US20150286809A1 - Forensic marking using a common customization function - Google Patents

Forensic marking using a common customization function Download PDF

Info

Publication number
US20150286809A1
US20150286809A1 US14/684,095 US201514684095A US2015286809A1 US 20150286809 A1 US20150286809 A1 US 20150286809A1 US 201514684095 A US201514684095 A US 201514684095A US 2015286809 A1 US2015286809 A1 US 2015286809A1
Authority
US
United States
Prior art keywords
tributaries
segment
content
processing
tributary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/684,095
Inventor
Joseph M. Winograd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Verance Corp
Original Assignee
Verance Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Verance Corp filed Critical Verance Corp
Priority to US14/684,095 priority Critical patent/US20150286809A1/en
Publication of US20150286809A1 publication Critical patent/US20150286809A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/10Protecting distributed programs or content, e.g. vending or licensing of copyrighted material ; Digital rights management [DRM]
    • G06F21/16Program or content traceability, e.g. by watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/005Robust watermarking, e.g. average attack or collusion attack resistant
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • G06T1/0021Image watermarking
    • G06T1/0085Time domain based watermarking, e.g. watermarks spread over several images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • G06F2221/0737
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2201/00General purpose image data processing
    • G06T2201/005Image watermarking
    • G06T2201/0063Image watermarking in relation to collusion attacks, e.g. collusion attack resistant

Definitions

  • the present invention relates generally to systems, methods and apparatus for providing forensic markings for media content.
  • Forensic marking is the practice of creating individual copies of information content that are substantially identical for most practical purposes, but that can in fact be distinguished from one another in order to ascertain information about their chain-of-custody subsequent to their distribution. For example, intentionally introduced errors in logarithmic tables were used in previous centuries to prove that certain publications of those tables had been copied from a particular source without authorization from the table's creator. In the modem era, forensic marking is widely viewed as an important technique for protection of valuable media information content such as movies, music, programming, documents, and other digital information content such as software and data files and has convincingly demonstrated its commercial efficacy. Forensic marking is typically intended to assist in locating a point in the chain-of-custody where an unauthorized use of the content occurred.
  • Various forensic marking schemes offering differing performance and capabilities with respect to: the types of content to which they are applicable (e.g., video, audio, textual, images, executable program instructions, data, etc.); the degree of transparency or interference of the marking with respect to primary intended purpose of the content; the payload capacity of the marking (e.g., number of uniquely marked copies that can be generated and the amount of the marked content necessary to identify the mark); the effort required to apply or identify the mark (e.g., the computational complexity of insertion or detection of the forensic mark); the recoverability of the mark following incidental use and modification of the content (“robustness”); or the resistance of the mark to attempts to interfere with its use (“security”) through forgery, modification, eavesdropping, and erasure.
  • the types of content to which they are applicable e.g., video, audio, textual, images, executable program instructions, data, etc.
  • the degree of transparency or interference of the marking with respect to primary intended purpose of the content e.g., number of uniquely marked
  • a device may be reprogrammed at various times to apply different forensic marking techniques. Such reprogramming might be performed or even provided in conjunction with each particular piece of content, if programming instructions are provided along with the content. However, if the marking must be performed on a variety of different types of programmable devices, it may be impractical or burdensome to provide instructions for each different programmable device.
  • the selecting may be conducted in accordance with the customization information and the mark message.
  • the selecting may also be conducted in accordance with a set of nexus resolution instructions.
  • the rendering may comprise assembling the selected tributaries in accordance with the rendering information. Assembling the tributaries may comprises at least one of adding, multiplying, splicing or blending of the selected tributaries.
  • the rendering may be conducted in accordance with a set of assembly instructions. These assembly instructions may correspond to at least one of a PDF, XML, MXF, AAF, ASF, BWF, and Mobile XMF encoding formats.
  • the rendering may comprises post-processing operations to enhance the security of the distinctly marked content.
  • the rendering may further comprises post-processing operations to enhance the transparency of the embedded marks within the distinctly marked content.
  • a method for enabling the production of a distinctly marked content is provided.
  • an original content is received (e.g., by transmission over a wired or wireless network, from a storage element, from another device or functional element, or the like).
  • This original content once received, is then pre-processed to produce a plurality of tributaries and customization information.
  • the tributaries and customization information enable the production of a distinctly marked content (e.g., using a common customization function as discussed in the above-described embodiments).
  • the plurality of tributaries and the customization information may be produced by pre-processing the original content with at least one alternate content element.
  • the tributaries may be derived from the alternate content elements.
  • FIG. 3 illustrates various elements of the composition function of FIG. 2 in accordance with an example embodiment of the invention.
  • the tributaries 106 and customization information 108 are represented in a well-defined format that permits independent validation of its compliance with various protocol requirements by a validation function 110 , if desired, prior to its application to the common customization function 114 .
  • the relationship between the pre-processing function 104 , validation function 110 (when present), and common customization function 114 is illustrated in FIG. 1 .
  • FIG. 1 and the other figures may accurately represent the physical relationships between various components for an example apparatus of the present invention, it is understood that these figures may also illustrate conceptual or logical relationships between various elements of the invention.
  • boxes may correspond to functions, which may be either discretely implemented or integrated with other functions, and arrows may correspond to the flow of information, either by value or by reference.
  • Other relationships, functions, and data paths may also be present in the device which are not shown in the figures including, for example, connectivity to external information sources for control or recording of device activities and access to content-specific information such as encryption and decryption keys.
  • Tributaries 106 may be derived from the original content 100 or alternate content elements 102 , synthesized by the pre-processing function 104 , they may be an encrypted or encoded representation of content, or may comprise a method or instructions for generating an alternate version of the original content or alternate content elements.
  • the tributaries may be produced from any combination of the aforementioned methods.
  • tributaries 106 may be distinguished from one another either physically (for example, as separate data structures in a storage medium) or logically (for example, as regions of a continuous data structure that may be distinguished with the use of ancillary data such as markers, pointers, formulae or other explicit and implicit means).
  • Nexus resolution 132 is the process whereby a particular nexus (or, more generally, a multiplicity of nexuses associated with elements of a mark sequence 136 , which is referred to herein as a nexus sequence 128 ) is evaluated to provide the selected tributaries 122 and rendering information 124 necessary to forensically mark the content with the elements of a specific mark sequence 136 .
  • the rendering information 124 may comprise the information necessary to assemble the selected tributaries 122 (i.e., the assembly information 138 ), the information necessary for post processing the assembled content 142 (i.e., the post-processing information 140 ), and the like.
  • the post-processing function 144 may comprise a plurality of operations that serve to, for example, mask the presence of the embedded mark, change the content resolution, change the sampling rate, or otherwise modify the assembled content 142 to place it in a suitable output format as dictated by the post-processing information 140 or system interface requirements.
  • the rendering function 126 may optionally support the application of one or more post-processing functions 144 on the assembled content 142 in accordance with the post-processing information 140 . While some post-processing operations may be utilized to further differentiate the distinctly marked content 118 from the original content 100 , other operations may be used to enhance the security of the embedded marks, to enhance the transparency of the embedded marks, or to perform signal conditioning operations that facilitate subsequent storage, presentation or transmission of the marked content. By way of example and not by limitation, some post-processing operations include applying masking and anti-collusion measures, signal saturation/clipping prevention techniques, application of dither, application of special artistic/aesthetic effects, gamma correction, color correction, cryptographic operations, and the like.
  • the validation function 110 may also measure certain aspects of an instance of tributaries 106 and customization information 108 , such as the amount of processing, memory, or latency necessary for a common customization function 114 to evaluate those instances (‘execution profiling’), given certain assumptions about the mark message 116 .
  • Validation functions may be employed at different parts of the content distribution chain. For example, it may be desirable to perform a validation function in conjunction with pre-processing in order to select from alternative possible expressions of tributaries and customization information based on measurable characteristics of their performance or to ensure their compatibility with the common customization functions supported by a specific class of devices.
  • the “mapping” expression indicates the output of a sequence of mark sequence bit values taken from a table stored in the mark encoding protocol 130 .
  • the table is stored in the form of a table of output sequences (in rows), with the row that is output from the table selected by the value of the binary word expressed by a sequence of bits taken from the mark message 116 . For example, if the input count is 3 and the output count is 4, then a table of output values that is 8 (2 3 ) rows by 4 columns is provided. Three bits from the mark message 116 are read, and their binary value (0-7) is used to select a row from the table.
  • the mark sequence output 136 generated by the mark encoding function 134 is then the set of values stored in that row of the table.
  • Expressions are provided for determining an index for the starting point in the output stream where the tributary segment should be placed based on a stored output marker register, and an expression may also direct modification of the register in one of several ways following its use.
  • An additional information field is provided that specifies how the tributary segment should be composed with other segments that may overlap in time in the assembled content (i.e. whether the data from the earlier segment in the sequence should be replaced by the latter or whether the two segments should be added together).
  • Processing of the assembly information 138 consists of performing the retrieval, alignment, and composition of the selected tributary segments 122 to form assembled content 142 in accordance with the assembly information expressions.
  • an arrangement is employed whereby original audio content is pre-processed to generate two alternate versions, each embedded with a synchronous stream of watermark data.
  • the first version is embedded with a watermark sequence comprised entirely of a first logical value, such as the binary value “0” and the second version is embedded with a watermark sequence comprised entirely of a second logical value, such as the binary value “1.”
  • a customization method is employed whereby distinct content carrying a watermark data stream with an arbitrary mark sequence is produced by splicing sequential segments selected from one of the two alternate versions in accordance with the values of a mark sequence.
  • selected segments are taken with a short, overlapping transition regions and the segments are blended via cross-fade.
  • the bits are embedded in audio segments that are 5.33 ms in duration (256 samples at 48 kHz sampling rate) and that the cross-fade region is 0.33 ms in duration (16 samples at 48 kHz).
  • the mark encoding protocol simply prepends the frame synchronization sequence ‘0111’ to the mark message to form the mark sequence, and repeatedly transmits this sequence throughout the duration of the content.
  • Adaptation of the pre-processing step associated with the scheme described above to one that generates tributaries and customization information compatible with the common customization function 114 described in the exemplary embodiment of the present invention is straightforward.
  • the original content is pre-processed to obtain the versions embedded with logical values (e.g., “0” and “1” watermark data sequences, respectively) at pre-processing function 104 and the two versions are stored in two tributaries (“tributary 0” and “tributary 1”).
  • tributary 0” and “tributary 1” A nexus list is produced as shown in Table 3 below.
  • This nexus list shown in Table 3 comprises instructions for the first and last elements of the mark sequence 136 that are different from the instructions for the remaining elements of the sequence.
  • a mark encoding protocol 130 is produced as shown in Table 4 below.

