membrane modules
KR100412330B1 (en) 2002-10-25 2004-01-07 주식회사 진우환경기술연구소 Membrane Coupled Activated Sludge Method Operating Anoxic/Anaerobic Zone alternatively for Removal of Nitrogen and Phosphorus
FR2847572B1 (en) 2002-11-22 2006-04-21 Omnium Traitement Valorisa METHOD OF TREATING WATER USING INORGANIC HIGH SPECIFIC SURFACE PULVERULENT REAGENT INCLUDING A RECYCLING STAGE OF SAID REAGENT
US6863817B2 (en) 2002-12-05 2005-03-08 Zenon Environmental Inc. Membrane bioreactor, process and aerator
AU2002953111A0 (en) * 2002-12-05 2002-12-19 U. S. Filter Wastewater Group, Inc. Mixing chamber
AU2003297476A1 (en) 2002-12-19 2004-07-14 Hydranautics Methods for cleaning and maintaining membrane surface during filtration
US20040118779A1 (en) 2002-12-23 2004-06-24 Rawson James Rulon Young Unitary water filter assembly for removal of chemical and microbiological contaminants
JP4211400B2 (en) 2003-01-14 2009-01-21 三浦工業株式会社 Operation method of hollow fiber membrane filtration device
FR2850297B1 (en) 2003-01-29 2005-04-15 Aquasource METHOD FOR MANUFACTURING MEMBRANES FOR FILTRATION MODULES, IN PARTICULAR FOR THE TREATMENT OF WATER
JP4042967B2 (en) 2003-01-30 2008-02-06 オルガノ株式会社 Filtration device backwash method
JP2004230280A (en) 2003-01-30 2004-08-19 Toray Ind Inc Production method for hydrophilic polyvinylidene fluoride-based resin porous membrane
US20040149655A1 (en) 2003-01-31 2004-08-05 Pall Corporation Methods and systems for purifying fluids and regenerating purification media
US7014763B2 (en) 2003-02-03 2006-03-21 Aqua-Aerobic Systems, Inc. Multiple barrier biological treatment systems
JP2004249168A (en) 2003-02-18 2004-09-09 Fuji Electric Systems Co Ltd Operation method for water treatment device
DE60301322T2 (en) 2003-02-28 2006-06-08 3M Innovative Properties Co., St. Paul A fluoropolymer dispersion containing no or little fluorine-containing low molecular weight wetting agent
EP1599276B1 (en) * 2003-03-05 2008-05-14 Hydranautics Submergible membrane modular filtration device having replaceable membrane elements
US7087172B2 (en) 2003-03-05 2006-08-08 Usfilter Corporation Methods for reducing nitrate demands in the reduction of dissolved and/or atmospheric sulfides in wastewater
EP1603659A2 (en) 2003-03-14 2005-12-14 Zenon Environmental Inc. Nanofiltration system for water softening with internally staged spiral wound modules
EP1466658A1 (en) 2003-04-11 2004-10-13 UTISOL Technologies AG Device and method for aeration of membrane filters
KR100535301B1 (en) 2003-05-13 2005-12-08 연세대학교 산학협력단 Hollow fiber membrane module and Method for making thereof
JP2004337730A (en) 2003-05-15 2004-12-02 Suido Kiko Kaisha Ltd Method for washing membrane
US20070056904A1 (en) 2003-07-04 2007-03-15 Hogt Andreas H Cleaning of filtration membranes with peroxides
AU2003903507A0 (en) 2003-07-08 2003-07-24 U. S. Filter Wastewater Group, Inc. Membrane post-treatment
US6946073B2 (en) 2003-09-02 2005-09-20 Ch2M Hill, Inc. Method for treating wastewater in a membrane bioreactor to produce a low phosphorus effluent
US7294274B2 (en) 2003-07-30 2007-11-13 Phase Inc. Filtration system with enhanced cleaning and dynamic fluid separation
FR2858609B1 (en) 2003-08-04 2006-10-13 Otv Sa METHOD AND INSTALLATION FOR BIOLOGICAL TREATMENT OF ACTIVATED SLUDGE WATER WITH AERATION CONTROL
JP4034705B2 (en) 2003-08-27 2008-01-16 株式会社神鋼環境ソリューション Novel microorganism and method for treating organic solid using the microorganism
WO2005021140A1 (en) 2003-08-29 2005-03-10 U.S. Filter Wastewater Group, Inc. Backwash
JP2005087887A (en) 2003-09-17 2005-04-07 Fuji Electric Systems Co Ltd Membrane washing method
SG119706A1 (en) 2003-09-19 2006-03-28 Us Filter Wastewater Group Inc Improved methods of cleaning membrane modules
JP4846584B2 (en) 2003-09-22 2011-12-28 シーメンス・ウォーター・テクノロジーズ・コーポレーション Backwashing and cleaning methods
US7282147B2 (en) 2003-10-07 2007-10-16 Phase Inc. Cleaning hollow core membrane fibers using vibration
AU2003273211A1 (en) 2003-10-20 2005-05-05 C. H. Krishnamurthi Rao Novel device for submerged ultrafiltration
US20050115899A1 (en) 2003-10-21 2005-06-02 Minggang Liu Membrane bioreactor having single header membrane module
US7879229B2 (en) 2003-10-29 2011-02-01 Zenon Technology Partnership Water treatment plant with immersed membranes
US20070095741A1 (en) 2003-10-31 2007-05-03 Berends Hendrik Johan F Filter module
CN1235668C (en) 2003-11-06 2006-01-11 上海交通大学 E-Fenton oxidation technique of dirty blocking agent in reverse osmosis concentrating liquid
US7022233B2 (en) 2003-11-07 2006-04-04 Severn Trent Services, Water Purification Solutions, Inc. Biologically active reactor system and method for treating wastewater
JP2005144291A (en) 2003-11-13 2005-06-09 Ngk Insulators Ltd Method for controlling aeration quantity
US7083733B2 (en) 2003-11-13 2006-08-01 Usfilter Corporation Water treatment system and method
CN100421772C (en) 2003-11-14 2008-10-01 西门子水技术公司 Improved module cleaning method
ATE529451T1 (en) 2003-11-17 2011-11-15 3M Innovative Properties Co AQUEOUS PTFE DISPERSIONS WITH A LOW CONTENT OF FLUORINATED EMULSIFIERS
JP4533618B2 (en) 2003-11-25 2010-09-01 アムテック株式会社 Disinfectant cleaning composition
US7279215B2 (en) 2003-12-03 2007-10-09 3M Innovative Properties Company Membrane modules and integrated membrane cassettes
KR100558510B1 (en) 2003-12-22 2006-03-07 주식회사 포스코건설 Advanced wastewater treatment apparatus by submerged membrane
WO2005070524A1 (en) * 2004-01-09 2005-08-04 Trisep Corporation Filtration with low-fouling, high-flow, low-energy spiral wound membrane cartridges
KR101162474B1 (en) 2004-02-02 2012-07-03 쿠리타 고교 가부시키가이샤 Process for biological treatment of organic waste water and apparatus therefor
WO2005077499A1 (en) 2004-02-18 2005-08-25 U.S. Filter Wastewater Group, Inc. Continuous pressure decay test
US7220358B2 (en) 2004-02-23 2007-05-22 Ecolab Inc. Methods for treating membranes and separation facilities and membrane treatment composition
US20050194315A1 (en) 2004-02-27 2005-09-08 Adams Nicholas W.H. Membrane batch filtration process
CA2482517A1 (en) 2004-09-24 2006-03-24 Zenon Environmental Inc. Membrane filter cleansing process
WO2005082498A1 (en) 2004-02-27 2005-09-09 Zenon Environmental Inc. Water filtration using immersed membranes
US20070051679A1 (en) 2004-02-27 2007-03-08 Adams Nicholas W H Water filtration using immersed membranes
US7311833B2 (en) 2004-03-03 2007-12-25 Kazuo Yamamoto Zero excess sludge membrane bioreactor
US7264725B2 (en) 2004-03-04 2007-09-04 Celgard Inc. Hollow fiber membrane contactor and method of making same
WO2005092799A1 (en) 2004-03-26 2005-10-06 U.S. Filter Wastewater Group, Inc. Process and apparatus for purifying impure water using microfiltration or ultrafiltration in combination with reverse osmosis
JP4508694B2 (en) 2004-03-30 2010-07-21 株式会社クボタ Water treatment method and apparatus
AU2005240524C1 (en) 2004-04-22 2009-12-24 Evoqua Water Technologies Llc Filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
WO2005118117A1 (en) 2004-05-28 2005-12-15 Siemens Water Technologies Corp. Retractable cantilever rack support
US7122121B1 (en) 2004-05-28 2006-10-17 Jiang Ji Advanced submerged membrane modules, systems and processes
WO2006002469A1 (en) 2004-07-02 2006-01-12 U.S. Filter Wastewater Group, Inc Gas transfer membrane
US20060033222A1 (en) 2004-08-11 2006-02-16 Godfrey Scott A Devices for introducing a gas into a liquid and methods of using the same
JP3807423B2 (en) 2004-08-12 2006-08-09 栗田工業株式会社 Immersion membrane separator
DE202004012693U1 (en) 2004-08-13 2004-10-14 Enviro-Chemie Gmbh Coupling system for a filter module for filtering liquids by reverse osmosis, microfiltration and ultra- and nano-filtration comprises a connection between a filter module and a tubular system using a tubular coupling on an end region
EP1789164B1 (en) * 2004-08-20 2013-07-03 Siemens Industry, Inc. Square mbr manifolding system
JP4838248B2 (en) 2004-09-07 2011-12-14 シーメンス・ウォーター・テクノロジーズ・コーポレーション Reduction of backwash liquid waste
CA2579857A1 (en) * 2004-09-14 2006-03-23 Siemens Water Technologies Corp. Membrane filtration module and cleaning process
CA2579894A1 (en) 2004-09-15 2006-03-23 Siemens Water Technologies Corp. Continuously variable aeration
US7172699B1 (en) 2004-10-13 2007-02-06 Eimco Water Technologies Llc Energy efficient wastewater treatment for nitrogen and phosphorus removal
US20060081533A1 (en) 2004-10-16 2006-04-20 Khudenko Boris M Batch-continuous process and reactor
JP2006116495A (en) 2004-10-25 2006-05-11 Sumitomo Electric Fine Polymer Inc Filter device
CA2486677A1 (en) 2004-10-26 2006-04-26 Zenon Environmental Inc. Header for module of hollow fiber membranes and method of potting hollow fibers
US7591950B2 (en) 2004-11-02 2009-09-22 Siemens Water Technologies Corp. Submerged cross-flow filtration
EP1819426A4 (en) 2004-11-02 2009-08-12 Siemens Water Tech Corp Submerged cross-flow filtration
US7329344B2 (en) 2004-12-22 2008-02-12 Siemens Water Technologies Corp. Grease and scum removal in a filtration apparatus comprising a membrane bioreactor and a treatment vessel for digesting organic materials
US7300040B2 (en) 2004-12-23 2007-11-27 Andrew Sydney Withiel Thomas Simple, mechanism-free device, and method to produce vortex ring bubbles in liquids
US8496828B2 (en) 2004-12-24 2013-07-30 Siemens Industry, Inc. Cleaning in membrane filtration systems
JP2008525167A (en) 2004-12-24 2008-07-17 シーメンス・ウォーター・テクノロジーズ・コーポレーション Simple gas cleaning method and apparatus in the technical field
JP2008526497A (en) 2005-01-14 2008-07-24 シーメンス・ウォーター・テクノロジーズ・コーポレーション Filtration system
CN101766925B (en) 2005-01-27 2013-01-30 怡口净水有限责任公司 Filter cartridge and annular convex collar
US7279100B2 (en) 2005-01-31 2007-10-09 Ashbrook Simon-Hartley Operations, Lp Methods and apparatus for treating wastewater employing a high rate clarifier and a membrane
US7501062B2 (en) 2005-02-22 2009-03-10 Shell Oil Company Process for permeation enhanced reactive extraction of levulinic acid
WO2006094190A2 (en) 2005-03-02 2006-09-08 Velocys Inc. Separation process using microchannel technology
US7396453B1 (en) 2005-04-19 2008-07-08 Procorp Enterprises, Llc Hydraulically integrated solids/liquid separation system for wastewater treatment
CA2605757A1 (en) 2005-04-29 2006-11-09 Siemens Water Technologies Corp. Chemical clean for membrane filter
US7326343B2 (en) 2005-05-03 2008-02-05 University Of Western Ontario Canada Treatment of wastewater containing phosphorous and nitrogen
US7147777B1 (en) 2005-05-09 2006-12-12 Eimco Water Technologies Llc Wastewater treatment system with membrane separators and provision for storm flow conditions
KR101214439B1 (en) 2005-05-25 2012-12-21 에치투엘 주식회사 Immersed hollow fiber membrane module
US20060273038A1 (en) 2005-06-02 2006-12-07 Syed Murtuza A Chemical cleaning for membranes
AU2006269733B2 (en) 2005-07-12 2011-10-20 Zenon Technology Partnership Process control for an immersed membrane system
US7850851B2 (en) 2005-08-12 2010-12-14 Siemens Water Technologies Corp. Biological phosphorus removal
WO2007022576A1 (en) 2005-08-22 2007-03-01 Siemens Water Technologies Corp. An assembly for water filtration using a tube manifold to minimise backwash
US20070045183A1 (en) 2005-08-26 2007-03-01 Murphy Dee T Purified water reclamation process
US20070138090A1 (en) 2005-10-05 2007-06-21 Jordan Edward J Method and apparatus for treating wastewater
US7563363B2 (en) 2005-10-05 2009-07-21 Siemens Water Technologies Corp. System for treating wastewater
WO2007044442A2 (en) 2005-10-05 2007-04-19 Siemens Water Technologies Corp. Method and system for treating wastewater
US20070095754A1 (en) 2005-10-28 2007-05-03 Dennis Livingston Efficient MBR operation in wastewater treatment
KR20080075160A (en) 2005-11-08 2008-08-14 지멘스 워터 테크놀로지스 코포레이션 Combination membrane/biolytic filtration
US7314563B2 (en) 2005-11-14 2008-01-01 Korea Institute Of Science And Technology Membrane coupled activated sludge method and apparatus operating anoxic/anaerobic process alternately for removal of nitrogen and phosphorous
JP4993901B2 (en) 2005-11-29 2012-08-08 水ing株式会社 Hollow fiber membrane module
KR20080074222A (en) 2005-12-09 2008-08-12 지멘스 워터 테크놀로지스 코포레이션 Reduced backwash volume process
EP1960316B1 (en) 2005-12-09 2009-08-05 Aquafin N.V. Process and installation for treating waste water
KR100656294B1 (en) 2005-12-19 2006-12-11 연세대학교 산학협력단 Hollow fiber membrane module and method for making thereof
US7147778B1 (en) 2006-01-05 2006-12-12 I. Kruger Inc. Method and system for nitrifying and denitrifying wastewater
CA2634150A1 (en) 2006-01-12 2007-07-19 Siemens Water Technologies Corp. Improved operating strategies in filtration processes
US20070163942A1 (en) 2006-01-19 2007-07-19 Toray Industries, Inc. Hollow fiber membrane module
US7455765B2 (en) 2006-01-25 2008-11-25 Siemens Water Technologies Corp. Wastewater treatment system and method
US20100025320A1 (en) 2006-03-22 2010-02-04 Warren Thomas Johnson Backwash and cleaning method
US7510655B2 (en) 2006-04-11 2009-03-31 Siemens Water Technologies Corp. Process to improve the efficiency of a membrane filter activated sludge system
US7713413B2 (en) 2006-04-11 2010-05-11 Siemens Water Technologies Corp. Aerated anoxic membrane bioreactor
US7481933B2 (en) 2006-04-11 2009-01-27 Siemens Water Technologies Corporation Process to improve the efficiency of a membrane filter activated sludge system
FR2901488B1 (en) 2006-05-23 2008-08-15 Otv Sa AERATION DEVICE FOR IMMERSION MEMBRANE-BASED WATER FILTRATION SYSTEM INCLUDING FLOOR WITH GAS INJECTION MEANS AND AT LEAST ONE PRESSURE BALANCING SYSTEM
US7761826B1 (en) 2006-07-24 2010-07-20 Cadence Design Systems, Inc. Method and system for crosstalk analysis
CA2660206A1 (en) 2006-08-31 2008-03-06 Siemens Water Technologies Corp. Low pressure backwash for membrane filtration system
DE102006044624B4 (en) 2006-09-19 2008-07-10 Koch Membrane Systems Gmbh Apparatus for fumigating a liquid
FR2909902B1 (en) 2006-12-13 2009-12-25 Otv Sa ULTRAFILTRATION OR MICRO-FILTRATION INSTALLATION AND METHOD OF MAINTAINING SUCH A INSTALLATION
WO2008098309A1 (en) 2007-02-16 2008-08-21 Siemens Water Technologies Corp. Membrane filtration process and design
EP2129629A1 (en) 2007-04-02 2009-12-09 Siemens Water Technologies Corp. Improved infiltration/inflow control for membrane bioreactor
AU2008235254B2 (en) 2007-04-04 2012-08-30 Evoqua Water Technologies Llc Membrane module protection
US7459083B1 (en) 2007-05-07 2008-12-02 I. Kruger Inc. Method for controlling fouling of a membrane filter
CA2686056A1 (en) 2007-05-11 2008-11-20 Zenon Technology Partnership Membrane module with multiple bottom headers and filtration process
CA3058737C (en) 2007-05-29 2022-04-26 Fufang Zha Membrane cleaning with pulsed airlift pump
US20100300968A1 (en) 2009-06-02 2010-12-02 Siemens Water Technologies Corp. Membrane cleaning with pulsed gas slugs
JP2010527773A (en) 2007-05-29 2010-08-19 シーメンス ウォーター テクノロジース コーポレイション Membrane cleaning using an air lift pump
US20120285885A1 (en) 2007-05-29 2012-11-15 Siemens Industry, Inc. Membrane cleaning with pulsed gas slugs
EP2158026A4 (en) 2007-06-28 2011-06-29 Siemens Industry Inc Cleaning method for simple filtration systems
DE102007041991A1 (en) 2007-09-05 2009-03-12 Fülling, Rainer, Dr. Process for the purification of substrates by oxidants and reducing agents and the use of oxidizing agents for the oxidation of extracellular polymeric substances
JP5362343B2 (en) 2008-01-11 2013-12-11 旭化成ケミカルズ株式会社 Membrane separation unit
KR101250056B1 (en) 2008-06-04 2013-04-03 아사히 가세이 케미칼즈 가부시키가이샤 Hollow fiber membrane module with covered membrane outer periphery
KR101614520B1 (en) 2008-07-24 2016-04-21 에보쿠아 워터 테크놀로지스 엘엘씨 Frame system for membrane filtration modules
AU2009281935A1 (en) 2008-08-14 2010-02-18 Siemens Industry, Inc. Block configuration for large scale membrane distillation
NZ591259A (en) 2008-08-20 2013-02-22 Siemens Industry Inc A hollow membrane filter backwash system using gas pressurised at at least two pressures feed from the down stream side to push water through the filter to clean it
WO2010140857A2 (en) 2009-06-05 2010-12-09 Kolon Industries, Inc. Module case and hollow fiber membrane module using the same
AU2010257526A1 (en) 2009-06-11 2012-01-12 Siemens Industry, Inc Methods for cleaning a porous polymeric membrane and a kit for cleaning a porous polymeric membrane
US9358505B2 (en) 2009-09-03 2016-06-07 General Electric Company Gas sparger for an immersed membrane
US20110049049A1 (en) 2009-09-03 2011-03-03 General Electric Company Water purification system skid
US9914097B2 (en) 2010-04-30 2018-03-13 Evoqua Water Technologies Llc Fluid flow distribution device
US9364805B2 (en) 2010-10-15 2016-06-14 General Electric Company Integrated gas sparger for an immersed membrane

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040178136A1 (en) * 2001-11-05 2004-09-16 Tohru Taniguchi Hollow fiber membrane module
US7255788B2 (en) * 2002-02-07 2007-08-14 Mitsubishi Rayon Co., Ltd. Catchment header and membrane module unit
US20070102339A1 (en) * 2005-11-08 2007-05-10 Cote Pierre L Membrane filtration apparatus and process optionally for sand filter retrofit
US20130168307A1 (en) * 2010-07-07 2013-07-04 Kristin Helen Blume Drivarbekk Pressure vessel with multi membrane modules in parallel
US9022224B2 (en) * 2010-09-24 2015-05-05 Evoqua Water Technologies Llc Fluid control manifold for membrane filtration system
US20140174998A1 (en) * 2011-08-23 2014-06-26 Dow Global Technologies Llc Filtration assembly including multiple modules sharing common hollow fiber support
US20140231367A1 (en) * 2011-09-30 2014-08-21 Evoqua Water Technologies Llc Improved manifold arrangement

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11624558B2 (en) 2019-06-04 2023-04-11 Baltimore Aircoil Company, Inc. Tubular membrane heat exchanger
JP2020199475A (en) * 2019-06-12 2020-12-17 東芝インフラシステムズ株式会社 Cleansing air quantity control system and cleansing air quantity control device
JP7214576B2 (en) 2019-06-12 2023-01-30 東芝インフラシステムズ株式会社 Cleaning air volume control system and cleaning air volume control device
US20220250008A1 (en) * 2019-10-15 2022-08-11 Hainan Litree Purifying Technology Co., Ltd. External pressure type hollow fiber membrane component, filtration membrane component, and membrane filtration module
WO2022120141A1 (en) * 2020-12-03 2022-06-09 Baltimore Aircoil Company, Inc. Tubular membrane heat exchanger

Also Published As

Publication number Publication date
EP2618916A1 (en) 2013-07-31
AU2011305377B2 (en) 2014-11-20
US9022224B2 (en) 2015-05-05
WO2012040412A1 (en) 2012-03-29
US9630147B2 (en) 2017-04-25
EP2618916A4 (en) 2016-08-17
AU2011305377A1 (en) 2013-03-07
CN103118766B (en) 2016-04-13
CN103118766A (en) 2013-05-22
US20120074053A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
US9630147B2 (en) Fluid control manifold for membrane filtration system
US11065569B2 (en) Manifold arrangement
EP1189682B1 (en) Membrane filtration manifold system
EP1789164B1 (en) Square mbr manifolding system
JP4531091B2 (en) Pressure vessel holding a cylindrical filtration cartridge
US5405528A (en) Modular microporous filter assemblies
AU762091B2 (en) Membrane filtration manifold system
AU2013251271B2 (en) Filter Element
AU730731B2 (en) Membrane module of a system for membrane separation, its use and process for its production
US10427102B2 (en) Method and device for repairing a membrane filtration module
TW201318689A (en) Hollow fiber membrane module for use in a tubular pressure vessel
KR101808275B1 (en) Aeration Diffuser for Pressurized Liquid Treatment Module and Method of Operating Same
AU657265B2 (en) Modular microporous filter
KR20010089604A (en) Immersed membrane element and module
JPH06181747A (en) Hollow fiber cartridge

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4