US20150323223A1 - Heat exchanging device and water heater using the same - Google Patents

Heat exchanging device and water heater using the same Download PDF

Info

Publication number
US20150323223A1
US20150323223A1 US14/457,684 US201414457684A US2015323223A1 US 20150323223 A1 US20150323223 A1 US 20150323223A1 US 201414457684 A US201414457684 A US 201414457684A US 2015323223 A1 US2015323223 A1 US 2015323223A1
Authority
US
United States
Prior art keywords
pipe
contact surface
fluid
exchanging device
heat exchanging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/457,684
Inventor
Sheng-Lian Lin
Yu-Ying Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to LIN, Sheng-lian reassignment LIN, Sheng-lian ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LIN, Sheng-lian, LIN, YU-YING
Publication of US20150323223A1 publication Critical patent/US20150323223A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0016Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being bent

Definitions

  • the present invention relates to a heat exchanging device, and more particularly to a heat exchanging device configured to perform a heat exchange between two kinds of fluid.
  • the present invention further relates to a water heater which uses the aforementioned heat exchanging device.
  • Heat pump water heater is for heating cold water into hot water by sequentially using heat medium (i.e., refrigerant) to collect heat in air, using a heat pump (i.e., compressor) to pressurize and store the heat medium collected with heat, and then performing a heat exchange between the heat medium and the cold water.
  • heat medium i.e., refrigerant
  • a heat pump i.e., compressor
  • the energy conversion efficiency can reach to 300% or even above.
  • the heat pump water heater can have higher heating efficiency by using limited electricity power.
  • the heat pump water heater is regarded as one of the most environmentally friendly and most power saving equipments capable of resulting significant economic benefits as well as generating much less pollution.
  • FIG. 1 is a perspective schematic view of a conventional heat pump water heater.
  • the conventional heat pump water heater includes a compressor 1 , a heat exchanger 2 , an expansion valve 3 and an evaporator 4 .
  • the conventional heat pump water heater of FIG. 1 is a perspective schematic view of a conventional heat pump water heater.
  • the conventional heat pump water heater includes a compressor 1 , a heat exchanger 2 , an expansion valve 3 and an evaporator 4 .
  • the compressor 1 pressurizes the refrigerant into high-temperature-and-high-pressure gaseous refrigerant; then, the compressor 1 supplies the high-temperature-and-high-pressure gaseous refrigerant into the heat exchanger 2 as a heat medium; then, the high-temperature-and-high-pressure gaseous refrigerant releases heat by exchanging heat thereof with the cold water thereby heating the cold water and condensing the high-temperature-and-high-pressure gaseous refrigerant; then, the expansion valve 3 converts the condensed refrigerant into the gas-liquid mixture refrigerant by using the pressure difference between the high and low pressures; then, the refrigerant absorbs the external heat through the evaporator 4 and the compressor 1 pressurizes the refrigerant into the high temperature-and-high-pressure gaseous refrigerant again.
  • the flowing water can be heated in the heat exchanger 2 by repeating the aforementioned heat exchange process
  • the heat exchange process of a conventional heat pump water heater can be summarized to: the high-temperature-and-high-pressure gaseous refrigerant is condensed in the heat exchanger, and then condensed refrigerant is pressurized into the high temperature-and-high-pressure gaseous refrigerant for the next-time heat exchange.
  • the refrigerant's heat energy includes latent heat and sensible heat, and conventionally the latent heat and the sensible heat stored in the refrigerant cannot be completely absorbed by the cold water in the heat exchange once the cold water and the refrigerant reach to the same temperature.
  • the cold water can rapidly absorb heat from the refrigerant and has a rapidly-increasing temperature. Once the water and the refrigerant reach to the same temperature (for example, 55° C.), the refrigerant no longer releases heat and the water cannot be heated anymore.
  • the cold water does not absorb the all heat stored in the refrigerant; specifically, the cold water does not absorb the latent heat part stored in the refrigerant. That is because the refrigerant has not reached to the temperature capable of releasing the latent heat (the heat energy released during gas is being converted into liquid) when the refrigerant and the cold water reach to the same temperature. As a result, the temperature of the heated water is limited and cannot be further increased. Currently, the temperature of the heated water flowing out from the conventional heat pump water heater is about 55° C., which is an serious issue to be overcome.
  • One aspect of the present invention is to provide a heat exchanging device having improved heat exchanger efficiency.
  • Another aspect of the present invention is to provide a water heater having improved heat exchanger efficiency.
  • the present invention provides a heat exchanging device configured to perform a heat exchange between a first fluid and a second fluid.
  • the heat exchanging device includes a first pipe and a second pipe.
  • the first pipe includes a first inlet and a first outlet thereby allowing the first fluid to flow in and out the first pipe through the first inlet and the first outlet, respectively.
  • the second pipe includes a second inlet and a second outlet thereby allowing the second fluid to flow in and out the second pipe through the second inlet and the second outlet, respectively.
  • the first pipe and the second pipe are contacted with each other by being disposed in a juxtaposition manner; and a flowing direction of the first fluid in the first pipe is opposite to a flowing direction of the second fluid in the second pipe.
  • both of the first and second pipes are oval-shaped pipes
  • the first pipe has a first contact surface
  • the second pipe has a second contact surface
  • the first contact surface and the second contact surface are contacted with each other in an extending direction of a short axis of each oval-shaped pipe.
  • both of the first and second pipes are polygon-shaped pipes
  • the first pipe has a first contact surface
  • the second pipe has a second contact surface
  • the first contact surface and the second contact surface are contacted with each other.
  • the first pipe has a first contact surface
  • the second pipe has a second contact surface
  • the first contact surface and the second contact surface are contacted with each other
  • the first contact surface has at least a recess
  • the second contact surface has at least a protrusion
  • the recess and the protrusion are contacted with each other.
  • the first pipe has a first contact surface
  • the second pipe has a second contact surface
  • the first contact surface and the second contact surface are contacted with each other
  • the first contact surface has at least a protrusion
  • the second contact surface has at least a recess
  • the recess and the protrusion are contacted with each other.
  • both of the first and second pipes have winding-and-bending structures.
  • the aforementioned heat exchanging device further includes an insulating layer configured to wrap the first and second pipes.
  • the aforementioned heat exchanging device further includes a container and an insulating layer.
  • the first and second pipes are disposed in the container.
  • the insulating layer is disposed in the container and configured to wrap the first and second pipes.
  • the present invention further provides a water heater, which includes the heat exchanging device in any one of the aforementioned embodiment and a heating unit.
  • the heating unit is connected between the first outlet and the first inlet of the first pipe of the heat exchanging device.
  • the water heater further includes a receptacle configured to receive the second fluid flowing out from the second outlet of the second pipe.
  • the heat exchanging device and the water heater of the present invention have improved heat exchanger efficiency.
  • FIG. 1 is a perspective schematic view of a conventional heat pump water heater
  • FIG. 2 is a perspective schematic view of a heat exchanging device according to a first embodiment of the present invention
  • FIG. 3 is a cross-sectional view of a portion of the heat exchanging device of FIG. 2 ;
  • FIG. 4 is a perspective schematic view of a heat exchanging device according to a second embodiment of the present invention.
  • FIG. 5 is a cross-sectional view of a portion of a heat exchanging device according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a portion of a heat exchanging device according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a portion of a heat exchanging device according to a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a portion of a heat exchanging device according to a sixth embodiment of the present invention.
  • FIG. 9 is a perspective schematic view of a water heater using the heat exchanging device of FIG. 2 according to an embodiment of the present invention.
  • FIG. 2 is a perspective schematic view of a heat exchanging device according to a first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of a portion of the heat exchanging device of FIG. 2 .
  • the heat exchanging device 100 in the present embodiment is configured to perform a heat exchange between a first fluid F 1 and a second fluid F 2 .
  • the heat exchanging device 100 includes a first pipe 110 and a second pipe 120 .
  • the first pipe 110 has a first inlet 112 and a first outlet 114 , through which the first fluid F 1 can flow in and flow out from the first pipe 110 , respectively.
  • the second pipe 120 has a second inlet 122 and a second outlet 124 , through which the second fluid F 2 can flow in and flow out from the second pipe 120 , respectively.
  • the first pipe 110 and the second pipe 120 are contacted with each other by being disposed in a juxtaposition manner.
  • the flowing direction of the first fluid F 1 in the first pipe 110 is opposite to the flowing direction of the second fluid F 2 in the second pipe 120 .
  • the first inlet 112 is adjacent to the second outlet 124 and the first outlet 114 is adjacent to the second inlet 122 .
  • the first inlet 112 and the first outlet 114 herein are referred to as the two ends of the first pipe 110 ; and accordingly the two ends of the first pipe 110 are contacted with the second pipe 120 .
  • each of the first inlet 112 and the first outlet 114 can be further connected to another respective pipe (not shown), and the respective pipe(s) and the first pipe 110 may have one-piece structure.
  • the first inlet 112 can be connected to the supply resource of the first fluid F 1 through one respective pipe.
  • the second inlet 122 and the second outlet 124 herein are referred to as the two ends of the second pipe 120 ; and accordingly the two ends of the second pipe 120 are contacted with the first pipe 110 .
  • each of the second inlet 122 and the second outlet 124 can be further connected to another respective pipe (not shown), and the respective pipe(s) and the second pipe 120 may have one-piece structure.
  • the second inlet 122 can be connected to the supply resource of the second fluid F 2 through one respective pipe.
  • both of the first pipe 110 and the second pipe 120 may be cylinder-shaped pipes; however, the first pipe 110 and the second pipe 120 may have other shapes and the present invention is not limited thereto.
  • the materials of the first pipe 110 and the second pipe 120 may have high thermal conductivities, such as metal (e.g. copper), alloy or composite materials.
  • the process of heat exchange performed by the heat exchanging device 100 of the first embodiment in the present invention will be described as follow by exemplarily referring the first pipe 110 as a heat-source conduction pipe for supplying the heat medium (i.e., the first fluid F 1 ) and referring the second pipe 120 as a heating pipe for supplying cold water (i.e., the second fluid F 2 ).
  • the heat contained in the heat medium (the first fluid F 1 ) is transferred to the water (the second fluid F 2 ) sequentially through the first pipe 110 and the second pipe 120 .
  • the second pipe 120 may be divided into a pre-heating section 126 and a high-temperature section 128 between the second inlet 122 and the second outlet 124 according to the flowing direction of the second fluid F 2 .
  • the pre-heating section 126 is connected to the second inlet 122 and for absorbing the sensible heat contained in the heat medium (the first fluid F 1 ) flowing in the first pipe 110 .
  • the high-temperature section 128 is connected to the pre-heating section 126 and for absorbing the latent heat contained in the heat medium (the first fluid F 1 ) flowing in the first pipe 110 .
  • the first pipe 110 may be divided into a latent heat releasing section 116 and a sensible heat releasing section 118 between the first inlet 112 and the first outlet 114 according to the flowing direction of the first fluid F 1 .
  • the latent heat releasing section 116 is connected to the first inlet 112 and corresponding to the high-temperature section 128 of the second pipe 120 for releasing the latent heat contained in the heat medium (the first fluid F 1 ).
  • the sensible heat releasing section 118 is connected to the latent heat releasing section 116 and corresponding to the pre-heating section 126 of the second pipe 120 for releasing the sensible heat contained in the heat medium (the first fluid F 1 ).
  • the heat medium (the first fluid F 1 ) releases the latent heat thereof in the latent heat releasing section 116 of the first pipe 110 and then releases the sensible heat in the sensible heat releasing section 118 .
  • the water (the second fluid F 2 ) in the pre-heating section 126 of the second pipe 120 absorbs the sensible heat of the heat medium (the first fluid F 1 ) released in the sensible heat releasing section 118 and then the heated water flowing in the high temperature section 128 further absorbs the latent heat of the heat medium (the first fluid F 1 ) released in the latent heat releasing section 118 .
  • the water (the second fluid F 2 ) can absorb the heat from the heat medium (the first fluid F 1 ) more efficiently during the heat exchange.
  • the heat exchanging device 100 of the present embodiment has improved heat exchange efficiency, the water flowing out from the heat exchanging device 100 can be heated to a higher temperature, and accordingly more energy can be saved.
  • the first fluid F 1 is prevented from flowing into the second pipe 120 thereby polluting the second fluid F 2 even when the first pipe 110 is damaged and broken.
  • the second fluid F 2 is prevented from flowing into the first pipe 110 thereby polluting the first fluid F 1 .
  • the first pipe 110 and the second pipe 120 may have straight or winding-and-bending structures; however, the present invention is not limited thereto.
  • the winding-and-bending structure it is understood that more space can be saved under a same heat exchanging distance and the temperature of the water (the second fluid F 2 ) flowing closes to the second outlet 124 of the second pipe 120 (or, the first inlet 112 of the first pipe 110 ) is close to the initial temperature of the compressed heat medium (the first fluid F 1 ).
  • FIG. 4 is a perspective schematic view of a heat exchanging device according to a second embodiment of the present invention.
  • the heat exchanging device 100 a in the second embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that the heat exchanging device 100 a further includes a container 130 and an insulating layer 140 ; wherein the first pipe 110 and the second pipe 120 are disposed inside of the container 130 .
  • the insulating layer 140 is placed in the container 130 and for wrapping the first pipe 110 and the second pipe 120 .
  • the insulating layer 140 can be foam, foaming agent, air layer or vacuum layer and is filled in the container 130 .
  • FIG. 5 is a cross-sectional view of a portion of a heat exchanging device according to a third embodiment of the present invention.
  • the heat exchanging device 100 b in the present embodiment has a structure is similar to that of the heat exchanging device 100 in the first embodiment except that the first pipe 110 and the second pipe 120 are wrapped by an insulating layer 150 .
  • the insulating layer 150 can be foam or foaming agent.
  • FIG. 6 is a cross-sectional view of a portion of a heat exchanging device according to a fourth embodiment of the present invention.
  • the heat exchanging device 100 c in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that both of the first pipe 110 c and the second pipe 120 c in the heat exchanging device 100 c are oval-shaped pipes.
  • the first pipe 110 c has a first contact surface 111
  • the second pipe 120 c has a second contact surface 121 which is contacted with the first contact surface 111 .
  • the first contact surface 111 and the second contact surface 121 are contacted with each other in an extending direction A of the short axis of each oval-shaped pipe.
  • the contact area between the first pipe 110 c and the second pipe 120 c is increased and consequentially the heat exchanging efficiency of the heat exchanging device 100 c is further improved.
  • FIG. 7 is a cross-sectional view of a portion of a heat exchanging device according to a fifth embodiment of the present invention.
  • the heat exchanging device 100 d in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that both of the first pipe 110 d and the second pipe 120 d in the heat exchanging device 100 d are polygon-shaped pipes, such as square-shaped pipes; however the present invention is not limited thereto.
  • the first pipe 110 d has a first contact surface 111
  • the second pipe 120 d has a second contact surface 121 which is contacted with the first contact surface 111 .
  • the contact area between the first pipe 110 d and the second pipe 120 d is increased and the consequentially the heat exchanging efficiency of the heat exchanging device 100 d is further improved.
  • FIG. 8 is a cross-sectional view of a portion of a heat exchanging device according to a sixth embodiment of the present invention.
  • the heat exchanging device 100 e in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that the first pipe 110 e in the heat exchanging device 100 c has a first contact surface 111 , the second pipe 120 e has a second contact surface 121 which is contacted with the first contact surface 111 , the first contact surface 111 has at least one protrusion 113 , and the second contact surface 121 has at least one recess 123 which is contacted with the respective protrusion 113 .
  • the flowing speeds of the first fluid F 1 and the second fluid F 2 can be slow down by the protrusion(s) 113 and the recess(es) 123 and the time for the heat exchange between the first fluid F 1 and the second fluid F 2 is increased.
  • the heat exchanging device 100 e in the present embodiment has improved heat exchanging efficiency.
  • the numbers and positions of the protrusion 113 and the recess 123 in the present invention are not limited.
  • at least one recess is formed on the first contact surface of the first pipe; at least one protrusion is formed on the second contact surface of the second pipe; and the recess is contacted with the respective protrusion.
  • FIG. 9 is a perspective schematic view of a water heater using the heat exchanging device of FIG. 2 according to an embodiment of the present invention.
  • the water heater 200 in the present embodiment includes the aforementioned heat exchanging device 100 and a heating unit 210 .
  • the heating unit 210 is connected between the first outlet 114 and the first inlet 112 of the heat exchanging device 100 .
  • the heating unit 210 includes an expansion valve 212 , an evaporator 214 and a compressor 216 , which are sequentially arranged from the first outlet 114 to the first inlet 112 .
  • the first outlet 114 , the expansion valve 212 , the evaporator 214 , the compressor 216 and the first inlet 112 sequentially communicate with one another via a pipe 218 .
  • the heat medium (the first fluid F 1 ) is allowed to constantly circulate in the first pipe 210 thereby having the heat exchange with the water (the second fluid F 2 ).
  • the water heater 200 of this embodiment has improved heat exchange efficiency.
  • the temperature of the water flowing out from the second outlet 124 of the second pipe 120 can reach to about 70-100° C.
  • the water heater 200 can be applied to a so-called “tankless water heater” by directly mixing the hot water therein with cold water.
  • the water heater 200 can be applied to a so-called “storage water heater” by being equipped with a storage unit 220 , which is for receiving and storing the hot water (the second fluid F 2 ) flowing out from the second outlet 124 .
  • the storage unit 220 may include a receptacle 222 for receiving the second fluid F 2 flowing out from the second outlet 124 .
  • the storage unit 220 may further include a pipe 224 , which is connected to the second outlet 124 and provided for directing the second fluid F 2 into the receptacle 222 .
  • the second fluid F 2 is prevented from flowing into the heating unit 210 through the first pipe 110 even when the second pipe 120 is damaged and broken; and consequentially the heating unit 210 is prevented from being damaged by the leaking second fluid F 2 .
  • the heat exchanging device 100 in the water heater 200 as shown in FIG. 9 is for exemplary purpose only and can be replaced by any other heat exchanging device disclosed above.
  • the second fluid can absorb the sensible heat of the first fluid in the pre-heating section, and then the heated second fluid can further absorb the latent heat of the first fluid in the high temperature section. Therefore, the temperature of the second fluid flowing out from the second outlet can be effectively increased higher than 55° C., which is the limit of the temperature of the water flowing out from a conventional water heater; and consequentially the objects of raising up the temperature of the water flowing out from the water heater of the present invention and more power saving are achieved. Moreover, because the first and second pipes are contacted with each other by being disposed in a juxtaposition manner, the fluid flowing in one pipe is prevented from being polluted by the fluid flowing in the other pipe even when any one of the pipes is damaged and broken.