Abstract

Methods, systems, and apparatus are disclosed which enable flexible insertion of forensic watermarks into a digital content signal using a common customization function. The common customization function flexibly employs a range of different marking techniques that are applicable to a wide range of forensic marking schemes. These customization functions are also applicable to pre-processing and post-processing operations that may be necessary for enhancing the security and transparency of the embedded marks, as well as improving the computational efficiency of the marking process. The common customization function supports a well-defined set of operations specific to the task of forensic mark customization that can be carried out with a modest and preferably bounded effort on a wide range of devices. This is accomplished through the use of a generic transformation technique for use as a “customization” step for producing versions of content forensically marked with any of a multiplicity of mark messages.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a continuation of, and claims the benefit of priority to, U.S. patent application Ser. No. 14/038,621, filed on Sep. 26, 2013, which is a continuation of U.S. patent application Ser. No. 13/220,526, filed on Aug. 29, 2011, now U.S. Pat. No. 8,549,307, which is a continuation of U.S. patent application Ser. No. 11/479,958, filed on Jun. 30, 2006, now U.S. Pat. No. 8,020,004, which claims the benefit of U.S. Provisional Application Ser. No. 60/696,146, filed on Jul. 1, 2005. The disclosure of the prior applications are considered part of (and are incorporated by reference in) the disclosure of this application.
  • BACKGROUND OF THE INVENTION
  • The present invention relates generally to systems, methods and apparatus for providing forensic markings for media content. Forensic marking is the practice of creating individual copies of information content that are substantially identical for most practical purposes, but that can in fact be distinguished from one another in order to ascertain information about their chain-of-custody subsequent to their distribution. For example, intentionally introduced errors in logarithmic tables were used in previous centuries to prove that certain publications of those tables had been copied from a particular source without authorization from the table's creator. In the modem era, forensic marking is widely viewed as an important technique for protection of valuable media information content such as movies, music, programming, documents, and other digital information content such as software and data files and has convincingly demonstrated its commercial efficacy. Forensic marking is typically intended to assist in locating a point in the chain-of-custody where an unauthorized use of the content occurred.
  • A wide range of schemes have been proposed for introducing identifiable marks into content and for subsequently identifying their presence. The broad class of techniques commonly known as “watermarking”, wherein auxiliary data is imperceptibly embedded into the content, are most commonly associated with this task, however a range of different approaches are possible. An exemplary methodology that does not incorporate watermarking is to simultaneously capture one or more scenes in a film production by employing two cameras at different locations and using these similar recordings as alternately selectable versions of content for the purpose of distinguishing copies. Another approach that can be employed with video content is to superimpose a figure or graphic onto the image that is either brief and unnoticeable (such as the “cap coding” dots that are reported to be employed in commercial film production) or that is innocuous (such as superimposing an additional face in a crowd or changing the color of a chair).
  • Various forensic marking schemes offering differing performance and capabilities with respect to: the types of content to which they are applicable (e.g., video, audio, textual, images, executable program instructions, data, etc.); the degree of transparency or interference of the marking with respect to primary intended purpose of the content; the payload capacity of the marking (e.g., number of uniquely marked copies that can be generated and the amount of the marked content necessary to identify the mark); the effort required to apply or identify the mark (e.g., the computational complexity of insertion or detection of the forensic mark); the recoverability of the mark following incidental use and modification of the content (“robustness”); or the resistance of the mark to attempts to interfere with its use (“security”) through forgery, modification, eavesdropping, and erasure.
  • In many practical circumstances, the marking must be performed under tight constraints. For example, when a high volume of individually marked copies of content must be created, it is desirable that each should be made as effortlessly as possible to minimize time, expense or resource usage. Additionally, when a copy of content must be marked at the time of its delivery or use, it is typically important that the marking occur with minimal effort so as not to delay the delivery or interfere with other simultaneous actions associated with the event. For example, on a computer server system that provides copies of content in response to requests received over a network, the effort required to supply a distinctly marked copy in response to individual requests may substantially increase the amount of processing and/or storage required to respond to a given number of requests, versus simply providing the same copy of the content in response to each, as is more typically done. Similarly, if the marking must be applied using digital electronics embedded within a consumer device such as a personal computer, portable music player, or multimedia-enabled cellular telephone, it is important that the process of customizing individual copies does not interfere with or limit other device functions, including in the areas of computing processor utilization, power consumption, or user-interface response time.
  • A valuable approach to minimizing the effort in forensic marking is to divide the forensic marking activity into two steps. The first step performs a “pre-processing” of the content that only needs to be performed once and may require substantial effort in order to produce one or more versions of the content and possibly also to analyze data that can be used in a subsequent “customization” step of reduced effort that is repeated with minor variations to produce the forensically marked copies of the content. While the customization step of a two-step forensic marking scheme is not inherently limited to any particular operation, some examples of common functions that may be typically included in such an arrangement include splicing of regions of content together, replacement of certain regions of content with regions taken from other content, mathematical addition of regions of content, mathematical additional of a region taken from content with the mathematical multiplication of two other content regions, and the like. This approach is generally employed in an arrangement where the pre-processing and customization steps are performed on separate physical devices and at different stages of the chain of production, distribution, and consumption of content.
  • Another critical consideration in forensic marking is the vulnerability of marking techniques to subversion through various avenues of attack by individuals seeking to thwart identification of the forensic mark. Such attacks may by implemented by a variety of means, but typically involve transforming the content such that the mark is altered or obscured.
  • It is generally advantageous to an attacker making an attack on a marking technique if they have knowledge of the details of the marking technique employed, and for this reason it is desirable for the efficacy of the system that as much information about the marking techniques employed for any particular content instance be unavailable to them. Generally, in order to avoid exposure of marking methods, tamper-resistant implementation techniques are employed in order to protect devices that perform marking and information stored internally from reverse engineering. However, a particular advantage of the two-step forensic marking approach for environments where marking is performed in a device that may be attacked is that it is possible for many of the sensitive technologies to be employed during the pre-processing step, which can be retained under the control of the content distributor, and the information regarding the marking scheme that needs to be present in the device that performs customization can be much more limited. Furthermore, cryptographic techniques may be used to enhance the security of the forensic marking system. For example, the information that is delivered to a particular customization device, including all alternate versions of the original content signal plus functions and parameters that are necessary to effect the marking, may be encrypted and the particular customization device may be required to request the delivery of proper decryption keys upon the exchange of proper identification and authentication information. Further, through encryption of alternate versions of the content with different keys and by providing the customization function with only the decryption keys associated with the versions of content that are used to form mark messages that the device is authorized to render, the security impact of a compromised customization device may be substantially diminished. In such a scenario, the attacker may be unable to access any content elements other than those that are specifically accessible to the compromised device.
  • Nevertheless, a number of factors may still frustrate efforts to keep secret information out of an attacker's hands. Attackers may be able to learn about particular marking technologies from any of many different sources, including leaks of confidential information, from information included in patent filings, from reverse engineering of devices that perform marking or mark detection functions, or from analysis of marked content (including, in particular, comparative analysis or combined processing of differently marked versions of the same content, the so called “collusion” attacks).
  • If only a single marking technique is employed, then the emergence of a successful attack may be immediate and catastrophic. Thus, it may be advantageous to employ a multiplicity of marking techniques across a range of content and devices at any given point in time. Further, if the marking technique employed is fixed, its resistance to attack will only diminish over time as information on its function is slowly gleaned by attackers. Thus it may be advantageous to be able to change marking techniques employed on a time schedule that is responsive to progress made by attackers over time.
  • There are additional practical considerations related to the use of forensic marking schemes. It may be desirable for the manufacturer of some product that processes content to facilitate the forensic marking of the content using a variety of different schemes. For example, the various owners or distributors of different content processed by the device might want different schemes to be used in connection with particular content which they provide for use on the device, and those wishes might change over time due to purely commercial considerations. Additionally, different types of content (such as 3 minute popular music songs versus 8 hour audiobooks) might introduce entirely different marking requirements because of their duration, bandwidth, attack threat model, commercial value, sales volume, or some other consideration. For the manufacturer of such a device, it may be impractical, burdensome, or even impossible to include sufficient capability to support all desired forensic marking schemes and a capability to update the devices functions over time, even if the marking schemes permit separate pre-processing and customization such that the device need only perform the customization steps of the various forensic marking schemes.
  • Clearly, if the customization step is carried out on a general-purpose programmable device, such a device may be reprogrammed at various times to apply different forensic marking techniques. Such reprogramming might be performed or even provided in conjunction with each particular piece of content, if programming instructions are provided along with the content. However, if the marking must be performed on a variety of different types of programmable devices, it may be impractical or burdensome to provide instructions for each different programmable device.
  • It has been proposed that a desirable method of flexibly applying forensic marking is through inclusion of a common programmable capability or so-called “virtual machine” that can execute arbitrary data processing functions expressed in program code delivered with content, including those that customize pre-processed, encrypted content in order to achieve forensic marking. This approach places a substantial burden of complexity on the device that performs customization, which must implement the virtual machine and be capable of executing the arbitrary program instructions. Additionally, it places a burden on the content producer and forensic scheme technology developer for devising program instructions and ensuring their correctness, tasks that are generally difficult, expensive, and error-prone.
  • Another proposed approach to the flexible application of forensic marking in a diverse range of devices is the creation of a standardized, common function that can perform a complete forensic marking operation on content in response to marking instructions provided with the content. This approach employs a set of common, fixed data processing primitives with adjustable parameters that are believed to support a range of commercially useful forensic watermark embedding schemes. This approach provides reduced complexity with respect to the development and testing of marking instruction streams in comparison with an approach that employs a generic “virtual machine,” but has several other significant drawbacks. First, the range of marking techniques that such a device can support will be inherently limited by the scope of the available primitives. As pointed out herein, a very wide range of methods have been proposed for watermarking, not to mention forensic marking generally, and diversity in the area of marking techniques is of benefit to mark security and commercial acceptability. The limitation of the fundamental method of forensic marking to a finite set that can be incorporated in a standardized specification substantially limits the efficacy and practicality of the system.
  • Also, the amount of processing required for many practical forensic watermarking techniques is substantial, and inclusion of the complete forensic mark application within the device responsible for content customization may have a significant negative impact on the cost and/or performance of such devices. For example, the embedding function in many practical watermarking schemes rely on perceptual modeling of the content being marked to constrain the amplitude of modifications to an amount that results in an acceptable level of perceptual distortion. Such modeling may be difficult to express in a generic messaging language, may require substantial processing and memory resources, and may introduce significant processing latency. This impact may make such an approach unsuitable for large classes of devices, such as portable media players, cellular phones, optical media players, handheld recording devices, and the like.
  • It would be advantageous to provide flexible forensic watermarking methods, systems and apparatus which are designed to overcome various deficiencies of the prior art systems. More specifically, it would be advantageous to be able to flexibly employ a range of different marking techniques in different instances that all rely on a common customization function that is applicable to a wide range of forensic marking schemes (and consequently, a wide range of pre-processing methods), but that support a well-defined set of functions specific to the task of forensic mark customization that can be carried out with a modest and preferably bounded effort on a wide range of devices. Because a very wide range of techniques are used for marking content, there has previously been no practical way to address these challenges. The present invention achieves such desirable features through the use of a generic transformation technique for use as a “customization” step for producing versions of content forensically marked with any of a multiplicity of mark messages, wherein the customization function is responsive to instructions provided along with pre-processed content that enable its compatibility with a range of different forensic marking schemes.
  • The methods, systems and apparatus of the present invention provide the foregoing and other advantages.
  • SUMMARY OF THE INVENTION
  • The present invention provides methods, systems, and apparatus which enable flexible insertion of forensic watermarks into a digital content signal by using a common customization function.
  • In an example embodiment of the present invention, a method for producing a distinctly marked content is provided. A plurality of tributaries and customization information are received (e.g., at a client device, a user location, a discrete processing element at the same location, or the like). The tributaries and customization information are processed using a common customization function adapted to accept a mark message in order to produce a distinctly marked content.
  • The plurality of tributaries and the customization information may be produced by pre-processing original content. Alternatively, the plurality of tributaries and the customization information may be produced by pre-processing the original content with at least one alternate content element. The tributaries may be derived from the alternate content elements.
  • The pre-processing function may comprise embedding at least a logical value in a portion said original content. The tributaries may be synthesized during the pre-processing.
  • The tributaries may comprise instructions for generating at least one alternate version of the original content or an alternate content element.
  • The method may further comprise analyzing the tributaries and customization information to obtain validation information. The validation information may comprise resource allocation profiles. Further, the validation information may represent compatibility profiles.
  • The processing of the tributaries and customization information may comprise selecting a subset of the tributaries, generating rendering information in accordance with the customization information and the mark message, and rendering the selected tributaries in accordance with the rendering information to form the distinctly marked content.
  • The selecting may be conducted in accordance with the customization information and the mark message. The selecting may also be conducted in accordance with a set of nexus resolution instructions.
  • The rendering may comprise assembling the selected tributaries in accordance with the rendering information. Assembling the tributaries may comprises at least one of adding, multiplying, splicing or blending of the selected tributaries. The rendering may be conducted in accordance with a set of assembly instructions. These assembly instructions may correspond to at least one of a PDF, XML, MXF, AAF, ASF, BWF, and Mobile XMF encoding formats. The rendering may comprises post-processing operations to enhance the security of the distinctly marked content. The rendering may further comprises post-processing operations to enhance the transparency of the embedded marks within the distinctly marked content.
  • The mark message may be encoded in accordance with at least one of an error correction coding, a channel coding, a data security protocol, or the like. The encoding of the mark message may be conducted using a look-up table.
  • In a further example embodiment of the present invention, an apparatus for producing a distinctly marked content is provided. The apparatus comprises means for receiving a plurality of tributaries and customization information produced by a pre-processing function and processing means for processing the tributaries and customization information using a common customization function adapted to accept a mark message in order to produce a distinctly marked content.
  • In another example embodiment of the present invention, a method for enabling the production of a distinctly marked content is provided. In such an embodiment, an original content is received (e.g., by transmission over a wired or wireless network, from a storage element, from another device or functional element, or the like). This original content, once received, is then pre-processed to produce a plurality of tributaries and customization information. The tributaries and customization information enable the production of a distinctly marked content (e.g., using a common customization function as discussed in the above-described embodiments).
  • The plurality of tributaries and the customization information may be produced by pre-processing the original content with at least one alternate content element. The tributaries may be derived from the alternate content elements.
  • Methods, apparatus, and systems corresponding to the foregoing example embodiments, and to combinations of the foregoing example embodiments, are encompassed by the present invention.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will hereinafter be described in conjunction with the appended drawing figures, wherein like reference numerals denote like elements, and:
  • FIG. 1 illustrates a general block diagram overview of the forensic marking system in accordance with an example embodiment of the invention;
  • FIG. 2 shows a block diagram describing elements of the common customization function of FIG. 1 in accordance with an example embodiment of the invention;
  • FIG. 3 illustrates various elements of the composition function of FIG. 2 in accordance with an example embodiment of the invention; and
  • FIG. 4 illustrates various elements of the rendering function of FIG. 2 in accordance with an example embodiment of the invention.
  • DETAILED DESCRIPTION
  • The ensuing detailed description provides exemplary embodiments only, and is not intended to limit the scope, applicability, or configuration of the invention. Rather, the ensuing detailed description of the exemplary embodiments will provide those skilled in the art with an enabling description for implementing an embodiment of the invention. It should be understood that various changes may be made in the function and arrangement of elements without departing from the spirit and scope of the invention as set forth in the appended claims.
  • FIG. 1 illustrates a high-level block diagram of the forensic marking technique of the present invention. The original content 100 is pre-processed by a pre-processing function 104, optionally in combination with alternate content elements 102, to obtain a multiplicity of tributaries 106 and associated customization information 108. The tributaries 106 and customization information 108 are utilized by a common customization function 114 to produce distinctly marked content 118 that carries any of a multiplicity of identifiable mark messages 116. The original content 100 and alternate content elements 102 may be any type of data, signal, or information; however typical embodiments will for practical reasons be limited in applicability to a limited set of data or information types. The tributaries 106 and customization information 108 are represented in a well-defined format that permits independent validation of its compliance with various protocol requirements by a validation function 110, if desired, prior to its application to the common customization function 114. The relationship between the pre-processing function 104, validation function 110 (when present), and common customization function 114 is illustrated in FIG. 1.
  • It should be appreciated that while FIG. 1 and the other figures may accurately represent the physical relationships between various components for an example apparatus of the present invention, it is understood that these figures may also illustrate conceptual or logical relationships between various elements of the invention. For example, boxes may correspond to functions, which may be either discretely implemented or integrated with other functions, and arrows may correspond to the flow of information, either by value or by reference. Other relationships, functions, and data paths may also be present in the device which are not shown in the figures including, for example, connectivity to external information sources for control or recording of device activities and access to content-specific information such as encryption and decryption keys.
  • Pre-Processing
  • The pre-processing function 104 performs operations on the original content and, optionally, alternate content elements 102, to obtain tributaries 106 and customization information 108. The pre-processing function 104 may include all or a portion of any of a wide variety of forensic marking techniques, but its essential characteristic is that its output should be designed such that the processing of its output by a pre-defined common customization function 114 will result in the production of content that has been forensically marked with any of a multiplicity of mark messages 116.
  • Original content 100 is the content that would serve as the basis for all copies being produced, but for the use of a forensic marking scheme. Alternate content elements 102 are versions of all or a portion of the original content 100 that are distinguishable from the original content 100, but may be employed to modify or replace all or a portion of the original content 100 for purposes of forensic marking. The term “tributary” is used in this context to mean data that can be combined in various ways to produce distinctly marked versions of the original content 100 using methods provided by the common customization function 114. Tributaries 106 may be derived from the original content 100 or alternate content elements 102, synthesized by the pre-processing function 104, they may be an encrypted or encoded representation of content, or may comprise a method or instructions for generating an alternate version of the original content or alternate content elements. In addition, the tributaries may be produced from any combination of the aforementioned methods. Additionally, tributaries 106 may be distinguished from one another either physically (for example, as separate data structures in a storage medium) or logically (for example, as regions of a continuous data structure that may be distinguished with the use of ancillary data such as markers, pointers, formulae or other explicit and implicit means).
  • The customization information 108 represents instructions to the common customization function 114 as to how the tributaries 106 should be combined for various mark data values that comprise the mark message 116. One of the benefits of the present invention is that the pre-processing function 104 is not in any way fixed and could implement a multitude of marking schemes in current existence or to be created in the future. The only limitation is that the marking schemes associated with the pre-processing function 104 must be compatible with a customization technique within the capabilities of the common customization function 114. Thus, the scope of the present invention with respect to operations performed by the pre-processing function 104 is considered to encompass any operation for which there exists a complementary processing capability in the common customization function 114, as described herein (e.g., the selection and application of appropriate compression of tributaries 106 for decompression by the common customization function 114, etc.).
  • Customization
  • The marking techniques in accordance with the present invention involve the use of a common customization function 114 whose processing behavior in a given instance is controlled by specified customization information 108. The range of valid customization information 108 and the processing behavior of the common customization function 114 in response to the customization information 108 is primarily fixed and well-defined. The capability of using a range of different customization information 108 enables a common customization method to be employed with a variety of different forensic marking schemes. The limited set of functions performed by the common customization function 114 permits its operation to be reasonably bounded and efficient. This configuration permits the common customization function 114 to be implemented in a fixed device and correctly perform the customization step on appropriately pre-processed information for a range of different forensic marking schemes.
  • An exemplary block diagram of the common customization function 114 in accordance with the present invention is described in FIG. 2. The common customization function 114 performs the acts of ‘Composition’ 120, which is the process of determining the manner in which available tributaries 106 are combined, and ‘Rendering’ 126, which is the process wherein the formation occurs to produce a distinctly marked content 118. While it is not necessary for these two steps to be either physically or logically distinct, they are considered separately herein in order to facilitate understanding and for ease of explanation.
  • Composition
  • The primary functions of composition function 120 is to provide a set of selected tributaries 122, in accordance with the customization information 108, to be used for producing a particular instance of distinctly marked content 118, and to determine the rendering information 124 necessary to guide its production. The composition function 120 may also include the act of mark encoding, which maps the mark message 116 into an alternate sequence of symbols (the “mark sequence”) that represent the mark message 116 as it is embodied within the distinctly marked content 118. An exemplary diagram of the relationship between the elements of the composition function is provided in FIG. 3.
  • Nexus Resolution
  • As shown in FIG. 3, the essential operation involved in composition 120 is the selection process, which is referred to herein as nexus resolution 132. The term “nexus” is used in this context to mean the information associated with all of the potential selections among the various alternative versions of content that may be rendered to embody a symbol in a mark sequence 136. An exemplary nexus may comprise an association between each mark sequence 136 symbol value and instructions for rendering specific tributaries whenever those symbol values exist in the mark sequence 136. Nexus resolution 132, then, is the process whereby a particular nexus (or, more generally, a multiplicity of nexuses associated with elements of a mark sequence 136, which is referred to herein as a nexus sequence 128) is evaluated to provide the selected tributaries 122 and rendering information 124 necessary to forensically mark the content with the elements of a specific mark sequence 136. As shown in FIG. 4, the rendering information 124, for example, may comprise the information necessary to assemble the selected tributaries 122 (i.e., the assembly information 138), the information necessary for post processing the assembled content 142 (i.e., the post-processing information 140), and the like. The nexus sequence 128, which may be part of the customization information 108 produced by the pre-processing function 104, may be expressed explicitly, such as in an enumerated list within a data structure (i.e., a ‘nexus list’), or implicitly, for example by specifying a pattern of nexuses according to an algorithmic or formulaic expression. Note that for practical purposes, it may be desirable to permit the specification of nexuses, which correspond to a tributary that is selected for rendering, independent of any mark sequence value and therefore common among all versions of the content (i.e. a “unary nexus”).
  • Mark Encoding
  • Mark encoding 134 performs a mapping between a mark message 116, which is the information carried by the mark that is used to distinguish the marked copy of the content from other copies of distinctly marked content, and the mark sequence 136, which is the sequence of symbols that is actually incorporated into the content. The mark encoding function 134 may provide capabilities that support any of the myriad channel coding techniques known in the art of communication and watermark technology. By way of example and not by limitation, these include the incorporation of error correction codes and synchronization symbols, interleaving and encryption of the mark message 116, as well as mapping the mark message 116 into pre-defined mark sequences using look-up tables or mapping functions.
  • Because it is desirable that a common customization function 114 provide compatibility with a range of forensic marking schemes, it may be useful for the mark encoding function 134 to provide a range of common channel coding techniques that may be employed in any instance according to a particular mark encoding protocol, which may be specified via customization information 108. Additionally, it may be useful for the mark encoding function 134 to provide additional data communications message formation functions, such as encryption, hashing, or digital signature formation, as directed by mark encoding protocol 130. The mark encoding protocols 130 may be communicated to the mark encoding function 134 as part of the customization information 108 produced by the pre-processing function 104. In a simple exemplary embodiment, the mark encoding protocol 130 may be implemented as a look-up table that maps the incoming mark message 116 symbols into pre-defined mark sequences 136 in accordance with any combination of the above described channel coding and security protocols. This way, the need to incorporate any specific channel coding and/or security protocols within the mark encoding function 134 is eliminated. Furthermore, the look-up table may be readily updated to reflect new security, robustness or economic requirements of the marking system.
  • Rendering
  • An exemplary diagram of the relationship between the elements of the rendering function 126 of FIG. 2 is provided in FIG. 4. The rendering function 126 assembles the selected tributaries 122 in accordance with rendering information 124 provided by the composition function 120 to produce a distinctly marked content signal 118. In some embodiments, it may also be useful for the rendering function 126 to provide a capability of applying post-processing 144 to the assembled content 142 in accordance with the post-processing information 140 that is provided by the composition function 120. The post-processing function 144 may comprise a plurality of operations that serve to, for example, mask the presence of the embedded mark, change the content resolution, change the sampling rate, or otherwise modify the assembled content 142 to place it in a suitable output format as dictated by the post-processing information 140 or system interface requirements.
  • Assembly
  • The rendering function 126 provides support for one or more methods of producing assembled content 142 by assembly function 146 under the direction of the assembly information 138 provided as part of the rendering information 124. Examples of general methods of assembly that may be supported include splicing, replacement (with or without masking of various kinds), addition, multiplication, blending (e.g. linear combination), or combinations of methods such as these. In general, the assembly information 138 may express (and the assembly function 146 may support) the interpretation and execution of a range of typical content processing functions as might be found in existing systems that perform rendering of content from a collection of production elements in accordance with an expression of assembly information. Well-known content encoding formats of this type include Adobe Portable Document Format, Microsoft Word XML document schema, MXF, Advanced Authoring Format, Advanced Systems Format, Broadcast Wave Format, and Mobile XMF. Many of the techniques for expression and processing of rendering information expressions that are known in the art are considered to be useful in conjunction with the present invention.
  • Selection of the particular methods of assembly supported by a common customization function 114 will largely define the types of forensic marking schemes with which it will be compatible, so the methods selected should be chosen based on techniques that are expected to be useful in practical marking schemes. This selection will also dictate the operational burden placed on devices that implement the assembly function 146, so the range of assembly methods supported should be influenced by their value and generality.
  • Post-Processing
  • The rendering function 126 may optionally support the application of one or more post-processing functions 144 on the assembled content 142 in accordance with the post-processing information 140. While some post-processing operations may be utilized to further differentiate the distinctly marked content 118 from the original content 100, other operations may be used to enhance the security of the embedded marks, to enhance the transparency of the embedded marks, or to perform signal conditioning operations that facilitate subsequent storage, presentation or transmission of the marked content. By way of example and not by limitation, some post-processing operations include applying masking and anti-collusion measures, signal saturation/clipping prevention techniques, application of dither, application of special artistic/aesthetic effects, gamma correction, color correction, cryptographic operations, and the like.
  • Validation
  • The validation function 110 (FIG. 1) evaluates and analyzes the information output from the pre-processing function 104 in order to obtain validation information 112. The validation information 112 is predictive of what will occur when certain information (e.g., customization information) are provided to a common customization function 114. For example, as shown in FIG. 1, the validation function 110 may determine whether a given expression of tributaries 106 and customization information 108 contains any deviations from a specific protocol associated with a common customization function 114.
  • The validation function 110 may also measure certain aspects of an instance of tributaries 106 and customization information 108, such as the amount of processing, memory, or latency necessary for a common customization function 114 to evaluate those instances (‘execution profiling’), given certain assumptions about the mark message 116. Validation functions may be employed at different parts of the content distribution chain. For example, it may be desirable to perform a validation function in conjunction with pre-processing in order to select from alternative possible expressions of tributaries and customization information based on measurable characteristics of their performance or to ensure their compatibility with the common customization functions supported by a specific class of devices. Additionally, they may be employed on a standalone basis by a content distributor who wants to ensure that content that they distribute is compatible with a common customization function performed by certain specific devices to which they distribute materials. Validation functions may also exist in any environments where common customization functions reside, and be employed prior to content customization in order to determine a priori the results of performing forensic mark customization.
  • Techniques that may be employed for performing validation functions, such as specification compliance verification and execution profiling, are generally well-known in the art.
  • Exemplary Embodiment
  • To illustrate the most basic elements of the present invention, as a first example a simple embodiment of the invention is described. This example embodiment is described with specific, limited detail for the purpose of providing clear and concrete examples of the concepts, but is not intended in any way to limit or fix the scope of the present invention. Nevertheless, this simple example has substantial flexibility and is, as is demonstrated below, compatible with many of the forensic marking schemes known in the art.
  • Exemplary Common Customization Function
  • In this embodiment, a common customization function 114 may be defined specifically for use with schemes for the forensic marking of audio content with a 40-bit mark message 116. The common customization function 114 (including all component functions described herein) may be embodied in a stored program on a hard-disk in a computer system located in the projection booth of a commercial movie theater. The computer system may be one among many connected to a wide-area network over which digital audio and video are distributed to multiple similar computer systems in multiple similar projection booths in multiple movie theaters. An additional function of the computer system is to access content at the time when a movie is to be shown in the theater, process it with the common customization function 114 in order to obtain a distinctly marked content 118, and output the distinctly marked content 118 sequentially for playback to the movie theater audience. Each such computer system may have a stored unique serial number and an internal clock, from which the common customization function 114 may derive a 40-bit mark message 116 to be forensically marked into the audio of each movie presentation output from the computer system.
  • The implementation of the present invention in this particular environment enables the manufacturer of the computer system to only incorporate a single common customization function 114 to provide a playback environment that is compatible with a range of forensic marking schemes. In addition, any one of a variety of forensic marking schemes may be used for a particular movie content at the discretion of the movie producer or distributor, and such schemes will be compatible with any device that employs the common customization function 114, regardless of any other playback device characteristics.
  • In an exemplary movie screening scenario, prior to playback, pre-processed audio content may be securely delivered from another computer system at a movie distributor to the computer system in the projection booth over the wide area network in the form of a computer file that contains both tributaries 106 and customization information 108. (The associated video content is provided as well, and may also be pre-processed for handling by a common customization function 114, but for simplicity of exposition in this example, only the audio portion of the content is considered.) Such an audio file may be compliant with, for example, the Broadcast Wave format. Two types of data chunks exist within the file that contain the customization information 108, the nexus sequence 128 and mark encoding protocol 130, respectively, which may be provided in big-endian format. Tributaries 106 may be stored in audio chunks, with one tributary per audio chunk. Tributaries 106 may be encoded as eight channel PCM audio at a 48 kHz sampling rate. The exemplary nexus sequence and post-processing grammar may be defined as shown in Table 1 and the exemplary mark encoding protocol grammar may be shown as defined in Table 2 below, using a data format conforming to the Extended Backus-Naur form grammars.
  • TABLE 1
    EXEMPLARY NEXUS SEQUENCE AND POST PROCESSING
    GRAMMAR
    1 nexus-list = post-processing-information* nexus
    2  (nexus | post-processing-information)* nexus-list-end-instruction
    3 nexus := single-nexus | repeating-nexus
    4 single-nexus := ‘0x01’, nexus-element
    5 repeating-nexus := ‘0x02’, repetition-count nexus-element
    6 repetition-count := “32-bit unsigned integer”
    7 nexus-element := unary-nexus | binary-nexus
    8 nexus-list-end-instruction := end-nexus-list | repeat-nexus-list
    9 end-nexus-list = ‘0x00’
    10 repeat-nexus-list = ‘0x01’ absolute-marker
    11 unary-nexus := ‘0x00’ tributary-index assembly-information
    12 binary-nexus :=
    13  ‘0x01’ zero-value-output one-value-output
    14 zero-value-output := assembly-information
    15 one-value-output := assembly-information
    16 tributary-index := “16-bit unsigned integer”
    17 assembly-information :=
    18  tributary-index
    19  tributary-start-marker tributary-duration
    20  fade-information fade-information
    21  render-start-marker
    22  assembly-type
    23 tributary-start-marker := absolute-marker | register-marker
    24 tributary-duration := absolute-marker
    25 render-start-marker := absolute-marker | register-marker
    26 absolute-marker := ‘0x00’ “32-bit unsigned integer”
    27 register-marker:= ‘0x01’ register-mod-type register-mod-amount
    28 register-mod-type := offset | offset-update | offset-clear |
    29  random-offset | random-offset-update | random-clear
    30 register-mod-amount := “32-bit signed integer”
    31 offset := ‘0x00’
    32 offset-update := ‘0x01’
    33 offset-clear := ‘0x02’
    34 random-offset := ‘0x03’
    35 random-offset-update := ‘0x04’
    36 random-offset-clear := ‘0x05’
    37 assembly-type := replace | add
    38 replace := ‘0x00’
    39 add := ‘0x01’
    40 fade-information := no-fade | linear-fade
    41 no-fade := ‘0x00’
    42 linear-fade := ‘0x01’ fade-duration
    43 fade-duration := absolute-marker
    44 post-processing-info := ‘0x03’ limiting-type
    45 limiting-type := hard-clipping | soft-clipping
    46 hard-clipping := ‘0x00’
    47 soft-clipping := ‘0x01’
  • TABLE 2
    EXEMPLARY MARK ENCODING PROTOCOL GRAMMAR
    1 mark-encoding-protocol := mark-encoding+
    2 mark-encoding := constant-bit | mark-message-bit | xor-mark-
    message-bit | mapping
    3 constant-bit := ‘0x00’ binary-value
    4 mark-message-bit := ‘0x01’
    5 xor-mark-message-bit := ‘0x02’ binary-value
    6 mapping := ‘0x03’ input-count output-count mapping-table
    7 binary-value := ‘0x00’ | ‘0x01’
    8 mapping-table :=
    9  “row-first matrix of binary values with 2{circumflex over ( )}(input-count) rows and
    10  (output-count) columns”
  • For this example, it is assumed that the computer server does not impose tight constraints on the processing, memory, and latency of the customization function. It should be recognized, however, that such constraints will exist in many practical cases. There would be no guarantee that all content expressible in this format would meet a particular set of constraints, and careful design of the particular expression of content (in addition to the use of a validation function for measurement of these parameters) might be needed for different classes of devices with common customization functions.
  • Exemplary Nexus Resolution
  • In the exemplary embodiment shown in Table 1 above, the nexus resolution function 132 is carried out by sequentially processing the nexuses in the nexus sequence 128 in accordance with the specified grammar of Table 1. Each nexus may be expressed either as a “single nexus” which is evaluated one time, or as a “repeating nexus” which is repeatedly evaluated a specified number of times in succession. In the processing of unary nexuses, an associated tributary index (which identifies the candidate tributaries) is selected. Assembly information 138 is provided as output of the composition function 120 for rendering. In the processing of binary nexuses, a mark sequence value is received from the mark encoding function 134, and used to select one of two tributary index and assembly information 138 pairs in the nexus for output. Post-processing information 140, when present, is provided in the same data stream as the nexus sequence 128 and is time-multiplexed. Post-processing information 140 is output directly to the post-processing function 144 without modification. Assembly information 138 is provided to the assembly function 146, along with the associated tributary index value obtained from each nexus. When all nexuses from the nexus sequence 128 have been evaluated, the nexus resolution function 132 is either completed or it repeats from the start of the nexus list (in which case a counter is supplied for the total number of nexuses to be processed prior to completion of nexus resolution) according to information provided at the end of the nexus list.
  • Exemplary Mark Encoding
  • The mark encoding function 134 is carried out by sequentially processing the elements of the mark encoding protocol 130 in accordance with the grammar that is shown in Table 2 above. Processing consists of retrieving, processing, and outputting mark sequence values, in accordance with the specified mark encoding protocol 130. The “constant bit” expression in Table 2 indicates the output of a fixed mark sequence bit value, independent of the values of the mark message 116. The “mark message bit” expression indicates the output of a mark sequence bit that is equal to the corresponding bit value in the mark message 116. The “XOR mark message bit” expression indicates the output of a mark sequence bit value that results from a logical XOR between a value provided by the mark encoding protocol 130 and a value taken from the mark message 116. The “mapping” expression indicates the output of a sequence of mark sequence bit values taken from a table stored in the mark encoding protocol 130. The table is stored in the form of a table of output sequences (in rows), with the row that is output from the table selected by the value of the binary word expressed by a sequence of bits taken from the mark message 116. For example, if the input count is 3 and the output count is 4, then a table of output values that is 8 (23) rows by 4 columns is provided. Three bits from the mark message 116 are read, and their binary value (0-7) is used to select a row from the table. The mark sequence output 136 generated by the mark encoding function 134 is then the set of values stored in that row of the table.
  • When all elements of the mark encoding protocol 130 have been processed, the mark encoding function 134 returns to the beginning of the mark encoding protocol 130 and continues its processing as if the mark encoding protocol 130 were repeated serially. Similarly, if the mark encoding function 134 reaches the end of the mark message 116, its operations continue from the start of the mark message 116, as if values were repeated serially. The mark encoding function 134 continues to operate in this way, so long as the nexus resolution function 132 continues to require additional mark sequence values 136.
  • Exemplary Assembly Function
  • The assembly function 146 is carried out by sequentially processing the output of the nexus resolution function 132, which consists of a sequence of tributary index/assembly information element pairs. Table 1 above provides examples of such assembly information 138 that include multiple fields. Markers specify indices of the start and duration of the tributaries that are selected for composition (“tributary segment”), which may be computed from a stored tributary marker register, and an expression may also indicate modification of the register in one of several ways following its use. A fading characteristic may be specified for application to the start and end of the tributary segment (i.e. a gradual amplitude fade with a specified duration and curve shape for each endpoint of the tributary segment) prior to composition. Expressions are provided for determining an index for the starting point in the output stream where the tributary segment should be placed based on a stored output marker register, and an expression may also direct modification of the register in one of several ways following its use. An additional information field is provided that specifies how the tributary segment should be composed with other segments that may overlap in time in the assembled content (i.e. whether the data from the earlier segment in the sequence should be replaced by the latter or whether the two segments should be added together). Processing of the assembly information 138 consists of performing the retrieval, alignment, and composition of the selected tributary segments 122 to form assembled content 142 in accordance with the assembly information expressions.
  • Exemplary Post-Processing
  • The post-processing function 144 is carried out by sequentially processing the elements of post-processing information 140 as described in the exemplary grammar listing of Table 1, lines 44 through 47. Parsing consists of lexical analysis of the data in the post-processing information 140 in accordance with the nexus sequence grammar defined in the listing of Table 1. Evaluation consists of applying a function to the assembled content 142 in accordance with settings dictated by the post-processing information 140. In the case of hard clipping, the assembled content 142 is evaluated to determine whether any of the values of the content samples have exceeded the dynamic range supported by the output device. Any samples that have exceeded that dynamic range are set to the nearest value that is within the dynamic range of the output device.
  • In the case of soft clipping, the entirety of the assembled content 142 is processed through the non-linear function, such as the one specified by:
  • y = { x ( 1 - 0.08192 x 4 ) , for x < 1.25 sign ( x ) for x 1.25 , Equation ( 1 )
  • where x is the value of the assembled content, y is the value of the soft-limited content, and [−1,1] is the normalized range of the output device.
  • Exemplary Forensic Marking Schemes Using Exemplary Embodiment
  • To illustrate certain benefits of the exemplary embodiment, its use in conjunction with a forensic marking scheme previously known in the art is described.
  • Exemplary Forensic Marking Scheme
  • In the first embodiment described in the U.S. Pat. No. 6,612,315 an arrangement is employed whereby original audio content is pre-processed to generate two alternate versions, each embedded with a synchronous stream of watermark data. The first version is embedded with a watermark sequence comprised entirely of a first logical value, such as the binary value “0” and the second version is embedded with a watermark sequence comprised entirely of a second logical value, such as the binary value “1.” A customization method is employed whereby distinct content carrying a watermark data stream with an arbitrary mark sequence is produced by splicing sequential segments selected from one of the two alternate versions in accordance with the values of a mark sequence. To avoid introducing discontinuities through the splicing function, selected segments are taken with a short, overlapping transition regions and the segments are blended via cross-fade. For purposes of this example, it is assumes that the bits are embedded in audio segments that are 5.33 ms in duration (256 samples at 48 kHz sampling rate) and that the cross-fade region is 0.33 ms in duration (16 samples at 48 kHz). it is also assumed, for purposes of this example, that the mark encoding protocol simply prepends the frame synchronization sequence ‘0111’ to the mark message to form the mark sequence, and repeatedly transmits this sequence throughout the duration of the content.
  • Adaptation of the pre-processing step associated with the scheme described above to one that generates tributaries and customization information compatible with the common customization function 114 described in the exemplary embodiment of the present invention is straightforward. The original content is pre-processed to obtain the versions embedded with logical values (e.g., “0” and “1” watermark data sequences, respectively) at pre-processing function 104 and the two versions are stored in two tributaries (“tributary 0” and “tributary 1”). A nexus list is produced as shown in Table 3 below.
  • TABLE 3
    EXAMPLE NEXUS LIST
    1 ; Post processing info
    2 03 00  ; Use hard clipping
    3 ; First nexus, only used for first element
    4 01 01 ; Single, binary nexus
    5  00 00 ;  Zero-value output, use tributary 0
    6   01 01 ;   For tributary start, use register with offset update
    7   00 00 00 F0 ;    to 256−16=240, leaving marker at start of next fadein
    8   00 00 01 10 ;   Tributary duration is 256+16 (bit plus fadeout)
    9   00 ;   No fade in
    10   01 00 00 00 10 ;   Use 16 sample linear fadeout
    11  01 01 ;   For render start, use register with offset update
    12   00 00 00 F0 ;    to 256−16=240, leaving marker at start of next fadein
    13  00 ;  Assemble by replacement
    14 00 01 ;  One-value output, use tributary 1
    15  01 01 ;   For tributary start, use register with offset update
    16   00 00 00 F0 ;    to 256−16=240, leaving marker at start of next fadein
    17  00 00 01 00 ;   Tributary duration is 256+16 (bit plus fadeout)
    18   00 ;   No fade in
    19   01 00 00 00 10 ;   Use 16 sample linear fadeout
    20  01 01 ;   For render start, use register with offset update
    21   00 00 00 F0 ;    to 256−16=240, leaving marker at start of next fadein
    22  00 ;  Assemble by replacement
    23 ; Repeated nexus for elements 2-674,999
    24 02 00 0A 4C B6 01 ; Binary nexus, repeated 674,998 times (2 hours total)
    25  00 00 ;  Zero-value output, use tributary 0
    25   01 01 ;   For tributary start, use input register with update
    27    00 00 01 00 ;    by 256, leaving marker at start of next bit's fadein
    28   00 00 01 20 ;   Tributary duration is 16+256+16 (fadein+bit+fadeout)
    29   01 00 00 00 10 ;   Use 16 sample linear fadein
    30   01 00 00 00 10 ;   Use 16 sample linear fadeout
    31   01 01 ;   For render start, use output register with offset update
    32    00 00 01 00 ;    by 256, leaving marker at start of next bit's fadein
    33   01 ;  Assemble by addition
    34  00 01  ;   One-value output, use tributary 1
    35   01 01 ;   For tributary start, use register with offset update
    36    00 00 01 00 ;    by 256, leaving marker at start of next bit's fadein
    37   00 00 01 20 ;   Tributary duration is 16+256+16 (fadein+bit+fadeout)
    39   01 00 00 00 10 ;   Use 16 sample linear fadein
    40   01 00 00 00 10 ;   Use 16 sample linear fadeout
    41   01 01 ;   For render start, use register with offset update
    42    00 00 01 00 ;    to 256, leaving marker at start of next bit's fadein
    43   01 ;  Assemble by addition
    44 ; Single nexus used for last element only
    45 01 01  ;  Single, binary nexus
    46  00 00 ;  Zero-value output, use tributary 0
    47   01 00 00 00 00 00 ;   For tributary start, use input register with no offset
    48   00 00 01 10 ;   Tributary duration is 16+256 (fadein+bit)
    49   01 00 00 00 10 ;   Use 16 sample linear fadein
    50   00 ;   No fadeout
    51   01 00 ;   For render start, use output register with no offset
    52    00 00 00 00 ;
    53  01 ;  Assemble by addition
    54 00 01 ;  One-value output, use tributary 1
    55   01 00 00 00 00 00 ;   For tributary start, use register with no offset
    56   00 00 01 10 ;   Tributary length is 16+256 (fadein+bit)
    57   01 00 00 00 10 ;   Use 16 sample linear fadein
    58   00 ;   No fadeout
    59   01 00 ;   For render start, use register with no offset
    60    00 00 00 00 ;    to 256, leaving marker at start of next fadein
    61   01 ;  Assemble by addition
    62 ; End nexus list
    63 00
  • This nexus list shown in Table 3 comprises instructions for the first and last elements of the mark sequence 136 that are different from the instructions for the remaining elements of the sequence. A mark encoding protocol 130 is produced as shown in Table 4 below.
  • TABLE 4
    EXAMPLE MARK ENCODING PROTOCOL
    1 ; Output fixed synchronization sequence ‘1011’
    2  00 01
    3  00 00
    4  00 01
    5  00 01
    6 ; Output 40 mark message bits
    7  01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01
    8  01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01

    The original content in this case is presumed to be two hours (675,000 bits of 5.3 ms each).
  • Although his particular arrangement complies with the data format requirement of the exemplary embodiment and would be compatible with the described device, it should be appreciated that many different adaptations of the present invention may be made without departing from the scope of the invention. For example, it is noted that the tributaries described in this exemplary embodiment are large and the distance between alternate tributary segments employed in individual nexuses may introduce a significant memory usage requirement or alternately a random data access requirement on the common customization function. This approach may not be suitable for all devices that support the common customization, such as those with limited memory or only serial access to data. For such cases, an alternate expression might entail dividing each of the two versions of the content into many tributaries, each containing only a short segment of the content marked with “0” or “1” data symbols, and interleaving these shorter tributaries so that there is a greater locality of reference within the data stream. The nexus sequence and post-processing data might also be interleaved with the tributary data to achieve a similar advantage. By establishing requirements for processing utilization over time, memory, storage and data access, processing latency, etc., it becomes possible to design devices that implement a common customization function with a well-defined capability, and to design pre-processing and validation methodologies that enable the production of tributaries and customization information that can be reliably employed in conjunction with them to obtain forensically marked content in a range of practical environments.
  • It should now be appreciated that the present invention provides advantageous methods, systems and apparatus for forensic watermarking using a common customization function.
  • Although the invention has been described in connection with various illustrated embodiments, numerous modifications and adaptations may be made thereto without departing from the spirit and scope of the invention as set forth in the claims.

Claims (23)

1-20. (canceled)
21. A method for producing a forensically marked content, comprising:
receiving customization information and a plurality of tributaries at a device including a hardware-implemented processor and a non-transitory computer-readable medium, the plurality of tributaries having been produced by pre-processing an original content or content element, at least one of the plurality of tributaries comprising two alternate versions of a first segment of the original content, each alternate version of the first segment having been encrypted with different cryptographic key, each alternate version, prior to encryption, being perceptually similar to the first segment of the original content; and
receiving a cryptographic key or set of keys associated with one of the alternate versions of the first segment, the received cryptographic key or set of keys enabling decryption of a first one of the alternate versions of the first segment that is authorized to be accessed; and
processing two or more of the received tributaries including the at least one of the plurality of tributaries that comprise the two alternate versions of the first segment, the processing comprising decrypting the first one of the alternate versions of the first segment and assembling at least a portion of the two or more of the received tributaries in accordance with the customization information to produce a forensically marked content.
22. The method of claim 21, wherein at least one of the received tributaries is a segment of the original content.
23. The method of claim 21, wherein the assembling comprises using a common customization function that is responsive to instructions provided by the customization information to enable the production of the forensically marked content in accordance with a plurality of different marking techniques.
24. The method of claim 21, wherein at least two tributaries from the plurality of tributaries are in encrypted form, each of the at least two tributaries having been encrypted with a different encryption key.
25. The method of claim 21, wherein the processing includes assembly of a selected subset of tributaries.
26. The method of claim 21, wherein the processing includes one or more of:
replacement of a segment of a first tributary with an alternate version of the segment from a second tributary,
splicing sequential segments from a first tributary with sequential segments of a second tributary, or
addition of a segment from a first tributary to a segment of a second tributary.
27. The method of claim 21, wherein the plurality of tributaries are retrieved in a form of a computer file in a specific format from the non-transitory computer readable medium.
28. The method of claim 21, wherein the forensically marked content comprises a message that is derived from a unique number associated with a playback device.
29. The method of claim 21, wherein at least one of the received tributaries comprises instructions for generating an alternate version of the original content or content element.
30. The method of claim 21, wherein the processing further includes performing a validation procedure, prior to assembling, to determine a result of an application of the customization information to the at least a portion of the two or more of the received tributaries.
31. An device, comprising:
a processor, and
a memory including processor executable code, the processor executable code when executed by the processor causes the device to:
a receive customization information and a plurality of tributaries, the plurality of tributaries having been produced by pre-processing an original content or content element, at least one of the plurality of tributaries comprising two alternate versions of a first segment of the original content, each alternate version of the first segment having been encrypted with a different cryptographic key, each alternate version, prior to encryption, being perceptually similar to the first segment of the original content; and
receive a cryptographic key or set of keys associated with one of the alternate versions of the first segment, the received cryptographic key or set of keys enabling decryption of a first one of the alternate versions of the first segment that is authorized to be accessed;
decrypt the first one of the alternate versions of the first segment; and
assemble at least a portion of the two or more of the received tributaries in accordance with the customization information and a mark message to produce a forensically marked content.
32. The device of claim 31, wherein at least one of the received tributaries is a segment of the original content.
33. The device of claim 31, wherein the processor executable code when executed by the processor causes the device to assemble the first one of the alternate versions of the first content using a common customization function that is responsive to instructions provided by the customization information to enable the production of the forensically marked content in accordance with a plurality of different marking techniques.
34. The device of claim 31, wherein at least two tributaries from the plurality of tributaries are in encrypted form, each of the at least two tributaries having been encrypted with a different encryption key.
35. The device of claim 31, wherein the processor executable code when executed by the processor causes the device to assemble of a selected subset of tributaries.
36. The device of claim 31, wherein the processor executable code when executed by the processor causes the device to:
replace a segment of a first tributary with an alternate version of the segment from a second tributary,
splice sequential segments from a first tributary with sequential segments of a second tributary, or
add a segment from a first tributary to a segment of a second tributary.
37. The device of claim 31, wherein the processor executable code when executed by the processor causes the device to retrieve the plurality of tributaries in a form of a computer file in a specific format from a non-transitory computer readable memory.
38. The device of claim 31, wherein the forensically marked content comprises a message that is derived from a unique number associated with a playback device.
39. The device of claim 31, wherein at least one of the received tributaries comprises instructions for generating an alternate version of the original content or content element.
40. The device of claim 31, wherein the device is configured to receive one or more of the customization information or the plurality of tributaries from a computer network.
41. The device of claim 31, the processor executable code when executed by the processor causes the device to further perform a validation procedure to determine a result of an application of the customization information to the at least a portion of the two or more of the received tributaries.
42. A non-transitory computer readable medium with computer instructions embodied thereupon, comprising:
program code for receiving customization information and a plurality of tributaries at a device including a hardware-implemented processor and a non-transitory computer-readable medium, the plurality of tributaries having been produced by pre-processing an original content or content element, at least one of the plurality of tributaries comprising two alternate versions of a first segment of the original content, each alternate version of the first segment having been encrypted with different cryptographic key, each alternate version, prior to encryption, being perceptually similar to the first segment of the original content; and
program code for receiving a cryptographic key or set of keys associated with one of the alternate versions of the first segment, the received cryptographic key or set of keys enabling decryption of a first one of the alternate versions of the first segment that is authorized to be accessed; and
program code for processing two or more of the received tributaries including the at least one of the plurality of tributaries that comprise the two alternate versions of the first segment, the processing comprising decrypting the first one of the alternate versions of the first segment and assembling at least a portion of the two or more of the received tributaries in accordance with the customization information to produce a forensically marked content.
US14/684,095 2005-07-01 2015-04-10 Forensic marking using a common customization function Abandoned US20150286809A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/684,095 US20150286809A1 (en) 2005-07-01 2015-04-10 Forensic marking using a common customization function

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US69614605P 2005-07-01 2005-07-01
US11/479,958 US8020004B2 (en) 2005-07-01 2006-06-30 Forensic marking using a common customization function
US13/220,526 US8549307B2 (en) 2005-07-01 2011-08-29 Forensic marking using a common customization function
US14/038,621 US9009482B2 (en) 2005-07-01 2013-09-26 Forensic marking using a common customization function
US14/684,095 US20150286809A1 (en) 2005-07-01 2015-04-10 Forensic marking using a common customization function

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/038,621 Continuation US9009482B2 (en) 2005-07-01 2013-09-26 Forensic marking using a common customization function

Publications (1)

Publication Number Publication Date
US20150286809A1 true US20150286809A1 (en) 2015-10-08

Family

ID=37660799

Family Applications (4)

Application Number Title Priority Date Filing Date
US11/479,958 Expired - Fee Related US8020004B2 (en) 2005-07-01 2006-06-30 Forensic marking using a common customization function
US13/220,526 Expired - Fee Related US8549307B2 (en) 2005-07-01 2011-08-29 Forensic marking using a common customization function
US14/038,621 Active US9009482B2 (en) 2005-07-01 2013-09-26 Forensic marking using a common customization function
US14/684,095 Abandoned US20150286809A1 (en) 2005-07-01 2015-04-10 Forensic marking using a common customization function

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US11/479,958 Expired - Fee Related US8020004B2 (en) 2005-07-01 2006-06-30 Forensic marking using a common customization function
US13/220,526 Expired - Fee Related US8549307B2 (en) 2005-07-01 2011-08-29 Forensic marking using a common customization function
US14/038,621 Active US9009482B2 (en) 2005-07-01 2013-09-26 Forensic marking using a common customization function

Country Status (1)

Country Link
US (4) US8020004B2 (en)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7644282B2 (en) 1998-05-28 2010-01-05 Verance Corporation Pre-processed information embedding system
US6737957B1 (en) 2000-02-16 2004-05-18 Verance Corporation Remote control signaling using audio watermarks
US9609278B2 (en) 2000-04-07 2017-03-28 Koplar Interactive Systems International, Llc Method and system for auxiliary data detection and delivery
EP2442566A3 (en) 2002-10-15 2012-08-08 Verance Corporation Media Monitoring, Management and Information System
US7330511B2 (en) 2003-08-18 2008-02-12 Koplar Interactive Systems International, L.L.C. Method and system for embedding device positional data in video signals
US9055239B2 (en) 2003-10-08 2015-06-09 Verance Corporation Signal continuity assessment using embedded watermarks
US20060239501A1 (en) 2005-04-26 2006-10-26 Verance Corporation Security enhancements of digital watermarks for multi-media content
US8020004B2 (en) 2005-07-01 2011-09-13 Verance Corporation Forensic marking using a common customization function
US8781967B2 (en) 2005-07-07 2014-07-15 Verance Corporation Watermarking in an encrypted domain
US20090111584A1 (en) 2007-10-31 2009-04-30 Koplar Interactive Systems International, L.L.C. Method and system for encoded information processing
US8259938B2 (en) 2008-06-24 2012-09-04 Verance Corporation Efficient and secure forensic marking in compressed
US8582781B2 (en) 2009-01-20 2013-11-12 Koplar Interactive Systems International, L.L.C. Echo modulation methods and systems
US8818019B2 (en) 2009-06-08 2014-08-26 Cisco Technology Inc Robust watermark
US8715083B2 (en) 2009-06-18 2014-05-06 Koplar Interactive Systems International, L.L.C. Methods and systems for processing gaming data
KR101351520B1 (en) 2010-04-22 2014-01-13 한국전자통신연구원 Apparatus and method for inserting forensic mark
US9607131B2 (en) 2010-09-16 2017-03-28 Verance Corporation Secure and efficient content screening in a networked environment
KR101808817B1 (en) * 2010-12-06 2017-12-13 한국전자통신연구원 Apparatus and method for forensic marking of digital contents
US8615104B2 (en) 2011-11-03 2013-12-24 Verance Corporation Watermark extraction based on tentative watermarks
US8682026B2 (en) 2011-11-03 2014-03-25 Verance Corporation Efficient extraction of embedded watermarks in the presence of host content distortions
US8533481B2 (en) 2011-11-03 2013-09-10 Verance Corporation Extraction of embedded watermarks from a host content based on extrapolation techniques
US8923548B2 (en) 2011-11-03 2014-12-30 Verance Corporation Extraction of embedded watermarks from a host content using a plurality of tentative watermarks
US8745403B2 (en) 2011-11-23 2014-06-03 Verance Corporation Enhanced content management based on watermark extraction records
US9547753B2 (en) 2011-12-13 2017-01-17 Verance Corporation Coordinated watermarking
US9323902B2 (en) 2011-12-13 2016-04-26 Verance Corporation Conditional access using embedded watermarks
JP2013126225A (en) * 2011-12-16 2013-06-24 Internatl Business Mach Corp <Ibm> Method, program and system for distributing data to multiple clients from server
JP2015515073A (en) * 2012-04-27 2015-05-21 エンスリル ディストリビューション インコーポレーテッド Packaged digital rights messaging
KR101992779B1 (en) * 2012-05-09 2019-06-26 한국전자통신연구원 Forensic marking apparatus and method for realtime contents service
US20130301869A1 (en) * 2012-05-09 2013-11-14 Electronics And Telecommunications Research Institute Forensic marking apparatus and method for real-time content service
US9571606B2 (en) 2012-08-31 2017-02-14 Verance Corporation Social media viewing system
US8726304B2 (en) 2012-09-13 2014-05-13 Verance Corporation Time varying evaluation of multimedia content
US9106964B2 (en) 2012-09-13 2015-08-11 Verance Corporation Enhanced content distribution using advertisements
US8869222B2 (en) 2012-09-13 2014-10-21 Verance Corporation Second screen content
US9317872B2 (en) 2013-02-06 2016-04-19 Muzak Llc Encoding and decoding an audio watermark using key sequences comprising of more than two frequency components
US9262793B2 (en) 2013-03-14 2016-02-16 Verance Corporation Transactional video marking system
US9485089B2 (en) 2013-06-20 2016-11-01 Verance Corporation Stego key management
US9251549B2 (en) 2013-07-23 2016-02-02 Verance Corporation Watermark extractor enhancements based on payload ranking
US9208334B2 (en) 2013-10-25 2015-12-08 Verance Corporation Content management using multiple abstraction layers
US10504200B2 (en) 2014-03-13 2019-12-10 Verance Corporation Metadata acquisition using embedded watermarks
EP3117626A4 (en) 2014-03-13 2017-10-25 Verance Corporation Interactive content acquisition using embedded codes
US9843615B2 (en) 2014-07-03 2017-12-12 Futurewei Technologies, Inc. Signaling and handling of forensic marking for adaptive streaming
WO2016028934A1 (en) 2014-08-20 2016-02-25 Verance Corporation Content management based on dither-like watermark embedding
EP3225034A4 (en) 2014-11-25 2018-05-02 Verance Corporation Enhanced metadata and content delivery using watermarks
US9942602B2 (en) 2014-11-25 2018-04-10 Verance Corporation Watermark detection and metadata delivery associated with a primary content
US9602891B2 (en) 2014-12-18 2017-03-21 Verance Corporation Service signaling recovery for multimedia content using embedded watermarks
WO2016176056A1 (en) 2015-04-30 2016-11-03 Verance Corporation Watermark based content recognition improvements
US9680844B2 (en) 2015-07-06 2017-06-13 Bank Of America Corporation Automation of collection of forensic evidence
WO2017015399A1 (en) 2015-07-20 2017-01-26 Verance Corporation Watermark-based data recovery for content with multiple alternative components
WO2017184648A1 (en) 2016-04-18 2017-10-26 Verance Corporation System and method for signaling security and database population
EP3293653A1 (en) 2016-09-09 2018-03-14 Nagravision S.A. A system for decrypting and rendering content
WO2018237191A1 (en) 2017-06-21 2018-12-27 Verance Corporation Watermark-based metadata acquisition and processing
US11057685B2 (en) * 2018-03-29 2021-07-06 Ncr Corporation Media content proof of play over optical medium
US11468149B2 (en) 2018-04-17 2022-10-11 Verance Corporation Device authentication in collaborative content screening
KR102265784B1 (en) * 2019-11-22 2021-06-17 (주)잉카엔트웍스 Apparatus and method for client side forensic watermark
US11722741B2 (en) 2021-02-08 2023-08-08 Verance Corporation System and method for tracking content timeline in the presence of playback rate changes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030187679A1 (en) * 2002-04-02 2003-10-02 Odgers Chris R. Methods and apparatus for uniquely identifying a large number of film prints
US20030190054A1 (en) * 2000-10-03 2003-10-09 Lidror Troyansky Method and system for distributing digital content with embedded message
US6912294B2 (en) * 2000-12-29 2005-06-28 Contentguard Holdings, Inc. Multi-stage watermarking process and system
US6915481B1 (en) * 2000-01-11 2005-07-05 Cognicity, Inc. Transactional watermarking
US7058809B2 (en) * 2000-03-06 2006-06-06 Entriq, Inc. Method and system to uniquely associate multicast content with each of multiple recipients

Family Cites Families (588)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5805635A (en) 1964-03-17 1998-09-08 The United States Of America As Represented By The Secretary Of The Navy Secure communication system
US3406344A (en) 1964-07-01 1968-10-15 Bell Telephone Labor Inc Transmission of low frequency signals by modulation of voice carrier
US3919479A (en) 1972-09-21 1975-11-11 First National Bank Of Boston Broadcast signal identification system
US3842196A (en) 1972-10-30 1974-10-15 Hazeltine Research Inc System for transmission of auxiliary information in a video spectrum
US3894190A (en) 1973-02-28 1975-07-08 Int Standard Electric Corp System for transferring wide-band sound signals
US3885217A (en) 1973-07-11 1975-05-20 Computer Specifics Corp Data transmission system
US4048562A (en) 1975-05-22 1977-09-13 A. C. Nielsen Company Monitoring system for voltage tunable receivers and converters utilizing voltage comparison techniques
US3973206A (en) 1975-05-22 1976-08-03 A. C. Nielsen Company Monitoring system for voltage tunable receivers and converters utilizing an analog function generator
JPS53144622A (en) * 1977-05-24 1978-12-16 Sony Corp Video signal processing system
US4176379A (en) * 1977-10-17 1979-11-27 Xerox Corporation Video input circuits for video hard copy controller
US4225967A (en) 1978-01-09 1980-09-30 Fujitsu Limited Broadcast acknowledgement method and system
US4281217A (en) 1978-03-27 1981-07-28 Dolby Ray Milton Apparatus and method for the identification of specially encoded FM stereophonic broadcasts
US4454610A (en) 1978-05-19 1984-06-12 Transaction Sciences Corporation Methods and apparatus for the automatic classification of patterns
US4230990C1 (en) 1979-03-16 2002-04-09 John G Lert Jr Broadcast program identification method and system
US4295128A (en) 1979-03-26 1981-10-13 University Of Tennessee Research Corp. Apparatus for measuring the degradation of a sensor time constant
JPS5744186A (en) 1980-08-29 1982-03-12 Takeda Riken Ind Co Ltd Waveform memory
US4425578A (en) 1981-01-12 1984-01-10 A. C. Nielsen Company Monitoring system and method utilizing signal injection for determining channel reception of video receivers
US4965825A (en) 1981-11-03 1990-10-23 The Personalized Mass Media Corporation Signal processing apparatus and methods
US4755884A (en) 1982-01-12 1988-07-05 Discovision Associates Audio evaluation of information stored on a record medium under control of video picture frame number
US4564862A (en) 1982-08-09 1986-01-14 Edwin Cohen Ghost signal elimination circuit
US4497060A (en) 1982-12-08 1985-01-29 Lockheed Electronics Co., Inc. Self-clocking binary receiver
US4805020A (en) 1983-03-21 1989-02-14 Greenberg Burton L Television program transmission verification method and apparatus
US4547804A (en) 1983-03-21 1985-10-15 Greenberg Burton L Method and apparatus for the automatic identification and verification of commercial broadcast programs
US4639779A (en) 1983-03-21 1987-01-27 Greenberg Burton L Method and apparatus for the automatic identification and verification of television broadcast programs
US4967273A (en) 1983-03-21 1990-10-30 Vidcode, Inc. Television program transmission verification method and apparatus
US4512013A (en) 1983-04-11 1985-04-16 At&T Bell Laboratories Simultaneous transmission of speech and data over an analog channel
US4703476A (en) 1983-09-16 1987-10-27 Audicom Corporation Encoding of transmitted program material
US4593904A (en) 1984-03-19 1986-06-10 Syntech International, Inc. Player interactive video gaming device
JPS60251724A (en) 1984-05-29 1985-12-12 Pioneer Electronic Corp Receiver for identifying program
US4807013A (en) 1984-10-17 1989-02-21 American Telephone And Telegraph Company At&T Bell Laboratories Polysilicon fillet
DE3523809A1 (en) 1985-05-21 1986-11-27 Polygram Gmbh, 2000 Hamburg METHOD FOR TIME COMPRESSION OF INFORMATION IN DIGITAL FORM
US4677466A (en) 1985-07-29 1987-06-30 A. C. Nielsen Company Broadcast program identification method and apparatus
US4669089A (en) 1985-09-30 1987-05-26 The Boeing Company Suppressed clock pulse-duration modulator for direct sequence spread spectrum transmission systems
US4789863A (en) 1985-10-02 1988-12-06 Bush Thomas A Pay per view entertainment system
US4706282A (en) 1985-12-23 1987-11-10 Minnesota Mining And Manufacturing Company Decoder for a recorder-decoder system
US5057915A (en) 1986-03-10 1991-10-15 Kohorn H Von System and method for attracting shoppers to sales outlets
JPS6317886A (en) 1986-07-11 1988-01-25 Kyorin Pharmaceut Co Ltd Production of spiropyrrolidine-2,5-dione derivative
US4739398A (en) 1986-05-02 1988-04-19 Control Data Corporation Method, apparatus and system for recognizing broadcast segments
GB8611014D0 (en) 1986-05-06 1986-06-11 Emi Plc Thorn Signal identification
US4723302A (en) 1986-08-05 1988-02-02 A. C. Nielsen Company Method and apparatus for determining channel reception of a receiver
US4755871A (en) 1986-11-25 1988-07-05 Magus, Ltd. Control of rf answer pulses in a TV answer back system
US4729398A (en) 1987-01-20 1988-03-08 Bellofram Corp. Current-to-pressure transducers
US4840602A (en) 1987-02-06 1989-06-20 Coleco Industries, Inc. Talking doll responsive to external signal
JPS63199801A (en) 1987-02-12 1988-08-18 Chisso Corp Stabilization treatment device for ferromagnetic metal powder
JPS63198367A (en) 1987-02-13 1988-08-17 Toshiba Corp Semiconductor device
US4764808A (en) 1987-05-05 1988-08-16 A. C. Nielsen Company Monitoring system and method for determining channel reception of video receivers
US4843562A (en) 1987-06-24 1989-06-27 Broadcast Data Systems Limited Partnership Broadcast information classification system and method
EP0298691B1 (en) 1987-07-08 1994-10-05 Matsushita Electric Industrial Co., Ltd. Method and apparatus for protection of signal copy
US4876736A (en) 1987-09-23 1989-10-24 A. C. Nielsen Company Method and apparatus for determining channel reception of a receiver
US4937807A (en) 1987-10-15 1990-06-26 Personics Corporation System for encoding sound recordings for high-density storage and high-speed transfers
US4807031A (en) 1987-10-20 1989-02-21 Interactive Systems, Incorporated Interactive video method and apparatus
US4943963A (en) 1988-01-19 1990-07-24 A. C. Nielsen Company Data collection and transmission system with real time clock
US4931871A (en) 1988-06-14 1990-06-05 Kramer Robert A Method of and system for identification and verification of broadcasted program segments
US4945412A (en) 1988-06-14 1990-07-31 Kramer Robert A Method of and system for identification and verification of broadcasting television and radio program segments
US5213337A (en) 1988-07-06 1993-05-25 Robert Sherman System for communication using a broadcast audio signal
US4930011A (en) 1988-08-02 1990-05-29 A. C. Nielsen Company Method and apparatus for identifying individual members of a marketing and viewing audience
US4969041A (en) 1988-09-23 1990-11-06 Dubner Computer Systems, Inc. Embedment of data in a video signal
US4939515A (en) 1988-09-30 1990-07-03 General Electric Company Digital signal encoding and decoding apparatus
GB8824969D0 (en) 1988-10-25 1988-11-30 Emi Plc Thorn Identification codes
NL8901032A (en) 1988-11-10 1990-06-01 Philips Nv CODER FOR INCLUDING ADDITIONAL INFORMATION IN A DIGITAL AUDIO SIGNAL WITH A PREFERRED FORMAT, A DECODER FOR DERIVING THIS ADDITIONAL INFORMATION FROM THIS DIGITAL SIGNAL, AN APPARATUS FOR RECORDING A DIGITAL SIGNAL ON A CODE OF RECORD. OBTAINED A RECORD CARRIER WITH THIS DEVICE.
US4972471A (en) 1989-05-15 1990-11-20 Gary Gross Encoding system
US5319453A (en) 1989-06-22 1994-06-07 Airtrax Method and apparatus for video signal encoding, decoding and monitoring
US4972503A (en) 1989-08-08 1990-11-20 A. C. Nielsen Company Method and apparatus for determining audience viewing habits by jamming a control signal and identifying the viewers command
US5214792A (en) 1989-09-27 1993-05-25 Alwadish David J Broadcasting system with supplemental data transmission and storge
US5210831A (en) 1989-10-30 1993-05-11 International Business Machines Corporation Methods and apparatus for insulating a branch prediction mechanism from data dependent branch table updates that result from variable test operand locations
US5191615A (en) 1990-01-17 1993-03-02 The Drummer Group Interrelational audio kinetic entertainment system
US5210820A (en) 1990-05-02 1993-05-11 Broadcast Data Systems Limited Partnership Signal recognition system and method
US5080479A (en) 1990-07-30 1992-01-14 Rosenberg Stanley L Automatic implanting of identification data in any recorded medium
US5390207A (en) 1990-11-28 1995-02-14 Novatel Communications Ltd. Pseudorandom noise ranging receiver which compensates for multipath distortion by dynamically adjusting the time delay spacing between early and late correlators
US5161251A (en) 1991-02-19 1992-11-03 Mankovitz Roy J Apparatus and methods for providing text information identifying audio program selections
EP0508845B1 (en) 1991-03-11 2001-11-07 Nippon Telegraph And Telephone Corporation Method and apparatus for image processing
US5200822A (en) 1991-04-23 1993-04-06 National Broadcasting Company, Inc. Arrangement for and method of processing data, especially for identifying and verifying airing of television broadcast programs
JPH04332089A (en) 1991-05-07 1992-11-19 Takayama:Kk Method for registering finger print data
US5251041A (en) 1991-06-21 1993-10-05 Young Philip L Method and apparatus for modifying a video signal to inhibit unauthorized videotape recording and subsequent reproduction thereof
US5402488A (en) 1991-08-30 1995-03-28 Karlock; James A. Method and apparatus for modifying a video signal
FR2681997A1 (en) 1991-09-30 1993-04-02 Arbitron Cy METHOD AND DEVICE FOR AUTOMATICALLY IDENTIFYING A PROGRAM COMPRISING A SOUND SIGNAL
GB2292506B (en) 1991-09-30 1996-05-01 Arbitron Company The Method and apparatus for automatically identifying a program including a sound signal
JPH0543159U (en) 1991-11-08 1993-06-11 カシオ電子工業株式会社 Image forming device
US5319735A (en) 1991-12-17 1994-06-07 Bolt Beranek And Newman Inc. Embedded signalling
US5294982A (en) 1991-12-24 1994-03-15 National Captioning Institute, Inc. Method and apparatus for providing dual language captioning of a television program
US5414729A (en) 1992-01-24 1995-05-09 Novatel Communications Ltd. Pseudorandom noise ranging receiver which compensates for multipath distortion by making use of multiple correlator time delay spacing
US5436653A (en) 1992-04-30 1995-07-25 The Arbitron Company Method and system for recognition of broadcast segments
JP3427392B2 (en) 1992-05-25 2003-07-14 ソニー株式会社 Encoding method
US5270480A (en) 1992-06-25 1993-12-14 Victor Company Of Japan, Ltd. Toy acting in response to a MIDI signal
US5237611A (en) 1992-07-23 1993-08-17 Crest Industries, Inc. Encryption/decryption apparatus with non-accessible table of keys
US5721788A (en) 1992-07-31 1998-02-24 Corbis Corporation Method and system for digital image signatures
US5502576A (en) * 1992-08-24 1996-03-26 Ramsay International Corporation Method and apparatus for the transmission, storage, and retrieval of documents in an electronic domain
NZ259776A (en) 1992-11-16 1997-06-24 Ceridian Corp Identifying recorded or broadcast audio signals by mixing with encoded signal derived from code signal modulated by narrower bandwidth identification signal
CA2106143C (en) 1992-11-25 2004-02-24 William L. Thomas Universal broadcast code and multi-level encoded signal monitoring system
US5379345A (en) 1993-01-29 1995-01-03 Radio Audit Systems, Inc. Method and apparatus for the processing of encoded data in conjunction with an audio broadcast
JPH06268615A (en) 1993-03-11 1994-09-22 Sanyo Electric Co Ltd Fm multiplex broadcast transmitter and fm multiplex broadcast receiver
US5523794A (en) 1993-04-16 1996-06-04 Mankovitz; Roy J. Method and apparatus for portable storage and use of data transmitted by television signal
US5408258A (en) 1993-04-21 1995-04-18 The Arbitron Company Method of automatically qualifying a signal reproduction device for installation of monitoring equipment
US5404160A (en) 1993-06-24 1995-04-04 Berkeley Varitronics Systems, Inc. System and method for identifying a television program
JP3053527B2 (en) 1993-07-30 2000-06-19 インターナショナル・ビジネス・マシーンズ・コーポレイション Method and apparatus for validating a password, method and apparatus for generating and preliminary validating a password, method and apparatus for controlling access to resources using an authentication code
US5481294A (en) 1993-10-27 1996-01-02 A. C. Nielsen Company Audience measurement system utilizing ancillary codes and passive signatures
US6516079B1 (en) 2000-02-14 2003-02-04 Digimarc Corporation Digital watermark screening and detecting strategies
US6636615B1 (en) 1998-01-20 2003-10-21 Digimarc Corporation Methods and systems using multiple watermarks
US6574350B1 (en) 1995-05-08 2003-06-03 Digimarc Corporation Digital watermarking employing both frail and robust watermarks
US6681029B1 (en) 1993-11-18 2004-01-20 Digimarc Corporation Decoding steganographic messages embedded in media signals
US5862260A (en) 1993-11-18 1999-01-19 Digimarc Corporation Methods for surveying dissemination of proprietary empirical data
US6983051B1 (en) 1993-11-18 2006-01-03 Digimarc Corporation Methods for audio watermarking and decoding
US5748763A (en) 1993-11-18 1998-05-05 Digimarc Corporation Image steganography system featuring perceptually adaptive and globally scalable signal embedding
US5841978A (en) 1993-11-18 1998-11-24 Digimarc Corporation Network linking method using steganographically embedded data objects
US6614914B1 (en) 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US5636292C1 (en) * 1995-05-08 2002-06-18 Digimarc Corp Steganography methods employing embedded calibration data
US7171016B1 (en) 1993-11-18 2007-01-30 Digimarc Corporation Method for monitoring internet dissemination of image, video and/or audio files
US5832119C1 (en) 1993-11-18 2002-03-05 Digimarc Corp Methods for controlling systems using control signals embedded in empirical data
ATE237197T1 (en) 1993-11-18 2003-04-15 Digimarc Corp IDENTIFICATION/CREDITION CODING METHOD AND APPARATUS
US5581658A (en) 1993-12-14 1996-12-03 Infobase Systems, Inc. Adaptive system for broadcast program identification and reporting
JPH07163765A (en) 1993-12-16 1995-06-27 B I:Kk Remote control toy
US6947571B1 (en) 1999-05-19 2005-09-20 Digimarc Corporation Cell phones with optical capabilities, and related applications
US5424785A (en) 1994-03-22 1995-06-13 National Captioning Institute System for encoding and displaying captions for television programs
US5508754A (en) 1994-03-22 1996-04-16 National Captioning Institute System for encoding and displaying captions for television programs
US5450490A (en) 1994-03-31 1995-09-12 The Arbitron Company Apparatus and methods for including codes in audio signals and decoding
US5404377A (en) 1994-04-08 1995-04-04 Moses; Donald W. Simultaneous transmission of data and audio signals by means of perceptual coding
US5526427A (en) 1994-07-22 1996-06-11 A.C. Nielsen Company Universal broadcast code and multi-level encoded signal monitoring system
US5719619A (en) 1994-10-08 1998-02-17 Sony Corporation Bidirectional broadcasting method, bidirectional broadcasting system and receiver apparatus for bidirectional broadcast
US6021432A (en) 1994-10-31 2000-02-01 Lucent Technologies Inc. System for processing broadcast stream comprises a human-perceptible broadcast program embedded with a plurality of human-imperceptible sets of information
US7986806B2 (en) 1994-11-16 2011-07-26 Digimarc Corporation Paper products and physical objects as means to access and control a computer or to navigate over or act as a portal on a network
US5745569A (en) 1996-01-17 1998-04-28 The Dice Company Method for stega-cipher protection of computer code
US7007166B1 (en) 1994-12-28 2006-02-28 Wistaria Trading, Inc. Method and system for digital watermarking
US5943422A (en) 1996-08-12 1999-08-24 Intertrust Technologies Corp. Steganographic techniques for securely delivering electronic digital rights management control information over insecure communication channels
US5892900A (en) 1996-08-30 1999-04-06 Intertrust Technologies Corp. Systems and methods for secure transaction management and electronic rights protection
JPH08288928A (en) 1995-04-14 1996-11-01 Toshiba Corp Spread spectrum communication equipment
US5519454A (en) 1995-04-21 1996-05-21 Thomson Consumer Electronics, Inc. Luma/chroma separation filter with common delay element for comb filter separation and recursive noise reduction of composite video input signal
US6760463B2 (en) 1995-05-08 2004-07-06 Digimarc Corporation Watermarking methods and media
US6590996B1 (en) 2000-02-14 2003-07-08 Digimarc Corporation Color adaptive watermarking
US6728390B2 (en) 1995-05-08 2004-04-27 Digimarc Corporation Methods and systems using multiple watermarks
US7054462B2 (en) 1995-05-08 2006-05-30 Digimarc Corporation Inferring object status based on detected watermark data
US7224819B2 (en) 1995-05-08 2007-05-29 Digimarc Corporation Integrating digital watermarks in multimedia content
US6738495B2 (en) 1995-05-08 2004-05-18 Digimarc Corporation Watermarking enhanced to withstand anticipated corruptions
US5613004A (en) 1995-06-07 1997-03-18 The Dice Company Steganographic method and device
US5699427A (en) 1995-06-23 1997-12-16 International Business Machines Corporation Method to deter document and intellectual property piracy through individualization
US6505160B1 (en) 1995-07-27 2003-01-07 Digimarc Corporation Connected audio and other media objects
US7711564B2 (en) 1995-07-27 2010-05-04 Digimarc Corporation Connected audio and other media objects
US6411725B1 (en) 1995-07-27 2002-06-25 Digimarc Corporation Watermark enabled video objects
US7562392B1 (en) 1999-05-19 2009-07-14 Digimarc Corporation Methods of interacting with audio and ambient music
US6829368B2 (en) 2000-01-26 2004-12-07 Digimarc Corporation Establishing and interacting with on-line media collections using identifiers in media signals
US7006661B2 (en) * 1995-07-27 2006-02-28 Digimarc Corp Digital watermarking systems and methods
US7171018B2 (en) 1995-07-27 2007-01-30 Digimarc Corporation Portable devices and methods employing digital watermarking
US5937000A (en) 1995-09-06 1999-08-10 Solana Technology Development Corporation Method and apparatus for embedding auxiliary data in a primary data signal
US5822360A (en) 1995-09-06 1998-10-13 Solana Technology Development Corporation Method and apparatus for transporting auxiliary data in audio signals
JPH0983926A (en) 1995-09-07 1997-03-28 Sony Corp Id reading and writing device
EP0766468B1 (en) 1995-09-28 2006-05-03 Nec Corporation Method and system for inserting a spread spectrum watermark into multimedia data
US5850249A (en) 1995-10-12 1998-12-15 Nielsen Media Research, Inc. Receiver monitoring system with local encoding
US5752880A (en) 1995-11-20 1998-05-19 Creator Ltd. Interactive doll
US5687191A (en) 1995-12-06 1997-11-11 Solana Technology Development Corporation Post-compression hidden data transport
US5719937A (en) 1995-12-06 1998-02-17 Solana Technology Develpment Corporation Multi-media copy management system
WO1997022206A1 (en) 1995-12-11 1997-06-19 Philips Electronics N.V. Marking a video and/or audio signal
WO1997025798A1 (en) 1996-01-11 1997-07-17 Mrj, Inc. System for controlling access and distribution of digital property
US5822432A (en) 1996-01-17 1998-10-13 The Dice Company Method for human-assisted random key generation and application for digital watermark system
US5761606A (en) 1996-02-08 1998-06-02 Wolzien; Thomas R. Media online services access via address embedded in video or audio program
US5901178A (en) 1996-02-26 1999-05-04 Solana Technology Development Corporation Post-compression hidden data transport for video
US6035177A (en) 1996-02-26 2000-03-07 Donald W. Moses Simultaneous transmission of ancillary and audio signals by means of perceptual coding
EP0875107B1 (en) 1996-03-07 1999-09-01 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Coding process for inserting an inaudible data signal into an audio signal, decoding process, coder and decoder
US5664018A (en) 1996-03-12 1997-09-02 Leighton; Frank Thomson Watermarking process resilient to collusion attacks
US5949885A (en) 1996-03-12 1999-09-07 Leighton; F. Thomson Method for protecting content using watermarking
AU2435297A (en) 1996-04-02 1997-11-07 Theodore G Handel Data embedding
US5828325A (en) 1996-04-03 1998-10-27 Aris Technologies, Inc. Apparatus and method for encoding and decoding information in analog signals
US5870030A (en) 1996-04-04 1999-02-09 Motorola, Inc. Advertiser pays information and messaging system and apparatus
US20030056103A1 (en) 2000-12-18 2003-03-20 Levy Kenneth L. Audio/video commerce application architectural framework
US6128597A (en) 1996-05-03 2000-10-03 Lsi Logic Corporation Audio decoder with a reconfigurable downmixing/windowing pipeline and method therefor
US6381341B1 (en) 1996-05-16 2002-04-30 Digimarc Corporation Watermark encoding method exploiting biases inherent in original signal
US5893067A (en) * 1996-05-31 1999-04-06 Massachusetts Institute Of Technology Method and apparatus for echo data hiding in audio signals
US5778108A (en) 1996-06-07 1998-07-07 Electronic Data Systems Corporation Method and system for detecting transitional markers such as uniform fields in a video signal
US7159116B2 (en) 1999-12-07 2007-01-02 Blue Spike, Inc. Systems, methods and devices for trusted transactions
US6078664A (en) 1996-12-20 2000-06-20 Moskowitz; Scott A. Z-transform implementation of digital watermarks
US7123718B1 (en) * 1999-03-24 2006-10-17 Blue Spike, Inc. Utilizing data reduction in stegnographic and cryptographic systems
US7177429B2 (en) 2000-12-07 2007-02-13 Blue Spike, Inc. System and methods for permitting open access to data objects and for securing data within the data objects
US5889868A (en) 1996-07-02 1999-03-30 The Dice Company Optimization methods for the insertion, protection, and detection of digital watermarks in digitized data
JP3982836B2 (en) 1996-07-16 2007-09-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method for detecting watermark information embedded in an information signal
US6282299B1 (en) 1996-08-30 2001-08-28 Regents Of The University Of Minnesota Method and apparatus for video watermarking using perceptual masks
US7366908B2 (en) 1996-08-30 2008-04-29 Digimarc Corporation Digital watermarking with content dependent keys and autocorrelation properties for synchronization
US6031914A (en) 1996-08-30 2000-02-29 Regents Of The University Of Minnesota Method and apparatus for embedding data, including watermarks, in human perceptible images
US6061793A (en) 1996-08-30 2000-05-09 Regents Of The University Of Minnesota Method and apparatus for embedding data, including watermarks, in human perceptible sounds
US5848155A (en) 1996-09-04 1998-12-08 Nec Research Institute, Inc. Spread spectrum watermark for embedded signalling
US5809139A (en) 1996-09-13 1998-09-15 Vivo Software, Inc. Watermarking method and apparatus for compressed digital video
JP3109575B2 (en) 1996-09-30 2000-11-20 日本電気株式会社 Image data processing device
US5986692A (en) 1996-10-03 1999-11-16 Logan; James D. Systems and methods for computer enhanced broadcast monitoring
US5825892A (en) 1996-10-28 1998-10-20 International Business Machines Corporation Protecting images with an image watermark
JP3716519B2 (en) 1996-11-15 2005-11-16 オムロン株式会社 Camera, external device and image processing device
JP3172475B2 (en) 1996-12-26 2001-06-04 日本アイ・ビー・エム株式会社 Data hiding method and data extraction method using statistical test
GB9700854D0 (en) 1997-01-16 1997-03-05 Scient Generics Ltd Sub-audible acoustic data transmission mechanism
JP2000509588A (en) 1997-01-27 2000-07-25 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Method and system for transferring content information and related supplementary information
CA2227381C (en) * 1997-02-14 2001-05-29 Nec Corporation Image data encoding system and image inputting apparatus
US5940429A (en) 1997-02-25 1999-08-17 Solana Technology Development Corporation Cross-term compensation power adjustment of embedded auxiliary data in a primary data signal
US6189123B1 (en) 1997-03-26 2001-02-13 Telefonaktiebolaget Lm Ericsson Method and apparatus for communicating a block of digital information between a sending and a receiving station
US6044156A (en) 1997-04-28 2000-03-28 Eastman Kodak Company Method for generating an improved carrier for use in an image data embedding application
US6181364B1 (en) 1997-05-16 2001-01-30 United Video Properties, Inc. System for filtering content from videos
EP1002388B1 (en) 1997-05-19 2006-08-09 Verance Corporation Apparatus and method for embedding and extracting information in analog signals using distributed signal features
US6427012B1 (en) 1997-05-19 2002-07-30 Verance Corporation Apparatus and method for embedding and extracting information in analog signals using replica modulation
US5940135A (en) 1997-05-19 1999-08-17 Aris Technologies, Inc. Apparatus and method for encoding and decoding information in analog signals
IL128233A0 (en) 1997-05-29 1999-11-30 Koninkl Philips Electronics Nv Method and arrangement for detecting a watermark
US5960081A (en) 1997-06-05 1999-09-28 Cray Research, Inc. Embedding a digital signature in a video sequence
US6067440A (en) 1997-06-12 2000-05-23 Diefes; Gunther Cable services security system
JPH118753A (en) * 1997-06-18 1999-01-12 Nec Corp Electronic watermark insertion device
US6222932B1 (en) 1997-06-27 2001-04-24 International Business Machines Corporation Automatic adjustment of image watermark strength based on computed image texture
JP2915904B2 (en) 1997-07-07 1999-07-05 松下電器産業株式会社 Data control method, data control information embedding method, data control information detection method, data control information embedding device, data control information detection device, and recording device
US5940124A (en) 1997-07-18 1999-08-17 Tektronix, Inc. Attentional maps in objective measurement of video quality degradation
IL121642A0 (en) 1997-08-27 1998-02-08 Creator Ltd Interactive talking toy
KR100306457B1 (en) 1997-09-02 2001-10-19 가나이 쓰도무 Data transmission method for embedded data, data transmitting and reproducing apparatuses and information recording medium therefor
DE69828148T2 (en) 1997-09-02 2005-12-22 Koninklijke Philips Electronics N.V. METHOD AND APPARATUS FOR WATERMARK EVALUATION
CN1160935C (en) 1997-09-02 2004-08-04 皇家菲利浦电子有限公司 Watermaking information signal
US6253189B1 (en) 1997-09-15 2001-06-26 At&T Corp. System and method for completing advertising time slot transactions
JP4064506B2 (en) 1997-09-17 2008-03-19 パイオニア株式会社 Digital watermark superimposing method, detecting method and apparatus
PT1020077E (en) 1997-10-08 2002-12-31 Digimarc Corp PROCESS AND APPARATUS FOR A UNIQUE COPY WATER BRAND FOR A VIDEO GRAVACATION
US6388712B1 (en) 1997-10-09 2002-05-14 Kabushiki Kaisha Toshiba System for verifying broadcast of a commercial message
US6094228A (en) 1997-10-28 2000-07-25 Ciardullo; Daniel Andrew Method for transmitting data on viewable portion of a video signal
US5945932A (en) 1997-10-30 1999-08-31 Audiotrack Corporation Technique for embedding a code in an audio signal and for detecting the embedded code
US6173271B1 (en) 1997-11-26 2001-01-09 California Institute Of Technology Television advertising automated billing system
US6330672B1 (en) 1997-12-03 2001-12-11 At&T Corp. Method and apparatus for watermarking digital bitstreams
US6037984A (en) 1997-12-24 2000-03-14 Sarnoff Corporation Method and apparatus for embedding a watermark into a digital image or image sequence
US6804376B2 (en) 1998-01-20 2004-10-12 Digimarc Corporation Equipment employing watermark-based authentication function
IL137370A0 (en) 1998-01-20 2001-07-24 Digimarc Corp Multiple watermarking techniques
JP3673664B2 (en) 1998-01-30 2005-07-20 キヤノン株式会社 Data processing apparatus, data processing method, and storage medium
US6145081A (en) 1998-02-02 2000-11-07 Verance Corporation Method and apparatus for preventing removal of embedded information in cover signals
JP3502554B2 (en) 1998-02-04 2004-03-02 シャープ株式会社 Developing device
CN1153456C (en) 1998-03-04 2004-06-09 皇家菲利浦电子有限公司 Water-mark detection
US6373974B2 (en) 1998-03-16 2002-04-16 Sharp Laboratories Of America, Inc. Method for extracting multiresolution watermark images to determine rightful ownership
TW440819B (en) 1998-03-18 2001-06-16 Koninkl Philips Electronics Nv Copy protection schemes for copy protected digital material
US6661905B1 (en) 1998-03-23 2003-12-09 Koplar Interactive Systems International Llc Method for transmitting data on a viewable portion of a video signal
US6557103B1 (en) 1998-04-13 2003-04-29 The United States Of America As Represented By The Secretary Of The Army Spread spectrum image steganography
US6256736B1 (en) 1998-04-13 2001-07-03 International Business Machines Corporation Secured signal modification and verification with privacy control
US6160986A (en) 1998-04-16 2000-12-12 Creator Ltd Interactive toy
US7756892B2 (en) 2000-05-02 2010-07-13 Digimarc Corporation Using embedded data with file sharing
US6314106B1 (en) 1998-04-20 2001-11-06 Alcatel Internetworking, Inc. Receive processing for dedicated bandwidth data communication switch backplane
US6888943B1 (en) 1998-04-21 2005-05-03 Verance Corporation Multimedia adaptive scrambling system (MASS)
JP3358532B2 (en) 1998-04-27 2002-12-24 日本電気株式会社 Receiving device using electronic watermark
US6487301B1 (en) 1998-04-30 2002-11-26 Mediasec Technologies Llc Digital authentication with digital and analog documents
JP3214555B2 (en) 1998-05-06 2001-10-02 日本電気株式会社 Digital watermark insertion device
US6792542B1 (en) 1998-05-12 2004-09-14 Verance Corporation Digital system for embedding a pseudo-randomly modulated auxiliary data sequence in digital samples
JP3201347B2 (en) 1998-05-15 2001-08-20 日本電気株式会社 Image attribute change device and digital watermark device
US6553127B1 (en) 1998-05-20 2003-04-22 Macrovision Corporation Method and apparatus for selective block processing
US6233347B1 (en) 1998-05-21 2001-05-15 Massachusetts Institute Of Technology System method, and product for information embedding using an ensemble of non-intersecting embedding generators
US6400826B1 (en) * 1998-05-21 2002-06-04 Massachusetts Institute Of Technology System, method, and product for distortion-compensated information embedding using an ensemble of non-intersecting embedding generators
US6912315B1 (en) 1998-05-28 2005-06-28 Verance Corporation Pre-processed information embedding system
US7644282B2 (en) * 1998-05-28 2010-01-05 Verance Corporation Pre-processed information embedding system
EP1080442A1 (en) * 1998-05-28 2001-03-07 Solana Technology Development Corporation Pre-processed information embedding system
JP3156667B2 (en) 1998-06-01 2001-04-16 日本電気株式会社 Digital watermark insertion system, digital watermark characteristic table creation device
US6332194B1 (en) * 1998-06-05 2001-12-18 Signafy, Inc. Method for data preparation and watermark insertion
US6285774B1 (en) * 1998-06-08 2001-09-04 Digital Video Express, L.P. System and methodology for tracing to a source of unauthorized copying of prerecorded proprietary material, such as movies
US6523113B1 (en) 1998-06-09 2003-02-18 Apple Computer, Inc. Method and apparatus for copy protection
US6154571A (en) 1998-06-24 2000-11-28 Nec Research Institute, Inc. Robust digital watermarking
JP2000020600A (en) 1998-07-06 2000-01-21 Hitachi Ltd Method for providing digital contents, method for monitoring its illegal usage, its providing device and device for monitoring its illegal usage
US6490355B1 (en) 1998-07-14 2002-12-03 Koninklijke Philips Electronics N.V. Method and apparatus for use of a time-dependent watermark for the purpose of copy protection
US6530021B1 (en) 1998-07-20 2003-03-04 Koninklijke Philips Electronics N.V. Method and system for preventing unauthorized playback of broadcasted digital data streams
US6438235B2 (en) 1998-08-05 2002-08-20 Hewlett-Packard Company Media content protection utilizing public key cryptography
US6944313B1 (en) 1998-08-06 2005-09-13 Canon Kabushiki Kaisha Method and device for inserting and decoding a watermark in digital data
JP4083302B2 (en) 1998-08-12 2008-04-30 株式会社東芝 Video scrambling / descrambling device
US6226618B1 (en) 1998-08-13 2001-05-01 International Business Machines Corporation Electronic content delivery system
US6253113B1 (en) 1998-08-20 2001-06-26 Honeywell International Inc Controllers that determine optimal tuning parameters for use in process control systems and methods of operating the same
JP3722995B2 (en) 1998-08-21 2005-11-30 株式会社メガチップス Watermark encoding method and decoding method
AU6131899A (en) 1998-08-31 2000-03-21 Digital Video Express, L.P. Watermarking system and methodology for digital multimedia content
US6704431B1 (en) 1998-09-04 2004-03-09 Nippon Telegraph And Telephone Corporation Method and apparatus for digital watermarking
US7043536B1 (en) 1998-09-11 2006-05-09 Lv Partners, L.P. Method for controlling a computer using an embedded unique code in the content of CD media
US7373513B2 (en) 1998-09-25 2008-05-13 Digimarc Corporation Transmarking of multimedia signals
US8332478B2 (en) * 1998-10-01 2012-12-11 Digimarc Corporation Context sensitive connected content
KR100351485B1 (en) 1998-10-08 2002-09-05 마츠시타 덴끼 산교 가부시키가이샤 Data processor and data recorded medium
US6209094B1 (en) 1998-10-14 2001-03-27 Liquid Audio Inc. Robust watermark method and apparatus for digital signals
JP3881794B2 (en) 1998-10-27 2007-02-14 興和株式会社 Digital watermark embedding method and decoding method thereof
JP3733251B2 (en) 1998-11-13 2006-01-11 キヤノン株式会社 Information processing apparatus, control method therefor, and computer-readable recording medium
JP3596590B2 (en) 1998-11-18 2004-12-02 ソニー株式会社 Apparatus and method for appending accompanying information, apparatus and method for detecting accompanying information
JP2000163870A (en) 1998-11-20 2000-06-16 Sony Corp Voice information control device and method
JP4130503B2 (en) 1998-11-30 2008-08-06 株式会社東芝 Digital watermark embedding device
JP4240614B2 (en) 1998-12-04 2009-03-18 キヤノン株式会社 Embedded device and computer-readable storage medium
GB2363300B (en) 1998-12-29 2003-10-01 Kent Ridge Digital Labs Digital audio watermarking using content-adaptive multiple echo hopping
US6678389B1 (en) 1998-12-29 2004-01-13 Kent Ridge Digital Labs Method and apparatus for embedding digital information in digital multimedia data
US7162642B2 (en) 1999-01-06 2007-01-09 Digital Video Express, L.P. Digital content distribution system and method
US6442283B1 (en) 1999-01-11 2002-08-27 Digimarc Corporation Multimedia data embedding
JP3397157B2 (en) 1999-01-13 2003-04-14 日本電気株式会社 Digital watermark insertion system
US6591365B1 (en) 1999-01-21 2003-07-08 Time Warner Entertainment Co., Lp Copy protection control system
JP2000216981A (en) 1999-01-25 2000-08-04 Sony Corp Method for embedding digital watermark and digital watermark embedding device
EP1022678B1 (en) 1999-01-25 2011-03-23 Nippon Telegraph And Telephone Corporation Method, apparatus and program storage medium for embedding and detecting a digital watermark
WO2000045604A1 (en) 1999-01-29 2000-08-03 Sony Corporation Signal processing method and video/voice processing device
US6449496B1 (en) 1999-02-08 2002-09-10 Qualcomm Incorporated Voice recognition user interface for telephone handsets
GB9905777D0 (en) 1999-03-12 1999-05-05 Univ London A method and apparatus for generating multiple watermarked copies of an information signal
US6556688B1 (en) 1999-03-15 2003-04-29 Seiko Epson Corporation Watermarking with random zero-mean patches for printer tracking
JP3607521B2 (en) 1999-03-24 2005-01-05 株式会社東芝 Digital watermark embedding device, digital watermark detection device, digital information distribution device, and storage medium
US7319759B1 (en) 1999-03-27 2008-01-15 Microsoft Corporation Producing a new black box for a digital rights management (DRM) system
US7334247B1 (en) 1999-03-29 2008-02-19 The Directv Group, Inc. Method and apparatus for watermarking received television content
US6823455B1 (en) 1999-04-08 2004-11-23 Intel Corporation Method for robust watermarking of content
US6510234B1 (en) 1999-05-12 2003-01-21 Signafy, Inc. Method for increasing the functionality of a media player/recorder device
US6522769B1 (en) 1999-05-19 2003-02-18 Digimarc Corporation Reconfiguring a watermark detector
US6801999B1 (en) 1999-05-20 2004-10-05 Microsoft Corporation Passive and active software objects containing bore resistant watermarking
US6952774B1 (en) 1999-05-22 2005-10-04 Microsoft Corporation Audio watermarking with dual watermarks
US6871180B1 (en) 1999-05-25 2005-03-22 Arbitron Inc. Decoding of information in audio signals
US6757908B1 (en) 1999-05-28 2004-06-29 3Com Corporation Graphical representation of impairment or other conditions in a data-over-cable system
US6785815B1 (en) 1999-06-08 2004-08-31 Intertrust Technologies Corp. Methods and systems for encoding and protecting data using digital signature and watermarking techniques
GB2351405B (en) 1999-06-21 2003-09-24 Motorola Ltd Watermarked digital images
JP2001005783A (en) 1999-06-23 2001-01-12 Namco Ltd Personal identification system
JP2001022366A (en) 1999-07-12 2001-01-26 Roland Corp Method and device for embedding electronic watermark in waveform data
US7020285B1 (en) 1999-07-13 2006-03-28 Microsoft Corporation Stealthy audio watermarking
US7430670B1 (en) 1999-07-29 2008-09-30 Intertrust Technologies Corp. Software self-defense systems and methods
US6577747B1 (en) 1999-08-05 2003-06-10 Koninklijke Philips Electronics N. V. Detection of auxiliary data in an information signal
DK1198959T3 (en) 1999-08-06 2003-06-02 Macrovision Corp A scaling independent technique for watermarking images
JP2001061052A (en) * 1999-08-20 2001-03-06 Nec Corp Method for inserting electronic watermark data, its device and electronic watermark data detector
US7502759B2 (en) 1999-08-30 2009-03-10 Digimarc Corporation Digital watermarking methods and related toy and game applications
US6834344B1 (en) 1999-09-17 2004-12-21 International Business Machines Corporation Semi-fragile watermarks
US6810527B1 (en) 1999-09-27 2004-10-26 News America, Inc. System and method for distribution and delivery of media context and other data to aircraft passengers
KR100740792B1 (en) 1999-09-27 2007-07-20 코닌클리케 필립스 일렉트로닉스 엔.브이. Watermark detection method and watermark detection system
US6697944B1 (en) 1999-10-01 2004-02-24 Microsoft Corporation Digital content distribution, transmission and protection system and method, and portable device for use therewith
JP2001119555A (en) 1999-10-19 2001-04-27 Kowa Co Electronic watermark for time series processed linear data
US6571144B1 (en) 1999-10-20 2003-05-27 Intel Corporation System for providing a digital watermark in an audio signal
EP1098522A1 (en) 1999-11-05 2001-05-09 Sony United Kingdom Limited Method and apparatus for identifying a digital signal with a watermark
US6628729B1 (en) 1999-11-12 2003-09-30 Zenith Electronics Corporation Apparatus and method for downloading and storing data from a digital receiver
US6947893B1 (en) 1999-11-19 2005-09-20 Nippon Telegraph & Telephone Corporation Acoustic signal transmission with insertion signal for machine control
JP2001242786A (en) 1999-12-20 2001-09-07 Fuji Photo Film Co Ltd Device and method for distribution, and recording medium
TW535406B (en) 1999-12-20 2003-06-01 Ibm Method and apparatus to determine ""original"" copyright infringer of web documents via content transcoding
JP2001175270A (en) 1999-12-21 2001-06-29 Sony Corp Digital watermark inserting method and computer readable recording medium
WO2001047269A1 (en) 1999-12-21 2001-06-28 Robbins Thomas D Automatic reminder system using transmitted id codes
JP2001188549A (en) 1999-12-29 2001-07-10 Sony Corp Information process, information processing method and program storage medium
WO2001050665A1 (en) 1999-12-30 2001-07-12 Digimarc Corporation Watermark-based personal audio appliance
US20020019769A1 (en) 2000-01-19 2002-02-14 Steven Barritz System and method for establishing incentives for promoting the exchange of personal information and targeted advertising
JP2001218006A (en) 2000-01-31 2001-08-10 Canon Inc Picture processor, picture processing method and storage medium
US6625297B1 (en) * 2000-02-10 2003-09-23 Digimarc Corporation Self-orienting watermarks
US8355525B2 (en) * 2000-02-14 2013-01-15 Digimarc Corporation Parallel processing of digital watermarking operations
US6737957B1 (en) 2000-02-16 2004-05-18 Verance Corporation Remote control signaling using audio watermarks
US7426750B2 (en) 2000-02-18 2008-09-16 Verimatrix, Inc. Network-based content distribution system
JP3789069B2 (en) 2000-02-29 2006-06-21 キヤノン株式会社 Digital watermark embedding apparatus and method, program and storage medium, and digital watermark extraction apparatus and method, program and storage medium
US6654501B1 (en) 2000-03-06 2003-11-25 Intel Corporation Method of integrating a watermark into an image
JP3656728B2 (en) 2000-03-10 2005-06-08 株式会社日立製作所 Information embedding method and extraction method using digital watermark
WO2001069452A2 (en) 2000-03-14 2001-09-20 Blue Dolphin Group, Inc. Method of selecting content for a user
US7142691B2 (en) 2000-03-18 2006-11-28 Digimarc Corporation Watermark embedding functions in rendering description files
ATE359563T1 (en) 2000-03-20 2007-05-15 Ibm METHOD AND SYSTEM FOR REVERSIBLE MARKING OF A TEXT DOCUMENT WITH A SAMPLE OF ADDITIONAL SPACES FOR CERTIFICATION
EP1137250A1 (en) 2000-03-22 2001-09-26 Hewlett-Packard Company, A Delaware Corporation Improvements relating to digital watermarks
US7046808B1 (en) 2000-03-24 2006-05-16 Verance Corporation Method and apparatus for detecting processing stages applied to a signal
US7673315B1 (en) 2000-03-30 2010-03-02 Microsoft Corporation System and method for providing program criteria representing audio and/or visual programming
US6707926B1 (en) 2000-03-31 2004-03-16 Intel Corporation Template for watermark decoder synchronization
WO2001075794A2 (en) 2000-04-05 2001-10-11 Sony United Kingdom Limited Identifying material
JP3690726B2 (en) 2000-04-13 2005-08-31 インターナショナル・ビジネス・マシーンズ・コーポレーション Data processing apparatus, image processing apparatus, and methods thereof
AU2001255445A1 (en) 2000-04-17 2001-10-30 Digimarc Corporation Authentication of physical and electronic media objects using digital watermarks
JP2001312570A (en) 2000-04-28 2001-11-09 Matsushita Electric Ind Co Ltd Copyright protection device, copyright protection system, copyright protection verification device, medium and information collectivity
US7167599B1 (en) 2000-05-03 2007-01-23 Thomson Licensing Method and device for controlling multimedia data watermark
JP2001326952A (en) 2000-05-15 2001-11-22 Nec Corp Broadcast confirmation system, method and device for broadcast confirmation, and recording medium with broadcast confirmation program recorded thereon
JP2002042413A (en) 2000-05-18 2002-02-08 Sony Corp Data recording medium, method and device for recording data, method and device for reproducing data, method and device for recording and reproducing data, method and device for transmitting data, method and device for receiving data, and contents data
US20050071283A1 (en) 2000-05-25 2005-03-31 Randle William M. Quality assured secure and coordinated transmission of separate image and data records representing a transaction
JP2001339700A (en) 2000-05-26 2001-12-07 Nec Corp Digital watermark processor, its insertion method and its detection method
US20040021549A1 (en) 2000-06-10 2004-02-05 Jong-Uk Choi System and method of providing and autheticating works and authorship based on watermark technique
JP2002010057A (en) 2000-06-20 2002-01-11 Ricoh Co Ltd Color image forming device
US7617509B1 (en) 2000-06-23 2009-11-10 International Business Machines Corporation Method and system for automated monitoring of quality of service of digital video material distribution and play-out
JP2002027223A (en) 2000-07-05 2002-01-25 Konica Corp Data processing device and data controlling system
JP3809323B2 (en) * 2000-07-06 2006-08-16 株式会社日立製作所 Method for embedding digital watermark information and method for analyzing possibility of embedding digital watermark information
JP3973346B2 (en) 2000-07-06 2007-09-12 株式会社日立製作所 CONTENT DISTRIBUTION SYSTEM, CONTENT REPRODUCTION DEVICE, CONTENT DISTRIBUTION DEVICE, AND STORAGE MEDIUM
JP4305593B2 (en) 2000-07-17 2009-07-29 ソニー株式会社 DATA RECORDING / REPRODUCING METHOD AND DEVICE, DATA RECORDING DEVICE AND METHOD
US6594373B1 (en) 2000-07-19 2003-07-15 Digimarc Corporation Multi-carrier watermarks using carrier signals modulated with auxiliary messages
US6721439B1 (en) 2000-08-18 2004-04-13 Hewlett-Packard Development Company, L.P. Method and system of watermarking digital data using scaled bin encoding and maximum likelihood decoding
US6430301B1 (en) * 2000-08-30 2002-08-06 Verance Corporation Formation and analysis of signals with common and transaction watermarks
JP3691415B2 (en) 2000-09-01 2005-09-07 松下電器産業株式会社 REPRODUCTION DEVICE, REPRODUCTION DEVICE SPECIFICING DEVICE, AND METHOD THEREOF
JP3511502B2 (en) 2000-09-05 2004-03-29 インターナショナル・ビジネス・マシーンズ・コーポレーション Data processing detection system, additional information embedding device, additional information detection device, digital content, music content processing device, additional data embedding method, content processing detection method, storage medium, and program transmission device
US6760464B2 (en) 2000-10-11 2004-07-06 Digimarc Corporation Halftone watermarking and related applications
US7246239B2 (en) 2001-01-24 2007-07-17 Digimarc Corporation Digital watermarks for checking authenticity of printed objects
JP3700565B2 (en) 2000-09-11 2005-09-28 セイコーエプソン株式会社 Printing system and content data reproduction system
US6674876B1 (en) 2000-09-14 2004-01-06 Digimarc Corporation Watermarking in the time-frequency domain
AU2001292910B2 (en) 2000-09-22 2008-05-01 Sca Ipla Holdings, Inc. Systems and methods for preventing unauthorized use of digital content
US6829582B1 (en) 2000-10-10 2004-12-07 International Business Machines Corporation Controlled access to audio signals based on objectionable audio content detected via sound recognition
US6512837B1 (en) 2000-10-11 2003-01-28 Digimarc Corporation Watermarks carrying content dependent signal metrics for detecting and characterizing signal alteration
JP3807220B2 (en) 2000-10-18 2006-08-09 日本電気株式会社 Digital watermark detection apparatus and digital watermark detection method
JP4346809B2 (en) 2000-10-19 2009-10-21 エヌ・ティ・ティ・ソフトウェア株式会社 Digital watermark information detection method
US6748360B2 (en) 2000-11-03 2004-06-08 International Business Machines Corporation System for selling a product utilizing audio content identification
US7085613B2 (en) 2000-11-03 2006-08-01 International Business Machines Corporation System for monitoring audio content in a video broadcast
AU2001296667A1 (en) 2000-11-09 2002-05-21 Macrovision Corporation Method and apparatus for determining digital a/v content distribution terms based on detected piracy levels
US7043049B2 (en) 2000-11-30 2006-05-09 Intel Corporation Apparatus and method for monitoring streamed multimedia quality using digital watermark
US6925342B2 (en) 2000-12-05 2005-08-02 Koninklijke Philips Electronics N.V. System and method for protecting digital media
JP4320951B2 (en) 2000-12-06 2009-08-26 ソニー株式会社 Recording apparatus and recording / reproducing apparatus
EP1215907A3 (en) 2000-12-07 2006-04-26 Sony United Kingdom Limited Watermarking material and transferring watermarked material
US20020080976A1 (en) 2000-12-14 2002-06-27 Schreer Scott P. System and method for accessing authorized recordings
US20040059918A1 (en) 2000-12-15 2004-03-25 Changsheng Xu Method and system of digital watermarking for compressed audio
US6483927B2 (en) 2000-12-18 2002-11-19 Digimarc Corporation Synchronizing readers of hidden auxiliary data in quantization-based data hiding schemes
US8055899B2 (en) 2000-12-18 2011-11-08 Digimarc Corporation Systems and methods using digital watermarking and identifier extraction to provide promotional opportunities
US6965683B2 (en) 2000-12-21 2005-11-15 Digimarc Corporation Routing networks for use with watermark systems
AU2002232817A1 (en) 2000-12-21 2002-07-01 Digimarc Corporation Methods, apparatus and programs for generating and utilizing content signatures
US6856693B2 (en) 2000-12-22 2005-02-15 Nec Laboratories America, Inc. Watermarking with cone-forest detection regions
FR2819672B1 (en) 2001-01-18 2003-04-04 Canon Kk METHOD AND DEVICE FOR TRANSMITTING AND RECEIVING DIGITAL IMAGES USING AN IMAGE MARKER FOR DECODING
US7058815B2 (en) 2001-01-22 2006-06-06 Cisco Technology, Inc. Method and system for digitally signing MPEG streams
JP2002232693A (en) 2001-02-02 2002-08-16 Ntt Electornics Corp Method and system for managing digital watermark, digital watermark embedding processor, digital watermark detection processor, recording medium with digital watermark management program recorded, recording medium with contents including electronic watermark recorded, electronic data delivery management device, and characteristic adjustment device for electronic data transmission
JP4019303B2 (en) 2001-02-02 2007-12-12 日本電気株式会社 ENCRYPTION DEVICE AND DECRYPTION DEVICE USING ENCRYPTION KEY INCLUDED IN ELECTRONIC WATERMARK AND METHOD THEREOF
ATE505905T1 (en) 2001-02-09 2011-04-15 Canon Kk INFORMATION PROCESSING DEVICE AND ITS CONTROL METHODS, COMPUTER PROGRAM, AND STORAGE MEDIUM
US6891958B2 (en) 2001-02-27 2005-05-10 Microsoft Corporation Asymmetric spread-spectrum watermarking systems and methods of use
US6664976B2 (en) 2001-04-18 2003-12-16 Digimarc Corporation Image management system and methods using digital watermarks
US6931536B2 (en) 2001-03-06 2005-08-16 Macrovision Corporation Enhanced copy protection of proprietary material employing multiple watermarks
TW582022B (en) 2001-03-14 2004-04-01 Ibm A method and system for the automatic detection of similar or identical segments in audio recordings
US7987510B2 (en) * 2001-03-28 2011-07-26 Rovi Solutions Corporation Self-protecting digital content
US20020141582A1 (en) 2001-03-28 2002-10-03 Kocher Paul C. Content security layer providing long-term renewable security
US7111169B2 (en) 2001-03-29 2006-09-19 Intel Corporation Method and apparatus for content protection across a source-to-destination interface
US6785401B2 (en) 2001-04-09 2004-08-31 Tektronix, Inc. Temporal synchronization of video watermark decoding
US7047413B2 (en) 2001-04-23 2006-05-16 Microsoft Corporation Collusion-resistant watermarking and fingerprinting
US7024018B2 (en) 2001-05-11 2006-04-04 Verance Corporation Watermark position modulation
JP2003091927A (en) 2001-05-14 2003-03-28 Sony Corp Recording medium, playback apparatus and method for recording medium, recording apparatus and method of recording medium and data output method
US20030056213A1 (en) 2001-05-16 2003-03-20 Mcfaddin James E. Method and system for delivering a composite information stream over a computer network
WO2002095727A1 (en) 2001-05-17 2002-11-28 International Business Machines Corporation Content boundary detecting device, monitoring method, content position determining method, program, and storge medium
US6996717B2 (en) 2001-05-24 2006-02-07 Matsushita Electric Industrial Co., Ltd. Semi-fragile watermarking system for MPEG video authentication
US7113613B2 (en) 2001-06-08 2006-09-26 Hitachi, Ltd. Watermark information detection method
US7581103B2 (en) 2001-06-13 2009-08-25 Intertrust Technologies Corporation Software self-checking systems and methods
DE10129239C1 (en) 2001-06-18 2002-10-31 Fraunhofer Ges Forschung Audio signal water-marking method processes water-mark signal before embedding in audio signal so that it is not audibly perceived
JP2003008873A (en) 2001-06-21 2003-01-10 Nippon Telegr & Teleph Corp <Ntt> Method and device for electronic key management
US20030016825A1 (en) 2001-07-10 2003-01-23 Eastman Kodak Company System and method for secure watermarking of a digital image sequence
JP4333091B2 (en) 2001-07-13 2009-09-16 ソニー株式会社 VIDEO INFORMATION RECORDING DEVICE, RECORDING METHOD, STORAGE MEDIUM, PROGRAM, AND VIDEO INFORMATION RECORDING METHOD
US7877438B2 (en) * 2001-07-20 2011-01-25 Audible Magic Corporation Method and apparatus for identifying new media content
JP2003039770A (en) 2001-07-27 2003-02-13 Canon Inc Image processor and its controlling method
US7298865B2 (en) 2001-07-30 2007-11-20 Sarnoff Corporation Secure robust high-fidelity watermarking
JP4398242B2 (en) 2001-07-31 2010-01-13 グレースノート インコーポレイテッド Multi-stage identification method for recording
US20030031317A1 (en) * 2001-08-13 2003-02-13 Michael Epstein Increasing the size of a data-set and watermarking
US20030053655A1 (en) 2001-08-16 2003-03-20 Barone Samuel T. Digital data monitoring and logging in an ITV system
US7068809B2 (en) * 2001-08-27 2006-06-27 Digimarc Corporation Segmentation in digital watermarking
GB2379349B (en) 2001-08-31 2006-02-08 Sony Uk Ltd Embedding data in material
US6592516B2 (en) 2001-10-09 2003-07-15 Ching-Chuan Lee Interactive control system of a sexual delight appliance
US7006656B2 (en) 2001-10-15 2006-02-28 The Research Foundation Of Suny Lossless embedding of data in digital objects
WO2003034313A2 (en) 2001-10-18 2003-04-24 Macrovision Corporation Systems and methods for providing digital rights management compatibility
US7487363B2 (en) 2001-10-18 2009-02-03 Nokia Corporation System and method for controlled copying and moving of content between devices and domains based on conditional encryption of content key depending on usage
JP3902536B2 (en) 2001-11-28 2007-04-11 日本ビクター株式会社 Variable length data encoding method and variable length data encoding apparatus
JP2003168262A (en) 2001-11-29 2003-06-13 Toshiba Corp Apparatus and method for recording contents containing watermark
US7392394B2 (en) 2001-12-13 2008-06-24 Digimarc Corporation Digital watermarking with variable orientation and protocols
US7392392B2 (en) 2001-12-13 2008-06-24 Digimarc Corporation Forensic digital watermarking with variable orientation and protocols
US7515730B2 (en) 2001-12-13 2009-04-07 Digimarc Corporation Progressive image quality control using watermarking
US8059815B2 (en) 2001-12-13 2011-11-15 Digimarc Corporation Transforming data files into logical storage units for auxiliary data through reversible watermarks
GB2383220B (en) 2001-12-13 2005-11-30 Sony Uk Ltd Data processing apparatus and method
US20030115504A1 (en) 2001-12-19 2003-06-19 Holliman Matthew J. Measurement of data degradation using watermarks
US6944771B2 (en) 2001-12-20 2005-09-13 Koninklijke Philips Electronics N.V. Method and apparatus for overcoming a watermark security system
CN100534181C (en) 2001-12-21 2009-08-26 皇家飞利浦电子股份有限公司 Increasing integrity of watermarks using robust features
US20030131350A1 (en) 2002-01-08 2003-07-10 Peiffer John C. Method and apparatus for identifying a digital audio signal
US6996249B2 (en) * 2002-01-11 2006-02-07 Nec Laboratories America, Inc. Applying informed coding, informed embedding and perceptual shaping to design a robust, high-capacity watermark
WO2003062960A2 (en) * 2002-01-22 2003-07-31 Digimarc Corporation Digital watermarking and fingerprinting including symchronization, layering, version control, and compressed embedding
US7840005B2 (en) 2002-01-22 2010-11-23 Digimarc Corporation Synchronization of media signals
US7231061B2 (en) 2002-01-22 2007-06-12 Digimarc Corporation Adaptive prediction filtering for digital watermarking
US7328345B2 (en) 2002-01-29 2008-02-05 Widevine Technologies, Inc. Method and system for end to end securing of content for video on demand
JP4107851B2 (en) 2002-02-13 2008-06-25 三洋電機株式会社 Digital watermark embedding method and encoding device and decoding device capable of using the method
US7054461B2 (en) 2002-02-15 2006-05-30 Pitney Bowes Inc. Authenticating printed objects using digital watermarks associated with multidimensional quality metrics
JP2002354232A (en) 2002-03-20 2002-12-06 Canon Inc Information processing system, information processor, information processing method, and storage medium storing program to be read by computer for implementing such system, processor and method
GB2386782B (en) 2002-03-22 2005-09-21 Sony Uk Ltd Material storage
JP4186531B2 (en) 2002-03-25 2008-11-26 富士ゼロックス株式会社 Data embedding method, data extracting method, data embedding extracting method, and system
US6912010B2 (en) 2002-04-15 2005-06-28 Tektronix, Inc. Automated lip sync error correction
US7389421B2 (en) 2002-04-18 2008-06-17 Microsoft Corporation Countermeasure against estimation-based attacks of spread-spectrum watermarks
MXPA04010349A (en) 2002-04-22 2005-06-08 Nielsen Media Res Inc Methods and apparatus to collect audience information associated with a media presentation.
JP2003316556A (en) 2002-04-24 2003-11-07 Canon Inc Transaction system, terminal equipment, terminal, transaction method, transaction program and computer- readable recording medium with transaction program recorded thereon
WO2003093961A2 (en) 2002-05-02 2003-11-13 Shieldip, Inc. Method and apparatus for protecting information and privacy
AU2003264750A1 (en) 2002-05-03 2003-11-17 Harman International Industries, Incorporated Multi-channel downmixing device
CN100353767C (en) 2002-05-10 2007-12-05 皇家飞利浦电子股份有限公司 Watermark embedding and retrieval
JP3780510B2 (en) 2002-05-28 2006-05-31 日本電信電話株式会社 Multiple digital watermark processing method, multiple digital watermark processing apparatus, multiple digital watermark processing program, and storage medium storing the processing program
US6954541B2 (en) 2002-05-29 2005-10-11 Xerox Corporation Method of detecting changes occurring in image editing using watermarks
US7519819B2 (en) 2002-05-29 2009-04-14 Digimarc Corporatino Layered security in digital watermarking
US7039931B2 (en) 2002-05-30 2006-05-02 Nielsen Media Research, Inc. Multi-market broadcast tracking, management and reporting method and system
CN100458949C (en) 2002-06-03 2009-02-04 皇家飞利浦电子股份有限公司 Re-embedding of watermarks in multimedia signals
KR100888589B1 (en) 2002-06-18 2009-03-16 삼성전자주식회사 Method and apparatus for extracting watermark from repeatedly watermarked original information
US8601504B2 (en) 2002-06-20 2013-12-03 Verance Corporation Secure tracking system and method for video program content
US7818763B2 (en) 2002-06-25 2010-10-19 Starz Entertainment, Llc Video advertising
US7003131B2 (en) 2002-07-09 2006-02-21 Kaleidescape, Inc. Watermarking and fingerprinting digital content using alternative blocks to embed information
US7188248B2 (en) 2002-07-09 2007-03-06 Kaleidescope, Inc. Recovering from de-synchronization attacks against watermarking and fingerprinting
US20040091111A1 (en) 2002-07-16 2004-05-13 Levy Kenneth L. Digital watermarking and fingerprinting applications
JP3754403B2 (en) 2002-07-26 2006-03-15 株式会社東芝 Digital watermark detection method and apparatus
EP1553775A4 (en) 2002-07-29 2007-07-11 Ibm Wm signal generation device, wm signal generation method, computer-executable program for executing wm signal generation method and computer readable recording medium on which the program is recorded, digital watermarking device, and digital tv set including the digital watermarking device
US8176508B2 (en) 2002-08-02 2012-05-08 Time Warner Cable Method and apparatus to provide verification of data using a fingerprint
JP2004070606A (en) 2002-08-05 2004-03-04 Kanazawa Inst Of Technology Contents management method and device
JP3749884B2 (en) 2002-08-28 2006-03-01 株式会社東芝 Digital watermark embedding device, digital watermark analysis device, digital watermark embedding method, digital watermark analysis method, and program
US7133534B2 (en) 2002-09-03 2006-11-07 Koninklijke Philips Electronics N.V. Copy protection via redundant watermark encoding
TWI290286B (en) 2002-09-05 2007-11-21 Matsushita Electric Ind Co Ltd Group formation/management system, group management device, member device, registration device, authentication method used in a group management device, and recording medium storing a computer program used in a group management device
JP4266677B2 (en) 2002-09-20 2009-05-20 三洋電機株式会社 Digital watermark embedding method and encoding device and decoding device capable of using the method
EP2442566A3 (en) 2002-10-15 2012-08-08 Verance Corporation Media Monitoring, Management and Information System
US20040088556A1 (en) 2002-10-31 2004-05-06 Weirauch Charles R. Using digital watermarking for protection of digital data
JP3960959B2 (en) 2002-11-08 2007-08-15 三洋電機株式会社 Digital watermark embedding apparatus and method, and digital watermark extraction apparatus and method
KR100448888B1 (en) 2002-11-28 2004-09-18 한국전자통신연구원 Broadcasting server system for protection and management of digital broadcasting contents, processing method in its
GB2396267A (en) 2002-12-09 2004-06-16 Sony Uk Ltd Method of embedding and extracting codewords in data
JP2004193843A (en) 2002-12-10 2004-07-08 Nippon Hoso Kyokai <Nhk> Device, method, and program for content delivery and device, method, and program for reproducing content
JP2004194233A (en) 2002-12-13 2004-07-08 Mitsubishi Electric Corp Contents management apparatus and contents distribution apparatus
RU2324301C2 (en) 2003-02-10 2008-05-10 Конинклейке Филипс Электроникс Н.В. Import control of content
AU2003206940A1 (en) 2003-02-21 2004-09-09 Telefonaktiebolaget Lm Ericsson (Publ) Method for embedding and detecting a watermark in a digital audio signal
JP4823890B2 (en) 2003-03-06 2011-11-24 ディジマーク コーポレイション Document authentication method
US20040202324A1 (en) 2003-04-11 2004-10-14 Matsushita Electric Industrial Co., Ltd Program electronic watermark processing apparatus
KR100624751B1 (en) 2003-04-25 2006-09-19 (주)마크텍 A method for embedding watermark into an image and digital video recoreder using said method
US20040216157A1 (en) 2003-04-25 2004-10-28 Richard Shain System and method for advertising purchase verification
CN102509031B (en) * 2003-06-23 2014-12-24 索尼电影娱乐公司 Method for identifying media source, device and system of fingerprint addition
US7206649B2 (en) 2003-07-15 2007-04-17 Microsoft Corporation Audio watermarking with dual watermarks
JP4200106B2 (en) 2003-07-15 2008-12-24 株式会社リコー Image processing apparatus, image processing method, computer program, and storage medium for storing computer program
US7254250B2 (en) 2003-07-31 2007-08-07 Hewlett-Packard Development Company, L.P. Watermark embedding and extraction method and apparatus in compressed streams
EP1658586A1 (en) 2003-08-19 2006-05-24 Koninklijke Philips Electronics N.V. Detecting a watermark using a subset of available detection methods
JP4269861B2 (en) 2003-09-12 2009-05-27 沖電気工業株式会社 Printed material processing system, watermarked document printing device, watermarked document reading device, printed material processing method, information reading device, and information reading method
US20050071663A1 (en) 2003-09-26 2005-03-31 General Instrument Corporation Separation of copy protection rules for digital rights management
US7706565B2 (en) 2003-09-30 2010-04-27 Digimarc Corporation Multi-channel digital watermarking
US7369677B2 (en) 2005-04-26 2008-05-06 Verance Corporation System reactions to the detection of embedded watermarks in a digital host content
US7616776B2 (en) 2005-04-26 2009-11-10 Verance Corproation Methods and apparatus for enhancing the robustness of watermark extraction from digital host content
US20060239501A1 (en) 2005-04-26 2006-10-26 Verance Corporation Security enhancements of digital watermarks for multi-media content
US9055239B2 (en) 2003-10-08 2015-06-09 Verance Corporation Signal continuity assessment using embedded watermarks
US20070039018A1 (en) 2005-08-09 2007-02-15 Verance Corporation Apparatus, systems and methods for broadcast advertising stewardship
WO2005038778A1 (en) 2003-10-17 2005-04-28 Koninklijke Philips Electronics N.V. Signal encoding
KR100907121B1 (en) 2003-12-05 2009-07-09 모션 픽쳐 어쏘시에이션 오브 아메리카 System and method for controlling display of copy-never content
US20050154891A1 (en) 2004-01-08 2005-07-14 Eastman Kodak Company Metadata-based, anti-fraudulant identification card method and production system
US8023882B2 (en) 2004-01-14 2011-09-20 The Nielsen Company (Us), Llc. Portable audience measurement architectures and methods for portable audience measurement
CN1910612A (en) 2004-01-15 2007-02-07 皇家飞利浦电子股份有限公司 Method of allocating payload bits of a watermark
EP1709760A1 (en) 2004-01-16 2006-10-11 Koninklijke Philips Electronics N.V. Method of allocating optimal payload space
US20070214049A1 (en) 2004-03-01 2007-09-13 Richard Postrel Broadcast television reward program and method of use for issuing, aggregating and redeeming sponsor's reward points
CN102169693B (en) 2004-03-01 2014-07-23 杜比实验室特许公司 Multichannel audio coding
AU2005220863B2 (en) 2004-03-09 2010-03-04 Google Llc Dynamic data delivery apparatus and method for same
US8117595B2 (en) 2004-03-23 2012-02-14 Microsoft Corporation Method for updating data in accordance with rights management policy
US7711140B2 (en) 2004-04-21 2010-05-04 Canon Kabushiki Kaisha Secure recorded documents
US7966391B2 (en) 2004-05-11 2011-06-21 Todd J. Anderson Systems, apparatus and methods for managing networking devices
US7693297B2 (en) 2004-08-05 2010-04-06 Xiao-Ping Zhang Watermark embedding and detecting methods, systems, devices and components
JP4155956B2 (en) 2004-09-16 2008-09-24 三洋電機株式会社 Digital watermark embedding apparatus and method, and digital watermark extraction apparatus and method
WO2006051043A1 (en) 2004-11-10 2006-05-18 Thomson Licensing Method for securely binding content protection information to a content and method for verifying this binding
JP4034776B2 (en) 2004-11-12 2008-01-16 株式会社東芝 Digital watermark detection apparatus, digital watermark detection method, and program
PT1684265E (en) 2005-01-21 2008-10-27 Unltd Media Gmbh Method of embedding a digital watermark in a useful signal
US20060227968A1 (en) 2005-04-08 2006-10-12 Chen Oscal T Speech watermark system
US7983922B2 (en) 2005-04-15 2011-07-19 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Apparatus and method for generating multi-channel synthesizer control signal and apparatus and method for multi-channel synthesizing
CA2605641A1 (en) 2005-04-26 2006-11-02 Verance Corporation Security enhancements of digital watermarks for multi-media content
US7200576B2 (en) 2005-06-20 2007-04-03 Microsoft Corporation Secure online transactions using a captcha image as a watermark
CN100461864C (en) 2005-06-25 2009-02-11 华为技术有限公司 Multimedia video communication objective quality appraising method based on digital watermark
US8020004B2 (en) 2005-07-01 2011-09-13 Verance Corporation Forensic marking using a common customization function
US8781967B2 (en) 2005-07-07 2014-07-15 Verance Corporation Watermarking in an encrypted domain
JP4935015B2 (en) 2005-07-29 2012-05-23 ソニー株式会社 Content distribution system, content distribution method, content transmission terminal, and content reception terminal
KR100901142B1 (en) 2005-08-04 2009-06-04 니폰 덴신 덴와 가부시끼가이샤 Digital watermark detecting method, digital watermark detection device, and program
US7630497B2 (en) 2005-09-19 2009-12-08 International Business Machines Corporation System and method for assigning sequence keys to a media player to enable hybrid traitor tracing
GB2431837A (en) 2005-10-28 2007-05-02 Sony Uk Ltd Audio processing
CN101313331A (en) 2005-11-24 2008-11-26 皇家飞利浦电子股份有限公司 Multibit forensic watermark with encrypted detection key
WO2007076459A2 (en) 2005-12-21 2007-07-05 Digimarc Corporation Rules driven pan id metadata routing system and network
US7788181B2 (en) 2005-12-27 2010-08-31 Microsoft Corporation Software licensing using certificate issued by authorized authority
US7536373B2 (en) 2006-02-14 2009-05-19 International Business Machines Corporation Resource allocation using relational fuzzy modeling
EP1999999B1 (en) 2006-03-24 2011-11-02 Dolby Sweden AB Generation of spatial downmixes from parametric representations of multi channel signals
KR20090020632A (en) 2006-06-19 2009-02-26 파나소닉 주식회사 Information burying device and detecting device
JP5049288B2 (en) 2006-11-09 2012-10-17 パナソニック株式会社 Tamper detection system, tamper detection method, tamper detection program, recording medium, integrated circuit, authentication information generation device, and tamper detection device
GB2445765A (en) 2006-12-14 2008-07-23 Media Instr Sa Movable audience measurement system
US9179200B2 (en) 2007-03-14 2015-11-03 Digimarc Corporation Method and system for determining content treatment
EP1968316A1 (en) 2007-03-06 2008-09-10 Nagravision S.A. Method to control the access to conditional access audio/video content
EP2135376A4 (en) 2007-03-22 2012-12-19 Nielsen Co Us Llc Digital rights management and audience measurement systems and methods
US9349153B2 (en) 2007-04-25 2016-05-24 Digimarc Corporation Correcting image capture distortion
KR101383307B1 (en) 2007-06-14 2014-04-09 톰슨 라이센싱 Method and apparatus for setting a detection threshold given a desired false probability
US20090033617A1 (en) 2007-08-02 2009-02-05 Nokia Corporation Haptic User Interface
JP2009158055A (en) 2007-12-27 2009-07-16 Toshiba Corp Audio data processing system and audio data processing method
JP2009163496A (en) 2008-01-07 2009-07-23 Funai Electric Co Ltd Content reproduction system
KR101442836B1 (en) 2008-01-07 2014-11-04 삼성전자주식회사 Method for providing additional information of video using visible communication and apparatus for the same
US8138930B1 (en) 2008-01-22 2012-03-20 Google Inc. Advertising based on environmental conditions
US8527651B2 (en) 2008-06-19 2013-09-03 Huawei Technologies Co., Ltd. Content identification method and system, and SCIDM client and server
US8259938B2 (en) 2008-06-24 2012-09-04 Verance Corporation Efficient and secure forensic marking in compressed
US8346532B2 (en) 2008-07-11 2013-01-01 International Business Machines Corporation Managing the creation, detection, and maintenance of sensitive information
US8543773B2 (en) 2008-08-25 2013-09-24 International Business Machines Corporation Distributed shared memory
EP2166725A1 (en) 2008-08-28 2010-03-24 Alcatel, Lucent Control of delivery of digital content, and an apparatus therefor
US20100069151A1 (en) 2008-09-18 2010-03-18 Edward Suchocki Gaming device with integrated advertising
EP2175443A1 (en) 2008-10-10 2010-04-14 Thomson Licensing Method and apparatus for for regaining watermark data that were embedded in an original signal by modifying sections of said original signal in relation to at least two different reference data sequences
US8423761B2 (en) 2008-10-31 2013-04-16 Motorola Solutions, Inc. Method and device for enabling a trust relationship using an expired public key infrastructure (PKI) certificate
EP2605485B1 (en) 2008-10-31 2017-05-03 Orange Communication system incorporating ambient sound pattern detection and method of operation thereof
WO2010073236A1 (en) 2008-12-22 2010-07-01 France Telecom A method of and apparatus for authenticating data content
US8529264B2 (en) 2008-12-23 2013-09-10 Benjamin J. Hamlin Method facilitating language learning
US9003512B2 (en) 2009-01-16 2015-04-07 Cox Communications, Inc. Content protection management system
KR20100095245A (en) 2009-02-20 2010-08-30 삼성전자주식회사 Method and apparatus for embedding watermark
JP5742057B2 (en) 2009-03-03 2015-07-01 ディジマーク コーポレイション Narrow casting from public displays and related arrangements
KR20100009384U (en) 2009-03-17 2010-09-29 주식회사 리수산업 Connecting clamp of h beam with rail type guide tool
JP2010272920A (en) 2009-05-19 2010-12-02 Mitsubishi Electric Corp Electronic watermark embedding apparatus, electronic watermark embedding method, and electronic watermark embedding program
US8489774B2 (en) 2009-05-27 2013-07-16 Spot411 Technologies, Inc. Synchronized delivery of interactive content
US8718805B2 (en) 2009-05-27 2014-05-06 Spot411 Technologies, Inc. Audio-based synchronization to media
US8429365B2 (en) 2009-06-26 2013-04-23 Sandisk Technologies Inc. Memory device and method for embedding host-identification information into content
JP5266396B2 (en) 2009-10-30 2013-08-21 パナソニック株式会社 AV data receiving apparatus, AV data receiving method, and AV data transmitting / receiving system
US8954434B2 (en) 2010-01-08 2015-02-10 Microsoft Corporation Enhancing a document with supplemental information from another document
JP5864437B2 (en) 2010-01-15 2016-02-17 ディジマーク コーポレイション Method and configuration for signal rich art
EP2362382A1 (en) 2010-02-26 2011-08-31 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Watermark signal provider and method for providing a watermark signal
US20110214143A1 (en) 2010-03-01 2011-09-01 Rits Susan K Mobile device application
US9342661B2 (en) 2010-03-02 2016-05-17 Time Warner Cable Enterprises Llc Apparatus and methods for rights-managed content and data delivery
US8645699B2 (en) 2010-03-15 2014-02-04 Blackberry Limited Use of certificate authority to control a device's access to services
WO2011116309A1 (en) 2010-03-19 2011-09-22 Digimarc Corporation Intuitive computing methods and systems
US8452106B2 (en) 2010-03-23 2013-05-28 Microsoft Corporation Partition min-hash for partial-duplicate image determination
EP2387033A1 (en) 2010-05-11 2011-11-16 Thomson Licensing Method and apparatus for detecting which one of symbols of watermark data is embedded in a received signal
US9009339B2 (en) 2010-06-29 2015-04-14 Echostar Technologies L.L.C. Apparatus, systems and methods for accessing and synchronizing presentation of media content and supplemental media rich content
US9607131B2 (en) 2010-09-16 2017-03-28 Verance Corporation Secure and efficient content screening in a networked environment
US9767823B2 (en) 2011-02-07 2017-09-19 Qualcomm Incorporated Devices for encoding and detecting a watermarked signal
US8189861B1 (en) 2011-04-05 2012-05-29 Google Inc. Watermarking digital documents
US9380356B2 (en) 2011-04-12 2016-06-28 The Nielsen Company (Us), Llc Methods and apparatus to generate a tag for media content
KR20120119793A (en) 2011-04-22 2012-10-31 삼성전자주식회사 Method and apparatus for watermarking for tracing hacked contents, and method and apparatus for blocking hacked contents
US20120304206A1 (en) 2011-05-26 2012-11-29 Verizon Patent And Licensing, Inc. Methods and Systems for Presenting an Advertisement Associated with an Ambient Action of a User
US8848969B2 (en) 2011-06-06 2014-09-30 Time Warner Cable Enterprises Llc Methods and apparatus for watermarking and distributing watermarked content
US20130031579A1 (en) 2011-07-28 2013-01-31 United Video Properties, Inc. Systems and methods for selectively modifying the display of advertisements and providing supplementary media content
US8615104B2 (en) 2011-11-03 2013-12-24 Verance Corporation Watermark extraction based on tentative watermarks
US8533481B2 (en) 2011-11-03 2013-09-10 Verance Corporation Extraction of embedded watermarks from a host content based on extrapolation techniques
US8682026B2 (en) 2011-11-03 2014-03-25 Verance Corporation Efficient extraction of embedded watermarks in the presence of host content distortions
US8923548B2 (en) 2011-11-03 2014-12-30 Verance Corporation Extraction of embedded watermarks from a host content using a plurality of tentative watermarks
WO2013067439A1 (en) 2011-11-03 2013-05-10 Verance Corporation Watermark extraction based on tentative watermarks
US9281013B2 (en) 2011-11-22 2016-03-08 Cyberlink Corp. Systems and methods for transmission of media content
US8745403B2 (en) 2011-11-23 2014-06-03 Verance Corporation Enhanced content management based on watermark extraction records
US9323902B2 (en) 2011-12-13 2016-04-26 Verance Corporation Conditional access using embedded watermarks
US9547753B2 (en) 2011-12-13 2017-01-17 Verance Corporation Coordinated watermarking
US20130151855A1 (en) 2011-12-13 2013-06-13 Verance Corporation Watermark embedding workflow improvements
US8909536B2 (en) 2012-04-20 2014-12-09 Nuance Communications, Inc. Methods and systems for speech-enabling a human-to-machine interface
US9571606B2 (en) 2012-08-31 2017-02-14 Verance Corporation Social media viewing system
US8869222B2 (en) 2012-09-13 2014-10-21 Verance Corporation Second screen content
US8726304B2 (en) 2012-09-13 2014-05-13 Verance Corporation Time varying evaluation of multimedia content
US20140074855A1 (en) 2012-09-13 2014-03-13 Verance Corporation Multimedia content tags
US9106964B2 (en) 2012-09-13 2015-08-11 Verance Corporation Enhanced content distribution using advertisements
WO2014160324A1 (en) 2013-03-13 2014-10-02 Verance Corporation Multimedia presentation tracking in networked environment
US9262793B2 (en) 2013-03-14 2016-02-16 Verance Corporation Transactional video marking system
TW201448590A (en) 2013-03-15 2014-12-16 Verance Corp Media handling method and device, computer program product embodied on a media, and system comprising said device
CN105308980A (en) 2013-04-25 2016-02-03 凡瑞斯公司 Real-time anti-piracy for broadcast streams
WO2014176550A1 (en) 2013-04-25 2014-10-30 Verance Corporation Live broadcast content protection based on watermarking

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915481B1 (en) * 2000-01-11 2005-07-05 Cognicity, Inc. Transactional watermarking
US7058809B2 (en) * 2000-03-06 2006-06-06 Entriq, Inc. Method and system to uniquely associate multicast content with each of multiple recipients
US20030190054A1 (en) * 2000-10-03 2003-10-09 Lidror Troyansky Method and system for distributing digital content with embedded message
US6912294B2 (en) * 2000-12-29 2005-06-28 Contentguard Holdings, Inc. Multi-stage watermarking process and system
US20030187679A1 (en) * 2002-04-02 2003-10-02 Odgers Chris R. Methods and apparatus for uniquely identifying a large number of film prints

Also Published As

Publication number Publication date
US8020004B2 (en) 2011-09-13
US9009482B2 (en) 2015-04-14
US8549307B2 (en) 2013-10-01
US20140029786A1 (en) 2014-01-30
US20070012782A1 (en) 2007-01-18
US20110311056A1 (en) 2011-12-22

Similar Documents

Publication Publication Date Title
US9009482B2 (en) Forensic marking using a common customization function
US9893888B2 (en) Utilizing data reduction in steganographic and cryptographic systems
US7996913B2 (en) Self-protecting digital content
AU2004258523B2 (en) Reprogrammable security for controlling piracy and enabling interactive content
CN1287249C (en) Access control for digital content
EP2439672A2 (en) Information processing apparatus, information processing method, and program
US20130132729A1 (en) Method and system for protecting by watermarking against non-authorised use original audio or video data which are to be presented
WO2020244474A1 (en) Method, device and apparatus for adding and extracting video watermark
Shahreza An improved method for steganography on mobile phone.
US20040064702A1 (en) Methods and apparatus for digital watermarking and watermark decoding
US9607133B1 (en) Method and apparatus for watermarking binary computer code
TWI407789B (en) Digital media stream method, apparatus ,and system
US20050203872A1 (en) Method and apparatus making, operating and using media parsers to mark, read, and unmark instances of media formats supporting one, two and multi-dimensional instances and data streams
JP2003078515A (en) Contents distributing system, decoding device, encrypting device, decoding program, and encrypting program
JP2005318068A (en) Electronic watermark embedding system of contents authentication data, and authentication system
CN112151048A (en) Method for generating and processing audio-visual image data
CN110517699B (en) Information steganography method, device, equipment and storage medium
JP2002300374A (en) Program to execute electronic watermark information processing
CN117499664A (en) Image data embedding and extracting method and device based on bit substitution
JP2000082963A (en) Digital data work processing method, digital data work processor and recording medium recording digital data work processing program
WO2006054109A2 (en) A system and method for storing revision information
Yu et al. Active data hiding for secure electronic media distribution
Mistry et al. MULTIMEDIA DATA OWNER IDENTIFICATION FOR CAMERA BASED MOBILE PHONES
WVL IST-2002-507932 ECRYPT
Lei Digital watermarking for audio content protection

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION