US20150318733A1 - Hand-held power tool rechargeable battery - Google Patents

Hand-held power tool rechargeable battery Download PDF

Info

Publication number
US20150318733A1
US20150318733A1 US14/653,990 US201314653990A US2015318733A1 US 20150318733 A1 US20150318733 A1 US 20150318733A1 US 201314653990 A US201314653990 A US 201314653990A US 2015318733 A1 US2015318733 A1 US 2015318733A1
Authority
US
United States
Prior art keywords
rechargeable battery
hand
power tool
held power
inductive charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/653,990
Inventor
Friederike Stock
Guenther Lohr
Dragan Krupezevic
Volker Amann
Juergen Mack
Jan Breitenbach
Marcin Rejman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Assigned to ROBERT BOSCH GMBH reassignment ROBERT BOSCH GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AMANN, VOLKER, STOCK, FRIEDERIKE, BREITENBACH, JAN, MACK, JUERGEN, REJMAN, MARCIN, KRUPEZEVIC, DRAGAN, LOHR, GUENTHER
Publication of US20150318733A1 publication Critical patent/US20150318733A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • H02J7/025
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/213Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/005Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/70Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0044Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction specially adapted for holding portable devices containing batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • H02J7/0052
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Various hand-held power tool rechargeable batteries which include at least one first rechargeable battery cell and at least one inductive charging unit which includes at least one inductive charging coil for charging the at least one rechargeable battery cell have already been provided.
  • the present invention is directed to a hand-held power tool rechargeable battery which includes at least one first rechargeable battery cell and at least one inductive charging unit which includes at least one inductive charging coil for charging the at least one first rechargeable battery cell.
  • the at least one first rechargeable battery cell has a main direction of extension oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
  • a “hand-held power tool rechargeable battery” is understood in particular to mean a device which includes at least one rechargeable battery cell unit, and units for charging and discharging the energy storage unit, which is provided for supplying a hand-held power tool with current.
  • the hand-held power tool rechargeable battery is preferably accommodated in a receiving space of the hand-held power tool or detachably fastened to the hand-held power tool.
  • the hand-held power tool rechargeable battery it is also conceivable for the hand-held power tool rechargeable battery to be provided separately from the hand-held power tool and to be electrically connected via a power line, for example a cable.
  • a “hand-held power tool” is understood in particular to mean an electrical device which is hand-operated by a user, such as in particular a power drill, a drill hammer, a saw, a plane, a screwdriver, a milling tool, a grinder, an angle grinder, and/or a multifunctional tool or a garden tool such as a hedge trimmer, shrub shears, and/or grass shears.
  • the hand-held power tool rechargeable battery may also be used in some other hand-operated unit, for example a measuring device.
  • a “rechargeable battery cell unit” is understood in particular to mean a rechargeable energy storage unit which includes at least one rechargeable battery cell which is provided for storing energy for generating an electric current, and charging by introducing a charging current.
  • the rechargeable battery cell unit may include at least one rechargeable battery cell block in which multiple rechargeable battery cells are connected in series.
  • the rechargeable battery cell unit may also include multiple rechargeable battery cell blocks, each with an identical number of rechargeable battery cells which are provided for successively supplying the hand-held power tool with current, so that the hand-held power tool is supplied with current for a longer period of time than would be possible with a single rechargeable battery cell block.
  • a “rechargeable battery cell” is understood in particular to mean a unit which is provided for electrochemically storing electrical energy with the aid of a reversible reaction.
  • the rechargeable battery cell may be formed, for example, by a lead rechargeable battery cell, an NiCd rechargeable battery cell, or an NiMH rechargeable battery cell, but preferably by a lithium-based rechargeable battery cell.
  • the rechargeable battery cell may be formed by rechargeable battery cells having different nominal voltages, for example nominal voltages of 1.2 V, 1.5 V, or 3.6 V.
  • the rechargeable battery cells preferably have a cylindrical shape.
  • the hand-held power tool rechargeable battery may include multiple rechargeable battery cells which are connected in series in order to achieve a higher total voltage of the hand-held power tool rechargeable battery.
  • the hand-held power tool rechargeable battery may include one rechargeable battery cell having a voltage of 3.6 V, two rechargeable battery cells, connected in series, having a voltage of 3.6 V each for a total voltage of the hand-held power tool rechargeable battery of 7.2 V, or three rechargeable battery cells, connected in series, having a voltage of 3.6 V each for a total voltage of the hand-held power tool rechargeable battery of 10.8 V.
  • the hand-held power tool rechargeable battery may include additional rechargeable battery cells which are connected in parallel to the at least one first rechargeable battery cell and which are provided for supplying a hand-held power tool with current after a discharge of the at least one first rechargeable battery cell, so that a capacity of the hand-held power tool rechargeable battery is effectively increased.
  • an “inductive charging unit” is understood in particular to mean a unit for charging the rechargeable battery cell unit, which receives a charging current via induction and which includes at least one inductive charging coil and charging electronics.
  • the inductive charging unit preferably also includes at least one coil core unit for increasing an inductance of the at least one inductive charging coil.
  • the inductive charging unit advantageously includes a coil carrier which positions the inductive charging coil relative to the coil core.
  • the inductive charging unit is advantageously also provided for communicating with an inductive charging unit of the inductive charging unit device for controlling charging, and in particular for foreign object recognition.
  • an “inductive charging coil” is understood in particular to mean a coil which includes at least one winding made of an electrically conductive material, and which is provided for receiving, in at least one operating state, electrical energy which is transmitted by an inductive charging coil of an inductive charging unit and supplying it to a rechargeable battery cell via charging electronics.
  • the inductive charging coil is provided for converting an electromagnetic alternating field into an alternating electric current, and/or vice versa.
  • the alternating field preferably has a frequency of 10 kHz-500 kHz, particularly preferably 100 kHz-120 kHz.
  • the direction is provided perpendicularly with respect to the coil plane, in parallel to a winding axis of the inductive charging coil.
  • “Charging electronics” is understood in particular to mean an electronic unit which is provided for controlling charging of rechargeable battery cells, and which in particular includes electronic elements for a voltage transformation.
  • a “main direction of extension” is understood in particular to mean a direction in parallel to an axis of symmetry along which the rechargeable battery cell has a maximum extension.
  • a “coil plane” is understood in particular to mean a plane in which windings of the inductive charging coil extend. In particular, the coil plane extends perpendicularly with respect to a winding axis of the inductive charging coil.
  • the phrase “the main direction of extension of the rechargeable battery cell is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit” is understood in particular to mean that an angle between the coil plane and the main direction of extension differs from 90 degrees by 30 degrees maximum, advantageously by 20 degrees maximum, preferably by 10 degrees maximum, and particularly preferably by 5 degrees maximum.
  • the main direction of extension may extend at a right angle to the coil plane.
  • a hand-held power tool rechargeable battery having a particularly compact design with a preferably small cross-sectional diameter may be achieved, which with regard to an extension of the rechargeable battery cell in a plane in parallel to the coil plane has a larger diameter of an inductive charging coil, via which rapid charging of the rechargeable battery due to a high field intensity is made possible.
  • the hand-held power tool rechargeable battery includes at least one additional rechargeable battery cell having a main direction of extension oriented at least essentially in parallel to the coil plane of the inductive charging unit.
  • the at least one additional rechargeable battery cell may be connected to the at least one first rechargeable battery cell in a series connection in order to achieve a higher total voltage of the hand-held power tool rechargeable battery than with only the first rechargeable battery cell alone, or may be connected in parallel to the at least one first rechargeable battery cell and be provided for supplying the hand-held power tool with current after discharge of the at least one first rechargeable battery cell.
  • first rechargeable battery cells may be connected to one another in series
  • multiple additional rechargeable battery cells may be connected to one another in series and in parallel to the multiple first rechargeable battery cells.
  • the phrase “the main direction of extension of the at least one additional rechargeable battery cell is oriented at least essentially in parallel to a coil plane of the inductive charging unit” is understood in particular to mean that an angle between the coil plane and the main direction of extension differs from 0 degrees by 30 degrees maximum, advantageously by 20 degrees maximum, preferably by 10 degrees maximum, and particularly preferably by 5 degrees maximum.
  • the main direction of extension may extend in a plane in parallel to the coil plane.
  • a hand-held power tool rechargeable battery may be achieved which compactly stores a plurality of rechargeable battery cells.
  • the at least one additional rechargeable battery cell is situated between the at least one first rechargeable battery cell and the inductive charging coil.
  • the phrase “the at least one additional rechargeable battery cell is situated between the at least one first rechargeable battery cell and the inductive charging unit coil” is understood in particular to mean that all planes in parallel to the coil plane, which extend through the at least one additional rechargeable battery cell, do not intersect with the at least one first rechargeable battery cell.
  • a compact design of the hand-held power tool rechargeable battery may be achieved.
  • a diameter of the inductive charging coil is greater than a main length of extension of the at least one additional rechargeable battery cell.
  • a “main length of extension” is understood in particular to mean a length along the main direction of extension.
  • a compact hand-held power tool rechargeable battery having a short charging time for charging the at least one additional rechargeable battery cell may be achieved.
  • the hand-held power tool rechargeable battery includes a rechargeable battery housing having a coil receiving area for accommodating the inductive charging coil and which at least partially forms a form-fit element.
  • a “rechargeable battery housing” is understood in particular to mean an assembly which includes at least one housing component which with outer walls at least partially delimits the hand-held power tool rechargeable battery with respect to the surroundings, and which in particular is provided for protecting the inductive charging unit and the rechargeable battery cells from the surroundings in an installed and/or uninstalled state on the hand-held power tool, and to avoid damage and/or soiling.
  • the rechargeable battery housing defines a shape and a size of the hand-held power tool rechargeable battery.
  • the rechargeable battery housing preferably includes fastening devices for fastening the hand-held power tool rechargeable battery to the hand-held power tool.
  • the rechargeable battery housing advantageously has contact recesses via which electrical contact between the hand-held power tool and the at least one first rechargeable battery cell may be established.
  • the rechargeable battery housing may have a completely or only partially closed design. In a partially closed design of the rechargeable battery housing, an area of the hand-held power tool rechargeable battery which is clear of the rechargeable battery housing may be provided situated within a housing of the hand-held power tool in a state in which the hand-held power tool rechargeable battery is mounted on a hand-held power tool.
  • a “coil receiving area” is understood in particular to mean an area of the rechargeable battery housing which at least partially encloses a space within which the inductive charging coil of the inductive charging unit is situated.
  • the coil receiving area preferably has an extension which in at least one direction is different from extensions of rechargeable battery housing areas which enclose the rechargeable battery cells.
  • the coil receiving area at least partially forms a form-fit element is understood in particular to mean that the coil receiving area of the rechargeable battery housing protrudes or is recessed with respect to other areas of the rechargeable battery housing on at least one side face, preferably at least two side faces, of the rechargeable battery housing, so that for establishing a form-fit connection, a corresponding form-fit element of another unit, for example an inductive charging unit or the hand-held power tool, engages with a form-fit recess which is at least partially formed by the coil receiving area, or encloses a form-fit projection which is at least partially formed by the coil receiving area.
  • the coil receiving area is particularly preferably designed in such a way that it protrudes with respect to adjacent areas of the rechargeable battery housing at the side faces on at least two side faces of the rechargeable battery housing and forms a form-fit projection.
  • the form-fit element is provided for effectuating a form-fit fastening to an inductive charging unit during a charging phase in order to achieve efficient energy transmission.
  • the rechargeable battery housing includes a rechargeable battery cell receiving area for accommodating the at least one rechargeable battery cell, which is recessed relative to the coil receiving area.
  • a “rechargeable battery cell receiving area” is understood in particular to mean an area of the rechargeable battery housing which at least partially encloses a space within which the at least one rechargeable battery cell and/or the at least one additional rechargeable battery cell is/are situated.
  • the phrase “the rechargeable battery cell receiving area is recessed relative to the coil receiving area” is understood in particular to mean that on at least one side face, preferably on at least two side faces, of the rechargeable battery housing, the rechargeable battery cell receiving area has a smaller extension in a direction of a perpendicular to the side face than does the coil receiving area.
  • a compact hand-held power tool rechargeable battery may be achieved for simple fastening to an inductive charging unit or a hand-held power tool, while dispensing with separate external fastening elements.
  • an advantageously small transverse extension of the hand-held power tool rechargeable battery in areas other than the coil receiving area, and thus a compact hand-held power tool rechargeable battery, may be achieved.
  • the inductive charging unit includes a coil core unit having a plate area which at least partially shields the at least one first rechargeable battery cell from the inductive charging coil.
  • a “coil core unit” is understood in particular to mean a unit which is at least partially formed from a magnetic material, and which is provided for increasing an inductance of a coil.
  • a “magnetic material” is preferably understood to mean a ferrimagnetic, in particular soft magnetic, material, for example ferrite. Alternatively, it is also conceivable to use ferromagnetic and/or antiferromagnetic materials.
  • a “plate area” is understood in particular to mean a flat area of the coil core unit having a thickness that is one-half maximum, preferably one-fourth maximum, and particularly preferably one-eighth maximum, of a minimum extension of the coil core unit in a direction perpendicular to the thickness.
  • a “thickness” of the coil core unit is understood in particular to mean an extension of the coil core unit in a direction perpendicular to the coil plane of the inductive charging coil.
  • the plate area “at least partially shields the at least one first rechargeable battery cell from the inductive charging coil” is understood in particular to mean that field lines of a magnetic field which is generated by the inductive charging coil are at least partially deflected from the at least one rechargeable battery cell by the plate area of the coil core unit.
  • a field intensity of the magnetic field is thus attenuated by at least 10 percent, advantageously by at least 20 percent, preferably by at least 40 percent, and particularly preferably by at least 80 percent, with respect to a field intensity which prevails without the plate area.
  • the plate area achieves the shielding of the at least one rechargeable battery cell in that, for a projection of the at least one rechargeable battery cell onto the induction coil, at least 60 percent, advantageously at least 80 percent, and preferably at least 90 percent, of a surface of the projection extends through the plate area.
  • the coil core unit may have different thicknesses in the plate area.
  • the plate area of the coil core unit may include a subarea which has a greater thickness than other subareas of the plate area and which preferably extends up to a coil plane, and thus up to an area enclosed by windings of the inductive charging coil in a plane perpendicular to the thickness.
  • the subarea which has a greater thickness than other subareas of the plate area is preferably situated on only one side of the plate area.
  • the subarea of the plate area which has a greater thickness than other subareas of the plate area may have a basic shape which differs from a basic shape of the plate area on a side facing away from the subarea.
  • the plate area may have an essentially rectangular basic shape, and the subarea may have an essentially circular basic shape which is augmented on one side.
  • a load on the rechargeable battery cells from the magnetic field of the inductive charging coil may be at least reduced, and damage to the hand-held power tool rechargeable battery may be prevented.
  • the plate area is at least essentially rectangular.
  • the term “at least essentially rectangular” is understood in particular to mean that the plate area has a surface area which is delimited by four at least essentially straight sides.
  • the term “at least essentially straight sides” is understood in particular to mean sides which include at least one side area, designed as a straight line, whose length corresponds to at least 50 percent of a total length of the side.