Abstract

A heat exchanging device, for performing a heat exchange between a first fluid and a second fluid is provided, includes a first pipe and a second pipe. The first pipe includes a first inlet and a first outlet thereby allowing the first fluid to flow in and out the first pipe through the first inlet and the first outlet, respectively. The second pipe includes a second inlet and a second outlet thereby allowing the second fluid to flow in and out the second pipe through the second inlet and the second outlet, respectively. The first pipe and the second pipe are contacted with each other by being disposed in a juxtaposition manner; and a flowing direction of the first fluid in the first pipe is opposite to a flowing direction of the second fluid in the second pipe. A water heater using the heat exchanging device is also provided.

Description

    FIELD OF THE INVENTION
  • The present invention relates to a heat exchanging device, and more particularly to a heat exchanging device configured to perform a heat exchange between two kinds of fluid. The present invention further relates to a water heater which uses the aforementioned heat exchanging device.
  • BACKGROUND OF THE INVENTION
  • Heat pump water heater is for heating cold water into hot water by sequentially using heat medium (i.e., refrigerant) to collect heat in air, using a heat pump (i.e., compressor) to pressurize and store the heat medium collected with heat, and then performing a heat exchange between the heat medium and the cold water. Because the heat exchange process in the heat pump water heater is realized by using the refrigerant as the medium for the energy conversion, in theory the energy conversion efficiency can reach to 300% or even above. Thus, compared with the heat exchanges, those use electricity or fire power for the energy conversion, having energy conversion efficiencies lower than 100%, the heat pump water heater can have higher heating efficiency by using limited electricity power. Consequentially, the heat pump water heater is regarded as one of the most environmentally friendly and most power saving equipments capable of resulting significant economic benefits as well as generating much less pollution.
  • FIG. 1 is a perspective schematic view of a conventional heat pump water heater. As shown, the conventional heat pump water heater includes a compressor 1, a heat exchanger 2, an expansion valve 3 and an evaporator 4. Basically, the conventional heat pump water heater of FIG. 1 has a heat exchange process as follow: firstly, the compressor 1 pressurizes the refrigerant into high-temperature-and-high-pressure gaseous refrigerant; then, the compressor 1 supplies the high-temperature-and-high-pressure gaseous refrigerant into the heat exchanger 2 as a heat medium; then, the high-temperature-and-high-pressure gaseous refrigerant releases heat by exchanging heat thereof with the cold water thereby heating the cold water and condensing the high-temperature-and-high-pressure gaseous refrigerant; then, the expansion valve 3 converts the condensed refrigerant into the gas-liquid mixture refrigerant by using the pressure difference between the high and low pressures; then, the refrigerant absorbs the external heat through the evaporator 4 and the compressor 1 pressurizes the refrigerant into the high temperature-and-high-pressure gaseous refrigerant again. Thus, the flowing water can be heated in the heat exchanger 2 by repeating the aforementioned heat exchange process.
  • According to the aforementioned description, it is understood that the heat exchange process of a conventional heat pump water heater can be summarized to: the high-temperature-and-high-pressure gaseous refrigerant is condensed in the heat exchanger, and then condensed refrigerant is pressurized into the high temperature-and-high-pressure gaseous refrigerant for the next-time heat exchange. However, it is understood that during the process for storing heat, the refrigerant's heat energy includes latent heat and sensible heat, and conventionally the latent heat and the sensible heat stored in the refrigerant cannot be completely absorbed by the cold water in the heat exchange once the cold water and the refrigerant reach to the same temperature.
  • For example, if the cold water is about 25° C. and the refrigerant is about 70-100° C. in an initial period of the heat exchange, the cold water can rapidly absorb heat from the refrigerant and has a rapidly-increasing temperature. Once the water and the refrigerant reach to the same temperature (for example, 55° C.), the refrigerant no longer releases heat and the water cannot be heated anymore.
  • In other words, in the conventional heat pump water heater, the cold water does not absorb the all heat stored in the refrigerant; specifically, the cold water does not absorb the latent heat part stored in the refrigerant. That is because the refrigerant has not reached to the temperature capable of releasing the latent heat (the heat energy released during gas is being converted into liquid) when the refrigerant and the cold water reach to the same temperature. As a result, the temperature of the heated water is limited and cannot be further increased. Currently, the temperature of the heated water flowing out from the conventional heat pump water heater is about 55° C., which is an serious issue to be overcome.
  • SUMMARY OF THE INVENTION
  • One aspect of the present invention is to provide a heat exchanging device having improved heat exchanger efficiency.
  • Another aspect of the present invention is to provide a water heater having improved heat exchanger efficiency.
  • The present invention provides a heat exchanging device configured to perform a heat exchange between a first fluid and a second fluid. The heat exchanging device includes a first pipe and a second pipe. The first pipe includes a first inlet and a first outlet thereby allowing the first fluid to flow in and out the first pipe through the first inlet and the first outlet, respectively. The second pipe includes a second inlet and a second outlet thereby allowing the second fluid to flow in and out the second pipe through the second inlet and the second outlet, respectively. The first pipe and the second pipe are contacted with each other by being disposed in a juxtaposition manner; and a flowing direction of the first fluid in the first pipe is opposite to a flowing direction of the second fluid in the second pipe.
  • In one embodiment, both of the first and second pipes are oval-shaped pipes, the first pipe has a first contact surface, the second pipe has a second contact surface, the first contact surface and the second contact surface are contacted with each other in an extending direction of a short axis of each oval-shaped pipe.
  • In one embodiment, both of the first and second pipes are polygon-shaped pipes, the first pipe has a first contact surface, the second pipe has a second contact surface, the first contact surface and the second contact surface are contacted with each other.
  • In one embodiment, the first pipe has a first contact surface, the second pipe has a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface has at least a recess, the second contact surface has at least a protrusion, the recess and the protrusion are contacted with each other.
  • In one embodiment, the first pipe has a first contact surface, the second pipe has a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface has at least a protrusion, the second contact surface has at least a recess, the recess and the protrusion are contacted with each other.
  • In one embodiment, both of the first and second pipes have winding-and-bending structures.
  • In one embodiment, the aforementioned heat exchanging device further includes an insulating layer configured to wrap the first and second pipes.
  • In one embodiment, the aforementioned heat exchanging device further includes a container and an insulating layer. The first and second pipes are disposed in the container. The insulating layer is disposed in the container and configured to wrap the first and second pipes.
  • The present invention further provides a water heater, which includes the heat exchanging device in any one of the aforementioned embodiment and a heating unit. The heating unit is connected between the first outlet and the first inlet of the first pipe of the heat exchanging device.
  • In one embodiment, the water heater further includes a receptacle configured to receive the second fluid flowing out from the second outlet of the second pipe.
  • In summary, through configuring the flowing direction of the first fluid in the first pipe opposite to the flowing direction of the second fluid in the second pipe, the heat exchanging device and the water heater of the present invention have improved heat exchanger efficiency.
