US20150191986A1 - Frangible and disintegrable tool and method of removing a tool - Google Patents

Frangible and disintegrable tool and method of removing a tool Download PDF

Info

Publication number
US20150191986A1
US20150191986A1 US14/151,134 US201414151134A US2015191986A1 US 20150191986 A1 US20150191986 A1 US 20150191986A1 US 201414151134 A US201414151134 A US 201414151134A US 2015191986 A1 US2015191986 A1 US 2015191986A1
Authority
US
United States
Prior art keywords
tool
plugs
disintegrable
frangible
seals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/151,134
Inventor
Guijun Deng
Guobin Ma
Zhihui ZHANG
Zhiyue Xu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baker Hughes Holdings LLC
Original Assignee
Baker Hughes Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Inc filed Critical Baker Hughes Inc
Priority to US14/151,134 priority Critical patent/US20150191986A1/en
Assigned to BAKER HUGHES INCORPORATED reassignment BAKER HUGHES INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DENG, GUIJUN, MA, GUOBIN, ZHANG, ZHIHUI, XU, ZHIYUE
Publication of US20150191986A1 publication Critical patent/US20150191986A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B29/00Cutting or destroying pipes, packers, plugs, or wire lines, located in boreholes or wells, e.g. cutting of damaged pipes, of windows; Deforming of pipes in boreholes or wells; Reconditioning of well casings while in the ground
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/12Packers; Plugs
    • E21B33/1204Packers; Plugs permanent; drillable
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells

Definitions

  • the tool includes, a body made of a disintegrable material having a plurality of stress risers, the disintegrable material and the plurality of stress risers are configured such that when physically loaded to failure the body will break into a plurality of pieces and a plurality of the plurality of pieces will be substantially similar in size.
  • the method includes loading the tool, forming a plurality of cracks at stress risers in the tool, storing elastic energy in the material of the tool, and breaking the tool into a plurality of pieces, a plurality of which are similarly sized.
  • FIG. 1 depicts a perspective view of a frangible and disintegrable tool disclosed herein;
  • FIG. 2 depicts a perspective view of an alternate embodiment of a frangible and disintegrable tool disclosed herein;
  • FIG. 3 depicts a partial magnified cross sectional view of the disintegrable tool of FIG. 1 ;
  • FIG. 4 depicts a partial magnified cross sectional view of an alternate embodiment of a disintegrable tool disclosed herein.
  • frangible and disintegrable tools 10 , 110 include, a bodies 14 , 114 made of a disintegrable material 18 having pluralities of stress risers 22 , 122 .
  • the material 18 and the stress risers 22 , 122 are configured such that when physically loaded to failure the bodies 14 , 114 will break into a plurality of pieces of which a plurality will be of similar size.
  • the stress risers 22 of the body 14 are defined by a repeating pattern 26 of recesses 30 that have cross sectional shapes that are ellipses recessed into a surface 34 of the body 14 .
  • the recesses 30 of the illustrated embodiment have circular cross sectional shapes; however, recesses 30 with cross sectional shapes that are noncircular ellipses could just as well be employed.
  • the stress risers 22 could protrude from the surface 34 instead of being recessed in the surface 34 as will be discussed below.
  • the frangible and disintegrable tool 110 is illustrated in a perspective view.
  • the tool 110 differs from the tool 10 in that the stress risers 122 are protrusions 130 positioned in a repeating pattern 126 that protrude from a surface 134 instead of being recessed into the surface 134 as the stress risers 22 are in the tool 10 .
  • the stress risers 122 have cross sectional shapes that are rectangles 134 as opposed to the stress risers 22 of the tool 10 that are ellipses.
  • the recesses 30 or the protrusions 130 could have cross sectional shapes other than ellipses and rectangles.
  • a cross sectional shape could be defined by nearly any two dimensional enclosed shape, including triangles, parallelograms and ovals, to name a few, as well as combinations of such shapes.
  • FIG. 3 depicts a magnified partial cross sectional view through the body 14 that reveals the stress risers 22 in greater detail.
  • the stress risers 22 (being the recesses 30 in this embodiment) include surfaces 40 that intersect at sharp corners 44 including angles of 90 degrees or less.
  • the corners 44 promote nucleation of multiple cracks 48 that substantially form simultaneously at a plurality of locations in response to structural loading of the tool 10 prior to breakage of the tool 10 .
  • Such loading can be by direct mechanical loading or by hydraulic loading of the body 14 .
  • the foregoing geometric construction of the body 14 promotes breakage of the body 14 into multiple pieces with many of the multiple pieces being of substantially similar size.
  • the disintegrable material 18 from which the bodies 14 , 114 are made also promotes breakage of the bodies 14 , 114 into multiple pieces with many of the multiple pieces being of substantially similar size.
  • Material properties of the material 18 are such that the bodies 14 , 114 made from the material 18 will tend to break before the bodies 14 , 114 plastically deform.
  • One way the material 18 contributes to this behavior is by storing elastic energy therewithin prior to breaking. This stored elastic energy promotes breakage into a plurality of relatively small pieces as opposed to just two relatively large pieces. Materials that include grains that are surrounded by hard intermetallic layers are good candidates for usage as the disintegrable material 18 .
  • Such hard intermetallic layers can increase a modulus to prevent formation of one major crack and serve as sites of multiple crack nucleation and propagation.
  • the material 18 in addition to promoting breakage into a plurality of relative small and similarly sized pieces, also promotes disintegration of the pieces. Such disintegration can by facilitated by exposure to a target environment.
  • a target environment is in an earth formation borehole such as those drilled in the hydrocarbon recovery and carbon dioxide sequestration industries. Such environments include high temperature, high pressures and caustic fluids.
  • the material 18 can disintegrate itself through expedited galvanic corrosion with implemented microscopic galvanic cells within the material microstructure when contacting natural wellbore brine. In such an embodiment no artificial fluid is necessary in order for the material 18 to disintegrate.
  • Tools employable in these industries that can benefit from the embodiments disclosed herein include the flappers illustrated herein as the tools 10 , 110 .
  • downhole tools include but are not limited to downhole tools that are a single component, such as, hold down dogs and springs, screen protectors, seal bore protectors, electric submersible pump space out subs, full bore guns, chemical encapsulations, slips, dogs, springs and collet restraints, liner setting sleeves, timing actuation devices, emergency grapple release, chemical encapsulation containers, screen protectors, beaded screen protectors, whipstock lugs, whipstock coatings, pins, set screws, emergency release tools, gas generators, mandrels, release mechanisms, staging collars, C-rings, components of perforating gun systems, disintegrable whipstock for casing exit tools, shear pins, dissolvable body locking rings, mud motor stators, progressive cavity pump stators, shear screws.
  • downhole tools that are a single component, such as, hold down dogs and springs, screen protectors, seal bore protectors, electric submersible pump space out subs, full bore guns, chemical encapsulations, slips, dogs, spring
  • the downhole tool is configured to inhibit flow without being pumpable, such as, seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve seals, sub-surface safety valve flapper seal, dynamic seals, V-rings, back up rings, drill bit seals, liner port plugs, atmospheric discs, atmospheric chamber discs, debris barriers, drill in stim liner plugs, inflow control device plugs, flappers, seats, ball seats, direct connect disks, drill-in linear disks, gas lift valve plug, fluid loss control flappers, electric submersible pump seals, shear out plugs, flapper valves, gaslift valves, sleeves.
  • seals such as, seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve
  • the downhole tool is configured to inhibit flow and be pumpable, such as, plugs, direct connect plugs, bridge plugs, wiper plugs, frac plugs, components of frac plugs, drill in sand control beaded screen plugs, inflow control device plugs, polymeric plugs, disappearing wiper plugs, cementing plugs, balls, diverter balls, shifting and setting balls, swabbing element protectors, buoyant recorders, pumpable collets, float shoes, and darts.
  • plugs direct connect plugs, bridge plugs, wiper plugs, frac plugs, components of frac plugs, drill in sand control beaded screen plugs, inflow control device plugs, polymeric plugs, disappearing wiper plugs, cementing plugs, balls, diverter balls, shifting and setting balls, swabbing element protectors, buoyant recorders, pumpable collets, float shoes, and darts.
  • FIG. 4 depicts a magnified partial cross sectional view through an alternate embodiment of a body 214 employable in a frangible and disintegrable tool disclosed herein. Faces 220 of the body 214 can be flat or smooth making the inclusion of stress risers 222 employed therewithin substantially hidden from view when the body 214 is viewed externally.
  • the body 214 is constructed of two portions 214 A and 214 B that are connected or weakly glued together such that stress encountered by the body 214 is concentrated at the stress risers 222 .
  • the stress risers 222 include surfaces 240 that intersect at sharp corners 244 including but not limited to 90 degree angles.
  • the foregoing geometric construction of the body 214 promotes breakage of the body 214 into multiple pieces with many of the multiple pieces being of substantially similar size.

Abstract

A frangible and disintegrable tool includes, a body made of a disintegrable material having a plurality of stress risers, the disintegrable material and the plurality of stress risers are configured such that when physically loaded to failure the body will break into a plurality of pieces and a plurality of the plurality of pieces will be substantially similar in size.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application contains subject matter related to the subject matter of a co-pending application, which is assigned to the same assignee as this application, Baker Hughes Incorporated of Houston, Tex. and are both being filed on Jan. 9, 2014. The co-pending application is U.S. patent application Attorney Docket No. OMS4-56759 (BAO1178US) entitled DEGRADABLE METAL COMPOSITES, METHODS OF MANUFACTURE, AND USES THEREOF the entire contents of which are hereby incorporated by reference.
  • BACKGROUND
  • In the subterranean drilling and completion industry there are times when a downhole tool located within a wellbore becomes an unwanted obstruction. Accordingly, downhole tools have been developed that can be deformed, by operator action, for example, such that the tool's presence becomes less burdensome. Although such tools work as intended, their presence, even in a deformed state can still be undesirable. Devices and methods to further remove the burden created by the presence of unnecessary downhole tools are therefore desirable in the art.
  • BRIEF DESCRIPTION
  • Disclosed herein is a frangible and disintegrable tool. The tool includes, a body made of a disintegrable material having a plurality of stress risers, the disintegrable material and the plurality of stress risers are configured such that when physically loaded to failure the body will break into a plurality of pieces and a plurality of the plurality of pieces will be substantially similar in size.
  • Further disclosed herein is a method of removing a tool. The method includes loading the tool, forming a plurality of cracks at stress risers in the tool, storing elastic energy in the material of the tool, and breaking the tool into a plurality of pieces, a plurality of which are similarly sized.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The following descriptions should not be considered limiting in any way. With reference to the accompanying drawings, like elements are numbered alike:
  • FIG. 1 depicts a perspective view of a frangible and disintegrable tool disclosed herein;
  • FIG. 2 depicts a perspective view of an alternate embodiment of a frangible and disintegrable tool disclosed herein;
  • FIG. 3 depicts a partial magnified cross sectional view of the disintegrable tool of FIG. 1; and
  • FIG. 4 depicts a partial magnified cross sectional view of an alternate embodiment of a disintegrable tool disclosed herein.
  • DETAILED DESCRIPTION
  • A detailed description of one or more embodiments of the disclosed apparatus and method are presented herein by way of exemplification and not limitation with reference to the Figures.
  • Referring to FIGS. 1 and 2 embodiments of frangible and disintegrable tools disclosed herein are illustrated at 10 and 110 respectively. The frangible and disintegrable tools 10, 110 include, a bodies 14, 114 made of a disintegrable material 18 having pluralities of stress risers 22, 122. The material 18 and the stress risers 22, 122 are configured such that when physically loaded to failure the bodies 14, 114 will break into a plurality of pieces of which a plurality will be of similar size.
  • In the embodiment of FIG. 1, the stress risers 22 of the body 14 are defined by a repeating pattern 26 of recesses 30 that have cross sectional shapes that are ellipses recessed into a surface 34 of the body 14. The recesses 30 of the illustrated embodiment have circular cross sectional shapes; however, recesses 30 with cross sectional shapes that are noncircular ellipses could just as well be employed. In alternate embodiments, the stress risers 22 could protrude from the surface 34 instead of being recessed in the surface 34 as will be discussed below.
  • Referring to FIG. 2, the frangible and disintegrable tool 110 is illustrated in a perspective view. The tool 110 differs from the tool 10 in that the stress risers 122 are protrusions 130 positioned in a repeating pattern 126 that protrude from a surface 134 instead of being recessed into the surface 134 as the stress risers 22 are in the tool 10. Additionally, the stress risers 122 have cross sectional shapes that are rectangles 134 as opposed to the stress risers 22 of the tool 10 that are ellipses. In other embodiments, the recesses 30 or the protrusions 130 could have cross sectional shapes other than ellipses and rectangles. For example a cross sectional shape could be defined by nearly any two dimensional enclosed shape, including triangles, parallelograms and ovals, to name a few, as well as combinations of such shapes.
  • FIG. 3 depicts a magnified partial cross sectional view through the body 14 that reveals the stress risers 22 in greater detail. The stress risers 22 (being the recesses 30 in this embodiment) include surfaces 40 that intersect at sharp corners 44 including angles of 90 degrees or less. The corners 44 promote nucleation of multiple cracks 48 that substantially form simultaneously at a plurality of locations in response to structural loading of the tool 10 prior to breakage of the tool 10. Such loading can be by direct mechanical loading or by hydraulic loading of the body 14. The foregoing geometric construction of the body 14 promotes breakage of the body 14 into multiple pieces with many of the multiple pieces being of substantially similar size.
  • Additionally, the disintegrable material 18 from which the bodies 14, 114 are made also promotes breakage of the bodies 14, 114 into multiple pieces with many of the multiple pieces being of substantially similar size. Material properties of the material 18 are such that the bodies 14, 114 made from the material 18 will tend to break before the bodies 14, 114 plastically deform. One way the material 18 contributes to this behavior is by storing elastic energy therewithin prior to breaking. This stored elastic energy promotes breakage into a plurality of relatively small pieces as opposed to just two relatively large pieces. Materials that include grains that are surrounded by hard intermetallic layers are good candidates for usage as the disintegrable material 18. Such hard intermetallic layers can increase a modulus to prevent formation of one major crack and serve as sites of multiple crack nucleation and propagation. Materials disclosed in copending U.S. patent application attorney docket number OMS4-56759 (BAO1178) assigned to the same assignee and filed on the same date as this application, are good candidates for usage as the disintegrable material 18.
  • The material 18, in addition to promoting breakage into a plurality of relative small and similarly sized pieces, also promotes disintegration of the pieces. Such disintegration can by facilitated by exposure to a target environment. One such target environment is in an earth formation borehole such as those drilled in the hydrocarbon recovery and carbon dioxide sequestration industries. Such environments include high temperature, high pressures and caustic fluids. The material 18 can disintegrate itself through expedited galvanic corrosion with implemented microscopic galvanic cells within the material microstructure when contacting natural wellbore brine. In such an embodiment no artificial fluid is necessary in order for the material 18 to disintegrate. Tools employable in these industries that can benefit from the embodiments disclosed herein include the flappers illustrated herein as the tools 10, 110. Other possible tools include but are not limited to downhole tools that are a single component, such as, hold down dogs and springs, screen protectors, seal bore protectors, electric submersible pump space out subs, full bore guns, chemical encapsulations, slips, dogs, springs and collet restraints, liner setting sleeves, timing actuation devices, emergency grapple release, chemical encapsulation containers, screen protectors, beaded screen protectors, whipstock lugs, whipstock coatings, pins, set screws, emergency release tools, gas generators, mandrels, release mechanisms, staging collars, C-rings, components of perforating gun systems, disintegrable whipstock for casing exit tools, shear pins, dissolvable body locking rings, mud motor stators, progressive cavity pump stators, shear screws. Or the downhole tool is configured to inhibit flow without being pumpable, such as, seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve seals, sub-surface safety valve flapper seal, dynamic seals, V-rings, back up rings, drill bit seals, liner port plugs, atmospheric discs, atmospheric chamber discs, debris barriers, drill in stim liner plugs, inflow control device plugs, flappers, seats, ball seats, direct connect disks, drill-in linear disks, gas lift valve plug, fluid loss control flappers, electric submersible pump seals, shear out plugs, flapper valves, gaslift valves, sleeves. Or the downhole tool is configured to inhibit flow and be pumpable, such as, plugs, direct connect plugs, bridge plugs, wiper plugs, frac plugs, components of frac plugs, drill in sand control beaded screen plugs, inflow control device plugs, polymeric plugs, disappearing wiper plugs, cementing plugs, balls, diverter balls, shifting and setting balls, swabbing element protectors, buoyant recorders, pumpable collets, float shoes, and darts.
  • FIG. 4 depicts a magnified partial cross sectional view through an alternate embodiment of a body 214 employable in a frangible and disintegrable tool disclosed herein. Faces 220 of the body 214 can be flat or smooth making the inclusion of stress risers 222 employed therewithin substantially hidden from view when the body 214 is viewed externally. The body 214 is constructed of two portions 214A and 214B that are connected or weakly glued together such that stress encountered by the body 214 is concentrated at the stress risers 222. As with the stress risers 22 the stress risers 222 include surfaces 240 that intersect at sharp corners 244 including but not limited to 90 degree angles. The foregoing geometric construction of the body 214 promotes breakage of the body 214 into multiple pieces with many of the multiple pieces being of substantially similar size.
  • While the invention has been described with reference to an exemplary embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the claims. Also, in the drawings and the description, there have been disclosed exemplary embodiments of the invention and, although specific terms may have been employed, they are unless otherwise stated used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention therefore not being so limited. Moreover, the use of the terms first, second, etc. do not denote any order or importance, but rather the terms first, second, etc. are used to distinguish one element from another. Furthermore, the use of the terms a, an, etc. do not denote a limitation of quantity, but rather denote the presence of at least one of the referenced item.

Claims (24)

What is claimed is:
1. A frangible and disintegrable tool comprising:
a body being made of a disintegrable material having a plurality of stress risers, the disintegrable material and the plurality of stress risers being configured such that when physically loaded to failure the body will break into a plurality of pieces and a plurality of the plurality of pieces will be substantially similar in size.
2. The frangible and disintegrable tool of claim 1, wherein the plurality of stress risers are oriented in a repeating pattern on the body.
3. The frangible and disintegrable tool of claim 2, wherein the repeating pattern includes protrusions or recesses from a surface of the body that have at least one repeating cross sectional shape thereof.
4. The frangible and disintegrable tool of claim 3, wherein the at least one repeating cross sectional shape is selected from the group consisting of triangles, parallelograms, ellipses and combinations of these shapes.
5. The frangible and disintegrable tool of claim 1, wherein the plurality of stress risers include surfaces that intersect at sharp corners.
6. The frangible and disintegrable tool of claim 5, wherein the sharp corners include right angles.
7. The frangible and disintegrable tool of claim 1, wherein the plurality of stress risers facilitate formation of multiple cracks prior to breakage of the body.
8. The frangible and disintegrable tool of claim 1, wherein the physical loading includes at least one of mechanical and hydraulic loading.
9. The frangible and disintegrable tool of claim 1, wherein the disintegrable material will break before plastically deforming.
10. The frangible and disintegrable tool of claim 1, wherein the disintegrable material stores elastic energy therewithin before breaking that promotes breakage into the plurality of pieces.
11. The frangible and disintegrable tool of claim 1, wherein the disintegrable material includes grains that are surrounded by a hard intermetallic layer.
12. The frangible and disintegrable tool of claim 1, wherein the body is configured to disintegrate in a target downhole environment.
13. The frangible and disintegrable tool of claim 1, wherein the body is a portion of a downhole tool selected from the group consisting of seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve seals, sub-surface safety valve flapper seal, dynamic seals, V-rings, back up rings, drill bit seals, liner port plugs, atmospheric discs, atmospheric chamber discs, debris barriers, drill in stim liner plugs, inflow control device plugs, flappers, seats, ball seats, direct connect disks, drill-in linear disks, gas lift valve plug, fluid loss control flappers, electric submersible pump seals, shear out plugs, flapper valves, gaslift valves, sleeves.
14. The downhole tool of claim 1, wherein the downhole tool inhibits flow.
15. The downhole tool of claim 14, wherein the downhole tool is pumpable within a downhole environment and is selected from the group consisting of plugs, direct connect plugs, bridge plugs, wiper plugs, frac plugs, components of frac plugs, drill in sand control beaded screen plugs, inflow control device plugs, polymeric plugs, disappearing wiper plugs, cementing plugs, balls, diverter balls, shifting and setting balls, swabbing element protectors, buoyant recorders, pumpable collets, float shoes, and darts.
16. The downhole tool of claim 14, wherein the downhole tool is selected from the group consisting of seals, high pressure beaded frac screen plugs, screen basepipe plugs, coatings for balls and seats, compression packing elements, expandable packing elements, O-rings, bonded seals, bullet seals, sub-surface safety valve seals, sub-surface safety valve flapper seal, dynamic seals, V-rings, back up rings, drill bit seals, liner port plugs, atmospheric discs, atmospheric chamber discs, debris barriers, drill in stim liner plugs, inflow control device plugs, flappers, seats, ball seats, direct connect disks, drill-in linear disks, gas lift valve plug, fluid loss control flappers, electric submersible pump seals, shear out plugs, flapper valves, gaslift valves, sleeves.
17. The downhole tool of claim 1, wherein the body is made of two portions.
18. The downhole tool of claim 1, wherein the stress risers are substantially hidden from view when the body is viewed externally.
19. A method of removing a tool, comprising:
loading the tool;
forming a plurality of cracks at stress risers in the tool storing elastic energy in the material of the tool; and
breaking the tool into a plurality of pieces, a plurality of which are similarly sized.
20. The method of removing a tool of claim 14, further comprising disintegrating the plurality of pieces.
21. The method of removing a tool of claim 15, wherein the disintegrating includes dissolving.
22. The method of removing a tool of claim 14, further comprising simultaneously forming the plurality of cracks.
23. The method of removing a tool of claim 14, further comprising forming the plurality of cracks at substantially equal distances from one another.
24. The method of removing a tool of claim 14, further comprising loading the tool hydraulically or mechanically.
US14/151,134 2014-01-09 2014-01-09 Frangible and disintegrable tool and method of removing a tool Abandoned US20150191986A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/151,134 US20150191986A1 (en) 2014-01-09 2014-01-09 Frangible and disintegrable tool and method of removing a tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/151,134 US20150191986A1 (en) 2014-01-09 2014-01-09 Frangible and disintegrable tool and method of removing a tool

Publications (1)

Publication Number Publication Date
US20150191986A1 true US20150191986A1 (en) 2015-07-09

Family

ID=53494761

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/151,134 Abandoned US20150191986A1 (en) 2014-01-09 2014-01-09 Frangible and disintegrable tool and method of removing a tool

Country Status (1)

Country Link
US (1) US20150191986A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017223153A1 (en) * 2016-06-22 2017-12-28 Baker Hughes Incorporated Component and method
US10335855B2 (en) * 2015-09-14 2019-07-02 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US10807355B2 (en) 2015-09-14 2020-10-20 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US11066900B2 (en) 2017-10-17 2021-07-20 Halliburton Energy Services, Inc. Removable core wiper plug

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645331A (en) * 1970-08-03 1972-02-29 Exxon Production Research Co Method for sealing nozzles in a drill bit
US4010583A (en) * 1974-05-28 1977-03-08 Engelhard Minerals & Chemicals Corporation Fixed-super-abrasive tool and method of manufacture thereof
US5479986A (en) * 1994-05-02 1996-01-02 Halliburton Company Temporary plug system
US5607017A (en) * 1995-07-03 1997-03-04 Pes, Inc. Dissolvable well plug
US5941309A (en) * 1996-03-22 1999-08-24 Appleton; Robert Patrick Actuating ball
US6220350B1 (en) * 1998-12-01 2001-04-24 Halliburton Energy Services, Inc. High strength water soluble plug
GB2362844A (en) * 2000-05-30 2001-12-05 Baker Hughes Inc Method for crushing carbide
US20040244629A1 (en) * 2002-09-25 2004-12-09 Bill Jopson Frangible bullet
US6896075B2 (en) * 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US20070044958A1 (en) * 2005-08-31 2007-03-01 Schlumberger Technology Corporation Well Operating Elements Comprising a Soluble Component and Methods of Use
US7210533B2 (en) * 2004-02-11 2007-05-01 Halliburton Energy Services, Inc. Disposable downhole tool with segmented compression element and method
US20070107908A1 (en) * 2005-11-16 2007-05-17 Schlumberger Technology Corporation Oilfield Elements Having Controlled Solubility and Methods of Use
US20070221373A1 (en) * 2006-03-24 2007-09-27 Murray Douglas J Disappearing Plug
US20090044949A1 (en) * 2007-08-13 2009-02-19 King James G Deformable ball seat
US20090136320A1 (en) * 2006-02-22 2009-05-28 Catlin Bryan L Internally Threaded Connector
US7699101B2 (en) * 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
US7712521B2 (en) * 2003-11-21 2010-05-11 Tco As Device of a test plug
US7806189B2 (en) * 2007-12-03 2010-10-05 W. Lynn Frazier Downhole valve assembly
US7909104B2 (en) * 2006-03-23 2011-03-22 Bjorgum Mekaniske As Sealing device
US20110132619A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Dissolvable Tool and Method
US20110186306A1 (en) * 2010-02-01 2011-08-04 Schlumberger Technology Corporation Oilfield isolation element and method
US20110247833A1 (en) * 2010-04-12 2011-10-13 Halliburton Energy Services, Inc. High strength dissolvable structures for use in a subterranean well
US20110277989A1 (en) * 2009-04-21 2011-11-17 Frazier W Lynn Configurable bridge plugs and methods for using same
US20110284243A1 (en) * 2010-05-19 2011-11-24 Frazier W Lynn Isolation tool actuated by gas generation
US20120130470A1 (en) * 2009-04-27 2012-05-24 Med Institute, Inc Stent with protected barbs
US8276670B2 (en) * 2009-04-27 2012-10-02 Schlumberger Technology Corporation Downhole dissolvable plug
US20130146302A1 (en) * 2011-12-13 2013-06-13 Baker Hughes Incorporated Controlled electrolytic degredation of downhole tools
US20130327540A1 (en) * 2012-06-08 2013-12-12 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion
US9068447B2 (en) * 2010-07-22 2015-06-30 Exxonmobil Upstream Research Company Methods for stimulating multi-zone wells
US9080098B2 (en) * 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US9222322B2 (en) * 2008-04-08 2015-12-29 Tco As Plug construction comprising a hydraulic crushing body
US9291031B2 (en) * 2010-05-19 2016-03-22 W. Lynn Frazier Isolation tool

Patent Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3645331A (en) * 1970-08-03 1972-02-29 Exxon Production Research Co Method for sealing nozzles in a drill bit
US4010583A (en) * 1974-05-28 1977-03-08 Engelhard Minerals & Chemicals Corporation Fixed-super-abrasive tool and method of manufacture thereof
US5479986A (en) * 1994-05-02 1996-01-02 Halliburton Company Temporary plug system
US5607017A (en) * 1995-07-03 1997-03-04 Pes, Inc. Dissolvable well plug
US5941309A (en) * 1996-03-22 1999-08-24 Appleton; Robert Patrick Actuating ball
US6220350B1 (en) * 1998-12-01 2001-04-24 Halliburton Energy Services, Inc. High strength water soluble plug
GB2362844A (en) * 2000-05-30 2001-12-05 Baker Hughes Inc Method for crushing carbide
US20040244629A1 (en) * 2002-09-25 2004-12-09 Bill Jopson Frangible bullet
US6896075B2 (en) * 2002-10-11 2005-05-24 Weatherford/Lamb, Inc. Apparatus and methods for drilling with casing
US7712521B2 (en) * 2003-11-21 2010-05-11 Tco As Device of a test plug
US7210533B2 (en) * 2004-02-11 2007-05-01 Halliburton Energy Services, Inc. Disposable downhole tool with segmented compression element and method
US20070044958A1 (en) * 2005-08-31 2007-03-01 Schlumberger Technology Corporation Well Operating Elements Comprising a Soluble Component and Methods of Use
US20070107908A1 (en) * 2005-11-16 2007-05-17 Schlumberger Technology Corporation Oilfield Elements Having Controlled Solubility and Methods of Use
US20090136320A1 (en) * 2006-02-22 2009-05-28 Catlin Bryan L Internally Threaded Connector
US7909104B2 (en) * 2006-03-23 2011-03-22 Bjorgum Mekaniske As Sealing device
US20070221373A1 (en) * 2006-03-24 2007-09-27 Murray Douglas J Disappearing Plug
US7699101B2 (en) * 2006-12-07 2010-04-20 Halliburton Energy Services, Inc. Well system having galvanic time release plug
US20090044949A1 (en) * 2007-08-13 2009-02-19 King James G Deformable ball seat
US7806189B2 (en) * 2007-12-03 2010-10-05 W. Lynn Frazier Downhole valve assembly
US9222322B2 (en) * 2008-04-08 2015-12-29 Tco As Plug construction comprising a hydraulic crushing body
US20110277989A1 (en) * 2009-04-21 2011-11-17 Frazier W Lynn Configurable bridge plugs and methods for using same
US8276670B2 (en) * 2009-04-27 2012-10-02 Schlumberger Technology Corporation Downhole dissolvable plug
US20120130470A1 (en) * 2009-04-27 2012-05-24 Med Institute, Inc Stent with protected barbs
US20110132619A1 (en) * 2009-12-08 2011-06-09 Baker Hughes Incorporated Dissolvable Tool and Method
US9267347B2 (en) * 2009-12-08 2016-02-23 Baker Huges Incorporated Dissolvable tool
US20110186306A1 (en) * 2010-02-01 2011-08-04 Schlumberger Technology Corporation Oilfield isolation element and method
US20110247833A1 (en) * 2010-04-12 2011-10-13 Halliburton Energy Services, Inc. High strength dissolvable structures for use in a subterranean well
US20110284243A1 (en) * 2010-05-19 2011-11-24 Frazier W Lynn Isolation tool actuated by gas generation
US9291031B2 (en) * 2010-05-19 2016-03-22 W. Lynn Frazier Isolation tool
US9068447B2 (en) * 2010-07-22 2015-06-30 Exxonmobil Upstream Research Company Methods for stimulating multi-zone wells
US9080098B2 (en) * 2011-04-28 2015-07-14 Baker Hughes Incorporated Functionally gradient composite article
US20130146302A1 (en) * 2011-12-13 2013-06-13 Baker Hughes Incorporated Controlled electrolytic degredation of downhole tools
US20130327540A1 (en) * 2012-06-08 2013-12-12 Halliburton Energy Services, Inc. Methods of removing a wellbore isolation device using galvanic corrosion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10335855B2 (en) * 2015-09-14 2019-07-02 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
US10807355B2 (en) 2015-09-14 2020-10-20 Baker Hughes, A Ge Company, Llc Additive manufacturing of functionally gradient degradable tools
WO2017223153A1 (en) * 2016-06-22 2017-12-28 Baker Hughes Incorporated Component and method
US11066900B2 (en) 2017-10-17 2021-07-20 Halliburton Energy Services, Inc. Removable core wiper plug
US11608707B2 (en) 2017-10-17 2023-03-21 Halliburton Energy Services, Inc. Removable core wiper plug

Similar Documents

Publication Publication Date Title
US10378303B2 (en) Downhole tool and method of forming the same
US11299956B2 (en) Disintergratable plug element
US9217319B2 (en) High-molecular-weight polyglycolides for hydrocarbon recovery
US10480276B2 (en) Wellbore plug isolation system and method
CA2955925C (en) Wellbore isolation devices with degradable slip assemblies with slip inserts
US6915856B2 (en) Apparatus and methods for preventing axial movement of downhole tool assemblies
CA2915601A1 (en) Downhole drop plugs, downhole valves, frac tools, and related methods of use
US9739107B2 (en) Removable downhole article with frangible protective coating, method of making, and method of using the same
US9670750B2 (en) Methods of operating well bore stimulation valves
US8453743B2 (en) Methods of fracturing an openhole well using venturi section
EP3354842B1 (en) Ball valve safety plug
WO2015187278A1 (en) Dissolvable sieve, particulate tolerant system and method of protecting a tool from particulate
US20150191986A1 (en) Frangible and disintegrable tool and method of removing a tool
US20160258245A1 (en) Packer Assembly with Thermal Expansion Buffers
WO2019050910A1 (en) Leak rate reducing sealing device
Akhtar et al. Swelling elastomer applications in oil and gas industry
NO20210901A1 (en) Hydraulic landing nipple
US10961798B2 (en) Methods of disintegrating downhole tools containing cyanate esters
US11959354B2 (en) Moveable disintegratable plug element
US20220282591A1 (en) Frac diverter and method
Carrejo et al. Improving Reliability of Multi-Zone Fracturing Treatments While Optimising Efficiency
Hailey et al. Tubing-conveyed perforating with hydraulic set packers and a new high-pressure retrievable hydraulic packer

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAKER HUGHES INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DENG, GUIJUN;MA, GUOBIN;ZHANG, ZHIHUI;AND OTHERS;SIGNING DATES FROM 20140130 TO 20140205;REEL/FRAME:032335/0628

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION