US20150145672A1 - Programmable Digital Labels for a Medicine Container - Google Patents

Programmable Digital Labels for a Medicine Container Download PDF

Info

Publication number
US20150145672A1
US20150145672A1 US14/607,585 US201514607585A US2015145672A1 US 20150145672 A1 US20150145672 A1 US 20150145672A1 US 201514607585 A US201514607585 A US 201514607585A US 2015145672 A1 US2015145672 A1 US 2015145672A1
Authority
US
United States
Prior art keywords
medicine
dosage
patient
amount
taken
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/607,585
Inventor
Victor Chu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smrxt Inc
Original Assignee
INBOX VENTURES LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by INBOX VENTURES LLC filed Critical INBOX VENTURES LLC
Priority to US14/607,585 priority Critical patent/US20150145672A1/en
Assigned to INBOX VENTURES, LLC reassignment INBOX VENTURES, LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MIL. DIGITAL LABELING INC.
Publication of US20150145672A1 publication Critical patent/US20150145672A1/en
Priority to US15/452,874 priority patent/US20170228519A1/en
Assigned to INBOX VENTURES, LLC reassignment INBOX VENTURES, LLC CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF ASSIGNOR PREVIOUSLY RECORDED ON REEL 034878 FRAME 0107. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT. Assignors: MIL. DIGITAL LABELING TECHNOLOGIES, INC.
Assigned to MIL. DIGITAL LABELING TECHNOLOGIES, INC. reassignment MIL. DIGITAL LABELING TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHU, VICTOR
Assigned to INBOX VENTURES LLC reassignment INBOX VENTURES LLC CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME TO INBOX VENTURES LLC AND THE SUPPORTING ASSIGNMENT AGREEMENT PREVIOUSLY RECORDED ON REEL 045984 FRAME 0831. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT. Assignors: MIL. DIGITAL LABELING TECHNOLOGIES, INC.
Assigned to SMRXT, INC. reassignment SMRXT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INBOX VENTURES LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K17/00Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations
    • G06K17/0022Methods or arrangements for effecting co-operative working between equipments covered by two or more of main groups G06K1/00 - G06K15/00, e.g. automatic card files incorporating conveying and reading operations arrangements or provisious for transferring data to distant stations, e.g. from a sensing device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07701Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction
    • G06K19/07703Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07701Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction
    • G06K19/07703Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual
    • G06K19/07707Constructional details, e.g. mounting of circuits in the carrier the record carrier comprising an interface suitable for human interaction the interface being visual the visual interface being a display, e.g. LCD or electronic ink
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07758Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card arrangements for adhering the record carrier to further objects or living beings, functioning as an identification tag
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B1/00Systems for signalling characterised solely by the form of transmission of the signal
    • G08B1/08Systems for signalling characterised solely by the form of transmission of the signal using electric transmission ; transformation of alarm signals to electrical signals from a different medium, e.g. transmission of an electric alarm signal upon detection of an audible alarm signal
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B21/00Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
    • G08B21/18Status alarms
    • G08B21/24Reminder alarms, e.g. anti-loss alarms
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/01Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium
    • G08B25/10Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems characterised by the transmission medium using wireless transmission systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/13ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered from dispensers

Definitions

  • the present invention relates generally to the field of digital labels and tags for products. It is typical for the manufacturer of a product to affix a label to the product which bears the manufacturer's brand name or logo. Labels are also used to provide product information and information about the manufacturer of the product. Because labels are typically small, they can carry only a limited amount of information. Therefore, it is not at all uncommon to find two or more labels affixed to different locations of a single product. For example, a product may carry a brand label which is placed in a visible location, and interior labels to give product information. However, there is a small, finite limit to the number of labels which can be applied to a product without cluttering the product.
  • labels have served as merely static and passive devices to convey label information that is fixed in time, and have not been used to expand the functionality of the product.
  • Animated designs and logos are not possible with conventional woven, printed or stamped labels.
  • conventional labels cannot display information which may change over time, or user-specific information.
  • the present invention is a digital label for products that can be programmed to store, process, transmit and display information including label information and user-specific information.
  • the digital label can also store authentication data to authenticate the product.
  • the digital label includes a processing circuit, a memory for storing label information, and a display for displaying label information.
  • An extensible program is stored in memory and is configured to execute user-defined applications or program code to extend the functionality of the digital label.
  • the extensible program comprises an operating system program with an application interface that allows development of custom applications by the manufacturer, retailer, or user to expand the functionality of the digital label.
  • User-defined applications enable the digital label to receive, store, and process user-specific information, and to communicate and work other devices.
  • FIG. 1 is a functional block diagram of an exemplary digital label.
  • FIG. 2 is a front view of an exemplary digital label.
  • FIG. 3 is a side view of an exemplary digital label contained in a secondary encasement, which is shown in section.
  • FIG. 4 illustrates an exemplary software architecture for the digital label.
  • FIG. 5 illustrates the digital label communicating with other devices in a network environment.
  • FIG. 6 illustrates a tag for products incorporating a digital label.
  • FIG. 7 illustrates a digital label with a changing serial number for authentication.
  • FIG. 8 illustrates a web interface for a server that product tracking services.
  • FIG. 9 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.
  • FIG. 10 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.
  • a digital label 10 for products is shown and indicated generally by the numeral 10 .
  • the term “digital label” means a device having a display that functions principally as a means of identification that is attached or affixed to a product to designate its origin, owner, manufacturer, contents or ingredients, use, etc.
  • label is used in the common sense to mean a device that is distinguishable from the product to which it is affixed and not a typical or inherent feature of the product.
  • a computer monitor and a display for a consumer electronic device e.g., watch, cell phone, camera, etc.
  • label information includes source information indicating the source or origin of the product, product information describing the features contents, ingredients or use of the product, and manufacturer information that provides information about the product manufacturer.
  • source information is a brand name, logo (including animated logos), or slogan which identifies the source or origin, and authentication data for verifying the authenticity of the product.
  • product information are instructions for the care or use of the product, and description of the contents or ingredients of the product.
  • manufacturer information are the address (including an e-mail address) or telephone number for contacting the manufacturer, and the IP address of a web page for finding additional information about the company and its products.
  • the digital label may also store consumer information or user information in addition to label information, and perform custom functions for the user.
  • Consumer information is personal user information that affects the ownership, history, usage and effectiveness of the product. Examples of personal information are registration data, such as the name, address, contact information, weight, height, age, birth date, sex, DNA, allergies, medical and health conditions and history, scheduling information, personal preferences, diet, account information, other product usage data, etc.
  • the digital label 10 is particularly useful for products that do not otherwise include a display or microprocessor as an inherent feature of the product, but may also be used on products with a display or microprocessor.
  • the manufacturer may still use the digital label 10 of the present invention to provide a separate, dedicated display or microprocessor for displaying and transmitting trademarks, logos, brands, slogans, or other label and product information.
  • the digital label 10 provides a platform for manufacturers, retailers and end users to develop custom applications for the digital label 10 to expand the functionality of the digital label 10 .
  • a processing circuit is configured to recognize and execute the user-defined applications.
  • the term “user-defined’ refers to users of the label and includes product manufacturers, retailers, and end users of the product.
  • the user-defined applications allow the functionality of the digital label 10 to be expanded to perform functions for the user.
  • the present invention extends the concept of a product label to include active devices that do more than present static information.
  • the digital labels 10 according to various embodiments function as small computing devices that can be programmed to perform a wide variety of functions.
  • FIGS. 1 and 2 illustrate the main components of the digital label 10 according to one exemplary embodiment.
  • the digital label 10 comprises a processing circuit 12 , memory 14 , display 16 , a communications interface 18 , and a battery 19 to provide power for the digital label 10 .
  • the processing circuit 12 controls the overall operation of the digital label 10 according to program instructions stored in memory 14 and may comprises one or more digital processing devices, such as microprocessors, microcontrollers, hardware, firmware, or a combination thereof.
  • Memory 14 stores program instructions and data needed for operation.
  • An extensible program ( FIG. 4 ) stored in memory 14 controls the basic functions of the digital label 10 . As described in greater detail below, the extensible program is configured to execute custom applications or custom program code stored in memory 14 to expand the functionality of the digital label 10 .
  • the display 16 may comprise a liquid crystal display (LCD) or an organic light emitting diode (OLED). Additionally, the display 16 may use printed electronic displays, electronic paper displays, or electronic ink technology provide a thin, flexible and durable display to enable users to view information.
  • the communications interface 18 may comprise a short-range wireless interface, such as a BLUETOOTH interface, ZIGBEE, or WIFI interface, a long range cellular phone or satellite communications interface, or a wired interface, such as a RS 232, USB or FIREWARE interface. There may be more than one communications interface 18 .
  • Some embodiments of the digital label 10 may additionally include one or more user input devices indicated generally by the numeral 20 .
  • User input devices 20 for the digital label 10 may comprise any known input device including buttons, keypads, touch pads, wheels, dials, mouse devices, trackballs, etc.
  • a touch screen display could also be used for user input.
  • Imaging systems and motion or movement systems for recognizing hand gestures, and voice recognition systems may also be used for receiving user input.
  • three soft keys denoted by the numerals 22 , 24 , 26 are provided to receive user input.
  • the soft keys 22 , 24 , 26 may have different functions depending on the current context. The function of the soft keys 22 , 24 , 26 may be displayed to the user on display 16 when the soft keys 22 , 24 , 26 are active.
  • the middle key 26 shown in FIG. 2 has the text MENU displayed above the key 26 on the display 16 . Pressing the soft key 26 in this context will invoke an onscreen menu.
  • more sophisticated user input devices can be used to enable users to input user information.
  • the digital label 10 may include or control one or more alerting devices 40 for alerting the user of specified events or conditions.
  • the alerting devices 40 may comprise indicator lights that illuminate or generate lighting effects; speakers, beepers, buzzers, or other sound devices; and vibrators or other tactile devices.
  • the digital label 10 could also play MP3 or other audio files to alert the user.
  • the alerting devices 40 are controlled by the system processor to notify the user when predetermined events or conditions occur.
  • the alerts can be personalized and customized by the user to distinguish the alerts, FIG. 2 illustrates an indicator lamp 42 that is used as an alerting device 40 .
  • the digital label 10 may include a primary casing 60 to house the components of the digital label 10 .
  • the primary casing 60 is preferably waterproof or water-resistant to protect the components.
  • the primary casing 60 should also be impact resistant and shock-resistant.
  • the casing 60 may be constructed of plastic, rubber, metal, ceramic, or other materials or organic, environmentally friendly protein based material that is easily recycled or returned to the earth.
  • the digital label 10 can be integrated with a product or product container or product packaging.
  • a secondary encasement 62 can also be used that allows the digital label 10 to be removed from the product as shown in FIG. 3 . This can enable the user to take the digital label 10 with them to interact, monitor and control the product remotely.
  • FIG. 4 illustrates the relationship of the extensible program with other elements of the digital label 10 .
  • the extensible program may comprise, for example, an operating system program with an application interface (API) to enable manufacturers, retailers, and end users to develop custom applications for the digital label 10 .
  • the operating system may, for example, be an embedded operating system such as Windows CE, Symbian, QNX, or embedded Linux. A proprietary operating system could also be used.
  • a label application for managing and displaying label information can be preloaded and stored in the memory 104 of the digital label 10 by the label manufacturer. Additional user-defined application programs can be input and stored to add additional functions to the digital label 10 by the product manufacturer, by retailers of the products, or by end users of the products.
  • the custom application programs can be input via one of the communication interfaces 18 .
  • the operating system or other extensible program is able to execute the custom applications developed by the product manufacturer, retailer, or end user.
  • the type of functions that can be performed by custom applications is virtually unlimited.
  • the application programs can perform functions such as product authentication, location tracking, scheduling, usage tracking, etc.
  • the digital label 10 is its ability to communicate and share information with other devices.
  • the digital label 10 may have its own IP address assigned so that it can communicate directly with other devices across the Internet.
  • FIG. 5 illustrates different ways the digital label 10 can communicate with other devices.
  • FIG. 5 illustrates a local computer 110 , a web-based server system 120 , and a cell phone or PDA 140 .
  • the digital label 10 communicates with the local computer 110 over a local area network.
  • the digital label 10 may communicate with a web-based server system 120 by connecting to a web access point 130 .
  • the digital label 10 may also communicate with the cell phone or FDA 140 , using a standard cellular or satellite transceiver.
  • the digital label 10 of the present invention may store authentication data that enables purchasers of such goods to verify the authenticity of the products they purchase.
  • the authentication data may comprise, for example, a serial number or code that can be used by the purchaser to authenticate genuine products.
  • the authentication data may be encrypted with a secret code to prevent counterfeiters from duplicating digital labels 10 .
  • the authentication data may also change over time to make it more difficult to mimic.
  • the digital label 10 may also include a GPS receiver to enable tracking of the product in case that the product is lost or stolen.
  • FIG. 6 illustrates a tag including a digital label 10 for products such and luggage, handbags, and brief cases.
  • the digital label 10 stores an authentication number or serial number in memory 14 to enable users to authenticate genuine goods.
  • the memory 14 for storing the authentication data may be a secure, tamper-proof memory to prevent tampering.
  • the serial number may also be encrypted by the manufacturer with a secret key.
  • the serial number may be encrypted or signed with the manufacturer's private key and can be verified by the user by decrypting the serial number using the manufacturer's corresponding public key, which can be obtained from the manufacturer's web site. If the authentication data is successfully decrypted, the user can be confident that the product is a genuine product so long as the manufacturer's private key has not been compromised.
  • the user can also verify the authenticity of the product by sending the serial number to the manufacturer during product registration for verification.
  • the authentication number could be read by the user from the digital label 10 , or could be transmitted from the digital label 10 to the user's computer or other device.
  • the digital label 10 could transmit the authentication number via the Internet to a server maintained by the manufacturer for verification.
  • the digital label 10 can be programmed to change or update the serial number at a predetermined interval to make it more difficult to mimic.
  • FIG. 7 illustrates a digital label 10 that has a changing serial number.
  • the digital label 10 may include an algorithm for generating the authentication number that is known only to the product manufacturer.
  • the algorithm may comprises a function that generates an authentication code based on the current time and a secret key that is stored in a secure, tamper-proof memory.
  • the tag or digital label may include a GPS system 50 to enable tracking of the product.
  • the global positioning system in the digital label 10 can determine and record the product's location periodically. This feature can be activated, for example, when the user is traveling to keep a history of the product's movement.
  • the product manufacturer may maintain the web-based server to track products for its registered customers.
  • An application program in the digital label 10 can report the current position of the product to the server at predetermined time intervals or in response to predetermined events or conditions.
  • FIG. 8 illustrates an interface for a web-based tracking system that can be accessed by the user via the Internet to track the product.
  • FIGS. 9 and 10 illustrate a pharmaceutical container 100 for medications including a digital label 10 according to one embodiment of the invention.
  • the pharmaceutical container 100 comprises a bottle 102 and a cap 104 .
  • the digital label 10 is embedded in the walls of the bottle 102 .
  • the digital label 10 includes three buttons 22 , 24 and 26 for receiving user input. Buttons 22 and 24 are used to navigate on-screen menus and to scroll through information on the display 16 .
  • the center button 26 is used to invoke the on-screen menu and make menu selections.
  • the digital label 10 includes an indicator lamp 42 and weight sensor 32 , which are integrated with the bottle 102 .
  • the indicator lamp 42 functions as an alerting device 40 for alerting the user when it is time to take medication as described more fully below.
  • the weight sensor 32 located in the bottom of the product container 100 is used to detect the amount of remaining medication in the pharmaceutical container.
  • the digital label 10 also includes a wireless communications interface 18 for communicating with remote devices, such as a computer 150 .
  • the digital label 10 stores and displays prescription data customized for the user as well as detailed drug data.
  • the prescription data and drug data may be uploaded from a computer 150 to the digital label 10 by the manufacturer, pharmacist, doctor, or end user.
  • the prescription data includes the medication, patient's name, and dosage information.
  • Drug data may include information about medications, such as ingredients and chemical composition, possible side effects and drug interactions, precautions, warnings, government regulations, legal notices, disclaimers and disclosures, notifications, medication updates, recalls, etc. Such information is typically too voluminous to print on a conventional printed label, but can be easily stored and displayed on the digital label 10 .
  • Drug information including updates could also be transmitted to a computer 150 over the communications interface 18 for viewing or printing.
  • the digital label 10 could also communicate with a web-based server, cell phone, personal digital assistant, etc., to transmit and receive information.
  • An application program stored in the digital label 10 alerts the user when it is time to take medications, provides instructions on how to take medications, and records dosages taken by the user.
  • the application program may also keep track of the remaining amount of medication and alert the user when it is time to have medications refilled. The amount of remaining medication may be determined from the input of the weight sensor 32 . Alternatively, the user may manually input usage information when the user takes medication to record such event. The user can be alerted to take or refill medication by activating the indicator lamp 42 and displaying a message to the user on the display 16 as shown in FIG. 10 .
  • the digital label 10 may also, if desired, send a message to the user's cell phone or computer when it is time to take or refill medications. For example, the application may send an email or text message to the user's cell phone or computer. When it is time to refill medications, the digital label 19 may also send a notification to the user's pharmacist to avoid the need for calling in prescriptions in advance.
  • the application program may also collect and store usage information, such as the date and time that the medication is taken, the amount taken, the location, and environmental conditions (temperature, humidity, altitude, etc.) at the time medication is taken. Usage information may be determined based on input from the weight, temperature, humidity and other sensors 32 . Alternatively, the user can manually enter and record usage information using the available user input devices 20 . The usage information may be output to the display 16 or transmitted to a computer 150 or other external device, or processed along with information from other digital labels and products to coordinate multiple usage and consumption.
  • usage information such as the date and time that the medication is taken, the amount taken, the location, and environmental conditions (temperature, humidity, altitude, etc.) at the time medication is taken. Usage information may be determined based on input from the weight, temperature, humidity and other sensors 32 . Alternatively, the user can manually enter and record usage information using the available user input devices 20 . The usage information may be output to the display 16 or transmitted to a computer 150 or other external device, or processed along with information from other
  • the application program in the digital label 10 may cooperate with or integrate with medication management software on computer 150 or other device, such as a cell phone, PDA, or web-based server system.
  • the digital label 10 can exchange prescription data, drug data and/or user data with the computer 150 or other device.
  • the medication management software on the computer 150 can thus keep track of all medications being taken by the user and alert the user to potential problems and provide updates to the digital label 10 when necessary.
  • the medication management software may include a database of pharmaceutical products.
  • the medication management software can alert the user of potentially adverse drug interactions and side effects due to combinations of medications being taken.
  • the medication management software may also include scheduling algorithms for suggesting times to take different medications to minimize drug interactions and maximize efficacy. A medication schedule can then be generated and transferred to the digital label 10 by the medication management software.
  • the medication management software can also store information concerning the user's diet and suggest foods and beverages that should be used or avoided. Usage information indicating the dosages taken by the user can be transferred from the digital label 10 to the medication management software for evaluation and/or storage. This medication history may be transferred or uploaded to a physician. Alternatively, the digital label 10 can store medication history for later transfer to a computer at a physician's office.
  • Objects and products can also have an embedded RFID micro-chip which only contains a code of numbers that can be transmitted through radio frequency signals to and from the chip (which is attached to object or product).
  • the code is not actual product, labeling, personal or any kind of real information.
  • the code that transmits back and forth from the RFID chip is a reference code that is matched in a computer system that identifies the product, object or thing it is attached onto.
  • a “digital labeling device” is a compact electronic device that contains in the micro-chip or processor or memory actual product, labeling, personal or any kind of actual information programmed into and transmitted to and from the device by the manufacturers, end users, retailers or advertisers or any person or organization that has access to the digital labeling device.
  • This device can have any appearance and any combination of electronic components depending upon the end use application and specification.
  • the innovation and novelty is the actual digitized product, labeling, personal, custom or any type of information in any spoken or written human language that can be saved in the device that is affixed or attached or programmed to or into the actual product or object and displayed from the device and transmitted to and from the device to a larger computer(s) or computer system(s) or any electronic device such as a cell phone, PDA, game console, digital camera, etc.
  • This is different from current technology where an RFID chip embedded onto a product or object contains and transmits only a code or rather a reference number. It does not contain, transmit or display or output any actual product, label, object or personal information.
  • An RFID chip and its code is useless to the end user or consumer or everyday person because it is a code or identification number used in logistical and inventory computer systems used by manufacturers and retail.
  • Product information is crossed referenced or accessed only by matching the code to the product information in a separate computer system and not immediately on the actual product.
  • Modern product and labeling information is dynamic and literally interconnected to supporting products and services. Now and when the user interacts with the product or object affects the product and labeling information.
  • Product life, product performance and its recorded history of interaction and usage affects the value of the object and product. For example, a car's value is based upon it's [sic] usage, care and service. Typically there is a paper trail of service and performance records.
  • digital labeling all of that data can be stored in digital label where the digital label can monitor, maintain and transmit the digital product data to other computer systems. And when time to resell the car, all of this digital product data can transmit to a computer with internet connection and the car can be sold online.
  • a luxury good such as a luxury purse can constantly update its digital product data with its digital label.
  • the digital label can transmit the data to a personal computer where the owner/user can catalog all goods owned.
  • This example computer system utilizes product and label data sent from digital labels to catalog all products and objects in use by a user or users.
  • the computer system can further analyze, track, monitor, maintain, manage all products/objects performance, data, value, history etc. Based upon custom software, settings, functions, etc. the computer system can transmit and send product data to and from product/objects with digital labels and to other computer systems for selling, further analysis, maintenance, service, etc.
  • a digital label can be transmitted to any other device or computer and filed and stored digitally onto a computer system and be further sent through other electronic means such as email and over the internet, cellular, satellite, RF, etc.
  • Another example application would be a prescription medication with a digital label that stores precise diagrams and instructions and dosages of how to use the medicine; warnings, cautions, when best to take the medication, what not to mix the medication, alarms when to take it, authentic medication, illustrations and animations on how it works, etc. all displayed for the user on a display screen and can be wirelessly sent to the user's own computer system to keep track of all the medication, products, food the user is consuming.
  • the pharmaceutical manufacturer can program the data into the label at the factory or the pharmacists can program “blank” digital labels with the proper prescription data for each customer/end user. Most of this important medical information for drug use is in very small text and designed not to be read. Digital drug product data can be displayed on the digital label on the actual medicine where the data as either text or instructional diagrams or animations can be enlarged for older patients/users or transmitted to a computer system for further organization (with other medications) and print out on standard paper for easier reading. The digital label can send a reminder to take the medication to the user's cell phone if the user has skipped a dosage.
  • the information can be any information relating to the object or product the digital labeling device is affixed, attached or integrated to; some examples are but not limited to are: name, product style information, product info, color, care, content, material, ingredients, volume, weight, size, descriptions, performance data, research data, recycling info, manufacturing info, regulation info, origin, authentication, design, notes, coupons, discounts, marketing, advertisements, promotions, endorsements, signatures, product reviews, trials, clinical trials, astrological effects of product to user, website addresses and links, email addresses, customer service info, company and product contact info, nutritional info, medical data, pharmaceutical info, dosage, warnings, cautions, side effects, data from the government, patent info, trademark info, copyright info, FDA approval, recommended daily allowances, diet info, chemical composition, scientific data, disease info, instructions, opening instructions, illustrations, diagrams, warranty, authorization, owner's or owners' name or names, record and history of ownership, biographies, provenance, value, history and record of value, guarantee, legal info, rights, disclaimers, storage information, user
  • a “digital labeling device” comprises of a micro-chip(s) or processor(s) in any various forms: flexible, silicon, printed, organic or chemical; powered or not powered by electricity from conduction, static electricity or from a battery in any various forms: button watch cell, battery pack, rechargeable, flexible, plastic battery, printable, organic, solar, etc.; and may or may not have a display in any various forms; flexible, LCD, OLED, LED, chemical organic, holographic, projected, etc backlit or non backlit display; or output by any means such as speech, sound, alarms, magnetic resonance, sonic codes, secret codes, scent, etc; encased in any type of sealed casing made from any type of sealed casing either hard or soft along with or without memory chips, RAM chips, or micro hard drive or external memory card capabilities; wireless communication chips: RF, two way RF, or any wireless transmission technique, or wired data ports; USB; USB II, Firewire, Ethernet, modem or any custom port; the device can be affixed or attached to any object or product or
  • the digital labeling device can also be integrated into existing product or object and utilize the product or object's power, display or electronics to display or transmit digital product and labeling info and data.
  • Input methods for the label include touch screen, button, keyboard, wired and wireless transmission, speech, movement, hand gestures, etc. in any size, shape or form.
  • the device may also feature electronic sensors that monitor the product or object against external, and or internal conditions, environment and all other data that will affect the product's or object's original product or labeling data.
  • the sensors either electronic, digital or analog will monitor, gauge, calculate, record temperature, location, volume, size, dosage, weight, activity, shape, movement, proximity to anything else, users, security, authentication, tampering, etc. (ie. all the types and examples of data listed previously for product and labeling information).
  • the digital labeling device hardware or electronic composition is the CPU (central processing unit) for digitized label and product data.
  • CPU central processing unit
  • the digital labeling device will provide users with enhanced product usage through advanced digital product and label management, display and functionality.
  • an “operating system” or primary device program/code will enable manufacturers, advertisers, retailers, end users and anyone with access to the digital labels to create software (digital code instructions) for the digital labeling device.
  • Digital labeling software will instruct the device to perform custom product, object and label data functions that can monitor and perform tasks that affect product and label data.
  • Operating system code manages the standard operations of the labeling device such as on/off, internal clock, processing of data and management of communication, sensors and other hardware.
  • the OS also manages the various software programs that create, run and process product and labeling data that create functionality and advanced features for the user.
  • the sensors will notify the OS in which the OS will send a warning signal to another computer, system or device.
  • the display will show a warning with full detail and sound an audio alarm. It can also activate or send instructions to another device or call for help in an emergency. Further, if a product or object is tampered with the device can activate an alarm and send a signal to the user's cell phone and to the authorities.

Abstract

A bottle for storing medicine that may include at least one sensor to determine an aspect about the medicine stored within the bottle. The bottle may also include a processor that receives the information from the one or more sensors. A wireless communication interface may be integrated with the bottle to communicate information.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 13/769,054, filed Feb. 15, 2013 entitled “Programmable Digital Labels for a Medicine Container”, which is a continuation of U.S. patent application Ser. No. 12/164,941, filed Jun. 30, 2008, now U.S. Pat. No. 8,384,517 entitled “Programmable Digital Labels for a Medicine Container,” which is a continuation of U.S. patent application Ser. No. 11/371,530 filed Mar. 9, 2006, now U.S. Pat. No. 7,392,953 entitled “Programmable Digital Labels,” which claims benefit of U.S. Provisional Application Ser. No.60/660,500 filed Mar. 10, 2005, entitled “Transmittable Digital Product and Label Data.” Each of the ‘054, ‘941, ‘530, and ‘500 applications is incorporated herein by reference in their entirety.
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to the field of digital labels and tags for products. It is typical for the manufacturer of a product to affix a label to the product which bears the manufacturer's brand name or logo. Labels are also used to provide product information and information about the manufacturer of the product. Because labels are typically small, they can carry only a limited amount of information. Therefore, it is not at all uncommon to find two or more labels affixed to different locations of a single product. For example, a product may carry a brand label which is placed in a visible location, and interior labels to give product information. However, there is a small, finite limit to the number of labels which can be applied to a product without cluttering the product.
  • In the past, labels have served as merely static and passive devices to convey label information that is fixed in time, and have not been used to expand the functionality of the product. Animated designs and logos are not possible with conventional woven, printed or stamped labels. Also, conventional labels cannot display information which may change over time, or user-specific information.
  • SUMMARY OF THE INVENTION
  • The present invention is a digital label for products that can be programmed to store, process, transmit and display information including label information and user-specific information. The digital label can also store authentication data to authenticate the product. The digital label includes a processing circuit, a memory for storing label information, and a display for displaying label information. An extensible program is stored in memory and is configured to execute user-defined applications or program code to extend the functionality of the digital label. In one embodiment of the invention, the extensible program comprises an operating system program with an application interface that allows development of custom applications by the manufacturer, retailer, or user to expand the functionality of the digital label. User-defined applications enable the digital label to receive, store, and process user-specific information, and to communicate and work other devices.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a functional block diagram of an exemplary digital label.
  • FIG. 2 is a front view of an exemplary digital label.
  • FIG. 3 is a side view of an exemplary digital label contained in a secondary encasement, which is shown in section.
  • FIG. 4 illustrates an exemplary software architecture for the digital label.
  • FIG. 5 illustrates the digital label communicating with other devices in a network environment.
  • FIG. 6 illustrates a tag for products incorporating a digital label.
  • FIG. 7 illustrates a digital label with a changing serial number for authentication.
  • FIG. 8 illustrates a web interface for a server that product tracking services.
  • FIG. 9 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.
  • FIG. 10 is a schematic drawing of a digital label incorporated in a product container and communicating with a computer.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Referring now to the drawings, and particularly to FIG. 1, a digital label 10 for products is shown and indicated generally by the numeral 10. For purposes of this application, the term “digital label” means a device having a display that functions principally as a means of identification that is attached or affixed to a product to designate its origin, owner, manufacturer, contents or ingredients, use, etc. The term “label” is used in the common sense to mean a device that is distinguishable from the product to which it is affixed and not a typical or inherent feature of the product. For example, a computer monitor and a display for a consumer electronic device (e.g., watch, cell phone, camera, etc.) are not considered to be “labels’ as that term is used herein because the displays are inherent product features.
  • The digital label 10 stores and displays label information and other information as more fully described below. The term “label information” includes source information indicating the source or origin of the product, product information describing the features contents, ingredients or use of the product, and manufacturer information that provides information about the product manufacturer. An example of source information is a brand name, logo (including animated logos), or slogan which identifies the source or origin, and authentication data for verifying the authenticity of the product. Examples of product information are instructions for the care or use of the product, and description of the contents or ingredients of the product. Examples of manufacturer information are the address (including an e-mail address) or telephone number for contacting the manufacturer, and the IP address of a web page for finding additional information about the company and its products.
  • The digital label may also store consumer information or user information in addition to label information, and perform custom functions for the user. Consumer information is personal user information that affects the ownership, history, usage and effectiveness of the product. Examples of personal information are registration data, such as the name, address, contact information, weight, height, age, birth date, sex, DNA, allergies, medical and health conditions and history, scheduling information, personal preferences, diet, account information, other product usage data, etc.
  • The digital label 10 is particularly useful for products that do not otherwise include a display or microprocessor as an inherent feature of the product, but may also be used on products with a display or microprocessor. For example, in products that include a display as a functional feature of the product, the manufacturer may still use the digital label 10 of the present invention to provide a separate, dedicated display or microprocessor for displaying and transmitting trademarks, logos, brands, slogans, or other label and product information.
  • The digital label 10 according to the present invention provides a platform for manufacturers, retailers and end users to develop custom applications for the digital label 10 to expand the functionality of the digital label 10. In one embodiment, a processing circuit is configured to recognize and execute the user-defined applications. As used herein, the term “user-defined’ refers to users of the label and includes product manufacturers, retailers, and end users of the product. The user-defined applications allow the functionality of the digital label 10 to be expanded to perform functions for the user. Thus, the present invention extends the concept of a product label to include active devices that do more than present static information. the digital labels 10 according to various embodiments function as small computing devices that can be programmed to perform a wide variety of functions.
  • FIGS. 1 and 2 illustrate the main components of the digital label 10 according to one exemplary embodiment. The digital label 10 comprises a processing circuit 12, memory 14, display 16, a communications interface 18, and a battery 19 to provide power for the digital label 10. The processing circuit 12 controls the overall operation of the digital label 10 according to program instructions stored in memory 14 and may comprises one or more digital processing devices, such as microprocessors, microcontrollers, hardware, firmware, or a combination thereof. Memory 14 stores program instructions and data needed for operation. An extensible program (FIG. 4) stored in memory 14 controls the basic functions of the digital label 10. As described in greater detail below, the extensible program is configured to execute custom applications or custom program code stored in memory 14 to expand the functionality of the digital label 10. The display 16 may comprise a liquid crystal display (LCD) or an organic light emitting diode (OLED). Additionally, the display 16 may use printed electronic displays, electronic paper displays, or electronic ink technology provide a thin, flexible and durable display to enable users to view information. The communications interface 18 may comprise a short-range wireless interface, such as a BLUETOOTH interface, ZIGBEE, or WIFI interface, a long range cellular phone or satellite communications interface, or a wired interface, such as a RS 232, USB or FIREWARE interface. There may be more than one communications interface 18.
  • Some embodiments of the digital label 10 may additionally include one or more user input devices indicated generally by the numeral 20. User input devices 20 for the digital label 10 may comprise any known input device including buttons, keypads, touch pads, wheels, dials, mouse devices, trackballs, etc. A touch screen display could also be used for user input. Imaging systems and motion or movement systems for recognizing hand gestures, and voice recognition systems may also be used for receiving user input. In FIG. 2, three soft keys denoted by the numerals 22, 24, 26 are provided to receive user input. The soft keys 22, 24, 26 may have different functions depending on the current context. The function of the soft keys 22, 24, 26 may be displayed to the user on display 16 when the soft keys 22, 24, 26 are active. For example, the middle key 26 shown in FIG. 2 has the text MENU displayed above the key 26 on the display 16. Pressing the soft key 26 in this context will invoke an onscreen menu. In some embodiments, more sophisticated user input devices can be used to enable users to input user information.
  • The digital label 10 may include or receive input from one or more sensors or detectors 30 that sense environmental conditions such as temperature, pressure and humidity; or product characteristics, such as size, volume, weight of the product, or chemical changes in the product. Sensors or detectors 30 may also be used to detect product usage and/or tampering. Sensors or detectors 30 for the digital label 10 may also detect location, distance or proximity. The digital label 10 may incorporate a GPS receiver 50 or other location detector to determine location and history of locations. Clocks and counters may provide additional input to the processing circuit 12. Those skilled in the art will appreciate, however, that the processing circuit 12 may include internal clocks and counters.
  • The digital label 10 may include or control one or more alerting devices 40 for alerting the user of specified events or conditions. The alerting devices 40 may comprise indicator lights that illuminate or generate lighting effects; speakers, beepers, buzzers, or other sound devices; and vibrators or other tactile devices. The digital label 10 could also play MP3 or other audio files to alert the user. The alerting devices 40 are controlled by the system processor to notify the user when predetermined events or conditions occur. The alerts can be personalized and customized by the user to distinguish the alerts, FIG. 2 illustrates an indicator lamp 42 that is used as an alerting device 40.
  • The digital label 10 may include a primary casing 60 to house the components of the digital label 10. The primary casing 60 is preferably waterproof or water-resistant to protect the components. The primary casing 60 should also be impact resistant and shock-resistant. The casing 60 may be constructed of plastic, rubber, metal, ceramic, or other materials or organic, environmentally friendly protein based material that is easily recycled or returned to the earth. In some embodiments, the digital label 10 can be integrated with a product or product container or product packaging. In still other embodiments, a secondary encasement 62 can also be used that allows the digital label 10 to be removed from the product as shown in FIG. 3. This can enable the user to take the digital label 10 with them to interact, monitor and control the product remotely.
  • Any suitable method of attaching the digital label 10 to the product may also be used. For example, the digital label 10 or secondary encasement 62 may be secured to products by adhesives, by magnets, by sewing or stitching, by sonic welding laser welding or heat welding, by VELCRO-type fasteners, or by mechanical fasteners such as hooks, screws, buckles, zippers, snaps, or pins. The digital label 10 could also be entrapped or retained by other features of the product which function as the secondary encasement 62. For example, the label 10 could be designed as a cartridge which slides in a pocket or pouch on the product or snapped into the product and released by a mechanism. The digital label 10 may also be suspended from or secured to the product by means of a hanger, strap or cord that passes though an opening (not shown) in the casing 60.
  • FIG. 4 illustrates the relationship of the extensible program with other elements of the digital label 10. The extensible program may comprise, for example, an operating system program with an application interface (API) to enable manufacturers, retailers, and end users to develop custom applications for the digital label 10. The operating system may, for example, be an embedded operating system such as Windows CE, Symbian, QNX, or embedded Linux. A proprietary operating system could also be used. A label application for managing and displaying label information can be preloaded and stored in the memory 104 of the digital label 10 by the label manufacturer. Additional user-defined application programs can be input and stored to add additional functions to the digital label 10 by the product manufacturer, by retailers of the products, or by end users of the products. The custom application programs can be input via one of the communication interfaces 18. The operating system or other extensible program is able to execute the custom applications developed by the product manufacturer, retailer, or end user. The type of functions that can be performed by custom applications is virtually unlimited. For example, the application programs can perform functions such as product authentication, location tracking, scheduling, usage tracking, etc.
  • One advantage of the digital label 10 is its ability to communicate and share information with other devices. The digital label 10 may have its own IP address assigned so that it can communicate directly with other devices across the Internet. FIG. 5 illustrates different ways the digital label 10 can communicate with other devices. FIG. 5 illustrates a local computer 110, a web-based server system 120, and a cell phone or PDA 140. The digital label 10 communicates with the local computer 110 over a local area network. The digital label 10 may communicate with a web-based server system 120 by connecting to a web access point 130. The digital label 10 may also communicate with the cell phone or FDA 140, using a standard cellular or satellite transceiver.
  • The digital label 10 may store, process and communicate user information. The user information may be entered directly by the user or may be transferred over the communications interface 18 to the digital label 10. For example, the digital label 10 may collect information about the use of the product and store the information for subsequent viewing and analysis, The digital label 10 may generate history reports that can be viewed by the user on the display 16 or transferred to other devices. Also, label information stored in the digital label 10 at the time of purchase by the customer can be updated via the communications interface 18.
  • The variety of applications that can be developed for the digital label is virtually limitless. A few exemplary applications for the digital label 10 are described below.
  • EXAMPLE 1 Tag For Authentication and Product Tracking
  • A recurring problem with branded and successful goods, such as designer and luxury clothing, handbags, accessories, jewelry, luggage, medication, liquor, and replacement parts, is the prevalence of counterfeit goods. As noted above, the digital label 10 of the present invention may store authentication data that enables purchasers of such goods to verify the authenticity of the products they purchase. The authentication data may comprise, for example, a serial number or code that can be used by the purchaser to authenticate genuine products. In some exemplary embodiments, the authentication data may be encrypted with a secret code to prevent counterfeiters from duplicating digital labels 10. The authentication data may also change over time to make it more difficult to mimic. The digital label 10 may also include a GPS receiver to enable tracking of the product in case that the product is lost or stolen.
  • FIG. 6 illustrates a tag including a digital label 10 for products such and luggage, handbags, and brief cases. The digital label 10 stores an authentication number or serial number in memory 14 to enable users to authenticate genuine goods. The memory 14 for storing the authentication data may be a secure, tamper-proof memory to prevent tampering. The serial number may also be encrypted by the manufacturer with a secret key. For example, the serial number may be encrypted or signed with the manufacturer's private key and can be verified by the user by decrypting the serial number using the manufacturer's corresponding public key, which can be obtained from the manufacturer's web site. If the authentication data is successfully decrypted, the user can be confident that the product is a genuine product so long as the manufacturer's private key has not been compromised. The user can also verify the authenticity of the product by sending the serial number to the manufacturer during product registration for verification. The authentication number could be read by the user from the digital label 10, or could be transmitted from the digital label 10 to the user's computer or other device. In some embodiments, the digital label 10 could transmit the authentication number via the Internet to a server maintained by the manufacturer for verification.
  • The digital label 10 can be programmed to change or update the serial number at a predetermined interval to make it more difficult to mimic. FIG. 7 illustrates a digital label 10 that has a changing serial number. In this embodiment, the digital label 10 may include an algorithm for generating the authentication number that is known only to the product manufacturer. For example, the algorithm may comprises a function that generates an authentication code based on the current time and a secret key that is stored in a secure, tamper-proof memory.
  • The tag or digital label may include a GPS system 50 to enable tracking of the product. The global positioning system in the digital label 10 can determine and record the product's location periodically. This feature can be activated, for example, when the user is traveling to keep a history of the product's movement. The product manufacturer may maintain the web-based server to track products for its registered customers. An application program in the digital label 10 can report the current position of the product to the server at predetermined time intervals or in response to predetermined events or conditions. FIG. 8 illustrates an interface for a web-based tracking system that can be accessed by the user via the Internet to track the product.
  • EXAMPLE 2 Product Container For Medications
  • FIGS. 9 and 10 illustrate a pharmaceutical container 100 for medications including a digital label 10 according to one embodiment of the invention. The pharmaceutical container 100 comprises a bottle 102 and a cap 104. The digital label 10 is embedded in the walls of the bottle 102. The digital label 10 includes three buttons 22, 24 and 26 for receiving user input. Buttons 22 and 24 are used to navigate on-screen menus and to scroll through information on the display 16. The center button 26 is used to invoke the on-screen menu and make menu selections. The digital label 10 includes an indicator lamp 42 and weight sensor 32, which are integrated with the bottle 102. The indicator lamp 42 functions as an alerting device 40 for alerting the user when it is time to take medication as described more fully below. The weight sensor 32 located in the bottom of the product container 100 is used to detect the amount of remaining medication in the pharmaceutical container. The digital label 10 also includes a wireless communications interface 18 for communicating with remote devices, such as a computer 150.
  • The digital label 10 stores and displays prescription data customized for the user as well as detailed drug data. The prescription data and drug data may be uploaded from a computer 150 to the digital label 10 by the manufacturer, pharmacist, doctor, or end user. In this example, the prescription data includes the medication, patient's name, and dosage information. Drug data may include information about medications, such as ingredients and chemical composition, possible side effects and drug interactions, precautions, warnings, government regulations, legal notices, disclaimers and disclosures, notifications, medication updates, recalls, etc. Such information is typically too voluminous to print on a conventional printed label, but can be easily stored and displayed on the digital label 10. Drug information including updates could also be transmitted to a computer 150 over the communications interface 18 for viewing or printing. The digital label 10 could also communicate with a web-based server, cell phone, personal digital assistant, etc., to transmit and receive information.
  • An application program stored in the digital label 10 alerts the user when it is time to take medications, provides instructions on how to take medications, and records dosages taken by the user. The application program may also keep track of the remaining amount of medication and alert the user when it is time to have medications refilled. The amount of remaining medication may be determined from the input of the weight sensor 32. Alternatively, the user may manually input usage information when the user takes medication to record such event. The user can be alerted to take or refill medication by activating the indicator lamp 42 and displaying a message to the user on the display 16 as shown in FIG. 10. The digital label 10 may also, if desired, send a message to the user's cell phone or computer when it is time to take or refill medications. For example, the application may send an email or text message to the user's cell phone or computer. When it is time to refill medications, the digital label 19 may also send a notification to the user's pharmacist to avoid the need for calling in prescriptions in advance.
  • The application program may also collect and store usage information, such as the date and time that the medication is taken, the amount taken, the location, and environmental conditions (temperature, humidity, altitude, etc.) at the time medication is taken. Usage information may be determined based on input from the weight, temperature, humidity and other sensors 32. Alternatively, the user can manually enter and record usage information using the available user input devices 20. The usage information may be output to the display 16 or transmitted to a computer 150 or other external device, or processed along with information from other digital labels and products to coordinate multiple usage and consumption.
  • The application program in the digital label 10 may cooperate with or integrate with medication management software on computer 150 or other device, such as a cell phone, PDA, or web-based server system. The digital label 10 can exchange prescription data, drug data and/or user data with the computer 150 or other device. The medication management software on the computer 150 can thus keep track of all medications being taken by the user and alert the user to potential problems and provide updates to the digital label 10 when necessary. The medication management software may include a database of pharmaceutical products. The medication management software can alert the user of potentially adverse drug interactions and side effects due to combinations of medications being taken. The medication management software may also include scheduling algorithms for suggesting times to take different medications to minimize drug interactions and maximize efficacy. A medication schedule can then be generated and transferred to the digital label 10 by the medication management software. The medication management software can also store information concerning the user's diet and suggest foods and beverages that should be used or avoided. Usage information indicating the dosages taken by the user can be transferred from the digital label 10 to the medication management software for evaluation and/or storage. This medication history may be transferred or uploaded to a physician. Alternatively, the digital label 10 can store medication history for later transfer to a computer at a physician's office.
  • Provisional Patent Application No. 60/660,500
  • Aspects of the system were originally disclosed in U.S. Provisional Application Ser. No. 60/660,500 filed Mar. 10, 2005, entitled “Transmittable Digital Product and Label Data.” This provisional patent application was incorporated by reference through the family of patents/applications to the present application. The text of this incorporated provisional patent application is reproduced below.
  • “Transmittable Digital Product and Label Data”
  • Current labels affixed to any thing, product or object, etc. is printed. Objects and products can also have an embedded RFID micro-chip which only contains a code of numbers that can be transmitted through radio frequency signals to and from the chip (which is attached to object or product). The code is not actual product, labeling, personal or any kind of real information. The code that transmits back and forth from the RFID chip is a reference code that is matched in a computer system that identifies the product, object or thing it is attached onto.
  • A “digital labeling device” is a compact electronic device that contains in the micro-chip or processor or memory actual product, labeling, personal or any kind of actual information programmed into and transmitted to and from the device by the manufacturers, end users, retailers or advertisers or any person or organization that has access to the digital labeling device. This device can have any appearance and any combination of electronic components depending upon the end use application and specification.
  • The innovation and novelty is the actual digitized product, labeling, personal, custom or any type of information in any spoken or written human language that can be saved in the device that is affixed or attached or programmed to or into the actual product or object and displayed from the device and transmitted to and from the device to a larger computer(s) or computer system(s) or any electronic device such as a cell phone, PDA, game console, digital camera, etc. This is different from current technology where an RFID chip embedded onto a product or object contains and transmits only a code or rather a reference number. It does not contain, transmit or display or output any actual product, label, object or personal information. An RFID chip and its code is useless to the end user or consumer or everyday person because it is a code or identification number used in logistical and inventory computer systems used by manufacturers and retail. Product information is crossed referenced or accessed only by matching the code to the product information in a separate computer system and not immediately on the actual product.
  • Modern product and labeling information is dynamic and literally interconnected to supporting products and services. Now and when the user interacts with the product or object affects the product and labeling information. Product life, product performance and its recorded history of interaction and usage affects the value of the object and product. For example, a car's value is based upon it's [sic] usage, care and service. Typically there is a paper trail of service and performance records. With digital labeling, all of that data can be stored in digital label where the digital label can monitor, maintain and transmit the digital product data to other computer systems. And when time to resell the car, all of this digital product data can transmit to a computer with internet connection and the car can be sold online. Or another example is a luxury good such as a luxury purse can constantly update its digital product data with its digital label. The digital label can transmit the data to a personal computer where the owner/user can catalog all goods owned. This example computer system utilizes product and label data sent from digital labels to catalog all products and objects in use by a user or users. The computer system can further analyze, track, monitor, maintain, manage all products/objects performance, data, value, history etc. Based upon custom software, settings, functions, etc. the computer system can transmit and send product data to and from product/objects with digital labels and to other computer systems for selling, further analysis, maintenance, service, etc.
  • Example Applications
  • For example, instead of reading pages of fine print or instructions, warranties, diagrams, etc on any product packaging, all this information in a digital label can be transmitted to any other device or computer and filed and stored digitally onto a computer system and be further sent through other electronic means such as email and over the internet, cellular, satellite, RF, etc. Another example application would be a prescription medication with a digital label that stores precise diagrams and instructions and dosages of how to use the medicine; warnings, cautions, when best to take the medication, what not to mix the medication, alarms when to take it, authentic medication, illustrations and animations on how it works, etc. all displayed for the user on a display screen and can be wirelessly sent to the user's own computer system to keep track of all the medication, products, food the user is consuming. The pharmaceutical manufacturer can program the data into the label at the factory or the pharmacists can program “blank” digital labels with the proper prescription data for each customer/end user. Most of this important medical information for drug use is in very small text and designed not to be read. Digital drug product data can be displayed on the digital label on the actual medicine where the data as either text or instructional diagrams or animations can be enlarged for older patients/users or transmitted to a computer system for further organization (with other medications) and print out on standard paper for easier reading. The digital label can send a reminder to take the medication to the user's cell phone if the user has skipped a dosage. These are examples of features and functionalities, they illustrate the conceptual possibilities yet it does not limit further possibilities for more and unseen features and functionality.
  • Example Digital Product and Label Information
  • The information can be any information relating to the object or product the digital labeling device is affixed, attached or integrated to; some examples are but not limited to are: name, product style information, product info, color, care, content, material, ingredients, volume, weight, size, descriptions, performance data, research data, recycling info, manufacturing info, regulation info, origin, authentication, design, notes, coupons, discounts, marketing, advertisements, promotions, endorsements, signatures, product reviews, trials, clinical trials, astrological effects of product to user, website addresses and links, email addresses, customer service info, company and product contact info, nutritional info, medical data, pharmaceutical info, dosage, warnings, cautions, side effects, data from the government, patent info, trademark info, copyright info, FDA approval, recommended daily allowances, diet info, chemical composition, scientific data, disease info, instructions, opening instructions, illustrations, diagrams, warranty, authorization, owner's or owners' name or names, record and history of ownership, biographies, provenance, value, history and record of value, guarantee, legal info, rights, disclaimers, storage information, user names, passwords, security, safety, warnings, precautions, cautions, hazards, emergency, rescue, recycling info, video, movie clips, moving graphics, sound, sounds, audio, music, jingles, sound bytes, recordings, ring tones, lyrics, art, artist info, production credit, credits, management info, times, dates, inception dates, expiration dates, ship dates, manufacture dates, shelf life, product life, alarms, animated logos and branding, graphics, animated presentations, personal information, allergies, seals of approvals, awards, restrictions, stories, calculations, global positioning of product, location record and history, product history and story, company history and story, brand history and story, merchandising info, catalog of goods, matching goods, goods that accessorize with product, retail info and contact data, in any or all languages, etc, all pre-programmed at manufacture or custom programmed by the end user or transmitted from advertisers, retailers or anyone who has access to the device.
  • Example Digital Label Device Hardware/Electronic Composition
  • A “digital labeling device” comprises of a micro-chip(s) or processor(s) in any various forms: flexible, silicon, printed, organic or chemical; powered or not powered by electricity from conduction, static electricity or from a battery in any various forms: button watch cell, battery pack, rechargeable, flexible, plastic battery, printable, organic, solar, etc.; and may or may not have a display in any various forms; flexible, LCD, OLED, LED, chemical organic, holographic, projected, etc backlit or non backlit display; or output by any means such as speech, sound, alarms, magnetic resonance, sonic codes, secret codes, scent, etc; encased in any type of sealed casing made from any type of sealed casing either hard or soft along with or without memory chips, RAM chips, or micro hard drive or external memory card capabilities; wireless communication chips: RF, two way RF, or any wireless transmission technique, or wired data ports; USB; USB II, Firewire, Ethernet, modem or any custom port; the device can be affixed or attached to any object or product or packaging or any shape or size by any means such as any type of adhesion, chemical attachment, bonding, sonic welding, welded, soldered, Velcro, glue, double stick tape, any type of tape, sewn, hung, hooked, magnetic attachment, snapped, buttoned, zipped, slotted in, snapped on, twisted on, screwed onto, riveted, squeezed in pressure, suction, static electricity, etc. The digital labeling device can also be integrated into existing product or object and utilize the product or object's power, display or electronics to display or transmit digital product and labeling info and data. Input methods for the label include touch screen, button, keyboard, wired and wireless transmission, speech, movement, hand gestures, etc. in any size, shape or form.
  • The device may also feature electronic sensors that monitor the product or object against external, and or internal conditions, environment and all other data that will affect the product's or object's original product or labeling data. The sensors either electronic, digital or analog will monitor, gauge, calculate, record temperature, location, volume, size, dosage, weight, activity, shape, movement, proximity to anything else, users, security, authentication, tampering, etc. (ie. all the types and examples of data listed previously for product and labeling information).
  • In essence, the digital labeling device hardware, or electronic composition is the CPU (central processing unit) for digitized label and product data. With the combination of hardware, electronic features, functions, OS (operation system), sensors, software etc, the digital labeling device will provide users with enhanced product usage through advanced digital product and label management, display and functionality.
  • Operating System and Software
  • For the digital labeling device, an “operating system” or primary device program/code will enable manufacturers, advertisers, retailers, end users and anyone with access to the digital labels to create software (digital code instructions) for the digital labeling device. Digital labeling software will instruct the device to perform custom product, object and label data functions that can monitor and perform tasks that affect product and label data. Operating system code manages the standard operations of the labeling device such as on/off, internal clock, processing of data and management of communication, sensors and other hardware. The OS also manages the various software programs that create, run and process product and labeling data that create functionality and advanced features for the user.
  • For example, if the product such a perishable good or blood or organ reaches an expiration temperature then the sensors will notify the OS in which the OS will send a warning signal to another computer, system or device. The display will show a warning with full detail and sound an audio alarm. It can also activate or send instructions to another device or call for help in an emergency. Further, if a product or object is tampered with the device can activate an alarm and send a signal to the user's cell phone and to the authorities. Yet another example is if a patient forgets to take medicine the digital label on the medicine bottle will note the prescribed dosage time, sensors will read the weight of the bottle and realize that the dosage was not taken at prescribed time and will send a reminder to the patient/user's cell phone kindly reminding the patient to take the prescribed dosage. On the digital label, a beeping alarm will sound and a reminder will appear on the display. The patient will take the dosage and the digital label will note the dosage taken at x time and will send an update to computer systems (patient, pharmacist, doctor and manufacturer computer systems) noting the dosage taken, date and time. All of these examples are just examples of software instructing the operating system of the digital label to perform monitoring and function tasks based upon changes in product and labeling data, product performance and functionality. The “label operating system” of the digital labeling device provides the device with an “open platform” for end user software that programs or instructs the device to perform custom tasks.
  • Several examples of the invention have been described. However, the present invention may be carried out in other specific ways than those herein set forth without departing from the spirit and essential characteristics of the invention. The present embodiments are, therefore, to be considered in all respects as illustrative and not restrictive, and all changes coming within the meaning and equivalency range of the appended claims are intended to be embraced therein.

Claims (19)

1. (canceled)
2. A method of determining medicine compliance for a patient that is taking medicine stored in a medicine container, the method comprising:
storing a dosage amount which is an expected amount of the medicine to be taken by the patient and a dosage time in which the medicine is to be taken;
sensing an amount of the medicine within the medicine container;
based on the amount of the medicine within the medicine container, determining whether the patient has taken the dosage amount of the medicine at the dosage time; and
sending a message responsive to determining that the patient has not taken the dosage amount at the dosage time.
3. The method of claim 2, wherein sensing the amount of the medicine within the medicine container comprises sensing a weight of the medicine remaining within the medicine container.
4. The method of claim 3, further comprising determining an amount of the medicine that has been removed from the medicine container.
5. The method of claim 2, wherein sending the message responsive to determining that the patient has not taken the dosage amount within the dosage time comprises sending the message to the patient.
6. The method of claim 2, wherein sending the message responsive to determining that the patient has not taken the dosage amount within the dosage time comprises sending the message directly from the medicine container to the patient.
7. The method of claim 2, wherein determining whether the patient has taken the dosage amount of the medicine within the dosage time is performed at the medicine container.
8. The method of claim 2, wherein determining whether the patient has taken the dosage amount of the medicine at the dosage time is performed at a location remote from the medicine container.
9. The method of claim 2, wherein sending the message responsive to determining that the patient has not taken the dosage amount at the dosage time comprises sending a message from a server remote from the medicine container to a person designated by the patient.
10. A method of determining medicine compliance for a patient that is taking medicine stored in a medicine container, the method comprising:
storing a prescribed dosage amount and a prescribed dosage time for the patient;
determining, based on a sensed parameter, that the prescribed dosage amount has not been removed from the medicine container at the prescribed dosage time: and
sending a message responsive to determining that the patient has not taken the prescribed dosage amount within the prescribed dosage time.
11. The method of claim 10, wherein the sensed parameter is a weight of the medicine remaining within the medicine container.
12. The method of claim 10, further comprising sending the message from the medicine container to a person designated by the patient responsive to determining that the patient has not taken the dosage amount within the dosage time.
13. The method of claim 10, wherein determining that the prescribed dosage amount has not been removed from the medicine container at the prescribed dosage time is performed at a server that is remote from the medicine container.
14. The method of claim 10, wherein determining whether the patient has taken the dosage amount of the medicine within the dosage time is performed at the medicine container.
15. A method of alerting a patient when a prescribed dosage of medication is missed, said method comprising:
storing dosage information for a prescribed medication to be taken by a patient, said dosage information including a prescribed dosage amount and a prescribed dosage time;
detecting a parameter indicative of the amount of the prescribed medication in a medicine container that stores the medication;
determining based on the dosage information and the detected parameter whether the patient missed a prescribed dosage; and
if the prescribed dosage is missed, sending a notification to a person designated by the patient.
16. The method of claim 15, wherein determining based on the dosage information and the detected parameter whether the patient missed the prescribed dosage is performed at a location remote from the medicine container.
17. A compliance monitoring system for determining medicine compliance for a patient that is taking medicine stored in a medicine container, the system comprising:
a bottle with an interior space to contain medicine;
a sensor to sense an amount of the medicine in the interior space;
memory to store a dosage amount which is an expected amount of the medicine to be taken by the patient and a dosage time in which the medicine is to be taken;
a wireless communication interface affixed to the bottle to communicate with a remote device;
a central processing unit to determine an amount of the medicine taken by the patient and to send a wireless message when the patient has not taken the dosage amount within the dosage time
18. The system of claim 17, wherein the memory is affixed to the bottle.
19. The system of claim 17, wherein the central processing unit is located remotely from the bottle.
US14/607,585 2005-03-10 2015-01-28 Programmable Digital Labels for a Medicine Container Abandoned US20150145672A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/607,585 US20150145672A1 (en) 2005-03-10 2015-01-28 Programmable Digital Labels for a Medicine Container
US15/452,874 US20170228519A1 (en) 2005-03-10 2017-03-08 Programmable Digital Labels for a Medicine Container

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US66050005P 2005-03-10 2005-03-10
US11/371,530 US7392953B2 (en) 2005-03-10 2006-03-09 Programmable digital labels
US12/164,941 US8384517B2 (en) 2005-03-10 2008-06-30 Programmable digital labels for a medicine container
US13/769,054 US20130141236A1 (en) 2005-03-10 2013-02-15 Programmable Digital Labels for a Medicine Container
US14/607,585 US20150145672A1 (en) 2005-03-10 2015-01-28 Programmable Digital Labels for a Medicine Container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/769,054 Continuation US20130141236A1 (en) 2005-03-10 2013-02-15 Programmable Digital Labels for a Medicine Container

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/452,874 Continuation US20170228519A1 (en) 2005-03-10 2017-03-08 Programmable Digital Labels for a Medicine Container

Publications (1)

Publication Number Publication Date
US20150145672A1 true US20150145672A1 (en) 2015-05-28

Family

ID=36969806

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/371,530 Active US7392953B2 (en) 2005-03-10 2006-03-09 Programmable digital labels
US12/164,941 Active 2028-09-08 US8384517B2 (en) 2005-03-10 2008-06-30 Programmable digital labels for a medicine container
US13/769,054 Abandoned US20130141236A1 (en) 2005-03-10 2013-02-15 Programmable Digital Labels for a Medicine Container
US14/607,585 Abandoned US20150145672A1 (en) 2005-03-10 2015-01-28 Programmable Digital Labels for a Medicine Container
US15/452,874 Abandoned US20170228519A1 (en) 2005-03-10 2017-03-08 Programmable Digital Labels for a Medicine Container

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/371,530 Active US7392953B2 (en) 2005-03-10 2006-03-09 Programmable digital labels
US12/164,941 Active 2028-09-08 US8384517B2 (en) 2005-03-10 2008-06-30 Programmable digital labels for a medicine container
US13/769,054 Abandoned US20130141236A1 (en) 2005-03-10 2013-02-15 Programmable Digital Labels for a Medicine Container

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/452,874 Abandoned US20170228519A1 (en) 2005-03-10 2017-03-08 Programmable Digital Labels for a Medicine Container

Country Status (2)

Country Link
US (5) US7392953B2 (en)
WO (1) WO2006099118A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170300659A1 (en) * 2016-04-18 2017-10-19 LuminX Corporation Apparatus and method for monitoring patient use of medication
US10073954B2 (en) 2016-08-26 2018-09-11 Changhai Chen Dispenser system and methods for medication compliance
US10565853B2 (en) 2009-07-14 2020-02-18 Sam Johnson Container with content monitoring and reporting capabilities
US10621854B2 (en) 2009-07-14 2020-04-14 Sam Johnson Motion or opening detector
US20200126649A1 (en) * 2017-08-09 2020-04-23 Omron Healthcare Co., Ltd. Data processing apparatus, data processing method, and data processing program
US10650660B2 (en) 2009-07-14 2020-05-12 Sam Johnson Container with content monitoring and reporting capabilities
US10653584B2 (en) 2016-12-30 2020-05-19 Pill Development Group, LLC Tablet and capsule dispensing assembly
US10722431B2 (en) 2016-08-26 2020-07-28 Changhai Chen Dispenser system and methods for medication compliance
US11053065B2 (en) 2016-12-30 2021-07-06 Pill Development Group, LLC Tablet and capsule dispensing assembly
US11116698B2 (en) 2016-12-30 2021-09-14 Pill Development Group, LLC Method of installing and removing a rotation mechanism within pill dispensing assemblies
US11246805B2 (en) 2016-08-26 2022-02-15 Changhai Chen Dispenser system and methods for medication compliance
US11458073B1 (en) * 2017-10-09 2022-10-04 Banpil Photonics, Inc. Smart bottle system and methods thereof

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677461B2 (en) 2005-03-10 2010-03-16 Mil. Digital Labeling Inc. Digital labels for product authentication
US7392953B2 (en) * 2005-03-10 2008-07-01 Mil. Digital Labeling, Inc. Programmable digital labels
US20060265293A1 (en) * 2005-05-03 2006-11-23 Bengyak Christopher E Method of labeling citrus fruit and tracking customer preferences
US7345578B2 (en) * 2005-06-29 2008-03-18 Nagtags Llc Electronic baggage tag with packing reminder function
US20070042727A1 (en) * 2005-08-16 2007-02-22 Arinc Inc. Systems and methods for voice and data communication
US20070042708A1 (en) * 2005-08-16 2007-02-22 Arinc Inc. Systems and methods for voice and data communication
EP2074574A4 (en) 2006-10-17 2011-05-25 Karen Nixon-Lane Incentive imaging methods and devices
US9061797B2 (en) 2006-10-28 2015-06-23 Medea Inc. Bottle for alcoholic or non alcoholic beverages
US8002191B2 (en) 2007-02-22 2011-08-23 Karen Nixon Lane Segmented microencapsulated display system
US9348167B2 (en) * 2007-03-19 2016-05-24 Via Optronics Gmbh Enhanced liquid crystal display system and methods
JP2010525397A (en) * 2007-04-20 2010-07-22 ホワイト エレクトロニック デザインズ コーポレイション Bezelless display system
WO2008133999A1 (en) * 2007-04-24 2008-11-06 White Electronic Designs Corp. Interactive display system
US9152968B2 (en) 2007-06-22 2015-10-06 Medea Inc. System for and method of acting on beverage bottles
TW200912761A (en) * 2007-07-20 2009-03-16 Soon Huat Leonard Wee A radio frequency transponder
US20090150446A1 (en) * 2007-12-11 2009-06-11 Trackway Oy Authenticity investigation methods, devices and computer program products
FR2932590B1 (en) * 2008-06-17 2010-05-21 Mpe Technology MULTI-FUNCTIONAL AND CONTACTLESS ELECTRONIC LABEL FOR GOODS
US8447987B1 (en) 2008-11-20 2013-05-21 Katerina Polonsky Authentication of brand name product ownership using public key cryptography
JP5648048B2 (en) * 2009-03-30 2015-01-07 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Drug delivery device with integrated telescopic information display element
US10598410B2 (en) * 2009-05-12 2020-03-24 Reflect Scientific Inc. Self-powered, long-term, low-temperature, controlled shipping unit
US10188098B2 (en) * 2009-05-12 2019-01-29 Reflect Scientific Inc. Extremely fast freezing, low-temperature blast freezer
US9376235B2 (en) * 2009-11-02 2016-06-28 Medea Inc. Container for beverages
US8446252B2 (en) * 2010-03-31 2013-05-21 The Procter & Gamble Company Interactive product package that forms a node of a product-centric communications network
US20120158610A1 (en) * 2010-12-17 2012-06-21 Bradley Botvinick Methods of monitoring propofol through a supply chain
KR101273808B1 (en) * 2010-12-28 2013-06-11 삼성전기주식회사 Method for setting time information of esl system and method for operating of esl system
US20130134180A1 (en) * 2011-11-30 2013-05-30 Shaahin Cheyene Digital Pill Dispenser
US9216844B2 (en) 2012-06-01 2015-12-22 Medea Inc. Container for beverages
TWI478070B (en) * 2012-08-29 2015-03-21 E Ink Holdings Inc Controlling method for coexistence of radio frequency identification and display
CN103680049A (en) * 2012-09-03 2014-03-26 成都槟果科技有限公司 Loss-resistant device based on GPS (Global Position System) positioning
US8989673B2 (en) 2012-09-28 2015-03-24 Medea Inc. System for delivering data to users
US9546916B1 (en) * 2012-12-20 2017-01-17 Bottletech, Llc Devices and methods for measuring and processing conditions of containers
US9740828B2 (en) 2013-03-13 2017-08-22 SMRxT Inc. Medicine container with an orientation sensor
US9104298B1 (en) 2013-05-10 2015-08-11 Trade Only Limited Systems, methods, and devices for integrated product and electronic image fulfillment
GB2518160A (en) * 2013-09-11 2015-03-18 British Airways Plc Identification apparatus and method
US9521280B2 (en) * 2013-12-04 2016-12-13 Hellermanntyton Corporation Systems and methods for display of regulatory information related to labeling
US9524376B2 (en) * 2014-02-27 2016-12-20 Xerox Corporation Apparatus, system, and method for personalized medication labels
US9628434B2 (en) 2014-05-15 2017-04-18 Medea Inc. Programmable electronic devices on containers
US10282967B2 (en) * 2014-08-04 2019-05-07 Avery Dennison Retail Information Services, Llc Time-temperature tracking label
GB2533261A (en) * 2014-10-17 2016-06-22 Folium Optics Ltd Medication reminder system and method, a control apparatus, and a computer program product
US11176625B2 (en) * 2014-10-26 2021-11-16 Jerry Mirsky System of unique identification and personalization of hygienic and domestic items in hotel or hospitality establishment
US11017346B2 (en) 2015-02-18 2021-05-25 FedEx Corporate Services, Inc Methods, apparatus, and systems for generating a content-related notification using a container interface display apparatus
ES2846905T3 (en) * 2015-03-23 2021-07-30 Adan Medical Innovation S L Control of products contained in container devices
US10009709B2 (en) 2015-03-26 2018-06-26 Medea Inc. Electronic device with network access via mobile device proxy
CN105184454A (en) * 2015-08-19 2015-12-23 北京京东方多媒体科技有限公司 Article management system and article management method
US20170270326A1 (en) * 2016-03-18 2017-09-21 Iconex Llc Band/tag with integrated status and tracking
FR3050053B1 (en) * 2016-04-06 2018-05-04 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude METHOD OF CALCULATING THE AUTONOMY OF A GAS DISTRIBUTION SET
US10157408B2 (en) 2016-07-29 2018-12-18 Customer Focus Software Limited Method, systems, and devices for integrated product and electronic image fulfillment from database
CN107978352A (en) * 2016-10-21 2018-05-01 北京华兴长泰物联网技术研究院有限责任公司 The medicine or consumable smart media management system of a kind of intelligent weighing
EP3554453A1 (en) 2016-12-16 2019-10-23 Boehringer Ingelheim Vetmedica GmbH Container system and method
MX2019006990A (en) * 2016-12-16 2019-08-14 Boehringer Ingelheim Vetmedica Gmbh Light or lighted member on a package to provide information to a user.
US10679179B2 (en) * 2017-04-21 2020-06-09 Sensormatic Electronics, LLC Systems and methods for an improved tag counting process
JP2020519353A (en) 2017-05-09 2020-07-02 ノボ・ノルデイスク・エー/エス Drug delivery device with audio converter
WO2018206439A1 (en) 2017-05-09 2018-11-15 Novo Nordisk A/S Flexible electronic label device
US10248971B2 (en) 2017-09-07 2019-04-02 Customer Focus Software Limited Methods, systems, and devices for dynamically generating a personalized advertisement on a website for manufacturing customizable products
CN111279360A (en) * 2017-10-26 2020-06-12 肖恩·埃米尔·拉瓦尔 Electronic label
WO2019108768A1 (en) * 2017-11-30 2019-06-06 Jabil Inc. Apparatus, system, and method of providing a printed authentication and certification functional circuit
EP3769260A1 (en) * 2018-03-22 2021-01-27 Timestamp Ltd. Ultra-low power circuit for an event-recording smart label
CN109102665A (en) * 2018-09-21 2018-12-28 西北大学 A kind of neighbours living safety system based on smart home
WO2020123646A1 (en) * 2018-12-12 2020-06-18 Sky Capital Technology Limited Device, system, and method for controlling illumination of bottle
US11253432B1 (en) * 2019-01-23 2022-02-22 Praful K. Kelkar Systems, methods, assemblies, and components for medication reminders
DE102019116403A1 (en) * 2019-06-17 2020-12-17 Scholze Germany Gmbh Lap carrier and arrangement and method for identifying a lap carrier
EP3940677A1 (en) * 2020-07-17 2022-01-19 Presspart Gmbh & Co. Kg Medicament container and medicament delivery device
US11116697B1 (en) 2020-07-29 2021-09-14 Stan Williams Prescription item dispensing device
US11963926B2 (en) * 2020-09-29 2024-04-23 Stephen Clark Self-locking cover for drug waste management and systems implementing thereof
IT202100006854A1 (en) * 2021-03-22 2022-09-22 Palladio Group S P A ELECTRONIC ALLOCATION DEVICE FOR MEDICINAL PRODUCTS
LU102750B1 (en) * 2021-04-06 2022-10-06 Vialysis Sarl Printable smart tag

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040236944A1 (en) * 1995-11-22 2004-11-25 Walker Jay S. Method and apparatus for outputting a result of a game via a container
US20060218011A1 (en) * 1995-11-22 2006-09-28 Walker Jay S Systems and methods for improved health care compliance
US7366675B1 (en) * 2000-03-10 2008-04-29 Walker Digital, Llc Methods and apparatus for increasing, monitoring and/or rewarding a party's compliance with a schedule for taking medicines

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5408443A (en) * 1992-08-19 1995-04-18 Polypharm Corp. Programmable medication dispensing system
US5528222A (en) * 1994-09-09 1996-06-18 International Business Machines Corporation Radio frequency circuit and memory in thin flexible package
US8280682B2 (en) * 2000-12-15 2012-10-02 Tvipr, Llc Device for monitoring movement of shipped goods
US5852590A (en) * 1996-12-20 1998-12-22 De La Huerga; Carlos Interactive label for medication containers and dispensers
US7978564B2 (en) * 1997-03-28 2011-07-12 Carlos De La Huerga Interactive medication container
US6753830B2 (en) * 1998-09-11 2004-06-22 Visible Tech-Knowledgy, Inc. Smart electronic label employing electronic ink
US20020167500A1 (en) * 1998-09-11 2002-11-14 Visible Techknowledgy, Llc Smart electronic label employing electronic ink
US6641556B1 (en) * 1999-07-06 2003-11-04 Respiratory Support Products, Inc. Intravenous fluid heating system
US6294999B1 (en) * 1999-12-29 2001-09-25 Becton, Dickinson And Company Systems and methods for monitoring patient compliance with medication regimens
US8055509B1 (en) * 2000-03-10 2011-11-08 Walker Digital, Llc Methods and apparatus for increasing and/or for monitoring a party's compliance with a schedule for taking medicines
US20010056226A1 (en) * 2000-04-18 2001-12-27 Richard Zodnik Integrated telemedicine computer system
US20020148858A1 (en) * 2000-07-31 2002-10-17 Claudio Bertone Multi-flavoured hot beverage dispenser
US7747477B1 (en) * 2000-11-16 2010-06-29 Gsl Solutions, Inc. Pharmacy supply tracking and storage system
US20090230189A1 (en) * 2000-11-16 2009-09-17 Shelton Louie Scanning Wand For Pharmacy Tracking and Verification
US20020104848A1 (en) * 2001-02-05 2002-08-08 Burrows Mark D. Pharmaceutical container having signaling means and associated method of use
JP2004525271A (en) * 2001-03-07 2004-08-19 ザ プロクター アンド ギャンブル カンパニー Rinse-added fabric conditioning composition for use when residual detergent is present
US20020146096A1 (en) * 2001-04-09 2002-10-10 Agarwal Sanjiv (Sam) K. Electronic messaging engines
US7290709B2 (en) * 2001-04-10 2007-11-06 Erica Tsai Information card system
US6539281B2 (en) * 2001-04-23 2003-03-25 Accenture Global Services Gmbh Online medicine cabinet
US7119659B2 (en) * 2001-07-10 2006-10-10 American Express Travel Related Services Company, Inc. Systems and methods for providing a RF transaction device for use in a private label transaction
US6571564B2 (en) * 2001-10-23 2003-06-03 Shashank Upadhye Timed container warmer and cooler
US20030086338A1 (en) * 2001-11-08 2003-05-08 Sastry Srikonda V. Wireless web based drug compliance system
US20050261864A1 (en) * 2003-09-19 2005-11-24 Edwards James A Automated quality assurance method and apparatus and method of conducting business
US20050222040A1 (en) * 2004-04-05 2005-10-06 Blm Group, Inc. Vertebrate peptide modulators of lipid metabolism
US7619520B2 (en) * 2005-01-14 2009-11-17 William Berson Radio frequency identification labels and systems and methods for making the same
US20060180647A1 (en) * 2005-02-11 2006-08-17 Hansen Scott R RFID applications
US7392953B2 (en) * 2005-03-10 2008-07-01 Mil. Digital Labeling, Inc. Programmable digital labels
US7677461B2 (en) * 2005-03-10 2010-03-16 Mil. Digital Labeling Inc. Digital labels for product authentication
US7469390B2 (en) * 2005-04-18 2008-12-23 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Method and software tool for automatic generation of software for integrated circuit processors
US20100328099A1 (en) * 2005-07-13 2010-12-30 Vitality, Inc. Night Light With Embedded Cellular Modem
US20070016443A1 (en) * 2005-07-13 2007-01-18 Vitality, Inc. Medication compliance systems, methods and devices with configurable and adaptable escalation engine
US20090134181A1 (en) * 2005-07-13 2009-05-28 Vitality, Inc. Medication dispenser with automatic refill
US20100270257A1 (en) * 2005-07-13 2010-10-28 Vitality, Inc. Medicine Bottle Cap With Electronic Embedded Curved Display
US20070056871A1 (en) * 2005-09-09 2007-03-15 Medrad, Inc. Devices, methods and applications for intelligent medical packaging
US7420472B2 (en) * 2005-10-16 2008-09-02 Bao Tran Patient monitoring apparatus
USD592507S1 (en) * 2006-07-06 2009-05-19 Vitality, Inc. Top for medicine container
DE102006052007B4 (en) * 2006-11-03 2011-12-22 Siemens Ag medicament container
US7928835B1 (en) * 2006-12-15 2011-04-19 The Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville Systems and methods for drug compliance monitoring
US20080303638A1 (en) * 2007-03-24 2008-12-11 Hap Nguyen Portable patient devices, systems, and methods for providing patient aid and preventing medical errors, for monitoring patient use of ingestible medications, and for preventing distribution of counterfeit drugs
US20100185456A1 (en) * 2008-08-22 2010-07-22 Microsoft Corporation Medication management system
US20100231358A1 (en) * 2009-03-16 2010-09-16 Mello David M Affixed and affixable product information system and method
DE202009006230U1 (en) 2009-04-30 2010-09-16 Diestelhorst, Michael, Prof. Dr.med. Application device for the use of drugs Subtitle: Device for recording and influencing individual compliance
US8279076B2 (en) * 2009-07-14 2012-10-02 Sam Johnson Motion or opening detector
US8284068B2 (en) * 2009-07-14 2012-10-09 Sam Johnson Activity monitor to alleviate controlled substance abuse

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040236944A1 (en) * 1995-11-22 2004-11-25 Walker Jay S. Method and apparatus for outputting a result of a game via a container
US20060218011A1 (en) * 1995-11-22 2006-09-28 Walker Jay S Systems and methods for improved health care compliance
US7366675B1 (en) * 2000-03-10 2008-04-29 Walker Digital, Llc Methods and apparatus for increasing, monitoring and/or rewarding a party's compliance with a schedule for taking medicines

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10565853B2 (en) 2009-07-14 2020-02-18 Sam Johnson Container with content monitoring and reporting capabilities
US10621854B2 (en) 2009-07-14 2020-04-14 Sam Johnson Motion or opening detector
US11657697B2 (en) 2009-07-14 2023-05-23 Sam Johnson Container with content monitoring and reporting capabilities
US10650660B2 (en) 2009-07-14 2020-05-12 Sam Johnson Container with content monitoring and reporting capabilities
US11276295B2 (en) 2009-07-14 2022-03-15 Sam Johnson Container with content monitoring and reporting capabilities
US20170300659A1 (en) * 2016-04-18 2017-10-19 LuminX Corporation Apparatus and method for monitoring patient use of medication
US11246805B2 (en) 2016-08-26 2022-02-15 Changhai Chen Dispenser system and methods for medication compliance
US10073954B2 (en) 2016-08-26 2018-09-11 Changhai Chen Dispenser system and methods for medication compliance
US10722431B2 (en) 2016-08-26 2020-07-28 Changhai Chen Dispenser system and methods for medication compliance
US10653584B2 (en) 2016-12-30 2020-05-19 Pill Development Group, LLC Tablet and capsule dispensing assembly
US11116698B2 (en) 2016-12-30 2021-09-14 Pill Development Group, LLC Method of installing and removing a rotation mechanism within pill dispensing assemblies
US11053065B2 (en) 2016-12-30 2021-07-06 Pill Development Group, LLC Tablet and capsule dispensing assembly
US10772805B2 (en) 2016-12-30 2020-09-15 Pill Development Group, LLC Tablet and capsule dispensing assembly
US20200126649A1 (en) * 2017-08-09 2020-04-23 Omron Healthcare Co., Ltd. Data processing apparatus, data processing method, and data processing program
US11458073B1 (en) * 2017-10-09 2022-10-04 Banpil Photonics, Inc. Smart bottle system and methods thereof

Also Published As

Publication number Publication date
US8384517B2 (en) 2013-02-26
WO2006099118A3 (en) 2007-12-13
US20170228519A1 (en) 2017-08-10
US20090002185A1 (en) 2009-01-01
US20130141236A1 (en) 2013-06-06
US7392953B2 (en) 2008-07-01
WO2006099118A2 (en) 2006-09-21
US20060202042A1 (en) 2006-09-14

Similar Documents

Publication Publication Date Title
US20170228519A1 (en) Programmable Digital Labels for a Medicine Container
CA2623738C (en) Digital labels for product authentication
US10573161B2 (en) Devices, systems, and methods for adherence monitoring and devices, systems, and methods for monitoring use of consumable dispensers
US7061831B2 (en) Product labeling method and apparatus
US6294999B1 (en) Systems and methods for monitoring patient compliance with medication regimens
US20200410179A1 (en) System and method for activity monitoring
US8823500B2 (en) System and method for automating and verifying product value, usage, and suitability for use or sale
WO2009102654A1 (en) An automated medication management system and method for use
US11657697B2 (en) Container with content monitoring and reporting capabilities
US20230170067A1 (en) System and method for monitoring package opening and personalizing user engagement
RU2434285C2 (en) Digital labels for authenticating commodities

Legal Events

Date Code Title Description
AS Assignment

Owner name: INBOX VENTURES, LLC, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MIL. DIGITAL LABELING INC.;REEL/FRAME:034878/0107

Effective date: 20131216

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: INBOX VENTURES, LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF ASSIGNOR PREVIOUSLY RECORDED ON REEL 034878 FRAME 0107. ASSIGNOR(S) HEREBY CONFIRMS THE ASSIGNMENT;ASSIGNOR:MIL. DIGITAL LABELING TECHNOLOGIES, INC.;REEL/FRAME:045984/0831

Effective date: 20131216

AS Assignment

Owner name: SMRXT, INC., KANSAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INBOX VENTURES LLC;REEL/FRAME:048148/0579

Effective date: 20170119

Owner name: MIL. DIGITAL LABELING TECHNOLOGIES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:CHU, VICTOR;REEL/FRAME:046660/0048

Effective date: 20060919

Owner name: INBOX VENTURES LLC, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE'S NAME TO INBOX VENTURES LLC AND THE SUPPORTING ASSIGNMENT AGREEMENT PREVIOUSLY RECORDED ON REEL 045984 FRAME 0831. ASSIGNOR(S) HEREBY CONFIRMS THE CORRECTIVE ASSIGNMENT;ASSIGNOR:MIL. DIGITAL LABELING TECHNOLOGIES, INC.;REEL/FRAME:047947/0379

Effective date: 20131216