  • For making the above and other purposes, features and benefits become more readily apparent to those ordinarily skilled in the art, the preferred embodiments and the detailed descriptions with accompanying drawings will be put forward in the following descriptions.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will become more readily apparent to those ordinarily skilled in the art after reviewing the following detailed description and accompanying drawings, in which:
  • FIG. 1 is a perspective schematic view of a conventional heat pump water heater;
  • FIG. 2 is a perspective schematic view of a heat exchanging device according to a first embodiment of the present invention;
  • FIG. 3 is a cross-sectional view of a portion of the heat exchanging device of FIG. 2;
  • FIG. 4 is a perspective schematic view of a heat exchanging device according to a second embodiment of the present invention;
  • FIG. 5 is a cross-sectional view of a portion of a heat exchanging device according to a third embodiment of the present invention;
  • FIG. 6 is a cross-sectional view of a portion of a heat exchanging device according to a fourth embodiment of the present invention;
  • FIG. 7 is a cross-sectional view of a portion of a heat exchanging device according to a fifth embodiment of the present invention;
  • FIG. 8 is a cross-sectional view of a portion of a heat exchanging device according to a sixth embodiment of the present invention; and
  • FIG. 9 is a perspective schematic view of a water heater using the heat exchanging device of FIG. 2 according to an embodiment of the present invention.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • The present invention will now be described more specifically with reference to the following embodiments. It is to be noted that the following descriptions of preferred embodiments of this invention are presented herein for purpose of illustration and description only. It is not intended to be exhaustive or to be limited to the precise form disclosed.
  • FIG. 2 is a perspective schematic view of a heat exchanging device according to a first embodiment of the present invention. FIG. 3 is a cross-sectional view of a portion of the heat exchanging device of FIG. 2. Please refer to FIGS. 2 and 3. The heat exchanging device 100 in the present embodiment is configured to perform a heat exchange between a first fluid F1 and a second fluid F2. The heat exchanging device 100 includes a first pipe 110 and a second pipe 120. The first pipe 110 has a first inlet 112 and a first outlet 114, through which the first fluid F1 can flow in and flow out from the first pipe 110, respectively. The second pipe 120 has a second inlet 122 and a second outlet 124, through which the second fluid F2 can flow in and flow out from the second pipe 120, respectively. The first pipe 110 and the second pipe 120 are contacted with each other by being disposed in a juxtaposition manner. The flowing direction of the first fluid F1 in the first pipe 110 is opposite to the flowing direction of the second fluid F2 in the second pipe 120.
  • In the first embodiment of the present invention, the first inlet 112 is adjacent to the second outlet 124 and the first outlet 114 is adjacent to the second inlet 122. It is to be noted that the first inlet 112 and the first outlet 114 herein are referred to as the two ends of the first pipe 110; and accordingly the two ends of the first pipe 110 are contacted with the second pipe 120. In one embodiment, each of the first inlet 112 and the first outlet 114 can be further connected to another respective pipe (not shown), and the respective pipe(s) and the first pipe 110 may have one-piece structure. For example, the first inlet 112 can be connected to the supply resource of the first fluid F1 through one respective pipe. Similarly, the second inlet 122 and the second outlet 124 herein are referred to as the two ends of the second pipe 120; and accordingly the two ends of the second pipe 120 are contacted with the first pipe 110. In one embodiment, each of the second inlet 122 and the second outlet 124 can be further connected to another respective pipe (not shown), and the respective pipe(s) and the second pipe 120 may have one-piece structure. For example, the second inlet 122 can be connected to the supply resource of the second fluid F2 through one respective pipe. In one embodiment, both of the first pipe 110 and the second pipe 120 may be cylinder-shaped pipes; however, the first pipe 110 and the second pipe 120 may have other shapes and the present invention is not limited thereto. The materials of the first pipe 110 and the second pipe 120 may have high thermal conductivities, such as metal (e.g. copper), alloy or composite materials.
  • The process of heat exchange performed by the heat exchanging device 100 of the first embodiment in the present invention will be described as follow by exemplarily referring the first pipe 110 as a heat-source conduction pipe for supplying the heat medium (i.e., the first fluid F1) and referring the second pipe 120 as a heating pipe for supplying cold water (i.e., the second fluid F2).
  • In this embodiment, the heat contained in the heat medium (the first fluid F1) is transferred to the water (the second fluid F2) sequentially through the first pipe 110 and the second pipe 120. Specifically, because the flowing direction of the first fluid F1 in the first pipe 110 is opposite to the flowing direction of the second fluid F2 in the second pipe 120, the second pipe 120 may be divided into a pre-heating section 126 and a high-temperature section 128 between the second inlet 122 and the second outlet 124 according to the flowing direction of the second fluid F2. Specifically, the pre-heating section 126 is connected to the second inlet 122 and for absorbing the sensible heat contained in the heat medium (the first fluid F1) flowing in the first pipe 110. The high-temperature section 128 is connected to the pre-heating section 126 and for absorbing the latent heat contained in the heat medium (the first fluid F1) flowing in the first pipe 110.
  • Furthermore, the first pipe 110 may be divided into a latent heat releasing section 116 and a sensible heat releasing section 118 between the first inlet 112 and the first outlet 114 according to the flowing direction of the first fluid F1. Specifically, the latent heat releasing section 116 is connected to the first inlet 112 and corresponding to the high-temperature section 128 of the second pipe 120 for releasing the latent heat contained in the heat medium (the first fluid F1). The sensible heat releasing section 118 is connected to the latent heat releasing section 116 and corresponding to the pre-heating section 126 of the second pipe 120 for releasing the sensible heat contained in the heat medium (the first fluid F1).
  • According to the flowing direction of the heat medium (the first fluid F1) in the first pipe 110, the heat medium (the first fluid F1) releases the latent heat thereof in the latent heat releasing section 116 of the first pipe 110 and then releases the sensible heat in the sensible heat releasing section 118. Relatively, because the flowing direction of the water (the second fluid F2) is opposite to the flowing direction of the heat medium (the first fluid F1) as described above, the water (the second fluid F2) in the pre-heating section 126 of the second pipe 120 absorbs the sensible heat of the heat medium (the first fluid F1) released in the sensible heat releasing section 118 and then the heated water flowing in the high temperature section 128 further absorbs the latent heat of the heat medium (the first fluid F1) released in the latent heat releasing section 118. Through this configuration, the water (the second fluid F2) can absorb the heat from the heat medium (the first fluid F1) more efficiently during the heat exchange. As a result, compared with the prior art, the heat exchanging device 100 of the present embodiment has improved heat exchange efficiency, the water flowing out from the heat exchanging device 100 can be heated to a higher temperature, and accordingly more energy can be saved.
  • Moreover, in this embodiment, because that the first pipe 110 and the second pipe 120 are contacted with each other by being disposed in a juxtaposition manner, the first fluid F1 is prevented from flowing into the second pipe 120 thereby polluting the second fluid F2 even when the first pipe 110 is damaged and broken. Similarly, even when the second pipe 120 is damaged and broken, the second fluid F2 is prevented from flowing into the first pipe 110 thereby polluting the first fluid F1.
  • The first pipe 110 and the second pipe 120 may have straight or winding-and-bending structures; however, the present invention is not limited thereto. In addition, through the winding-and-bending structure, it is understood that more space can be saved under a same heat exchanging distance and the temperature of the water (the second fluid F2) flowing closes to the second outlet 124 of the second pipe 120 (or, the first inlet 112 of the first pipe 110) is close to the initial temperature of the compressed heat medium (the first fluid F1).
  • FIG. 4 is a perspective schematic view of a heat exchanging device according to a second embodiment of the present invention. As shown, the heat exchanging device 100 a in the second embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that the heat exchanging device 100 a further includes a container 130 and an insulating layer 140; wherein the first pipe 110 and the second pipe 120 are disposed inside of the container 130. The insulating layer 140 is placed in the container 130 and for wrapping the first pipe 110 and the second pipe 120. Thus, the heat loss is prevented from occurring and consequentially the heat exchanging efficiency of the heat exchanging device 100 a is enhanced. In one embodiment, the insulating layer 140 can be foam, foaming agent, air layer or vacuum layer and is filled in the container 130.
  • FIG. 5 is a cross-sectional view of a portion of a heat exchanging device according to a third embodiment of the present invention. As shown, the heat exchanging device 100 b in the present embodiment has a structure is similar to that of the heat exchanging device 100 in the first embodiment except that the first pipe 110 and the second pipe 120 are wrapped by an insulating layer 150. Thus, the heat loss is prevented from occurring and consequentially the heat exchanging efficiency of the heat exchanging device 100 b is enhanced. In one embodiment, the insulating layer 150 can be foam or foaming agent.
  • FIG. 6 is a cross-sectional view of a portion of a heat exchanging device according to a fourth embodiment of the present invention. As shown, the heat exchanging device 100 c in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that both of the first pipe 110 c and the second pipe 120 c in the heat exchanging device 100 c are oval-shaped pipes. Specifically, the first pipe 110 c has a first contact surface 111, and the second pipe 120 c has a second contact surface 121 which is contacted with the first contact surface 111. In one embodiment, the first contact surface 111 and the second contact surface 121 are contacted with each other in an extending direction A of the short axis of each oval-shaped pipe. Compared with the heat exchanging device 100 in the first embodiment, the contact area between the first pipe 110 c and the second pipe 120 c is increased and consequentially the heat exchanging efficiency of the heat exchanging device 100 c is further improved.
  • FIG. 7 is a cross-sectional view of a portion of a heat exchanging device according to a fifth embodiment of the present invention. As shown, the heat exchanging device 100 d in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that both of the first pipe 110 d and the second pipe 120 d in the heat exchanging device 100 d are polygon-shaped pipes, such as square-shaped pipes; however the present invention is not limited thereto. Specifically, the first pipe 110 d has a first contact surface 111, and the second pipe 120 d has a second contact surface 121 which is contacted with the first contact surface 111. Compared with the heat exchanging device 100 in the first embodiment, the contact area between the first pipe 110 d and the second pipe 120 d is increased and the consequentially the heat exchanging efficiency of the heat exchanging device 100 d is further improved.
  • FIG. 8 is a cross-sectional view of a portion of a heat exchanging device according to a sixth embodiment of the present invention. As shown, the heat exchanging device 100 e in the present embodiment has a structure similar to that of the heat exchanging device 100 in the first embodiment except that the first pipe 110 e in the heat exchanging device 100 c has a first contact surface 111, the second pipe 120 e has a second contact surface 121 which is contacted with the first contact surface 111, the first contact surface 111 has at least one protrusion 113, and the second contact surface 121 has at least one recess 123 which is contacted with the respective protrusion 113. Through the aforementioned structure, the flowing speeds of the first fluid F1 and the second fluid F2 can be slow down by the protrusion(s) 113 and the recess(es) 123 and the time for the heat exchange between the first fluid F1 and the second fluid F2 is increased. As a result, the heat exchanging device 100 e in the present embodiment has improved heat exchanging efficiency.
  • It is to be noted that the numbers and positions of the protrusion 113 and the recess 123 in the present invention are not limited. In one embodiment, at least one recess is formed on the first contact surface of the first pipe; at least one protrusion is formed on the second contact surface of the second pipe; and the recess is contacted with the respective protrusion.
  • FIG. 9 is a perspective schematic view of a water heater using the heat exchanging device of FIG. 2 according to an embodiment of the present invention. As shown, the water heater 200 in the present embodiment includes the aforementioned heat exchanging device 100 and a heating unit 210. The heating unit 210 is connected between the first outlet 114 and the first inlet 112 of the heat exchanging device 100.
  • The heating unit 210 includes an expansion valve 212, an evaporator 214 and a compressor 216, which are sequentially arranged from the first outlet 114 to the first inlet 112. The first outlet 114, the expansion valve 212, the evaporator 214, the compressor 216 and the first inlet 112 sequentially communicate with one another via a pipe 218. Through the corporate operation of the expansion valve 212, the evaporator 214 and the compressor 216, the heat medium (the first fluid F1) is allowed to constantly circulate in the first pipe 210 thereby having the heat exchange with the water (the second fluid F2).
  • By employing the heat exchanging device 100, accordingly the water heater 200 of this embodiment has improved heat exchange efficiency. According to an experiment, the temperature of the water flowing out from the second outlet 124 of the second pipe 120 can reach to about 70-100° C. For a household use, it is understood that the water heater 200 can be applied to a so-called “tankless water heater” by directly mixing the hot water therein with cold water. For hotels, institutes or dormitories having a higher water quantity demand, it is understood that the water heater 200 can be applied to a so-called “storage water heater” by being equipped with a storage unit 220, which is for receiving and storing the hot water (the second fluid F2) flowing out from the second outlet 124. In one embodiment, the storage unit 220 may include a receptacle 222 for receiving the second fluid F2 flowing out from the second outlet 124. In another embodiment, the storage unit 220 may further include a pipe 224, which is connected to the second outlet 124 and provided for directing the second fluid F2 into the receptacle 222.
  • Furthermore, because that the first pipe 110 and the second pipe 120 are contacted with each other by being disposed in a juxtaposition manner, the second fluid F2 is prevented from flowing into the heating unit 210 through the first pipe 110 even when the second pipe 120 is damaged and broken; and consequentially the heating unit 210 is prevented from being damaged by the leaking second fluid F2. It is understood that the heat exchanging device 100 in the water heater 200 as shown in FIG. 9 is for exemplary purpose only and can be replaced by any other heat exchanging device disclosed above.
  • In summary, in the heat exchanging device and the water heater of the present invention, because the flowing direction of the first fluid in the first pipe is opposite to the flowing direction of the second fluid in the second pipe, the second fluid can absorb the sensible heat of the first fluid in the pre-heating section, and then the heated second fluid can further absorb the latent heat of the first fluid in the high temperature section. Therefore, the temperature of the second fluid flowing out from the second outlet can be effectively increased higher than 55° C., which is the limit of the temperature of the water flowing out from a conventional water heater; and consequentially the objects of raising up the temperature of the water flowing out from the water heater of the present invention and more power saving are achieved. Moreover, because the first and second pipes are contacted with each other by being disposed in a juxtaposition manner, the fluid flowing in one pipe is prevented from being polluted by the fluid flowing in the other pipe even when any one of the pipes is damaged and broken.
  • While the invention has been described in terms of what is presently considered to be the most practical and preferred embodiments, it is to be understood that the invention needs not be limited to the disclosed embodiments. On the contrary, it is intended to cover various modifications and similar arrangements included within the spirit and scope of the appended claims which are to be accorded with the broadest interpretation so as to encompass all such modifications and similar structures.

Claims (17)

What is claimed is:
1. A heat exchanging device configured to perform a heat exchange between a first fluid and a second fluid, the heat exchanging device comprising:
a first pipe, comprising a first inlet and a first outlet thereby allowing the first fluid to flow in and out the first pipe through the first inlet and the first outlet, respectively; and
a second pipe, comprising a second inlet and a second outlet thereby allowing the second fluid to flow in and out the second pipe through the second inlet and the second outlet, respectively,
wherein the first pipe and the second pipe are contacted with each other by being disposed in a juxtaposition manner, a flowing direction of the first fluid in the first pipe is opposite to a flowing direction of the second fluid in the second pipe.
2. The heat exchanging device according to claim 1, wherein both of the first and second pipes are oval-shaped pipes, the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other in an extending direction of a short axis of each oval-shaped pipe.
3. The heat exchanging device according to claim 1, wherein both of the first and second pipes are polygon-shaped pipes, the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other.
4. The heat exchanging device according to claim 1, wherein the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface comprises at least a recess, the second contact surface comprises at least a protrusion, the recess and the protrusion are contacted with each other.
5. The heat exchanging device according to claim 1, wherein the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface comprises at least a protrusion, the second contact surface comprises at least a recess, the recess and the protrusion are contacted with each other.
6. The heat exchanging device according to claim 1, wherein both of the first and second pipes have winding-and-bending structures.
7. The heat exchanging device according to claim 1, further comprising an insulating layer configured to wrap the first and second pipes.
8. The heat exchanging device according to claim 1, further comprising:
a container, wherein the first and second pipes are disposed in the container; and
an insulating layer, disposed in the container and configured to wrap the first and second pipes.
9. A water heater, comprising:
a heat exchanging device, comprising a first pipe and a second pipe, wherein the first pipe comprises a first inlet and a first outlet thereby allowing a first fluid to flow in and out the first pipe through the first inlet and the first outlet, respectively, wherein the second pipe comprises a second inlet and a second outlet thereby allowing a second fluid to flow in and out the second pipe through the second inlet and the second outlet, respectively, wherein the first pipe and the second pipe are contacted with each other by being disposed in a juxtaposition manner, a flowing direction of the first fluid in the first pipe is opposite to a flowing direction of the second fluid in the second pipe; and
a heating unit, connected between the first outlet and the first inlet of the first pipe of the heat exchanging device.
10. The water heater according to claim 9, wherein both of the first and second pipes are oval-shaped pipes, the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other in an extending direction of a short axis of each oval-shaped pipe.
11. The water heater according to claim 9, wherein both of the first and second pipes are polygon-shaped pipes, the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other.
12. The water heater according to claim 9, wherein the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface comprises at least a recess, the second contact surface comprises at least a protrusion, the recess and the protrusion are contacted with each other.
13. The water heater according to claim 9, wherein the first pipe comprises a first contact surface, the second pipe comprises a second contact surface, the first contact surface and the second contact surface are contacted with each other, the first contact surface comprises at least a protrusion, the second contact surface comprises at least a recess, the recess and the protrusion are contacted with each other.
14. The water heater according to claim 9, wherein the both of the first and second pipes have winding-and-bending structures.
15. The water heater according to claim 9, further comprising an insulating layer configured to wrap the first and second pipes.
16. The water heater according to claim 9, further comprising:
a container, wherein the first and second pipes are disposed in the container; and
an insulating layer, disposed in the container and configured to wrap the first and second pipes.
17. The water heater according to claim 9, further comprising a receptacle configured to receive the second fluid flowing out from the second outlet of the second pipe.
US14/457,684 2014-05-12 2014-08-12 Heat exchanging device and water heater using the same Abandoned US20150323223A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW103116684A TWI582369B (en) 2014-05-12 2014-05-12 Heat exchanging device and water heater using the same
TW103116684 2014-05-12

Publications (1)

Publication Number Publication Date
US20150323223A1 true US20150323223A1 (en) 2015-11-12

Family

ID=54367524

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/457,684 Abandoned US20150323223A1 (en) 2014-05-12 2014-08-12 Heat exchanging device and water heater using the same

Country Status (2)

Country Link
US (1) US20150323223A1 (en)
TW (1) TWI582369B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058915A (en) * 2019-10-08 2021-04-15 株式会社ユタカ技研 Double pipe and method of manufacturing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763725A (en) * 1986-01-14 1988-08-16 Longsworth Ralph C Parallel wrapped tube heat exchanger
US5623986A (en) * 1995-09-19 1997-04-29 Wiggs; B. Ryland Advanced in-ground/in-water heat exchange unit
US20110277494A1 (en) * 2009-01-22 2011-11-17 Tomonori Kikuno Heat exchanger and heat pump type hot water supply apparatus equipped with same
US20120279693A2 (en) * 2008-08-06 2012-11-08 Sven Nilsson Channel system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7363962B2 (en) * 2003-08-04 2008-04-29 Cleland Sales Corporation Cold plate for beer dispensing tower
TWM288923U (en) * 2005-11-04 2006-03-21 Mao-Hsin Huang Heat exchange device for liquid
CN2921762Y (en) * 2006-05-24 2007-07-11 松下电器产业株式会社 Heat exchanger
TWM445687U (en) * 2012-09-14 2013-01-21 Res Electric Company Ltd Heat exchange device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4763725A (en) * 1986-01-14 1988-08-16 Longsworth Ralph C Parallel wrapped tube heat exchanger
US5623986A (en) * 1995-09-19 1997-04-29 Wiggs; B. Ryland Advanced in-ground/in-water heat exchange unit
US20120279693A2 (en) * 2008-08-06 2012-11-08 Sven Nilsson Channel system
US20110277494A1 (en) * 2009-01-22 2011-11-17 Tomonori Kikuno Heat exchanger and heat pump type hot water supply apparatus equipped with same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021058915A (en) * 2019-10-08 2021-04-15 株式会社ユタカ技研 Double pipe and method of manufacturing the same
JP7141379B2 (en) 2019-10-08 2022-09-22 株式会社ユタカ技研 Double pipe and its manufacturing method

Also Published As

Publication number Publication date
TW201542996A (en) 2015-11-16
TWI582369B (en) 2017-05-11

Similar Documents

Publication Publication Date Title
US8205642B2 (en) Flow-through sandwich core structure and method and system for same
CN203163564U (en) Loop gravity assisted heat pipe heat transfer device provided with flat plate type evaporator
JP4792902B2 (en) Heat exchanger
CN105509526A (en) Medium-high temperature phase-change heat storage device
EP2770278A1 (en) Water heater
CN104596335A (en) Heat storing device and heat circulating method of pulsating heat pipes
EP3090213B1 (en) Heat exchanger, heating device, heating system and method for heating water
US20150323223A1 (en) Heat exchanging device and water heater using the same
JP2008057859A (en) Heat exchanger and heat pump hot water supply device using the same
CN105828575B (en) Jet flow two-phase heat exchange cold plate and cooling system for rail transit
CN103925695A (en) Heat-pump water heater
JP2013113472A (en) Heat exchanger
JP4922708B2 (en) Heat exchanger for heat pump water heater
CN204438871U (en) A kind of pulsating heat pipe regenerative apparatus
JP2020063890A (en) Solar power generation and hot water supply system
JP2010203686A (en) Storage type hot water supply device
JP4985504B2 (en) Hot water storage tank of water heater and heat pump water heater using the same
CN100480610C (en) Ring type heat pipe device
CN104566680B (en) Compressor and with its air conditioner
CN208431936U (en) Samming Heat Pump water tank
JP5169157B2 (en) Hot water system
JP5997057B2 (en) Heat pump type heating device
JP2009052865A (en) Hot water storage tank for hot water supply device, and heat pump water heater using the same
CN203824079U (en) Heat-pump water heater
WO2022244195A1 (en) Water heater

Legal Events

Date Code Title Description
AS Assignment

Owner name: LIN, SHENG-LIAN, TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIN, SHENG-LIAN;LIN, YU-YING;REEL/FRAME:033516/0417

Effective date: 20140806

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION