US20150260190A1 - High efficiency low specific speed centrifugal pump - Google Patents

High efficiency low specific speed centrifugal pump Download PDF

Info

Publication number
US20150260190A1
US20150260190A1 US14/435,507 US201314435507A US2015260190A1 US 20150260190 A1 US20150260190 A1 US 20150260190A1 US 201314435507 A US201314435507 A US 201314435507A US 2015260190 A1 US2015260190 A1 US 2015260190A1
Authority
US
United States
Prior art keywords
compliant plate
pump
centrifugal pump
sealing
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/435,507
Inventor
Lorenzo Bergamini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nuovo Pignone SRL
Original Assignee
Nuovo Pignone SRL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nuovo Pignone SRL filed Critical Nuovo Pignone SRL
Publication of US20150260190A1 publication Critical patent/US20150260190A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/106Shaft sealings especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/165Sealings between pressure and suction sides especially adapted for liquid pumps
    • F04D29/167Sealings between pressure and suction sides especially adapted for liquid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3284Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings characterised by their structure; Selection of materials
    • F16J15/3292Lamellar structures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • F05D2240/59Lamellar seals

Definitions

  • the present disclosure concerns improvements to centrifugal pumps, in particular but not exclusively multi-stage centrifugal pumps. More specifically, the present disclosure relates to improvements aimed at increasing the efficiency of centrifugal pumps having a low specific speed.
  • Multi-stage centrifugal pumps are widely used to boost the pressure of liquids.
  • a multi-stage centrifugal pump usually comprises a casing and a shaft arranged for rotation in the casing.
  • a plurality of impellers is keyed on the shaft and are rotatingly housed in respective chambers formed in the pump casing.
  • Inter-stage sealing rings and bushings are fit in the casing and co-act with the respective impellers to seal each side of each impeller, thus preventing the pressurized liquid delivered at the outlet of one impeller to flow back towards the upstream stage.
  • the efficiency of the sealing rings and sealing bushings heavily influence the overall efficiency of the pump.
  • the drop in overall pump efficiency is particularly relevant in case of low specific speed stages, i.e. in those pump stages or multi-stage pumps designed to process reduced flow rates with high head, i.e. high difference between outlet pressure and inlet pressure.
  • Brush seals have been suggested in centrifugal pumps in applications where the processed fluid contains solid particles or is a multi-phase fluid. Brush seals, however, have a limited sealing efficiency and have a limited pressure drop capability.
  • the disclosure concerns an improved sealing arrangement capable of increasing efficiency of a single-stage or multi-stage centrifugal pump comprising a casing, a rotary shaft arranged for rotation in said casing and a one or a plurality of pump stages.
  • Each pump stage comprises an impeller secured on the rotary shaft and arranged for rotation in a respective impeller chamber.
  • a plurality of sealing members are further provided, for reducing leakage between a rotary component and a respective stationary component of the pump.
  • at least one of the sealing members in at least one of the pump stages comprises an arrangement of compliant plates or compliant plate members attached in facing relation at root ends to the respective stationary component and forming a sealing ring between the stationary component and the respective rotary component.
  • One or more of the pump stages have a specific speed defined as
  • Ns ( ⁇ q 1/2 )/( h 3/4 )
  • w is a pump shaft rotational speed expressed in rpm
  • q is a flow rate across the stage, expressed in m 3 /s at Best Efficiency Point (BEP)
  • h is a head rise across the stage expressed in m.
  • each pump stage has a low specific speed, not higher than 25.
  • the pump can be comprised of N stages and N ⁇ 1 stages have a specific speed equal to or less than 25.
  • the first stage i.e. the one nearer to the pump inlet or suction side can be different from the remaining stages and have a specific speed higher than 25.
  • the specific speed of one or more, and, in an embodiment, all except one, or all stages of the multistage pump can be equal to or less than 23, in an embodiment, equal to or less than 22 and, in an embodiment, equal to or less than 20 for example equal to or less than 15.
  • each stage of the pump comprises an inlet-side sealing member and an outlet-side sealing member.
  • At least the inlet-side sealing member of at least one, some or all the stages are comprised of compliant plate members arranged in facing relation as described above.
  • at least the inlet sealing member is comprised of compliant plate members.
  • the inlet-side sealing member can be arranged for co-action with an impeller eye of the respective impeller.
  • the outlet-side sealing member can be arranged for co-action with an impeller hub of the respective impeller.
  • one, some or all the outlet-side sealing members of the pump stages are comprised of compliant plate members.
  • sealing members comprising compliant plate members are used, between a stationary part or component of the casing and a portion of the rotary shaft or a portion of a component, such as a bushing or the like integrally rotating with the rotary shaft.
  • Additional sealing members formed by compliant plate members can be provided between an outermost pump stage and a shaft end containing the mechanical seals that isolates the pump from atmosphere.
  • the pump can be provided with a balancing drum.
  • One or more sealing members co-acting with the balancing drum can be provided.
  • One or more said sealing members can be comprised of or formed by compliant plate members.
  • the compliant plate members advantageously have a flat configuration, with a cross section having a first dimension in axial direction and a second dimension in tangential direction (thickness of the plate), the first dimension being larger than the second dimension, i.e. the compliant plates have a width in the axial direction much larger than the thickness thereof.
  • the axial dimension is at least 10 times the tangential dimension.
  • the narrow cross section of the compliant plate provides flexural deformability in the tangential direction and stiffness in the axial direction.
  • Compliant plates-sealing arrangements are known per se. Their application in turbines is known. However, compliant plate members have not been envisaged for turbo-pumps.
  • Compliant plate sealing members are characterized by a total leakage flow, which is the combination of the leakage between the tip ends of the compliant plate members and the rotary component and of the leakage between adjacent compliant plate members. The first contribution is proportional to the sealing diameter and the second contribution is proportional to the seal height and shaft diameter. In turbo-pump sealing arrangements the ratio between the seal height and the sealing diameter is 4-5 times greater than in turbines. Compliant plate sealing arrangements in pumps would therefore result in unacceptable leakage flows.
  • a labyrinth seal comprising compliant plate members with one or more slits extending from the radially outmost root end towards an intermediate location along the plate height.
  • One or more stationary rings, constrained to the stationary part of the sealing arrangement extend radially inwardly in the slits of the compliant plate members forming a labyrinth, which increases efficiency of the sealing arrangement.
  • FIG. 1 illustrates a schematic section of a multi-stage, low specific speed pump
  • FIG. 2 illustrates an enlargement of one stage of the pump of FIG. 1 ;
  • FIG. 3 illustrates a sectional view of one compliant plate seal
  • FIG. 4 illustrates a schematic view of a compliant plate sealing arrangement.
  • FIG. 1 illustrates a longitudinal section according to a vertical plane of a multi-stage centrifugal pump 1 .
  • the centrifugal pump 1 has a casing indicated generally at 3 and comprised of a barrel 5 and a cover 7 .
  • the casing 3 houses a driven shaft 9 supported by end bearings 11 , 13 .
  • a plurality of impellers 15 are torsionally connected on shaft 9 and rotate therewith.
  • Each impeller 15 can be housed in a chamber 17 having an axial inlet 19 and a radial outlet 21 (see in particular FIG. 2 ). In a manner known per se the chambers 17 are connected in series.
  • Each impeller 15 and respective chamber 17 form one pump stage.
  • the centrifugal pump 1 is a so-called back-to-back pump, with a suction manifold 23 A and a delivery or discharge manifold 23 B.
  • the impellers 15 are divided in two series of oppositely arranged impellers, labeled 15 X and 15 Y respectively, arranged in a back-to-back configuration.
  • the inlet flow through suction manifold 23 A is processed sequentially in a first, inlet impeller 16 , in the first series of impellers 15 X, subsequently in the second series of impellers 15 Y and is finally delivered through the discharge manifold 23 B.
  • Fluid channeling connecting the two sets of impellers is provided between the outer barrel 5 and an inner casing portion 4 , wherein the chambers 17 are formed.
  • the inner casing portion 4 can be formed by two halves connected to one another along a plane parallel to the section of FIG. 1 .
  • each impeller 15 comprises an impeller hub 15 H and an impeller shroud 15 S, between which a plurality of blades 15 B are arranged.
  • an inlet side sealing member and an outlet side sealing member can be provided. More specifically, between the impeller shroud 15 S and the casing an inter-stage sealing ring 27 is arranged at the inlet side of the stage and forms an inlet-side sealing member of the pump stage.
  • the inter-stage sealing ring 27 is arranged between a stationary portion of the pump casing and an impeller eye 15 E formed by the impeller shroud 15 S and co-acts with said impeller eye 15 E.
  • an inter-stage sealing bushing 29 is arranged at the outlet side of the stage, between the casing 3 and the hub 15 H of the impeller 15 .
  • the sealing bushing 29 forms an outlet-side sealing member of the pump stage.
  • sealing rings and sealing bushings here also cumulatively designated “sealing members”, prevent pressurized liquid exiting the impeller from returning towards the inlet of the stage, as well as liquid at the inlet of the subsequent stage to enter the previous stage from the back of the impeller 15 .
  • further sealing arrangements are provided in various axial positions along the shaft 9 of the centrifugal pump 1 .
  • radial shaft-sealing members are shown at 31 and 35 , near the bearings 11 , 13 of the shaft 9 .
  • a further intermediate radial shaft-sealing member 33 can be arranged in an intermediate position of the shaft 9 , between the shaft and the stationary casing 3 , separating the two sets of back-to-back arranged impellers 15 X and 15 Y.
  • the shaft-sealing member 31 is arranged between a shaft terminal portion 9 A and the outermost impeller of impeller group 15 X.
  • the shaft-sealing member 35 is arranged between the opposite shaft terminal portion 9 B and the outermost impeller of the impeller group 15 Y.
  • An auxiliary pump stage with a dual impeller 16 can be provided between the shaft-sealing member 35 and the shaft terminal portion 9 B.
  • the shaft terminal portions 9 A, 9 B are supported in the end bearings 11 , 13 , respectively.
  • Outer mechanical sealing members 12 and 14 can further be provided between each bearing 11 , 13 and the shaft-sealing members 31 and 33 , respectively.
  • At least one of the sealing members 27 , 29 , 31 , 33 , 35 is designed as a compliant plate sealing arrangement.
  • only one, some or all the shaft-sealing members 31 , 33 , 35 , arranged on the rotary shaft 9 are designed as compliant plate sealing arrangements.
  • only the inlet side sealing members 27 , or the outlet side sealing members 29 or both, are designed as compliant plate sealing members.
  • all the sealing members 27 , 31 , 33 and 35 and possibly also the sealing members 29 are designed as compliant plate sealing members.
  • FIGS. 3 and 4 illustrate a longitudinal section along a plane containing the rotation axis of the centrifugal pump 1 and a perspective view of an exemplary arrangement of compliant plate members forming a sealing member.
  • FIGS. 3 and 4 illustrate one of the sealing rings 27 provided around the impeller eye of the impellers 15 .
  • the sealing member 27 comprises a housing 37 , which is stationarily connected to the pump casing 3 .
  • the housing 37 can be comprised of a back ring 39 and a front ring 41 .
  • the back ring 39 and/or the front ring 41 can be omitted.
  • the front ring 41 and the back ring 39 are formed as an integral part of the housing 37 .
  • the front ring can be machined in the casing 3 .
  • an intermediate annular wall 42 is provided between the back ring and the front ring.
  • the housing 37 forms a stationary component of the sealing arrangement.
  • each compliant plate member 43 has a root end or root 43 R and a tip end or tip 43 T, the root end 43 R being the radially outmost edge of the compliant plate member and the tip being the radially innermost edge of the compliant plate member.
  • the compliant plate members 43 are secured at their root ends 43 R to the housing 37 .
  • the root ends of the compliant plate members 43 are secured to the intermediate annular wall 42 .
  • the compliant plate members 43 extend radially inwardly towards the rotation axis A-A of the shaft 9 and their tip ends 43 T are arranged near or in contact with the respective rotary component, in the example illustrated in FIGS.
  • the compliant plate members 43 are arranged in faced relationship, i.e. face-to-face, and inclined with respect to the radial direction, to allow rotation of the shaft 9 in the rotary direction fR ( FIG. 4 ).
  • compliant plate members can be used also for the sealing member 29 and/or for the intermediate and end sealing arrangements 31 , 33 , 35 .
  • the sealing members 31 , 33 and 35 can comprise compliant plate members having radially inwardly oriented edges co-acting directly with the outer surface of the shaft 9 .
  • the sealing members 31 , 33 , 35 are comprised of bushings 31 A, 33 A, 35 A, which are keyed on the shaft 9 and rotate therewith.
  • the compliant plate members co-act with the outer cylindrical surface of the bushings 31 A, 33 A, 35 A.
  • each compliant plate member has a generally laminar shape.
  • Each compliant plate member can have a substantially rectangular cross section, with a dimension in the axial direction, which is much larger than the dimension in the tangential direction.
  • the compliant plate members are therefore axially stiff, but have a bending flexibility in the tangential direction.
  • each compliant plate member 43 comprises at least one slit extending from the root end 43 R of the compliant plate member 43 to an intermediate position along the radial extension of the compliant plate member.
  • each compliant plate member 43 comprises three slits 45 A, 45 B, 45 C.
  • the slits are, in an embodiment, rectilinear and extend in a radial direction.
  • the central slit 45 B is longer than the side slits 45 A, 45 C.
  • the compliant plate members 43 are arranged such that the slits 45 A, 45 B, 45 C are aligned. This arrangement forms three annular slots extending around the sealing arrangement formed by the compliant plate members 43 .
  • Corresponding rings 47 A, 47 B, 47 C secured to the housing 37 extend radially into the respective slots formed by the aligned slits 45 A, 45 B, 45 C of the compliant plate members.
  • the rings 47 A, 47 B and 47 C extend from the intermediate annular wall 42 of the housing 37 .
  • the rings 47 A, 47 B and 47 C as well as the annular slots formed by the slits 45 A, 45 B, 45 C in the facing compliant plate members 43 can have variable radial lengths. They can also have a variable axial width. While in the embodiment illustrated in FIGS. 3 and 4 three slits 45 A, 45 B, 45 C are provided in each compliant plate member 43 , a different number of slits and correspondingly a different number of rings 47 A, 47 B, 47 C can be provided, based e.g. on design considerations. In other, less advantageous embodiments, no rings and no slots are provided.
  • the compliant plate members will in that case be solid rather than slotted as depicted in the figures. This simplified embodiment, however, provides a less efficient sealing effect, as will be clarified later on.
  • the shape of the slits and the cross sectional shape of the rings can be rectangular, as shown in the exemplary embodiment, but other shapes can be used instead.
  • the slits and the annular rings can have a V-shaped or a U-shaped cross section.
  • the outer perimeter of the compliant plate members 43 can be rectangular, as illustrated, or differently shaped, e.g. T-shaped, trapezoidal or the like, e.g. with increasing width from the root end to the tip, or vice-versa.
  • each compliant plate member 43 provides axial stiffness and bending flexibility in the tangential direction, as noted above.
  • the sealing member formed by the annularly arranged compliant plate members 43 provides an efficient sealing functionality also in case of large pressure differences between the back and front sides of the sealing member, i.e. in case of large head values, thanks to the axial stiffness provided by the substantially planar shape of the compliant plate members 43 . Thanks to the stiffness of the compliant plate members 43 in the axial direction, even in case of high differential head across the pump stage, the deformation of the sealing arrangement in the axial direction will be negligible, thereby preserving the sealing functionality.
  • the combination of the one or more radial rings 47 A, 47 B, 47 C and circumferential slots formed by the slits 45 A, 45 B, 45 C of the compliant plate members 43 provide a labyrinth sealing effect, imposing a tortuous path to the leakage flow from the pressure side to the suction side of the sealing member, thereby increasing the resistance to leakage flow.
  • This particularly efficient sealing arrangement results in an increased efficiency of centrifugal pumps characterized by a low specific speed.
  • the specific speed of a stage of a centrifugal pump can be defined as
  • a low specific speed centrifugal pump stage is one where the specific speed is
  • a multistage centrifugal pump usually has a plurality of stages with identical impellers.
  • the multistage pump having a low specific speed is one where all the stages have a low specific speed.
  • the first stage of the multistage centrifugal pump has an impeller, which differs from the remaining impellers of the centrifugal pump and which can have a higher specific speed.
  • compliant plate members in centrifugal pumps, especially multi-stage centrifugal pumps, allows reducing the number of stages and therefore the number of impellers, increasing the head, i.e. the pressure difference, across each stage, maintaining a high overall pump efficiency, due to the sealing functionality of the compliant plate sealing members.

Abstract

A centrifugal pump comprising: a casing; a rotary shaft arranged for rotation in the casing; a plurality of pump stages, each pump stage comprising an impeller secured on said rotary shaft and arranged for rotation in a respective impeller chamber formed in the casing. The pump further comprises a plurality of sealing members for reducing leakage between a rotary component and a respective stationary component. At least one of the sealing members comprises an arrangement of compliant plate members attached in facing relation at root ends to the respective stationary component and forming a sealing ring between the stationary component and the respective rotary component. Moreover, at least some pump stages have a specific speed of 25 or less.

Description

    BACKGROUND
  • The present disclosure concerns improvements to centrifugal pumps, in particular but not exclusively multi-stage centrifugal pumps. More specifically, the present disclosure relates to improvements aimed at increasing the efficiency of centrifugal pumps having a low specific speed.
  • Multi-stage centrifugal pumps are widely used to boost the pressure of liquids. A multi-stage centrifugal pump usually comprises a casing and a shaft arranged for rotation in the casing. A plurality of impellers is keyed on the shaft and are rotatingly housed in respective chambers formed in the pump casing.
  • Inter-stage sealing rings and bushings are fit in the casing and co-act with the respective impellers to seal each side of each impeller, thus preventing the pressurized liquid delivered at the outlet of one impeller to flow back towards the upstream stage. The efficiency of the sealing rings and sealing bushings heavily influence the overall efficiency of the pump.
  • In general terms, given a certain pressure difference across the pump, between the pump inlet and the pump outlet, a higher number of stages results in more efficient inter-stage sealing, because a smaller pressure drop exists across each sealing ring or sealing bushing. This results in higher efficiency of the pump. Conversely, especially in cases of high-pressure, multi-stage centrifugal pumps, the reduction of the total number of stages leads to increased pressure drop across the inter-stage seals and consequently in increased liquid leakage.
  • The drop in overall pump efficiency is particularly relevant in case of low specific speed stages, i.e. in those pump stages or multi-stage pumps designed to process reduced flow rates with high head, i.e. high difference between outlet pressure and inlet pressure.
  • Brush seals have been suggested in centrifugal pumps in applications where the processed fluid contains solid particles or is a multi-phase fluid. Brush seals, however, have a limited sealing efficiency and have a limited pressure drop capability.
  • There is therefore a need for more efficient inter-stage sealing arrangements, particularly in low specific speed stages of multi-stage centrifugal pumps.
  • SUMMARY OF THE INVENTION
  • The disclosure concerns an improved sealing arrangement capable of increasing efficiency of a single-stage or multi-stage centrifugal pump comprising a casing, a rotary shaft arranged for rotation in said casing and a one or a plurality of pump stages. Each pump stage comprises an impeller secured on the rotary shaft and arranged for rotation in a respective impeller chamber. A plurality of sealing members are further provided, for reducing leakage between a rotary component and a respective stationary component of the pump. In some embodiments, at least one of the sealing members in at least one of the pump stages comprises an arrangement of compliant plates or compliant plate members attached in facing relation at root ends to the respective stationary component and forming a sealing ring between the stationary component and the respective rotary component. One or more of the pump stages have a specific speed defined as

  • Ns=(ωq 1/2)/(h 3/4)
  • equal to or less than 25, where
  • w is a pump shaft rotational speed expressed in rpm
  • q is a flow rate across the stage, expressed in m3/s at Best Efficiency Point (BEP)
  • h is a head rise across the stage expressed in m.
  • In some embodiments, each pump stage has a low specific speed, not higher than 25. In other embodiments, the pump can be comprised of N stages and N−1 stages have a specific speed equal to or less than 25. The first stage, i.e. the one nearer to the pump inlet or suction side can be different from the remaining stages and have a specific speed higher than 25.
  • In some embodiments, the specific speed of one or more, and, in an embodiment, all except one, or all stages of the multistage pump can be equal to or less than 23, in an embodiment, equal to or less than 22 and, in an embodiment, equal to or less than 20 for example equal to or less than 15.
  • In some embodiments, each stage of the pump comprises an inlet-side sealing member and an outlet-side sealing member. At least the inlet-side sealing member of at least one, some or all the stages are comprised of compliant plate members arranged in facing relation as described above. In particular, at least the inlet sealing member is comprised of compliant plate members. The inlet-side sealing member can be arranged for co-action with an impeller eye of the respective impeller. The outlet-side sealing member can be arranged for co-action with an impeller hub of the respective impeller. In further embodiments, one, some or all the outlet-side sealing members of the pump stages are comprised of compliant plate members.
  • In further embodiments, several sealing members comprising compliant plate members are used, between a stationary part or component of the casing and a portion of the rotary shaft or a portion of a component, such as a bushing or the like integrally rotating with the rotary shaft.
  • Additional sealing members formed by compliant plate members can be provided between an outermost pump stage and a shaft end containing the mechanical seals that isolates the pump from atmosphere.
  • In some embodiments, the pump can be provided with a balancing drum. One or more sealing members co-acting with the balancing drum can be provided. One or more said sealing members can be comprised of or formed by compliant plate members.
  • The compliant plate members advantageously have a flat configuration, with a cross section having a first dimension in axial direction and a second dimension in tangential direction (thickness of the plate), the first dimension being larger than the second dimension, i.e. the compliant plates have a width in the axial direction much larger than the thickness thereof. For example, the axial dimension is at least 10 times the tangential dimension. The narrow cross section of the compliant plate provides flexural deformability in the tangential direction and stiffness in the axial direction.
  • Compliant plates-sealing arrangements are known per se. Their application in turbines is known. However, compliant plate members have not been envisaged for turbo-pumps. Compliant plate sealing members are characterized by a total leakage flow, which is the combination of the leakage between the tip ends of the compliant plate members and the rotary component and of the leakage between adjacent compliant plate members. The first contribution is proportional to the sealing diameter and the second contribution is proportional to the seal height and shaft diameter. In turbo-pump sealing arrangements the ratio between the seal height and the sealing diameter is 4-5 times greater than in turbines. Compliant plate sealing arrangements in pumps would therefore result in unacceptable leakage flows. It has now been surprisingly discovered that the combination of compliant plate sealing arrangements and low specific speed stages results in a surprisingly improved sealing efficiency, resulting in higher pump efficiency. Alternatively, for a given total differential head, the same efficiency as in known pumps, can be achieved with a reduced number of stages.
  • Particularly advantageous arrangements provide for a labyrinth seal, comprising compliant plate members with one or more slits extending from the radially outmost root end towards an intermediate location along the plate height. One or more stationary rings, constrained to the stationary part of the sealing arrangement extend radially inwardly in the slits of the compliant plate members forming a labyrinth, which increases efficiency of the sealing arrangement.
  • Features and embodiments are disclosed here below and are further set forth in the appended claims, which form an integral part of the present description. The above brief description sets forth features of the various embodiments of the present invention in order that the detailed description that follows may be better understood and in order that the present contributions to the art may be better appreciated. There are, of course, other features of the invention that will be described hereinafter and which will be set forth in the appended claims. In this respect, before explaining several embodiments of the invention in details, it is understood that the various embodiments of the invention are not limited in their application to the details of the construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of description and should not be regarded as limiting.
  • As such, those skilled in the art will appreciate that the conception, upon which the disclosure is based, may readily be utilized as a basis for designing other structures, methods, and/or systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • A more complete appreciation of the disclosed embodiments of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
  • FIG. 1 illustrates a schematic section of a multi-stage, low specific speed pump;
  • FIG. 2 illustrates an enlargement of one stage of the pump of FIG. 1;
  • FIG. 3 illustrates a sectional view of one compliant plate seal; and
  • FIG. 4 illustrates a schematic view of a compliant plate sealing arrangement.
  • DETAILED DESCRIPTION OF EMBODIMENTS OF THE INVENTION
  • The following detailed description of the exemplary embodiments refers to the accompanying drawings. The same reference numbers in different drawings identify the same or similar elements. Additionally, the drawings are not necessarily drawn to scale. Also, the following detailed description does not limit the invention. Instead, the scope of the invention is defined by the appended claims.
  • Reference throughout the specification to “one embodiment” or “an embodiment” or “some embodiments” means that the particular feature, structure or characteristic described in connection with an embodiment is included in at least one embodiment of the subject matter disclosed. Thus, the appearance of the phrase “in one embodiment” or “in an embodiment” or “in some embodiments” in various places throughout the specification is not necessarily referring to the same embodiment(s). Further, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
  • The following description and the enclosed drawings specifically relate to an exemplary embodiment of a so-called between-bearings pump with a back-to-back arrangement. Use of features of the present disclosure, however, is not limited to this kind of pumps. These features can be easily extended for instance to multistage pumps with inline rotor configuration and a balance drum. Some of the advantages of the subject matter disclosed herein can be achieved also in a single-stage centrifugal pump, i.e. a pump having a single impeller.
  • FIG. 1 illustrates a longitudinal section according to a vertical plane of a multi-stage centrifugal pump 1. The centrifugal pump 1 has a casing indicated generally at 3 and comprised of a barrel 5 and a cover 7. The casing 3 houses a driven shaft 9 supported by end bearings 11, 13. A plurality of impellers 15 are torsionally connected on shaft 9 and rotate therewith. Each impeller 15 can be housed in a chamber 17 having an axial inlet 19 and a radial outlet 21 (see in particular FIG. 2). In a manner known per se the chambers 17 are connected in series. Each impeller 15 and respective chamber 17 form one pump stage.
  • In the exemplary embodiment illustrated in FIG. 1, the centrifugal pump 1 is a so-called back-to-back pump, with a suction manifold 23A and a delivery or discharge manifold 23B. The impellers 15 are divided in two series of oppositely arranged impellers, labeled 15X and 15Y respectively, arranged in a back-to-back configuration. The inlet flow through suction manifold 23A is processed sequentially in a first, inlet impeller 16, in the first series of impellers 15X, subsequently in the second series of impellers 15Y and is finally delivered through the discharge manifold 23B. Fluid channeling connecting the two sets of impellers is provided between the outer barrel 5 and an inner casing portion 4, wherein the chambers 17 are formed. The inner casing portion 4 can be formed by two halves connected to one another along a plane parallel to the section of FIG. 1.
  • In the exemplary embodiment illustrated in FIGS. 1 and 2, each impeller 15 comprises an impeller hub 15H and an impeller shroud 15S, between which a plurality of blades 15B are arranged. For each stage, an inlet side sealing member and an outlet side sealing member can be provided. More specifically, between the impeller shroud 15S and the casing an inter-stage sealing ring 27 is arranged at the inlet side of the stage and forms an inlet-side sealing member of the pump stage. The inter-stage sealing ring 27 is arranged between a stationary portion of the pump casing and an impeller eye 15E formed by the impeller shroud 15S and co-acts with said impeller eye 15E. Similarly, an inter-stage sealing bushing 29 is arranged at the outlet side of the stage, between the casing 3 and the hub 15H of the impeller 15. The sealing bushing 29 forms an outlet-side sealing member of the pump stage.
  • The sealing rings and sealing bushings, here also cumulatively designated “sealing members”, prevent pressurized liquid exiting the impeller from returning towards the inlet of the stage, as well as liquid at the inlet of the subsequent stage to enter the previous stage from the back of the impeller 15.
  • In some embodiments, further sealing arrangements are provided in various axial positions along the shaft 9 of the centrifugal pump 1. In FIG. 1 radial shaft-sealing members are shown at 31 and 35, near the bearings 11, 13 of the shaft 9. A further intermediate radial shaft-sealing member 33 can be arranged in an intermediate position of the shaft 9, between the shaft and the stationary casing 3, separating the two sets of back-to-back arranged impellers 15X and 15Y.
  • More specifically, the shaft-sealing member 31 is arranged between a shaft terminal portion 9A and the outermost impeller of impeller group 15X. The shaft-sealing member 35 is arranged between the opposite shaft terminal portion 9B and the outermost impeller of the impeller group 15Y. An auxiliary pump stage with a dual impeller 16 can be provided between the shaft-sealing member 35 and the shaft terminal portion 9B. The shaft terminal portions 9A, 9B are supported in the end bearings 11, 13, respectively. Outer mechanical sealing members 12 and 14 can further be provided between each bearing 11, 13 and the shaft-sealing members 31 and 33, respectively.
  • In some embodiments, at least one of the sealing members 27, 29, 31, 33, 35 is designed as a compliant plate sealing arrangement. In some embodiments, only one, some or all the shaft-sealing members 31, 33, 35, arranged on the rotary shaft 9 are designed as compliant plate sealing arrangements. In further embodiments, only the inlet side sealing members 27, or the outlet side sealing members 29 or both, are designed as compliant plate sealing members. In yet further embodiments all the sealing members 27, 31, 33 and 35 and possibly also the sealing members 29 are designed as compliant plate sealing members.
  • FIGS. 3 and 4 illustrate a longitudinal section along a plane containing the rotation axis of the centrifugal pump 1 and a perspective view of an exemplary arrangement of compliant plate members forming a sealing member. By way of example only, FIGS. 3 and 4 illustrate one of the sealing rings 27 provided around the impeller eye of the impellers 15.
  • In the exemplary embodiment illustrated in FIGS. 3 and 4 the sealing member 27 comprises a housing 37, which is stationarily connected to the pump casing 3. In some embodiments the housing 37 can be comprised of a back ring 39 and a front ring 41. In other embodiments, not shown, the back ring 39 and/or the front ring 41 can be omitted. In the schematic representation of FIGS. 3 and 4 the front ring 41 and the back ring 39 are formed as an integral part of the housing 37. In other embodiments, e.g. the front ring can be machined in the casing 3. Between the back ring and the front ring an intermediate annular wall 42 is provided. The housing 37 forms a stationary component of the sealing arrangement.
  • In the housing 37 compliant plate members 43 are arranged. As best shown in FIG. 4, each compliant plate member 43 has a root end or root 43R and a tip end or tip 43T, the root end 43R being the radially outmost edge of the compliant plate member and the tip being the radially innermost edge of the compliant plate member. The compliant plate members 43 are secured at their root ends 43R to the housing 37. In the exemplary embodiment shown in FIG. 4 the root ends of the compliant plate members 43 are secured to the intermediate annular wall 42. The compliant plate members 43 extend radially inwardly towards the rotation axis A-A of the shaft 9 and their tip ends 43T are arranged near or in contact with the respective rotary component, in the example illustrated in FIGS. 3 and 4 the impeller eye 15E of the respective impeller 15. The compliant plate members 43 are arranged in faced relationship, i.e. face-to-face, and inclined with respect to the radial direction, to allow rotation of the shaft 9 in the rotary direction fR (FIG. 4).
  • Those skilled in the art will understand that a similar arrangement of compliant plate members can be used also for the sealing member 29 and/or for the intermediate and end sealing arrangements 31, 33, 35. The sealing members 31, 33 and 35 can comprise compliant plate members having radially inwardly oriented edges co-acting directly with the outer surface of the shaft 9. In other embodiments, as shown in FIG. 1, the sealing members 31, 33, 35 are comprised of bushings 31A, 33A, 35A, which are keyed on the shaft 9 and rotate therewith. The compliant plate members co-act with the outer cylindrical surface of the bushings 31A, 33A, 35A.
  • In some embodiments, each compliant plate member has a generally laminar shape. Each compliant plate member can have a substantially rectangular cross section, with a dimension in the axial direction, which is much larger than the dimension in the tangential direction. The compliant plate members are therefore axially stiff, but have a bending flexibility in the tangential direction.
  • In some embodiments, each compliant plate member 43 comprises at least one slit extending from the root end 43R of the compliant plate member 43 to an intermediate position along the radial extension of the compliant plate member. In the exemplary embodiment illustrated in FIGS. 3 and 4, each compliant plate member 43 comprises three slits 45A, 45B, 45C. The slits are, in an embodiment, rectilinear and extend in a radial direction. In the exemplary embodiment the central slit 45B is longer than the side slits 45A, 45C. The compliant plate members 43 are arranged such that the slits 45A, 45B, 45C are aligned. This arrangement forms three annular slots extending around the sealing arrangement formed by the compliant plate members 43. Corresponding rings 47A, 47B, 47C secured to the housing 37 extend radially into the respective slots formed by the aligned slits 45A, 45B, 45C of the compliant plate members. In the exemplary embodiment shown in FIG. 4, the rings 47A, 47B and 47C extend from the intermediate annular wall 42 of the housing 37.
  • As shown by way of example in the attached drawings, the rings 47A, 47B and 47C as well as the annular slots formed by the slits 45A, 45B, 45C in the facing compliant plate members 43 can have variable radial lengths. They can also have a variable axial width. While in the embodiment illustrated in FIGS. 3 and 4 three slits 45A, 45B, 45C are provided in each compliant plate member 43, a different number of slits and correspondingly a different number of rings 47A, 47B, 47C can be provided, based e.g. on design considerations. In other, less advantageous embodiments, no rings and no slots are provided. The compliant plate members will in that case be solid rather than slotted as depicted in the figures. This simplified embodiment, however, provides a less efficient sealing effect, as will be clarified later on.
  • The shape of the slits and the cross sectional shape of the rings can be rectangular, as shown in the exemplary embodiment, but other shapes can be used instead. For example the slits and the annular rings can have a V-shaped or a U-shaped cross section.
  • Additionally, also the outer perimeter of the compliant plate members 43 can be rectangular, as illustrated, or differently shaped, e.g. T-shaped, trapezoidal or the like, e.g. with increasing width from the root end to the tip, or vice-versa.
  • The narrow cross section of each compliant plate member 43 provides axial stiffness and bending flexibility in the tangential direction, as noted above. The sealing member formed by the annularly arranged compliant plate members 43 provides an efficient sealing functionality also in case of large pressure differences between the back and front sides of the sealing member, i.e. in case of large head values, thanks to the axial stiffness provided by the substantially planar shape of the compliant plate members 43. Thanks to the stiffness of the compliant plate members 43 in the axial direction, even in case of high differential head across the pump stage, the deformation of the sealing arrangement in the axial direction will be negligible, thereby preserving the sealing functionality.
  • The combination of the one or more radial rings 47A, 47B, 47C and circumferential slots formed by the slits 45A, 45B, 45C of the compliant plate members 43 provide a labyrinth sealing effect, imposing a tortuous path to the leakage flow from the pressure side to the suction side of the sealing member, thereby increasing the resistance to leakage flow.
  • This particularly efficient sealing arrangement results in an increased efficiency of centrifugal pumps characterized by a low specific speed. The specific speed of a stage of a centrifugal pump can be defined as

  • Ns=ωq 1/2 /h 3/4
  • where
  • Ns=specific speed
  • w=pump shaft rotational speed (rpm)
  • q=flow rate (m3/h, 1s, 1/min, m3/min, US gpm, British gpm) at Best Efficiency Point (BEP)
  • h=head rise (m, ft)
  • Depending upon the units used (International System of Units (SI) or US units), as understood herein a low specific speed centrifugal pump stage is one where the specific speed is
  • Ns<25 (in the SI system)
  • Ns<1290 in the US system.
  • A multistage centrifugal pump usually has a plurality of stages with identical impellers. Thus, the multistage pump having a low specific speed is one where all the stages have a low specific speed. In some embodiments, the first stage of the multistage centrifugal pump has an impeller, which differs from the remaining impellers of the centrifugal pump and which can have a higher specific speed.
  • The use of compliant plate members in centrifugal pumps, especially multi-stage centrifugal pumps, allows reducing the number of stages and therefore the number of impellers, increasing the head, i.e. the pressure difference, across each stage, maintaining a high overall pump efficiency, due to the sealing functionality of the compliant plate sealing members.
  • While the disclosed embodiments of the subject matter described herein have been shown in the drawings and fully described above with particularity and detail in connection with several exemplary embodiments, it will be apparent to those of ordinary skill in the art that many modifications, changes, and omissions are possible without materially departing from the novel teachings, the principles and concepts set forth herein, and advantages of the subject matter recited in the appended claims. Hence, the proper scope of the disclosed innovations should be determined only by the broadest interpretation of the appended claims so as to encompass all such modifications, changes, and omissions. In addition, the order or sequence of any process or method steps may be varied or re-sequenced according to alternative embodiments.

Claims (13)

What is claimed is:
1. A centrifugal pump comprising:
a casing;
a rotary shaft arranged for rotation in the casing;
at least one pump stage comprising an impeller secured on the rotary shaft and arranged for rotation in a respective impeller chamber formed in the casing; and
a plurality of sealing members, each arranged for reducing leakage between a rotary component and a respective stationary component in the centrifugal pump.
wherein at least one of said the sealing members comprises an arrangement of compliant plate members attached in facing relation at root ends to the respective stationary component and forming a sealing ring between the stationary component and the respective rotary component, and
wherein the at least one pump stage has a specific speed defined as:

Ns=(ωq1/2)(h 3/4)
equal to or less than 25, where:
ω is a pump shaft rotational speed expressed in rpm,
q is a flow rate across the stage, expressed in m3/s at Best Efficiency Point (BEP), and
h is a head rise across the stage expressed in m.
2. The centrifugal pump of claim 1, comprising a plurality of pump stages, each comprising an impeller secured on the rotary shaft and arranged for rotation in a respective impeller chamber.
3. The centrifugal pump of claim 2, comprising N stages, wherein (N−m) stages have a specific speed Ns equal to or less than 25.
4. The centrifugal pump of claim 3, wherein m=1.
5. The centrifugal pump of claim 1, wherein all stages have a specific speed equal to or less than 25.
6. The centrifugal pump of claim 1, wherein each pump stage comprises an inlet-side sealing member, and wherein at least one of the inlet-side sealing members comprises an arrangement of compliant plate members.
7. The centrifugal pump of claim 6, wherein each inlet-side sealing member of the plurality of pump stages comprises an arrangement of compliant plate members.
8. The centrifugal pump of claim 6, wherein each inlet-side sealing member comprising an arrangement of compliant plate members is arranged and configured for co-action with an impeller eye of the respective impeller.
9. The centrifugal pump of claim 2, wherein at least one pump stage comprises an outlet-side sealing member arranged and configured for co-action with an impeller hub and comprising an arrangement of compliant plate members.
10. The centrifugal pump of claim 2, wherein each pump stage comprises an outlet-side sealing member comprising an arrangement of compliant plate members.
11. The centrifugal pump of claim 1, comprising at least one shaft-sealing member between a stationary component and the shaft or a bushing mounted on the shaft, wherein the at least one shaft-sealing member is comprised of an arrangement of compliant plate members attached in facing relation at root ends to the stationary component and forming a sealing ring between the stationary component and the rotary shaft or the bushing mounted on the rotary shaft.
12. The centrifugal pump of claim 1, wherein each the compliant plate member of at least one of the sealing members comprises at least one slit extending radially into the compliant plate member from a radially outermost root end of the compliant plate member to a radially intermediate location, between the root end and a radially innermost tip end of the compliant plate member, the slits of the compliant plate members being aligned to form an annular slot; and wherein at least one stationary ring attached to the stationary component extends radially into the annular slot formed by the compliant plate members.
13. The centrifugal pump of claim 1, wherein each the compliant plate member of at least one of the sealing members comprises a plurality of slits extending radially into the compliant plate member from a radially outermost root end of the compliant plate member to a radially intermediate location, between the root end and a radially innermost tip end of the compliant plate member, the slits of the compliant plate members being aligned to form an annular slot; and wherein a plurality of stationary rings attached to the stationary component extend radially into the annular slots formed by the compliant plate members.
US14/435,507 2012-10-15 2013-10-14 High efficiency low specific speed centrifugal pump Abandoned US20150260190A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000210A ITFI20120210A1 (en) 2012-10-15 2012-10-15 "HIGH EFFICIENCY LOW SPECIFIC SPEED CENTRIFUGAL PUMP"
ITFI2012A000210 2012-10-15
PCT/EP2013/071404 WO2014060343A1 (en) 2012-10-15 2013-10-14 High efficiency low specific speed centrifugal pump

Publications (1)

Publication Number Publication Date
US20150260190A1 true US20150260190A1 (en) 2015-09-17

Family

ID=47388525

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/435,507 Abandoned US20150260190A1 (en) 2012-10-15 2013-10-14 High efficiency low specific speed centrifugal pump

Country Status (11)

Country Link
US (1) US20150260190A1 (en)
EP (1) EP2912318B1 (en)
JP (1) JP6442407B2 (en)
KR (1) KR102200789B1 (en)
CN (1) CN104813033B (en)
AU (1) AU2013331741B2 (en)
BR (1) BR112015007115B8 (en)
CA (1) CA2886985A1 (en)
ES (1) ES2916804T3 (en)
IT (1) ITFI20120210A1 (en)
WO (1) WO2014060343A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122332A1 (en) * 2014-07-24 2017-05-04 Halliburton Energy Services, Inc. Downhole electrical submersible pump with upthrust balance
WO2017100291A1 (en) * 2015-12-07 2017-06-15 Fluid Handling Llc Opposed impeller wear ring undercut to offset generated axial thrust in multi-stage pump
US20210033095A1 (en) * 2019-07-31 2021-02-04 Sulzer Management Ag Multistage pump and subsea pumping arrangement
US20230235740A1 (en) * 2016-09-20 2023-07-27 Vetco Gray Scandinavia As Arrangement for pressurizing of fluid

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6823649B2 (en) 2015-09-10 2021-02-03 ロックハート, ダグラス ロイドLOCKHART, Douglas Lloyd Shear flow turbomachinery
JP2017160880A (en) * 2016-03-11 2017-09-14 クノールブレムゼ商用車システムジャパン株式会社 Exhaust pipe shut-off valve device
KR101823023B1 (en) * 2017-06-01 2018-01-31 덕지산업 주식회사 Centrifugal pump with reduced leakage loss between casing and impeller
EP3798449A1 (en) 2019-09-24 2021-03-31 Sulzer Management AG Pump for conveying a fluid

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797724A (en) * 1992-12-29 1998-08-25 Vortex Australia Proprietary, Ltd. Pump impeller and centrifugal slurry pump incorporating same
JP2003021096A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Low loss centrifugal pump
US6736597B2 (en) * 2001-10-09 2004-05-18 Mitsubishi Heavy Industries, Ltd. Axis seal mechanism and turbine
US7338252B2 (en) * 2001-10-22 2008-03-04 Sulzer Pumpen Ag Pump for the transporting of fluids and of mixtures of fluids
US20080213093A1 (en) * 2003-08-04 2008-09-04 Sulzer Pumpen Ag Impeller for Pumps
US20080272553A1 (en) * 2006-08-15 2008-11-06 General Electric Company Compliant Plate Seals for Turbomachinery
US20100320697A1 (en) * 2008-03-10 2010-12-23 Eagle Industry Co., Ltd. Leaf seal device
US20120007318A1 (en) * 2010-07-08 2012-01-12 Ching-Pang Lee Seal including flexible seal strips

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3205828A (en) * 1963-08-23 1965-09-14 Gorman Rupp Co High efficiency low specific speed centrifugal pump
DE9001229U1 (en) * 1990-02-03 1990-04-12 Ksb Aktiengesellschaft, 6710 Frankenthal, De
JP3841642B2 (en) * 1997-09-30 2006-11-01 株式会社荏原製作所 Centrifugal pump and its sealing mechanism
JP3917993B2 (en) * 2004-08-10 2007-05-23 三菱重工業株式会社 A shaft seal mechanism, a structure for attaching the shaft seal mechanism to a stator, and a turbine including these.
DE102006028806A1 (en) * 2006-06-23 2007-12-27 Friatec Ag axial pump
US7419164B2 (en) * 2006-08-15 2008-09-02 General Electric Company Compliant plate seals for turbomachinery
US8413992B2 (en) * 2009-06-16 2013-04-09 Mitsubishi Heavy Industries, Ltd. Shaft seal and rotary machine with same
US8596973B2 (en) * 2009-12-07 2013-12-03 Cmg Tech, Llc Leaf seal assembly including polymer member and rotary machine containing such seal assembly
CN202326271U (en) * 2011-11-18 2012-07-11 浙江科尔泵业股份有限公司 High-pressure-resistant sealed horizontal space multi-stage centrifugal pump
CN102444588A (en) * 2011-11-18 2012-05-09 江苏国泉泵业制造有限公司 High pressure multi-stage centrifugal pump

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5797724A (en) * 1992-12-29 1998-08-25 Vortex Australia Proprietary, Ltd. Pump impeller and centrifugal slurry pump incorporating same
JP2003021096A (en) * 2001-07-09 2003-01-24 Ishikawajima Harima Heavy Ind Co Ltd Low loss centrifugal pump
US6736597B2 (en) * 2001-10-09 2004-05-18 Mitsubishi Heavy Industries, Ltd. Axis seal mechanism and turbine
US7338252B2 (en) * 2001-10-22 2008-03-04 Sulzer Pumpen Ag Pump for the transporting of fluids and of mixtures of fluids
US20080213093A1 (en) * 2003-08-04 2008-09-04 Sulzer Pumpen Ag Impeller for Pumps
US20080272553A1 (en) * 2006-08-15 2008-11-06 General Electric Company Compliant Plate Seals for Turbomachinery
US20100320697A1 (en) * 2008-03-10 2010-12-23 Eagle Industry Co., Ltd. Leaf seal device
US20120007318A1 (en) * 2010-07-08 2012-01-12 Ching-Pang Lee Seal including flexible seal strips

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
English machine translation of JP 2003-21096, January, 2003. *
JP 2003-21096 either *
Kono 2010/0320697 or Lee 2012/0007318 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170122332A1 (en) * 2014-07-24 2017-05-04 Halliburton Energy Services, Inc. Downhole electrical submersible pump with upthrust balance
US10260518B2 (en) * 2014-07-24 2019-04-16 Halliburton Energy Services, Inc. Downhole electrical submersible pump with upthrust balance
WO2017100291A1 (en) * 2015-12-07 2017-06-15 Fluid Handling Llc Opposed impeller wear ring undercut to offset generated axial thrust in multi-stage pump
US10533570B2 (en) 2015-12-07 2020-01-14 Fluid Handling Llc Opposed impeller wear ring undercut to offset generated axial thrust in multi-stage pump
US20230235740A1 (en) * 2016-09-20 2023-07-27 Vetco Gray Scandinavia As Arrangement for pressurizing of fluid
US20210033095A1 (en) * 2019-07-31 2021-02-04 Sulzer Management Ag Multistage pump and subsea pumping arrangement

Also Published As

Publication number Publication date
ITFI20120210A1 (en) 2014-04-16
BR112015007115B8 (en) 2022-10-18
AU2013331741A1 (en) 2015-04-16
JP6442407B2 (en) 2018-12-19
BR112015007115B1 (en) 2021-12-14
EP2912318B1 (en) 2022-04-13
ES2916804T3 (en) 2022-07-06
KR102200789B1 (en) 2021-01-13
AU2013331741B2 (en) 2017-06-08
BR112015007115A2 (en) 2017-07-04
KR20150070294A (en) 2015-06-24
EP2912318A1 (en) 2015-09-02
CN104813033A (en) 2015-07-29
JP2015532389A (en) 2015-11-09
WO2014060343A1 (en) 2014-04-24
CN104813033B (en) 2018-03-02
CA2886985A1 (en) 2014-04-24

Similar Documents

Publication Publication Date Title
US20150260190A1 (en) High efficiency low specific speed centrifugal pump
JP6307090B2 (en) Rear connection centrifugal pump
JP5709898B2 (en) Rotating machine
JP5670095B2 (en) Vacuum pump
EP2955387A1 (en) Centrifugal compressor
EP3567260B1 (en) Centrifugal rotary machine
EP3347628B1 (en) Sleeve arrangement and turbomachine with a balance drum and method
JP6336134B2 (en) Centrifugal compressor casing and centrifugal compressor
CN106232996B (en) General housing for centrifugal gas compressor
US10859092B2 (en) Impeller and rotating machine
WO2017150554A1 (en) Centrifugal rotating machine
CN111201378A (en) Impeller for sewage pump
JP2015113714A (en) Rotary machine assembly and centrifugal rotary machine

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION