US20150306439A1 - Bellows actuated temperature compensated pressure switching apparatus and system - Google Patents

Bellows actuated temperature compensated pressure switching apparatus and system Download PDF

Info

Publication number
US20150306439A1
US20150306439A1 US14/264,948 US201414264948A US2015306439A1 US 20150306439 A1 US20150306439 A1 US 20150306439A1 US 201414264948 A US201414264948 A US 201414264948A US 2015306439 A1 US2015306439 A1 US 2015306439A1
Authority
US
United States
Prior art keywords
pressure
bellows
fire suppression
bottle
suppression system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US14/264,948
Other versions
US9463344B2 (en
Inventor
Mark Fazzio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kidde Technologies Inc
Original Assignee
Kidde Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kidde Technologies Inc filed Critical Kidde Technologies Inc
Priority to US14/264,948 priority Critical patent/US9463344B2/en
Assigned to KIDDE TECHNOLOGIES, INC. reassignment KIDDE TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FAZZIO, MARK
Priority to CA2885000A priority patent/CA2885000C/en
Priority to BR102015006830-1A priority patent/BR102015006830B1/en
Priority to EP15165318.5A priority patent/EP2939715A1/en
Priority to CN201510210959.2A priority patent/CN105031870B/en
Publication of US20150306439A1 publication Critical patent/US20150306439A1/en
Application granted granted Critical
Publication of US9463344B2 publication Critical patent/US9463344B2/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/62Portable extinguishers which are permanently pressurised or pressurised immediately before use with a single permanently pressurised container
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/50Testing or indicating devices for determining the state of readiness of the equipment
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C13/00Portable extinguishers which are permanently pressurised or pressurised immediately before use
    • A62C13/76Details or accessories
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/006Fire prevention, containment or extinguishing specially adapted for particular objects or places for kitchens or stoves
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • A62C3/08Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles in aircraft
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C35/00Permanently-installed equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
    • G01L19/04Means for compensating for effects of changes of temperature, i.e. other than electric compensation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L7/00Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements
    • G01L7/02Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges
    • G01L7/06Measuring the steady or quasi-steady pressure of a fluid or a fluent solid material by mechanical or fluid pressure-sensitive elements in the form of elastically-deformable gauges of the bellows type
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0033Transmitting or indicating the displacement of bellows by electric, electromechanical, magnetic, or electromagnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/14Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means involving the displacement of magnets, e.g. electromagnets

Definitions

  • the present disclosure relates to leak detection system for vehicle fire suppression systems, and more specifically, to bellows actuated temperature compensated leak detection systems.
  • TCPS Current temperature compensated pressure switches
  • TCPS Current temperature compensated pressure switches
  • Current TCPS may be inefficient and expensive to manufacture.
  • a fire suppression system may comprise a bottle, a pressure monitoring system, and a controller.
  • the pressure monitoring system may include a bellows.
  • the bellows may be in fluid communication with the volume defined by the bottle.
  • the controller may be configured to monitor the bellows.
  • a pressure monitoring system may comprise a bellows and a reference chamber.
  • the bellows may have a first surface and a second surface.
  • the first surface may be configured to be loaded by a first pressure from a first suppression system.
  • the reference chamber may be configured to maintain a reference pressure.
  • the reference pressure may be configured to load the second surface.
  • FIG. 1 is a schematic illustrating portions of a fire suppression system including a pressuring monitoring system comprising a bellows and a reference chamber, in accordance with various embodiments;
  • FIG. 2 is a schematic illustrating portions of a fire suppression system including a pressuring monitoring system comprising a various rate bellows, in accordance with various embodiments.
  • any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
  • a typical ground checkable pressure switch design may use a stack of washers which are compressed by the pressure within a fire suppression container. In response to being compressed, an attached pin may make contact to a mating pin, thus identifying the container as being properly charged. If the fire suppression container loses pressure, the force balance changes and the pressure switch changes state to indicate a low pressure container.
  • fire suppression systems for vehicles such as, for example, aircraft may include pressure indication systems.
  • the fire suppression systems may include containers that are configured to store fire extinguishing agent without leakage.
  • a pressure indication system may be configured to continuously monitor the container pressure.
  • the container pressure may be evaluated against a reference chamber pressure.
  • the reference chamber pressure may be a chamber that includes the same agent as the container.
  • These pressure indication systems may be configured to indicate that a fire suppression system has sufficient level of pressure and/or fire suppression agent to extinguish and/or suppress a fire in response to the system being activated and/or fire being detected.
  • These systems may include closed loop monitoring structures that allow a user to determine whether a fire suppression system is sufficiently pressurized and/or charged during operation of a vehicle.
  • the use of the bellows may reduce the number of parts and failure modes of the pressure indication system while providing a consistent actuation point.
  • fire suppression system 100 may be any suitable fire suppression, fire extinguishing, fire management, and/or fire control system that is capable of controlling, minimizing, suppressing and/or extinguishing a fire.
  • Fire suppression system 100 may comprise a bottle 110 (e.g., a container, a canister, a pressure vessel, and/or the like), a controller 120 , and a pressure monitoring system 130 .
  • Bottle 110 may be configured with and/or contain a fire suppression agent.
  • the pressure P B1 of the fire suppression agent contained in bottle 110 may be in fluid communication with pressure monitoring system 130 .
  • Pressure monitoring system 130 may be in electronic communication with controller 120 .
  • controller 120 may be configured to monitor, track, report, and/or check pressure P B1 and/or the fill level or quantity of the fire suppression agent contained within bottle 110 .
  • Bottle 110 may be any suitable bottle configured to contain a fire suppression agent moreover bottle 110 may define a bottle volume 112 .
  • Bottle volume 112 may be configured to contain a fire suppression agent.
  • Fire suppression agent may be contained within bottle volume 112 at a pressure P B1 .
  • bottle volume 112 may be operatively coupled to and/or in fluid communication with pressure monitoring system 130 via a connection 114 .
  • pressure monitoring system 130 may comprise a bellows 140 and a reference chamber 150 .
  • Bellows 140 may be removably coupled to and/or in removable contact with reference chamber 150 .
  • bellows 140 may comprise a body 142 having one or more interior convolutions 143 and one or more exterior convolutions 145 .
  • Body 142 may define a pressure chamber.
  • the pressure chamber may be in fluid communication with bottle volume 112 via connection 114 .
  • the pressure chamber and the interior convolutions 143 of body 142 may be subjected to a pressure P B2 .
  • Pressure P B2 may be substantially equivalent to and/or substantially equal to pressure P B1 in bottle volume 112 .
  • reference chamber 150 may comprise a reference chamber volume 152 .
  • Reference chamber volume 152 may be pressurized to a pressure P R .
  • pressure P R may be a reference pressure.
  • Pressure P R may be equal to, slightly less than or slightly greater than at least one of pressure P B1 and/or P B2
  • bellows 140 may be a linear spring rate bellows.
  • interior convolutions 143 are open to the bottle volume 112 and the exterior convolutions 145 may be in fluid communication with reference chamber 150 .
  • interior convolutions 143 may be acted on by P B1 and/or P B2 and the exterior convolutions may be acted on by P R .
  • Bellows 140 may also be inverted.
  • pressure monitoring system 130 and/or bellows 140 may provide a hermetic seal between the bottle 110 and reference chamber 150 .
  • bellows 140 may expand or contract, engaging or disengaging a mating contact 144 indicating a closed or open circuit.
  • the open versus closed circuit indicates a properly or improperly pressurized fire suppression container.
  • pressure P B1 of the fire suppression agent in bottle 110 may be conducted to the pressure chamber of bellows 140 as P B2 causing bellows 140 to expand, in response to pressure P B2 being greater than pressure P R .
  • pressure monitoring system 130 may be configured a closed circuit when pressure P B2 is greater than pressure P R .
  • the closed circuit may be an indication that there is sufficient pressure and/or fire suppression agent in bottle volume 112 .
  • bellows 140 may be compressed by P R and indicating an open circuit.
  • the open circuit may be an indication that bottle 110 and/or bottle volume 112 has leaked, that there is insufficient fire suppression agent in bottle 110 , and/or there is insufficient pressure in bottle 110 .
  • controller 120 may be configured to indicate that there is a problem with fire suppression system 100 , bottle 110 , and/or bottle volume 112 .
  • the configuration of bellows 140 , body 142 , reference chamber 150 and/or pressures P B1 , P B2 and/or P R may be such that an open circuit indicates bottle 110 contains sufficient level and/or amount of pressure and/or fire suppression agent.
  • a closed circuit in this configuration may be an indication that bottle 110 and/or bottle volume 112 has leaked, that there is insufficient fire suppression agent in bottle 110 , there is insufficient pressure in bottle 110 , and/or there is a problem with pressure monitoring system 130 .
  • the fire suppression system 200 may comprise a bellows 240 with a variable spring rate.
  • Bellows 240 may omit the need for a reference chamber, as discussed with reference to FIG. 1 .
  • Bellows 240 may be designed to correspond to the pressure and temperature relationship of the fire suppression agent and corresponding pressure P B1 of bottle 210 .
  • convolutions 243 e.g., interior and/or exterior convolutions
  • bellows 240 may indicate a change in P B2 by expanding or contracting causing mating contact 244 to indicate a leak.
  • the expanding or contracting of bellows 240 may result in an closed circuit, indicating proper pressure P B1 and/or P B2 and/or fire suppression agent fill of bottle 210 and/or bottle volume 212 .
  • controller 220 may be configured to indicate that there is a problem with fire suppression system 200 , bottle 210 , bottle volume 212 and/or pressure monitoring system 230 .
  • the configuration of bellows 240 , body 242 , convolutions 243 , and/or pressures P B1 and/or P B2 may be such that an open circuit created by matting contact 244 indicates bottle 210 and/or bottle volume 212 contains proper pressure and/or fire suppression agent. Moreover, in this configuration a closed circuit created by matting contact 244 may be an indication that bottle 210 and/or bottle volume 212 has leaked, that there is insufficient fire suppression agent in bottle 210 , there is insufficient pressure in bottle 210 , and/or a problem with pressure monitoring system 230 .
  • the fire suppression systems, controllers, bellow's pressure monitoring systems, and/or bottles described herein may be used with and/or retrofitted to any suitable civilian or military aircraft, vehicle and/or vessel that may be configured with a fire extinguishing/suppression system.
  • the fire suppression systems described herein and, more specifically, the bellows pressure monitoring system described herein may more efficiently monitor the pressure of the fire suppression agent used in the various fire suppression systems.
  • the fire extinguishing/suppression systems, controllers, bellow's pressure monitoring systems, and/or bottles described herein may be deployed in any suitable structure.
  • the fire extinguishing/suppression systems described herein may be deployed and/or used in cargo bays, engine nacelles, in auxiliary power unit bays, as part of any suitable fire protection system in an aircraft, structure, vessel and/or vehicle.
  • references to “various embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc. indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fire-Extinguishing By Fire Departments, And Fire-Extinguishing Equipment And Control Thereof (AREA)
  • Tires In General (AREA)

Abstract

In various embodiments, a fire suppression system with integral leak detection is provided. The fire suppression system may comprise a bottle, a pressure monitoring system, and a controller. The pressure monitoring system may include a bellows. The bellows may be in fluid communication with the volume defined by the bottle. The controller may be configured to monitor the bellows.

Description

    FIELD
  • The present disclosure relates to leak detection system for vehicle fire suppression systems, and more specifically, to bellows actuated temperature compensated leak detection systems.
  • BACKGROUND
  • Current temperature compensated pressure switches (“TCPS”) used in aircraft fire suppression containers may use thin diaphragms, which may deform based on the pressure balance between a fire suppression container and a reference chamber within the TCPS. If the container pressure exceeds the reference chamber pressure, the diaphragm may act on a plunger, which may actuate a micro-switch. Current TCPS may be inefficient and expensive to manufacture.
  • SUMMARY
  • In various embodiments, a fire suppression system may comprise a bottle, a pressure monitoring system, and a controller. The pressure monitoring system may include a bellows. The bellows may be in fluid communication with the volume defined by the bottle. The controller may be configured to monitor the bellows.
  • In various embodiments, a pressure monitoring system may comprise a bellows and a reference chamber. The bellows may have a first surface and a second surface. The first surface may be configured to be loaded by a first pressure from a first suppression system. The reference chamber may be configured to maintain a reference pressure. The reference pressure may be configured to load the second surface.
  • The forgoing features and elements may be combined in various combinations without exclusivity, unless expressly indicated herein otherwise. These features and elements as well as the operation of the disclosed embodiments will become more apparent in light of the following description and accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The subject matter of the present disclosure is particularly pointed out and distinctly claimed in the concluding portion of the specification. A more complete understanding of the present disclosure, however, may best be obtained by referring to the detailed description and claims when considered in connection with the drawing figures, wherein like numerals denote like elements.
  • FIG. 1 is a schematic illustrating portions of a fire suppression system including a pressuring monitoring system comprising a bellows and a reference chamber, in accordance with various embodiments; and
  • FIG. 2 is a schematic illustrating portions of a fire suppression system including a pressuring monitoring system comprising a various rate bellows, in accordance with various embodiments.
  • DETAILED DESCRIPTION
  • The detailed description of exemplary embodiments herein makes reference to the accompanying drawings, which show exemplary embodiments by way of illustration. While these exemplary embodiments are described in sufficient detail to enable those skilled in the art to practice the inventions, it should be understood that other embodiments may be realized and that logical changes and adaptations in design and construction may be made in accordance with this invention and the teachings herein. Thus, the detailed description herein is presented for purposes of illustration only and not of limitation. The scope of the invention is defined by the appended claims. For example, the steps recited in any of the method or process descriptions may be executed in any order and are not necessarily limited to the order presented. Furthermore, any reference to singular includes plural embodiments, and any reference to more than one component or step may include a singular embodiment or step. Also, any reference to attached, fixed, connected or the like may include permanent, removable, temporary, partial, full and/or any other possible attachment option. Additionally, any reference to without contact (or similar phrases) may also include reduced contact or minimal contact. Surface shading lines may be used throughout the figures to denote different parts but not necessarily to denote the same or different materials.
  • A typical ground checkable pressure switch design may use a stack of washers which are compressed by the pressure within a fire suppression container. In response to being compressed, an attached pin may make contact to a mating pin, thus identifying the container as being properly charged. If the fire suppression container loses pressure, the force balance changes and the pressure switch changes state to indicate a low pressure container.
  • In various embodiments, fire suppression systems for vehicles such as, for example, aircraft may include pressure indication systems. The fire suppression systems may include containers that are configured to store fire extinguishing agent without leakage. A pressure indication system may be configured to continuously monitor the container pressure. The container pressure may be evaluated against a reference chamber pressure. The reference chamber pressure may be a chamber that includes the same agent as the container. These pressure indication systems may be configured to indicate that a fire suppression system has sufficient level of pressure and/or fire suppression agent to extinguish and/or suppress a fire in response to the system being activated and/or fire being detected. These systems may include closed loop monitoring structures that allow a user to determine whether a fire suppression system is sufficiently pressurized and/or charged during operation of a vehicle. Moreover, the use of the bellows may reduce the number of parts and failure modes of the pressure indication system while providing a consistent actuation point.
  • In various embodiments and with reference to FIG. 1, fire suppression system 100 may be any suitable fire suppression, fire extinguishing, fire management, and/or fire control system that is capable of controlling, minimizing, suppressing and/or extinguishing a fire. Fire suppression system 100 may comprise a bottle 110 (e.g., a container, a canister, a pressure vessel, and/or the like), a controller 120, and a pressure monitoring system 130. Bottle 110 may be configured with and/or contain a fire suppression agent. The pressure PB1 of the fire suppression agent contained in bottle 110 may be in fluid communication with pressure monitoring system 130. Pressure monitoring system 130 may be in electronic communication with controller 120. In this regard, controller 120 may be configured to monitor, track, report, and/or check pressure PB1 and/or the fill level or quantity of the fire suppression agent contained within bottle 110.
  • Bottle 110 may be any suitable bottle configured to contain a fire suppression agent moreover bottle 110 may define a bottle volume 112. Bottle volume 112 may be configured to contain a fire suppression agent. Fire suppression agent may be contained within bottle volume 112 at a pressure PB1. Moreover, bottle volume 112 may be operatively coupled to and/or in fluid communication with pressure monitoring system 130 via a connection 114.
  • In various embodiments, pressure monitoring system 130 may comprise a bellows 140 and a reference chamber 150. Bellows 140 may be removably coupled to and/or in removable contact with reference chamber 150.
  • In various embodiments, bellows 140 may comprise a body 142 having one or more interior convolutions 143 and one or more exterior convolutions 145. Body 142 may define a pressure chamber. The pressure chamber may be in fluid communication with bottle volume 112 via connection 114. In this regard, the pressure chamber and the interior convolutions 143 of body 142 may be subjected to a pressure PB2. Pressure PB2 may be substantially equivalent to and/or substantially equal to pressure PB1 in bottle volume 112.
  • In various embodiments, reference chamber 150 may comprise a reference chamber volume 152. Reference chamber volume 152 may be pressurized to a pressure PR. In this regard, pressure PR may be a reference pressure. Pressure PR may be equal to, slightly less than or slightly greater than at least one of pressure PB1 and/or PB2
  • In various embodiments, bellows 140 may be a linear spring rate bellows. In this regard, interior convolutions 143 are open to the bottle volume 112 and the exterior convolutions 145 may be in fluid communication with reference chamber 150. In this regard, interior convolutions 143 may be acted on by PB1 and/or PB2 and the exterior convolutions may be acted on by PR. Bellows 140 may also be inverted.
  • In various embodiments, pressure monitoring system 130 and/or bellows 140 may provide a hermetic seal between the bottle 110 and reference chamber 150. As the pressure PB1 and/or PB2 increases or decreases as compared to pressure PR, bellows 140 may expand or contract, engaging or disengaging a mating contact 144 indicating a closed or open circuit. Upon disruption of the force balance across bellows 140, causing the bellows to expand or contract causing the circuit to open or close. The open versus closed circuit indicates a properly or improperly pressurized fire suppression container. In various embodiments and in operation, pressure PB1 of the fire suppression agent in bottle 110 may be conducted to the pressure chamber of bellows 140 as PB2 causing bellows 140 to expand, in response to pressure PB2 being greater than pressure PR. In this regard, pressure monitoring system 130 may be configured a closed circuit when pressure PB2 is greater than pressure PR. The closed circuit may be an indication that there is sufficient pressure and/or fire suppression agent in bottle volume 112. In response to a leak in bottle 110 and/or bottle volume 112, which may reduce pressure PB1 and/or pressure PB2, bellows 140 may be compressed by PR and indicating an open circuit. The open circuit may be an indication that bottle 110 and/or bottle volume 112 has leaked, that there is insufficient fire suppression agent in bottle 110, and/or there is insufficient pressure in bottle 110. Moreover, where pressure PR is greater than pressure PB2, controller 120 may be configured to indicate that there is a problem with fire suppression system 100, bottle 110, and/or bottle volume 112.
  • In various embodiments, the configuration of bellows 140, body 142, reference chamber 150 and/or pressures PB1, PB2 and/or PR may be such that an open circuit indicates bottle 110 contains sufficient level and/or amount of pressure and/or fire suppression agent. Moreover, a closed circuit in this configuration may be an indication that bottle 110 and/or bottle volume 112 has leaked, that there is insufficient fire suppression agent in bottle 110, there is insufficient pressure in bottle 110, and/or there is a problem with pressure monitoring system 130.
  • In various embodiments and with reference to FIG. 2, the fire suppression system 200 may comprise a bellows 240 with a variable spring rate. Bellows 240 may omit the need for a reference chamber, as discussed with reference to FIG. 1. Bellows 240 may be designed to correspond to the pressure and temperature relationship of the fire suppression agent and corresponding pressure PB1 of bottle 210. In this regard, convolutions 243 (e.g., interior and/or exterior convolutions) may be configured to vary and/or approximate pressure PB1 and/or PB2. In response to a pressure leak and/or fire suppression agent leak in bottle 210 and/or bottle volume 212, bellows 240 may indicate a change in PB2 by expanding or contracting causing mating contact 244 to indicate a leak. The expanding or contracting of bellows 240 may result in an closed circuit, indicating proper pressure PB1 and/or PB2 and/or fire suppression agent fill of bottle 210 and/or bottle volume 212. Moreover, where pressure PB2 and/or fire suppression agent is low resulting in an open circuit, controller 220 may be configured to indicate that there is a problem with fire suppression system 200, bottle 210, bottle volume 212 and/or pressure monitoring system 230.
  • In various embodiments, the configuration of bellows 240, body 242, convolutions 243, and/or pressures PB1 and/or PB2 may be such that an open circuit created by matting contact 244 indicates bottle 210 and/or bottle volume 212 contains proper pressure and/or fire suppression agent. Moreover, in this configuration a closed circuit created by matting contact 244 may be an indication that bottle 210 and/or bottle volume 212 has leaked, that there is insufficient fire suppression agent in bottle 210, there is insufficient pressure in bottle 210, and/or a problem with pressure monitoring system 230.
  • In various embodiments the fire suppression systems, controllers, bellow's pressure monitoring systems, and/or bottles described herein may be used with and/or retrofitted to any suitable civilian or military aircraft, vehicle and/or vessel that may be configured with a fire extinguishing/suppression system. Moreover the fire suppression systems described herein and, more specifically, the bellows pressure monitoring system described herein may more efficiently monitor the pressure of the fire suppression agent used in the various fire suppression systems.
  • In various embodiments, the fire extinguishing/suppression systems, controllers, bellow's pressure monitoring systems, and/or bottles described herein may be deployed in any suitable structure. For example, the fire extinguishing/suppression systems described herein may be deployed and/or used in cargo bays, engine nacelles, in auxiliary power unit bays, as part of any suitable fire protection system in an aircraft, structure, vessel and/or vehicle.
  • Benefits, other advantages, and solutions to problems have been described herein with regard to specific embodiments. Furthermore, the connecting lines shown in the various figures contained herein are intended to represent exemplary functional relationships and/or physical couplings between the various elements. It should be noted that many alternative or additional functional relationships or physical connections may be present in a practical system. However, the benefits, advantages, solutions to problems, and any elements that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as critical, required, or essential features or elements of the inventions. The scope of the inventions is accordingly to be limited by nothing other than the appended claims, in which reference to an element in the singular is not intended to mean “one and only one” unless explicitly so stated, but rather “one or more.” Moreover, where a phrase similar to “at least one of A, B, or C” is used in the claims, it is intended that the phrase be interpreted to mean that A alone may be present in an embodiment, B alone may be present in an embodiment, C alone may be present in an embodiment, or that any combination of the elements A, B and C may be present in a single embodiment; for example, A and B, A and C, B and C, or A and B and C.
  • Systems, methods and apparatus are provided herein. In the detailed description herein, references to “various embodiments”, “one embodiment”, “an embodiment”, “an example embodiment”, etc., indicate that the embodiment described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described. After reading the description, it will be apparent to one skilled in the relevant art(s) how to implement the disclosure in alternative embodiments.
  • Furthermore, no element, component, or method step in the present disclosure is intended to be dedicated to the public regardless of whether the element, component, or method step is explicitly recited in the claims. No claim element herein is to be construed under the provisions of 35 U.S.C. 112(f) unless the element is expressly recited using the phrase “means for.” As used herein, the terms “comprises”, “comprising”, or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.

Claims (15)

What is claimed is:
1. A fire suppression system, comprising:
a bottle; and
a pressure monitoring system including a bellows in fluid communication with the volume defined by the bottle; and
a controller configured to monitor the bellows.
2. The fire suppression system of claim 1, wherein the bellows have a linear spring rate.
3. The fire suppression system of claim 2, further comprising a reference chamber that is pressurized to a reference pressure.
4. The fire suppression system of claim 3, wherein the reference pressure is configured to load an exterior surface of the bellows.
5. The fire suppression system of claim 3, wherein an interior surface of the bellows is loaded by a bottle pressure, and wherein the bottle pressure is contained by the bottle and the bellows.
6. The fire suppression system of claim 5, wherein the bottle pressure is greater than the reference pressure.
7. The fire suppression system of claim 6, wherein the bellows is configured to compress in response to the bottle leaking.
8. The fire suppression system of claim 1, wherein the pressure monitoring system is configured to indicate an open circuit and a close circuit to the controller.
9. The fire suppression system of claim 8, wherein an indication of the open circuit is indicative of a leak of a fire suppression agent from the bottle.
10. The fire suppression system of claim 1, wherein the bellows hermetically seals the bottle.
11. A pressure monitoring system, comprising:
a bellows having a first surface and a second surface, the first surface configured to be loaded by a first pressure from a first suppression system;
a reference chamber configured to maintain a reference pressure, wherein the reference pressure is configured to load the second surface.
12. The pressure monitoring system of claim 11, wherein the first surface is an interior surface of the bellows.
13. The pressure monitoring system of claim 11, wherein the first pressure is greater than the reference pressure in a normal condition.
14. The pressure monitoring system of claim 11, wherein the bellows is operatively coupled to a controller.
15. The pressure monitoring system of claim 14, wherein the bellows is configured to indicate an open circuit in response to a leak in the fire suppression system.
US14/264,948 2014-04-29 2014-04-29 Bellows actuated temperature compensated pressure switching apparatus and system Active 2035-01-09 US9463344B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/264,948 US9463344B2 (en) 2014-04-29 2014-04-29 Bellows actuated temperature compensated pressure switching apparatus and system
CA2885000A CA2885000C (en) 2014-04-29 2015-03-16 Bellows actuated temperature compensated pressure switching apparatus and system
BR102015006830-1A BR102015006830B1 (en) 2014-04-29 2015-03-26 Fire suppression and pressure monitoring systems
EP15165318.5A EP2939715A1 (en) 2014-04-29 2015-04-28 Bellows actuated temperature compensated pressure switching apparatus and system
CN201510210959.2A CN105031870B (en) 2014-04-29 2015-04-29 Bellows actuated temperature compensated pressure switch device and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/264,948 US9463344B2 (en) 2014-04-29 2014-04-29 Bellows actuated temperature compensated pressure switching apparatus and system

Publications (2)

Publication Number Publication Date
US20150306439A1 true US20150306439A1 (en) 2015-10-29
US9463344B2 US9463344B2 (en) 2016-10-11

Family

ID=53015616

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/264,948 Active 2035-01-09 US9463344B2 (en) 2014-04-29 2014-04-29 Bellows actuated temperature compensated pressure switching apparatus and system

Country Status (5)

Country Link
US (1) US9463344B2 (en)
EP (1) EP2939715A1 (en)
CN (1) CN105031870B (en)
BR (1) BR102015006830B1 (en)
CA (1) CA2885000C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023647A1 (en) * 2022-07-28 2024-02-01 藤森工業株式会社 Pressure measurement device, bioreactor, and culturing device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220529B3 (en) * 2015-10-21 2017-01-19 Lufthansa Technik Ag Method and apparatus for testing a temperature compensated pressure gradient controlled pressure switch
US11648431B2 (en) * 2018-11-30 2023-05-16 Carrier Corporation Fire suppression system remote monitoring

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2497286A (en) * 1944-11-29 1950-02-14 Iva Coryne Davidson Automatic fire extinguishing device
US3461725A (en) * 1967-08-18 1969-08-19 Bailey Meter Co Electric differential pressure transmitter
US3776313A (en) * 1972-02-04 1973-12-04 Palma J De Temperature responsive automatic fire extinguisher
US4697643A (en) * 1986-03-07 1987-10-06 Thomson Csf Temperature-compensated pressure controller, operationally reliable extinguisher provided with such a pressure controller and process for filling such a pressure controller

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3946175A (en) 1973-12-03 1976-03-23 Htl Industries, Inc. Magnetic pressure indicator for a container
US4655087A (en) 1985-08-19 1987-04-07 Rozniecki Edward J Temperature-compensated pressure gage
US5183116A (en) 1991-07-11 1993-02-02 Walter Kidde Aerospace, Inc. Variable pressure regulator for extended fire-extinguishing system
CN2540198Y (en) * 2002-05-24 2003-03-19 刘智绵 Analog diferential quantative constant-temp fire detector with auto-detection device
CN201329143Y (en) * 2008-11-27 2009-10-21 李佳达 Extinguisher and pressure alarm device thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2497286A (en) * 1944-11-29 1950-02-14 Iva Coryne Davidson Automatic fire extinguishing device
US3461725A (en) * 1967-08-18 1969-08-19 Bailey Meter Co Electric differential pressure transmitter
US3776313A (en) * 1972-02-04 1973-12-04 Palma J De Temperature responsive automatic fire extinguisher
US4697643A (en) * 1986-03-07 1987-10-06 Thomson Csf Temperature-compensated pressure controller, operationally reliable extinguisher provided with such a pressure controller and process for filling such a pressure controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024023647A1 (en) * 2022-07-28 2024-02-01 藤森工業株式会社 Pressure measurement device, bioreactor, and culturing device

Also Published As

Publication number Publication date
BR102015006830B1 (en) 2022-03-22
BR102015006830A2 (en) 2015-12-01
CN105031870A (en) 2015-11-11
CA2885000C (en) 2021-11-30
CA2885000A1 (en) 2015-10-29
EP2939715A1 (en) 2015-11-04
US9463344B2 (en) 2016-10-11
CN105031870B (en) 2022-03-22

Similar Documents

Publication Publication Date Title
CN108028338B (en) Pressure balancing device
CA2885000C (en) Bellows actuated temperature compensated pressure switching apparatus and system
RU2049314C1 (en) Fluid medium pressure derivative sensor, pneumoelectric pressure relay and system warning about air leakage from pumped tire
CA2805241C (en) Methods and apparatus for passive non-electrical dual stage fire suppression
CN108533811A (en) A kind of explosion-proof valve and detection method for inflating spool, fast aeration detection box body tightness
CN101529170B (en) Detection of refrigerant release in CO2 refrigerant systems
CN105313872B (en) Determining integrity of brake control system
US10209153B2 (en) Pressure indicating device
CN108290358A (en) Device for being sealed and inflating to motor vehicle tire
US8955342B2 (en) Refrigeration system and method of operating a refrigeration system
CA2486194A1 (en) Apparatus and method for containing and regulating the pressure in a pressure vessel
JP6953533B2 (en) Tire maintenance means and tire maintenance method using it
EP2722077B1 (en) Fire detection system
EP3113202B1 (en) Detector utilizing an adjustment screw and a bellows
JP2007514159A (en) Inspection device for pressure of fluid flowing in liquid or duct stored in tank
CN104245375B (en) For the method preventing and identifying coolant to flow out from complicated hydraulic system
CN102913659B (en) Suppressant actuator
CN208719497U (en) A kind of explosion-proof valve for inflating spool, fast aeration detection box leakproofness
US11306745B2 (en) Accumulator
US10156233B2 (en) Dual control valve for reciprocating compressor unloader system
WO2016144295A1 (en) Printing fluid container
CN108831775A (en) A kind of high-tension switch gear
CN104201306B (en) Inside and outside air pressure balance method and device used for sealed high-pressure battery pack of electric vehicle
CN219282547U (en) Puncture type container valve
EP2535673A2 (en) Maintenance process for an air conditioning plant and connector device usable in it

Legal Events

Date Code Title Description
AS Assignment

Owner name: KIDDE TECHNOLOGIES, INC., NORTH CAROLINA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAZZIO, MARK;REEL/FRAME:032782/0190

Effective date: 20140429

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 8