  • the at least essentially straight sides may delimit a rectangular shape, in particular a rectangular shape with rounded edges.
  • the plate area may have a surface area with a basic shape of a rectangle having rounded sides, the circular subarea of a surface area of the plate area preferably having a greater thickness than other subareas of the plate area and extending to an inner area of the inductive charging coil which is enclosed by windings of the inductive charging coil.
  • the plate area has at least one axis length which is smaller than a diameter of the inductive charging coil.
  • An “axis length” is understood in particular to mean an extension length in parallel to an at least essentially straight side of the plate area, a length of a main axis or secondary axis of an ellipsoidal plate area, or a diameter of a circular plate area.
  • the at least one further axis length of the plate area is preferably greater than a diameter of the inductive charging coil.
  • the plate area preferably has a rectangular shape with rounded corners, and has an axis length which is smaller than the diameter of the inductive charging coil and extends in parallel to the main direction of extension of the at least one rechargeable battery cell, and has an axis length perpendicular thereto which is greater than the diameter of the inductive charging coil.
  • the coil core unit preferably includes multiple separate core pieces. In the present context, the statement that “the coil core unit includes multiple separate core pieces” is understood in particular to mean that the coil core unit includes at least two, and preferably at least four, pieces which are separately formed and situated separately from one another, and which are made, at least partially, of a magnetic material.
  • the multiple separate core pieces are situated symmetrically with respect to one another.
  • the coil core unit which includes multiple separate core pieces, has a greater mechanical stability, with essentially the same magnetic properties, than a one-piece design of a coil core unit.
  • a coil core unit having a simple basic shape may be achieved.
  • the hand-held power tool rechargeable battery includes at least one heat distribution element which is provided for distributing waste heat.
  • a “heat distribution element” is understood in particular to mean an element which is provided for at least partially conducting heat, arising locally in a limited area, from the delimited area with the aid of thermal conduction, thermal radiation, or convection and distributing it over a larger area.
  • the heat distribution element has a thermal conductivity which is at least twice, advantageously at least four times, and preferably at least 10 times, a thermal conductivity of elements which enclose the heat transport element.
  • the heat distribution element is provided for distributing waste heat” is understood in particular to mean that the heat distribution element has a surface area which is at least two times, advantageously at least four times, and preferably at least 10 times, larger than a surface area of the delimited area, and which is provided for discharging the heat which is conducted away from the delimited area.
  • “Waste heat” is understood in particular to mean heat which is generated as a by-product during a charge and/or a discharge of the at least one rechargeable battery cell.
  • the heat distribution element is preferably connected to the charging electronics and to the at least one rechargeable battery cell in a thermally conductive manner.
  • the heat distribution element preferably has at least one thermally conductive coating.
  • a “thermally conductive coating” is understood in particular to mean a coating made of a material having a thermal conductivity which is at least two times, advantageously at least four times, and preferably at least 10 times, a thermal conductivity of a material to which the thermally conductive coating is applied.
  • a “coating” is understood in particular to mean a layer which is applied to at least one surface of a support element and which has a thickness that is one-fifth maximum, advantageously one-tenth maximum, and preferably one-twentieth maximum, of a thickness of the support element.
  • the thermally conductive coating preferably has a thickness in the millimeter range.
  • the thermally conductive coating is preferably composed at least partially of aluminum, and is applied to a support element which is designed as a bracket.
  • the bracket is particularly preferably provided for separating the charging electronics at a distance from the at least one rechargeable battery cell.
  • damage to the hand-held power tool rechargeable battery due to locally increased temperatures, as well as impairment of a charging operation or a discharging operation of the least one rechargeable battery cell due to locally differing temperatures, may be avoided.
  • the inductive charging unit is designed as a preassembled module.
  • a “preassembled module” is understood in particular to mean that the inductive charging unit, which includes at least the inductive charging coil, a coil carrier on which the inductive charging coil is mounted, and the charging electronics, is assembled in one step during manufacture of the hand-held power tool rechargeable battery, and is installed as a complete module in further steps with other components of the hand-held power tool rechargeable battery, and that the inductive charging unit as a whole is removable from the hand-held power tool and separately testable for functionality and/or installable in a different hand-held power tool rechargeable battery.
  • the preassembled module preferably includes, in addition to the inductive charging unit, at least one rechargeable battery housing component which accommodates the coil carrier and a heat distribution element, designed as a bracket, which holds the individual subelements of the preassembled module together after installation.
  • at least one rechargeable battery housing component which accommodates the coil carrier and a heat distribution element, designed as a bracket, which holds the individual subelements of the preassembled module together after installation.
  • simplified installation of the hand-held power tool rechargeable battery may be achieved, and an inductive charging unit which is removable for use in multiple different hand-held power tool rechargeable batteries may be provided.
  • the hand-held power tool and the hand-held power tool rechargeable battery are separable from one another without tools.
  • the term “separable from one another without tools” is understood in particular to mean that the hand-held power tool rechargeable battery, after being fastened to a hand-held power tool, may be removed by a user of the hand-held power tool without damage.
  • the hand-held power tool rechargeable battery and/or the hand-held power tool may include fastening means for fastening the hand-held power tool rechargeable battery to the hand-held power tool, and which may be detached by the user for separating the hand-held power tool rechargeable battery from the hand-held power tool.
  • the hand-held power tool rechargeable battery is preferably designed to be insertable or pushable into the hand-held power tool, and may be separated from the hand-held power tool by pulling.
  • a system with simple exchangeability of the hand-held power tool rechargeable battery may be achieved.
  • the at least one first rechargeable battery cell is at least essentially enclosed by a handle housing in an installed state of the hand-held power tool and of the hand-held power tool rechargeable battery.
  • the term “at least essentially enclosed by a handle housing” is understood in particular to mean that the at least one first rechargeable battery cell is enclosed by the handle housing along an angular range of at least 180 degrees, preferably at least 270 degrees, and particularly preferably 360 degrees, on at least 50 percent of a length along the main direction of extension on a plane perpendicular to the main direction of extension.
  • the at least one inductive charging coil is preferably situated at least essentially outside the handle housing in the installed state.
  • the term “situated at least essentially outside the handle housing” is understood in particular to mean that at least 50 percent, advantageously at least 70 percent, of a volume is situated outside the handle housing.
  • a compact system made up of a hand-held power tool and a hand-held power tool rechargeable battery having advantageous guiding properties may be achieved.
  • the system has an installation direction for installing the hand-held power tool rechargeable battery on the hand-held power tool, which extends at least essentially perpendicularly with respect to a coil plane of the inductive charging unit. In particular, an easily carried out installation may be achieved.
  • the inductive charging device includes form-fit elements for fastening the hand-held power tool rechargeable battery during a charging phase.
  • “Form-fit elements” are understood in particular to mean elements which are provided for cooperating with corresponding form-fit elements of the hand-held power tool rechargeable battery to provide a form-fit fastening of the hand-held power tool rechargeable battery during the charging phase.
  • the inductive charging device and the hand-held power tool rechargeable battery are separable from one another without tools.
  • a “charging phase” is understood in particular to mean a period of time during which the at least one rechargeable battery cell becomes charged via electrical energy which is transmitted from the inductive charging device and received by the inductive charging unit of the hand-held power tool rechargeable battery.
  • the inductive charging device may include form-fit elements, designed as recesses, for accommodating a coil receiving area of the rechargeable battery housing which protrudes with respect to a rechargeable battery receiving area.
  • an interruption in the charging phase or a reduction in a transmission efficiency may be avoided by moving the inductive charging device and the hand-held power tool rechargeable battery relative to one another.
  • the inductive charging device and the hand-held power tool rechargeable battery include a positioning projection and a positioning recess having basic shapes which are different from one another.
  • a “positioning projection” is understood in particular to mean a surface area which protrudes with respect to adjacent surface areas and which is provided for engaging with the positioning recess.
  • a “positioning recess” is understood in particular to mean a surface area which is recessed with respect to adjacent surface areas and which is provided for engaging with the positioning projection.
  • the positioning projection and the positioning recess are designed with basic shapes which are different but which correspond to one another; for example, the positioning projection may have a circular shape with a diameter which corresponds to a side length of a square positioning recess.
  • the positioning projection at least in one area, preferably an end area, of a side preferably has a smaller transverse extension than a transverse extension of the positioning recess, thus simplifying insertion. In particular, simple introduction of the positioning projection into the positioning recess may be achieved.
  • an inductive charging unit according to the present invention of a hand-held power tool rechargeable battery is provided.
  • the hand-held power tool rechargeable battery according to the present invention is not intended to be limited to the use and specific embodiment described above.
  • the hand-held power tool rechargeable battery according to the present invention may include a number of individual elements, components, and units which is different from a number stated herein.
  • FIG. 1 shows a hand-held power tool rechargeable battery according to the present invention in a partially open view with the housing lid removed, and including three first rechargeable battery cells which have a main direction of extension extending perpendicularly with respect to a coil plane of an inductive charging unit, and three additional rechargeable battery cells.
  • FIG. 2 shows an exterior view of the hand-held power tool rechargeable battery illustrated in FIG. 1 .
  • FIG. 3 shows a system made up of a hand-held power tool and the hand-held power tool rechargeable battery according to the present invention, in an uninstalled state.
  • FIG. 4 shows the system made up of the hand-held power tool and the hand-held power tool rechargeable battery in an installed state.
  • FIG. 5 shows a partial illustration of the hand-held power tool rechargeable battery according to the present invention, with a top view onto the additional rechargeable battery cells and onto an inductive charging coil of the inductive charging unit.
  • FIG. 6 shows a lateral section of FIG. 4 .
  • FIG. 7 shows an illustration of components of the inductive charging unit as a preassembled module.
  • FIG. 8 shows a view onto the inductive charging coil and a coil core unit, showing shielding by the coil core unit.
  • FIG. 9 shows a top view onto the coil core unit and the inductive charging coil.
  • FIG. 10 shows a view onto a positioning projection of the hand-held power tool rechargeable battery according to the present invention.
  • FIG. 11 shows a system made up of the hand-held power tool rechargeable battery according to the present invention and an inductive charging device having a positioning recess.
  • FIG. 12 shows a schematic illustration of different basic shapes of the positioning projection and the positioning recess.
  • FIG. 13 shows an alternative design of different basic shapes of the positioning projection and the positioning recess.
  • FIG. 14 shows an alternative exemplary embodiment of a hand-held power tool rechargeable battery according to the present invention, including a single first rechargeable battery cell.
  • FIG. 15 shows another alternative exemplary embodiment of a hand-held power tool rechargeable battery according to the present invention, including three first rechargeable battery cells having a main direction of extension extending perpendicularly with respect to a coil plane of an inductive charging unit, and including three additional rechargeable battery cells.
  • FIG. 16 shows an alternative design of an inductive charging device.
  • FIG. 17 shows a system made up of the alternatively designed inductive charging device and a hand-held power tool rechargeable battery according to the present invention.
  • FIG. 1 shows a hand-held power tool rechargeable battery 10 a according to the present invention, including three first rechargeable battery cells 12 a , 14 a , 16 a and an inductive charging unit 20 a , which includes an inductive charging coil 22 a for charging first rechargeable battery cells 12 a , 14 a , 16 a , in which first rechargeable battery cells 12 a , 14 a , 16 a have a main direction of extension 74 a oriented perpendicularly with respect to a coil plane of inductive charging unit 20 a .
  • the coil plane of inductive charging unit 20 a corresponds to a coil plane of inductive charging coil 22 a in which windings of inductive charging coil 22 a extend, and which is perpendicular to a winding axis of inductive charging coil 22 a .
  • Hand-held power tool rechargeable battery 10 a also includes three additional rechargeable battery cells 13 a , 15 a , 17 a having a main direction of extension 76 a oriented in parallel to the coil plane of inductive charging unit 20 a . Additional rechargeable battery cells 13 a , 15 a , 17 a are situated between first rechargeable battery cells 12 a , 14 a , 16 a and inductive charging coil 22 a .
  • First rechargeable battery cells 12 a , 14 a , 16 a and additional rechargeable battery cells 13 a , 15 a , 17 a are formed by lithium-ion rechargeable batteries having a nominal voltage of 3.6 V.
  • rechargeable batteries which include other electrolytes, for example nickel-metal hydride rechargeable batteries, nickel-cadmium rechargeable batteries, or nickel-zinc rechargeable batteries, and/or which have other nominal voltages may also be used as rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a .
  • First rechargeable battery cells 12 a , 14 a , 16 a are connected together in a series connection to form a first cell block having a total voltage of 10.8 V, and additional rechargeable battery cells 13 a , 15 a , 17 a are connected together in a series connection to form a second cell block having a total voltage of 10.8 V.
  • the first cell block is provided for initially supplying a hand-held power tool 36 a with current
  • the second cell block is provided for supplying hand-held power tool 36 a with current after a discharge of the first cell block, so that hand-held power tool rechargeable battery 10 a overall has twice the capacity compared to use of a single cell block made up in each case of three first rechargeable battery cells 12 a , 14 a , 16 a or additional rechargeable battery cells 13 a , 15 a , 17 a .
  • cells of first rechargeable battery cells 12 a , 14 a , 16 a as well as cells of additional rechargeable battery cells 13 a , 15 a , 17 a may be connected together in series in a cell block.
  • hand-held power tool rechargeable battery 10 a includes only a single cell block with three first rechargeable battery cells 12 a , 14 a , 16 a , which in an installed state are accommodated at least partially in a handle 38 a of a hand-held power tool 36 a .
  • This specific embodiment is indicated in FIG. 1 in that the second cell block made up of additional rechargeable battery cells 13 a , 15 a , 17 a , not contained in this specific embodiment, is illustrated in dashed lines.
  • hand-held power tool rechargeable battery 10 a includes only one of the rechargeable battery cells 12 a , 14 a , 16 a . In another alternative specific embodiment, hand-held power tool rechargeable battery 10 a includes only two of the rechargeable battery cells 12 a , 14 a , 16 a . In all three mentioned specific embodiments in which hand-held power tool rechargeable battery 10 a includes two or three of the rechargeable battery cells 12 a , 14 a , 16 a , an inductive charging coil 22 a for charging the at least one of the rechargeable battery cells 12 a , 14 a , 16 a is provided. The at least one of the rechargeable battery cells 12 a , 14 a , 16 a has a main direction of extension 74 a which is oriented perpendicularly with respect to a coil plane of inductive charging unit 20 a.
  • Inductive charging unit 20 a includes a coil core unit 24 a with a plate area 62 a which shields first rechargeable battery cells 12 a , 14 a , 16 a and additional rechargeable battery cells 13 a , 15 a , 17 a from inductive charging coil 22 a .
  • Rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a are situated in receiving spaces of rechargeable battery cell supports 86 a , made of a plastic. Rechargeable battery cell supports 86 a are not illustrated in FIG.
  • Rechargeable battery cell supports 86 a have an open design in a direction in parallel to main direction of extensions 74 a , 76 a of rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a , so that rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a may be pushed into and pulled out of rechargeable battery cell supports 86 a along this direction.
  • Rechargeable battery cell supports 86 a fasten rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a relative to one another, and partially enclose them in a direction perpendicular to main directions of extension 74 a , 76 a .
  • Coil core unit 24 a is situated between inductive charging coil 22 a and rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a , and separates them from one another ( FIG. 6 ).
  • Inductive charging coil 22 a is illustrated in dashed lines in FIG.
  • Hand-held power tool rechargeable battery 10 a also includes a rechargeable battery housing 18 a for accommodating inductive charging unit 20 a and rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a , including a coil receiving area 44 a for accommodating inductive charging coil 22 a which at least partially forms a form-fit element, and a rechargeable battery cell receiving area 46 a for accommodating additional rechargeable battery cells 13 a , 15 a , 17 a , which is recessed relative to coil receiving area 44 a .
  • Rechargeable battery housing 18 a includes a central housing component 30 a and two lateral housing components 32 a , 34 a which form coil receiving area 44 a and rechargeable battery cell receiving area 46 a , and is made of a plastic.
  • Housing components 32 a , 34 a which form coil receiving area 44 a , define a left side and a right side, and end areas of central housing component 30 a define a front side and a rear side of hand-held power tool rechargeable battery 10 a , a display including LED elements for indicating a state of charge being situated on the front side of hand-held power tool rechargeable battery 10 a .
  • Hand-held power tool rechargeable battery 10 a also includes connecting elements, not illustrated in greater detail, for establishing an electrically conductive connection between rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a and a current collector.
  • FIG. 2 shows hand-held power tool rechargeable battery 10 a illustrated in FIG. 1 , including a completely closed rechargeable battery housing 18 a with a housing component 48 a which is placed on housing components 30 a , 32 a , 34 a and which forms an upper closure.
  • Housing component 48 a encloses first rechargeable battery cells 12 a , 14 a , 16 a , and on opposite sides includes locking elements 106 a which are designed as detent elements.
  • hand-held power tool rechargeable battery 10 a includes a contact area, not indicated in greater detail in FIG. 2 , including electrical contact elements for electrically contacting with complementary electrical contact elements of a hand-held power tool.
  • FIG. 3 shows a system 50 a made up of a hand-held power tool 36 a and hand-held power tool rechargeable battery 10 a according to the present invention in an uninstalled state.
  • Hand-held power tool 36 a is formed by a cordless screw drill, which includes a handle 38 a with a handle housing 40 a which encloses a hand-held power tool rechargeable battery receptacle 84 a .
  • Situated on handle 38 a is a control switch 42 a which, when actuated, closes an electric circuit between hand-held power tool rechargeable battery 10 a and hand-held power tool 36 a , so that hand-held power tool 36 a is supplied with current for operation.
  • a housing component 48 a which in the illustrated specific embodiment is designed as a housing lid, together with housing components 30 a , 32 a , 34 a forms rechargeable battery housing 18 a of hand-held power tool rechargeable battery 10 a .
  • Hand-held power tool rechargeable battery 10 a is fastened to housing component 48 a of hand-held power tool 36 a with the aid of locking elements 106 a .
  • Hand-held power tool rechargeable battery 10 a is fastened without tools to hand-held power tool 36 a by inserting it into hand-held power tool rechargeable battery receptacle 84 a with locking elements 106 a ( FIG. 4 ).
  • An installation direction 78 a for installing hand-held power tool rechargeable battery 10 a on hand-held power tool 36 a extends perpendicularly with respect to the coil plane of inductive charging unit 20 a , and thus in parallel to main direction of extension 74 a of first rechargeable battery cells 12 a 14 a , 16 a .
  • Hand-held power tool rechargeable battery 10 a is thus installed on hand-held power tool 36 a by one insertion motion.
  • first rechargeable battery cells 12 a 14 a , 16 a are enclosed by handle housing 40 a along an angular range of 360 degrees over 60 percent of a length along main direction of extension 74 a on a plane perpendicular to main direction of extension 74 a .
  • inductive charging coil 22 a is situated outside of handle housing 40 a , an overall volume of inductive charging coil 22 a being situated outside of handle housing 40 a .
  • additional rechargeable battery cells 13 a , 15 a , 17 a are likewise situated outside of handle housing 40 a .
  • Hand-held power tool 36 a and hand-held power tool rechargeable battery 10 a are separable from one another without tools, and hand-held power tool rechargeable battery 10 a may be pulled from hand-held power tool rechargeable battery receptacle 84 a after actuating a release element, not illustrated.
  • a diameter of inductive charging coil 22 a is greater than a main length of extension of additional rechargeable battery cells 13 a , 15 a , 17 a , which is formed by a length along main direction of extension 76 a ( FIG. 5 ).
  • the diameter of inductive charging coil 22 a is moreover greater than a diameter of first rechargeable battery cells 12 a , 14 a , 16 a in a direction perpendicular to main direction of extension 74 a .
  • the diameter of the inductive charging coil is greater than a length of a maximum extension of first rechargeable battery cells 12 a , 14 a , 16 a , for example a diagonal between two diametrically opposed corner areas of first rechargeable battery cells 12 a , 14 a , 16 a .
  • the diameter of inductive charging coil 22 a is also greater than a main length of extension of first rechargeable battery cells 12 a , 14 a , 16 a .
  • Inductive charging coil 22 a thus protrudes beyond all rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a , thus achieving rapid charging of rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a .
  • Inductive charging coil 22 a is situated in coil receiving area 44 a of rechargeable battery housing 18 a , which protrudes beyond rechargeable battery cell receiving area 46 a .
  • Inductive charging coil 22 a is separated from rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a by plate area 62 a of coil core unit 24 a , and is illustrated in dashed lines in FIG. 5 for depicting the position in the areas covered by plate area 62 a .
  • Plate area 62 a is rectangular, and has the shape of a square with rounded corners.
  • Axis lengths 80 a , 82 a of plate area 62 a are smaller than a diameter of inductive charging coil 22 a ( FIG. 8 ).
  • Coil core unit 24 a includes four separate core pieces 26 a , 27 a , 28 a , 29 a , each of which corresponds to one-fourth of the square with rounded corners ( FIG. 9 ).
  • Individual core pieces 26 a , 27 a , 28 a , 29 a rest in a coil carrier 60 a in which inductive charging coil 22 a is also clamped, and are separated from one another by plastic elements of coil carrier 60 a .
  • individual core pieces 26 a , 27 a , 28 a , 29 a on one side have an area with an increased thickness, which in the installed state is situated within the coil plane of inductive charging coil 22 a .
  • the areas with increased thickness are enclosed by and adjoin the inductive charging coil ( FIG. 8 ).
  • Inductive charging unit 20 a includes inductive charging coil 22 a , coil core unit 24 a , charging electronics 52 a , coil carrier 60 a , central housing component 30 a , which fastens coil carrier 60 a , and a heat distribution element 54 a , and is designed as a preassembled module 58 a which may be removed separately so that inductive charging coil 22 a and charging electronics 52 a may be checked for proper functioning ( FIG. 7 ).
  • Heat distribution element 54 a is provided for distributing waste heat of charging electronics 52 a during charging of rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a , and distributing waste heat of rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a during a discharge, thus avoiding localized overheating.
  • heat distribution element 54 a is designed as a bracket which extends through hand-held power tool rechargeable battery 10 a along a main axis of central housing component 30 a ( FIG. 6 ).
  • Heat distribution element 54 a has a thermally conductive coating 56 a of aluminum. In one alternative embodiment, heat distribution element 54 a may also be designed as a component made completely of aluminum.
  • Charging electronics 52 a are partially coated with a copper layer for shielding rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a from inductive charging coil 22 a.
  • FIG. 10 shows an oblique view of hand-held power tool rechargeable battery 10 a from below, with a view of a bottom side of rechargeable battery housing 18 a facing away from first rechargeable battery cells 12 a , 14 a , 16 a and housing component 48 a .
  • a positioning projection 64 a having a square basic shape with rounded corners, which has contact with the base when hand-held power tool rechargeable battery 10 a is placed with the bottom side on a base, whereas other subareas of the bottom side are free of contact with the base.
  • Positioning projection 64 a is also provided for engaging with a positioning recess 68 a of an inductive charging device 66 a.
  • FIG. 11 shows a system 72 a including inductive charging device 66 a , which includes an inductive charging unit 88 a , and hand-held power tool rechargeable battery 10 a .
  • inductive charging unit 88 a On a top side, inductive charging unit 88 a has a support surface 90 a with positioning recess 68 a , on which hand-held power tool rechargeable battery 10 a is placed for charging rechargeable battery cells 12 a , 13 a , 14 a , 15 a , 16 a , 17 a .
  • Positioning recess 68 a has a circular basic shape and a depth of 3 mm.
  • Positioning projection 64 a has a shoulder height which corresponds to the depth of positioning recess 68 a .
  • Positioning projection 64 a and positioning recess 68 a thus have different basic shapes.
  • the dimensions of positioning projection 64 a and of positioning recess 68 a are adapted to one another, and in particular the dimensions of positioning recess 68 a are adapted to securely enclose positioning projection 64 a with little play.
  • a small tolerance is provided between the dimensions of positioning projection 64 a and of positioning recess 68 a .
  • positioning projection 64 a is haptically perceivable by a user, and indicates to the user a positioning of hand-held power tool rechargeable battery 10 a on inductive charging unit 88 a of inductive charging device 66 a which is optimal for a charging operation.
  • positioning projection 64 a is provided with the square basic shape with rounded corners for accommodation in circular positioning recess 68 a ( FIG. 12 ); alternatively, positioning projection 64 a may have a circular basic shape and be provided for accommodation within a positioning recess 68 a having a square basic shape ( FIG. 13 ).
  • inductive charging unit 88 a of inductive charging device 66 a to include a positioning projection 64 a
  • hand-held power tool rechargeable battery 10 a to include a positioning recess 68 a.
  • inductive charging coil 22 a of hand-held power tool rechargeable battery 10 a and the induction coil of inductive charging unit 88 a of inductive charging device 66 a are situated relative to one another in a position in which a high transmission efficiency is achieved.
  • inductive charging unit 88 a of inductive charging device 66 a includes form-fit elements 70 a for fastening hand-held power tool rechargeable battery 10 a during the charging phase.
  • Form-fit elements 70 a are designed as retaining tabs, and have a form-fit recess which is provided for accommodating coil receiving area 44 a of hand-held power tool rechargeable battery 10 a .
  • Form-fit elements 70 a are mounted in an elastically supported manner on opposite sides of inductive charging unit 88 a of inductive charging device 66 a , and may be deflected in a direction in parallel to a normal direction of support surface 90 a .
  • hand-held power tool rechargeable battery 10 a is set on inductive charging device 66 a at an angle, so that coil receiving area 44 a engages beneath form-fit elements 70 a on one side.
  • Hand-held power tool rechargeable battery 10 a is subsequently oriented in parallel to support surface 90 a so that form-fit elements 70 a are deflected in an upward direction, facing away from support surface 90 a , in the direction of the normal direction.
  • Hand-held power tool rechargeable battery 10 a is now inserted between form-fit elements 70 a on support surface 90 a until positioning projection 64 a engages with positioning recess 68 a .
  • Form-fit elements 70 a subsequently engage around coil receiving area 44 a of rechargeable battery housing 18 a from above.
  • Form-fit elements 70 a now secure hand-held power tool rechargeable battery 10 a in position, preventing it from being lifted off.
  • hand-held power tool rechargeable battery 10 a is pulled with one action in which hand-held power tool rechargeable battery 10 a is pulled in a direction along a main extension of the form-fit recess of form-fit elements 70 a , and at the same time is lifted in the normal direction of support surface 90 a , and is pulled from inductive charging device 66 a .
  • Form-fit elements 70 a are mounted on a main body of inductive charging unit 88 a of inductive charging device 66 a with a clip fastener, and are designed to be removable from the main body without tools.
  • form-fit elements 70 a may also have a one-piece design which is inseparably connected to the main body.
  • form-fit elements 70 a may be laterally deflectable in an elastically supported manner, and are deflected to the side for fastening hand-held power tool rechargeable battery 10 a .
  • form-fit elements 70 a are once again deflected to the side so that hand-held power tool rechargeable battery 10 a may be pulled out.
  • FIGS. 14 through 17 show three further exemplary embodiments of the present invention.
  • the following descriptions and the drawings are limited essentially to the differences between the exemplary embodiments, whereby in principle, with regard to identically denoted components, in particular with regard to components having identical reference numerals, reference may also be made to the drawings and/or the description of the other exemplary embodiments, in particular in FIGS. 1 through 13 .
  • the letter a is added as a suffix to the reference numerals in the exemplary embodiment in FIGS. 1 through 13
  • the letters b through d replace the letter a in the exemplary embodiments in FIGS. 14 through 17 .
  • FIG. 14 shows one alternative exemplary embodiment of a hand-held power tool rechargeable battery 10 b according to the present invention, including a first rechargeable battery cell 12 b , three additional rechargeable battery cells 13 b , 15 b , 17 b , and an inductive charging unit 20 b , which includes an inductive charging coil 22 b for charging first rechargeable battery cell 12 b and additional rechargeable battery cells 13 b , 15 b , 17 b , in which first rechargeable battery cell 12 b has a main direction of extension 74 b oriented perpendicularly with respect to a coil plane of inductive charging unit 20 b .
  • the three additional rechargeable battery cells 13 b , 15 b , 17 b have a main direction of extension 76 b which extends in a coil plane of inductive charging unit 20 b .
  • Hand-held power tool rechargeable battery 10 b has a design similar to that of the previous exemplary embodiment, except that it includes an inductive charging coil 22 b having a smaller diameter than in the previous example.
  • hand-held power tool rechargeable battery 10 b includes a single first rechargeable battery cell 12 b with a main direction of extension 74 b extending perpendicularly with respect to the coil plane of inductive charging unit 20 b
  • hand-held power tool rechargeable battery 10 b may be inserted into a handle housing having a smaller diameter than in hand-held power tool rechargeable battery 10 a illustrated in the previous exemplary embodiment.
  • First rechargeable battery cell 12 b is connected to additional rechargeable battery cell 13 b in a series connection to form a first cell block having a total voltage of 7.2 V, and additional rechargeable battery cells 15 b , 17 b are connected together to form a second cell block having a total voltage of 7.2 V, which is used for supplying current after discharge of the first cell block.
  • hand-held power tool rechargeable battery 10 b may also include only a single rechargeable battery cell 12 b , as indicated by an illustration of additional rechargeable battery cells 13 b , 15 b , 17 b in dashed lines.
  • FIG. 15 shows a third exemplary embodiment of a hand-held power tool rechargeable battery 10 c according to the present invention, including three first rechargeable battery cells 12 c , 14 c , 16 c and an inductive charging unit 20 c , which includes an inductive charging coil 22 c for charging first rechargeable battery cells 12 c , 14 c , 16 c , in which first rechargeable battery cells 12 c , 14 c , 16 c have a main direction of extension 74 c oriented perpendicularly with respect to a coil plane of inductive charging unit 20 c .
  • Hand-held power tool rechargeable battery 10 c also includes three additional rechargeable battery cells 13 c , 15 c , 17 c having a main direction of extension 76 c oriented in parallel to the coil plane of inductive charging unit 20 c .
  • the exemplary embodiment largely corresponds to the first exemplary embodiment, except that main direction of extension 76 c of the three additional rechargeable battery cells 13 c , 15 c , 17 c in the third exemplary embodiment extends perpendicularly with respect to main direction of extension 76 a of the three additional rechargeable battery cells 13 a , 15 a , 17 a in the first exemplary embodiment.
  • FIG. 16 illustrates one alternative embodiment of a system 72 d having an alternative design of an inductive charging device 66 d and a hand-held power tool rechargeable battery 10 d .
  • the design of hand-held power tool rechargeable battery 10 d corresponds to that of the first exemplary embodiment.
  • Inductive charging device 66 d includes an inductive charging unit 88 d , which has a design that is essentially similar to the first exemplary embodiment, and additionally includes a frame 92 d which includes form-fit elements 70 d of inductive charging device 66 a for fastening hand-held power tool rechargeable battery 10 d during a charging phase.
  • Frame 92 d includes a support 104 d , formed by surfaces of frame components, above which two side brackets 96 d , 98 d , and a retaining bracket 100 d extending transversely thereto on one side, rise ( FIGS. 17 a , 17 b ).
  • Retaining bracket 100 d extends from side bracket 96 d to side bracket 98 d .
  • Inductive charging unit 88 d is placed on support 104 d , and is then situated within frame 92 d .
  • a side of frame 92 d which is designed as an insertion opening 102 d and which is provided for inserting hand-held power tool rechargeable batteries 10 d into form-fit elements 70 d and onto support surface 90 d is situated opposite from retaining bracket 100 d ( FIG. 16 ).
  • Form-fit elements 70 d are provided for engaging from above around coil receiving area 44 d of a rechargeable battery housing 18 d of hand-held power tool rechargeable battery 10 d , which protrudes with respect to a rechargeable battery cell receiving area 46 d , during the charging phase, so that hand-held power tool rechargeable battery 10 d is secured in position on support surface 90 d .
  • Hand-held power tool rechargeable battery 10 d and inductive charging unit 88 d of inductive charging device 66 d include a pair, made up of a positioning recess and a positioning projection, having different basic shapes, and which are not illustrated in FIG. 16 for reasons of perspective.
  • Frame 92 d is made of a plastic, and is made up of two partial shells which are fixedly connected to one another by screws. In principle, it is also conceivable for frame 92 d to be designed as a single solid component.

Abstract

A hand-held power tool rechargeable battery is provided which includes at least one first rechargeable battery cell and at least one inductive charging unit which includes at least one inductive charging coil for charging the at least one first rechargeable battery cell. It is provided that the at least one first rechargeable battery cell has a main direction of extension which is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.

Description

    BACKGROUND INFORMATION
  • Various hand-held power tool rechargeable batteries which include at least one first rechargeable battery cell and at least one inductive charging unit which includes at least one inductive charging coil for charging the at least one rechargeable battery cell have already been provided.
  • SUMMARY
  • The present invention is directed to a hand-held power tool rechargeable battery which includes at least one first rechargeable battery cell and at least one inductive charging unit which includes at least one inductive charging coil for charging the at least one first rechargeable battery cell.
  • It is provided that the at least one first rechargeable battery cell has a main direction of extension oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
  • A “hand-held power tool rechargeable battery” is understood in particular to mean a device which includes at least one rechargeable battery cell unit, and units for charging and discharging the energy storage unit, which is provided for supplying a hand-held power tool with current. The hand-held power tool rechargeable battery is preferably accommodated in a receiving space of the hand-held power tool or detachably fastened to the hand-held power tool. Alternatively, it is also conceivable for the hand-held power tool rechargeable battery to be provided separately from the hand-held power tool and to be electrically connected via a power line, for example a cable. In the present context, a “hand-held power tool” is understood in particular to mean an electrical device which is hand-operated by a user, such as in particular a power drill, a drill hammer, a saw, a plane, a screwdriver, a milling tool, a grinder, an angle grinder, and/or a multifunctional tool or a garden tool such as a hedge trimmer, shrub shears, and/or grass shears. Alternatively, the hand-held power tool rechargeable battery may also be used in some other hand-operated unit, for example a measuring device. A “rechargeable battery cell unit” is understood in particular to mean a rechargeable energy storage unit which includes at least one rechargeable battery cell which is provided for storing energy for generating an electric current, and charging by introducing a charging current. In particular, the rechargeable battery cell unit may include at least one rechargeable battery cell block in which multiple rechargeable battery cells are connected in series. The rechargeable battery cell unit may also include multiple rechargeable battery cell blocks, each with an identical number of rechargeable battery cells which are provided for successively supplying the hand-held power tool with current, so that the hand-held power tool is supplied with current for a longer period of time than would be possible with a single rechargeable battery cell block. A “rechargeable battery cell” is understood in particular to mean a unit which is provided for electrochemically storing electrical energy with the aid of a reversible reaction. The rechargeable battery cell may be formed, for example, by a lead rechargeable battery cell, an NiCd rechargeable battery cell, or an NiMH rechargeable battery cell, but preferably by a lithium-based rechargeable battery cell. The rechargeable battery cell may be formed by rechargeable battery cells having different nominal voltages, for example nominal voltages of 1.2 V, 1.5 V, or 3.6 V. The rechargeable battery cells preferably have a cylindrical shape. The hand-held power tool rechargeable battery may include multiple rechargeable battery cells which are connected in series in order to achieve a higher total voltage of the hand-held power tool rechargeable battery. For example, the hand-held power tool rechargeable battery may include one rechargeable battery cell having a voltage of 3.6 V, two rechargeable battery cells, connected in series, having a voltage of 3.6 V each for a total voltage of the hand-held power tool rechargeable battery of 7.2 V, or three rechargeable battery cells, connected in series, having a voltage of 3.6 V each for a total voltage of the hand-held power tool rechargeable battery of 10.8 V. In addition, the hand-held power tool rechargeable battery may include additional rechargeable battery cells which are connected in parallel to the at least one first rechargeable battery cell and which are provided for supplying a hand-held power tool with current after a discharge of the at least one first rechargeable battery cell, so that a capacity of the hand-held power tool rechargeable battery is effectively increased. In a series connection of multiple rechargeable battery cells for generating a higher total voltage, multiple additional rechargeable battery cells may be appropriately connected in parallel to one another and in series to form the series connection in order to increase the capacity. In a series connection of three rechargeable battery cells, these are preferably arranged in a triangular form in a plane perpendicular to a main extension of the three rechargeable battery cells. An “inductive charging unit” is understood in particular to mean a unit for charging the rechargeable battery cell unit, which receives a charging current via induction and which includes at least one inductive charging coil and charging electronics. The inductive charging unit preferably also includes at least one coil core unit for increasing an inductance of the at least one inductive charging coil. The inductive charging unit advantageously includes a coil carrier which positions the inductive charging coil relative to the coil core. The inductive charging unit is advantageously also provided for communicating with an inductive charging unit of the inductive charging unit device for controlling charging, and in particular for foreign object recognition. In the present context, an “inductive charging coil” is understood in particular to mean a coil which includes at least one winding made of an electrically conductive material, and which is provided for receiving, in at least one operating state, electrical energy which is transmitted by an inductive charging coil of an inductive charging unit and supplying it to a rechargeable battery cell via charging electronics. In particular, the inductive charging coil is provided for converting an electromagnetic alternating field into an alternating electric current, and/or vice versa. The alternating field preferably has a frequency of 10 kHz-500 kHz, particularly preferably 100 kHz-120 kHz. In particular, the direction is provided perpendicularly with respect to the coil plane, in parallel to a winding axis of the inductive charging coil. “Charging electronics” is understood in particular to mean an electronic unit which is provided for controlling charging of rechargeable battery cells, and which in particular includes electronic elements for a voltage transformation.
  • A “main direction of extension” is understood in particular to mean a direction in parallel to an axis of symmetry along which the rechargeable battery cell has a maximum extension. A “coil plane” is understood in particular to mean a plane in which windings of the inductive charging coil extend. In particular, the coil plane extends perpendicularly with respect to a winding axis of the inductive charging coil. The phrase “the main direction of extension of the rechargeable battery cell is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit” is understood in particular to mean that an angle between the coil plane and the main direction of extension differs from 90 degrees by 30 degrees maximum, advantageously by 20 degrees maximum, preferably by 10 degrees maximum, and particularly preferably by 5 degrees maximum. In particular, the main direction of extension may extend at a right angle to the coil plane.
  • Due to the design according to the present invention, in particular a hand-held power tool rechargeable battery having a particularly compact design with a preferably small cross-sectional diameter may be achieved, which with regard to an extension of the rechargeable battery cell in a plane in parallel to the coil plane has a larger diameter of an inductive charging coil, via which rapid charging of the rechargeable battery due to a high field intensity is made possible.
  • In one refinement of the present invention, it is provided that the hand-held power tool rechargeable battery includes at least one additional rechargeable battery cell having a main direction of extension oriented at least essentially in parallel to the coil plane of the inductive charging unit. The at least one additional rechargeable battery cell may be connected to the at least one first rechargeable battery cell in a series connection in order to achieve a higher total voltage of the hand-held power tool rechargeable battery than with only the first rechargeable battery cell alone, or may be connected in parallel to the at least one first rechargeable battery cell and be provided for supplying the hand-held power tool with current after discharge of the at least one first rechargeable battery cell. In addition, multiple first rechargeable battery cells may be connected to one another in series, and multiple additional rechargeable battery cells may be connected to one another in series and in parallel to the multiple first rechargeable battery cells. The phrase “the main direction of extension of the at least one additional rechargeable battery cell is oriented at least essentially in parallel to a coil plane of the inductive charging unit” is understood in particular to mean that an angle between the coil plane and the main direction of extension differs from 0 degrees by 30 degrees maximum, advantageously by 20 degrees maximum, preferably by 10 degrees maximum, and particularly preferably by 5 degrees maximum. In particular, the main direction of extension may extend in a plane in parallel to the coil plane. In particular, a hand-held power tool rechargeable battery may be achieved which compactly stores a plurality of rechargeable battery cells.
  • Furthermore, it is provided that the at least one additional rechargeable battery cell is situated between the at least one first rechargeable battery cell and the inductive charging coil. The phrase “the at least one additional rechargeable battery cell is situated between the at least one first rechargeable battery cell and the inductive charging unit coil” is understood in particular to mean that all planes in parallel to the coil plane, which extend through the at least one additional rechargeable battery cell, do not intersect with the at least one first rechargeable battery cell. In particular, a compact design of the hand-held power tool rechargeable battery may be achieved.
  • In addition, it is provided that a diameter of the inductive charging coil is greater than a main length of extension of the at least one additional rechargeable battery cell. A “main length of extension” is understood in particular to mean a length along the main direction of extension. In particular, a compact hand-held power tool rechargeable battery having a short charging time for charging the at least one additional rechargeable battery cell may be achieved.
  • Moreover, it is provided that the hand-held power tool rechargeable battery includes a rechargeable battery housing having a coil receiving area for accommodating the inductive charging coil and which at least partially forms a form-fit element. A “rechargeable battery housing” is understood in particular to mean an assembly which includes at least one housing component which with outer walls at least partially delimits the hand-held power tool rechargeable battery with respect to the surroundings, and which in particular is provided for protecting the inductive charging unit and the rechargeable battery cells from the surroundings in an installed and/or uninstalled state on the hand-held power tool, and to avoid damage and/or soiling. In particular, the rechargeable battery housing defines a shape and a size of the hand-held power tool rechargeable battery. The rechargeable battery housing preferably includes fastening devices for fastening the hand-held power tool rechargeable battery to the hand-held power tool. The rechargeable battery housing advantageously has contact recesses via which electrical contact between the hand-held power tool and the at least one first rechargeable battery cell may be established. In particular, the rechargeable battery housing may have a completely or only partially closed design. In a partially closed design of the rechargeable battery housing, an area of the hand-held power tool rechargeable battery which is clear of the rechargeable battery housing may be provided situated within a housing of the hand-held power tool in a state in which the hand-held power tool rechargeable battery is mounted on a hand-held power tool. A “coil receiving area” is understood in particular to mean an area of the rechargeable battery housing which at least partially encloses a space within which the inductive charging coil of the inductive charging unit is situated. The coil receiving area preferably has an extension which in at least one direction is different from extensions of rechargeable battery housing areas which enclose the rechargeable battery cells. The phrase “the coil receiving area at least partially forms a form-fit element” is understood in particular to mean that the coil receiving area of the rechargeable battery housing protrudes or is recessed with respect to other areas of the rechargeable battery housing on at least one side face, preferably at least two side faces, of the rechargeable battery housing, so that for establishing a form-fit connection, a corresponding form-fit element of another unit, for example an inductive charging unit or the hand-held power tool, engages with a form-fit recess which is at least partially formed by the coil receiving area, or encloses a form-fit projection which is at least partially formed by the coil receiving area. The coil receiving area is particularly preferably designed in such a way that it protrudes with respect to adjacent areas of the rechargeable battery housing at the side faces on at least two side faces of the rechargeable battery housing and forms a form-fit projection. In particular, the form-fit element is provided for effectuating a form-fit fastening to an inductive charging unit during a charging phase in order to achieve efficient energy transmission. In particular, the rechargeable battery housing includes a rechargeable battery cell receiving area for accommodating the at least one rechargeable battery cell, which is recessed relative to the coil receiving area. A “rechargeable battery cell receiving area” is understood in particular to mean an area of the rechargeable battery housing which at least partially encloses a space within which the at least one rechargeable battery cell and/or the at least one additional rechargeable battery cell is/are situated. The phrase “the rechargeable battery cell receiving area is recessed relative to the coil receiving area” is understood in particular to mean that on at least one side face, preferably on at least two side faces, of the rechargeable battery housing, the rechargeable battery cell receiving area has a smaller extension in a direction of a perpendicular to the side face than does the coil receiving area. In particular, a compact hand-held power tool rechargeable battery may be achieved for simple fastening to an inductive charging unit or a hand-held power tool, while dispensing with separate external fastening elements. In particular, an advantageously small transverse extension of the hand-held power tool rechargeable battery in areas other than the coil receiving area, and thus a compact hand-held power tool rechargeable battery, may be achieved.
  • Furthermore, it is provided that the inductive charging unit includes a coil core unit having a plate area which at least partially shields the at least one first rechargeable battery cell from the inductive charging coil. In the present context, a “coil core unit” is understood in particular to mean a unit which is at least partially formed from a magnetic material, and which is provided for increasing an inductance of a coil. In the present context, a “magnetic material” is preferably understood to mean a ferrimagnetic, in particular soft magnetic, material, for example ferrite. Alternatively, it is also conceivable to use ferromagnetic and/or antiferromagnetic materials. A “plate area” is understood in particular to mean a flat area of the coil core unit having a thickness that is one-half maximum, preferably one-fourth maximum, and particularly preferably one-eighth maximum, of a minimum extension of the coil core unit in a direction perpendicular to the thickness. A “thickness” of the coil core unit is understood in particular to mean an extension of the coil core unit in a direction perpendicular to the coil plane of the inductive charging coil. The statement that the plate area “at least partially shields the at least one first rechargeable battery cell from the inductive charging coil” is understood in particular to mean that field lines of a magnetic field which is generated by the inductive charging coil are at least partially deflected from the at least one rechargeable battery cell by the plate area of the coil core unit. In particular, at a position of the at least one rechargeable battery cell, a field intensity of the magnetic field is thus attenuated by at least 10 percent, advantageously by at least 20 percent, preferably by at least 40 percent, and particularly preferably by at least 80 percent, with respect to a field intensity which prevails without the plate area. In particular, the plate area achieves the shielding of the at least one rechargeable battery cell in that, for a projection of the at least one rechargeable battery cell onto the induction coil, at least 60 percent, advantageously at least 80 percent, and preferably at least 90 percent, of a surface of the projection extends through the plate area. In particular, the coil core unit may have different thicknesses in the plate area. In particular, the plate area of the coil core unit may include a subarea which has a greater thickness than other subareas of the plate area and which preferably extends up to a coil plane, and thus up to an area enclosed by windings of the inductive charging coil in a plane perpendicular to the thickness. The subarea which has a greater thickness than other subareas of the plate area is preferably situated on only one side of the plate area. In particular, the subarea of the plate area which has a greater thickness than other subareas of the plate area may have a basic shape which differs from a basic shape of the plate area on a side facing away from the subarea. In particular, the plate area may have an essentially rectangular basic shape, and the subarea may have an essentially circular basic shape which is augmented on one side. In particular, due to the at least partially shielding of the at least one rechargeable battery cell, a load on the rechargeable battery cells from the magnetic field of the inductive charging coil may be at least reduced, and damage to the hand-held power tool rechargeable battery may be prevented.
  • In one refinement of the present invention, it is provided that the plate area is at least essentially rectangular. The term “at least essentially rectangular” is understood in particular to mean that the plate area has a surface area which is delimited by four at least essentially straight sides. The term “at least essentially straight sides” is understood in particular to mean sides which include at least one side area, designed as a straight line, whose length corresponds to at least 50 percent of a total length of the side. In particular, the at least essentially straight sides may delimit a rectangular shape, in particular a rectangular shape with rounded edges. In particular, the plate area may have a surface area with a basic shape of a rectangle having rounded sides, the circular subarea of a surface area of the plate area preferably having a greater thickness than other subareas of the plate area and extending to an inner area of the inductive charging coil which is enclosed by windings of the inductive charging coil. In particular, the plate area has at least one axis length which is smaller than a diameter of the inductive charging coil. An “axis length” is understood in particular to mean an extension length in parallel to an at least essentially straight side of the plate area, a length of a main axis or secondary axis of an ellipsoidal plate area, or a diameter of a circular plate area. The at least one further axis length of the plate area is preferably greater than a diameter of the inductive charging coil. The plate area preferably has a rectangular shape with rounded corners, and has an axis length which is smaller than the diameter of the inductive charging coil and extends in parallel to the main direction of extension of the at least one rechargeable battery cell, and has an axis length perpendicular thereto which is greater than the diameter of the inductive charging coil. The coil core unit preferably includes multiple separate core pieces. In the present context, the statement that “the coil core unit includes multiple separate core pieces” is understood in particular to mean that the coil core unit includes at least two, and preferably at least four, pieces which are separately formed and situated separately from one another, and which are made, at least partially, of a magnetic material. In particular, the multiple separate core pieces are situated symmetrically with respect to one another. In particular, the coil core unit, which includes multiple separate core pieces, has a greater mechanical stability, with essentially the same magnetic properties, than a one-piece design of a coil core unit. In particular, a coil core unit having a simple basic shape may be achieved.
  • Furthermore, it is provided that the hand-held power tool rechargeable battery includes at least one heat distribution element which is provided for distributing waste heat. A “heat distribution element” is understood in particular to mean an element which is provided for at least partially conducting heat, arising locally in a limited area, from the delimited area with the aid of thermal conduction, thermal radiation, or convection and distributing it over a larger area. In particular, the heat distribution element has a thermal conductivity which is at least twice, advantageously at least four times, and preferably at least 10 times, a thermal conductivity of elements which enclose the heat transport element. The phrase “the heat distribution element is provided for distributing waste heat” is understood in particular to mean that the heat distribution element has a surface area which is at least two times, advantageously at least four times, and preferably at least 10 times, larger than a surface area of the delimited area, and which is provided for discharging the heat which is conducted away from the delimited area. “Waste heat” is understood in particular to mean heat which is generated as a by-product during a charge and/or a discharge of the at least one rechargeable battery cell. The heat distribution element is preferably connected to the charging electronics and to the at least one rechargeable battery cell in a thermally conductive manner. The heat distribution element preferably has at least one thermally conductive coating. A “thermally conductive coating” is understood in particular to mean a coating made of a material having a thermal conductivity which is at least two times, advantageously at least four times, and preferably at least 10 times, a thermal conductivity of a material to which the thermally conductive coating is applied. A “coating” is understood in particular to mean a layer which is applied to at least one surface of a support element and which has a thickness that is one-fifth maximum, advantageously one-tenth maximum, and preferably one-twentieth maximum, of a thickness of the support element. The thermally conductive coating preferably has a thickness in the millimeter range. The thermally conductive coating is preferably composed at least partially of aluminum, and is applied to a support element which is designed as a bracket. The bracket is particularly preferably provided for separating the charging electronics at a distance from the at least one rechargeable battery cell. In particular, damage to the hand-held power tool rechargeable battery due to locally increased temperatures, as well as impairment of a charging operation or a discharging operation of the least one rechargeable battery cell due to locally differing temperatures, may be avoided.
  • Moreover, it is provided that at least the inductive charging unit is designed as a preassembled module. A “preassembled module” is understood in particular to mean that the inductive charging unit, which includes at least the inductive charging coil, a coil carrier on which the inductive charging coil is mounted, and the charging electronics, is assembled in one step during manufacture of the hand-held power tool rechargeable battery, and is installed as a complete module in further steps with other components of the hand-held power tool rechargeable battery, and that the inductive charging unit as a whole is removable from the hand-held power tool and separately testable for functionality and/or installable in a different hand-held power tool rechargeable battery. The preassembled module preferably includes, in addition to the inductive charging unit, at least one rechargeable battery housing component which accommodates the coil carrier and a heat distribution element, designed as a bracket, which holds the individual subelements of the preassembled module together after installation. In particular, simplified installation of the hand-held power tool rechargeable battery may be achieved, and an inductive charging unit which is removable for use in multiple different hand-held power tool rechargeable batteries may be provided.
  • In addition, a system made up of a hand-held power tool and a hand-held power tool rechargeable battery according to the present invention is provided.
  • In one refinement of the present invention, it is provided that the hand-held power tool and the hand-held power tool rechargeable battery are separable from one another without tools. The term “separable from one another without tools” is understood in particular to mean that the hand-held power tool rechargeable battery, after being fastened to a hand-held power tool, may be removed by a user of the hand-held power tool without damage. In particular, the hand-held power tool rechargeable battery and/or the hand-held power tool may include fastening means for fastening the hand-held power tool rechargeable battery to the hand-held power tool, and which may be detached by the user for separating the hand-held power tool rechargeable battery from the hand-held power tool. The hand-held power tool rechargeable battery is preferably designed to be insertable or pushable into the hand-held power tool, and may be separated from the hand-held power tool by pulling. In particular, a system with simple exchangeability of the hand-held power tool rechargeable battery may be achieved.
  • In addition, it is provided that the at least one first rechargeable battery cell is at least essentially enclosed by a handle housing in an installed state of the hand-held power tool and of the hand-held power tool rechargeable battery. The term “at least essentially enclosed by a handle housing” is understood in particular to mean that the at least one first rechargeable battery cell is enclosed by the handle housing along an angular range of at least 180 degrees, preferably at least 270 degrees, and particularly preferably 360 degrees, on at least 50 percent of a length along the main direction of extension on a plane perpendicular to the main direction of extension. The at least one inductive charging coil is preferably situated at least essentially outside the handle housing in the installed state. The term “situated at least essentially outside the handle housing” is understood in particular to mean that at least 50 percent, advantageously at least 70 percent, of a volume is situated outside the handle housing. In particular, a compact system made up of a hand-held power tool and a hand-held power tool rechargeable battery having advantageous guiding properties may be achieved.
  • In addition, it is provided that the system has an installation direction for installing the hand-held power tool rechargeable battery on the hand-held power tool, which extends at least essentially perpendicularly with respect to a coil plane of the inductive charging unit. In particular, an easily carried out installation may be achieved.
  • Moreover, a system which includes an inductive charging device and a hand-held power tool rechargeable battery according to the present invention is provided.
  • In one refinement of the present invention, it is provided that the inductive charging device includes form-fit elements for fastening the hand-held power tool rechargeable battery during a charging phase. “Form-fit elements” are understood in particular to mean elements which are provided for cooperating with corresponding form-fit elements of the hand-held power tool rechargeable battery to provide a form-fit fastening of the hand-held power tool rechargeable battery during the charging phase. In particular, the inductive charging device and the hand-held power tool rechargeable battery are separable from one another without tools. A “charging phase” is understood in particular to mean a period of time during which the at least one rechargeable battery cell becomes charged via electrical energy which is transmitted from the inductive charging device and received by the inductive charging unit of the hand-held power tool rechargeable battery. For example, the inductive charging device may include form-fit elements, designed as recesses, for accommodating a coil receiving area of the rechargeable battery housing which protrudes with respect to a rechargeable battery receiving area. In particular, an interruption in the charging phase or a reduction in a transmission efficiency may be avoided by moving the inductive charging device and the hand-held power tool rechargeable battery relative to one another.
  • In addition, it is provided that the inductive charging device and the hand-held power tool rechargeable battery include a positioning projection and a positioning recess having basic shapes which are different from one another. A “positioning projection” is understood in particular to mean a surface area which protrudes with respect to adjacent surface areas and which is provided for engaging with the positioning recess. A “positioning recess” is understood in particular to mean a surface area which is recessed with respect to adjacent surface areas and which is provided for engaging with the positioning projection. In particular, the positioning projection and the positioning recess are designed with basic shapes which are different but which correspond to one another; for example, the positioning projection may have a circular shape with a diameter which corresponds to a side length of a square positioning recess. The positioning projection, at least in one area, preferably an end area, of a side preferably has a smaller transverse extension than a transverse extension of the positioning recess, thus simplifying insertion. In particular, simple introduction of the positioning projection into the positioning recess may be achieved.
  • In addition, an inductive charging unit according to the present invention of a hand-held power tool rechargeable battery is provided.
  • The hand-held power tool rechargeable battery according to the present invention is not intended to be limited to the use and specific embodiment described above. In particular, for fulfilling a mode of operation described herein, the hand-held power tool rechargeable battery according to the present invention may include a number of individual elements, components, and units which is different from a number stated herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows a hand-held power tool rechargeable battery according to the present invention in a partially open view with the housing lid removed, and including three first rechargeable battery cells which have a main direction of extension extending perpendicularly with respect to a coil plane of an inductive charging unit, and three additional rechargeable battery cells.
  • FIG. 2 shows an exterior view of the hand-held power tool rechargeable battery illustrated in FIG. 1.
  • FIG. 3 shows a system made up of a hand-held power tool and the hand-held power tool rechargeable battery according to the present invention, in an uninstalled state.
  • FIG. 4 shows the system made up of the hand-held power tool and the hand-held power tool rechargeable battery in an installed state.
  • FIG. 5 shows a partial illustration of the hand-held power tool rechargeable battery according to the present invention, with a top view onto the additional rechargeable battery cells and onto an inductive charging coil of the inductive charging unit.
  • FIG. 6 shows a lateral section of FIG. 4.
  • FIG. 7 shows an illustration of components of the inductive charging unit as a preassembled module.
  • FIG. 8 shows a view onto the inductive charging coil and a coil core unit, showing shielding by the coil core unit.
  • FIG. 9 shows a top view onto the coil core unit and the inductive charging coil.
  • FIG. 10 shows a view onto a positioning projection of the hand-held power tool rechargeable battery according to the present invention.
  • FIG. 11 shows a system made up of the hand-held power tool rechargeable battery according to the present invention and an inductive charging device having a positioning recess.
  • FIG. 12 shows a schematic illustration of different basic shapes of the positioning projection and the positioning recess.
  • FIG. 13 shows an alternative design of different basic shapes of the positioning projection and the positioning recess.
  • FIG. 14 shows an alternative exemplary embodiment of a hand-held power tool rechargeable battery according to the present invention, including a single first rechargeable battery cell.
  • FIG. 15 shows another alternative exemplary embodiment of a hand-held power tool rechargeable battery according to the present invention, including three first rechargeable battery cells having a main direction of extension extending perpendicularly with respect to a coil plane of an inductive charging unit, and including three additional rechargeable battery cells.
  • FIG. 16 shows an alternative design of an inductive charging device.
  • FIG. 17 shows a system made up of the alternatively designed inductive charging device and a hand-held power tool rechargeable battery according to the present invention.
  • DETAILED DESCRIPTION
  • FIG. 1 shows a hand-held power tool rechargeable battery 10 a according to the present invention, including three first rechargeable battery cells 12 a, 14 a, 16 a and an inductive charging unit 20 a, which includes an inductive charging coil 22 a for charging first rechargeable battery cells 12 a, 14 a, 16 a, in which first rechargeable battery cells 12 a, 14 a, 16 a have a main direction of extension 74 a oriented perpendicularly with respect to a coil plane of inductive charging unit 20 a. The coil plane of inductive charging unit 20 a corresponds to a coil plane of inductive charging coil 22 a in which windings of inductive charging coil 22 a extend, and which is perpendicular to a winding axis of inductive charging coil 22 a. Hand-held power tool rechargeable battery 10 a also includes three additional rechargeable battery cells 13 a, 15 a, 17 a having a main direction of extension 76 a oriented in parallel to the coil plane of inductive charging unit 20 a. Additional rechargeable battery cells 13 a, 15 a, 17 a are situated between first rechargeable battery cells 12 a, 14 a, 16 a and inductive charging coil 22 a. First rechargeable battery cells 12 a, 14 a, 16 a and additional rechargeable battery cells 13 a, 15 a, 17 a are formed by lithium-ion rechargeable batteries having a nominal voltage of 3.6 V. In principle, rechargeable batteries which include other electrolytes, for example nickel-metal hydride rechargeable batteries, nickel-cadmium rechargeable batteries, or nickel-zinc rechargeable batteries, and/or which have other nominal voltages may also be used as rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a. First rechargeable battery cells 12 a, 14 a, 16 a are connected together in a series connection to form a first cell block having a total voltage of 10.8 V, and additional rechargeable battery cells 13 a, 15 a, 17 a are connected together in a series connection to form a second cell block having a total voltage of 10.8 V. The first cell block is provided for initially supplying a hand-held power tool 36 a with current, and the second cell block is provided for supplying hand-held power tool 36 a with current after a discharge of the first cell block, so that hand-held power tool rechargeable battery 10 a overall has twice the capacity compared to use of a single cell block made up in each case of three first rechargeable battery cells 12 a, 14 a, 16 a or additional rechargeable battery cells 13 a, 15 a, 17 a. In principle, cells of first rechargeable battery cells 12 a, 14 a, 16 a as well as cells of additional rechargeable battery cells 13 a, 15 a, 17 a may be connected together in series in a cell block. In addition, all rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a may be connected together in a shared cell block. In one simple specific embodiment of hand-held power tool rechargeable battery 10 a, hand-held power tool rechargeable battery 10 a includes only a single cell block with three first rechargeable battery cells 12 a, 14 a, 16 a, which in an installed state are accommodated at least partially in a handle 38 a of a hand-held power tool 36 a. This specific embodiment is indicated in FIG. 1 in that the second cell block made up of additional rechargeable battery cells 13 a, 15 a, 17 a, not contained in this specific embodiment, is illustrated in dashed lines. In one alternative specific embodiment, hand-held power tool rechargeable battery 10 a includes only one of the rechargeable battery cells 12 a, 14 a, 16 a. In another alternative specific embodiment, hand-held power tool rechargeable battery 10 a includes only two of the rechargeable battery cells 12 a, 14 a, 16 a. In all three mentioned specific embodiments in which hand-held power tool rechargeable battery 10 a includes two or three of the rechargeable battery cells 12 a, 14 a, 16 a, an inductive charging coil 22 a for charging the at least one of the rechargeable battery cells 12 a, 14 a, 16 a is provided. The at least one of the rechargeable battery cells 12 a, 14 a, 16 a has a main direction of extension 74 a which is oriented perpendicularly with respect to a coil plane of inductive charging unit 20 a.
  • Inductive charging unit 20 a includes a coil core unit 24 a with a plate area 62 a which shields first rechargeable battery cells 12 a, 14 a, 16 a and additional rechargeable battery cells 13 a, 15 a, 17 a from inductive charging coil 22 a. Rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a are situated in receiving spaces of rechargeable battery cell supports 86 a, made of a plastic. Rechargeable battery cell supports 86 a are not illustrated in FIG. 1 for better depiction of the arrangements of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a within hand-held power tool rechargeable battery 10 a. Rechargeable battery cell supports 86 a have an open design in a direction in parallel to main direction of extensions 74 a, 76 a of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, so that rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a may be pushed into and pulled out of rechargeable battery cell supports 86 a along this direction. Rechargeable battery cell supports 86 a fasten rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a relative to one another, and partially enclose them in a direction perpendicular to main directions of extension 74 a, 76 a. Coil core unit 24 a is situated between inductive charging coil 22 a and rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, and separates them from one another (FIG. 6). Inductive charging coil 22 a is illustrated in dashed lines in FIG. 1 to show its arrangement relative to rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a. Hand-held power tool rechargeable battery 10 a also includes a rechargeable battery housing 18 a for accommodating inductive charging unit 20 a and rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, including a coil receiving area 44 a for accommodating inductive charging coil 22 a which at least partially forms a form-fit element, and a rechargeable battery cell receiving area 46 a for accommodating additional rechargeable battery cells 13 a, 15 a, 17 a, which is recessed relative to coil receiving area 44 a. Viewed in a plane perpendicular to main direction of extension 74 a of first rechargeable battery cells 12 a, 14 a, 16 a, coil receiving area 44 a protrudes from rechargeable battery cell receiving area 46 a along at least one axis. Rechargeable battery housing 18 a includes a central housing component 30 a and two lateral housing components 32 a, 34 a which form coil receiving area 44 a and rechargeable battery cell receiving area 46 a, and is made of a plastic. Housing components 32 a, 34 a, which form coil receiving area 44 a, define a left side and a right side, and end areas of central housing component 30 a define a front side and a rear side of hand-held power tool rechargeable battery 10 a, a display including LED elements for indicating a state of charge being situated on the front side of hand-held power tool rechargeable battery 10 a. Hand-held power tool rechargeable battery 10 a also includes connecting elements, not illustrated in greater detail, for establishing an electrically conductive connection between rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a and a current collector.
  • FIG. 2 shows hand-held power tool rechargeable battery 10 a illustrated in FIG. 1, including a completely closed rechargeable battery housing 18 a with a housing component 48 a which is placed on housing components 30 a, 32 a, 34 a and which forms an upper closure. Housing component 48 a encloses first rechargeable battery cells 12 a, 14 a, 16 a, and on opposite sides includes locking elements 106 a which are designed as detent elements. At the upper end of rechargeable battery housing 18 a in FIG. 2, hand-held power tool rechargeable battery 10 a includes a contact area, not indicated in greater detail in FIG. 2, including electrical contact elements for electrically contacting with complementary electrical contact elements of a hand-held power tool.
  • FIG. 3 shows a system 50 a made up of a hand-held power tool 36 a and hand-held power tool rechargeable battery 10 a according to the present invention in an uninstalled state. Hand-held power tool 36 a is formed by a cordless screw drill, which includes a handle 38 a with a handle housing 40 a which encloses a hand-held power tool rechargeable battery receptacle 84 a. Situated on handle 38 a is a control switch 42 a which, when actuated, closes an electric circuit between hand-held power tool rechargeable battery 10 a and hand-held power tool 36 a, so that hand-held power tool 36 a is supplied with current for operation. A housing component 48 a, which in the illustrated specific embodiment is designed as a housing lid, together with housing components 30 a, 32 a, 34 a forms rechargeable battery housing 18 a of hand-held power tool rechargeable battery 10 a. Hand-held power tool rechargeable battery 10 a is fastened to housing component 48 a of hand-held power tool 36 a with the aid of locking elements 106 a. Hand-held power tool rechargeable battery 10 a is fastened without tools to hand-held power tool 36 a by inserting it into hand-held power tool rechargeable battery receptacle 84 a with locking elements 106 a (FIG. 4). An installation direction 78 a for installing hand-held power tool rechargeable battery 10 a on hand-held power tool 36 a extends perpendicularly with respect to the coil plane of inductive charging unit 20 a, and thus in parallel to main direction of extension 74 a of first rechargeable battery cells 12 a 14 a, 16 a. Hand-held power tool rechargeable battery 10 a is thus installed on hand-held power tool 36 a by one insertion motion. In an installed state of hand-held power tool 36 a and of hand-held power tool rechargeable battery 10 a, first rechargeable battery cells 12 a 14 a, 16 a are enclosed by handle housing 40 a along an angular range of 360 degrees over 60 percent of a length along main direction of extension 74 a on a plane perpendicular to main direction of extension 74 a. In the installed state, inductive charging coil 22 a is situated outside of handle housing 40 a, an overall volume of inductive charging coil 22 a being situated outside of handle housing 40 a. In the installed state, additional rechargeable battery cells 13 a, 15 a, 17 a are likewise situated outside of handle housing 40 a. Hand-held power tool 36 a and hand-held power tool rechargeable battery 10 a are separable from one another without tools, and hand-held power tool rechargeable battery 10 a may be pulled from hand-held power tool rechargeable battery receptacle 84 a after actuating a release element, not illustrated.
  • A diameter of inductive charging coil 22 a is greater than a main length of extension of additional rechargeable battery cells 13 a, 15 a, 17 a, which is formed by a length along main direction of extension 76 a (FIG. 5). The diameter of inductive charging coil 22 a is moreover greater than a diameter of first rechargeable battery cells 12 a, 14 a, 16 a in a direction perpendicular to main direction of extension 74 a. In addition, the diameter of the inductive charging coil is greater than a length of a maximum extension of first rechargeable battery cells 12 a, 14 a, 16 a, for example a diagonal between two diametrically opposed corner areas of first rechargeable battery cells 12 a, 14 a, 16 a. The diameter of inductive charging coil 22 a is also greater than a main length of extension of first rechargeable battery cells 12 a, 14 a, 16 a. Inductive charging coil 22 a thus protrudes beyond all rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, thus achieving rapid charging of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a. Inductive charging coil 22 a is situated in coil receiving area 44 a of rechargeable battery housing 18 a, which protrudes beyond rechargeable battery cell receiving area 46 a. Inductive charging coil 22 a is separated from rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a by plate area 62 a of coil core unit 24 a, and is illustrated in dashed lines in FIG. 5 for depicting the position in the areas covered by plate area 62 a. Plate area 62 a is rectangular, and has the shape of a square with rounded corners. Axis lengths 80 a, 82 a of plate area 62 a are smaller than a diameter of inductive charging coil 22 a (FIG. 8). Coil core unit 24 a includes four separate core pieces 26 a, 27 a, 28 a, 29 a, each of which corresponds to one-fourth of the square with rounded corners (FIG. 9). Individual core pieces 26 a, 27 a, 28 a, 29 a rest in a coil carrier 60 a in which inductive charging coil 22 a is also clamped, and are separated from one another by plastic elements of coil carrier 60 a. In an area facing away from the rounded corners, individual core pieces 26 a, 27 a, 28 a, 29 a on one side have an area with an increased thickness, which in the installed state is situated within the coil plane of inductive charging coil 22 a. In the installed state of inductive charging coil 22 a, the areas with increased thickness are enclosed by and adjoin the inductive charging coil (FIG. 8).
  • Inductive charging unit 20 a includes inductive charging coil 22 a, coil core unit 24 a, charging electronics 52 a, coil carrier 60 a, central housing component 30 a, which fastens coil carrier 60 a, and a heat distribution element 54 a, and is designed as a preassembled module 58 a which may be removed separately so that inductive charging coil 22 a and charging electronics 52 a may be checked for proper functioning (FIG. 7). Heat distribution element 54 a is provided for distributing waste heat of charging electronics 52 a during charging of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, and distributing waste heat of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a during a discharge, thus avoiding localized overheating. For this purpose, heat distribution element 54 a is designed as a bracket which extends through hand-held power tool rechargeable battery 10 a along a main axis of central housing component 30 a (FIG. 6). Side areas of heat distribution element 54 a are in contact with charging electronics 52 a, and a central area of heat distribution element 54 a is in contact on one side with rechargeable battery cell support 86 a, in which rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a are situated, so that heat may flow between rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a and charging electronics 52 a via heat distribution element 54 a. Heat distribution element 54 a has a thermally conductive coating 56 a of aluminum. In one alternative embodiment, heat distribution element 54 a may also be designed as a component made completely of aluminum. Charging electronics 52 a are partially coated with a copper layer for shielding rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a from inductive charging coil 22 a.
  • FIG. 10 shows an oblique view of hand-held power tool rechargeable battery 10 a from below, with a view of a bottom side of rechargeable battery housing 18 a facing away from first rechargeable battery cells 12 a, 14 a, 16 a and housing component 48 a. Situated on the bottom side is a positioning projection 64 a having a square basic shape with rounded corners, which has contact with the base when hand-held power tool rechargeable battery 10 a is placed with the bottom side on a base, whereas other subareas of the bottom side are free of contact with the base. Positioning projection 64 a is also provided for engaging with a positioning recess 68 a of an inductive charging device 66 a.
  • FIG. 11 shows a system 72 a including inductive charging device 66 a, which includes an inductive charging unit 88 a, and hand-held power tool rechargeable battery 10 a. On a top side, inductive charging unit 88 a has a support surface 90 a with positioning recess 68 a, on which hand-held power tool rechargeable battery 10 a is placed for charging rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a. Positioning recess 68 a has a circular basic shape and a depth of 3 mm. However, other dimensions which appear meaningful to those skilled in the art are conceivable, such as a depth of 2 mm, 5 mm, or only 1 mm. Positioning projection 64 a has a shoulder height which corresponds to the depth of positioning recess 68 a. Positioning projection 64 a and positioning recess 68 a thus have different basic shapes. The dimensions of positioning projection 64 a and of positioning recess 68 a are adapted to one another, and in particular the dimensions of positioning recess 68 a are adapted to securely enclose positioning projection 64 a with little play. A small tolerance is provided between the dimensions of positioning projection 64 a and of positioning recess 68 a. Locking of positioning projection 64 a into positioning recess 68 a is haptically perceivable by a user, and indicates to the user a positioning of hand-held power tool rechargeable battery 10 a on inductive charging unit 88 a of inductive charging device 66 a which is optimal for a charging operation. In the illustrated variant, positioning projection 64 a is provided with the square basic shape with rounded corners for accommodation in circular positioning recess 68 a (FIG. 12); alternatively, positioning projection 64 a may have a circular basic shape and be provided for accommodation within a positioning recess 68 a having a square basic shape (FIG. 13). Alternatively, it is also possible for inductive charging unit 88 a of inductive charging device 66 a to include a positioning projection 64 a, and for hand-held power tool rechargeable battery 10 a to include a positioning recess 68 a.
  • During charging of rechargeable battery cells 12 a, 13 a, 14 a, 15 a, 16 a, 17 a, electrical energy is transmitted with the aid of induction via an induction coil (not illustrated) of inductive charging unit 88 a of inductive charging device 66 a to inductive charging coil 22 a of hand-held power tool rechargeable battery 10 a, where it induces an electric current. The electric current is transformed and the charging is controlled with the aid of charging electronics 52 a. Due to the accommodation of positioning projection 64 a in positioning recess 68 a when hand-held power tool rechargeable battery 10 a is placed on inductive charging unit 88 a of inductive charging device 66 a during a charging phase of hand-held power tool rechargeable battery 10 a, inductive charging coil 22 a of hand-held power tool rechargeable battery 10 a and the induction coil of inductive charging unit 88 a of inductive charging device 66 a are situated relative to one another in a position in which a high transmission efficiency is achieved. A displacement of hand-held power tool rechargeable battery 10 a and of inductive charging unit 88 a of inductive charging device 66 a relative to one another during the charging phase, for example due to inadvertently striking them, is partially avoided by the accommodation of positioning projection 64 a in positioning recess 68 a. In addition, inductive charging unit 88 a of inductive charging device 66 a includes form-fit elements 70 a for fastening hand-held power tool rechargeable battery 10 a during the charging phase. Form-fit elements 70 a are designed as retaining tabs, and have a form-fit recess which is provided for accommodating coil receiving area 44 a of hand-held power tool rechargeable battery 10 a. Form-fit elements 70 a are mounted in an elastically supported manner on opposite sides of inductive charging unit 88 a of inductive charging device 66 a, and may be deflected in a direction in parallel to a normal direction of support surface 90 a. For placing and fastening hand-held power tool rechargeable battery 10 a on inductive charging unit 88 a of inductive charging device 66 a, hand-held power tool rechargeable battery 10 a is set on inductive charging device 66 a at an angle, so that coil receiving area 44 a engages beneath form-fit elements 70 a on one side. Hand-held power tool rechargeable battery 10 a is subsequently oriented in parallel to support surface 90 a so that form-fit elements 70 a are deflected in an upward direction, facing away from support surface 90 a, in the direction of the normal direction. Hand-held power tool rechargeable battery 10 a is now inserted between form-fit elements 70 a on support surface 90 a until positioning projection 64 a engages with positioning recess 68 a. Form-fit elements 70 a subsequently engage around coil receiving area 44 a of rechargeable battery housing 18 a from above. Form-fit elements 70 a now secure hand-held power tool rechargeable battery 10 a in position, preventing it from being lifted off. To remove hand-held power tool rechargeable battery 10 a from inductive charging unit 88 a of inductive charging device 66 a, hand-held power tool rechargeable battery 10 a is pulled with one action in which hand-held power tool rechargeable battery 10 a is pulled in a direction along a main extension of the form-fit recess of form-fit elements 70 a, and at the same time is lifted in the normal direction of support surface 90 a, and is pulled from inductive charging device 66 a. Form-fit elements 70 a are mounted on a main body of inductive charging unit 88 a of inductive charging device 66 a with a clip fastener, and are designed to be removable from the main body without tools.
  • In principle, form-fit elements 70 a may also have a one-piece design which is inseparably connected to the main body. In another possible, alternative embodiment, form-fit elements 70 a may be laterally deflectable in an elastically supported manner, and are deflected to the side for fastening hand-held power tool rechargeable battery 10 a. To remove hand-held power tool rechargeable battery 10 a in the alternative embodiment of inductive charging unit 88 a of inductive charging device 66 a, form-fit elements 70 a are once again deflected to the side so that hand-held power tool rechargeable battery 10 a may be pulled out.
  • FIGS. 14 through 17 show three further exemplary embodiments of the present invention. The following descriptions and the drawings are limited essentially to the differences between the exemplary embodiments, whereby in principle, with regard to identically denoted components, in particular with regard to components having identical reference numerals, reference may also be made to the drawings and/or the description of the other exemplary embodiments, in particular in FIGS. 1 through 13. To distinguish between the exemplary embodiments, the letter a is added as a suffix to the reference numerals in the exemplary embodiment in FIGS. 1 through 13, and the letters b through d replace the letter a in the exemplary embodiments in FIGS. 14 through 17.
  • FIG. 14 shows one alternative exemplary embodiment of a hand-held power tool rechargeable battery 10 b according to the present invention, including a first rechargeable battery cell 12 b, three additional rechargeable battery cells 13 b, 15 b, 17 b, and an inductive charging unit 20 b, which includes an inductive charging coil 22 b for charging first rechargeable battery cell 12 b and additional rechargeable battery cells 13 b, 15 b, 17 b, in which first rechargeable battery cell 12 b has a main direction of extension 74 b oriented perpendicularly with respect to a coil plane of inductive charging unit 20 b. The three additional rechargeable battery cells 13 b, 15 b, 17 b have a main direction of extension 76 b which extends in a coil plane of inductive charging unit 20 b. Hand-held power tool rechargeable battery 10 b has a design similar to that of the previous exemplary embodiment, except that it includes an inductive charging coil 22 b having a smaller diameter than in the previous example. Since hand-held power tool rechargeable battery 10 b includes a single first rechargeable battery cell 12 b with a main direction of extension 74 b extending perpendicularly with respect to the coil plane of inductive charging unit 20 b, hand-held power tool rechargeable battery 10 b may be inserted into a handle housing having a smaller diameter than in hand-held power tool rechargeable battery 10 a illustrated in the previous exemplary embodiment. First rechargeable battery cell 12 b is connected to additional rechargeable battery cell 13 b in a series connection to form a first cell block having a total voltage of 7.2 V, and additional rechargeable battery cells 15 b, 17 b are connected together to form a second cell block having a total voltage of 7.2 V, which is used for supplying current after discharge of the first cell block. In principle, hand-held power tool rechargeable battery 10 b may also include only a single rechargeable battery cell 12 b, as indicated by an illustration of additional rechargeable battery cells 13 b, 15 b, 17 b in dashed lines.
  • FIG. 15 shows a third exemplary embodiment of a hand-held power tool rechargeable battery 10 c according to the present invention, including three first rechargeable battery cells 12 c, 14 c, 16 c and an inductive charging unit 20 c, which includes an inductive charging coil 22 c for charging first rechargeable battery cells 12 c, 14 c, 16 c, in which first rechargeable battery cells 12 c, 14 c, 16 c have a main direction of extension 74 c oriented perpendicularly with respect to a coil plane of inductive charging unit 20 c. Hand-held power tool rechargeable battery 10 c also includes three additional rechargeable battery cells 13 c, 15 c, 17 c having a main direction of extension 76 c oriented in parallel to the coil plane of inductive charging unit 20 c. The exemplary embodiment largely corresponds to the first exemplary embodiment, except that main direction of extension 76 c of the three additional rechargeable battery cells 13 c, 15 c, 17 c in the third exemplary embodiment extends perpendicularly with respect to main direction of extension 76 a of the three additional rechargeable battery cells 13 a, 15 a, 17 a in the first exemplary embodiment.
  • FIG. 16 illustrates one alternative embodiment of a system 72 d having an alternative design of an inductive charging device 66 d and a hand-held power tool rechargeable battery 10 d. The design of hand-held power tool rechargeable battery 10 d corresponds to that of the first exemplary embodiment. Inductive charging device 66 d includes an inductive charging unit 88 d, which has a design that is essentially similar to the first exemplary embodiment, and additionally includes a frame 92 d which includes form-fit elements 70 d of inductive charging device 66 a for fastening hand-held power tool rechargeable battery 10 d during a charging phase. Frame 92 d includes a support 104 d, formed by surfaces of frame components, above which two side brackets 96 d, 98 d, and a retaining bracket 100 d extending transversely thereto on one side, rise (FIGS. 17 a, 17 b). Retaining bracket 100 d extends from side bracket 96 d to side bracket 98 d. Inductive charging unit 88 d is placed on support 104 d, and is then situated within frame 92 d. A side of frame 92 d which is designed as an insertion opening 102 d and which is provided for inserting hand-held power tool rechargeable batteries 10 d into form-fit elements 70 d and onto support surface 90 d is situated opposite from retaining bracket 100 d (FIG. 16). Form-fit elements 70 d are provided for engaging from above around coil receiving area 44 d of a rechargeable battery housing 18 d of hand-held power tool rechargeable battery 10 d, which protrudes with respect to a rechargeable battery cell receiving area 46 d, during the charging phase, so that hand-held power tool rechargeable battery 10 d is secured in position on support surface 90 d. Hand-held power tool rechargeable battery 10 d and inductive charging unit 88 d of inductive charging device 66 d include a pair, made up of a positioning recess and a positioning projection, having different basic shapes, and which are not illustrated in FIG. 16 for reasons of perspective. Frame 92 d is made of a plastic, and is made up of two partial shells which are fixedly connected to one another by screws. In principle, it is also conceivable for frame 92 d to be designed as a single solid component.

Claims (18)

1.-17. (canceled)
18. A hand-held power tool rechargeable battery, comprising:
at least one first rechargeable battery cell; and
at least one inductive charging unit that includes at least one inductive charging coil for charging the at least one first rechargeable battery cell, wherein the at least one first rechargeable battery cell has a main direction of extension that is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
19. The hand-held power tool rechargeable battery as recited in claim 18, further comprising:
at least one additional rechargeable battery cell having a main direction of extension that is oriented at least essentially in parallel to the coil plane of the inductive charging unit.
20. The hand-held power tool rechargeable battery as recited in claim 19, wherein the at least one additional rechargeable battery cell is situated between the at least one first rechargeable battery cell and the inductive charging coil.
21. The hand-held power tool rechargeable battery as recited in claim 19, wherein a diameter of the inductive charging coil is greater than a main length of extension of the at least one additional rechargeable battery cell.
22. The hand-held power tool rechargeable battery as recited in claim 18, further comprising:
a rechargeable battery housing having a coil receiving area for accommodating the inductive charging coil, the inductive charging coil at least partially forming a form-fit element.
23. The hand-held power tool rechargeable battery as recited in claim 18, wherein the inductive charging unit includes a coil core unit having a plate area that at least partially shields the at least one first rechargeable battery cell from the inductive charging coil.
24. The hand-held power tool rechargeable battery as recited in claim 23, wherein the plate area is at least essentially rectangular.
25. The hand-held power tool rechargeable battery as recited in claim 18, further comprising at least one heat distribution element for distributing waste heat.
26. The hand-held power tool rechargeable battery as recited in claim 18, wherein the inductive charging unit is a preassembled module.
27. A system, comprising:
a hand-held power tool; and
a hand-held power tool rechargeable battery that includes:
at least one first rechargeable battery cell, and
at least one inductive charging unit that includes at least one inductive charging coil for charging the at least one first rechargeable battery cell, wherein the at least one first rechargeable battery cell has a main direction of extension that is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
28. The system as recited in claim 27, wherein the hand-held power tool and the hand-held power tool rechargeable battery are separable from one another without a tool.
29. The system as recited in claim 28, wherein the at least one first rechargeable battery cell is at least essentially enclosed by a handle housing in an installed state of the hand-held power tool and of the hand-held power tool rechargeable battery.
30. The system as recited in claim 27, further comprising an installation direction for installing the hand-held power tool rechargeable battery on the hand-held power tool, and which extends at least essentially perpendicularly with respect to the coil plane of the inductive charging unit.
31. A system, comprising:
an inductive charging device; and
a hand-held power tool rechargeable battery that includes:
at least one first rechargeable battery cell, and
at least one inductive charging unit that includes at least one inductive charging coil for charging the at least one first rechargeable battery cell, wherein the at least one first rechargeable battery cell has a main direction of extension that is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
32. The system as recited in claim 31, wherein the inductive charging device includes form-fit elements for fastening the hand-held power tool rechargeable battery during a charging phase.
33. The system as recited in claim 31, wherein the inductive charging device and the hand-held power tool rechargeable battery include a positioning projection and a positioning recess having basic shapes which are different from one another.
34. An inductive charging unit of a hand-held power tool rechargeable battery that includes:
at least one first rechargeable battery cell, and
at least one inductive charging unit that includes at least one inductive charging coil for charging the at least one first rechargeable battery cell, wherein the at least one first rechargeable battery cell has a main direction of extension that is oriented at least essentially perpendicularly with respect to a coil plane of the inductive charging unit.
US14/653,990 2012-12-21 2013-12-18 Hand-held power tool rechargeable battery Abandoned US20150318733A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
DE102012112846 2012-12-21
DE102012112846.4 2012-12-21
DE102013201706.5 2013-02-01
DE102013201706 2013-02-01
DE102013226241.8 2013-12-17
DE102013226241.8A DE102013226241A1 (en) 2012-12-21 2013-12-17 Hand Tools Battery
PCT/EP2013/077132 WO2014096029A2 (en) 2012-12-21 2013-12-18 Rechargeable hand tool battery

Publications (1)

Publication Number Publication Date
US20150318733A1 true US20150318733A1 (en) 2015-11-05

Family

ID=50879015

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/653,711 Expired - Fee Related US10229784B2 (en) 2012-12-21 2013-12-18 Rechargeable hand tool battery
US14/653,990 Abandoned US20150318733A1 (en) 2012-12-21 2013-12-18 Hand-held power tool rechargeable battery
US14/654,169 Active 2034-04-15 US9721723B2 (en) 2012-12-21 2013-12-18 Hand-held power tool rechargeable battery having molded housing projection

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/653,711 Expired - Fee Related US10229784B2 (en) 2012-12-21 2013-12-18 Rechargeable hand tool battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/654,169 Active 2034-04-15 US9721723B2 (en) 2012-12-21 2013-12-18 Hand-held power tool rechargeable battery having molded housing projection

Country Status (7)

Country Link
US (3) US10229784B2 (en)
EP (3) EP2936519B1 (en)
JP (3) JP6109335B2 (en)
KR (2) KR102135018B1 (en)
CN (3) CN105122397B (en)
DE (3) DE102013226248A1 (en)
WO (3) WO2014096029A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160099606A1 (en) * 2014-10-03 2016-04-07 Robert Bosch Gmbh Inductive Charging Holster for Power Tool
US9866046B2 (en) 2011-12-30 2018-01-09 Makita Corporation Charger, battery pack charging system and cordless power tool system
US20180226820A1 (en) * 2002-11-22 2018-08-09 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10131043B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10229784B2 (en) 2012-12-21 2019-03-12 Robert Bosch Gmbh Rechargeable hand tool battery
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217272A1 (en) * 2013-12-17 2015-06-18 Robert Bosch Gmbh Induction charging device
CN107636932A (en) * 2014-09-12 2018-01-26 罗伯特·博世有限公司 For wireless charger or the interface and mounting structure of centre part
CN105529836B (en) * 2016-01-25 2017-12-05 北京航空航天大学 A kind of non-contact inductive electric supply installation for ultrasonic Milling Process
US10553843B2 (en) * 2016-03-28 2020-02-04 Transform Sr Brands Llc Portable power tool, battery pack, and cell configurations for same
CN106383318B (en) * 2016-08-25 2019-03-26 宁波良业电器有限公司 A kind of battery detection module of the battery block of electric hand tool
JP6910840B2 (en) * 2017-04-24 2021-07-28 株式会社マキタ Electric tool
EP3804078A4 (en) 2018-05-30 2022-02-23 Milwaukee Electric Tool Corporation Fast-charging battery pack
WO2020026095A1 (en) * 2018-07-31 2020-02-06 3M Innovative Properties Company Handheld device with a battery and a battery chassis
DE102018130559A1 (en) * 2018-11-30 2020-06-04 GMC-I Messtechnik GmbH Measuring device for measuring electrical quantities
AU2019400237A1 (en) * 2018-12-20 2021-07-15 Globe (jiangsu) Co., Ltd. Electric energy storage device and electric tool system
USD931802S1 (en) * 2019-10-09 2021-09-28 Würth International Ag Battery
DE102020207273A1 (en) 2020-06-10 2021-12-16 Robert Bosch Gesellschaft mit beschränkter Haftung System with a handheld power tool and a first and second battery pack, as well as a handheld power tool with a battery pack
EP4289562A1 (en) * 2022-06-07 2023-12-13 Hilti Aktiengesellschaft Machine tool with parallel output and motor axes
WO2023193013A1 (en) * 2022-03-31 2023-10-05 Milwaukee Electric Tool Corporation Battery pack

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253585B2 (en) * 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
US20090121677A1 (en) * 2006-03-24 2009-05-14 Tetsuo Inoue Power receiving device, and electronic apparatus and non-contact charging system using the same
US7589500B2 (en) * 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) * 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
US20130088191A1 (en) * 2011-10-05 2013-04-11 Research In Motion Limited System and method for wirelessly charging a rechargeable battery
US8765280B2 (en) * 2007-04-23 2014-07-01 Hitachi Koki Co., Ltd. Battery pack and battery-driven power tool using the same
US8889279B2 (en) * 2011-12-02 2014-11-18 Samsung Sdi Co., Ltd. Battery pack
US9216505B2 (en) * 2009-09-17 2015-12-22 Robert Bosch Gmbh Hand tool module
US9281695B2 (en) * 2007-06-20 2016-03-08 Black & Decker Inc. Battery pack chargers and charging method

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675108A (en) * 1971-10-12 1972-07-04 Thomas H Nicholl Induction charging device
JPH0646531A (en) * 1992-07-23 1994-02-18 Mitsubishi Electric Home Appliance Co Ltd Charger
JP3306676B2 (en) * 1993-04-21 2002-07-24 九州日立マクセル株式会社 Small electrical equipment
JPH07320964A (en) * 1994-05-23 1995-12-08 Izumi Prod Co Electromagnetic induction charger
JP2000069685A (en) * 1998-08-26 2000-03-03 Matsushita Electric Works Ltd Noncontact charger, and noncntact charging type electrically driven tooth brush
US9425638B2 (en) * 1999-11-01 2016-08-23 Anthony Sabo Alignment independent and self-aligning inductive power transfer system
JP3764332B2 (en) * 2000-10-26 2006-04-05 松下電器産業株式会社 Battery pack
JP2005073350A (en) * 2003-08-22 2005-03-17 Matsushita Electric Works Ltd Power tool
US7160132B2 (en) * 2004-03-31 2007-01-09 Black & Decker Inc. Battery pack—cordless power device interface system
JP2006218228A (en) * 2005-02-14 2006-08-24 Olympus Corp Battery unit, battery device having the same, medical instrument and endoscope
JP2007294274A (en) * 2006-04-26 2007-11-08 Matsushita Electric Ind Co Ltd Secondary battery package body
WO2008035248A2 (en) * 2006-09-18 2008-03-27 Philips Intellectual Property & Standards Gmbh An apparatus, a system and a method for enabling electromagnetic energy transfer
JP5370709B2 (en) * 2007-10-29 2013-12-18 日立工機株式会社 Battery pack and electric tool equipped with the same
JP2008270007A (en) * 2007-04-23 2008-11-06 Hitachi Koki Co Ltd Battery pack and electric tool using this
JP2008294385A (en) * 2007-04-24 2008-12-04 Panasonic Electric Works Co Ltd Contactless power transmitting device, and manufacturing method of its coil block for electric power receiving
JP5118394B2 (en) * 2007-06-20 2013-01-16 パナソニック株式会社 Non-contact power transmission equipment
JP4605192B2 (en) * 2007-07-20 2011-01-05 セイコーエプソン株式会社 Coil unit and electronic equipment
JP2010041906A (en) * 2008-07-10 2010-02-18 Nec Tokin Corp Contactless power transmission apparatus, soft magnetic sheet, and module using the same
EP2161811A1 (en) * 2008-09-05 2010-03-10 Koninklijke Philips Electronics N.V. Inductive charger and charging method
CN101771283B (en) * 2008-12-29 2012-10-10 鸿富锦精密工业(深圳)有限公司 Charging system
JP2010206871A (en) * 2009-02-27 2010-09-16 Panasonic Electric Works Co Ltd Device to be charged in non-contact manner, non-contact charging system using the same, and electric apparatus
CN101841173B (en) * 2009-03-19 2013-04-24 鸿富锦精密工业(深圳)有限公司 Charging system
JP5569717B2 (en) * 2009-07-31 2014-08-13 日立工機株式会社 Battery pack, charging system for charging the battery pack, and electric tool provided with the battery pack
DE102010002702A1 (en) * 2010-03-09 2011-09-15 Robert Bosch Gmbh Electrical appliance, in particular electric hand tool
KR101232788B1 (en) * 2010-07-19 2013-02-13 주식회사 엘지화학 Apparatus for wireless charging battery with package chip and system thereof
JP5663353B2 (en) * 2010-10-27 2015-02-04 株式会社マキタ Electric tool system
JP5593200B2 (en) 2010-10-27 2014-09-17 株式会社マキタ Electric tool system
DE102012206728A1 (en) * 2012-04-24 2013-10-24 Robert Bosch Gmbh Akkuinduktivladevorrichtung
JP5973229B2 (en) * 2012-05-18 2016-08-23 日立マクセル株式会社 Battery unit
DE102013226248A1 (en) 2012-12-21 2014-06-26 Robert Bosch Gmbh Hand Tools Battery
DE102013226231A1 (en) 2012-12-21 2014-06-26 Robert Bosch Gmbh Induction charger
DE102013226228A1 (en) 2012-12-21 2014-06-26 Robert Bosch Gmbh Induktivladespulenvorrichtung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7253585B2 (en) * 2002-11-22 2007-08-07 Milwaukee Electric Tool Corporation Battery pack
US7589500B2 (en) * 2002-11-22 2009-09-15 Milwaukee Electric Tool Corporation Method and system for battery protection
US7714538B2 (en) * 2002-11-22 2010-05-11 Milwaukee Electric Tool Corporation Battery pack
US20090121677A1 (en) * 2006-03-24 2009-05-14 Tetsuo Inoue Power receiving device, and electronic apparatus and non-contact charging system using the same
US8765280B2 (en) * 2007-04-23 2014-07-01 Hitachi Koki Co., Ltd. Battery pack and battery-driven power tool using the same
US9281695B2 (en) * 2007-06-20 2016-03-08 Black & Decker Inc. Battery pack chargers and charging method
US9216505B2 (en) * 2009-09-17 2015-12-22 Robert Bosch Gmbh Hand tool module
US20130088191A1 (en) * 2011-10-05 2013-04-11 Research In Motion Limited System and method for wirelessly charging a rechargeable battery
US8889279B2 (en) * 2011-12-02 2014-11-18 Samsung Sdi Co., Ltd. Battery pack

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10566810B2 (en) 2002-11-22 2020-02-18 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US20180226820A1 (en) * 2002-11-22 2018-08-09 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US11837694B2 (en) 2002-11-22 2023-12-05 Milwaukee Electric Tool Corporation Lithium-based battery pack
US11682910B2 (en) 2002-11-22 2023-06-20 Milwaukee Electric Tool Corporation Method of operating a lithium-based battery pack for a hand held power tool
US10218194B2 (en) * 2002-11-22 2019-02-26 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10998586B2 (en) 2002-11-22 2021-05-04 Milwaukee Electric Tool Corporation Lithium-based battery pack including a balancing circuit
US10886762B2 (en) 2002-11-22 2021-01-05 Milwaukee Electric Tool Corporation Lithium-based battery pack for a hand held power tool
US10431857B2 (en) 2002-11-22 2019-10-01 Milwaukee Electric Tool Corporation Lithium-based battery pack
US9866046B2 (en) 2011-12-30 2018-01-09 Makita Corporation Charger, battery pack charging system and cordless power tool system
US10229784B2 (en) 2012-12-21 2019-03-12 Robert Bosch Gmbh Rechargeable hand tool battery
US10131042B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10569398B2 (en) 2013-10-21 2020-02-25 Milwaukee Electric Tool Corporation Adaptor for power tool devices
US10967489B2 (en) 2013-10-21 2021-04-06 Milwaukee Electric Tool Corporation Power tool communication system
US10213908B2 (en) 2013-10-21 2019-02-26 Milwaukee Electric Tool Corporation Adapter for power tool devices
US11541521B2 (en) 2013-10-21 2023-01-03 Milwaukee Electric Tool Corporation Power tool communication system
US11738426B2 (en) 2013-10-21 2023-08-29 Milwaukee Electric Tool Corporation Power tool communication system
US10131043B2 (en) 2013-10-21 2018-11-20 Milwaukee Electric Tool Corporation Adapter for power tool devices
US10381856B2 (en) * 2014-10-03 2019-08-13 Robert Bosch Tool Corporation Inductive charging holster for power tool
US20160099606A1 (en) * 2014-10-03 2016-04-07 Robert Bosch Gmbh Inductive Charging Holster for Power Tool

Also Published As

Publication number Publication date
EP2936519A2 (en) 2015-10-28
JP6381698B2 (en) 2018-08-29
CN105122397A (en) 2015-12-02
CN105074849B (en) 2018-05-04
EP2936518A2 (en) 2015-10-28
EP2936518B1 (en) 2017-02-22
CN105074849A (en) 2015-11-18
WO2014096031A3 (en) 2014-08-14
DE102013226247A1 (en) 2014-06-26
KR102135018B1 (en) 2020-07-20
US20150318734A1 (en) 2015-11-05
EP2936520B1 (en) 2017-07-12
DE102013226248A1 (en) 2014-06-26
WO2014096034A3 (en) 2014-08-14
JP6088661B2 (en) 2017-03-01
JP2016507860A (en) 2016-03-10
JP2017112831A (en) 2017-06-22
CN105009238A (en) 2015-10-28
US10229784B2 (en) 2019-03-12
WO2014096029A2 (en) 2014-06-26
US20150333559A1 (en) 2015-11-19
KR20150097543A (en) 2015-08-26
WO2014096031A2 (en) 2014-06-26
JP6109335B2 (en) 2017-04-05
WO2014096034A2 (en) 2014-06-26
JP2016509460A (en) 2016-03-24
WO2014096029A3 (en) 2014-08-14
KR20150097545A (en) 2015-08-26
EP2936520A2 (en) 2015-10-28
EP2936519B1 (en) 2018-02-21
CN105122397B (en) 2017-10-24
US9721723B2 (en) 2017-08-01
DE102013226241A1 (en) 2014-06-26
CN105009238B (en) 2019-02-19

Similar Documents

Publication Publication Date Title
US20150318733A1 (en) Hand-held power tool rechargeable battery
JP6072295B2 (en) Secondary battery for handheld tools
US10312707B2 (en) Hand tool case holding device
US7633263B2 (en) Battery charger
CN107408649B (en) Battery pack for a hand-held power tool and method for producing a battery pack for a hand-held power tool
CN107431158B (en) Battery pack for a hand-held power tool and corresponding hand-held power tool
JP7004673B2 (en) Portable device docking station charging mechanism
US7843165B2 (en) Charging apparatus
WO2020022273A1 (en) Battery unit
CN217607501U (en) Charger adapted to charge either of first battery pack and second battery pack, and kit
US20180102666A1 (en) Battery inductive charging device
EP1780866A2 (en) Charger system for cordless power devices
JPH1116606A (en) Packaged battery
WO2006012701A1 (en) Rechargeable flashlight
US10270288B2 (en) Hand tool case holding device
KR101529220B1 (en) Battery pack and wireless charging system including the same
US20150022146A1 (en) System composed of a hand tool case and a hand tool battery
AU2020102987A4 (en) Battery charger for multiple battery packs
JP2010187444A (en) Charging apparatus and non-contact charging system
KR101229909B1 (en) Apparatus for wireless charging battery with PCB-integrated type and system thereof
US20200389052A1 (en) Battery device
EP1975501B1 (en) Portable emergency lighting lamp with improved functionality

Legal Events

Date Code Title Description
AS Assignment

Owner name: ROBERT BOSCH GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STOCK, FRIEDERIKE;LOHR, GUENTHER;KRUPEZEVIC, DRAGAN;AND OTHERS;SIGNING DATES FROM 20150630 TO 20150727;REEL/FRAME:036676/0313

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCV Information on status: appeal procedure

Free format text: NOTICE OF APPEAL FILED

STCV Information on status: appeal procedure

Free format text: APPEAL BRIEF (OR SUPPLEMENTAL BRIEF) ENTERED AND FORWARDED TO EXAMINER

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION