US20150127095A9 - Heart Valve Prosthesis and Methods of Manufacture and Use - Google Patents

Heart Valve Prosthesis and Methods of Manufacture and Use Download PDF

Info

Publication number
US20150127095A9
US20150127095A9 US13/526,951 US201213526951A US2015127095A9 US 20150127095 A9 US20150127095 A9 US 20150127095A9 US 201213526951 A US201213526951 A US 201213526951A US 2015127095 A9 US2015127095 A9 US 2015127095A9
Authority
US
United States
Prior art keywords
frame
valve prosthesis
valve
cells
leaflets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US13/526,951
Other versions
US9060857B2 (en
US20120259409A1 (en
Inventor
Than Nguyen
Hung Nguyen
Mykim Nguyen
Stanley Komatsu
Robrecht Michiels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic CoreValve LLC
Original Assignee
Medtronic CoreValve LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37420182&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20150127095(A9) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Medtronic CoreValve LLC filed Critical Medtronic CoreValve LLC
Priority to US13/526,951 priority Critical patent/US9060857B2/en
Publication of US20120259409A1 publication Critical patent/US20120259409A1/en
Publication of US20150127095A9 publication Critical patent/US20150127095A9/en
Application granted granted Critical
Publication of US9060857B2 publication Critical patent/US9060857B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2415Manufacturing methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/005Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements using adhesives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0058Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements soldered or brazed or welded
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0073Quadric-shaped
    • A61F2230/008Quadric-shaped paraboloidal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/90Stent for heart valve

Definitions

  • the present invention relates to replacement valves for improving the cardiac function of a patient suffering from cardiac valve dysfunction, such as aortic valve regurgitation or aortic stenosis. More particularly, the present invention relates to heart valve prostheses that provide improved durability and are particularly well-suited for percutaneous delivery.
  • Heart valve replacement has become a routine surgical procedure for patients suffering from valve regurgitation or stenotic calcification of the leaflets. While certain procedures may be performed using minimally-invasive techniques (so-called “keyhole” techniques), the vast majority of valve replacements entail full sternotomy and placing the patient on cardiopulmonary bypass. Traditional open surgery inflicts significant patient trauma and discomfort, requires extensive recuperation times and may result in life-threatening complications.
  • valve prosthesis that reduces the risk of leaflet damage during deployment of the prosthesis. It further would be. desirable to provide a valve prosthesis that reduces the risk of perivalvular leaks resulting from recoil of the prosthesis following deployment.
  • U.S. Pat. No. 6,027,525 to Suh, et al. describes a valve prosthesis comprising a series of self-expanding units affixed to a polymeric cover and having a valve disposed therein.
  • Such devices are not suitable for cardiac valve replacement because of the limited ability to compact the valve disposed within the prosthesis.
  • valve prostheses would be particularly undesirable for treating aortic valve defects, because the polymeric cover would obscure the ostia of the coronary arteries, both disrupting blood flow to the coronary arteries and preventing subsequent catheterization of those arteries. Accordingly, it would be desirable to provide a valve prosthesis that is self-expanding, yet permits the valve to be compacted to a greater degree than previously-known designs.
  • U.S. Pat. No. 6,682,559 to Myers, et al. also describes a valve prosthesis having an essentially tubular design.
  • One drawback of such configurations is that relatively large horizontal forces arise along the coaptation edges of the leaflets and are transmitted to the commissural points. These forces may adversely affect the durability of the leaflets and lead to valve failure.
  • some previously-known valve designs include circular base portions having longitudinal projections that function as anchors for the commissural points, such as described in U.S. Pat. No. 5,855,601 to Bessler, et al. and U.S. Pat. No. 6,582,462 to Andersen, et al.
  • valve prostheses of Bessler and Andersen may be readily collapsed for delivery, those designs are susceptible to problems once deployed.
  • the longitudinal projections of such prostheses may not provide sufficient rigidity to withstand compressive forces applied during normal movements of the heart. Deformation of the commissural anchors may result in varied forces being imposed on the commissures and leaflets, in turn adversely impact functioning of the leaflets.
  • the exteriors of the foregoing valve prostheses are substantially cylindrical, the prostheses are less likely to adequately conform to, and become anchored within the valve annulus anatomy during deployment. As a result, cyclic loading of the valve may result in some slippage or migration of the anchor relative to the patient's anatomy.
  • valve prosthesis that is capable of conforming to a patient's anatomy while providing a uniform degree of rigidity and protection for critical valve components. It therefore would be desirable to provide a valve prosthesis having portions that are capable of deforming circumferentially to adapt to the shape of the pre-existing valve annulus, but which is not susceptible to deformation or migration due to normal movement of the heart. Still further, it would be desirable to provide a valve prosthesis having a multi-level component that is anatomically shaped when deployed, thereby enhancing anchoring of the valve and reducing the risk of migration and perivalvular leaks.
  • valve prosthesis that overcomes the drawbacks of previously-known designs, and which may be implanted using open surgical, minimally invasive or percutaneous implantation techniques.
  • a heart valve prosthesis wherein a self-expanding multi-level frame supports a valve body comprising a skirt and plurality of coapting leaflets.
  • the frame has a contracted delivery configuration, in which the prosthesis may be stored within a catheter for percutaneous delivery, and an expanded deployed configuration having an asymmetric hourglass shape.
  • the valve body skirt and leaflets preferably are constructed of porcine, bovine, equine or other mammalian tissue, such as pericardial tissue, and are sewn, welded, molded or glued together so as to efficiently distribute forces along the leaflets and to the frame.
  • the valve body may comprise a synthetic or polymeric material.
  • the frame comprises multiple levels, including a proximal conical inflow section, a constriction region and a flared distal outflow section.
  • Each of the inflow and outflow sections is capable of deforming to a non-circular cross-section to conform to the patient's anatomy, while the constriction region is configured to retain a circular cross-section that preserves proper functioning of the valve body.
  • the frame comprises a plurality of cells having a pattern that varies along the length of the frame to provide a high degree of anchoring and alignment of the valve prosthesis.
  • the cell pattern further is selected to provide a uniform diameter where the commissural joints of the leaflets are attached to the frame, while permitting the inflow and outflow regions to expand to conform to the patient's anatomy. In this manner, optimal functioning of the valve body may be obtained even though the frame may be deployed in anatomies having a range of sizes.
  • the frame resists deformation caused by movement of the heart and enables a functional portion of the valve body to be disposed supra-annularly to the native valve, with a portion of the valve prosthesis extending into the native valve annulus.
  • the valve body comprises a skirt coupled to three leaflets.
  • Each of the components preferably is formed of animal pericardial tissue or synthetic material, and then sewn, glued, welded or molded together.
  • the lateral ends of the leaflets include enlarged regions that are folded to both form the commissural joints and fasten the commissural joints to the frame.
  • the skirt and leaflets further are configured so that the joints align with contours of the cell pattern of the frame.
  • the commissural joints are affixed to the frame at locations above the area of coaptation, to provide a selectable center of coaptation of the leaflets.
  • This design provides a more efficient delivery configuration because the commissures are not compressed against the leaflets when the valve prosthesis is reduced to the contracted delivery configuration. Additionally, by lengthening the distance to the commissures, the design mimics the functioning of natural tissue valves by distributing forces along the coaptation edges and reducing horizontal forces transmitted to the commissural joints.
  • valve body of the present invention may include a sewing ring in lieu of the frame to facilitate surgical implantation, and may employ as few as two and as many as four leaflets.
  • FIGS. 1A , 1 B and 1 C are, respectively, side and top end views of an exemplary valve prosthesis of the present invention in the expanded deployed configuration and an enlarged region of the frame of the valve prosthesis;
  • FIG. 2 is a side view of the frame of the valve prosthesis of FIGS. 1 in a contracted delivery configuration
  • FIGS. 3A and 3B are, respectively, plan views of a leaflet and the skirt employed in the valve body of the present invention.
  • FIGS. 4A and 4B are, respectively, a perspective view of a leaflet with its enlarged regions folded, and a plan view of the valve body of the present invention, wherein the leaflets are fastened to the skirt;
  • FIG. 5 is a side view of the valve body of FIG. 4B fully assembled.
  • FIG. 6 is a side view depicting the valve prosthesis of the present invention deployed atop a patient's aortic valve.
  • the present invention is directed to a heart valve prothesis having a self-expanding frame that supports a valve body.
  • the frame has a tri-level asymmetric hourglass shape with a conical proximal section, an enlarged distal section and a constriction region having a predefined curvature when the frame is deployed.
  • the proximal section constitutes the “inflow” portion of the valve prosthesis and is disposed in the aortic annulus of the patient's left ventricle, while the distal section constitutes the “outflow” portion of the valve prosthesis and is positioned in the patient's ascending aorta.
  • the valve body comprises three leaflets that are fastened together at enlarged lateral end regions to form commissural joints, with the unattached edges forming the coaptation edges of the valve.
  • the leaflets are fastened to a skirt, which is in turn affixed to the frame.
  • the enlarged lateral end regions of the leaflets permit the material to be folded over to enhance durability of the valve and reduce stress concentration points that could lead to fatigue or tearing of the leaflets.
  • the commissural joints are mounted above the plane of the coaptation edges of the valve body to minimize the contracted delivery profile of the valve prosthesis, while the configuration of the edges permits uniform stress distribution along the coaptation edges.
  • Valve prosthesis 10 comprises expandable frame 12 having valve body 14 affixed to its interior surface, e.g., by sutures.
  • Frame 12 preferably comprises a self-expanding structure formed by laser cutting or etching a metal alloy tube comprising, for example, stainless steel or a shape memory material such as nickel titanium.
  • the frame has an expanded deployed configuration which is impressed upon the metal alloy tube using techniques that are per se known in the art.
  • Valve body 14 preferably comprises individual leaflets assembled to a skirt, where all of the components are formed from a natural or man-made material.
  • Preferred materials for valve body 14 include mammalian tissue, such as porcine, equine or bovine pericardium, or a synthetic or polymeric material.
  • Frame 12 preferable includes multiple levels, including outflow section 15 , inflow section 16 and constriction region 17 .
  • the frame comprises a plurality of cells having sizes that vary along the length of the prosthesis.
  • each cell comprises two zig-zag structures having unequal-length struts, wherein the vertices of the zig-zags are coupled together.
  • zig-zag 18 has length z 1 whereas zig-zag 19 has greater length Z 2 .
  • This cell design permits each level of cells between the proximal and distal ends of the frame to be tailored to meet specific design requirements, such as, compressibility, expansion characteristics, radial strength and so as to define a suitable contour for attachment of the valve body.
  • the cell pattern of frame 12 also enables the frame to expand to the tri-level asymmetric hourglass shape depicted in FIG. IA, having conical inflow section, enlarged outflow section and fixed diameter constricted region.
  • Each section of frame 12 has a substantially circular cross-section in the expanded deployed configuration, but in addition the cell patterns of the inflow and outflow sections permit those sections to adapt to the specific anatomy of the patient, thereby reducing the risk of migration and reducing the risk of perivalvular leaks.
  • the cell patterns employed in the constriction region are selected to provide a uniform circular cross-section area for the constriction region when deployed, and a pre-determined radius of curvature for the transition between the constriction region and outflow section of the frame.
  • the convex-concave shape of frame 12 within the constriction region ensures that the frame is held away from the opposing sinus wall in the ascending aorta, thus ensuring adequate blood flow to the coronary arteries and facilitating catheter access to the coronary arteries.
  • Enlarged outflow section has nominal deployed diameter D o
  • inflow section has nominal deployed diameter D I
  • constriction region has deployed substantially fixed diameter D c .
  • the conical shape of the inflow region and smooth transitions between adjacent sections of frame 12 are expected to be particularly advantageous in directing blood flow through the valve body with little or no turbulence, as compared to step changes in diameter observed for surgically implanted replacement valves.
  • outflow diameter D o may range from 30 to 55 mm
  • inflow diameter D I may vary from 19 to 34 mm
  • frame 12 may be manufactured in four sizes having a range of diameters D o , D I and D c as set forth in Table 1 below:
  • these four frame sizes are expected to cover a wide range of patient anatomies, while requiring construction of only two sizes of valve bodies (22 and 24 mm).
  • valve bodies 22 and 24 mm.
  • the above four sizes of valve prosthesis of the present invention could be used for more than 75% of the patient population, thus greatly 20 reducing the costs associated with manufacturing and inventorying large numbers of parts.
  • inflow section 16 When configured as a replacement for an aortic valve, inflow section 16 extends into and anchors within the aortic annulus of a patient's left ventricle and 25 outflow section 15 is positioned in the patient's ascending aorta.
  • the configuration of outflow section 15 is expected to provide optimal alignment of the valve body with the direction of blood flow.
  • the cell pattern of outflow section 15 also serves to anchor the outflow section in the patient's ascending aorta to prevent lateral movement or migration of frame 12 . As depicted in FIG.
  • Frame 12 also may include eyelets 20 for use in loading the heart valve prosthesis 10 into a delivery catheter.
  • valve body 14 includes skirt 21 affixed to frame 12 , and leaflets 22 .
  • leaflets 22 are attached along their bases to skirt 21 , for example, using sutures 23 or a suitable biocompatible adhesive. Adjoining pairs of leaflets are attached to one another at their lateral ends to form commissures 24 , with free edges 25 of the leaflets forming coaptation edges that meet in area of coaptation 26 .
  • commissures 24 are configured to span a cell of frame 12 , so that force is evenly distributed within the commissures and to frame 12 .
  • valve prosthesis 10 is shown in the contracted delivery configuration.
  • valve prosthesis may be loaded into a catheter for percutaneous transluminal delivery via a femoral artery and the descending aorta to a patient's aortic valve.
  • commissures 24 are disposed longitudinally offset from coaptation edges 25 of the valve body, thereby permitting a smaller delivery profile than achievable with previously-known replacement valves.
  • frame 12 self-expands upon being released from the delivery catheter, there is no need to use a balloon catheter during placement of valve prosthesis 10 , thereby avoiding the potential for inflicting compressive injury to the valve leaflets during inflation of the balloon.
  • skirt 21 and leaflet 22 of a preferred aortic valve embodiment of the present invention are described.
  • Skirt 21 and leaflet 22 preferably are cut from a sheet of animal pericardial tissue, such as porcine pericardial tissue, or synthetic or polymeric material, either manually or using a die or laser cutting system.
  • the pericardial tissue may be processed in accordance with tissue processing techniques that are per se known in the art for forming and treating tissue valve material.
  • skirt 21 and leaflet 22 may be constructed on a synthetic or polymeric material.
  • skirt 21 and leaflets 22 have a thickness of between 0.008′′ and 0.016′′, and more preferably between 0.012′′ and 0.014′′.
  • Leaflet 22 includes enlarged lateral ends 30 and 31 disposed at either end of free edge 32 , and body 33 .
  • Free edge 32 forms coaptation edge 25 of the finished valve body 14
  • lateral ends 30 and 31 are folded and joined to adjacent leaflets to form commissures 24 .
  • free edges 32 assume the form of catenaries when the valve body is affixed to frame 12 , thereby providing uniform loading along the length of the coaptation edge in a manner similar to a suspension bridge.
  • Body 33 is joined to skirt 21 as described below.
  • Lateral ends 30 and 31 illustratively are shown in FIG. 3A as having fold lines d, e and f, to define flaps 34 , 35 and 36 .
  • Skirt 21 preferably is constructed from the same material as leaflets 22 , and includes scalloped areas 37 , reinforcing tabs 38 and end tabs 39 . Each scalloped area 37 is joined to a body 33 of a respective leaflet 22 .
  • Reinforcing tabs 38 illustratively include fold lines g, h and i, except for reinforcing tabs 40 and 41 at the lateral ends of the skirt, which have only one fold apiece. As described below, reinforcing tabs 40 and 41 are joined to one another, e.g., by sutures or gluing, so that skirt 21 forms a frustum of a cone.
  • End tabs 39 are folded over the ends of the proximal-most row of cells of frame 12 to secure skirt 21 to the frame and seal against perivalvular bypass flows (see FIG. 1A ). Because end tabs 39 are directly supported by the last zig-zag row of cells of frame 12 , there is no opportunity for an unsupported edge of the skirt to flap or otherwise extend into the flow path along the inflow edge of skirt 21 . Thus, the design of the valve prosthesis not only ensures that there are no flaps to disrupt flow or serve as sites for thrombus formation, but also reduces the risk that hemodynamic flow against such flaps could cause frame 12 to migrate.
  • FIGS. 4A and 4B assembly of valve body 14 from skirt 21 and leaflets 22 is described.
  • flap 34 first is folded along line d.
  • Flap 35 is folded along line e so that it lies atop flap 34 , forming seam 42 comprising a triple thickness of the tissue.
  • Flap 36 then is folded along line f.
  • Adjoining leaflets 22 then are fastened together along adjacent seams 42 , resulting in a leaflet assembly.
  • Reinforcing tabs 38 are folded along lines g, h and i to form seams 43 comprising a double thickness of tissue.
  • the leaflet assembly is attached to skirt 21 along the bottom edges of bodies 33 of the leaflets to form joints 44 .
  • the valve body appears as depicted in FIG. 4B .
  • Reinforcing tabs 40 and 41 then are fastened together to form another seam 43 along skirt 21 and the remaining seam 43 between leaflets 22 .
  • Valve body 14 then is ready to be affixed to frame 12 .
  • valve body 14 is shown as it would appear when affixed to frame 12 , but with frame 12 omitted to better illustrate where the valve body is affixed to the frame.
  • flaps 36 of adjacent leaflets are affixed, e.g., by sutures, to span a cell of the frame to support commissures 24 (compare to FIG. 1B ) and end tabs 39 are folded over and affixed to the proximal-most row of cells of the frame 12 (compare to FIG. 1A ).
  • Valve body 14 also is attached to frame 12 along seams 43 formed by the reinforcing tabs.
  • Each joint 44 is aligned with and fastened to (e.g., by sutures or glue) to a curved contour defined by the struts of the cells of frame 12 , so that joint 44 is affixed to and supported by frame 12 over most of the length of the joint.
  • the configuration of the cells in frame 12 may be specifically customized define a curved contour that supports joints 44 of the valve body.
  • valve body 14 When completely assembled to frame 12 , valve body 14 is affixed to frame 12 along the edges of flaps 36 of the commissures, end tabs 39 , leaflet seams 42 , reinforcing tab seams 43 and joints 44 . In this manner, forces imposed on leaflets 22 , commissures 24 and joints 44 are efficiently and evenly distributed over the valve body and transferred to frame 12 , thus reducing stress concentration and fatigue of the valve body components. Moreover, the use of multiple thicknesses of material along seams 42 and 43 is expected to provide a highly durable valve body which will last for many years once implanted in a patient.
  • the center of coaptation of leaflets 22 is a distance L below the point at which the commissures are affixed to the frame, as shown in FIG. 5 .
  • the overall lengths of the coaptation edges are increased, while leaflets 22 coapt along a shorter portion of those lengths.
  • valve body 14 As will of course be apparent to one of skill in the art of prosthetic valve design, the assembly steps described above are merely illustrative, and a different order of assembling the leaflets and skirt to form valve body 14 may be employed.
  • a conventional sewing ring may be attached to valve body 14 and frame 12 may be omitted.
  • the valve prosthesis may be implanted surgically, rather than by percutaneous transluminal delivery.
  • commissures 24 may be attached to the ascending aorta by sutures or other means as described above.
  • valve prosthesis preferably comprises a self-expanding multilevel frame that may be compressed to a contracted delivery configuration, as depicted in FIG. 3 , onto an inner member of a delivery catheter.
  • the valve prosthesis and inner member may then be loaded into a delivery sheath of conventional design, e.g., having a diameter of less than 20 - 24 French.
  • valve prosthesis may be designed to achieve a significantly smaller delivery profile than previously-known percutaneously-deliverable replacement valves.
  • the delivery catheter and valve prosthesis are then advanced in a retrograde manner through a cut-down to the femoral artery and into the patient's descending aorta.
  • the -catheter-then is advanced, under fluoroscopic guidance, over the aortic arch, through the ascending aorta and mid-way across the defective aortic valve.
  • the sheath of the delivery catheter may be withdrawn proximally, thereby permitting the valve prosthesis to self-expand.
  • valve prosthesis As the valve prosthesis expands, it traps leaflets LN of the patient's defective aortic valve against the valve annulus, retaining the native valve in a permanently open state. As further illustrated in FIG. 6 , outflow section 15 of the valve prosthesis expands against and aligns the prosthesis within the ascending aorta, while inflow section 16 becomes anchored in the aortic annulus of the left ventricle, so that skirt 21 reduces the risk of perivalvular leaks.
  • constriction region 17 holds valve body 14 in a superannular position, away from the heart walls, thereby ensuring that the constriction region expands to the predetermined fixed diameter. This in turn ensures that the valve body does not experience any unexpected lateral loads and therefore expands to its design diameter, e.g., illustratively either 22 or 24 mm as in Table 1 above.
  • valve prosthesis 10 does not disrupt blood flow into coronary arteries CA when deployed, and also does not obstruct subsequent catheter access to the coronary arteries. Accordingly, a clinician may readily gain access to the coronary arteries, for example, to perform angioplasty or stenting, simply by directing the angioplasty or stent delivery system guide wire through the openings in the cell pattern of frame 12 .

Abstract

A heart valve prosthesis is provided having a self-expanding multi-level frame that supports a valve body comprising a skirt and plurality of coapting leaflets. The frame transitions between a contracted delivery configuration that enables percutaneous transluminal delivery, and an expanded deployed configuration having an asymmetric hourglass shape. The valve body skirt and leaflets are constructed so that the center of coaptation may be selected to reduce horizontal forces applied to the commissures of the valve, and to efficiently distribute and transmit forces along the leaflets and to the frame. Alternatively, the valve body may be used as a surgically implantable replacement valve prosthesis.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to replacement valves for improving the cardiac function of a patient suffering from cardiac valve dysfunction, such as aortic valve regurgitation or aortic stenosis. More particularly, the present invention relates to heart valve prostheses that provide improved durability and are particularly well-suited for percutaneous delivery.
  • 2. Background of the Invention
  • Heart valve replacement has become a routine surgical procedure for patients suffering from valve regurgitation or stenotic calcification of the leaflets. While certain procedures may be performed using minimally-invasive techniques (so-called “keyhole” techniques), the vast majority of valve replacements entail full sternotomy and placing the patient on cardiopulmonary bypass. Traditional open surgery inflicts significant patient trauma and discomfort, requires extensive recuperation times and may result in life-threatening complications.
  • To address these concerns, within the last decade efforts have been made to perform cardiac valve replacements using minimally-invasive techniques. In these methods, laparascopic instruments are employed to make small openings through the patient's ribs to provide access to the heart. While considerable effort has been devoted to such techniques, widespread acceptance has been limited by the clinician's ability to access only certain regions of the heart using laparoscopic instruments.
  • Still other efforts have been focused on percutaneous transluminal delivery of replacement cardiac valves to solve the problems presented by traditional open surgery and minimally-invasive surgical methods. In such methods; a valve prosthesis is compacted for delivery in a catheter and then advanced, for example, through an opening in the femoral artery and through the descending aorta to the heart, where the prosthesis then is deployed in the aortic valve annulus. Although transluminal techniques have attained widespread acceptance with respect to delivery of stents to restore vessel patency, only mixed results have been obtained with respect to percutaneous delivery of relatively more complicated valve prostheses.
  • One such example of a previously-known device heart valve prosthesis is described in U.S. Pat. No. 6,454,799 to Schreck. The prosthesis described in that patent comprises a fabric-based heart valve disposed within a plastically deformable wire-mesh base, and is delivered via expansion of a balloon catheter. One drawback with balloon catheter delivery of the prosthetic valve is that the valve leaflets may be damaged when compressed between the balloon and the base during deployment. In addition, because balloon expandable structures tend to experience some recoil following balloon deflation, perivalvular leaks may develop around the circumference of the valve prosthesis.
  • Accordingly it would be desirable to provide a percutaneously-deliverable valve prosthesis that reduces the risk of leaflet damage during deployment of the prosthesis. It further would be. desirable to provide a valve prosthesis that reduces the risk of perivalvular leaks resulting from recoil of the prosthesis following deployment.
  • U.S. Pat. No. 6,027,525 to Suh, et al. describes a valve prosthesis comprising a series of self-expanding units affixed to a polymeric cover and having a valve disposed therein. Such devices are not suitable for cardiac valve replacement because of the limited ability to compact the valve disposed within the prosthesis. Moreover, such valve prostheses would be particularly undesirable for treating aortic valve defects, because the polymeric cover would obscure the ostia of the coronary arteries, both disrupting blood flow to the coronary arteries and preventing subsequent catheterization of those arteries. Accordingly, it would be desirable to provide a valve prosthesis that is self-expanding, yet permits the valve to be compacted to a greater degree than previously-known designs.
  • U.S. Pat. No. 6,682,559 to Myers, et al. also describes a valve prosthesis having an essentially tubular design. One drawback of such configurations is that relatively large horizontal forces arise along the coaptation edges of the leaflets and are transmitted to the commissural points. These forces may adversely affect the durability of the leaflets and lead to valve failure. In view of this, it would be desirable to provide a valve wherein the center of coaptation of the leaflets may be selected so as to reduce horizontal forces applied to coaptation edges of the leaflets and commissural points, thereby improving durability of the valve. In addition, it would be desirable to provide a valve design that more uniformly distributes horizontal forces over the coaptation edges of the leaflets, rather than concentrating those forces at the commissural points.
  • In an effort to more nearly recreate the force distribution along the leaflets of natural tissue valves, some previously-known valve designs include circular base portions having longitudinal projections that function as anchors for the commissural points, such as described in U.S. Pat. No. 5,855,601 to Bessler, et al. and U.S. Pat. No. 6,582,462 to Andersen, et al.
  • While the valve prostheses of Bessler and Andersen may be readily collapsed for delivery, those designs are susceptible to problems once deployed. For example, the longitudinal projections of such prostheses may not provide sufficient rigidity to withstand compressive forces applied during normal movements of the heart. Deformation of the commissural anchors may result in varied forces being imposed on the commissures and leaflets, in turn adversely impact functioning of the leaflets. In addition, because the exteriors of the foregoing valve prostheses are substantially cylindrical, the prostheses are less likely to adequately conform to, and become anchored within the valve annulus anatomy during deployment. As a result, cyclic loading of the valve may result in some slippage or migration of the anchor relative to the patient's anatomy.
  • In view of the foregoing, it would be desirable to provide a valve that is capable of conforming to a patient's anatomy while providing a uniform degree of rigidity and protection for critical valve components. It therefore would be desirable to provide a valve prosthesis having portions that are capable of deforming circumferentially to adapt to the shape of the pre-existing valve annulus, but which is not susceptible to deformation or migration due to normal movement of the heart. Still further, it would be desirable to provide a valve prosthesis having a multi-level component that is anatomically shaped when deployed, thereby enhancing anchoring of the valve and reducing the risk of migration and perivalvular leaks.
  • BRIEF SUMMARY OF THE INVENTION
  • In view of the foregoing, it is an object of the present invention to provide a valve prosthesis that overcomes the drawbacks of previously-known designs, and which may be implanted using open surgical, minimally invasive or percutaneous implantation techniques.
  • It is also an object of the present invention to provide a percutaneously-deliverable valve prosthesis that reduces the risk of leaflet damage during deployment of the prosthesis.
  • It is a further object of this invention to provide a valve prosthesis that reduces the risk of perivalvular leaks resulting from elastic recoil of the prosthesis following deployment.
  • It is another object of the present invention to provide a valve prosthesis that is self-expanding, yet permits the valve to be compacted to a greater degree than previously-known designs and permits ready access to adjoining anatomical structures, such as the coronary arteries.
  • It is a still further object of the present invention to provide a valve in which the center of coaptation of the leaflets may be selected so as to reduce horizontal forces applied to coaptation edges of the leaflets and commissural points, thereby improving durability of the valve.
  • In addition, it is an object of this invention to provide a valve design that more uniformly distributes forces over the coaptation edges of the leaflets, rather than concentrating those forces at the commissural points.
  • It is yet another object of this invention to provide a valve that is anatomically shaped, provides a uniform high degree of rigidity and protection for critical valve components, and which is less susceptible to deformation arising from normal movement of the heart.
  • It is an object of the present invention to provide a valve prosthesis having portions that are capable of deforming circumferentially to adapt to the shape of the pre-existing valve annulus, but which is not susceptible to deformation or migration due to normal movement of the heart.
  • It is also an object of this invention to provide a valve prosthesis having a multi-level component that is anatomically shaped when deployed, thereby enhancing anchoring of the valve and reducing the risk of migration and perivalvular leaks.
  • It is a further object of the present invention to provide a valve prosthesis wherein a valve is disposed within a rigid portion of a multilevel frame, so that valve area and function are not impaired, but inflow and/or outflow portions of the multilevel frame are capable of conforming to patient anatomy anomalies.
  • It is a further object of the present invention to provide a valve prosthesis that facilitates alignment of the heart valve prosthesis with the direction of blood flow.
  • These and other objects of the present invention are accomplished by providing a heart valve prosthesis wherein a self-expanding multi-level frame supports a valve body comprising a skirt and plurality of coapting leaflets. The frame has a contracted delivery configuration, in which the prosthesis may be stored within a catheter for percutaneous delivery, and an expanded deployed configuration having an asymmetric hourglass shape. The valve body skirt and leaflets preferably are constructed of porcine, bovine, equine or other mammalian tissue, such as pericardial tissue, and are sewn, welded, molded or glued together so as to efficiently distribute forces along the leaflets and to the frame. Alternatively, the valve body may comprise a synthetic or polymeric material.
  • In accordance with the principles of the present invention, the frame comprises multiple levels, including a proximal conical inflow section, a constriction region and a flared distal outflow section. Each of the inflow and outflow sections is capable of deforming to a non-circular cross-section to conform to the patient's anatomy, while the constriction region is configured to retain a circular cross-section that preserves proper functioning of the valve body.
  • The frame comprises a plurality of cells having a pattern that varies along the length of the frame to provide a high degree of anchoring and alignment of the valve prosthesis. The cell pattern further is selected to provide a uniform diameter where the commissural joints of the leaflets are attached to the frame, while permitting the inflow and outflow regions to expand to conform to the patient's anatomy. In this manner, optimal functioning of the valve body may be obtained even though the frame may be deployed in anatomies having a range of sizes. In addition, the frame resists deformation caused by movement of the heart and enables a functional portion of the valve body to be disposed supra-annularly to the native valve, with a portion of the valve prosthesis extending into the native valve annulus.
  • In one embodiment suitable for aortic valve replacement, the valve body comprises a skirt coupled to three leaflets. Each of the components preferably is formed of animal pericardial tissue or synthetic material, and then sewn, glued, welded or molded together. The lateral ends of the leaflets include enlarged regions that are folded to both form the commissural joints and fasten the commissural joints to the frame. The skirt and leaflets further are configured so that the joints align with contours of the cell pattern of the frame.
  • In a preferred embodiment, the commissural joints are affixed to the frame at locations above the area of coaptation, to provide a selectable center of coaptation of the leaflets. This design provides a more efficient delivery configuration because the commissures are not compressed against the leaflets when the valve prosthesis is reduced to the contracted delivery configuration. Additionally, by lengthening the distance to the commissures, the design mimics the functioning of natural tissue valves by distributing forces along the coaptation edges and reducing horizontal forces transmitted to the commissural joints.
  • In alternative embodiments, the valve body of the present invention may include a sewing ring in lieu of the frame to facilitate surgical implantation, and may employ as few as two and as many as four leaflets.
  • Methods of making and using the valve prostheses of the present invention are also provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS/FIGURES
  • The above and other objects and advantages of the present invention will be apparent upon consideration of the following detailed description, taken in conjunction with the accompanying drawings, in which like reference numerals refer to like parts throughout, and in which:
  • FIGS. 1A, 1B and 1C are, respectively, side and top end views of an exemplary valve prosthesis of the present invention in the expanded deployed configuration and an enlarged region of the frame of the valve prosthesis;
  • FIG. 2 is a side view of the frame of the valve prosthesis of FIGS. 1 in a contracted delivery configuration;
  • FIGS. 3A and 3B are, respectively, plan views of a leaflet and the skirt employed in the valve body of the present invention;
  • FIGS. 4A and 4B are, respectively, a perspective view of a leaflet with its enlarged regions folded, and a plan view of the valve body of the present invention, wherein the leaflets are fastened to the skirt;
  • FIG. 5 is a side view of the valve body of FIG. 4B fully assembled; and
  • FIG. 6 is a side view depicting the valve prosthesis of the present invention deployed atop a patient's aortic valve.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to a heart valve prothesis having a self-expanding frame that supports a valve body. In a preferred embodiment, the frame has a tri-level asymmetric hourglass shape with a conical proximal section, an enlarged distal section and a constriction region having a predefined curvature when the frame is deployed. In the context of the present application, the proximal section constitutes the “inflow” portion of the valve prosthesis and is disposed in the aortic annulus of the patient's left ventricle, while the distal section constitutes the “outflow” portion of the valve prosthesis and is positioned in the patient's ascending aorta.
  • In a preferred embodiment the valve body comprises three leaflets that are fastened together at enlarged lateral end regions to form commissural joints, with the unattached edges forming the coaptation edges of the valve. The leaflets are fastened to a skirt, which is in turn affixed to the frame. The enlarged lateral end regions of the leaflets permit the material to be folded over to enhance durability of the valve and reduce stress concentration points that could lead to fatigue or tearing of the leaflets. The commissural joints are mounted above the plane of the coaptation edges of the valve body to minimize the contracted delivery profile of the valve prosthesis, while the configuration of the edges permits uniform stress distribution along the coaptation edges.
  • Referring to FIGS. 1, an exemplary embodiment of a valve prosthesis constructed in accordance with the principles of the present invention is described. Valve prosthesis 10 comprises expandable frame 12 having valve body 14 affixed to its interior surface, e.g., by sutures. Frame 12 preferably comprises a self-expanding structure formed by laser cutting or etching a metal alloy tube comprising, for example, stainless steel or a shape memory material such as nickel titanium. The frame has an expanded deployed configuration which is impressed upon the metal alloy tube using techniques that are per se known in the art. Valve body 14 preferably comprises individual leaflets assembled to a skirt, where all of the components are formed from a natural or man-made material. Preferred materials for valve body 14 include mammalian tissue, such as porcine, equine or bovine pericardium, or a synthetic or polymeric material.
  • Frame 12 preferable includes multiple levels, including outflow section 15, inflow section 16 and constriction region 17. As depicted in the enlarged view of FIG. 1B, the frame comprises a plurality of cells having sizes that vary along the length of the prosthesis. As indicated by dotted lines a, band c, each cell comprises two zig-zag structures having unequal-length struts, wherein the vertices of the zig-zags are coupled together. For example, zig-zag 18 has length z1 whereas zig-zag 19 has greater length Z2. This cell design permits each level of cells between the proximal and distal ends of the frame to be tailored to meet specific design requirements, such as, compressibility, expansion characteristics, radial strength and so as to define a suitable contour for attachment of the valve body.
  • The cell pattern of frame 12 also enables the frame to expand to the tri-level asymmetric hourglass shape depicted in FIG. IA, having conical inflow section, enlarged outflow section and fixed diameter constricted region. Each section of frame 12 has a substantially circular cross-section in the expanded deployed configuration, but in addition the cell patterns of the inflow and outflow sections permit those sections to adapt to the specific anatomy of the patient, thereby reducing the risk of migration and reducing the risk of perivalvular leaks. The cell patterns employed in the constriction region are selected to provide a uniform circular cross-section area for the constriction region when deployed, and a pre-determined radius of curvature for the transition between the constriction region and outflow section of the frame. In particular, the convex-concave shape of frame 12 within the constriction region ensures that the frame is held away from the opposing sinus wall in the ascending aorta, thus ensuring adequate blood flow to the coronary arteries and facilitating catheter access to the coronary arteries.
  • Enlarged outflow section has nominal deployed diameter Do, inflow section has nominal deployed diameter DI, and constriction region has deployed substantially fixed diameter Dc. The conical shape of the inflow region and smooth transitions between adjacent sections of frame 12 are expected to be particularly advantageous in directing blood flow through the valve body with little or no turbulence, as compared to step changes in diameter observed for surgically implanted replacement valves.
  • The above-described cell pattern permits each of the inflow and outflow sections of frame 12 to expand to a diameter within a range of deployed diameters, while retaining constriction region 17 at a substantially constant diameter. Thus, for example, outflow diameter Do may range from 30 to 55 mm, while inflow diameter DI may vary from 19 to 34 mm. Illustratively, frame 12 may be manufactured in four sizes having a range of diameters Do, DI and Dc as set forth in Table 1 below:
  • TABLE 1
    Size A Size B Size C Size D
    D
    o 40 mm 50 mm 40 mm 50 mm
    D
    c 22 mm 22 mm 24 mm 24 mm
    D
    l 26 mm 26 mm 29 mm 29 mm
  • Advantageously, these four frame sizes are expected to cover a wide range of patient anatomies, while requiring construction of only two sizes of valve bodies (22 and 24 mm). Compared to previously-known commercially available surgical valves, which vary from approximately 17 mm to 31 mm in one millimeter increments, it is expected that the above four sizes of valve prosthesis of the present invention could be used for more than 75% of the patient population, thus greatly 20 reducing the costs associated with manufacturing and inventorying large numbers of parts.
  • When configured as a replacement for an aortic valve, inflow section 16 extends into and anchors within the aortic annulus of a patient's left ventricle and 25 outflow section 15 is positioned in the patient's ascending aorta. Importantly, the configuration of outflow section 15 is expected to provide optimal alignment of the valve body with the direction of blood flow. In addition, the cell pattern of outflow section 15 also serves to anchor the outflow section in the patient's ascending aorta to prevent lateral movement or migration of frame 12. As depicted in FIG. 1C, the use of relatively larger cells in the outflow section of frame 12, combined with the convex-concave shape of constriction region 17, ensures that the frame does not obstruct blood flow to the patient's coronary arteries when deployed and allows for catheter access to the coronary arteries. Frame 12 also may include eyelets 20 for use in loading the heart valve prosthesis 10 into a delivery catheter.
  • Still referring to FIGS. 1, valve body 14 includes skirt 21 affixed to frame 12, and leaflets 22. Leaflets 22 are attached along their bases to skirt 21, for example, using sutures 23 or a suitable biocompatible adhesive. Adjoining pairs of leaflets are attached to one another at their lateral ends to form commissures 24, with free edges 25 of the leaflets forming coaptation edges that meet in area of coaptation 26.
  • As depicted in FIG. 1A, the curve formed at joint 27 between the base of each leaflet 22 and skirt 21 follows the contour of the cell pattern of frame 12, so that most of the length of joint 27 is directly supported by frame 12, thereby transmitting forces applied to the valve body directly to the frame. As further depicted in FIG. 1C, commissures 24 are configured to span a cell of frame 12, so that force is evenly distributed within the commissures and to frame 12.
  • Referring to FIG. 2, valve prosthesis 10 is shown in the contracted delivery configuration. In this state, valve prosthesis may be loaded into a catheter for percutaneous transluminal delivery via a femoral artery and the descending aorta to a patient's aortic valve. In accordance with one aspect of the present invention, commissures 24 are disposed longitudinally offset from coaptation edges 25 of the valve body, thereby permitting a smaller delivery profile than achievable with previously-known replacement valves. In addition, because frame 12 self-expands upon being released from the delivery catheter, there is no need to use a balloon catheter during placement of valve prosthesis 10, thereby avoiding the potential for inflicting compressive injury to the valve leaflets during inflation of the balloon.
  • Referring now to FIGS. 3A and 3B, skirt 21 and leaflet 22 of a preferred aortic valve embodiment of the present invention are described. Skirt 21 and leaflet 22 preferably are cut from a sheet of animal pericardial tissue, such as porcine pericardial tissue, or synthetic or polymeric material, either manually or using a die or laser cutting system. The pericardial tissue may be processed in accordance with tissue processing techniques that are per se known in the art for forming and treating tissue valve material. Alternatively, skirt 21 and leaflet 22 may be constructed on a synthetic or polymeric material. In a preferred embodiment, skirt 21 and leaflets 22 have a thickness of between 0.008″ and 0.016″, and more preferably between 0.012″ and 0.014″.
  • Leaflet 22 includes enlarged lateral ends 30 and 31 disposed at either end of free edge 32, and body 33. Free edge 32 forms coaptation edge 25 of the finished valve body 14, while lateral ends 30 and 31 are folded and joined to adjacent leaflets to form commissures 24. In accordance with one aspect of the present invention, free edges 32 assume the form of catenaries when the valve body is affixed to frame 12, thereby providing uniform loading along the length of the coaptation edge in a manner similar to a suspension bridge. Body 33 is joined to skirt 21 as described below. Lateral ends 30 and 31 illustratively are shown in FIG. 3A as having fold lines d, e and f, to define flaps 34, 35 and 36.
  • Skirt 21 preferably is constructed from the same material as leaflets 22, and includes scalloped areas 37, reinforcing tabs 38 and end tabs 39. Each scalloped area 37 is joined to a body 33 of a respective leaflet 22. Reinforcing tabs 38 illustratively include fold lines g, h and i, except for reinforcing tabs 40 and 41 at the lateral ends of the skirt, which have only one fold apiece. As described below, reinforcing tabs 40 and 41 are joined to one another, e.g., by sutures or gluing, so that skirt 21 forms a frustum of a cone.
  • End tabs 39 are folded over the ends of the proximal-most row of cells of frame 12 to secure skirt 21 to the frame and seal against perivalvular bypass flows (see FIG. 1A). Because end tabs 39 are directly supported by the last zig-zag row of cells of frame 12, there is no opportunity for an unsupported edge of the skirt to flap or otherwise extend into the flow path along the inflow edge of skirt 21. Thus, the design of the valve prosthesis not only ensures that there are no flaps to disrupt flow or serve as sites for thrombus formation, but also reduces the risk that hemodynamic flow against such flaps could cause frame 12 to migrate.
  • Referring to FIGS. 4A and 4B, assembly of valve body 14 from skirt 21 and leaflets 22 is described. In FIG. 4A, flap 34 first is folded along line d. Flap 35 is folded along line e so that it lies atop flap 34, forming seam 42 comprising a triple thickness of the tissue. Flap 36 then is folded along line f. Adjoining leaflets 22 then are fastened together along adjacent seams 42, resulting in a leaflet assembly.
  • Reinforcing tabs 38 are folded along lines g, h and i to form seams 43 comprising a double thickness of tissue. Next, the leaflet assembly is attached to skirt 21 along the bottom edges of bodies 33 of the leaflets to form joints 44. At this stage of the assembly, prior to attaching reinforcing tab 40 to 41 and the remaining seam 43 of leaflets 22, the valve body appears as depicted in FIG. 4B. Reinforcing tabs 40 and 41 then are fastened together to form another seam 43 along skirt 21 and the remaining seam 43 between leaflets 22. Valve body 14 then is ready to be affixed to frame 12.
  • Referring to FIG. 5, valve body 14 is shown as it would appear when affixed to frame 12, but with frame 12 omitted to better illustrate where the valve body is affixed to the frame. During the step of affixing the valve body to the frame, flaps 36 of adjacent leaflets are affixed, e.g., by sutures, to span a cell of the frame to support commissures 24 (compare to FIG. 1B) and end tabs 39 are folded over and affixed to the proximal-most row of cells of the frame 12 (compare to FIG. 1A). Valve body 14 also is attached to frame 12 along seams 43 formed by the reinforcing tabs. Each joint 44 is aligned with and fastened to (e.g., by sutures or glue) to a curved contour defined by the struts of the cells of frame 12, so that joint 44 is affixed to and supported by frame 12 over most of the length of the joint. As discussed above, the configuration of the cells in frame 12 may be specifically customized define a curved contour that supports joints 44 of the valve body.
  • When completely assembled to frame 12, valve body 14 is affixed to frame 12 along the edges of flaps 36 of the commissures, end tabs 39, leaflet seams 42, reinforcing tab seams 43 and joints 44. In this manner, forces imposed on leaflets 22, commissures 24 and joints 44 are efficiently and evenly distributed over the valve body and transferred to frame 12, thus reducing stress concentration and fatigue of the valve body components. Moreover, the use of multiple thicknesses of material along seams 42 and 43 is expected to provide a highly durable valve body which will last for many years once implanted in a patient.
  • In accordance with another aspect of the present invention, the center of coaptation of leaflets 22 is a distance L below the point at which the commissures are affixed to the frame, as shown in FIG. 5. Compared to previously-known designs, in the present invention the overall lengths of the coaptation edges are increased, while leaflets 22 coapt along a shorter portion of those lengths. Several advantages arise from this design:
    • the leaflets require only minimal pressure to open and have a rapid closing time.
    • the valve demonstrates better washing dynamics when open, i.e., less turbulence along the free edges of the leaflets.
    • the valve provides a more uniform distribution of stresses along the coaptation edges of leaflets 22.
    • the angle at which force is transmitted to the commissures is increased, thereby substantially reducing the horizontal forces applied to the commissures that tend to pull the commissures away from the frame.
    • controlling the center of the height of coaptation allows the commissures to be located proximal of the center of coaptation, thereby reducing the contracted delivery profile of the valve prosthesis.
  • All of the foregoing benefits are expected to reduce non-uniform loads applied to -the-valve body, and substantially enhance the durability of the valve prosthesis.
  • As will of course be apparent to one of skill in the art of prosthetic valve design, the assembly steps described above are merely illustrative, and a different order of assembling the leaflets and skirt to form valve body 14 may be employed. In an alternative embodiment, a conventional sewing ring may be attached to valve body 14 and frame 12 may be omitted. In this case, the valve prosthesis may be implanted surgically, rather than by percutaneous transluminal delivery. In this case, commissures 24 may be attached to the ascending aorta by sutures or other means as described above.
  • Referring now to FIG. 6, implantation of valve prosthesis 10 of the present invention is described. As discussed above, valve prosthesis preferably comprises a self-expanding multilevel frame that may be compressed to a contracted delivery configuration, as depicted in FIG. 3, onto an inner member of a delivery catheter. The valve prosthesis and inner member may then be loaded into a delivery sheath of conventional design, e.g., having a diameter of less than 20-24 French. Due in part to the fact that commissures 24 are longitudinally offset from the coaptation edges of the leaflets, and also due to the ability to customize the cell pattern along the length of the frame, it is expected that valve prosthesis may be designed to achieve a significantly smaller delivery profile than previously-known percutaneously-deliverable replacement valves.
  • The delivery catheter and valve prosthesis are then advanced in a retrograde manner through a cut-down to the femoral artery and into the patient's descending aorta. The -catheter-then is advanced, under fluoroscopic guidance, over the aortic arch, through the ascending aorta and mid-way across the defective aortic valve. Once positioning of the catheter is confirmed, the sheath of the delivery catheter may be withdrawn proximally, thereby permitting the valve prosthesis to self-expand.
  • As the valve prosthesis expands, it traps leaflets LN of the patient's defective aortic valve against the valve annulus, retaining the native valve in a permanently open state. As further illustrated in FIG. 6, outflow section 15 of the valve prosthesis expands against and aligns the prosthesis within the ascending aorta, while inflow section 16 becomes anchored in the aortic annulus of the left ventricle, so that skirt 21 reduces the risk of perivalvular leaks.
  • As also seen in FIG. 6, the deployed configuration of constriction region 17 holds valve body 14 in a superannular position, away from the heart walls, thereby ensuring that the constriction region expands to the predetermined fixed diameter. This in turn ensures that the valve body does not experience any unexpected lateral loads and therefore expands to its design diameter, e.g., illustratively either 22 or 24 mm as in Table 1 above.
  • Because outflow section 15 of frame 12 employs relatively larger cells than the remainder of the frame, valve prosthesis 10 does not disrupt blood flow into coronary arteries CA when deployed, and also does not obstruct subsequent catheter access to the coronary arteries. Accordingly, a clinician may readily gain access to the coronary arteries, for example, to perform angioplasty or stenting, simply by directing the angioplasty or stent delivery system guide wire through the openings in the cell pattern of frame 12.
  • While preferred embodiments of the invention are described above, it will be apparent to one skilled in the art that various changes and modifications may be made. The appended claims are intended to cover all such changes and modifications that fall within the true spirit and scope of the invention.

Claims (17)

1-22. (canceled)
23: A valve prosthesis comprising:
a valve body comprising three leaflets, wherein adjoining leaflets are sewn together to form commissures; and
a self-expanding frame, the frame having an inflow section having a first row of cells, an outflow section having a second row of cells and including an eyelet, and a middle region between the inflow section and the outflow section, wherein the middle region is configured to avoid blocking blood flow to the coronary arteries when the frame is implanted in a body, wherein the area of individual cells in the first row of cells is less than the area of individual cells in the second row of cells, wherein the frame supports the valve body, wherein the frame has a longitudinal axis, wherein the frame has a contracted delivery configuration and an expanded deployed configuration,
wherein, when the frame is in the expanded deployed configuration, the outflow section has a larger diameter than the inflow section, wherein a plurality of cells of the frame are positioned between the cells spanned by commissures,
wherein each leaflet has a free edge that is suspended from the leaflet's commissures to define coaptation edges and a center of coaptation, and wherein the length of each free edge forms a substantially continuous curve extending downwardly between the respective commissures so that the free edges of the leaflets generally define the shape of catenaries to substantially uniformly distribute loads over the leaflets.
24: The valve prosthesis of claim 23, wherein the leaflets comprise porcine, bovine, equine or other mammalian pericardial tissue, synthetic material, or polymeric material.
25: The valve prosthesis of claim 23, wherein the leaflets are sewn to a skirt at joints, wherein the skirt is sewn to the inflow section of the frame, and wherein the joints are affixed to the frame to evenly distribute forces through the valve body to the frame.
26: The valve prosthesis of claim 25, wherein the frame further comprises a cell pattern that defines a contour configured to support the joints.
27: The valve prosthesis of claim 23, wherein the frame comprises a cell pattern defined by unequal length zig-zags.
28: The valve prosthesis of claim 23, wherein the commissures are affixed to the frame at a location proximal of the center of coaptation.
29: The valve prosthesis of claim 23, wherein the commissures include flaps that span an entire area a cell.
30: The valve prosthesis of claim 23, wherein the frame is configured to permit access to a patient's coronary arteries in the expanded deployed configuration.
31: The valve prosthesis of claim 23, wherein at least one cell in the outflow section is larger than at least one cell in the inflow section.
32: The valve prosthesis of claim 23, wherein a cell in the outflow section has a first area, wherein a cell in the inflow section has a second area, and wherein the first area is larger than the second area.
33: The valve prosthesis of claim 23, wherein the inflow section includes a first row of cells, wherein the outflow section includes a second row of cells, and wherein the number of cells in the first row of cells is equal to the number of cells in the second row of cells.
34: The valve prosthesis of claim 23, wherein the middle region and the outflow section comprise a cell pattern that provides a pre-determined radius of curvature for a transition from the middle region to the outflow section when the frame is in the expanded deployed configuration.
35: The valve prosthesis of claim 23, wherein the diameter of the constriction region is less than the diameter of the inflow section.
36: The valve prosthesis of claim 23, wherein the outflow section includes exactly three eyelets.
37: The valve prosthesis of claim 23, wherein the frame includes four rows of cells.
38: A valve prosthesis comprising:
a valve body comprising three leaflets, wherein adjoining leaflets are sewn together to form commissures; and
a self-expanding frame comprising a plurality of cells, the frame having an inflow section, an outflow section, and a middle region between the inflow section and the outflow section, wherein the middle region is configured to avoid blocking blood flow to the coronary arteries when the frame is implanted in a body,
wherein the frame supports the valve body, wherein the frame has a longitudinal axis, wherein the frame has a contracted delivery configuration and an expanded deployed configuration,
wherein, when the frame is in the expanded deployed configuration, the outflow section has a larger diameter than the inflow section,
wherein each commissure is configured to span a cell of the frame to distribute force within the commissures and to the frame, and wherein a plurality of cells of the frame are positioned between the cells spanned by commissures,
wherein each leaflet has a free edge that is suspended from the leaflet's commissures to define coaptation edges and a center of coaptation, and
wherein the length of each free edge forms a substantially continuous curve extending downwardly between the respective commissures so that the free edges of the leaflets generally define the shape of catenaries to substantially uniformly distribute loads over the leaflets.
US13/526,951 2005-05-13 2012-06-19 Heart valve prosthesis and methods of manufacture and use Active 2025-06-23 US9060857B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/526,951 US9060857B2 (en) 2005-05-13 2012-06-19 Heart valve prosthesis and methods of manufacture and use

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/128,826 US7914569B2 (en) 2005-05-13 2005-05-13 Heart valve prosthesis and methods of manufacture and use
US13/072,194 US8226710B2 (en) 2005-05-13 2011-03-25 Heart valve prosthesis and methods of manufacture and use
US13/526,951 US9060857B2 (en) 2005-05-13 2012-06-19 Heart valve prosthesis and methods of manufacture and use

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US13/072,194 Continuation US8226710B2 (en) 2005-05-13 2011-03-25 Heart valve prosthesis and methods of manufacture and use
US13/075,194 Continuation US8503108B2 (en) 2010-11-09 2011-03-30 Photographing optical lens assembly

Publications (3)

Publication Number Publication Date
US20120259409A1 US20120259409A1 (en) 2012-10-11
US20150127095A9 true US20150127095A9 (en) 2015-05-07
US9060857B2 US9060857B2 (en) 2015-06-23

Family

ID=37420182

Family Applications (10)

Application Number Title Priority Date Filing Date
US11/128,826 Active 2026-02-19 US7914569B2 (en) 2005-05-13 2005-05-13 Heart valve prosthesis and methods of manufacture and use
US11/433,296 Active 2029-08-11 US9504564B2 (en) 2005-05-13 2006-05-12 Heart valve prosthesis and methods of manufacture and use
US13/072,194 Active 2026-05-08 US8226710B2 (en) 2005-05-13 2011-03-25 Heart valve prosthesis and methods of manufacture and use
US29/399,122 Active USD732666S1 (en) 2005-05-13 2011-08-09 Heart valve prosthesis
US13/526,951 Active 2025-06-23 US9060857B2 (en) 2005-05-13 2012-06-19 Heart valve prosthesis and methods of manufacture and use
US29/505,733 Active USD812226S1 (en) 2005-05-13 2015-06-19 Heart valve prosthesis
US15/295,350 Active 2026-01-05 US10478291B2 (en) 2005-05-13 2016-10-17 Heart valve prosthesis and methods of manufacture and use
US16/600,854 Active 2026-01-15 US11284997B2 (en) 2005-05-13 2019-10-14 Heart valve prosthesis and methods of manufacture and use
US17/221,895 Abandoned US20210298895A1 (en) 2005-05-13 2021-04-05 Heart valve prosthesis and methods of manufacture and use
US17/844,032 Pending US20220313431A1 (en) 2005-05-13 2022-06-19 Heart valve prosthesis and methods of manufacture and use

Family Applications Before (4)

Application Number Title Priority Date Filing Date
US11/128,826 Active 2026-02-19 US7914569B2 (en) 2005-05-13 2005-05-13 Heart valve prosthesis and methods of manufacture and use
US11/433,296 Active 2029-08-11 US9504564B2 (en) 2005-05-13 2006-05-12 Heart valve prosthesis and methods of manufacture and use
US13/072,194 Active 2026-05-08 US8226710B2 (en) 2005-05-13 2011-03-25 Heart valve prosthesis and methods of manufacture and use
US29/399,122 Active USD732666S1 (en) 2005-05-13 2011-08-09 Heart valve prosthesis

Family Applications After (5)

Application Number Title Priority Date Filing Date
US29/505,733 Active USD812226S1 (en) 2005-05-13 2015-06-19 Heart valve prosthesis
US15/295,350 Active 2026-01-05 US10478291B2 (en) 2005-05-13 2016-10-17 Heart valve prosthesis and methods of manufacture and use
US16/600,854 Active 2026-01-15 US11284997B2 (en) 2005-05-13 2019-10-14 Heart valve prosthesis and methods of manufacture and use
US17/221,895 Abandoned US20210298895A1 (en) 2005-05-13 2021-04-05 Heart valve prosthesis and methods of manufacture and use
US17/844,032 Pending US20220313431A1 (en) 2005-05-13 2022-06-19 Heart valve prosthesis and methods of manufacture and use

Country Status (11)

Country Link
US (10) US7914569B2 (en)
EP (2) EP2335649B1 (en)
JP (1) JP5681846B2 (en)
AT (1) ATE499907T2 (en)
AU (2) AU2006247573B2 (en)
CA (1) CA2614431C (en)
DE (1) DE602006020442D1 (en)
DK (2) DK2335649T3 (en)
ES (2) ES2359335T5 (en)
NZ (1) NZ564205A (en)
WO (1) WO2006124649A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709557B2 (en) * 2007-10-25 2020-07-14 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof

Families Citing this family (775)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6006134A (en) 1998-04-30 1999-12-21 Medtronic, Inc. Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers
US7238197B2 (en) 2000-05-30 2007-07-03 Devax, Inc. Endoprosthesis deployment system for treating vascular bifurcations
US8728143B2 (en) 1996-06-06 2014-05-20 Biosensors International Group, Ltd. Endoprosthesis deployment system for treating vascular bifurcations
US7686846B2 (en) * 1996-06-06 2010-03-30 Devax, Inc. Bifurcation stent and method of positioning in a body lumen
US6254564B1 (en) * 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US6409758B2 (en) 2000-07-27 2002-06-25 Edwards Lifesciences Corporation Heart valve holder for constricting the valve commissures and methods of use
JP2004506469A (en) 2000-08-18 2004-03-04 アトリテック, インコーポレイテッド Expandable implantable device for filtering blood flow from the atrial appendage
US6733525B2 (en) * 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US8623077B2 (en) 2001-06-29 2014-01-07 Medtronic, Inc. Apparatus for replacing a cardiac valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
CA2462509A1 (en) 2001-10-04 2003-04-10 Neovasc Medical Ltd. Flow reducing implant
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US7959674B2 (en) 2002-07-16 2011-06-14 Medtronic, Inc. Suture locking assembly and method of use
AU2002356575B2 (en) 2002-11-08 2009-07-16 Jean-Claude Laborde Endoprosthesis for vascular bifurcation
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US8021421B2 (en) 2003-08-22 2011-09-20 Medtronic, Inc. Prosthesis heart valve fixturing device
US9579194B2 (en) 2003-10-06 2017-02-28 Medtronic ATS Medical, Inc. Anchoring structure with concave landing zone
US7556647B2 (en) 2003-10-08 2009-07-07 Arbor Surgical Technologies, Inc. Attachment device and methods of using the same
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8579962B2 (en) 2003-12-23 2013-11-12 Sadra Medical, Inc. Methods and apparatus for performing valvuloplasty
US11278398B2 (en) 2003-12-23 2022-03-22 Boston Scientific Scimed, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
JP2007535342A (en) 2004-03-11 2007-12-06 パーキュテイニアス カルディオバスキュラー ソリューションズ ピー・ティー・ワイ リミテッド Percutaneous prosthetic heart valve
EP1753374A4 (en) 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
AU2004324043A1 (en) 2004-10-02 2006-04-20 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US8574257B2 (en) 2005-02-10 2013-11-05 Edwards Lifesciences Corporation System, device, and method for providing access in a cardiovascular environment
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7962208B2 (en) 2005-04-25 2011-06-14 Cardiac Pacemakers, Inc. Method and apparatus for pacing during revascularization
US7914569B2 (en) * 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
CN101180010B (en) 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
US8211169B2 (en) 2005-05-27 2012-07-03 Medtronic, Inc. Gasket with collar for prosthetic heart valves and methods for using them
US7682391B2 (en) 2005-07-13 2010-03-23 Edwards Lifesciences Corporation Methods of implanting a prosthetic mitral heart valve having a contoured sewing ring
US7569071B2 (en) * 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
AU2006315812B2 (en) 2005-11-10 2013-03-28 Cardiaq Valve Technologies, Inc. Balloon-expandable, self-expanding, vascular prosthesis connecting stent
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
JP5281411B2 (en) * 2005-12-23 2013-09-04 ヴィセラ・バイオメディカル・リミテッド Medical device suitable for the treatment of reflux from the stomach to the esophagus
US7967857B2 (en) 2006-01-27 2011-06-28 Medtronic, Inc. Gasket with spring collar for prosthetic heart valves and methods for making and using them
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US8551161B2 (en) 2006-04-25 2013-10-08 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US8652201B2 (en) * 2006-04-26 2014-02-18 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
WO2007127362A2 (en) * 2006-04-26 2007-11-08 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
JP2009535128A (en) 2006-04-29 2009-10-01 アーバー・サージカル・テクノロジーズ・インコーポレイテッド Multi-part prosthetic heart valve assembly and apparatus and method for delivering the same
US8021161B2 (en) 2006-05-01 2011-09-20 Edwards Lifesciences Corporation Simulated heart valve root for training and testing
US7811316B2 (en) * 2006-05-25 2010-10-12 Deep Vein Medical, Inc. Device for regulating blood flow
US8092517B2 (en) * 2006-05-25 2012-01-10 Deep Vein Medical, Inc. Device for regulating blood flow
US20070276467A1 (en) * 2006-05-25 2007-11-29 Menno Kalmann Device for regulating blood flow
US20090306768A1 (en) 2006-07-28 2009-12-10 Cardiaq Valve Technologies, Inc. Percutaneous valve prosthesis and system and method for implanting same
US9585743B2 (en) 2006-07-31 2017-03-07 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
WO2008016578A2 (en) 2006-07-31 2008-02-07 Cartledge Richard G Sealable endovascular implants and methods for their use
US9408607B2 (en) 2009-07-02 2016-08-09 Edwards Lifesciences Cardiaq Llc Surgical implant devices and methods for their manufacture and use
US11304800B2 (en) 2006-09-19 2022-04-19 Medtronic Ventor Technologies Ltd. Sinus-engaging valve fixation member
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
WO2008051554A2 (en) * 2006-10-24 2008-05-02 Beth Israel Deaconess Medical Center Percutaneous aortic valve assembly
EP2077718B2 (en) 2006-10-27 2022-03-09 Edwards Lifesciences Corporation Biological tissue for surgical implantation
JP5593545B2 (en) 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
US8236045B2 (en) * 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US9381084B2 (en) 2007-01-26 2016-07-05 Medtronic, Inc. Annuloplasty device for tricuspid valve repair
WO2008101083A2 (en) * 2007-02-15 2008-08-21 Cook Incorporated Artificial valve prostheses with a free leaflet portion
CA2677648C (en) 2007-02-16 2015-10-27 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
WO2008138584A1 (en) 2007-05-15 2008-11-20 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US9101691B2 (en) 2007-06-11 2015-08-11 Edwards Lifesciences Corporation Methods for pre-stressing and capping bioprosthetic tissue
US9566178B2 (en) 2010-06-24 2017-02-14 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
EP3492043A3 (en) * 2007-08-21 2019-09-04 Symetis SA A replacement valve
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
EP4309627A2 (en) 2007-09-26 2024-01-24 St. Jude Medical, LLC Collapsible prosthetic heart valves
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US10856970B2 (en) 2007-10-10 2020-12-08 Medtronic Ventor Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
US7981151B2 (en) * 2007-10-15 2011-07-19 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
US20090105813A1 (en) 2007-10-17 2009-04-23 Sean Chambers Implantable valve device
WO2009061389A2 (en) 2007-11-05 2009-05-14 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features
US8715337B2 (en) 2007-11-09 2014-05-06 Cook Medical Technologies Llc Aortic valve stent graft
ES2781686T3 (en) * 2007-12-14 2020-09-04 Edwards Lifesciences Corp Leaflet Junction Frame for a Prosthetic Valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US9393115B2 (en) 2008-01-24 2016-07-19 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US8628566B2 (en) 2008-01-24 2014-01-14 Medtronic, Inc. Stents for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
WO2009094188A2 (en) 2008-01-24 2009-07-30 Medtronic, Inc. Stents for prosthetic heart valves
US8801776B2 (en) 2008-02-25 2014-08-12 Medtronic Vascular, Inc. Infundibular reducer devices
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
EP2617390B1 (en) * 2008-02-26 2018-09-12 JenaValve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
ES2903231T3 (en) 2008-02-26 2022-03-31 Jenavalve Tech Inc Stent for positioning and anchoring a valve prosthesis at an implantation site in a patient's heart
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2009108355A1 (en) 2008-02-28 2009-09-03 Medtronic, Inc. Prosthetic heart valve systems
WO2009111241A2 (en) 2008-02-29 2009-09-11 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US8430927B2 (en) 2008-04-08 2013-04-30 Medtronic, Inc. Multiple orifice implantable heart valve and methods of implantation
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
US8696743B2 (en) 2008-04-23 2014-04-15 Medtronic, Inc. Tissue attachment devices and methods for prosthetic heart valves
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
EP4119097A1 (en) * 2008-06-06 2023-01-18 Edwards Lifesciences Corporation Low profile transcatheter heart valve
AU2009261580B2 (en) * 2008-06-20 2016-01-28 Coloplast A/S Esophageal valve
US20100114327A1 (en) * 2008-06-20 2010-05-06 Vysera Biomedical Limited Valve
JP5379852B2 (en) 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
EP3878408A1 (en) 2008-07-21 2021-09-15 Jenesis Surgical, LLC Endoluminal support apparatus
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US8998981B2 (en) 2008-09-15 2015-04-07 Medtronic, Inc. Prosthetic heart valve having identifiers for aiding in radiographic positioning
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
CA2749026C (en) 2008-09-29 2018-01-09 Impala, Inc. Heart valve
EP2845569A1 (en) 2008-10-01 2015-03-11 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
JP5607639B2 (en) 2008-10-10 2014-10-15 サドラ メディカル インコーポレイテッド Medical devices and systems
US8137398B2 (en) * 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
US8449625B2 (en) 2009-10-27 2013-05-28 Edwards Lifesciences Corporation Methods of measuring heart valve annuluses for valve replacement
EP2370138B1 (en) 2008-11-25 2020-12-30 Edwards Lifesciences Corporation Apparatus for in situ expansion of prosthetic device
US8308798B2 (en) 2008-12-19 2012-11-13 Edwards Lifesciences Corporation Quick-connect prosthetic heart valve and methods
US8764813B2 (en) 2008-12-23 2014-07-01 Cook Medical Technologies Llc Gradually self-expanding stent
EP2682072A1 (en) 2008-12-23 2014-01-08 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
EP2400924B1 (en) 2009-02-27 2017-06-28 St. Jude Medical, Inc. Prosthetic heart valve
GB0905444D0 (en) * 2009-03-30 2009-05-13 Ucl Business Plc Heart valve prosthesis
CN101919753A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 The nothing of prosthetic aortic valve or mitral valve is sewed up implantation method and device
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US20100256723A1 (en) * 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US9066785B2 (en) * 2009-04-06 2015-06-30 Medtronic Vascular, Inc. Packaging systems for percutaneously deliverable bioprosthetic valves
WO2010121076A2 (en) 2009-04-15 2010-10-21 Cardiaq Valve Technologies, Inc. Vascular implant and delivery system
US8512397B2 (en) 2009-04-27 2013-08-20 Sorin Group Italia S.R.L. Prosthetic vascular conduit
US8468667B2 (en) 2009-05-15 2013-06-25 Jenavalve Technology, Inc. Device for compressing a stent
US8348998B2 (en) 2009-06-26 2013-01-08 Edwards Lifesciences Corporation Unitary quick connect prosthetic heart valve and deployment system and methods
DE102009037739A1 (en) 2009-06-29 2010-12-30 Be Innovative Gmbh Percutaneously implantable valve stent, device for its application and method for producing the valve stent
FR2947716B1 (en) * 2009-07-10 2011-09-02 Cormove IMPLANT IMPLANT IMPROVED
WO2011025945A1 (en) 2009-08-27 2011-03-03 Medtronic Inc. Transcatheter valve delivery systems and methods
US10034748B2 (en) * 2009-09-18 2018-07-31 The Regents Of The University Of California Endovascular prosthetic heart valve replacement
JP5685256B2 (en) 2009-09-21 2015-03-18 メドトロニック,インコーポレイテッド Stented transcatheter prosthetic heart valve delivery system and method
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US8808369B2 (en) 2009-10-05 2014-08-19 Mayo Foundation For Medical Education And Research Minimally invasive aortic valve replacement
CA2778944C (en) * 2009-11-02 2019-08-20 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
US8690749B1 (en) 2009-11-02 2014-04-08 Anthony Nunez Wireless compressible heart pump
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
EP2509538B1 (en) 2009-12-08 2017-09-20 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
AU2015230879B2 (en) * 2009-12-08 2017-06-15 Avalon Medical Ltd. Device and system for transcatheter mitral valve replacement
ES2647826T3 (en) * 2009-12-18 2017-12-26 Coloplast A/S A urological device
CN102113921A (en) * 2009-12-30 2011-07-06 微创医疗器械(上海)有限公司 Intervention-type heart valve
US9504562B2 (en) * 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
US20110208293A1 (en) * 2010-02-23 2011-08-25 Medtronic, Inc. Catheter-Based Heart Valve Therapy System with Sizing Balloon
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
AU2011223708A1 (en) 2010-03-01 2012-09-27 Colibri Heart Valve Llc Percutaneously deliverable heart valve and methods associated therewith
WO2011109813A2 (en) 2010-03-05 2011-09-09 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
US20110224785A1 (en) * 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
NZ602066A (en) 2010-03-23 2013-09-27 Edwards Lifesciences Corp Methods of conditioning sheet bioprosthetic tissue
US9480557B2 (en) * 2010-03-25 2016-11-01 Medtronic, Inc. Stents for prosthetic heart valves
WO2011120050A1 (en) 2010-03-26 2011-09-29 Thubrikar Aortic Valve, Inc. Valve component, frame component and prosthetic valve device including the same for implantation in a body lumen
US9320597B2 (en) 2010-03-30 2016-04-26 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8652204B2 (en) 2010-04-01 2014-02-18 Medtronic, Inc. Transcatheter valve with torsion spring fixation and related systems and methods
US8491650B2 (en) 2010-04-08 2013-07-23 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with stretchable stability tube
US8512400B2 (en) 2010-04-09 2013-08-20 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
US8926692B2 (en) 2010-04-09 2015-01-06 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with partial deployment and release features and methods
US8998980B2 (en) * 2010-04-09 2015-04-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US8579963B2 (en) 2010-04-13 2013-11-12 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with stability tube and method
WO2011130579A1 (en) * 2010-04-14 2011-10-20 Abbott Cardiovascular Systems Inc. Intraluminal scaffold and method of making and using same
US8465541B2 (en) 2010-04-19 2013-06-18 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with expandable stability tube
US8740976B2 (en) 2010-04-21 2014-06-03 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with flush report
US9545306B2 (en) * 2010-04-21 2017-01-17 Medtronic, Inc. Prosthetic valve with sealing members and methods of use thereof
US8876892B2 (en) 2010-04-21 2014-11-04 Medtronic, Inc. Prosthetic heart valve delivery system with spacing
US8623075B2 (en) 2010-04-21 2014-01-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve
US8568474B2 (en) 2010-04-26 2013-10-29 Medtronic, Inc. Transcatheter prosthetic heart valve post-dilatation remodeling devices and methods
CN102905647B (en) 2010-04-27 2015-07-29 美敦力公司 Have passive trigger release through conduit prosthetic heart valve conveyer device
US8852271B2 (en) 2010-04-27 2014-10-07 Medtronic Vascular, Inc. Transcatheter prosthetic heart valve delivery device with biased release features
US8579964B2 (en) * 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
EP2568924B1 (en) 2010-05-10 2021-01-13 Edwards Lifesciences Corporation Prosthetic heart valve
US9554901B2 (en) 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
US11278406B2 (en) 2010-05-20 2022-03-22 Jenavalve Technology, Inc. Catheter system for introducing an expandable heart valve stent into the body of a patient, insertion system with a catheter system and medical device for treatment of a heart valve defect
US10856978B2 (en) 2010-05-20 2020-12-08 Jenavalve Technology, Inc. Catheter system
IT1400327B1 (en) 2010-05-21 2013-05-24 Sorin Biomedica Cardio Srl SUPPORT DEVICE FOR VALVULAR PROSTHESIS AND CORRESPONDING CORRESPONDENT.
JP2013526388A (en) * 2010-05-25 2013-06-24 イエナバルブ テクノロジー インク Artificial heart valve, and transcatheter delivery prosthesis comprising an artificial heart valve and a stent
JP5654263B2 (en) * 2010-05-27 2015-01-14 HOYA Technosurgical株式会社 Spacer
US9561102B2 (en) 2010-06-02 2017-02-07 Medtronic, Inc. Transcatheter delivery system and method with controlled expansion and contraction of prosthetic heart valve
US9795476B2 (en) 2010-06-17 2017-10-24 St. Jude Medical, Llc Collapsible heart valve with angled frame
CA2803149C (en) * 2010-06-21 2018-08-14 Impala, Inc. Replacement heart valve
CN103153384B (en) 2010-06-28 2016-03-09 科利柏心脏瓣膜有限责任公司 For the device of device in the delivery of vascular of chamber
KR20120004677A (en) * 2010-07-07 2012-01-13 (주) 태웅메디칼 Using two kinds of tissue heart valve prostheses and manufacturing methods
US8657872B2 (en) 2010-07-19 2014-02-25 Jacques Seguin Cardiac valve repair system and methods of use
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
US11653910B2 (en) 2010-07-21 2023-05-23 Cardiovalve Ltd. Helical anchor implantation
US8992604B2 (en) 2010-07-21 2015-03-31 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US9763657B2 (en) 2010-07-21 2017-09-19 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2608741A2 (en) 2010-08-24 2013-07-03 St. Jude Medical, Inc. Staged deployment devices and methods for transcatheter heart valve delivery systems
US9039759B2 (en) 2010-08-24 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Repositioning of prosthetic heart valve and deployment
AU2011296361B2 (en) 2010-09-01 2015-05-28 Medtronic Vascular Galway Prosthetic valve support structure
EP2613737B2 (en) * 2010-09-10 2023-03-15 Symetis SA Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US8641757B2 (en) 2010-09-10 2014-02-04 Edwards Lifesciences Corporation Systems for rapidly deploying surgical heart valves
US9125741B2 (en) 2010-09-10 2015-09-08 Edwards Lifesciences Corporation Systems and methods for ensuring safe and rapid deployment of prosthetic heart valves
AU2015258284B2 (en) * 2010-09-10 2017-09-28 Symetis Sa Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
AU2011302640B2 (en) 2010-09-17 2014-11-06 St. Jude Medical, Cardiology Division, Inc. Staged deployment devices and methods for transcatheter heart valve delivery
USD653341S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD648854S1 (en) 2010-09-20 2011-11-15 St. Jude Medical, Inc. Commissure points
USD652926S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Forked end
USD660432S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Commissure point
USD652927S1 (en) 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
JP2013540484A (en) * 2010-09-20 2013-11-07 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Valve leaflet mounting device in foldable artificial valve
USD653342S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Stent connections
USD653343S1 (en) 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD660433S1 (en) 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD684692S1 (en) 2010-09-20 2013-06-18 St. Jude Medical, Inc. Forked ends
USD654170S1 (en) 2010-09-20 2012-02-14 St. Jude Medical, Inc. Stent connections
USD654169S1 (en) 2010-09-20 2012-02-14 St. Jude Medical Inc. Forked ends
USD660967S1 (en) 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
US9579193B2 (en) 2010-09-23 2017-02-28 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
EP2618784B1 (en) 2010-09-23 2016-05-25 Edwards Lifesciences CardiAQ LLC Replacement heart valves and delivery devices
US9414915B2 (en) 2010-09-24 2016-08-16 Symetis Sa Stent valve, delivery apparatus and method therefor
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
AU2015268755B2 (en) * 2010-10-05 2017-06-15 Edwards Lifesciences Corporation Prosthetic heart valve
CN115192259A (en) 2010-10-05 2022-10-18 爱德华兹生命科学公司 Artificial heart valve
US8568475B2 (en) * 2010-10-05 2013-10-29 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
US8992410B2 (en) 2010-11-03 2015-03-31 Vysera Biomedical Limited Urological device
US20120116496A1 (en) * 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
SG191008A1 (en) 2010-12-14 2013-07-31 Colibri Heart Valve Llc Percutaneously deliverable heart valve including folded membrane cusps with integral leaflets
CN102048603B (en) * 2011-01-28 2014-08-20 中国人民解放军第101医院 Valve aortal stent planted above opening of percutaneous coronary
US8932343B2 (en) 2011-02-01 2015-01-13 St. Jude Medical, Cardiology Division, Inc. Blunt ended stent for prosthetic heart valve
US9717593B2 (en) 2011-02-01 2017-08-01 St. Jude Medical, Cardiology Division, Inc. Leaflet suturing to commissure points for prosthetic heart valve
EP2486894B1 (en) 2011-02-14 2021-06-09 Sorin Group Italia S.r.l. Sutureless anchoring device for cardiac valve prostheses
ES2641902T3 (en) 2011-02-14 2017-11-14 Sorin Group Italia S.R.L. Sutureless anchoring device for cardiac valve prostheses
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US8603162B2 (en) 2011-07-06 2013-12-10 Waseda University Stentless artificial mitral valve
CA2835893C (en) 2011-07-12 2019-03-19 Boston Scientific Scimed, Inc. Coupling system for medical devices
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
EP2734153A2 (en) 2011-07-20 2014-05-28 Boston Scientific Scimed, Inc. Heart valve replacement
CA2842091A1 (en) * 2011-07-20 2013-01-24 Boston Scientific Scimed, Inc. Prosthetic heart valve
US9119716B2 (en) 2011-07-27 2015-09-01 Edwards Lifesciences Corporation Delivery systems for prosthetic heart valve
CA2855943C (en) 2011-07-29 2019-10-29 Carnegie Mellon University Artificial valved conduits for cardiac reconstructive procedures and methods for their production
WO2013021375A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Percutaneous mitral valve replacement and sealing
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
CA3040390C (en) * 2011-08-11 2022-03-15 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9060860B2 (en) 2011-08-18 2015-06-23 St. Jude Medical, Cardiology Division, Inc. Devices and methods for transcatheter heart valve delivery
WO2013035864A1 (en) * 2011-09-09 2013-03-14 新幹工業株式会社 Stent with valve, base material for forming stent with valve, and method for producing stent with valve
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
JP6184963B2 (en) 2011-10-05 2017-08-23 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Thin seal material for replacement heart valve and method of forming the same
AU2012325809B2 (en) * 2011-10-19 2016-01-21 Twelve, Inc. Devices, systems and methods for heart valve replacement
CA3090422C (en) * 2011-10-19 2023-08-01 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN104159543B (en) 2011-10-21 2016-10-12 耶拿阀门科技公司 For expansible heart valve bracket is introduced conduit system in the patient
US9827093B2 (en) 2011-10-21 2017-11-28 Edwards Lifesciences Cardiaq Llc Actively controllable stent, stent graft, heart valve and method of controlling same
US8951243B2 (en) 2011-12-03 2015-02-10 Boston Scientific Scimed, Inc. Medical device handle
US9480558B2 (en) 2011-12-05 2016-11-01 Medtronic, Inc. Transcatheter valve having reduced seam exposure
CA3082787C (en) 2011-12-06 2021-03-09 Aortic Innovations Llc Device for endovascular aortic repair and method of using the same
CA2857997C (en) 2011-12-09 2021-01-05 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US9827092B2 (en) 2011-12-16 2017-11-28 Tendyne Holdings, Inc. Tethers for prosthetic mitral valve
CA3100305A1 (en) 2011-12-19 2013-06-27 Coloplast A/S A luminal prosthesis and a gastrointestinal implant device
US9078747B2 (en) 2011-12-21 2015-07-14 Edwards Lifesciences Corporation Anchoring device for replacing or repairing a heart valve
ES2523223T3 (en) 2011-12-29 2014-11-24 Sorin Group Italia S.R.L. A kit for the implantation of prosthetic vascular ducts
WO2013112547A1 (en) 2012-01-25 2013-08-01 Boston Scientific Scimed, Inc. Valve assembly with a bioabsorbable gasket and a replaceable valve implant
CA3095260C (en) 2012-01-31 2023-09-19 Mitral Valve Technologies Sarl Mitral valve docking devices, systems and methods
EP2811939B8 (en) 2012-02-10 2017-11-15 CVDevices, LLC Products made of biological tissues for stents and methods of manufacturing
EP3424469A1 (en) 2012-02-22 2019-01-09 Syntheon TAVR, LLC Actively controllable stent, stent graft and heart valve
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
US11207176B2 (en) 2012-03-22 2021-12-28 Boston Scientific Scimed, Inc. Transcatheter stent-valves and methods, systems and devices for addressing para-valve leakage
US9066800B2 (en) * 2012-03-28 2015-06-30 Medtronic, Inc. Dual valve prosthesis for transcatheter valve implantation
US10376362B2 (en) 2012-04-05 2019-08-13 Medtronic Vascular Galway Valve introducers with adjustable deployment mechanism and implantation depth gauge
US10357353B2 (en) 2012-04-12 2019-07-23 Sanford Health Combination double-barreled and debranching stent grafts and methods for use
US8702791B2 (en) 2012-04-12 2014-04-22 Sanford Health Debranching visceral stent graft and methods for use
KR102080072B1 (en) * 2012-04-12 2020-02-21 샌포드 헬스 Debranching visceral stent graft and methods for use
US9301839B2 (en) 2012-04-17 2016-04-05 Medtronic CV Luxembourg S.a.r.l. Transcatheter prosthetic heart valve delivery device with release features
US9999501B2 (en) 2012-04-18 2018-06-19 Medtronic CV Luxembourg S.a.r.l. Valve prosthesis
US9011515B2 (en) * 2012-04-19 2015-04-21 Caisson Interventional, LLC Heart valve assembly systems and methods
US9427315B2 (en) 2012-04-19 2016-08-30 Caisson Interventional, LLC Valve replacement systems and methods
US9192738B2 (en) 2012-04-25 2015-11-24 Medtronic Vascular Galway Devices and methods for crimping medical devices
EP2849679B1 (en) * 2012-05-15 2016-11-23 Valve Medical Ltd. System and method for assembling a folded percutaneous valve
JP6227632B2 (en) 2012-05-16 2017-11-08 イェーナヴァルヴ テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツング Catheter delivery system for introducing expandable heart substitute valve and medical device for treatment of heart valve defects
US9345573B2 (en) 2012-05-30 2016-05-24 Neovasc Tiara Inc. Methods and apparatus for loading a prosthesis onto a delivery system
DE102012010798A1 (en) * 2012-06-01 2013-12-05 Universität Duisburg-Essen Implantable device for improving or eliminating heart valve insufficiency
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9289292B2 (en) 2012-06-28 2016-03-22 St. Jude Medical, Cardiology Division, Inc. Valve cuff support
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
US9615920B2 (en) 2012-06-29 2017-04-11 St. Jude Medical, Cardiology Divisions, Inc. Commissure attachment feature for prosthetic heart valve
US20140005776A1 (en) 2012-06-29 2014-01-02 St. Jude Medical, Cardiology Division, Inc. Leaflet attachment for function in various shapes and sizes
US9241791B2 (en) 2012-06-29 2016-01-26 St. Jude Medical, Cardiology Division, Inc. Valve assembly for crimp profile
US10004597B2 (en) 2012-07-03 2018-06-26 St. Jude Medical, Cardiology Division, Inc. Stent and implantable valve incorporating same
US9808342B2 (en) 2012-07-03 2017-11-07 St. Jude Medical, Cardiology Division, Inc. Balloon sizing device and method of positioning a prosthetic heart valve
US20140031923A1 (en) 2012-07-25 2014-01-30 Medtronic Vascular Galway Limited Trans-Aortic Surgical Syringe-Type Device for Deployment of a Prosthetic Valve
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US9271856B2 (en) 2012-07-25 2016-03-01 Medtronic Vascular Galway Delivery catheter with distal moving capsule for transapical prosthetic heart valve delivery
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
WO2014021905A1 (en) 2012-07-30 2014-02-06 Tendyne Holdings, Inc. Improved delivery systems and methods for transcatheter prosthetic valves
US9232995B2 (en) * 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
US9717595B2 (en) 2012-09-05 2017-08-01 Medtronic Vascular Galway Trans-aortic delivery system with containment capsule centering device
US10524909B2 (en) 2012-10-12 2020-01-07 St. Jude Medical, Cardiology Division, Inc. Retaining cage to permit resheathing of a tavi aortic-first transapical system
US9801721B2 (en) 2012-10-12 2017-10-31 St. Jude Medical, Cardiology Division, Inc. Sizing device and method of positioning a prosthetic heart valve
CN102949253B (en) * 2012-10-16 2015-12-30 北京迈迪顶峰医疗科技有限公司 A kind of stent valve and conveyer device thereof
US9056002B2 (en) 2012-10-18 2015-06-16 Medtronic, Inc. Stent-graft and method for percutaneous access and closure of vessels
US9226823B2 (en) 2012-10-23 2016-01-05 Medtronic, Inc. Valve prosthesis
US9144663B2 (en) 2012-10-24 2015-09-29 Medtronic, Inc. Methods and devices for repairing and/or preventing paravalvular leakage post-implantation of a valve prosthesis
US9192751B2 (en) 2012-10-26 2015-11-24 Medtronic, Inc. Elastic introducer sheath
US9956376B2 (en) 2012-10-26 2018-05-01 Medtronic, Inc. Elastic introducer sheath
US9675456B2 (en) 2012-11-02 2017-06-13 Medtronic, Inc. Transcatheter valve prosthesis delivery system with recapturing feature and method
US10238771B2 (en) 2012-11-08 2019-03-26 Edwards Lifesciences Corporation Methods for treating bioprosthetic tissue using a nucleophile/electrophile in a catalytic system
US9072602B2 (en) 2012-11-14 2015-07-07 Medtronic, Inc. Transcatheter valve prosthesis having a variable shaped cross-section for preventing paravalvular leakage
US9144493B2 (en) 2012-11-14 2015-09-29 Medtronic Vascular Galway Limited Valve prosthesis deployment assembly and method
ES2931210T3 (en) 2012-11-21 2022-12-27 Edwards Lifesciences Corp Retention Mechanisms for Prosthetic Heart Valves
US9433521B2 (en) 2012-11-27 2016-09-06 Medtronic, Inc. Distal tip for a delivery catheter
WO2014093473A1 (en) 2012-12-14 2014-06-19 Kelly Patrick W Combination double-barreled and debranching stent grafts
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
CN103006352B (en) * 2012-12-24 2015-05-13 杭州启明医疗器械有限公司 Prosthesis valve and prosthesis valve device
US9132007B2 (en) 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
US10617517B2 (en) 2013-01-14 2020-04-14 Medtronic CV Luxembourg S.a.r.l. Valve prosthesis frames
EP2948103B1 (en) 2013-01-24 2022-12-07 Cardiovalve Ltd Ventricularly-anchored prosthetic valves
US9655719B2 (en) 2013-01-29 2017-05-23 St. Jude Medical, Cardiology Division, Inc. Surgical heart valve flexible stent frame stiffener
US9314163B2 (en) 2013-01-29 2016-04-19 St. Jude Medical, Cardiology Division, Inc. Tissue sensing device for sutureless valve selection
US9186238B2 (en) 2013-01-29 2015-11-17 St. Jude Medical, Cardiology Division, Inc. Aortic great vessel protection
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US20140228937A1 (en) 2013-02-11 2014-08-14 Joshua Krieger Expandable Support Frame and Medical Device
US9456897B2 (en) 2013-02-21 2016-10-04 Medtronic, Inc. Transcatheter valve prosthesis and a concurrently delivered sealing component
US10918479B2 (en) 2013-02-25 2021-02-16 Shanghai Microport Cardioflow Medtech Co., Ltd. Heart valve prosthesis
CN104000672B (en) * 2013-02-25 2016-06-15 上海微创心通医疗科技有限公司 Heart valve prosthesis
US9901470B2 (en) 2013-03-01 2018-02-27 St. Jude Medical, Cardiology Division, Inc. Methods of repositioning a transcatheter heart valve after full deployment
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
CA2904715C (en) 2013-03-08 2022-07-26 Carnegie Mellon University Expandable implantable fluoropolymer conduit
US9480563B2 (en) 2013-03-08 2016-11-01 St. Jude Medical, Cardiology Division, Inc. Valve holder with leaflet protection
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US8986375B2 (en) 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
WO2014164151A1 (en) 2013-03-12 2014-10-09 Medtronic Inc. Heart valve prosthesis
US9398951B2 (en) 2013-03-12 2016-07-26 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US10314698B2 (en) 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US9333077B2 (en) 2013-03-12 2016-05-10 Medtronic Vascular Galway Limited Devices and methods for preparing a transcatheter heart valve system
US9339274B2 (en) 2013-03-12 2016-05-17 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9326856B2 (en) 2013-03-14 2016-05-03 St. Jude Medical, Cardiology Division, Inc. Cuff configurations for prosthetic heart valve
US9131982B2 (en) 2013-03-14 2015-09-15 St. Jude Medical, Cardiology Division, Inc. Mediguide-enabled renal denervation system for ensuring wall contact and mapping lesion locations
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
WO2014145811A1 (en) 2013-03-15 2014-09-18 Edwards Lifesciences Corporation Valved aortic conduits
US11007058B2 (en) 2013-03-15 2021-05-18 Edwards Lifesciences Corporation Valved aortic conduits
EP3357456A1 (en) * 2013-03-15 2018-08-08 Symetis SA Improvements relating to transcatheter stent-valves
CN103190968B (en) * 2013-03-18 2015-06-17 杭州启明医疗器械有限公司 Bracket and stably-mounted artificial valve displacement device with same
US10463489B2 (en) 2013-04-02 2019-11-05 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US11224510B2 (en) 2013-04-02 2022-01-18 Tendyne Holdings, Inc. Prosthetic heart valve and systems and methods for delivering the same
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US10478293B2 (en) 2013-04-04 2019-11-19 Tendyne Holdings, Inc. Retrieval and repositioning system for prosthetic heart valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
EP2789312A1 (en) 2013-04-09 2014-10-15 Epygon Sasu Expandable stent-valve and method for manufacturing a stent
US9629718B2 (en) 2013-05-03 2017-04-25 Medtronic, Inc. Valve delivery tool
US10188515B2 (en) 2013-05-13 2019-01-29 Medtronic Vascular Inc. Devices and methods for crimping a medical device
TR201816620T4 (en) 2013-05-20 2018-11-21 Edwards Lifesciences Corp Heart valve prosthesis delivery device.
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9788943B2 (en) 2013-06-11 2017-10-17 Medtronic, Inc. Delivery system with inline sheath
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
CN105658178B (en) 2013-06-25 2018-05-08 坦迪尼控股股份有限公司 Feature is complied with thrombus management and structure for prosthetic heart valve
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
EP3019092B1 (en) 2013-07-10 2022-08-31 Medtronic Inc. Helical coil mitral valve annuloplasty systems
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
US9889006B2 (en) 2013-07-22 2018-02-13 Mayo Foundation For Medical Education And Research Device and methods for self-centering a guide catheter
US9724083B2 (en) 2013-07-26 2017-08-08 Edwards Lifesciences Cardiaq Llc Systems and methods for sealing openings in an anatomical wall
CA2919379C (en) 2013-08-01 2021-03-30 Tendyne Holdings, Inc. Epicardial anchor devices and methods
CN105682610B (en) 2013-08-12 2017-11-03 米特拉尔维尔福科技有限责任公司 Apparatus and method for being implanted into replacement heart valve
WO2015023862A2 (en) 2013-08-14 2015-02-19 Mitral Valve Technologies Sa Replacement heart valve apparatus and methods
WO2015027008A1 (en) * 2013-08-22 2015-02-26 St. Jude Medical, Cardiology Division, Inc. Stent with alternative cell shapes
US9919137B2 (en) 2013-08-28 2018-03-20 Edwards Lifesciences Corporation Integrated balloon catheter inflation system
JP6563394B2 (en) * 2013-08-30 2019-08-21 イェーナヴァルヴ テクノロジー インコーポレイテッド Radially foldable frame for an artificial valve and method for manufacturing the frame
USD730521S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730520S1 (en) 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
US9867611B2 (en) 2013-09-05 2018-01-16 St. Jude Medical, Cardiology Division, Inc. Anchoring studs for transcatheter valve implantation
EP3043745B1 (en) 2013-09-12 2020-10-21 St. Jude Medical, Cardiology Division, Inc. Stent designs for prosthetic heart valves
CN103462728B (en) * 2013-09-13 2018-07-31 徐州亚太科技有限公司 A kind of aortic valve prosthesis's holder and its transport system through conduit implantation
CN105263445B (en) 2013-09-20 2018-09-18 爱德华兹生命科学公司 Heart valve with increased effective orifice area
US9615922B2 (en) 2013-09-30 2017-04-11 Edwards Lifesciences Corporation Method and apparatus for preparing a contoured biological tissue
US10959839B2 (en) 2013-10-08 2021-03-30 Edwards Lifesciences Corporation Method for directing cellular migration patterns on a biological tissue
WO2015058039A1 (en) 2013-10-17 2015-04-23 Robert Vidlund Apparatus and methods for alignment and deployment of intracardiac devices
US9050188B2 (en) 2013-10-23 2015-06-09 Caisson Interventional, LLC Methods and systems for heart valve therapy
US9662202B2 (en) * 2013-10-24 2017-05-30 Medtronic, Inc. Heart valve prosthesis
US10646333B2 (en) 2013-10-24 2020-05-12 Medtronic, Inc. Two-piece valve prosthesis with anchor stent and valve component
JP6554094B2 (en) 2013-10-28 2019-07-31 テンダイン ホールディングス,インコーポレイテッド Prosthetic heart valve and system and method for delivering an artificial heart valve
US9526611B2 (en) 2013-10-29 2016-12-27 Tendyne Holdings, Inc. Apparatus and methods for delivery of transcatheter prosthetic valves
US20150122687A1 (en) 2013-11-06 2015-05-07 Edwards Lifesciences Corporation Bioprosthetic heart valves having adaptive seals to minimize paravalvular leakage
US9700409B2 (en) 2013-11-06 2017-07-11 St. Jude Medical, Cardiology Division, Inc. Reduced profile prosthetic heart valve
EP2870946B1 (en) 2013-11-06 2018-10-31 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
US9913715B2 (en) 2013-11-06 2018-03-13 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak sealing mechanism
EP3848004A1 (en) 2013-11-11 2021-07-14 Edwards Lifesciences CardiAQ LLC Valve stent frame
US9549818B2 (en) 2013-11-12 2017-01-24 St. Jude Medical, Cardiology Division, Inc. Pneumatically power-assisted tavi delivery system
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US10314693B2 (en) 2013-11-27 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Cuff stitching reinforcement
US10098734B2 (en) 2013-12-05 2018-10-16 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
US9597185B2 (en) 2013-12-19 2017-03-21 St. Jude Medical, Cardiology Division, Inc. Leaflet-cuff attachments for prosthetic heart valve
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US9820852B2 (en) 2014-01-24 2017-11-21 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (PVL) reduction—active channel filling cuff designs
US9750603B2 (en) * 2014-01-27 2017-09-05 Medtronic Vascular Galway Stented prosthetic heart valve with variable stiffness and methods of use
WO2015120122A2 (en) 2014-02-05 2015-08-13 Robert Vidlund Apparatus and methods for transfemoral delivery of prosthetic mitral valve
US10292711B2 (en) 2014-02-07 2019-05-21 St. Jude Medical, Cardiology Division, Inc. Mitral valve treatment device having left atrial appendage closure
EP2904967A1 (en) 2014-02-07 2015-08-12 St. Jude Medical, Cardiology Division, Inc. System and method for assessing dimensions and eccentricity of valve annulus for trans-catheter valve implantation
US9986993B2 (en) 2014-02-11 2018-06-05 Tendyne Holdings, Inc. Adjustable tether and epicardial pad system for prosthetic heart valve
WO2015123607A2 (en) * 2014-02-13 2015-08-20 Valvexchange, Inc. Temporary sub-valvular check valve
WO2015126712A1 (en) 2014-02-18 2015-08-27 St. Jude Medical, Cardiology Division, Inc. Bowed runners for paravalvular leak protection
CA3205860A1 (en) 2014-02-20 2015-08-27 Mitral Valve Technologies Sarl Coiled anchor for supporting prosthetic heart valve, prosthetic heart valve, and deployment device
CR20160366A (en) 2014-02-21 2016-11-15 Mitral Valve Tecnhnologies Sarl DEVICES, SYSTEMS AND METHODS OF SUPPLY OF PROSTHETIC MITRAL VALVE AND ANCHORAGE DEVICE
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
USD755384S1 (en) 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent
CA2937566C (en) 2014-03-10 2023-09-05 Tendyne Holdings, Inc. Devices and methods for positioning and monitoring tether load for prosthetic mitral valve
EP2918248A1 (en) 2014-03-11 2015-09-16 Epygon Sasu An expandable stent-valve and a delivery device
AU2015231788B2 (en) 2014-03-18 2019-05-16 St. Jude Medical, Cardiology Division, Inc. Mitral valve replacement toggle cell securement
EP2921140A1 (en) 2014-03-18 2015-09-23 St. Jude Medical, Cardiology Division, Inc. Percutaneous valve anchoring for a prosthetic aortic valve
ES2711663T3 (en) * 2014-03-18 2019-05-06 Nvt Ag Cardiac valve implant
US9610157B2 (en) 2014-03-21 2017-04-04 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation
CA2941398C (en) 2014-03-26 2018-05-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
US20170014115A1 (en) 2014-03-27 2017-01-19 Transmural Systems Llc Devices and methods for closure of transvascular or transcameral access ports
US10143551B2 (en) 2014-03-31 2018-12-04 St. Jude Medical, Cardiology Division, Inc. Paravalvular sealing via extended cuff mechanisms
EP3125827B1 (en) 2014-04-01 2021-09-15 Medtronic CV Luxembourg S.à.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10149758B2 (en) 2014-04-01 2018-12-11 Medtronic, Inc. System and method of stepped deployment of prosthetic heart valve
US9549816B2 (en) 2014-04-03 2017-01-24 Edwards Lifesciences Corporation Method for manufacturing high durability heart valve
US10226332B2 (en) 2014-04-14 2019-03-12 St. Jude Medical, Cardiology Division, Inc. Leaflet abrasion mitigation in prosthetic heart valves
US10321987B2 (en) 2014-04-23 2019-06-18 Medtronic, Inc. Paravalvular leak resistant prosthetic heart valve system
US10159819B2 (en) 2014-04-24 2018-12-25 Medtronic Vascular Galway Control module for delivery systems
US9585752B2 (en) 2014-04-30 2017-03-07 Edwards Lifesciences Corporation Holder and deployment system for surgical heart valves
CN106456326B (en) 2014-05-06 2018-12-18 帝斯曼知识产权资产管理有限公司 The method of artificial valve and manufacture of intraocular valve
ES2795358T3 (en) 2014-05-16 2020-11-23 St Jude Medical Cardiology Div Inc Subannular sealing for paravalvular leak protection
EP3142605A1 (en) 2014-05-16 2017-03-22 St. Jude Medical, Cardiology Division, Inc. Stent assembly for use in prosthetic heart valves
EP3142604B1 (en) 2014-05-16 2024-01-10 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve with paravalvular leak sealing ring
CA2948379C (en) 2014-05-19 2022-08-09 J. Brent Ratz Replacement mitral valve with annular flap
US10321993B2 (en) * 2014-05-21 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Self-expanding heart valves for coronary perfusion and sealing
EP3145450B1 (en) 2014-05-22 2019-07-17 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
US9532870B2 (en) 2014-06-06 2017-01-03 Edwards Lifesciences Corporation Prosthetic valve for replacing a mitral valve
EP2954875B1 (en) 2014-06-10 2017-11-15 St. Jude Medical, Cardiology Division, Inc. Stent cell bridge for cuff attachment
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
USD867594S1 (en) 2015-06-19 2019-11-19 Edwards Lifesciences Corporation Prosthetic heart valve
CA2955242A1 (en) 2014-07-08 2016-01-14 Avinger, Inc. High speed chronic total occlusion crossing devices
EP3174502B1 (en) 2014-07-30 2022-04-06 Cardiovalve Ltd Apparatus for implantation of an articulatable prosthetic valve
EP3182930B1 (en) 2014-08-18 2020-09-23 St. Jude Medical, Cardiology Division, Inc. Sensors for prosthetic heart devices
WO2016028581A1 (en) * 2014-08-18 2016-02-25 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart devices having diagnostic capabilities
JP6445683B2 (en) 2014-08-18 2018-12-26 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティドW.L. Gore & Associates, Incorporated Frame with integral suture cuff for a prosthetic valve
EP3182932B1 (en) 2014-08-18 2019-05-15 St. Jude Medical, Cardiology Division, Inc. Annuloplasty ring with sensor
US10016272B2 (en) 2014-09-12 2018-07-10 Mitral Valve Technologies Sarl Mitral repair and replacement devices and methods
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
FR3027212A1 (en) 2014-10-16 2016-04-22 Seguin Jacques INTERVALVULAR IMPLANT FOR MITRAL VALVE
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US10213307B2 (en) 2014-11-05 2019-02-26 Medtronic Vascular, Inc. Transcatheter valve prosthesis having an external skirt for sealing and preventing paravalvular leakage
DE102014223522A1 (en) * 2014-11-18 2016-05-19 Hans-Hinrich Sievers Biological heart valve prosthesis
US9901445B2 (en) 2014-11-21 2018-02-27 Boston Scientific Scimed, Inc. Valve locking mechanism
EP3229736B1 (en) 2014-12-09 2024-01-10 Cephea Valve Technologies, Inc. Replacement cardiac valves and method of manufacture
JP6826035B2 (en) 2015-01-07 2021-02-03 テンダイン ホールディングス,インコーポレイテッド Artificial mitral valve, and devices and methods for its delivery
US9579195B2 (en) * 2015-01-13 2017-02-28 Horizon Scientific Corp. Mitral bileaflet valve
WO2016115375A1 (en) 2015-01-16 2016-07-21 Boston Scientific Scimed, Inc. Displacement based lock and release mechanism
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
WO2016126524A1 (en) 2015-02-03 2016-08-11 Boston Scientific Scimed, Inc. Prosthetic heart valve having tubular seal
US9788942B2 (en) 2015-02-03 2017-10-17 Boston Scientific Scimed Inc. Prosthetic heart valve having tubular seal
US9839512B2 (en) * 2015-02-03 2017-12-12 Boston Scientific, Inc. Prosthetic heart valve having notched leaflet
US20160220241A1 (en) 2015-02-04 2016-08-04 Medtronic Vascular Galway Suture collar for use with an introducer during direct aortic procedures
AU2016215197B2 (en) 2015-02-05 2020-01-02 Tendyne Holdings Inc. Expandable epicardial pads and devices and methods for their delivery
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US10039637B2 (en) 2015-02-11 2018-08-07 Edwards Lifesciences Corporation Heart valve docking devices and implanting methods
WO2016138416A1 (en) 2015-02-27 2016-09-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Double component mandrel for electrospun stentless, multi-leaflet valve fabrication
WO2016138423A1 (en) 2015-02-27 2016-09-01 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Retrievable self-expanding non-thrombogenic low-profile percutaneous atrioventricular valve prosthesis
US10285809B2 (en) 2015-03-06 2019-05-14 Boston Scientific Scimed Inc. TAVI anchoring assist device
US10426617B2 (en) 2015-03-06 2019-10-01 Boston Scientific Scimed, Inc. Low profile valve locking mechanism and commissure assembly
US10314699B2 (en) 2015-03-13 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Recapturable valve-graft combination and related methods
US10080652B2 (en) 2015-03-13 2018-09-25 Boston Scientific Scimed, Inc. Prosthetic heart valve having an improved tubular seal
US10231827B2 (en) * 2015-03-18 2019-03-19 Medtronic Vascular, Inc. Valve prostheses having an integral centering mechanism and methods of use thereof
JP6785786B2 (en) 2015-03-19 2020-11-18 ケーソン・インターヴェンショナル・エルエルシー Systems and methods for heart valve treatment
EP3273912A1 (en) 2015-03-23 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Heart valve repair
WO2016154172A2 (en) 2015-03-24 2016-09-29 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
US9962260B2 (en) 2015-03-24 2018-05-08 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
CN107157622B (en) * 2015-03-26 2019-12-17 杭州启明医疗器械股份有限公司 Safe-to-use valve stent and valve replacement device with same
EP3280359A1 (en) 2015-04-07 2018-02-14 St. Jude Medical, Cardiology Division, Inc. System and method for intraprocedural assessment of geometry and compliance of valve annulus for trans-catheter valve implantation
US10327896B2 (en) 2015-04-10 2019-06-25 Edwards Lifesciences Corporation Expandable sheath with elastomeric cross sectional portions
US10792471B2 (en) 2015-04-10 2020-10-06 Edwards Lifesciences Corporation Expandable sheath
US10368986B2 (en) 2015-04-15 2019-08-06 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method
EP4070763A1 (en) 2015-04-16 2022-10-12 Tendyne Holdings, Inc. Apparatus for retrieval of transcathter prosthetic valves
US10441416B2 (en) 2015-04-21 2019-10-15 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
US10709555B2 (en) 2015-05-01 2020-07-14 Jenavalve Technology, Inc. Device and method with reduced pacemaker rate in heart valve replacement
US9629720B2 (en) 2015-05-04 2017-04-25 Jacques Seguin Apparatus and methods for treating cardiac valve regurgitation
EP3294220B1 (en) 2015-05-14 2023-12-06 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
USD909581S1 (en) * 2015-05-14 2021-02-02 Venus Medtech (Hangzhou) Inc. Valve replacement device
AU2016262564B2 (en) 2015-05-14 2020-11-05 Cephea Valve Technologies, Inc. Replacement mitral valves
BR102015011376B1 (en) 2015-05-18 2023-04-04 Murilo Pundek Rocha IMPLANTABLE ARTIFICIAL BRONCHI
US10016273B2 (en) 2015-06-05 2018-07-10 Medtronic, Inc. Filtered sealing components for a transcatheter valve prosthesis
EP3307207A1 (en) 2015-06-12 2018-04-18 St. Jude Medical, Cardiology Division, Inc. Heart valve repair and replacement
WO2016209970A1 (en) 2015-06-22 2016-12-29 Edwards Lifescience Cardiaq Llc Actively controllable heart valve implant and methods of controlling same
US10092400B2 (en) 2015-06-23 2018-10-09 Edwards Lifesciences Cardiaq Llc Systems and methods for anchoring and sealing a prosthetic heart valve
WO2017004369A1 (en) 2015-07-02 2017-01-05 Edwards Lifesciences Corporation Hybrid heart valves adapted for post-implant expansion
CR20170597A (en) 2015-07-02 2018-04-20 Edwards Lifesciences Corp INTEGRATED HYBRID HEART VALVES
US10195392B2 (en) 2015-07-02 2019-02-05 Boston Scientific Scimed, Inc. Clip-on catheter
US10335277B2 (en) 2015-07-02 2019-07-02 Boston Scientific Scimed Inc. Adjustable nosecone
US9974650B2 (en) 2015-07-14 2018-05-22 Edwards Lifesciences Corporation Prosthetic heart valve
JP6600068B2 (en) 2015-07-16 2019-10-30 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド Non-sutured prosthetic heart valve
US10154905B2 (en) * 2015-08-07 2018-12-18 Medtronic Vascular, Inc. System and method for deflecting a delivery catheter
US10327892B2 (en) 2015-08-11 2019-06-25 Boston Scientific Scimed Inc. Integrated adaptive seal for prosthetic heart valves
US10179041B2 (en) 2015-08-12 2019-01-15 Boston Scientific Scimed Icn. Pinless release mechanism
US10136991B2 (en) 2015-08-12 2018-11-27 Boston Scientific Scimed Inc. Replacement heart valve implant
EP3334380B1 (en) 2015-08-12 2022-03-16 St. Jude Medical, Cardiology Division, Inc. Collapsible heart valve including stents with tapered struts
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
CA2995855C (en) 2015-09-02 2024-01-30 Edwards Lifesciences Corporation Spacer for securing a transcatheter valve to a bioprosthetic cardiac structure
US20170056164A1 (en) 2015-09-02 2017-03-02 Medtronic Vascular, Inc. Transcatheter valve prostheses having a sealing component formed from tissue having an altered extracellular matrix
US10350047B2 (en) 2015-09-02 2019-07-16 Edwards Lifesciences Corporation Method and system for packaging and preparing a prosthetic heart valve and associated delivery system
US10080653B2 (en) 2015-09-10 2018-09-25 Edwards Lifesciences Corporation Limited expansion heart valve
WO2017049003A1 (en) 2015-09-15 2017-03-23 Nasser Rafiee Devices and methods for effectuating percutaneous glenn and fontan procedures
US10327894B2 (en) 2015-09-18 2019-06-25 Tendyne Holdings, Inc. Methods for delivery of prosthetic mitral valves
US10314703B2 (en) 2015-09-21 2019-06-11 Edwards Lifesciences Corporation Cylindrical implant and balloon
US9872765B2 (en) * 2015-10-12 2018-01-23 Venus Medtech (Hangzhou) Inc Mitral valve assembly
US20170112620A1 (en) 2015-10-22 2017-04-27 Medtronic Vascular, Inc. Systems and methods of sealing a deployed valve component
US10321996B2 (en) 2015-11-11 2019-06-18 Edwards Lifesciences Corporation Prosthetic valve delivery apparatus having clutch mechanism
US10265169B2 (en) 2015-11-23 2019-04-23 Edwards Lifesciences Corporation Apparatus for controlled heart valve delivery
US11033387B2 (en) 2015-11-23 2021-06-15 Edwards Lifesciences Corporation Methods for controlled heart valve delivery
CN105342725B (en) * 2015-11-27 2017-11-03 金仕生物科技(常熟)有限公司 Artificial biological heart valve support and artificial biological heart valve
AU2016362474B2 (en) 2015-12-03 2021-04-22 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US10357351B2 (en) 2015-12-04 2019-07-23 Edwards Lifesciences Corporation Storage assembly for prosthetic valve
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
WO2017117388A1 (en) 2015-12-30 2017-07-06 Caisson Interventional, LLC Systems and methods for heart valve therapy
US11833034B2 (en) 2016-01-13 2023-12-05 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
DE202017007326U1 (en) * 2016-01-29 2020-10-20 Neovasc Tiara Inc. Valve prosthesis to prevent flow obstruction
US10342660B2 (en) 2016-02-02 2019-07-09 Boston Scientific Inc. Tensioned sheathing aids
US10363130B2 (en) 2016-02-05 2019-07-30 Edwards Lifesciences Corporation Devices and systems for docking a heart valve
US10179043B2 (en) 2016-02-12 2019-01-15 Edwards Lifesciences Corporation Prosthetic heart valve having multi-level sealing member
US10531866B2 (en) 2016-02-16 2020-01-14 Cardiovalve Ltd. Techniques for providing a replacement valve and transseptal communication
US10130465B2 (en) 2016-02-23 2018-11-20 Abbott Cardiovascular Systems Inc. Bifurcated tubular graft for treating tricuspid regurgitation
WO2017151900A1 (en) 2016-03-02 2017-09-08 Peca Labs, Inc. Expandable implantable conduit
US10893938B2 (en) 2016-03-03 2021-01-19 Medtronic Vascular, Inc. Stented prosthesis delivery system having a bumper
US10667904B2 (en) 2016-03-08 2020-06-02 Edwards Lifesciences Corporation Valve implant with integrated sensor and transmitter
WO2017160823A1 (en) 2016-03-14 2017-09-21 Medtronic Vascular Inc. Stented prosthetic heart valve having a wrap and delivery devices
US10517722B2 (en) 2016-03-24 2019-12-31 Edwards Lifesciences Corporation Delivery system for prosthetic heart valve
US9974649B2 (en) 2016-03-24 2018-05-22 Medtronic Vascular, Inc. Stented prosthetic heart valve having wrap and methods of delivery and deployment
USD815744S1 (en) 2016-04-28 2018-04-17 Edwards Lifesciences Cardiaq Llc Valve frame for a delivery system
US10470877B2 (en) 2016-05-03 2019-11-12 Tendyne Holdings, Inc. Apparatus and methods for anterior valve leaflet management
US10231829B2 (en) 2016-05-04 2019-03-19 Boston Scientific Scimed Inc. Leaflet stitching backer
USD802765S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
EP3454795B1 (en) 2016-05-13 2023-01-11 JenaValve Technology, Inc. Heart valve prosthesis delivery system for delivery of heart valve prosthesis with introducer sheath and loading system
USD802764S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
EP3454785B1 (en) 2016-05-13 2021-11-17 St. Jude Medical, Cardiology Division, Inc. Heart valve with stent having varying cell densities
USD802766S1 (en) 2016-05-13 2017-11-14 St. Jude Medical, Cardiology Division, Inc. Surgical stent
US10583005B2 (en) 2016-05-13 2020-03-10 Boston Scientific Scimed, Inc. Medical device handle
US10201416B2 (en) 2016-05-16 2019-02-12 Boston Scientific Scimed, Inc. Replacement heart valve implant with invertible leaflets
US10456245B2 (en) 2016-05-16 2019-10-29 Edwards Lifesciences Corporation System and method for applying material to a stent
EP3468480B1 (en) 2016-06-13 2023-01-11 Tendyne Holdings, Inc. Sequential delivery of two-part prosthetic mitral valve
US11331187B2 (en) 2016-06-17 2022-05-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
US10588745B2 (en) 2016-06-20 2020-03-17 Medtronic Vascular, Inc. Modular valve prosthesis, delivery system, and method of delivering and deploying a modular valve prosthesis
EP3478224B1 (en) 2016-06-30 2022-11-02 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus for delivery of same
EP3484411A1 (en) 2016-07-12 2019-05-22 Tendyne Holdings, Inc. Apparatus and methods for trans-septal retrieval of prosthetic heart valves
US10350062B2 (en) 2016-07-21 2019-07-16 Edwards Lifesciences Corporation Replacement heart valve prosthesis
US20190231525A1 (en) 2016-08-01 2019-08-01 Mitraltech Ltd. Minimally-invasive delivery systems
US11096781B2 (en) 2016-08-01 2021-08-24 Edwards Lifesciences Corporation Prosthetic heart valve
USD800908S1 (en) 2016-08-10 2017-10-24 Mitraltech Ltd. Prosthetic valve element
WO2018029680A1 (en) 2016-08-10 2018-02-15 Mitraltech Ltd. Prosthetic valve with concentric frames
US10828152B2 (en) 2016-08-11 2020-11-10 4C Medical Technologies, Inc. Heart chamber prosthetic valve implant with base, spring and dome sections with single chamber anchoring for preservation, supplementation and/or replacement of native valve function
EP3500214A4 (en) 2016-08-19 2019-07-24 Edwards Lifesciences Corporation Steerable delivery system for replacement mitral valve and methods of use
WO2018039631A1 (en) 2016-08-26 2018-03-01 Edwards Lifesciences Corporation Multi-portion replacement heat valve prosthesis
EP3503846B1 (en) 2016-08-26 2021-12-01 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10575946B2 (en) 2016-09-01 2020-03-03 Medtronic Vascular, Inc. Heart valve prosthesis and separate support flange for attachment thereto
EP3512466B1 (en) 2016-09-15 2020-07-29 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve with paravalvular leak mitigation features
US10575944B2 (en) 2016-09-22 2020-03-03 Edwards Lifesciences Corporation Prosthetic heart valve with reduced stitching
EP3522830A4 (en) 2016-10-10 2020-06-17 Peca Labs, Inc. Transcatheter stent and valve assembly
WO2018080328A1 (en) 2016-10-19 2018-05-03 Chodor Piotr Stent of aortic valve implanted transcatheterly
PL423186A1 (en) * 2017-10-18 2019-04-23 Chodor Piotr Aortic valve stent
EP3531977A1 (en) 2016-10-28 2019-09-04 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10493248B2 (en) 2016-11-09 2019-12-03 Medtronic Vascular, Inc. Chordae tendineae management devices for use with a valve prosthesis delivery system and methods of use thereof
US10368988B2 (en) 2016-11-09 2019-08-06 Medtronic Vascular, Inc. Valve delivery system having an integral displacement component for managing chordae tendineae in situ and methods of use thereof
US10463484B2 (en) 2016-11-17 2019-11-05 Edwards Lifesciences Corporation Prosthetic heart valve having leaflet inflow below frame
US10973631B2 (en) 2016-11-17 2021-04-13 Edwards Lifesciences Corporation Crimping accessory device for a prosthetic valve
CN109996581B (en) 2016-11-21 2021-10-15 内奥瓦斯克迪亚拉公司 Methods and systems for rapid retrieval of transcatheter heart valve delivery systems
EP3547964A1 (en) 2016-12-02 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with transverse wheel actuation
US10758352B2 (en) 2016-12-02 2020-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with two modes of actuation
US10603165B2 (en) 2016-12-06 2020-03-31 Edwards Lifesciences Corporation Mechanically expanding heart valve and delivery apparatus therefor
USD811588S1 (en) * 2016-12-09 2018-02-27 Cardiobridge Gmbh Cage for catheter pump
USD846122S1 (en) 2016-12-16 2019-04-16 Edwards Lifesciences Corporation Heart valve sizer
CN108245281A (en) * 2016-12-28 2018-07-06 上海微创心通医疗科技有限公司 Valve prosthesis
CR20190381A (en) 2017-01-23 2019-09-27 Cephea Valve Tech Inc Replacement mitral valves
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
US11185406B2 (en) 2017-01-23 2021-11-30 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11013600B2 (en) 2017-01-23 2021-05-25 Edwards Lifesciences Corporation Covered prosthetic heart valve
US11654023B2 (en) 2017-01-23 2023-05-23 Edwards Lifesciences Corporation Covered prosthetic heart valve
US10561495B2 (en) 2017-01-24 2020-02-18 4C Medical Technologies, Inc. Systems, methods and devices for two-step delivery and implantation of prosthetic heart valve
JP7094965B2 (en) 2017-01-27 2022-07-04 イエナバルブ テクノロジー インク Heart valve imitation
USD867595S1 (en) 2017-02-01 2019-11-19 Edwards Lifesciences Corporation Stent
WO2018160790A1 (en) 2017-03-03 2018-09-07 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve design
US10561497B2 (en) 2017-03-07 2020-02-18 Medtronic Vascular, Inc. Delivery system having a short capsule segment and a cinch mechanism and methods of use thereof
US10667934B2 (en) 2017-04-04 2020-06-02 Medtronic Vascular, Inc. System for loading a transcatheter valve prosthesis into a delivery catheter
US10463485B2 (en) 2017-04-06 2019-11-05 Edwards Lifesciences Corporation Prosthetic valve holders with automatic deploying mechanisms
US20180303609A1 (en) 2017-04-19 2018-10-25 Medtronic Vascular, Inc. Catheter-based delivery device having segment with non-uniform width helical spine
EP3614969B1 (en) 2017-04-28 2023-05-03 Edwards Lifesciences Corporation Prosthetic heart valve with collapsible holder
US10959846B2 (en) 2017-05-10 2021-03-30 Edwards Lifesciences Corporation Mitral valve spacer device
US10792151B2 (en) 2017-05-11 2020-10-06 Twelve, Inc. Delivery systems for delivering prosthetic heart valve devices and associated methods
USD875935S1 (en) 2017-05-15 2020-02-18 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
EP3624739A1 (en) 2017-05-15 2020-03-25 St. Jude Medical, Cardiology Division, Inc. Transcatheter delivery system with wheel actuation
USD889653S1 (en) 2017-05-15 2020-07-07 St. Jude Medical, Cardiology Division, Inc. Stent having tapered struts
US11135056B2 (en) 2017-05-15 2021-10-05 Edwards Lifesciences Corporation Devices and methods of commissure formation for prosthetic heart valve
USD875250S1 (en) 2017-05-15 2020-02-11 St. Jude Medical, Cardiology Division, Inc. Stent having tapered aortic struts
EP3630013A4 (en) 2017-05-22 2020-06-17 Edwards Lifesciences Corporation Valve anchor and installation method
US20210401571A9 (en) 2017-05-31 2021-12-30 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10869759B2 (en) 2017-06-05 2020-12-22 Edwards Lifesciences Corporation Mechanically expandable heart valve
US11026785B2 (en) 2017-06-05 2021-06-08 Edwards Lifesciences Corporation Mechanically expandable heart valve
EP3634311A1 (en) 2017-06-08 2020-04-15 Boston Scientific Scimed, Inc. Heart valve implant commissure support structure
EP3641700A4 (en) 2017-06-21 2020-08-05 Edwards Lifesciences Corporation Dual-wireform limited expansion heart valves
US11224509B2 (en) 2017-06-30 2022-01-18 Ohio State Innovation Foundation Prosthetic heart valve with tri-leaflet design for use in percutaneous valve replacement procedures
US10813757B2 (en) 2017-07-06 2020-10-27 Edwards Lifesciences Corporation Steerable rail delivery system
WO2019014473A1 (en) 2017-07-13 2019-01-17 Tendyne Holdings, Inc. Prosthetic heart valves and apparatus and methods for delivery of same
US10918473B2 (en) 2017-07-18 2021-02-16 Edwards Lifesciences Corporation Transcatheter heart valve storage container and crimping mechanism
WO2019028161A1 (en) 2017-08-01 2019-02-07 Boston Scientific Scimed, Inc. Medical implant locking mechanism
US10888421B2 (en) 2017-09-19 2021-01-12 Cardiovalve Ltd. Prosthetic heart valve with pouch
US11246704B2 (en) 2017-08-03 2022-02-15 Cardiovalve Ltd. Prosthetic heart valve
US10575948B2 (en) 2017-08-03 2020-03-03 Cardiovalve Ltd. Prosthetic heart valve
US11793633B2 (en) 2017-08-03 2023-10-24 Cardiovalve Ltd. Prosthetic heart valve
US10537426B2 (en) 2017-08-03 2020-01-21 Cardiovalve Ltd. Prosthetic heart valve
KR102617878B1 (en) 2017-08-11 2023-12-22 에드워즈 라이프사이언시스 코포레이션 Sealing elements for artificial heart valves
US11083575B2 (en) 2017-08-14 2021-08-10 Edwards Lifesciences Corporation Heart valve frame design with non-uniform struts
US10932903B2 (en) 2017-08-15 2021-03-02 Edwards Lifesciences Corporation Skirt assembly for implantable prosthetic valve
US10939996B2 (en) 2017-08-16 2021-03-09 Boston Scientific Scimed, Inc. Replacement heart valve commissure assembly
US10898319B2 (en) 2017-08-17 2021-01-26 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US10973628B2 (en) * 2017-08-18 2021-04-13 Edwards Lifesciences Corporation Pericardial sealing member for prosthetic heart valve
US10722353B2 (en) 2017-08-21 2020-07-28 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019040781A1 (en) 2017-08-24 2019-02-28 Medtronic Vascular, Inc. Transseptal delivery systems having a deflecting segment and methods of use
CN111263622A (en) 2017-08-25 2020-06-09 内奥瓦斯克迪亚拉公司 Sequentially deployed transcatheter mitral valve prosthesis
WO2019046099A1 (en) 2017-08-28 2019-03-07 Tendyne Holdings, Inc. Prosthetic heart valves with tether coupling features
US10973629B2 (en) 2017-09-06 2021-04-13 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
US11147667B2 (en) 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
WO2019051476A1 (en) 2017-09-11 2019-03-14 Incubar, LLC Conduit vascular implant sealing device for reducing endoleak
CA3071133C (en) 2017-09-12 2023-02-28 W.L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US11071846B2 (en) 2017-09-14 2021-07-27 Medtronic Vascular, Inc. Deflection catheter for aiding in bending of a catheter
US10881511B2 (en) 2017-09-19 2021-01-05 Cardiovalve Ltd. Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue
WO2019067220A1 (en) 2017-09-27 2019-04-04 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
CA3072814C (en) 2017-09-27 2023-01-03 W.L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
CA3078699C (en) 2017-10-13 2023-10-10 W.L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
WO2019081453A1 (en) 2017-10-23 2019-05-02 Symetis Sa Prosthetic valve leaflet
US11382751B2 (en) 2017-10-24 2022-07-12 St. Jude Medical, Cardiology Division, Inc. Self-expandable filler for mitigating paravalvular leak
CN112203616A (en) * 2017-10-30 2021-01-08 安多拉米诺科学公司 Expandable sealing skirt technique for leak-proof endovascular prosthesis
WO2019089136A1 (en) 2017-10-31 2019-05-09 W. L. Gore & Associates, Inc. Medical valve and leaflet promoting tissue ingrowth
WO2019089135A1 (en) 2017-10-31 2019-05-09 W. L. Gore & Associates, Inc. Transcatheter deployment systems and associated methods
AU2018362081B2 (en) 2017-10-31 2021-05-06 Edwards Lifesciences Corporation Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CN109745144B (en) * 2017-11-06 2020-06-12 先健科技(深圳)有限公司 Covered stent
US10959843B2 (en) * 2017-11-12 2021-03-30 William Joseph Drasler Straddle annular mitral valve
CN109793596A (en) 2017-11-17 2019-05-24 上海微创心通医疗科技有限公司 Valve bracket, valve prosthesis and conveying device
GB201720803D0 (en) 2017-12-13 2018-01-24 Mitraltech Ltd Prosthetic Valve and delivery tool therefor
CN110013356B (en) * 2018-01-07 2023-08-01 苏州杰成医疗科技有限公司 Heart valve prosthesis delivery system
US11291844B2 (en) 2018-01-08 2022-04-05 E-Valve Systems Ltd. Prosthetic aortic valve pacing system
US11013597B2 (en) 2018-01-08 2021-05-25 E-Valve Systems Ltd. Prosthetic aortic valve pacing system
US10543083B2 (en) 2018-01-08 2020-01-28 Rainbow Medical Ltd. Prosthetic aortic valve pacing system
US11065451B1 (en) 2021-01-06 2021-07-20 E-Valve Systems Ltd. Prosthetic aortic valve pacing systems
US10835750B2 (en) 2018-01-08 2020-11-17 Rainbow Medical Ltd. Prosthetic aortic valve pacing system
GB201800399D0 (en) 2018-01-10 2018-02-21 Mitraltech Ltd Temperature-control during crimping of an implant
EP3740160A2 (en) 2018-01-19 2020-11-25 Boston Scientific Scimed Inc. Inductance mode deployment sensors for transcatheter valve system
WO2019144071A1 (en) 2018-01-19 2019-07-25 Boston Scientific Scimed, Inc. Medical device delivery system with feedback loop
US11337805B2 (en) 2018-01-23 2022-05-24 Edwards Lifesciences Corporation Prosthetic valve holders, systems, and methods
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
EP3749252A1 (en) 2018-02-07 2020-12-16 Boston Scientific Scimed, Inc. Medical device delivery system with alignment feature
EP3758651B1 (en) 2018-02-26 2022-12-07 Boston Scientific Scimed, Inc. Embedded radiopaque marker in adaptive seal
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
WO2019173393A1 (en) 2018-03-05 2019-09-12 Edwards Lifesciences Corporation Optical tissue measurement
US11813413B2 (en) 2018-03-27 2023-11-14 St. Jude Medical, Cardiology Division, Inc. Radiopaque outer cuff for transcatheter valve
EP3556323B1 (en) 2018-04-18 2023-07-19 St. Jude Medical, Cardiology Division, Inc. Prosthetic heart valve
US11318011B2 (en) 2018-04-27 2022-05-03 Edwards Lifesciences Corporation Mechanically expandable heart valve with leaflet clamps
WO2019213423A1 (en) 2018-05-03 2019-11-07 Medtronic Vascular, Inc. Tip assemblies, systems, and methods for fracturing a frame of a deployed prosthesis
CN112399836A (en) 2018-05-15 2021-02-23 波士顿科学国际有限公司 Replacement heart valve commissure assemblies
JP7109657B2 (en) 2018-05-23 2022-07-29 コーシム・ソチエタ・ア・レスポンサビリタ・リミタータ heart valve prosthesis
US11241310B2 (en) 2018-06-13 2022-02-08 Boston Scientific Scimed, Inc. Replacement heart valve delivery device
USD908874S1 (en) 2018-07-11 2021-01-26 Edwards Lifesciences Corporation Collapsible heart valve sizer
US11857441B2 (en) 2018-09-04 2024-01-02 4C Medical Technologies, Inc. Stent loading device
EP3852679A1 (en) 2018-09-20 2021-07-28 St. Jude Medical, Cardiology Division, Inc. Attachment of leaflets to prosthetic heart valve
JP2022504241A (en) 2018-10-05 2022-01-13 シファメド・ホールディングス・エルエルシー Artificial heart valve device, system, and method
US11364117B2 (en) 2018-10-15 2022-06-21 St. Jude Medical, Cardiology Division, Inc. Braid connections for prosthetic heart valves
SG11202103871RA (en) 2018-10-19 2021-05-28 Edwards Lifesciences Corp Prosthetic heart valve having non-cylindrical frame
WO2020092205A1 (en) 2018-11-01 2020-05-07 Edwards Lifesciences Corporation Transcatheter pulmonic regenerative valve
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
EP3876870B1 (en) 2018-11-08 2023-12-20 Neovasc Tiara Inc. Ventricular deployment of a transcatheter mitral valve prosthesis
DE102018009061A1 (en) * 2018-11-13 2020-05-14 Moneera Bobaky New biological valve prosthesis of the type under the seam ring
CN109549751B (en) * 2018-11-21 2024-01-09 杭州创心医学科技有限公司 Valved conduit and method for manufacturing same
EP3893804A1 (en) 2018-12-10 2021-10-20 St. Jude Medical, Cardiology Division, Inc. Prosthetic tricuspid valve replacement design
WO2020123486A1 (en) 2018-12-10 2020-06-18 Boston Scientific Scimed, Inc. Medical device delivery system including a resistance member
US11273030B2 (en) 2018-12-26 2022-03-15 St. Jude Medical, Cardiology Division, Inc. Elevated outer cuff for reducing paravalvular leakage and increasing stent fatigue life
JP7403547B2 (en) 2019-01-23 2023-12-22 ニオバスク メディカル リミテッド coated flow modifier
US11278402B2 (en) 2019-02-21 2022-03-22 Medtronic, Inc. Prosthesis for transcatheter delivery having an infolding longitudinal segment for a smaller radially compressed profile
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11471282B2 (en) 2019-03-19 2022-10-18 Shifamed Holdings, Llc Prosthetic cardiac valve devices, systems, and methods
EP3946161A2 (en) 2019-03-26 2022-02-09 Edwards Lifesciences Corporation Prosthetic heart valve
JP7438236B2 (en) 2019-04-01 2024-02-26 ニオバスク ティアラ インコーポレイテッド Controllably deployable prosthetic valve
CA3136334A1 (en) 2019-04-10 2020-10-15 Neovasc Tiara Inc. Prosthetic valve with natural blood flow
US11439504B2 (en) 2019-05-10 2022-09-13 Boston Scientific Scimed, Inc. Replacement heart valve with improved cusp washout and reduced loading
AU2020279750B2 (en) 2019-05-20 2023-07-13 Neovasc Tiara Inc. Introducer with hemostasis mechanism
AU2020295566B2 (en) 2019-06-20 2023-07-20 Neovasc Tiara Inc. Low profile prosthetic mitral valve
US11446145B2 (en) 2019-07-25 2022-09-20 Medtronic, Inc. Delivery device having a capsule for delivering a prosthesis and a pull wire for steering the capsule
EP4003230A1 (en) 2019-07-31 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Alternate stent caf design for tavr
US11583397B2 (en) 2019-09-24 2023-02-21 Medtronic, Inc. Prosthesis with anti-paravalvular leakage component including a one-way valve
US20210085495A1 (en) 2019-09-24 2021-03-25 Medtronic, Inc. Prosthesis with beneficial compression characteristics and method of manufacture
WO2021068788A1 (en) * 2019-10-08 2021-04-15 杭州启明医疗器械股份有限公司 Improved leaflet of cardiac valve, and cardiac valve preform, cardiac valve, and processing method therefor
US11622858B2 (en) 2019-10-09 2023-04-11 Medtronic CV Luxembourg S.a.r.l. Valve delivery system including foreshortening compensator for improved positioning accuracy
USD902407S1 (en) * 2019-11-19 2020-11-17 Pulmair Medical, Inc. Implantable artificial bronchus
US11648110B2 (en) 2019-12-05 2023-05-16 Tendyne Holdings, Inc. Braided anchor for mitral valve
US11819629B2 (en) 2019-12-06 2023-11-21 Medtronic CV Luxembourg S.a.r.l. Catheter shaft with uniform bending stiffness circumferentially
CN114641263A (en) 2019-12-16 2022-06-17 爱德华兹生命科学公司 Valve holder assembly with suture looping protection
US11648114B2 (en) 2019-12-20 2023-05-16 Tendyne Holdings, Inc. Distally loaded sheath and loading funnel
US11931253B2 (en) 2020-01-31 2024-03-19 4C Medical Technologies, Inc. Prosthetic heart valve delivery system: ball-slide attachment
RU2737577C1 (en) * 2020-04-03 2020-12-01 Общество с ограниченной ответственностью "Ангиолайн Ресерч" Cardiac valve prosthesis (embodiments)
US11707355B2 (en) 2020-05-28 2023-07-25 Medtronic, Inc. Modular heart valve prosthesis
CN115916113A (en) 2020-06-03 2023-04-04 美敦力公司 Delivery device with controlled release shaft for improved positioning of transcatheter heart valve
WO2021247351A1 (en) 2020-06-04 2021-12-09 Medtronic, Inc. Delivery system having a split distal tip for improved positioning of a transcatheter heart valve
US11678980B2 (en) 2020-08-19 2023-06-20 Tendyne Holdings, Inc. Fully-transseptal apical pad with pulley for tensioning
USD954953S1 (en) 2020-11-03 2022-06-14 Pulmair Medical, Inc. Implantable artificial bronchus
US20220142771A1 (en) 2020-11-09 2022-05-12 Medtronic, Inc. Mechanical guides for controlling leaflet folding behavior during crimping
US20220175522A1 (en) * 2020-12-04 2022-06-09 Shifamed Holdings, Llc Flared prosthetic cardiac valve delivery devices and systems
CN115734771A (en) 2020-12-07 2023-03-03 美敦力公司 Transcatheter heart valve prosthesis system and method for achieving rotational alignment
EP4011324A1 (en) * 2020-12-10 2022-06-15 GrOwnValve GmbH Method for manufacturing a mold for a cardiac valve prosthesis
US11872123B2 (en) 2020-12-10 2024-01-16 GrOwnValve GmbH Method for manufacturing a cardiac valve prosthesis
WO2022140125A1 (en) 2020-12-22 2022-06-30 Medtronic, Inc. Skirt-reinforcement members for prosthetic valve devices
WO2022149130A1 (en) 2021-01-06 2022-07-14 E-Valve Systems Ltd. Prosthetic aortic valve pacing systems
CA3217842A1 (en) 2021-05-03 2022-11-10 Medtronic, Inc. Loading tools for prosthetic valve devices
EP4346696A1 (en) 2021-05-27 2024-04-10 Medtronic, Inc. Composite skirts for prosthetic valve devices
WO2022271851A1 (en) * 2021-06-22 2022-12-29 Shifamed Holdings, Llc Prosthetic cardiac valve delivery devices, systems, and methods
WO2023285967A1 (en) 2021-07-16 2023-01-19 Medtronic, Inc. Transcatheter valve delivery system with omnidirectional steering and methods of use thereof
CN114271992B (en) * 2021-12-15 2022-09-02 中国医学科学院阜外医院 Self-expanding valve delivered through femoral artery access suitable for aortic valve regurgitation
WO2024023627A1 (en) 2022-07-27 2024-02-01 Medtronic, Inc. Valve prosthesis having a gradual release for improved positioning
USD1014758S1 (en) 2023-04-19 2024-02-13 Pulmair Medical, Inc. Implantable artificial bronchus
US11931255B1 (en) 2023-08-18 2024-03-19 E-Valve Systems Ltd. Prosthetic aortic valve pacing systems

Family Cites Families (672)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US49555A (en) * 1865-08-22 Anton sohwittee
US43435A (en) * 1864-07-05 Paper-fastener
US265056A (en) * 1882-09-26 pelton
FR1271508A (en) 1960-05-17 1961-09-15 Wiper blade
US3334629A (en) 1964-11-09 1967-08-08 Bertram D Cohn Occlusive device for inferior vena cava
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3540431A (en) 1968-04-04 1970-11-17 Kazi Mobin Uddin Collapsible filter for fluid flowing in closed passageway
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3628535A (en) 1969-11-12 1971-12-21 Nibot Corp Surgical instrument for implanting a prosthetic heart valve or the like
US3642004A (en) 1970-01-05 1972-02-15 Life Support Equipment Corp Urethral valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
US3868956A (en) 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3839741A (en) 1972-11-17 1974-10-08 J Haller Heart valve and retaining means therefor
US3795246A (en) 1973-01-26 1974-03-05 Bard Inc C R Venocclusion device
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US4291420A (en) 1973-11-09 1981-09-29 Medac Gesellschaft Fur Klinische Spezialpraparate Mbh Artificial heart valve
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4491986A (en) 1976-05-12 1985-01-08 Shlomo Gabbay Heart valve
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
US4233690A (en) 1978-05-19 1980-11-18 Carbomedics, Inc. Prosthetic device couplings
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4340977A (en) * 1980-09-19 1982-07-27 Brownlee Richard T Catenary mitral valve replacement
US4388735A (en) 1980-11-03 1983-06-21 Shiley Inc. Low profile prosthetic xenograft heart valve
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4501030A (en) * 1981-08-17 1985-02-26 American Hospital Supply Corporation Method of leaflet attachment for prosthetic heart valves
US4425908A (en) 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
FR2523810B1 (en) 1982-03-23 1988-11-25 Carpentier Alain ORGANIC GRAFT FABRIC AND PROCESS FOR ITS PREPARATION
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
GB8300636D0 (en) * 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4506394A (en) 1983-01-13 1985-03-26 Molrose Management, Ltd. Cardiac valve prosthesis holder
US4610688A (en) 1983-04-04 1986-09-09 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4834755A (en) 1983-04-04 1989-05-30 Pfizer Hospital Products Group, Inc. Triaxially-braided fabric prosthesis
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4681908A (en) 1983-11-09 1987-07-21 Dow Corning Corporation Hard organopolysiloxane release coating
US5693083A (en) 1983-12-09 1997-12-02 Endovascular Technologies, Inc. Thoracic graft and delivery catheter
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
US4580568A (en) 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US5232445A (en) 1984-11-23 1993-08-03 Tassilo Bonzel Dilatation catheter
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
DE3530262A1 (en) 1985-08-22 1987-02-26 Siemens Ag CIRCUIT ARRANGEMENT FOR TESTING A PASSIVE BUS NETWORK SYSTEM (CSMA / CD ACCESS METHOD)
US4662885A (en) 1985-09-03 1987-05-05 Becton, Dickinson And Company Percutaneously deliverable intravascular filter prosthesis
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4710192A (en) 1985-12-30 1987-12-01 Liotta Domingo S Diaphragm and method for occlusion of the descending thoracic aorta
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US5061273A (en) 1989-06-01 1991-10-29 Yock Paul G Angioplasty apparatus facilitating rapid exchanges
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US4748982A (en) 1987-01-06 1988-06-07 Advanced Cardiovascular Systems, Inc. Reinforced balloon dilatation catheter with slitted exchange sleeve and method
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4872874A (en) 1987-05-29 1989-10-10 Taheri Syde A Method and apparatus for transarterial aortic graft insertion and implantation
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4833458A (en) * 1987-06-22 1989-05-23 Bowman Gerald E Smoke and fire detector for remote sensing
US4819751A (en) 1987-10-16 1989-04-11 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
US4909252A (en) 1988-05-26 1990-03-20 The Regents Of The Univ. Of California Perfusion balloon catheter
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
US4917102A (en) 1988-09-14 1990-04-17 Advanced Cardiovascular Systems, Inc. Guidewire assembly with steerable adjustable tip
US4913141A (en) 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
CH678393A5 (en) 1989-01-26 1991-09-13 Ulrich Prof Dr Med Sigwart
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
WO1990014804A1 (en) 1989-05-31 1990-12-13 Baxter International Inc. Biological valvular prosthesis
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5002559A (en) 1989-11-30 1991-03-26 Numed PTCA catheter
US5037434A (en) * 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5161547A (en) 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US5217483A (en) 1990-11-28 1993-06-08 Numed, Inc. Intravascular radially expandable stent
US6165292A (en) 1990-12-18 2000-12-26 Advanced Cardiovascular Systems, Inc. Superelastic guiding member
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5272909A (en) 1991-04-25 1993-12-28 Baxter International Inc. Method and device for testing venous valves
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5350398A (en) 1991-05-13 1994-09-27 Dusan Pavcnik Self-expanding filter for percutaneous insertion
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
AU662342B2 (en) 1991-05-16 1995-08-31 3F Therapeutics, Inc. Cardiac valve
IT1245750B (en) 1991-05-24 1994-10-14 Sorin Biomedica Emodialisi S R CARDIAC VALVE PROSTHESIS, PARTICULARLY FOR REPLACING THE AORTIC VALVE
US5584803A (en) 1991-07-16 1996-12-17 Heartport, Inc. System for cardiac procedures
US5558644A (en) 1991-07-16 1996-09-24 Heartport, Inc. Retrograde delivery catheter and method for inducing cardioplegic arrest
US20060058775A1 (en) 1991-07-16 2006-03-16 Stevens John H System and methods for performing endovascular procedures
US6029671A (en) 1991-07-16 2000-02-29 Heartport, Inc. System and methods for performing endovascular procedures
US6866650B2 (en) 1991-07-16 2005-03-15 Heartport, Inc. System for cardiac procedures
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5795325A (en) 1991-07-16 1998-08-18 Heartport, Inc. Methods and apparatus for anchoring an occluding member
US5766151A (en) 1991-07-16 1998-06-16 Heartport, Inc. Endovascular system for arresting the heart
ATE157525T1 (en) 1991-10-11 1997-09-15 Angiomed Ag DEVICE FOR EXPANDING A STENOSIS
US5720776A (en) 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5354330A (en) 1991-10-31 1994-10-11 Ats Medical Inc. Heart valve prosthesis
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
GB9206449D0 (en) 1992-03-25 1992-05-06 Univ Leeds Artificial heart valve
US7101392B2 (en) 1992-03-31 2006-09-05 Boston Scientific Corporation Tubular medical endoprostheses
JP2660101B2 (en) 1992-05-08 1997-10-08 シュナイダー・(ユーエスエイ)・インコーポレーテッド Esophageal stent and delivery device
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5178632A (en) 1992-06-09 1993-01-12 Hanson Richard D Bi-leaflet heart valve prosthesis
US5449384A (en) 1992-09-28 1995-09-12 Medtronic, Inc. Dynamic annulus heart valve employing preserved porcine valve leaflets
DE4327825C2 (en) * 1992-11-24 1996-10-02 Mannesmann Ag Throttle check element
EP0676936A1 (en) 1992-12-30 1995-10-18 Schneider (Usa) Inc. Apparatus for deploying body implantable stents
EP0681456A4 (en) 1993-01-27 1996-08-07 Instent Inc Vascular and coronary stents.
US5431676A (en) 1993-03-05 1995-07-11 Innerdyne Medical, Inc. Trocar system having expandable port
SG85682A1 (en) 1993-03-11 2002-01-15 Medinol Ltd Stent
US5800453A (en) 1993-04-19 1998-09-01 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking hooks and slots
GB9312666D0 (en) * 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
US5415633A (en) 1993-07-28 1995-05-16 Active Control Experts, Inc. Remotely steered catheterization device
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
US5389106A (en) 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
US5713950A (en) 1993-11-01 1998-02-03 Cox; James L. Method of replacing heart valves using flexible tubes
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
JPH07162089A (en) * 1993-12-13 1995-06-23 Mitsubishi Electric Corp Visible light laser diode and its manufacture
US5489294A (en) 1994-02-01 1996-02-06 Medtronic, Inc. Steroid eluting stitch-in chronic cardiac lead
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5695607A (en) 1994-04-01 1997-12-09 James River Corporation Of Virginia Soft-single ply tissue having very low sidedness
DE4415359C2 (en) 1994-05-02 1997-10-23 Aesculap Ag Surgical tubular shaft instrument
US5765418A (en) 1994-05-16 1998-06-16 Medtronic, Inc. Method for making an implantable medical device from a refractory metal
CA2149290C (en) 1994-05-26 2006-07-18 Carl T. Urban Optical trocar
US5824041A (en) 1994-06-08 1998-10-20 Medtronic, Inc. Apparatus and methods for placement and repositioning of intraluminal prostheses
JP3970341B2 (en) 1994-06-20 2007-09-05 テルモ株式会社 Vascular catheter
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
US5397355A (en) 1994-07-19 1995-03-14 Stentco, Inc. Intraluminal stent
US5674277A (en) 1994-12-23 1997-10-07 Willy Rusch Ag Stent for placement in a body tube
US5575818A (en) 1995-02-14 1996-11-19 Corvita Corporation Endovascular stent with locking ring
US6579314B1 (en) 1995-03-10 2003-06-17 C.R. Bard, Inc. Covered stent with encapsulated ends
US5849005A (en) 1995-06-07 1998-12-15 Heartport, Inc. Method and apparatus for minimizing the risk of air embolism when performing a procedure in a patient's thoracic cavity
WO1996030072A1 (en) 1995-03-30 1996-10-03 Heartport, Inc. System and methods for performing endovascular procedures
US5667523A (en) 1995-04-28 1997-09-16 Impra, Inc. Dual supported intraluminal graft
US5824064A (en) 1995-05-05 1998-10-20 Taheri; Syde A. Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
US5772694A (en) 1995-05-16 1998-06-30 Medical Carbon Research Institute L.L.C. Prosthetic heart valve with improved blood flow
US5580922A (en) 1995-06-06 1996-12-03 Weyerhaeuser Company Cellulose products treated with isocyanate compositions
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US5824037A (en) * 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US5591195A (en) 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6287315B1 (en) 1995-10-30 2001-09-11 World Medical Manufacturing Corporation Apparatus for delivering an endoluminal prosthesis
US6348066B1 (en) 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
DE69526857T2 (en) 1995-11-27 2003-01-02 Schneider Europ Gmbh Buelach Stent for use in one pass
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
US5861028A (en) 1996-09-09 1999-01-19 Shelhigh Inc Natural tissue heart valve and stent prosthesis and method for making the same
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
JP2001502605A (en) 1996-01-30 2001-02-27 メドトロニック,インコーポレーテッド Articles and methods for making a stent
JPH09215753A (en) 1996-02-08 1997-08-19 Schneider Usa Inc Self-expanding stent made of titanium alloy
US5749921A (en) 1996-02-20 1998-05-12 Medtronic, Inc. Apparatus and methods for compression of endoluminal prostheses
US20020068949A1 (en) 1996-02-23 2002-06-06 Williamson Warren P. Extremely long wire fasteners for use in minimally invasive surgery and means and method for handling those fasteners
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
US5695498A (en) 1996-02-28 1997-12-09 Numed, Inc. Stent implantation system
US5746709A (en) 1996-04-25 1998-05-05 Medtronic, Inc. Intravascular pump and bypass assembly and method for using the same
US5891191A (en) 1996-04-30 1999-04-06 Schneider (Usa) Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
US6231544B1 (en) 1996-05-14 2001-05-15 Embol-X, Inc. Cardioplegia balloon cannula
EP0808614B1 (en) 1996-05-23 2003-02-26 Samsung Electronics Co., Ltd. Flexible self-expandable stent and method for making the same
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US5980530A (en) 1996-08-23 1999-11-09 Scimed Life Systems Inc Stent delivery system
US6764509B2 (en) 1996-09-06 2004-07-20 Carbomedics Inc. Prosthetic heart valve with surface modification
US6702851B1 (en) 1996-09-06 2004-03-09 Joseph A. Chinn Prosthetic heart valve with surface modification
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
DE69732349D1 (en) 1996-10-01 2005-03-03 Numed Inc EXPANDABLE STENT
US6325826B1 (en) 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
US5776142A (en) 1996-12-19 1998-07-07 Medtronic, Inc. Controllable stent delivery system and method
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
IL131063A (en) 1997-01-24 2005-07-25 Kentucky Oil N V Bistable spring construction for a stent and other medical apparatus
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US6241757B1 (en) 1997-02-04 2001-06-05 Solco Surgical Instrument Co., Ltd. Stent for expanding body's lumen
WO1998036790A1 (en) 1997-02-19 1998-08-27 Condado Medical Devices Corporation Multi-purpose catheters, catheter systems, and radiation treatment
US5830229A (en) 1997-03-07 1998-11-03 Micro Therapeutics Inc. Hoop stent
US5851232A (en) 1997-03-15 1998-12-22 Lois; William A. Venous stent
US5817126A (en) 1997-03-17 1998-10-06 Surface Genesis, Inc. Compound stent
US5824053A (en) 1997-03-18 1998-10-20 Endotex Interventional Systems, Inc. Helical mesh endoprosthesis and methods of use
US5928281A (en) * 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5868783A (en) 1997-04-16 1999-02-09 Numed, Inc. Intravascular stent with limited axial shrinkage
US5860966A (en) 1997-04-16 1999-01-19 Numed, Inc. Method of securing a stent on a balloon catheter
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6162245A (en) 1997-05-07 2000-12-19 Iowa-India Investments Company Limited Stent valve and stent graft
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US5911734A (en) 1997-05-08 1999-06-15 Embol-X, Inc. Percutaneous catheter and guidewire having filter and medical device deployment capabilities
US6258120B1 (en) 1997-12-23 2001-07-10 Embol-X, Inc. Implantable cerebral protection device and methods of use
US6168616B1 (en) 1997-06-02 2001-01-02 Global Vascular Concepts Manually expandable stent
US6855143B2 (en) 1997-06-13 2005-02-15 Arthrocare Corporation Electrosurgical systems and methods for recanalization of occluded body lumens
US5944750A (en) 1997-06-30 1999-08-31 Eva Corporation Method and apparatus for the surgical repair of aneurysms
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US5984957A (en) 1997-08-12 1999-11-16 Schneider (Usa) Inc Radially expanded prostheses with axial diameter control
AU9478498A (en) 1997-09-11 1999-03-29 Genzyme Corporation Articulating endoscopic implant rotator surgical apparatus and method for using same
US5954766A (en) 1997-09-16 1999-09-21 Zadno-Azizi; Gholam-Reza Body fluid flow control device
US6056722A (en) 1997-09-18 2000-05-02 Iowa-India Investments Company Limited Of Douglas Delivery mechanism for balloons, drugs, stents and other physical/mechanical agents and methods of use
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6361545B1 (en) 1997-09-26 2002-03-26 Cardeon Corporation Perfusion filter catheter
US6635068B1 (en) 1998-02-10 2003-10-21 Artemis Medical, Inc. Occlusion, anchoring, tensioning and flow direction apparatus and methods for use
US6221006B1 (en) 1998-02-10 2001-04-24 Artemis Medical Inc. Entrapping apparatus and method for use
US5908451A (en) 1997-11-25 1999-06-01 Cardiotech International Corporation Prosthetic heart valve
WO1999026559A1 (en) 1997-11-25 1999-06-03 Triad Vascular Systems, Inc. Layered endovascular graft
EP0961598B1 (en) 1997-12-16 2004-09-08 B. Braun Celsa Medical device for the treatment of a diseased anatomical duct
US6043607A (en) * 1997-12-16 2000-03-28 Applied Materials, Inc. Apparatus for exciting a plasma in a semiconductor wafer processing system using a complex RF waveform
US6530952B2 (en) 1997-12-29 2003-03-11 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
DE69841333D1 (en) 1997-12-29 2010-01-07 Cleveland Clinic Foundation SYSTEM FOR THE MINIMAL INVASIVE INTRODUCTION OF A HEARTLAP BIOPROTHESIS
US5873907A (en) 1998-01-27 1999-02-23 Endotex Interventional Systems, Inc. Electrolytic stent delivery system and methods of use
US5944738A (en) 1998-02-06 1999-08-31 Aga Medical Corporation Percutaneous catheter directed constricting occlusion device
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6059809A (en) 1998-02-16 2000-05-09 Medicorp, S.A. Protective angioplasty device
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US6656215B1 (en) * 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
US6776791B1 (en) 1998-04-01 2004-08-17 Endovascular Technologies, Inc. Stent and method and device for packing of same
US6074418A (en) 1998-04-20 2000-06-13 St. Jude Medical, Inc. Driver tool for heart valve prosthesis fasteners
US6218662B1 (en) 1998-04-23 2001-04-17 Western Atlas International, Inc. Downhole carbon dioxide gas analyzer
US6450989B2 (en) 1998-04-27 2002-09-17 Artemis Medical, Inc. Dilating and support apparatus with disease inhibitors and methods for use
US7452371B2 (en) 1999-06-02 2008-11-18 Cook Incorporated Implantable vascular device
WO1999062431A1 (en) 1998-06-02 1999-12-09 Cook Incorporated Multiple-sided intraluminal medical device
US6630001B2 (en) 1998-06-24 2003-10-07 International Heart Institute Of Montana Foundation Compliant dehyrated tissue for implantation and process of making the same
US6254636B1 (en) * 1998-06-26 2001-07-03 St. Jude Medical, Inc. Single suture biological tissue aortic stentless valve
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
US6312461B1 (en) 1998-08-21 2001-11-06 John D. Unsworth Shape memory tubular stent
US6203550B1 (en) 1998-09-30 2001-03-20 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US6051014A (en) 1998-10-13 2000-04-18 Embol-X, Inc. Percutaneous filtration catheter for valve repair surgery and methods of use
US6475239B1 (en) 1998-10-13 2002-11-05 Sulzer Carbomedics Inc. Method for making polymer heart valves with leaflets having uncut free edges
US6146366A (en) 1998-11-03 2000-11-14 Ras Holding Corp Device for the treatment of macular degeneration and other eye disorders
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6214036B1 (en) 1998-11-09 2001-04-10 Cordis Corporation Stent which is easily recaptured and repositioned within the body
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
DK1154738T3 (en) 1999-01-27 2010-07-26 Medtronic Inc Cardiac arrest devices
US7018401B1 (en) 1999-02-01 2006-03-28 Board Of Regents, The University Of Texas System Woven intravascular devices and methods for making the same and apparatus for delivery of the same
WO2000044309A2 (en) 1999-02-01 2000-08-03 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
SG148822A1 (en) 1999-02-01 2009-01-29 Univ Texas Woven intravascular devices and methods for making the same and apparatus for delivery of the same
DE19904975A1 (en) 1999-02-06 2000-09-14 Impella Cardiotech Ag Device for intravascular heart valve surgery
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
WO2000047136A1 (en) 1999-02-12 2000-08-17 Johns Hopkins University Venous valve implant bioprosthesis and endovascular treatment for venous insufficiency
US6110201A (en) 1999-02-18 2000-08-29 Venpro Bifurcated biological pulmonary valved conduit
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6673089B1 (en) 1999-03-11 2004-01-06 Mindguard Ltd. Implantable stroke treating device
IL128938A0 (en) 1999-03-11 2000-02-17 Mind Guard Ltd Implantable stroke treating device
US6183512B1 (en) 1999-04-16 2001-02-06 Edwards Lifesciences Corporation Flexible annuloplasty system
US7147663B1 (en) 1999-04-23 2006-12-12 St. Jude Medical Atg, Inc. Artificial heart valve attachment apparatus and methods
US6309417B1 (en) 1999-05-12 2001-10-30 Paul A. Spence Heart valve and apparatus for replacement thereof
WO2000067661A2 (en) 1999-05-12 2000-11-16 Spence Paul A Heart valve and apparatus for replacement thereof, blood vessel leak detector and temporary pacemaker lead
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6296662B1 (en) 1999-05-26 2001-10-02 Sulzer Carbiomedics Inc. Bioprosthetic heart valve with balanced stent post deflection
US6287339B1 (en) 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
EP1057459A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Radially expandable stent
US6241763B1 (en) 1999-06-08 2001-06-05 William J. Drasler In situ venous valve device and method of formation
US7192442B2 (en) 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
AU6000200A (en) 1999-07-16 2001-02-05 Biocompatibles Limited Braided stent
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6371970B1 (en) 1999-07-30 2002-04-16 Incept Llc Vascular filter having articulation region and methods of use in the ascending aorta
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
DE69942954D1 (en) 1999-09-10 2010-12-30 Cook Inc ENDOVASCULAR TREATMENT OF CHRONIC VENOUS INSUFFICIENCY
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
US6371983B1 (en) 1999-10-04 2002-04-16 Ernest Lane Bioprosthetic heart valve
FR2799364B1 (en) 1999-10-12 2001-11-23 Jacques Seguin MINIMALLY INVASIVE CANCELING DEVICE
US6352708B1 (en) 1999-10-14 2002-03-05 The International Heart Institute Of Montana Foundation Solution and method for treating autologous tissue for implant operation
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6585758B1 (en) 1999-11-16 2003-07-01 Scimed Life Systems, Inc. Multi-section filamentary endoluminal stent
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
US20070043435A1 (en) * 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US8579966B2 (en) * 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
US7195641B2 (en) 1999-11-19 2007-03-27 Advanced Bio Prosthetic Surfaces, Ltd. Valvular prostheses having metal or pseudometallic construction and methods of manufacture
US6936066B2 (en) 1999-11-19 2005-08-30 Advanced Bio Prosthetic Surfaces, Ltd. Complaint implantable medical devices and methods of making same
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6379383B1 (en) 1999-11-19 2002-04-30 Advanced Bio Prosthetic Surfaces, Ltd. Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
US6849085B2 (en) 1999-11-19 2005-02-01 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
US7300457B2 (en) 1999-11-19 2007-11-27 Advanced Bio Prosthetic Surfaces, Ltd. Self-supporting metallic implantable grafts, compliant implantable medical devices and methods of making same
WO2001047438A1 (en) 1999-12-23 2001-07-05 Edwards Lifesciences Corporation Enhanced visualization of medical implants
US8241274B2 (en) 2000-01-19 2012-08-14 Medtronic, Inc. Method for guiding a medical device
US6872226B2 (en) 2001-01-29 2005-03-29 3F Therapeutics, Inc. Method of cutting material for use in implantable medical device
US6692513B2 (en) 2000-06-30 2004-02-17 Viacor, Inc. Intravascular filter with debris entrapment mechanism
US6929653B2 (en) 2000-12-15 2005-08-16 Medtronic, Inc. Apparatus and method for replacing aortic valve
ES2307590T3 (en) 2000-01-27 2008-12-01 3F Therapeutics, Inc HEART VALVE PROTESICA.
US7749245B2 (en) 2000-01-27 2010-07-06 Medtronic, Inc. Cardiac valve procedure methods and devices
US6402781B1 (en) 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US7296577B2 (en) 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6398807B1 (en) 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6622604B1 (en) 2000-01-31 2003-09-23 Scimed Life Systems, Inc. Process for manufacturing a braided bifurcated stent
US6652571B1 (en) 2000-01-31 2003-11-25 Scimed Life Systems, Inc. Braided, branched, implantable device and processes for manufacture thereof
DK1255510T5 (en) 2000-01-31 2009-12-21 Cook Biotech Inc Stent Valve Klapper
US6797002B2 (en) 2000-02-02 2004-09-28 Paul A. Spence Heart valve repair apparatus and methods
US6602280B2 (en) 2000-02-02 2003-08-05 Trivascular, Inc. Delivery system and method for expandable intracorporeal device
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
WO2001067993A2 (en) 2000-03-14 2001-09-20 Cook Incorporated Endovascular stent graft
US6468303B1 (en) 2000-03-27 2002-10-22 Aga Medical Corporation Retrievable self expanding shunt
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6610088B1 (en) * 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
ATE416718T1 (en) 2000-05-04 2008-12-15 Univ Oregon Health & Science ENDOVASCULAR STENT GRAFT
AU2001268069A1 (en) 2000-05-19 2001-12-03 Technology Innovations, Llc Apparatus for the display of embedded information
US6869444B2 (en) 2000-05-22 2005-03-22 Shlomo Gabbay Low invasive implantable cardiac prosthesis and method for helping improve operation of a heart valve
SE522805C2 (en) 2000-06-22 2004-03-09 Jan Otto Solem Stent Application System
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6695878B2 (en) 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
AU2001271667A1 (en) 2000-06-30 2002-01-14 Viacor Incorporated Method and apparatus for performing a procedure on a cardiac valve
US6419696B1 (en) 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US6635085B1 (en) 2000-08-17 2003-10-21 Carbomedics Inc. Heart valve stent with alignment posts
US6572652B2 (en) 2000-08-29 2003-06-03 Venpro Corporation Method and devices for decreasing elevated pulmonary venous pressure
AU2001287144A1 (en) 2000-09-07 2002-03-22 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US20060142848A1 (en) 2000-09-12 2006-06-29 Shlomo Gabbay Extra-anatomic aortic valve placement
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7381220B2 (en) 2000-09-20 2008-06-03 Ample Medical, Inc. Devices, systems, and methods for supplementing, repairing, or replacing a native heart valve leaflet
US20030050684A1 (en) 2001-09-10 2003-03-13 Abrams Robert M. Internal restraint for delivery of self-expanding stents
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE10048814B4 (en) 2000-09-29 2004-04-15 Siemens Ag Computed tomography device with a data acquisition system and method for such a computed tomography device
ATE343969T1 (en) 2000-09-29 2006-11-15 Cordis Corp COATED MEDICAL DEVICES
US6932838B2 (en) 2000-09-29 2005-08-23 Tricardia, Llc Venous valvuloplasty device and method
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
WO2002034118A2 (en) 2000-10-27 2002-05-02 Viacor, Inc. Intracardiovascular access (icvatm) system
EP1341435A4 (en) 2000-11-07 2005-08-17 Artemis Medical Inc Tissue separator assembly and method
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6582460B1 (en) 2000-11-20 2003-06-24 Advanced Cardiovascular Systems, Inc. System and method for accurately deploying a stent
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
AU2571802A (en) 2000-11-21 2002-06-03 Rex Medical Lp Percutaneous aortic valve
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US20020072789A1 (en) 2000-12-12 2002-06-13 Hackett Steven S. Soc lubricant filler port
JP4076857B2 (en) 2000-12-15 2008-04-16 アンギオメット ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コムパニー メディツィンテヒニク コマンデイトゲゼルシャフト Stent with valve and method of use
WO2002060352A1 (en) 2001-01-30 2002-08-08 Ev3 Santa Rosa, Inc. Medical system and method for remodeling an extravascular tissue structure
US20050182483A1 (en) 2004-02-11 2005-08-18 Cook Incorporated Percutaneously placed prosthesis with thromboresistant valve portion
US6802846B2 (en) 2001-02-12 2004-10-12 Ams Research Corporation Foreign body retrieval device and method
US6562058B2 (en) 2001-03-02 2003-05-13 Jacques Seguin Intravascular filter system
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US6503272B2 (en) 2001-03-21 2003-01-07 Cordis Corporation Stent-based venous valves
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US6613077B2 (en) 2001-03-27 2003-09-02 Scimed Life Systems, Inc. Stent with controlled expansion
US6981958B1 (en) 2001-05-02 2006-01-03 Glaukos Corporation Implant with pressure sensor for glaucoma treatment
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
DE10118944B4 (en) 2001-04-18 2013-01-31 Merit Medical Systems, Inc. Removable, essentially cylindrical implants
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US6716238B2 (en) 2001-05-10 2004-04-06 Scimed Life Systems, Inc. Stent with detachable tethers and method of using same
US6682558B2 (en) 2001-05-10 2004-01-27 3F Therapeutics, Inc. Delivery system for a stentless valve bioprosthesis
US6663663B2 (en) 2001-05-14 2003-12-16 M.I. Tech Co., Ltd. Stent
US7879051B2 (en) 2001-05-18 2011-02-01 Christopher Paul Swain Flexible device for transfixing and joining tissue
KR100393548B1 (en) 2001-06-05 2003-08-02 주식회사 엠아이텍 Stent
CA2446596C (en) 2001-06-08 2010-03-30 Rex Medical, L.P. Vascular device with valve for approximating vessel wall
US7201761B2 (en) 2001-06-29 2007-04-10 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US7544206B2 (en) 2001-06-29 2009-06-09 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
US8771302B2 (en) 2001-06-29 2014-07-08 Medtronic, Inc. Method and apparatus for resecting and replacing an aortic valve
FR2826863B1 (en) 2001-07-04 2003-09-26 Jacques Seguin ASSEMBLY FOR PLACING A PROSTHETIC VALVE IN A BODY CONDUIT
US7547322B2 (en) 2001-07-19 2009-06-16 The Cleveland Clinic Foundation Prosthetic valve and method for making same
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6896002B2 (en) 2001-08-21 2005-05-24 Scimed Life Systems, Inc Pressure transducer protection valve
US7097659B2 (en) 2001-09-07 2006-08-29 Medtronic, Inc. Fixation band for affixing a prosthetic heart valve to tissue
US6562069B2 (en) * 2001-09-19 2003-05-13 St. Jude Medical, Inc. Polymer leaflet designs for medical devices
US20030065386A1 (en) 2001-09-28 2003-04-03 Weadock Kevin Shaun Radially expandable endoprosthesis device with two-stage deployment
US6976974B2 (en) 2002-10-23 2005-12-20 Scimed Life Systems, Inc. Rotary manifold syringe
US7172572B2 (en) 2001-10-04 2007-02-06 Boston Scientific Scimed, Inc. Manifold system for a medical device
US20080021552A1 (en) 2001-10-09 2008-01-24 Shlomo Gabbay Apparatus To Facilitate Implantation
US6893460B2 (en) * 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6866669B2 (en) 2001-10-12 2005-03-15 Cordis Corporation Locking handle deployment mechanism for medical device and method
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US7828838B2 (en) 2001-11-28 2010-11-09 Aptus Endosystems, Inc. Devices, systems, and methods for prosthesis delivery and implantation, including a prosthesis assembly
US8308797B2 (en) 2002-01-04 2012-11-13 Colibri Heart Valve, LLC Percutaneously implantable replacement heart valve device and method of making same
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US6723116B2 (en) 2002-01-14 2004-04-20 Syde A. Taheri Exclusion of ascending/descending aorta and/or aortic arch aneurysm
US6730377B2 (en) 2002-01-23 2004-05-04 Scimed Life Systems, Inc. Balloons made from liquid crystal polymer blends
US6689144B2 (en) 2002-02-08 2004-02-10 Scimed Life Systems, Inc. Rapid exchange catheter and methods for delivery of vaso-occlusive devices
US7252681B2 (en) 2002-02-14 2007-08-07 St. Medical, Inc. Heart valve structures
US7331992B2 (en) 2002-02-20 2008-02-19 Bard Peripheral Vascular, Inc. Anchoring device for an endoluminal prosthesis
US6752828B2 (en) 2002-04-03 2004-06-22 Scimed Life Systems, Inc. Artificial valve
US7125418B2 (en) 2002-04-16 2006-10-24 The International Heart Institute Of Montana Foundation Sigmoid valve and method for its percutaneous implantation
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
US8721713B2 (en) 2002-04-23 2014-05-13 Medtronic, Inc. System for implanting a replacement valve
US7105016B2 (en) 2002-04-23 2006-09-12 Medtronic Vascular, Inc. Integrated mechanical handle with quick slide mechanism
US6830575B2 (en) 2002-05-08 2004-12-14 Scimed Life Systems, Inc. Method and device for providing full protection to a stent
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
JP2005525169A (en) 2002-05-10 2005-08-25 コーディス・コーポレイション Method of making a medical device having a thin wall tubular membrane on a structural frame
US7351256B2 (en) 2002-05-10 2008-04-01 Cordis Corporation Frame based unidirectional flow prosthetic implant
US20030225445A1 (en) 2002-05-14 2003-12-04 Derus Patricia M. Surgical stent delivery devices and methods
US20040117004A1 (en) 2002-05-16 2004-06-17 Osborne Thomas A. Stent and method of forming a stent with integral barbs
CA2486390C (en) 2002-05-29 2011-01-04 William A. Cook Australia Pty. Ltd. Trigger wire system for a prosthesis deployment device
WO2003101287A2 (en) 2002-05-30 2003-12-11 The Board Of Trustees Of The Leland Stanford Junior University Apparatus and method for coronary sinus access
DE10362367B3 (en) 2002-08-13 2022-02-24 Jenavalve Technology Inc. Device for anchoring and aligning prosthetic heart valves
AU2003265468B2 (en) * 2002-08-15 2009-01-08 Cook Medical Technologies Llc Implantable vascular device
US7041132B2 (en) 2002-08-16 2006-05-09 3F Therapeutics, Inc, Percutaneously delivered heart valve and delivery means thereof
CA2714875C (en) 2002-08-28 2014-01-07 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
KR100442330B1 (en) 2002-09-03 2004-07-30 주식회사 엠아이텍 Stent and manufacturing method the same
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
US7105013B2 (en) 2002-09-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Protective sleeve assembly for a balloon catheter
WO2004037128A1 (en) 2002-10-24 2004-05-06 Boston Scientific Limited Venous valve apparatus and method
US7875068B2 (en) * 2002-11-05 2011-01-25 Merit Medical Systems, Inc. Removable biliary stent
AU2002356575B2 (en) 2002-11-08 2009-07-16 Jean-Claude Laborde Endoprosthesis for vascular bifurcation
US7255706B2 (en) 2002-11-13 2007-08-14 Rosengart Todd K Apparatus and method for cutting a heart valve
US6887266B2 (en) 2002-11-14 2005-05-03 Synecor, Llc Endoprostheses and methods of manufacture
FR2847155B1 (en) 2002-11-20 2005-08-05 Younes Boudjemline METHOD FOR MANUFACTURING A MEDICAL IMPLANT WITH ADJUSTED STRUCTURE AND IMPLANT OBTAINED THEREBY
WO2004050137A2 (en) 2002-11-29 2004-06-17 Mindguard Ltd. Braided intraluminal device for stroke prevention
US8551162B2 (en) 2002-12-20 2013-10-08 Medtronic, Inc. Biologically implantable prosthesis
US6830585B1 (en) 2003-01-14 2004-12-14 3F Therapeutics, Inc. Percutaneously deliverable heart valve and methods of implantation
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
ES2346059T3 (en) 2003-03-26 2010-10-08 Biosensors International Group Ltd. IMPLANT SUPPLY CATHETER WITH ELECTROLYTICALLY EROSIONABLE JOINTS.
US7771463B2 (en) 2003-03-26 2010-08-10 Ton Dai T Twist-down implant delivery technologies
US20050107871A1 (en) 2003-03-30 2005-05-19 Fidel Realyvasquez Apparatus and methods for valve repair
US20060271081A1 (en) 2003-03-30 2006-11-30 Fidel Realyvasquez Apparatus and methods for valve repair
EP1610728B1 (en) 2003-04-01 2011-05-25 Cook Incorporated Percutaneously deployed vascular valves
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
US20040210240A1 (en) 2003-04-21 2004-10-21 Sean Saint Method and repair device for treating mitral valve insufficiency
AU2004233848B2 (en) 2003-04-24 2010-03-04 Cook Medical Technologies Llc Artificial valve prosthesis with improved flow dynamics
US8388628B2 (en) 2003-04-24 2013-03-05 Medtronic, Inc. Expandable sheath for delivering instruments and agents into a body lumen and methods for use
US7591832B2 (en) 2003-04-24 2009-09-22 Medtronic, Inc. Expandable guide sheath and apparatus with distal protection and methods for use
EP1472996B1 (en) 2003-04-30 2009-09-30 Medtronic Vascular, Inc. Percutaneously delivered temporary valve
US20040267357A1 (en) 2003-04-30 2004-12-30 Allen Jeffrey W. Cardiac valve modification method and device
EP1626681B1 (en) 2003-05-19 2009-07-01 Cook Incorporated Implantable medical device with constrained expansion
US7628804B2 (en) 2003-05-28 2009-12-08 Cook Incorporated Prosthetic valve with vessel engaging member
AU2003237985A1 (en) 2003-06-09 2005-01-28 3F Therapeutics, Inc. Atrioventricular heart valve and minimally invasive delivery systems thereof
US20070255396A1 (en) 2003-06-20 2007-11-01 Medtronic Vascular, Inc. Chrodae Tendinae Girdle
EP1648346A4 (en) 2003-06-20 2006-10-18 Medtronic Vascular Inc Valve annulus reduction system
US7316706B2 (en) 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20040260394A1 (en) 2003-06-20 2004-12-23 Medtronic Vascular, Inc. Cardiac valve annulus compressor system
US20070093869A1 (en) 2003-06-20 2007-04-26 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7429269B2 (en) 2003-07-08 2008-09-30 Ventor Technologies Ltd. Aortic prosthetic devices
WO2005018507A2 (en) 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
ATE442107T1 (en) 2003-07-21 2009-09-15 Univ Pennsylvania PERCUTANE HEART VALVE
DE10334868B4 (en) 2003-07-29 2013-10-17 Pfm Medical Ag Implantable device as a replacement organ valve, its manufacturing process and basic body and membrane element for it
WO2005011535A2 (en) 2003-07-31 2005-02-10 Cook Incorporated Prosthetic valve for implantation in a body vessel
US7153324B2 (en) 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
DE10340265A1 (en) 2003-08-29 2005-04-07 Sievers, Hans-Hinrich, Prof. Dr.med. Prosthesis for the replacement of the aortic and / or mitral valve of the heart
US20050049692A1 (en) 2003-09-02 2005-03-03 Numamoto Michael J. Medical device for reduction of pressure effects of cardiac tricuspid valve regurgitation
US8535344B2 (en) 2003-09-12 2013-09-17 Rubicon Medical, Inc. Methods, systems, and devices for providing embolic protection and removing embolic material
WO2005032421A2 (en) 2003-09-15 2005-04-14 Medtronic Vascular, Inc. Apparatus and method for elongation of a papillary muscle
EG24012A (en) 2003-09-24 2008-03-23 Wael Mohamed Nabil Lotfy Valved balloon stent
JP3726266B2 (en) 2003-10-02 2005-12-14 朝日インテック株式会社 Medical guidewire tip structure
US20050075725A1 (en) * 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20050075713A1 (en) 2003-10-06 2005-04-07 Brian Biancucci Minimally invasive valve replacement system
EP1684671B1 (en) 2003-10-06 2020-09-30 Medtronic 3F Therapeutics, Inc. Minimally invasive valve replacement system
US7604650B2 (en) 2003-10-06 2009-10-20 3F Therapeutics, Inc. Method and assembly for distal embolic protection
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US10219899B2 (en) 2004-04-23 2019-03-05 Medtronic 3F Therapeutics, Inc. Cardiac valve replacement systems
EP2204141B1 (en) 2003-10-15 2013-06-05 Cook Medical Technologies LLC Prosthesis deployment system retention device
US7419498B2 (en) 2003-10-21 2008-09-02 Nmt Medical, Inc. Quick release knot attachment system
US7316711B2 (en) 2003-10-29 2008-01-08 Medtronic Vascular, Inc. Intralumenal stent device for use in body lumens of various diameters
US7347869B2 (en) 2003-10-31 2008-03-25 Cordis Corporation Implantable valvular prosthesis
US7070616B2 (en) 2003-10-31 2006-07-04 Cordis Corporation Implantable valvular prosthesis
EP1689329A2 (en) 2003-11-12 2006-08-16 Medtronic Vascular, Inc. Cardiac valve annulus reduction system
US7955384B2 (en) 2003-11-12 2011-06-07 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
US7473274B2 (en) 2003-11-12 2009-01-06 Medtronic Vascular, Inc. Coronary sinus approach for repair of mitral valve regurgitation
WO2005048883A1 (en) 2003-11-13 2005-06-02 Fidel Realyvasquez Methods and apparatus for valve repair
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US8828078B2 (en) 2003-12-23 2014-09-09 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7988724B2 (en) 2003-12-23 2011-08-02 Sadra Medical, Inc. Systems and methods for delivering a medical implant
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US8603160B2 (en) 2003-12-23 2013-12-10 Sadra Medical, Inc. Method of using a retrievable heart valve anchor with a sheath
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US9526609B2 (en) 2003-12-23 2016-12-27 Boston Scientific Scimed, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US20050149181A1 (en) 2004-01-07 2005-07-07 Medtronic, Inc. Bileaflet prosthetic valve and method of manufacture
US20050228495A1 (en) 2004-01-15 2005-10-13 Macoviak John A Suspended heart valve devices, systems, and methods for supplementing, repairing, or replacing a native heart valve
US7871435B2 (en) * 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
WO2005076973A2 (en) 2004-02-05 2005-08-25 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7651521B2 (en) 2004-03-02 2010-01-26 Cardiomind, Inc. Corewire actuated delivery system with fixed distal stent-carrying extension
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
US20050203549A1 (en) 2004-03-09 2005-09-15 Fidel Realyvasquez Methods and apparatus for off pump aortic valve replacement with a valve prosthesis
US20050203605A1 (en) 2004-03-15 2005-09-15 Medtronic Vascular, Inc. Radially crush-resistant stent
WO2005096993A1 (en) 2004-03-31 2005-10-20 Med Institute, Inc. Endoluminal graft with a prosthetic valve
EP1753374A4 (en) * 2004-04-23 2010-02-10 3F Therapeutics Inc Implantable prosthetic valve
EP2422751A3 (en) 2004-05-05 2013-01-02 Direct Flow Medical, Inc. Unstented heart valve with formed in place support structure
US20060122692A1 (en) 2004-05-10 2006-06-08 Ran Gilad Stent valve and method of using same
WO2005112831A2 (en) 2004-05-17 2005-12-01 Fidel Realyvasquez Method and apparatus for percutaneous valve repair
ATE367132T1 (en) 2004-05-25 2007-08-15 Cook William Europ STENT AND STENT REMOVING DEVICE
CA2569876C (en) 2004-06-16 2013-10-08 Machine Solutions, Inc. Tissue prosthesis processing technology
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
ATE506042T1 (en) 2004-07-09 2011-05-15 Gi Dynamics Inc DEVICES FOR PLACEMENT OF A GASTROINTESTINAL SLEEVE
EP1786367B1 (en) 2004-08-27 2013-04-03 Cook Medical Technologies LLC Placement of multiple intraluminal medical devices within a body vessel
US7566343B2 (en) 2004-09-02 2009-07-28 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
FR2874813B1 (en) 2004-09-07 2007-06-22 Perouse Soc Par Actions Simpli VALVULAR PROSTHESIS
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
US6951571B1 (en) 2004-09-30 2005-10-04 Rohit Srivastava Valve implanting device
AU2004324043A1 (en) 2004-10-02 2006-04-20 Christoph Hans Huber Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
US20060089711A1 (en) 2004-10-27 2006-04-27 Medtronic Vascular, Inc. Multifilament anchor for reducing a compass of a lumen or structure in mammalian body
US7458987B2 (en) 2004-10-29 2008-12-02 Cook Incorporated Vascular valves having implanted and target configurations and methods of preparing the same
US7641687B2 (en) * 2004-11-02 2010-01-05 Carbomedics Inc. Attachment of a sewing cuff to a heart valve
CA2588140C (en) 2004-11-19 2013-10-01 Medtronic Inc. Method and apparatus for treatment of cardiac valves
US8562672B2 (en) 2004-11-19 2013-10-22 Medtronic, Inc. Apparatus for treatment of cardiac valves and method of its manufacture
US20060247570A1 (en) 2005-01-19 2006-11-02 Pokorney James L Cardiac support cannula device and method
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US20060195186A1 (en) 2005-02-28 2006-08-31 Drews Michael J Connectors for two piece heart valves and methods for implanting such heart valves
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
FR2883721B1 (en) 2005-04-05 2007-06-22 Perouse Soc Par Actions Simpli NECESSARY TO BE IMPLANTED IN A BLOOD CIRCULATION CONDUIT, AND ASSOCIATED TUBULAR ENDOPROTHESIS
US20060276882A1 (en) 2005-04-11 2006-12-07 Cook Incorporated Medical device including remodelable material attached to frame
US7914569B2 (en) * 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
CN101180010B (en) * 2005-05-24 2010-12-01 爱德华兹生命科学公司 Rapid deployment prosthetic heart valve
AU2006251938B2 (en) 2005-05-27 2011-09-29 Hlt, Inc. Stentless support structure
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US20060271097A1 (en) 2005-05-31 2006-11-30 Kamal Ramzipoor Electrolytically detachable implantable devices
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
WO2007013999A2 (en) 2005-07-21 2007-02-01 Florida International University Collapsible heart valve with polymer leaflets
US20070027533A1 (en) 2005-07-28 2007-02-01 Medtronic Vascular, Inc. Cardiac valve annulus restraining device
US20070038295A1 (en) 2005-08-12 2007-02-15 Cook Incorporated Artificial valve prosthesis having a ring frame
US20070043431A1 (en) 2005-08-19 2007-02-22 Cook Incorporated Prosthetic valve
US20080188928A1 (en) 2005-09-16 2008-08-07 Amr Salahieh Medical device delivery sheath
US7682304B2 (en) 2005-09-21 2010-03-23 Medtronic, Inc. Composite heart valve apparatus manufactured using techniques involving laser machining of tissue
US7569071B2 (en) 2005-09-21 2009-08-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
EP1945142B1 (en) 2005-09-26 2013-12-25 Medtronic, Inc. Prosthetic cardiac and venous valves
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
US20070100439A1 (en) 2005-10-31 2007-05-03 Medtronic Vascular, Inc. Chordae tendinae restraining ring
US20070100449A1 (en) 2005-10-31 2007-05-03 O'neil Michael Injectable soft tissue fixation technique
US20070100414A1 (en) 2005-11-02 2007-05-03 Cardiomind, Inc. Indirect-release electrolytic implant delivery systems
WO2007054015A1 (en) 2005-11-09 2007-05-18 Ning Wen An artificial heart valve stent and weaving method thereof
WO2007054014A1 (en) 2005-11-09 2007-05-18 Ning Wen Delivery device for delivering a self-expanding stent
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
US9078781B2 (en) 2006-01-11 2015-07-14 Medtronic, Inc. Sterile cover for compressible stents used in percutaneous device delivery systems
CN101011298B (en) 2006-01-16 2010-05-26 孔祥清 Device for replacing aortic valve membrane or pulmonary valve membrane percutaneously
EP1991168B1 (en) 2006-02-16 2016-01-27 Transcatheter Technologies GmbH Minimally invasive heart valve replacement
US20070203391A1 (en) 2006-02-24 2007-08-30 Medtronic Vascular, Inc. System for Treating Mitral Valve Regurgitation
EP1991179B1 (en) 2006-02-27 2013-03-20 William A. Cook Australia Pty. Ltd. Retention of stents
US8219229B2 (en) * 2006-03-02 2012-07-10 Edwards Lifesciences Corporation Virtual heart valve
US20070225681A1 (en) 2006-03-21 2007-09-27 Medtronic Vascular Catheter Having a Selectively Formable Distal Section
US20070238979A1 (en) 2006-03-23 2007-10-11 Medtronic Vascular, Inc. Reference Devices for Placement in Heart Structures for Visualization During Heart Valve Procedures
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
US20070233238A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Devices for Imaging and Navigation During Minimally Invasive Non-Bypass Cardiac Procedures
US20070232898A1 (en) 2006-03-31 2007-10-04 Medtronic Vascular, Inc. Telescoping Catheter With Electromagnetic Coils for Imaging and Navigation During Cardiac Procedures
US7625403B2 (en) 2006-04-04 2009-12-01 Medtronic Vascular, Inc. Valved conduit designed for subsequent catheter delivered valve therapy
US7740655B2 (en) 2006-04-06 2010-06-22 Medtronic Vascular, Inc. Reinforced surgical conduit for implantation of a stented valve therein
US7591848B2 (en) 2006-04-06 2009-09-22 Medtronic Vascular, Inc. Riveted stent valve for percutaneous use
US7524331B2 (en) 2006-04-06 2009-04-28 Medtronic Vascular, Inc. Catheter delivered valve having a barrier to provide an enhanced seal
US20070239269A1 (en) 2006-04-07 2007-10-11 Medtronic Vascular, Inc. Stented Valve Having Dull Struts
US20070239254A1 (en) 2006-04-07 2007-10-11 Chris Chia System for percutaneous delivery and removal of a prosthetic valve
US20070239271A1 (en) 2006-04-10 2007-10-11 Than Nguyen Systems and methods for loading a prosthesis onto a minimally invasive delivery system
US7699892B2 (en) 2006-04-12 2010-04-20 Medtronic Vascular, Inc. Minimally invasive procedure for implanting an annuloplasty device
US20070244556A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244555A1 (en) 2006-04-12 2007-10-18 Medtronic Vascular, Inc. Annuloplasty Device Having a Helical Anchor and Methods for its Use
US20070244544A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Seal for Enhanced Stented Valve Fixation
US20070244545A1 (en) 2006-04-14 2007-10-18 Medtronic Vascular, Inc. Prosthetic Conduit With Radiopaque Symmetry Indicators
US20070244546A1 (en) 2006-04-18 2007-10-18 Medtronic Vascular, Inc. Stent Foundation for Placement of a Stented Valve
US20070288000A1 (en) 2006-04-19 2007-12-13 Medtronic Vascular, Inc. Method for Aiding Valve Annuloplasty
US7442207B2 (en) 2006-04-21 2008-10-28 Medtronic Vascular, Inc. Device, system, and method for treating cardiac valve regurgitation
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
WO2007127433A2 (en) 2006-04-28 2007-11-08 Medtronic, Inc. Method and apparatus for cardiac valve replacement
JP2009536074A (en) 2006-05-05 2009-10-08 チルドレンズ・メディカル・センター・コーポレイション Transcatheter heart valve
CA2653913C (en) 2006-05-30 2012-04-17 Cook Incorporated Artificial valve prosthesis
US20080004696A1 (en) 2006-06-29 2008-01-03 Valvexchange Inc. Cardiovascular valve assembly with resizable docking station
CN100581454C (en) 2006-07-14 2010-01-20 Ge医疗系统环球技术有限公司 Magnetic field generator and MRI device
US20080065001A1 (en) 2006-08-23 2008-03-13 Dinucci Kent Portable debridement and irrigation device
CA2878598C (en) 2006-09-08 2018-05-01 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8348996B2 (en) 2006-09-19 2013-01-08 Medtronic Ventor Technologies Ltd. Valve prosthesis implantation techniques
JP2010504820A (en) 2006-09-28 2010-02-18 クック・インコーポレイテッド Apparatus and method for repairing a thoracic aortic aneurysm
US20080082165A1 (en) 2006-09-28 2008-04-03 Heart Leaflet Technologies, Inc. Delivery Tool For Percutaneous Delivery Of A Prosthesis
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
CA2690539C (en) * 2006-10-10 2014-10-07 Celonova Biosciences, Inc. Bioprosthetic heart valve with polyphosphazene
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
JP5593545B2 (en) 2006-12-06 2014-09-24 メドトロニック シーブイ ルクセンブルク エス.アー.エール.エル. System and method for transapical delivery of a self-expanding valve secured to an annulus
US20080221666A1 (en) 2006-12-15 2008-09-11 Cardiomind, Inc. Stent systems
US8470024B2 (en) 2006-12-19 2013-06-25 Sorin Group Italia S.R.L. Device for in situ positioning of cardiac valve prosthesis
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
FR2910269B1 (en) 2006-12-22 2009-02-27 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
US9510943B2 (en) 2007-01-19 2016-12-06 Medtronic, Inc. Stented heart valve devices and methods for atrioventricular valve replacement
AU2008216670B2 (en) 2007-02-15 2013-10-17 Medtronic, Inc. Multi-layered stents and methods of implanting
CA2677648C (en) 2007-02-16 2015-10-27 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US8092523B2 (en) * 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
FR2913879B1 (en) 2007-03-21 2009-06-12 Perouse Soc Par Actions Simpli DEVICE FOR LAGGING A RADIALLY EXPANSIBLE IMPLANT, NECESSARY FOR TREATMENT AND METHOD OF RELAUNCHING
US20080255651A1 (en) 2007-04-12 2008-10-16 Medtronic Vascular, Inc. Telescoping Stability Sheath and Method of Use
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
WO2008138584A1 (en) 2007-05-15 2008-11-20 Jenavalve Technology Inc. Handle for manipulating a catheter tip, catheter system and medical insertion system for inserting a self-expandable heart valve stent
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
FR2915087B1 (en) 2007-04-20 2021-11-26 Corevalve Inc IMPLANT FOR TREATMENT OF A HEART VALVE, IN PARTICULAR OF A MITRAL VALVE, EQUIPMENT INCLUDING THIS IMPLANT AND MATERIAL FOR PLACING THIS IMPLANT.
US9572660B2 (en) 2007-06-04 2017-02-21 St. Jude Medical, Inc. Prosthetic heart valves
US8915958B2 (en) * 2007-06-08 2014-12-23 St. Jude Medical, Inc. Devices for transcatheter prosthetic heart valve implantation and access closure
AU2008269018B2 (en) 2007-06-26 2014-07-31 St. Jude Medical, Inc. Apparatus and methods for implanting collapsible/expandable prosthetic heart valves
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
JP5419875B2 (en) 2007-08-24 2014-02-19 セント ジュード メディカル インコーポレイテッド Artificial aortic heart valve
US20090062907A1 (en) 2007-08-31 2009-03-05 Quijano Rodolfo C Self-expanding valve for the venous system
US8808367B2 (en) 2007-09-07 2014-08-19 Sorin Group Italia S.R.L. Prosthetic valve delivery system including retrograde/antegrade approach
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
EP4309627A2 (en) 2007-09-26 2024-01-24 St. Jude Medical, LLC Collapsible prosthetic heart valves
WO2009045331A1 (en) * 2007-09-28 2009-04-09 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
US9532868B2 (en) 2007-09-28 2017-01-03 St. Jude Medical, Inc. Collapsible-expandable prosthetic heart valves with structures for clamping native tissue
US8784481B2 (en) * 2007-09-28 2014-07-22 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
US9848981B2 (en) 2007-10-12 2017-12-26 Mayo Foundation For Medical Education And Research Expandable valve prosthesis with sealing mechanism
CA2703665C (en) 2007-10-25 2016-05-10 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
WO2009061389A2 (en) 2007-11-05 2009-05-14 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with non-expanding stent posts and retrieval features
EP2240121B1 (en) 2008-01-16 2019-05-22 St. Jude Medical, Inc. Delivery and retrieval systems for collapsible/expandable prosthetic heart valves
US9149358B2 (en) 2008-01-24 2015-10-06 Medtronic, Inc. Delivery systems for prosthetic heart valves
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
US9089422B2 (en) 2008-01-24 2015-07-28 Medtronic, Inc. Markers for prosthetic heart valves
US8163007B2 (en) * 2008-02-08 2012-04-24 Cook Medical Technologies Llc Stent designs for use with one or more trigger wires
US8801776B2 (en) 2008-02-25 2014-08-12 Medtronic Vascular, Inc. Infundibular reducer devices
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
WO2009111241A2 (en) 2008-02-29 2009-09-11 The Florida International University Board Of Trustees Catheter deliverable artificial multi-leaflet heart valve prosthesis and intravascular delivery system for a catheter deliverable heart valve prosthesis
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
US8696689B2 (en) 2008-03-18 2014-04-15 Medtronic Ventor Technologies Ltd. Medical suturing device and method for use thereof
US7806919B2 (en) 2008-04-01 2010-10-05 Medtronic Vascular, Inc. Double-walled stent system
FR2930137B1 (en) 2008-04-18 2010-04-23 Corevalve Inc TREATMENT EQUIPMENT FOR A CARDIAC VALVE, IN PARTICULAR A MITRAL VALVE.
BRPI0911351B8 (en) 2008-04-23 2021-06-22 Medtronic Inc stent frame for a prosthetic heart valve, and heart valve prosthesis
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
US8840661B2 (en) 2008-05-16 2014-09-23 Sorin Group Italia S.R.L. Atraumatic prosthetic heart valve prosthesis
JP5379852B2 (en) * 2008-07-15 2013-12-25 セント ジュード メディカル インコーポレイテッド Collapsible and re-expandable prosthetic heart valve cuff design and complementary technology application
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8986361B2 (en) 2008-10-17 2015-03-24 Medtronic Corevalve, Inc. Delivery system for deployment of medical devices
EP2682072A1 (en) 2008-12-23 2014-01-08 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
US20100217382A1 (en) * 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
US8021420B2 (en) 2009-03-12 2011-09-20 Medtronic Vascular, Inc. Prosthetic valve delivery system
US20100256723A1 (en) 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
US8075611B2 (en) 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
US10034748B2 (en) * 2009-09-18 2018-07-31 The Regents Of The University Of California Endovascular prosthetic heart valve replacement
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
CN102113921A (en) * 2009-12-30 2011-07-06 微创医疗器械(上海)有限公司 Intervention-type heart valve
US8623079B2 (en) * 2010-04-23 2014-01-07 Medtronic, Inc. Stents for prosthetic heart valves
US9554901B2 (en) * 2010-05-12 2017-01-31 Edwards Lifesciences Corporation Low gradient prosthetic heart valve
USD660433S1 (en) * 2010-09-20 2012-05-22 St. Jude Medical, Inc. Surgical stent assembly
USD653341S1 (en) * 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical stent
USD660967S1 (en) * 2010-09-20 2012-05-29 St. Jude Medical, Inc. Surgical stent
USD653343S1 (en) * 2010-09-20 2012-01-31 St. Jude Medical, Inc. Surgical cuff
USD652927S1 (en) * 2010-09-20 2012-01-24 St. Jude Medical, Inc. Surgical stent
USD688372S1 (en) * 2012-10-08 2013-08-20 Cormatrix Cardiovascular, Inc. Prosthetic tissue valve
US9132007B2 (en) * 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
US8986375B2 (en) * 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10524904B2 (en) * 2013-07-11 2020-01-07 Medtronic, Inc. Valve positioning device
USD730521S1 (en) * 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD730520S1 (en) * 2013-09-04 2015-05-26 St. Jude Medical, Cardiology Division, Inc. Stent with commissure attachments
USD755384S1 (en) * 2014-03-05 2016-05-03 Edwards Lifesciences Cardiaq Llc Stent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10709557B2 (en) * 2007-10-25 2020-07-14 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof
US11452598B2 (en) * 2007-10-25 2022-09-27 Symetis Sa Stents, valved-stents and methods and systems for delivery thereof

Also Published As

Publication number Publication date
EP1893132A4 (en) 2009-01-14
AU2006247573B2 (en) 2012-05-24
US20170035563A1 (en) 2017-02-09
US20060259136A1 (en) 2006-11-16
US9504564B2 (en) 2016-11-29
ES2359335T3 (en) 2011-05-20
DK1893132T4 (en) 2018-06-06
US11284997B2 (en) 2022-03-29
US20210298895A1 (en) 2021-09-30
DK1893132T3 (en) 2011-05-16
EP2335649A2 (en) 2011-06-22
US9060857B2 (en) 2015-06-23
US20200046493A1 (en) 2020-02-13
EP1893132B2 (en) 2018-03-21
US8226710B2 (en) 2012-07-24
USD812226S1 (en) 2018-03-06
JP5681846B2 (en) 2015-03-11
AU2012203291B2 (en) 2015-01-15
US10478291B2 (en) 2019-11-19
AU2006247573A1 (en) 2006-11-23
CA2614431C (en) 2014-03-18
ES2536127T3 (en) 2015-05-20
US20220313431A1 (en) 2022-10-06
EP2335649A3 (en) 2011-11-09
EP1893132A2 (en) 2008-03-05
US20120259409A1 (en) 2012-10-11
ES2359335T5 (en) 2018-07-09
US20060265056A1 (en) 2006-11-23
ATE499907T2 (en) 2011-03-15
CA2614431A1 (en) 2006-11-23
DK2335649T3 (en) 2015-04-13
EP1893132B1 (en) 2011-03-02
JP2008539985A (en) 2008-11-20
US20110172765A1 (en) 2011-07-14
USD732666S1 (en) 2015-06-23
EP2335649B1 (en) 2015-02-18
DE602006020442D1 (en) 2011-04-14
AU2012203291A1 (en) 2012-06-21
US7914569B2 (en) 2011-03-29
WO2006124649A2 (en) 2006-11-23
NZ564205A (en) 2011-03-31
WO2006124649A3 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
US11284997B2 (en) Heart valve prosthesis and methods of manufacture and use
US11857413B2 (en) Stented prosthetic heart valve with variable stiffness and methods of use
US11628061B2 (en) Modular valve prosthesis with anchor stent and valve component
US11229516B2 (en) Prosthetic heart valves
US10098733B2 (en) Expandable prosthetic valve having anchoring appendages
EP3760164B1 (en) Heart valve with anchoring structure having concave landing zone
US11648109B2 (en) Balloon expandable frame for transcatheter implantation of a cardiac valve prosthesis
US20200229918A1 (en) Novel transcatheter valve replacement device
US20230149162A1 (en) Prosthetic heart valve
WO2023232641A1 (en) Heart valve prosthesis and method for manufacturing a heart valve prosthesis

Legal Events

Date Code Title Description
STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8