US20150359467A1 - Fitness Monitoring - Google Patents

Fitness Monitoring Download PDF

Info

Publication number
US20150359467A1
US20150359467A1 US14/747,710 US201514747710A US2015359467A1 US 20150359467 A1 US20150359467 A1 US 20150359467A1 US 201514747710 A US201514747710 A US 201514747710A US 2015359467 A1 US2015359467 A1 US 2015359467A1
Authority
US
United States
Prior art keywords
patient
wearer
data
processor
data regarding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/747,710
Inventor
Bao Tran
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Empire IP LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Empire IP LLC filed Critical Empire IP LLC
Priority to US14/747,710 priority Critical patent/US20150359467A1/en
Publication of US20150359467A1 publication Critical patent/US20150359467A1/en
Assigned to WEST 74TH STREET, SERIES 75 OF ALLIED SECURITY TRUST I reassignment WEST 74TH STREET, SERIES 75 OF ALLIED SECURITY TRUST I ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMPIRE IP LLC
Assigned to KONINKLIJKE PHILIPS N.V. reassignment KONINKLIJKE PHILIPS N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WEST 74TH STREET, SERIES 75 OF ALLIED SECURITY TRUST I
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/002Monitoring the patient using a local or closed circuit, e.g. in a room or building
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0295Measuring blood flow using plethysmography, i.e. measuring the variations in the volume of a body part as modified by the circulation of blood therethrough, e.g. impedance plethysmography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0537Measuring body composition by impedance, e.g. tissue hydration or fat content
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • A61B5/1114Tracking parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • A61B5/1117Fall detection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/41Detecting, measuring or recording for evaluating the immune or lymphatic systems
    • A61B5/411Detecting or monitoring allergy or intolerance reactions to an allergenic agent or substance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4803Speech analysis specially adapted for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head
    • A61B5/6815Ear
    • A61B5/6816Ear lobe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6822Neck
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • A61B5/6898Portable consumer electronic devices, e.g. music players, telephones, tablet computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7435Displaying user selection data, e.g. icons in a graphical user interface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7455Details of notification to user or communication with user or patient ; user input means characterised by tactile indication, e.g. vibration or electrical stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7465Arrangements for interactive communication between patient and care services, e.g. by using a telephone network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/7475User input or interface means, e.g. keyboard, pointing device, joystick
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • A61B8/565Details of data transmission or power supply involving data transmission via a network
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/63ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for local operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/01Emergency care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0008Temperature signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1036Measuring load distribution, e.g. podologic studies
    • A61B5/1038Measuring plantar pressure during gait
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1124Determining motor skills
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1126Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique
    • A61B5/1128Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb using a particular sensing technique using image analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/117Identification of persons
    • A61B5/1171Identification of persons based on the shapes or appearances of their bodies or parts thereof
    • A61B5/1176Recognition of faces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • A61B5/224Measuring muscular strength
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4005Detecting, measuring or recording for evaluating the nervous system for evaluating the sensory system
    • A61B5/4023Evaluating sense of balance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4519Muscles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4528Joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7203Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
    • A61B5/7207Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
    • A61B5/7214Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using signal cancellation, e.g. based on input of two identical physiological sensors spaced apart, or based on two signals derived from the same sensor, for different optical wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/726Details of waveform analysis characterised by using transforms using Wavelet transforms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • A61B8/0808Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of the brain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/56Details of data transmission or power supply
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/60ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS

Definitions

  • This invention relates generally to methods and systems for monitoring a person.
  • a mobile system includes a telephone having one or more sensors to capture fitness data or vital sign data, the telephone having a wireless transceiver coupled to the processor to communicate fitness or vital sign data over a personal area network; and a processor coupled to the personal area network to process the fitness or vital sign data.
  • a system in another aspect, includes a telephone having one or more sensors to capture fitness data or vital sign data, the telephone having a wireless transceiver coupled to the processor to communicate fitness or vital sign data over a personal area network; and a watch coupled to the personal area network to also capture fitness or vital sign data.
  • a fitness monitoring system for a user includes a body wearable appliance placed on or near the user skin and having one or more sensors to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • a system in another aspect, includes a body wearable appliance placed on or near the user skin and having an accelerometer to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • a system in yet another aspect, includes a wearable appliance with a band to secure to the person's body and having one or more sensors to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • a monitoring system for a person includes one or more wireless nodes and a stroke sensor coupled to the person and the wireless nodes to determine vital signs.
  • a heart monitoring system for a patient or wearer or wearer includes one or more wireless nodes forming a wireless network; a wearable appliance having a wireless transceiver to communicate with the one or more wireless nodes; and an analyzer to determine vital signs, the analyzer coupled to the wireless transceiver to receive patient or wearer or wearer data over the wireless network.
  • heart monitoring system for a patient or wearer or wearer includes one or more wireless nodes forming a wireless mesh network; a wearable appliance having a wireless transceiver adapted to communicate with the one or more wireless nodes; and a statistical analyzer to determine vital signs that can signal heart attack or stroke attack, the statistical analyzer coupled to the wireless transceiver to communicate patient or wearer or wearer data over the wireless mesh network.
  • a monitoring system for a person includes one or more wireless nodes and an electromyography (EMG) sensor coupled to the person and the wireless nodes to determine a stroke attack.
  • EMG electromyography
  • a health care monitoring system for a person includes one or more wireless nodes forming a wireless mesh network; a wearable appliance having a sound transducer coupled to the wireless transceiver; and a bioelectric impedance (BI) sensor coupled to the wireless mesh network to communicate BI data over the wireless mesh network.
  • BI bioelectric impedance
  • a heart monitoring system for a person includes one or more wireless nodes forming a wireless mesh network and a wearable appliance having a sound transducer coupled to the wireless transceiver; and a heart disease recognizer coupled to the sound transducer to determine cardiovascular health and to transmit heart sound over the wireless mesh network to a remote listener if the recognizer identifies a cardiovascular problem.
  • the heart sound being transmitted may be compressed to save transmission bandwidth.
  • a monitoring system for a person includes one or more wireless nodes; and a wristwatch having a wireless transceiver adapted to communicate with the one or more wireless nodes; and an accelerometer to detect a dangerous condition and to generate a warning when the dangerous condition is detected.
  • a monitoring system for a person includes one or more wireless nodes forming a wireless mesh network; and a wearable appliance having a wireless transceiver adapted to communicate with the one or more wireless nodes; and a heartbeat detector coupled to the wireless transceiver.
  • the system may also include an accelerometer to detect a dangerous condition such as a falling condition and to generate a warning when the dangerous condition is detected.
  • Implementations of the above aspect may include one or more of the following.
  • the wristwatch determines position based on triangulation.
  • the wristwatch determines position based on RF signal strength and RF signal angle.
  • a switch detects a confirmatory signal from the person.
  • the confirmatory signal includes a head movement, a hand movement, or a mouth movement.
  • the confirmatory signal includes the person's voice.
  • a processor in the system executes computer readable code to transmit a help request to a remote computer.
  • the code can encrypt or scramble data for privacy.
  • the processor can execute voice over IP (VOIP) code to allow a user and a remote person to audibly communicate with each other.
  • the voice communication system can include Zigbee VOIP or Bluetooth VOIP or 802.XX VOIP.
  • the remote person can be a doctor, a nurse, a medical assistant, or a caregiver.
  • the system includes code to store and analyze patient or wearer information.
  • the patient or wearer information includes medicine taking habits, eating and drinking habits, sleeping habits, or excise habits.
  • a patient or wearer interface is provided on a user computer for accessing information and the patient or wearer interface includes in one implementation a touch screen; voice-activated text reading; and one touch telephone dialing.
  • the processor can execute code to store and analyze information relating to the person's ambulation.
  • a global positioning system (GPS) receiver can be used to detect movement and where the person falls.
  • the system can include code to map the person's location onto an area for viewing.
  • GPS global positioning system
  • the system can include one or more cameras positioned to capture three dimensional (3D) video of the patient or wearer; and a server coupled to the one or more cameras, the server executing code to detect a dangerous condition for the patient or wearer based on the 3D video and allow a remote third party to view images of the patient or wearer when the dangerous condition is detected.
  • 3D three dimensional
  • a monitoring system for a person includes one or more wireless bases; and a cellular telephone having a wireless transceiver adapted to communicate with the one or more wireless bases; and an accelerometer to detect a dangerous condition and to generate a warning when the dangerous condition is detected.
  • a monitoring system includes one or more cameras to determine a three dimensional (3D) model of a person; means to detect a dangerous condition based on the 3D model; and means to generate a warning when the dangerous condition is detected.
  • 3D three dimensional
  • a method to detect a dangerous condition for an infant includes placing a pad with one or more sensors in the infant's diaper; collecting infant vital parameters; processing the vital parameter to detect SIDS onset; and generating a warning.
  • the system detects the warning signs of stroke and prompts the user to reach a health care provider within 2 hours of symptom onset.
  • the system enables patent to properly manage acute stroke, and the resulting early treatment might reduce the degree of morbidity that is associated with first-ever strokes.
  • the system for non-invasively and continually monitors a subject's arterial blood pressure, with reduced susceptibility to noise and subject movement, and relative insensitivity to placement of the apparatus on the subject.
  • the system does not need frequent recalibration of the system while in use on the subject.
  • the invention allows patient or wearers to conduct a low-cost, comprehensive, real-time monitoring of their blood pressure.
  • the invention then avails this information to hospitals, home-health care organizations, insurance companies, pharmaceutical agencies conducting clinical trials and other organizations.
  • Information can be viewed using an Internet-based website, a personal computer, or simply by viewing a display on the monitor.
  • Data measured several times each day provide a relatively comprehensive data set compared to that measured during medical appointments separated by several weeks or even months. This allows both the patient or wearer and medical professional to observe trends in the data, such as a gradual increase or decrease in blood pressure, which may indicate a medical condition.
  • the invention also minimizes effects of white coat syndrome since the monitor automatically makes measurements with basically no discomfort; measurements are made at the patient or wearer's home or work, rather than in a medical office.
  • the wearable appliance is small, easily worn by the patient or wearer during periods of exercise or day-to-day activities, and non-invasively measures blood pressure can be done in a matter of seconds without affecting the patient or wearer.
  • An on-board or remote processor can analyze the time-dependent measurements to generate statistics on a patient or wearer's blood pressure (e.g., average pressures, standard deviation, beat-to-beat pressure variations) that are not available with conventional devices that only measure systolic and diastolic blood pressure at isolated times.
  • the wearable appliance provides an in-depth, cost-effective mechanism to evaluate a patient or wearer's cardiac condition. Certain cardiac conditions can be controlled, and in some cases predicted, before they actually occur. Moreover, data from the patient or wearer can be collected and analyzed while the patient or wearer participates in their normal, day-to-day activities.
  • the system provides timely assistance and enables elderly and disabled individuals to live relatively independent lives.
  • the system monitors physical activity patterns, detects the occurrence of falls, and recognizes body motion patterns leading to falls.
  • Continuous monitoring of patient or wearers is done in an accurate, convenient, unobtrusive, private and socially acceptable manner since a computer monitors the images and human involvement is allowed only under pre-designated events.
  • the patient or wearer's privacy is preserved since human access to videos of the patient or wearer is restricted: the system only allows human viewing under emergency or other highly controlled conditions designated in advance by the user.
  • the system allows certain designated people such as a family member, a friend, or a neighbor to informally check on the well-being of the patient or wearer.
  • the system is also effective in containing the spiraling cost of healthcare and outpatient or wearer care as a treatment modality by providing remote diagnostic capability so that a remote healthcare provider (such as a doctor, nurse, therapist or caregiver) can visually communicate with the patient or wearer in performing remote diagnosis.
  • a remote healthcare provider such as a doctor, nurse, therapist or caregiver
  • the system allows skilled doctors, nurses, physical therapists, and other scarce resources to assist patient or wearers in a highly efficient manner since they can do the majority of their functions remotely.
  • a sudden change of activity can indicate a problem.
  • the remote healthcare provider may receive alerts over the Internet or urgent notifications over the phone in case of such sudden accident indicating changes.
  • Reports of health/activity indicators and the overall well being of the individual can be compiled for the remote healthcare provider.
  • Feedback reports can be sent to monitored subjects, their designated informal caregiver and their remote healthcare provider. Feedback to the individual can encourage the individual to remain active.
  • the content of the report may be tailored to the target recipient's needs, and can present the information in a format understandable by an elder person unfamiliar with computers, via an appealing patient or wearer interface.
  • the remote healthcare provider will have access to the health and well-being status of their patient or wearers without being intrusive, having to call or visit to get such information interrogatively.
  • remote healthcare provider can receive a report on the health of the monitored subjects that will help them evaluate these individuals better during the short routine check up visits.
  • the system can perform patient or wearer behavior analysis such as eating/drinking/smoke habits and medication compliance, among others.
  • the patient or wearer's home equipment is simple to use and modular to allow for the accommodation of the monitoring device to the specific needs of each patient or wearer. Moreover, the system is simple to install. Regular monitoring of the basic wellness parameters provides significant benefits in helping to capture adverse events sooner, reduce hospital admissions, and improve the effectiveness of medications, hence, lowering patient or wearer care costs and improving the overall quality of care. Suitable users for such systems are disease management companies, health insurance companies, self-insured employers, medical device manufacturers and pharmaceutical firms.
  • the system reduces costs by automating data collection and compliance monitoring, and hence reduce the cost of nurses for hospital and nursing home applications.
  • At-home vital signs monitoring enables reduced hospital admissions and lower emergency room visits of chronic patient or wearers.
  • Operators in the call centers or emergency response units get high quality information to identify patient or wearers that need urgent care so that they can be treated quickly, safely, and cost effectively.
  • the Web based tools allow easy access to patient or wearer information for authorized parties such as family members, neighbors, physicians, nurses, pharmacists, caregivers, and other affiliated parties to improve the Quality of Care for the patient or wearer.
  • a method for providing patient or wearer access to medication includes collecting patient or wearer medical information from a patient or wearer computer; securing the patient or wearer medical information and sending the secured patient or wearer medical information from the patient or wearer computer to a remote computer; remotely examining the patient or wearer and reviewing the patient or wearer medical information; generating a prescription for the patient or wearer and sending the prescription to a pharmacy; and performing a drug interaction analysis on the prescription.
  • Implementations of the on-line pharmacy aspect may include one or more of the following.
  • the medical information can include temperature, EKG, blood pressure, weight, sugar level, image of the patient or wearer, or sound of the patient or wearer. Responses from the patient or wearer to a patient or wearer medical questionnaire can be captured.
  • the doctor can listen to the patient or wearer's organ with a digital stethoscope, scanning a video of the patient or wearer, running a diagnostic test on the patient or wearer, verbally communicating with the patient or wearer.
  • the digital stethoscope can be a microphone or piezeoelectric transducer coupled to the Zigbee or Bluetooth network to relay the sound.
  • a plurality of medical rules can be applied to the medical information to arrive at a diagnosis.
  • Genetic tests or pharmacogenetic tests can be run on the patient or wearer to check compatibility with the prescription.
  • Approval for the prescription can come from one of: a doctor, a physician, a physician assistant, a nurse.
  • the system can monitor drug compliance, and can automatically ordering a medication refill from the pharmacy.
  • a wireless housing provides one or more bioelectric contacts conveniently positioned to collect bioelectric patient or wearer data.
  • the housing can be a patch, a wristwatch, a band, a wristband, a chest band, a leg band, a sock, a glove, a foot pad, a head-band, an ear-clip, an ear phone, a shower-cap, an armband, an ear-ring, eye-glasses, sun-glasses, a belt, a sock, a shirt, a garment, a jewelry, a bed spread, a pillow cover, a pillow, a mattress, a blanket or a sleeping garment such as a pajama.
  • the bed spread, pillow cover, pillow, mattress, blanket or pajama can have bioelectrically conductive contacts in an array so that the patient or wearer can enjoy his/her sleep while vital parameters can be captured.
  • an array of parallel conductive lines can be formed on the housing side that faces the patient or wearer and the electrical signal can be picked up.
  • the data captured by the contacts are transmitted over the mesh network such as ZigBee to a base station.
  • the base station can perform the bioelectric signal processing to extract patient or wearer parameters from data captured by the contacts.
  • the base station may need a DSP or powerful CPU to perform the calculations.
  • the base station can simply compress the data and upload the data to a central server or server farm for processing and the result of the signal processing are sent back to the base station for relay to the patient or wearer interface which can be a wrist-watch, a pad, or a band, among others, for notification of any warning signs.
  • FIG. 1 illustrates an exemplary system for monitoring a person.
  • FIG. 2A illustrates a process for determining three dimensional (3D) detection.
  • FIG. 2B shows an exemplary calibration sheet.
  • FIG. 3 illustrates a process for detecting falls.
  • FIG. 4 illustrates a process for detecting facial expressions.
  • FIG. 5 illustrates an exemplary process for determining and getting assistance for a patient or wearer or user.
  • FIG. 6A shows an exemplary wrist-watch based assistance device.
  • FIG. 6B shows an exemplary mesh network working with the wearable appliance of FIG. 6A .
  • FIG. 7 shows an exemplary mesh network in communication with the wrist-watch device of FIG. 6B .
  • FIGS. 8-13 and FIGS. 14A-14B show various exemplary wearable appliances to monitor a patient or wearer.
  • FIGS. 15A-15B show exemplary systems for performing patient or wearer monitoring.
  • FIG. 15C shows an exemplary interface to monitor a plurality of persons.
  • FIG. 15D shows an exemplary dash-board that provides summary information on the status of a plurality of persons.
  • FIG. 15E shows an exemplary multi-station vital parameter user interface for a professional embodiment.
  • FIG. 15F shows an exemplary trending pattern display.
  • FIGS. 16A-16B show exemplary blood pressure determination processes.
  • FIGS. 16C-E shows exemplary stroke determination processes.
  • FIG. 17A shows an exemplary EMG sensor.
  • FIGS. 17B-C show exemplary EMG graphs of a patient or wearer.
  • FIG. 1 shows an exemplary personal monitoring system.
  • the system can operate in a home, a nursing home, or a hospital.
  • one or more mesh network appliances 8 are provided to enable wireless communication in the home monitoring system.
  • Appliances 8 in the mesh network can include home security monitoring devices, door alarm, window alarm, home temperature control devices, fire alarm devices, among others.
  • Appliances 8 in the mesh network can be one of multiple portable physiological transducer, such as a blood pressure monitor, heart rate monitor, weight scale, thermometer, spirometer, single or multiple lead electrocardiograph (ECG), a pulse oxymeter, a body fat monitor, a cholesterol monitor, a signal from a medicine cabinet, a signal from a drug container, a signal from a commonly used appliance such as a refrigerator/stove/oven/washer, or a signal from an exercise machine, such as a heart rate.
  • ECG electrocardiograph
  • a wireless radio frequency (RF) link for transmitting data from the appliances 8 to the local hub or receiving station or base station server 20 by way of a wireless radio frequency (RF) link using a proprietary or non-proprietary protocol.
  • RF radio frequency
  • a user may have mesh network appliances that detect window and door contacts, smoke detectors and motion sensors, video cameras, key chain control, temperature monitors, CO and other gas detectors, vibration sensors, and others.
  • a user may have flood sensors and other detectors on a boat.
  • An individual such as an ill or elderly grandparent, may have access to a panic transmitter or other alarm transmitter. Other sensors and/or detectors may also be included.
  • the user may register these appliances on a central security network by entering the identification code for each registered appliance/device and/or system.
  • the mesh network can be Bluetooth, Zigbee network or 802.15 network. More details of the mesh network is shown in FIG. 7 and discussed in more detail below.
  • a plurality of monitoring cameras 10 may be placed in various predetermined positions in a home of a patient or wearer 30 .
  • the cameras 10 can be wired or wireless.
  • the cameras can communicate over infrared links or over radio links conforming to the 802X (e.g. 802.11A, 802.11B, 802.11G, 802.15) standard or the Bluetooth standard to a base station/server 20 may communicate over various communication links, such as a direct connection, such a serial connection, USB connection, Firewire connection or may be optically based, such as infrared or wireless based, for example, home RF, IEEE standard 802.11a/b, Bluetooth or the like.
  • appliances 8 monitor the patient or wearer and activate the camera 10 to capture and transmit video to an authorized third party for providing assistance should the appliance 8 detects that the user needs assistance or that an emergency had occurred.
  • the base station/server 20 stores the patient or wearer's ambulation pattern and vital parameters and can be accessed by the patient or wearer's family members (sons/daughters), physicians, caretakers, nurses, hospitals, and elderly community.
  • the base station/server 20 may communicate with the remote server 200 by DSL, T-1 connection over a private communication network or a public information network, such as the Internet 100 , among others.
  • the patient or wearer 30 may wear one or more wearable patient or wearer monitoring appliances such as wrist-watches or clip on devices or electronic jewelry to monitor the patient or wearer.
  • One wearable appliance such as a wrist-watch includes sensors 40 , for example devices for sensing ECG, EKG, blood pressure, sugar level, among others.
  • the sensors 40 are mounted on the patient or wearer's wrist (such as a wristwatch sensor) and other convenient anatomical locations.
  • Exemplary sensors 40 include standard medical diagnostics for detecting the body's electrical signals emanating from muscles (EMG and EOG) and brain (EEG) and cardiovascular system (ECG).
  • Leg sensors can include piezoelectric accelerometers designed to give qualitative assessment of limb movement.
  • thoracic and abdominal bands used to measure expansion and contraction of the thorax and abdomen respectively.
  • a small sensor can be mounted on the subject's finger in order to detect blood-oxygen levels and pulse rate.
  • a microphone can be attached to throat and used in sleep diagnostic recordings for detecting breathing and other noise.
  • One or more position sensors can be used for detecting orientation of body (lying on left side, right side or back) during sleep diagnostic recordings.
  • Each of sensors 40 can individually transmit data to the server 20 using wired or wireless transmission. Alternatively, all sensors 40 can be fed through a common bus into a single transceiver for wired or wireless transmission.
  • the transmission can be done using a magnetic medium such as a floppy disk or a flash memory card, or can be done using infrared or radio network link, among others.
  • the sensor 40 can also include an indoor positioning system or alternatively a global position system (GPS) receiver that relays the position and ambulatory patterns of the patient or wearer to the server 20 for mobility tracking.
  • GPS global position system
  • the sensors 40 for monitoring vital signs are enclosed in a wrist-watch sized case supported on a wrist band.
  • the sensors can be attached to the back of the case.
  • Cygnus' AutoSensor (Redwood City, Calif.) is used as a glucose sensor. A low electric current pulls glucose through the skin. Glucose is accumulated in two gel collection discs in the AutoSensor. The AutoSensor measures the glucose and a reading is displayed by the watch.
  • EKG/ECG contact points are positioned on the back of the wrist-watch case.
  • a pressure sensor is housed in a casing with a ‘free-floating’ plunger as the sensor applanates the radial artery.
  • a strap provides a constant force for effective applanation and ensuring the position of the sensor housing to remain constant after any wrist movements.
  • the change in the electrical signals due to change in pressure is detected as a result of the piezoresistive nature of the sensor are then analyzed to arrive at various arterial pressure, systolic pressure, diastolic pressure, time indices, and other blood pressure parameters.
  • the case may be of a number of variations of shape but can be conveniently made a rectangular, approaching a box-like configuration.
  • the wrist-band can be an expansion band or a wristwatch strap of plastic, leather or woven material.
  • the wrist-band further contains an antenna for transmitting or receiving radio frequency signals.
  • the wristband and the antenna inside the band are mechanically coupled to the top and bottom sides of the wrist-watch housing. Further, the antenna is electrically coupled to a radio frequency transmitter and receiver for wireless communications with another computer or another user.
  • a wrist-band is disclosed, a number of substitutes may be used, including a belt, a ring holder, a brace, or a bracelet, among other suitable substitutes known to one skilled in the art.
  • the housing contains the processor and associated peripherals to provide the human-machine interface.
  • a display is located on the front section of the housing.
  • An infrared LED transmitter and an infrared LED receiver are positioned on the right side of housing to enable the watch to communicate with another computer using infrared transmission.
  • the sensors 40 are mounted on the patient or wearer's clothing.
  • sensors can be woven into a single-piece garment (an undershirt) on a weaving machine.
  • a plastic optical fiber can be integrated into the structure during the fabric production process without any discontinuities at the armhole or the seams.
  • An interconnection technology transmits information from (and to) sensors mounted at any location on the body thus creating a flexible “bus” structure.
  • T-Connectors similar to “button clips” used in clothing—are attached to the fibers that serve as a data bus to carry the information from the sensors (e.g., EKG sensors) on the body. The sensors will plug into these connectors and at the other end similar T-Connectors will be used to transmit the information to monitoring equipment or personal status monitor.
  • sensors can be positioned on the right locations for all patient or wearers and without any constraints being imposed by the clothing. Moreover, the clothing can be laundered without any damage to the sensors themselves.
  • sensors for monitoring the respiration rate can be integrated into the structure.
  • the sensors can be mounted on fixed surfaces such as walls or tables, for example.
  • One such sensor is a motion detector.
  • Another sensor is a proximity sensor.
  • the fixed sensors can operate alone or in conjunction with the cameras 10 .
  • the motion detector operates with the cameras 10
  • the motion detector can be used to trigger camera recording.
  • the motion detector operates stand alone, when no motion is sensed, the system generates an alarm.
  • the server 20 also executes one or more software modules to analyze data from the patient or wearer.
  • a module 50 monitors the patient or wearer's vital signs such as ECG/EKG and generates warnings should problems occur.
  • vital signs can be collected and communicated to the server 20 using wired or wireless transmitters.
  • the server 20 feeds the data to a statistical analyzer such as a neural network which has been trained to flag potentially dangerous conditions.
  • the neural network can be a back-propagation neural network, for example.
  • the statistical analyzer is trained with training data where certain signals are determined to be undesirable for the patient or wearer, given his age, weight, and physical limitations, among others.
  • the patient or wearer's glucose level should be within a well established range, and any value outside of this range is flagged by the statistical analyzer as a dangerous condition.
  • the dangerous condition can be specified as an event or a pattern that can cause physiological or psychological damage to the patient or wearer.
  • interactions between different vital signals can be accounted for so that the statistical analyzer can take into consideration instances where individually the vital signs are acceptable, but in certain combinations, the vital signs can indicate potentially dangerous conditions.
  • the data received by the server 20 can be appropriately scaled and processed by the statistical analyzer.
  • the server 20 can process vital signs using rule-based inference engines, fuzzy logic, as well as conventional if-then logic. Additionally, the server can process vital signs using Hidden Markov Models (HMMs), dynamic time warping, or template matching, among others.
  • HMMs Hidden Markov Models
  • the system reads video sequence and generates a 3D anatomy file out of the sequence.
  • the proper bone and muscle scene structure are created for head and face.
  • a based profile stock phase shape will be created by this scene structure. Every scene will then be normalized to a standardized viewport.
  • a module 52 monitors the patient or wearer ambulatory pattern and generates warnings should the patient or wearer's patterns indicate that the patient or wearer has fallen or is likely to fall.
  • 3D detection is used to monitor the patient or wearer's ambulation. In the 3D detection process, by putting 3 or more known coordinate objects in a scene, camera origin, view direction and up vector can be calculated and the 3D space that each camera views can be defined.
  • camera parameters are preset to fixed numbers. Each pixel from each camera maps to a cone space.
  • the system identifies one or more 3D feature points (such as a birthmark or an identifiable body landmark) on the patient or wearer.
  • the 3D feature point can be detected by identifying the same point from two or more different angles. By determining the intersection for the two or more cones, the system determines the position of the feature point.
  • the above process can be extended to certain feature curves and surfaces, e.g. straight lines, arcs; flat surfaces, cylindrical surfaces. Thus, the system can detect curves if a feature curve is known as a straight line or arc.
  • the system can detect surfaces if a feature surface is known as a flat or cylindrical surface. The further the patient or wearer is from the camera, the lower the accuracy of the feature point determination. Also, the presence of more cameras would lead to more correlation data for increased accuracy in feature point determination. When correlated feature points, curves and surfaces are detected, the remaining surfaces are detected by texture matching and shading changes. Predetermined constraints are applied based on silhouette curves from different views. A different constraint can be applied when one part of the patient or wearer is occluded by another object. Further, as the system knows what basic organic shape it is detecting, the basic profile can be applied and adjusted in the process.
  • the 3D feature point (e.g. a birth mark) can be detected if the system can identify the same point from two frames.
  • the relative motion from the two frames should be small but detectable.
  • Other features curves and surfaces will be detected correspondingly, but can be tessellated or sampled to generate more feature points.
  • a transformation matrix is calculated between a set of feature points from the first frame to a set of feature points from the second frame.
  • Each camera exists in a sphere coordinate system where the sphere origin (0,0,0) is defined as the position of the camera.
  • the system detects theta and phi for each observed object, but not the radius or size of the object.
  • the radius is approximated by detecting the size of known objects and scaling the size of known objects to the object whose size is to be determined.
  • the system detects the ball and scales other features based on the known ball size.
  • features that are known in advance include head size and leg length, among others. Surface texture can also be detected, but the light and shade information from different camera views is removed.
  • certain undetected areas such as holes can exist. For example, if the patient or wearer yawns, the patient or wearer's mouth can appear as a hole in an image. For 3D modeling purposes, the hole can be filled by blending neighborhood surfaces. The blended surfaces are behind the visible line.
  • each camera is calibrated before 3D detection is done.
  • Pseudo-code for one implementation of a camera calibration process is as follows:
  • One smoothing method is to apply a weighted filter for Dot1 and Dot2.
  • a weight filter can be used. In one example, the following exemplary filter is applied.
  • Dot1_Left refers to the value of the dot on the left side of Dot1 and Dot1_Right refers to the value of the dot to the right of Dot1 and Dot1_Upper refers to the dot above Dot1, for example, the resulting smoothed Dot1 value is as follows:
  • features from Dot1 sheet are mapped to a sub pixel level and features of Dot2 sheet are mapped to a sub pixel level and smooth them.
  • Dot1 dot center (5, 5, 1) are mapped to pixel (1.05, 2.86)
  • Dot2 dot center (10, 10, 2) are mapped to pixel (1.15, 2.76).
  • a predetermined correlation function is then applied.
  • FIG. 2B shows an exemplary calibration sheet having a plurality of dots.
  • the dots can be circular dots and square dots which are interleaved among each others.
  • the dots should be placed relatively close to each other and each dot size should not be too large, so we can have as many dots as possible in one snapshot. However, the dots should not be placed too close to each other and the dot size should not be too small, so they are not identifiable.
  • a module 54 monitors patient or wearer activity and generates a warning if the patient or wearer has fallen.
  • the system detects the speed of center of mass movement. If the center of mass movement is zero for a predetermined period, the patient or wearer is either sleeping or unconscious. The system then attempts to signal the patient or wearer and receive confirmatory signals indicating that the patient or wearer is conscious. If patient or wearer does not confirm, then the system generates an alarm. For example, if the patient or wearer has fallen, the system would generate an alarm signal that can be sent to friends, relatives or neighbors of the patient or wearer. Alternatively, a third party such as a call center can monitor the alarm signal. Besides monitoring for falls, the system performs video analysis of the patient or wearer.
  • the system can determine the amount of time for exercise, sleep, and entertainment, among others.
  • the network of sensors in a patient or wearer's home can recognize ordinary patterns—such as eating, sleeping, and greeting visitors—and to alert caretakers to out-of-the-ordinary ones—such as prolonged inactivity or absence. For instance, if the patient or wearer goes into the bathroom then disappears off the sensor for 13 minutes and don't show up anywhere else in the house, the system infers that patient or wearer had taken a bath or a shower. However, if a person falls and remains motionless for a predetermined period, the system would record the event and notify a designated person to get assistance.
  • a fall detection process (shown in FIG. 3 ) performs the following operations:
  • pseudo-code for determining the floor space area is as follows:
  • additional information from the user can be used to define floor space more accurately, especially in single camera system where the coordinates are less accurate, e.g.:
  • pseudo-code for determining the camera view background 3D scene is as follows:
  • pseudo-code for determining key features of the patient or wearer is as follows:
  • Foreground objects can be extracted by comparing each sample point's Z value to the background scene point's Z value, if it is smaller, then it is on the foreground.
  • the feet/shoe can be detected by finding the lowest Z point clouds close the floor in room space, its color will be extracted.
  • the hair/hat In normal condition, the hair/hat can be detected by finding the highest Z point clouds close the floor in room space, its color will be extracted.
  • the rest of the features can be determined by searching from either head or toe.
  • head or toe E.g, hat, hair, face, eye, mouth, ear, earring, neck, lipstick, moustache, jacket, limbs, belt, ring, hand, etc.
  • the key dimension of features will be determined by retrieving the historic stored data or recalculated, e.g., head size, mouth width, arm length, leg length, waist, etc.
  • features can be detected by detect individual features then correlated them to different body parts.
  • the system can generate the warning.
  • the system can request the patient or wearer to confirm that he or she does not need assistance.
  • the confirmation can be in the form of a button that the user can press to override the warning.
  • the confirmation can be in the form of a single utterance that is then detected by a speech recognizer.
  • the confirmatory signal is a patient or wearer gesture.
  • the patient or wearer can nod his or her head to request help and can shake the head to cancel the help request.
  • the patient or wearer can use a plurality of hand gestures to signal to the server 20 the actions that the patient or wearer desires.
  • the system can know whether patient or wearer is uncomfortable or not.
  • Other items that can be monitored include chest movement (frequency and amplitude) and rest length when the patient or wearer sits still in one area, among others.
  • the system performs video analysis of the patient or wearer. For example, during a particular day, the system can determine the amount of time for exercise, sleep, entertainment, among others.
  • the network of sensors in a patient or wearer's home can recognize ordinary patterns—such as eating, sleeping, and greeting visitors—and to alert caretakers to out-of-the-ordinary ones—such as prolonged inactivity or absence. For instance, if the patient or wearer goes into the bathroom then disappears off the camera 10 view for a predetermined period and does not show up anywhere else in the house, the system infers that patient or wearer had taken a bath or a shower. However, if a person falls and remains motionless for a predetermined period, the system would record the event and notify a designated person to get assistance.
  • changes in the patient or wearer's skin color can be detected by measuring the current light environment, properly calibrating color space between two photos, and then determining global color change between two states.
  • a severity level warning is generated.
  • changes in the patient or wearer's face are detected by analyzing a texture distortion in the images. If the patient or wearer perspires heavily, the texture will show small glisters, make-up smudges, or sweat/tear drippings. Another example is, when long stretched face will be detected as texture distortion. Agony will show certain wrinkle texture patterns, among others.
  • the system can also utilize high light changes.
  • high light changes when the patient or wearer sweats or changes facial appearance, different high light areas are shown, glisters reflect light and pop up geometry generates more high light areas.
  • a module 62 analyzes facial changes such as facial asymmetries. The change will be detected by superimpose a newly acquired 3D anatomy structure to a historical (normal) 3D anatomy structure to detect face/eye sagging or excess stretch of facial muscles.
  • a facial expression analysis process performs the following operations:
  • the patient or wearer's key features provide information on the location of the face, and once the face area has been determined, other features can be detected by detecting relative position to each other and special characteristics of the features:
  • Eye pupil can be detected by applying Chamfer matching algorithm, by using stock pupil objects.
  • Hair located on the top of the head, using previous stored hair color to locate the hair point clouds.
  • Nose nose bridge and nose holes usually show special characteristics for detection, sometime depend on the view angle, is side view, special silhouette will be shown.
  • Teeth, earring, necklace All these features can be detected by color and style, which will give extra information.
  • pseudo-code for detecting facial orientation is as follows:
  • the module checks whether broadband network is available. If broadband network is available, the module 80 allows high resolution video, among others, to be broadcasted directly from the server 20 to the third party or indirectly from the server 20 to the remote server 200 to the third party. In parallel, the module 80 allows sound to be transmitted using the telephone circuit. In this manner, high resolution video can be transmitted since sound data is separately sent through the POTS network.
  • the system relies on the POTS telephone network for transmission of voice and images.
  • one or more images are compressed for burst transmission, and at the request of the third party or the remote server 200 , the telephone's sound system is placed on hold for a brief period to allow transmission of images over the POTS network.
  • existing POTS lifeline telephone can be used to monitor patient or wearers.
  • the resolution and quantity of images are selectable by the third party.
  • the person monitoring the patient or wearer can elect to only listen, to view one high resolution image with duplex telephone voice transmission, to view a few low resolution images, to view a compressed stream of low resolution video with digitized voice, among others.
  • each camera will capture its own environment objects and store it as background images, the software then detect the live person in the scene, changes of the live person, so only the portion of live person will be send to the local server, other compression techniques will be applied, e.g. send changing file, balanced video streaming based on change.
  • the local server will control and schedule how the video/picture will be send, e.g. when the camera is view an empty room, no pictures will be sent, the local server will also determine which camera is at the right view, and request only the corresponding video be sent. The local server will determine which feature it is interested in looking at, e.g. face and request only that portion be sent.
  • the system will enable higher resolution and more camera system by using narrower bandwidth.
  • a police officer, a security agent, or a healthcare agent such as a physician at a remote location can engage, in interactive visual communication with the patient or wearer.
  • the patient or wearer's health data or audio-visual signal can be remotely accessed.
  • the patient or wearer also has access to a video transmission of the third party.
  • the health care practitioner at the central station may summon help from an emergency services provider.
  • the emergency services provider may send an ambulance, fire department personnel, family member, or other emergency personnel to the patient or wearer's remote location.
  • the emergency services provider may, perhaps, be an ambulance facility, a police station, the local fire department, or any suitable support facility.
  • Communication between the patient or wearer's remote location and the central station can be initiated by a variety of techniques.
  • One method is by manually or automatically placing a call on the telephone to the patient or wearer's home or from the patient or wearer's home to the central station.
  • the system can ask a confirmatory question to the patient or wearer through text to speech software.
  • the patient or wearer can be orally instructed by the health practitioner to conduct specific physical activities such as specific arm movements, walking, bending, among others.
  • the examination begins during the initial conversation with the monitored subject. Any changes in the spontaneous gestures of the body, arms and hands during speech as well as the fulfillment of nonspecific tasks are important signs of possible pathological events.
  • the monitoring person can instruct the monitored subject to perform a series of simple tasks which can be used for diagnosis of neurological abnormalities. These observations may yield early indicators of the onset of a disease.
  • a network 100 such as the Internet receives images from the server 20 and passes the data to one or more remote servers 200 .
  • the images are transmitted from the server 200 over a secure communication link such as virtual private network (VPN) to the remote server(s) 200 .
  • VPN virtual private network
  • the server 200 collects data from a plurality of cameras and uses the 3D images technology to determine if the patient or wearer needs help.
  • the system can transmit video (live or archived) to the friend, relative, neighbor, or call center for human review.
  • a connection with the server 200 is established and user identity authenticated using suitable password or other security mechanisms.
  • the server 200 retrieves the document from its local disk or cache memory storage and transmits the content over the network.
  • the user of a Web browser requests that a media stream file be downloaded, such as sending, in particular, the URL of a media redirection file from a Web server.
  • the media redirection file is a type of specialized Hypertext Markup Language (HTML) file that contains instructions for how to locate the multimedia file and in what format the multimedia file is in.
  • the Web server returns the MRF file to the user's browser program.
  • the browser program then reads the MRF file to determine the location of the media server containing one or more multimedia content files.
  • the browser launches the associated media player application program and passes the MRF file to it.
  • the media player reads the MRF file to obtain the information needed to open a connection to a media server, such as a URL, and the required protocol information, depending upon the type of medial content is in the file.
  • the streaming media content file is then routed from the media server down to the user.
  • the transactions between the server 200 and one of the remote servers 200 are detailed.
  • the server 200 compares one image frame to the next image frame. If no difference exists, the duplicate frame is deleted to minimize storage space. If a difference exists, only the difference information is stored as described in the JPEG standard.
  • This operation effectively compresses video information so that the camera images can be transmitted even at telephone modem speed of 64 k or less. More aggressive compression techniques can be used. For example, patient or wearer movements can be clusterized into a group of known motion vectors, and patient or wearer movements can be described using a set of vectors. Only the vector data is saved. During view back, each vector is translated into a picture object which is suitably rasterized. The information can also be compressed as motion information.
  • the server 200 transmits the compressed video to the remote server 200 .
  • the server 200 stores and caches the video data so that multiple viewers can view the images at once since the server 200 is connected to a network link such as telephone line modem, cable modem, DSL modem, and ATM transceiver, among others.
  • the system can also monitor the patient or wearer's gait pattern and generate warnings should the patient or wearer's gait patterns indicate that the patient or wearer is likely to fall.
  • the system will detect patient or wearer skeleton structure, stride and frequency; and based on this information to judge whether patient or wearer has joint problem, asymmetrical bone structure, among others.
  • the system can store historical gait information, and by overlaying current structure to the historical (normal) gait information, gait changes can be detected.
  • an estimate of the gait pattern is done using the camera.
  • the gait can be sensed by providing a sensor on the floor and a sensor near the head and the variance in the two sensor positions are used to estimate gait characteristics.
  • the system also provides a patient or wearer interface 90 to assist the patient or wearer in easily accessing information.
  • the patient or wearer interface includes a touch screen; voice-activated text reading; one touch telephone dialing; and video conferencing.
  • the touch screen has large icons that are preselected to the patient or wearer's needs, such as his or her favorite web sites or application programs.
  • the voice activated text reading allows a user with poor eye-sight to get information from the patient or wearer interface 90 . Buttons with pre-designated dialing numbers, or video conferencing contact information allow the user to call a friend or a healthcare provider quickly.
  • RFID radio frequency identification
  • each drug container is tracked through an RFID tag that is also a drug label.
  • the RF tag is an integrated circuit that is coupled with a mini-antenna to transmit data.
  • the circuit contains memory that stores the identification Code and other pertinent data to be transmitted when the chip is activated or interrogated using radio energy from a reader.
  • a reader consists of an RF antenna, transceiver and a micro-processor. The transceiver sends activation signals to and receives identification data from the tag.
  • the antenna may be enclosed with the reader or located outside the reader as a separate piece.
  • RFID readers communicate directly with the RFID tags and send encrypted usage data over the patient or wearer's network to the server 200 and eventually over the Internet 100 .
  • the readers can be built directly into the walls or the cabinet doors.
  • capacitively coupled RFID tags are used.
  • the capacitive RFID tag includes a silicon microprocessor that can store 96 bits of information, including the pharmaceutical manufacturer, drug name, usage instruction and a 40-bit serial number.
  • a conductive carbon ink acts as the tag's antenna and is applied to a paper substrate through conventional printing means.
  • the silicon chip is attached to printed carbon-ink electrodes on the back of a paper label, creating a low-cost, disposable tag that can be integrated on the drug label.
  • the information stored on the drug labels is written in a Medicine Markup Language (MML), which is based on the eXtensible Markup Language (XML). MML would allow all computers to communicate with any computer system in a similar way that Web servers read Hyper Text Markup Language (HTML), the common language used to create Web pages.
  • MML Medicine Markup Language
  • HTML Hyper Text Markup Language
  • the patient or wearer After receiving the medicine container, the patient or wearer places the medicine in a medicine cabinet, which is also equipped with a tag reader. This smart cabinet then tracks all medicine stored in it. It can track the medicine taken, how often the medicine is restocked and can let the patient or wearer know when a particular medication is about to expire. At this point, the server 200 can order these items automatically. The server 200 also monitors drug compliance, and if the patient or wearer does not remove the bottle to dispense medication as prescribed, the server 200 sends a warning to the healthcare provider.
  • the database tracks typical arm and leg movements to determine whether the user is experiencing muscle weakness reflective of a stroke. If muscle weakness is detected, the system presents the user with additional tests to confirm the likelihood of a stroke attack. If the information indicates a stroke had occurred, the system stores the time of the stroke detection and calls for emergency assistance to get timely treatment for the stroke.
  • the user's habits and movements can be determined by the system for stroke detection. This is done by tracking location, ambulatory travel vectors and time in a database. If the user typically sleeps between 10 pm to 6 am, the location would reflect that the user's location maps to the bedroom between 10 pm and 6 am. In one exemplary system, the system builds a schedule of the user's activity as follows:
  • the habit tracking is adaptive in that it gradually adjusts to the user's new habits. If there are sudden changes, the system flags these sudden changes for follow up. For instance, if the user spends three hours in the bathroom, the system prompts the third party (such as a call center) to follow up with the patient or wearer to make sure he or she does not need help.
  • the third party such as a call center
  • data driven analyzers may be used to track the patient or wearer's habits. These data driven analyzers may incorporate a number of models such as parametric statistical models, non-parametric statistical models, clustering models, nearest neighbor models, regression methods, and engineered (artificial) neural networks.
  • models such as parametric statistical models, non-parametric statistical models, clustering models, nearest neighbor models, regression methods, and engineered (artificial) neural networks.
  • data driven analyzers or models of the patient or wearer's habits or ambulation patterns are built using one or more training sessions. The data used to build the analyzer or model in these sessions are typically referred to as training data.
  • training data As data driven analyzers are developed by examining only training examples, the selection of the training data can significantly affect the accuracy and the learning speed of the data driven analyzer.
  • One approach used heretofore generates a separate data set referred to as a test set for training purposes.
  • the test set is used to avoid overfitting the model or analyzer to the training data. Overfitting refers to the situation where the analyzer has memorized the training data so well that it fails to fit or categorize unseen data.
  • Overfitting refers to the situation where the analyzer has memorized the training data so well that it fails to fit or categorize unseen data.
  • the analyzer's performance is tested against the test set. The selection of the analyzer or model parameters is performed iteratively until the performance of the analyzer in classifying the test set reaches an optimal point. At this point, the training process is completed.
  • An alternative to using an independent training and test set is to use a methodology called cross-validation. Cross-validation can be used to determine parameter values for a parametric analyzer or model for a non-parametric analyzer. In cross-validation, a single training data set is selected.
  • a number of different analyzers or models are built by presenting different parts of the training data as test sets to the analyzers in an iterative process.
  • the parameter or model structure is then determined on the basis of the combined performance of all models or analyzers.
  • the analyzer or model is typically retrained with data using the determined optimal model structure.
  • multiple dimensions of a user's daily activities such as start and stop times of interactions of different interactions are encoded as distinct dimensions in a database.
  • a predictive model including time series models such as those employing autoregression analysis and other standard time series methods, dynamic Bayesian networks and Continuous Time Bayesian Networks, or temporal Bayesian-network representation and reasoning methodology, is built, and then the model, in conjunction with a specific query makes target inferences.
  • Bayesian networks provide not only a graphical, easily interpretable alternative language for expressing background knowledge, but they also provide an inference mechanism; that is, the probability of arbitrary events can be calculated from the model. Intuitively, given a Bayesian network, the task of mining interesting unexpected patterns can be rephrased as discovering item sets in the data which are much more—or much less—frequent than the background knowledge suggests. These cases are provided to a learning and inference subsystem, which constructs a Bayesian network that is tailored for a target prediction. The Bayesian network is used to build a cumulative distribution over events of interest.
  • a genetic algorithm (GA) search technique can be used to find approximate solutions to identifying the user's habits.
  • Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, natural selection, and recombination (or crossover). Genetic algorithms are typically implemented as a computer simulation in which a population of abstract representations (called chromosomes) of candidate solutions (called individuals) to an optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but different encodings are also possible. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm.
  • Substantially any type of learning system or process may be employed to determine the user's ambulatory and living patterns so that unusual events can be flagged.
  • clustering operations are performed to detect patterns in the data.
  • a neural network is used to recognize each pattern as the neural network is quite robust at recognizing user habits or patterns.
  • the neural network compares the input user information with stored templates of treatment vocabulary known by the neural network recognizer, among others.
  • the recognition models can include a Hidden Markov Model (HMM), a dynamic programming model, a neural network, a fuzzy logic, or a template matcher, among others. These models may be used singly or in combination.
  • the system allows patient or wearers to conduct a low-cost, comprehensive, real-time monitoring of their vital parameters such as ambulation and falls.
  • Information can be viewed using an Internet-based website, a personal computer, or simply by viewing a display on the monitor.
  • Data measured several times each day provide a relatively comprehensive data set compared to that measured during medical appointments separated by several weeks or even months. This allows both the patient or wearer and medical professional to observe trends in the data, such as a gradual increase or decrease in blood pressure, which may indicate a medical condition.
  • the invention also minimizes effects of white coat syndrome since the monitor automatically makes measurements with basically no discomfort; measurements are made at the patient or wearer's home or work, rather than in a medical office.
  • the wearable appliance is small, easily worn by the patient or wearer during periods of exercise or day-to-day activities, and non-invasively measures blood pressure can be done in a matter of seconds without affecting the patient or wearer.
  • An on-board or remote processor can analyze the time-dependent measurements to generate statistics on a patient or wearer's blood pressure (e.g., average pressures, standard deviation, beat-to-beat pressure variations) that are not available with conventional devices that only measure systolic and diastolic blood pressure at isolated times.
  • the wearable appliance provides an in-depth, cost-effective mechanism to evaluate a patient or wearer's health condition. Certain cardiac conditions can be controlled, and in some cases predicted, before they actually occur. Moreover, data from the patient or wearer can be collected and analyzed while the patient or wearer participates in their normal, day-to-day activities.
  • Software programs associated with the Internet-accessible website, secondary software system, and the personal computer analyze the blood pressure, and heart rate, and pulse oximetry values to characterize the patient or wearer's cardiac condition. These programs, for example, may provide a report that features statistical analysis of these data to determine averages, data displayed in a graphical format, trends, and comparisons to doctor-recommended values.
  • the appliance When the appliance cannot communicate with the mesh network, the appliance simply stores information in memory and continues to make measurements.
  • the watch component automatically transmits all the stored information (along with a time/date stamp) when it comes in proximity to the wireless mesh network, which then transmits the information through the wireless network.
  • the server provides a web services that communicate with third party software through an interface.
  • vital parameters such as blood pressure information for the web services software interface
  • the patient or wearer continuously wears the blood-pressure monitor for a short period of time, e.g. one to two weeks after visiting a medical professional during a typical ‘check up’ or after signing up for a short-term monitoring program through the website.
  • the wearable device such as the watch measures mobility through the accelerometer and blood pressure in a near-continuous, periodic manner such as every fifteen minutes. This information is then transmitted over the mesh network to a base station that communicates over the Internet to the server.
  • the patient or wearer or an authorized third party accesses a patient or wearer user interface hosted on the web server 200 through the Internet 100 from a remote computer system.
  • the patient or wearer interface displays vital information such as ambulation, blood pressure and related data measured from a single patient or wearer.
  • the system may also include a call center, typically staffed with medical professionals such as doctors, nurses, or nurse practitioners, whom access a care-provider interface hosted on the same website on the server 200 .
  • the care-provider interface displays vital data from multiple patient or wearers.
  • the wearable appliance has an indoor positioning system and processes these signals to determine a location (e.g., latitude, longitude, and altitude) of the monitor and, presumably, the patient or wearer. This location could be plotted on a map by the server, and used to locate a patient or wearer during an emergency, e.g. to dispatch an ambulance.
  • a location e.g., latitude, longitude, and altitude
  • This location could be plotted on a map by the server, and used to locate a patient or wearer during an emergency, e.g. to dispatch an ambulance.
  • the web page hosted by the server 200 includes a header field that lists general information about the patient or wearer (e.g. name, age, and ID number, general location, and information concerning recent measurements); a table that lists recently measured blood pressure data and suggested (i.e. doctor-recommended) values of these data; and graphs that plot the systolic and diastolic blood pressure data in a time-dependent manner.
  • the header field additionally includes a series of tabs that each link to separate web pages that include, e.g., tables and graphs corresponding to a different data measured by the wearable device such as calorie consumption/dissipation, ambulation pattern, sleeping pattern, heart rate, pulse oximetry, and temperature.
  • the table lists a series of data fields that show running average values of the patient or wearer's daily, monthly, and yearly vital parameters. The levels are compared to a series of corresponding ‘suggested’ values of vital parameters that are extracted from a database associated with the web site. The suggested values depend on, among other things, the patient or wearer's age, sex, and weight. The table then calculates the difference between the running average and suggested values to give the patient or wearer an idea of how their data compares to that of a healthy patient or wearer.
  • the web software interface may also include security measures such as authentication, authorization, encryption, credential presentation, and digital signature resolution.
  • the interface may also be modified to conform to industry-mandated, XML schema definitions, while being ‘backwards compatible’ with any existing XML schema definitions.
  • the system provides for self-registration of appliances by the user.
  • Data can be synchronized between the Repository and appliance(s) via the base station 20 .
  • the user can preview the readings received from the appliance(s) and reject erroneous readings.
  • the user or treating professional can set up the system to generate alerts against received data, based on pre-defined parameters.
  • the system can determine trends in received data, based on user defined parameters.
  • Appliance registration is the process by which a patient or wearer monitoring appliance is associated with one or more users of the system. This mechanism is also used when provisioning appliances for a user by a third party, such as a clinician (or their respective delegate).
  • the user or delegate logs into the portal to select one or more appliances and available for registration.
  • the base station server 20 broadcasts a query to all nodes in the mesh network to retrieve identification information for the appliance such as manufacturer information, appliance model information, appliance serial number and optionally a hub number (available on hub packaging).
  • the user may register more than one appliance at this point.
  • the system optionally sets up a service subscription for appliance(s) usage. This includes selecting service plans and providing payment information.
  • each appliance 8 transmits data to the base station 20 in an XML format for ease of interfacing and is either kept encrypted or in a non-readable format on the base station 20 for security reasons.
  • the base station 20 frequently collects and synchronizes data from the appliances 8 .
  • the base station 20 may use one of various transportation methods to connect to the repository on the server 200 using a PC as conduit or through a connection established using an embedded modem (connected to a phone line), a wireless router (DSL or cable wireless router), a cellular modem, or another network-connected appliance (such as, but not limited to, a web-phone, video-phone, embedded computer, PDA or handheld computer).
  • users may set up alerts or reminders that are triggered when one or more reading meet a certain set of conditions, depending on parameters defined by the user.
  • the user chooses the condition that they would like to be alerted to and by providing the parameters (e.g. threshold value for the reading) for alert generation.
  • Each alert may have an interval which may be either the number of data points or a time duration in units such as hours, days, weeks or months.
  • the user chooses the destination where the alert may be sent. This destination may include the user's portal, e-mail, pager, voice-mail or any combination of the above.
  • Trends are determined by applying mathematical and statistical rules (e.g. moving average and deviation) over a set of reading values.
  • Each rule is configurable by parameters that are either automatically calculated or are set by the user.
  • Different web pages may be designed and accessed depending on the end-user.
  • individual users have access to web pages that only their ambulation and blood pressure data (i.e., the patient or wearer interface), while organizations that support a large number of patient or wearers (nursing homes or hospitals) have access to web pages that contain data from a group of patient or wearers using a care-provider interface.
  • Other interfaces can also be used with the web site, such as interfaces used for: insurance companies, members of a particular company, clinical trials for pharmaceutical companies, and e-commerce purposes.
  • Vital patient or wearer data displayed on these web pages for example, can be sorted and analyzed depending on the patient or wearer's medical history, age, sex, medical condition, and geographic location.
  • the web pages also support a wide range of algorithms that can be used to analyze data once they are extracted from the data packets. For example, an instant message or email can be sent out as an ‘alert’ in response to blood pressure indicating a medical condition that requires immediate attention. Alternatively, the message could be sent out when a data parameter (e.g. systolic blood pressure) exceeds a predetermined value. In some cases, multiple parameters (e.g., fall detection, positioning data, and blood pressure) can be analyzed simultaneously to generate an alert message. In general, an alert message can be sent out after analyzing one or more data parameters using any type of algorithm.
  • a data parameter e.g. systolic blood pressure
  • multiple parameters e.g., fall detection, positioning data, and blood pressure
  • an alert message can be sent out after analyzing one or more data parameters using any type of algorithm.
  • a physician, other health care practitioner, or emergency personnel is provided with access to patient or wearer medical information through the server 200 .
  • the wearable appliance detects that the patient or wearer needs help, or if the patient or wearer decides help is needed, the system can call his or her primary care physician. If the patient or wearer is unable to access his or her primary care physician (or another practicing physician providing care to the patient or wearer) a call from the patient or wearer is received, by an answering service or a call center associated with the patient or wearer or with the practicing physician.
  • the call center determines whether the patient or wearer is exhibiting symptoms of an emergency condition by polling vital patient or wearer information generated by the wearable device, and if so, the answering service contacts 911 emergency service or some other emergency service.
  • the call center can review falls information, blood pressure information, and other vital information to determine if the patient or wearer is in need of emergency assistance. If it is determined that the patient or wearer in not exhibiting symptoms of an emergent condition, the answering service may then determine if the patient or wearer is exhibiting symptoms of a non-urgent condition. If the patient or wearer is exhibiting symptoms of a non-urgent condition, the answering service will inform the patient or wearer that he or she may log into the server 200 for immediate information on treatment of the condition. If the answering service determines that the patient or wearer is exhibiting symptoms that are not related to a non-urgent condition, the answering service may refer the patient or wearer to an emergency room, a clinic, the practicing physician (when the practicing physician is available) for treatment.
  • a system for delivering medical examination, diagnosis, and treatment services from a physician to a patient or wearer over a network includes a first plurality of health care practitioners at a plurality of terminals, each of the first plurality of health care practitioner terminals including a display device that shows information collected by the wearable appliances and a second plurality of patient or wearer terminals or wearable appliances in audiovisual communication over a network with any of the first plurality of health care practitioner terminals.
  • a call center is in communication with the patient or wearer wearable appliances and the health care practitioner terminals, the call center routing a call from a patient or wearer at one of the patient or wearer terminals to an available health care practitioner at one of the health care practitioner terminals, so that the available health care practitioner may carry on a two-way conversation with the patient or wearer.
  • a protocol database resident on a digital storage medium is accessible to each of the health care practitioner terminals. The protocol database contains a plurality of protocol segments such that a relevant segment of the protocol may be displayed in real time on the display device of the health care practitioner terminal of the available health care practitioner for use by the available health care practitioner in making an assessment of the patient or wearer.
  • the relevant segment of the protocol displayed in real time on the display device of the health care practitioner terminal may include an electronic link that establishes communication between the available health care practitioner and a third party and the third party may be one or more of a primary care physician, specialist, hospital, emergency room, ambulance service, clinic or pharmacy.
  • the patient or wearer wearable appliance may include establish a direct connection to the call center by pushing a button on the appliance.
  • the protocol database may be resident on a server that is in communication with each of the health care practitioner terminals and each of the health care practitioner terminals may include a local storage device and the protocol database is replicated on the local storage device of one or more of the physician terminals.
  • a system for delivering medical examination, diagnosis, and treatment services from a physician to a patient or wearer over a network includes a first plurality of health care practitioner terminals, each of the first plurality of health care practitioner terminals including a display device and a second plurality of patient or wearer terminals in audiovisual communication over a network with any of the first plurality of health care practitioner terminals.
  • Each of the second plurality of patient or wearer terminals includes a camera having pan, tilt and zoom modes, such modes being controlled from the first plurality of health care practitioner terminals.
  • a call center is in communication with the patient or wearer terminals and the health care practitioner terminals and the call center routes a call from a patient or wearer at one of the patient or wearer terminals to an available health care practitioner at one of the health care practitioner terminals, so that the available health care practitioner may carry on a two-way conversation with the patient or wearer and visually observe the patient or wearer.
  • the server 200 can optionally control a mobility assistance device such as a smart cane or robot.
  • the robotic smart cane sends video from its camera to the server 20 , which in turn coordinates the position of the robot, as determined by the cameras 10 mounted in the home as well as the robot camera.
  • the robot position, as determined by the server 20 is then transmitted to the robot for navigation.
  • the robot has a frame with an extended handle.
  • the handle includes handle sensors mounted thereon to detect the force places on each handle to receive as input the movement desired by the patient or wearer.
  • the robot has a control navigation system that accepts patient or wearer command as well as robot self-guidance command.
  • the mobility is a result of give-and-take between the patient or wearer's self-propulsion and the walker's automated reactions.
  • the robot determines that the patient or wearer is interested in turning and actuates the drive systems appropriately.
  • the drive system provides gentle resistance that tells the patient or wearer of an impending collision.
  • FIG. 5 shows an exemplary process to monitor patient or wearer.
  • the process sets up mesh network appliances ( 1000 ).
  • the process determines patient or wearer position using in-door positioning system ( 1002 ).
  • the process determines patient or wearer movement using accelerometer output ( 1004 ).
  • Sharp accelerations may be used to indicate fall.
  • the z axis accelerometer changes can indicate the height of the appliance from the floor and if the height is near zero, the system infers that the patient or wearer had fallen.
  • the system can also determine vital parameter including patient or wearer heart rate ( 1006 ).
  • the system determines if patient or wearer needs assistance based on in-door position, fall detection and vital parameter ( 1008 ).
  • the system confirms the fall by communicating with the patient or wearer prior to calling a third party such as the patient or wearer's physician, nurse, family member, 911 , 511 , 411 , or a paid call center to get assistance for the patient or wearer ( 1010 ). If confirmed or if the patient or wearer is non-responsive, the system contacts the third party and sends voice over mesh network to appliance on the patient or wearer to allow one or more third parties to talk with the patient or wearer ( 1012 ). If needed, the system calls and/or conferences emergency personnel into the call ( 1014 ).
  • a third party such as the patient or wearer's physician, nurse, family member, 911 , 511 , 411 , or a paid call center to get assistance for the patient or wearer ( 1010 ). If confirmed or if the patient or wearer is non-responsive, the system contacts the third party and sends voice over mesh network to appliance on the patient or wearer to allow one or more third parties to talk with the patient or wearer ( 1012 ). If
  • the system continuously records information into memory until the home mesh network is reached or until the monitoring appliance reaches an internet access point. While the wearable appliance is outside of the mesh network range, the device searches for a cell phone with an expansion card plugged into a cell phone expansion slot such as the SDIO slot. If the wearable appliance detects a cell phone that is mesh network compatible, the wearable appliance communicates with the cell phone and provides information to the server 200 using the cellular connection.
  • a Zigbee SDIO card from C-guys, Inc., enables device-to-device communications for PDAs and smart phones.
  • C-guys' ZigBee SDIO card includes the company's CG-100 SDIO application interface controller, which is designed to convert an application signal to an SD signal (or vice versa).
  • the ZigBee card can provide signal ranges of up to 10 m in the 2.4 GHz band and data rates of up to 200 kbps.
  • the card has peer-to-peer communications mode and supports direct application to PDAs or any SD supported hand-held cell phones.
  • the PDA or cell phone can provide a GPS position information instead of the indoor position information generated by the mesh network appliances 8 .
  • the cell phone GPS position information, accelerometer information and vital information such as heart rate information is transmitted using the cellular channel to the server 200 for processing as is normal.
  • the wearable appliance can communicate over these protocols using a suitable mesh network interface to the phone.
  • the wearable appliance can initiate a distress call to the authorized third party using cellular, WiFi, WiMAX, or UWB protocols as is available.
  • FIG. 6A shows a portable embodiment of the present invention where the voice recognizer is housed in a wrist-watch.
  • the device includes a wrist-watch sized case 1380 supported on a wrist band 1374 .
  • the case 1380 may be of a number of variations of shape but can be conveniently made a rectangular, approaching a box-like configuration.
  • the wrist-band 1374 can be an expansion band or a wristwatch strap of plastic, leather or woven material.
  • the processor or CPU of the wearable appliance is connected to a radio frequency (RF) transmitter/receiver (such as a Bluetooth device, a Zigbee device, a WiFi device, a WiMAX device, or an 802.X transceiver, among others.
  • RF radio frequency
  • the back of the device is a conductive metal electrode 1381 that in conjunction with a second electrode 1383 mounted on the wrist band 1374 , enables differential EKG or ECG to be measured.
  • the electrical signal derived from the electrodes is typically 1 mV peak-peak. In one embodiment where only one electrode 1381 or 1383 is available, an amplification of about 1000 is necessary to render this signal usable for heart rate detection.
  • a differential amplifier is used to take advantage of the identical common mode signals from the EKG contact points, the common mode noise is automatically cancelled out using a matched differential amplifier.
  • the differential amplifier is a Texas Instruments INA321 instrumentation amplifier that has matched and balanced integrated gain resistors.
  • the INA321 provides a fixed amplification of 5 ⁇ for the EKG signal. With its CMRR specification of 94 dB extended up to 3 KHz the INA321 rejects the common mode noise signals including the line frequency and its harmonics.
  • the quiescent current of the INA321 is 40 mA and the shut down mode current is less than 1 mA.
  • the amplified EKG signal is internally fed to the on chip analog to digital converter.
  • the ADC samples the EKG signal with a sampling frequency of 512 Hz. Precise sampling period is achieved by triggering the ADC conversions with a timer that is clocked from a 32.768 kHz low frequency crystal oscillator.
  • the sampled EKG waveform contains some amount of super imposed line frequency content. This line frequency noise is removed by digitally filtering the samples.
  • a 17-tap low pass FIR filter with pass band upper frequency of 6 Hz and stop band lower frequency of 30 Hz is implemented in this application.
  • the filter coefficients are scaled to compensate the filter attenuation and provide additional gain for the EKG signal at the filter output. This adds up to a total amplification factor of greater than 1000 ⁇ for the EKG signal.
  • the wrist band 1374 can also contain other electrical devices such as ultrasound transducer, optical transducer or electromagnetic sensors, among others.
  • the transducer is an ultrasonic transducer that generates and transmits an acoustic wave upon command from the CPU during one period and listens to the echo returns during a subsequent period.
  • the transmitted bursts of sonic energy are scattered by red blood cells flowing through the subject's radial artery, and a portion of the scattered energy is directed back toward the ultrasonic transducer 84 .
  • the time required for the return energy to reach the ultrasonic transducer varies according to the speed of sound in the tissue and according to the depth of the artery. Typical transit times are in the range of 6 to 7 microseconds.
  • the ultrasonic transducer is used to receive the reflected ultrasound energy during the dead times between the successive transmitted bursts.
  • the frequency of the ultrasonic transducer's transmit signal will differ from that of the return signal, because the scattering red blood cells within the radial artery are moving.
  • the return signal effectively, is frequency modulated by the blood flow velocity.
  • a driving and receiving circuit generates electrical pulses which, when applied to the transducer, produce acoustic energy having a frequency on the order of 8 MHz, a pulse width or duration of approximately 8 microseconds, and a pulse repetition interval (PRI) of approximately 16 ⁇ s, although other values of frequency, pulse width, and PRI may be used.
  • the transducer 84 emits an 8 microsecond pulse, which is followed by an 8 microsecond “listen” period, every 16 microseconds. The echoes from these pulses are received by the ultrasonic transducer 84 during the listen period.
  • the ultrasonic transducer can be a ceramic piezoelectric device of the type well known in the art, although other types may be substituted.
  • An analog signal representative of the Doppler frequency of the echo is received by the transducer and converted to a digital representation by the ADC, and supplied to the CPU for signal processing.
  • the digitized Doppler frequency is scaled to compute the blood flow velocity within the artery based on the Doppler frequency.
  • the CPU applies the vital model to the corresponding blood flow velocity to produce the estimated blood pressure value.
  • calibration Prior to operation, calibration is done using a calibration device and the monitoring device to simultaneously collect blood pressure values (systolic, diastolic pressures) and a corresponding blood flow velocity generated by the monitoring device.
  • the calibration device is attached to the base station and measures systolic and diastolic blood pressure using a cuff-based blood pressure monitoring device that includes a motor-controlled pump and data-processing electronics.
  • the transducer collects patient or wearer data in parallel and through the watch's radio transmitter, blood flow velocity is sent to the base station for generating a computer model that converts the blood flow velocity information into systolic and diastolic blood pressure values and this information is sent wirelessly from the base station to the watch for display and to a remote server if needed. This process is repeated at a later time (e.g., 15 minutes later) to collect a second set of calibration parameters.
  • the computer model fits the blood flow velocity to the systolic/diastolic values.
  • the computer trains a neural network or HMM to recognize the systolic and diastolic blood pressure values.
  • the system is ready for real-time blood pressure monitoring.
  • the transducer directs ultrasound at the patient or wearer's artery and subsequently listens to the echos therefrom.
  • the echoes are used to determine blood flow, which is fed to the computer model to generate the systolic and diastolic pressure values as well as heart rate value.
  • the CPU's output signal is then converted to a form useful to the user such as a digital or analog display, computer data file, or audible indicator.
  • the output signal can drive a speaker to enable an operator to hear a representation of the Doppler signals and thereby to determine when the transducer is located approximately over the radial artery.
  • the output signal can also be wirelessly sent to a base station for subsequent analysis by a physician, nurse, caregiver, or treating professional.
  • the output signal can also be analyzed for medical attention and medical treatment.
  • the acoustic pulses are range-gated with a more complex implementation of the gate logic.
  • range-gating is a technique by which the pulse-to-pulse interval is varied based on the receipt of range information from earlier emitted and reflected pulses.
  • the system may be “tuned” to receive echoes falling within a specific temporal window which is chosen based on the range of the echo-producing entity in relation to the acoustic source.
  • the delay time before the gate is turned on determines the depth of the sample volume.
  • the amount of time the gate is activated establishes the axial length of the sample volume.
  • the acoustic source in this case the ultrasonic transducer 84
  • the pulse repetition interval is shortened such that the system may obtain more samples per unit time, thereby increasing its resolution. It will be recognized that other acoustic processing techniques may also be used, all of which are considered to be equivalent.
  • the transducer can be an optical transducer.
  • the optical transducer can be a light source and a photo-detector embedded in the wrist band portions 1374 .
  • the light source can be light-emitting diodes that generate red ( ⁇ ⁇ 630 nm) and infrared ( ⁇ ⁇ 900 nm) radiation, for example.
  • the light source and the photo-detector are slidably adjustable and can be moved along the wrist band to optimize beam transmission and pick up. As the heart pumps blood through the patient or wearer's finger, blood cells absorb and transmit varying amounts of the red and infrared radiation depending on how much oxygen binds to the cells' hemoglobin.
  • the photo-detector detects transmission at the predetermined wavelengths, for example red and infrared wavelengths, and provides the detected transmission to a pulse-oximetry circuit embedded within the wrist-watch.
  • the output of the pulse-oximetry circuit is digitized into a time-dependent optical waveform, which is then sent back to the pulse-oximetry circuit and analyzed to determine the user's vital signs.
  • the wrist band 1374 is a flexible plastic material incorporated with a flexible magnet.
  • the magnet provides a magnetic field, and one or more electrodes similar to electrode 1383 are positioned on the wrist band to measure voltage drops which are proportional to the blood velocity.
  • the electromagnetic embodiment may be mounted on the upper arm of the patient or wearer, on the ankle or on the neck where peripheral blood vessels pass through and their blood velocity may be measured with minimal interruptions.
  • the flexible magnet produces a pseudo-uniform (non-gradient) magnetic field.
  • the magnetic field can be normal to the blood flow direction when wrist band 1374 is mounted on the user's wrist or may be a rotative pseudo-uniform magnetic field so that the magnetic field is in a transversal direction in respect to the blood flow direction.
  • the electrode output signals are processed to obtain a differential measurement enhancing the signal to noise ratio.
  • the flow information is derived based on the periodicity of the signals.
  • the decoded signal is filtered over several periods and then analyzed for changes used to estimate artery and vein blood flow. Systemic stroke volume and cardiac output may be calculated from the peripheral SV index value.
  • the wrist-band 1374 further contains an antenna 1376 for transmitting or receiving radio frequency signals.
  • the wristband 1374 and the antenna 1376 inside the band are mechanically coupled to the top and bottom sides of the wrist-watch housing 1380 .
  • the antenna 1376 is electrically coupled to a radio frequency transmitter and receiver for wireless communications with another computer or another user.
  • a wrist-band is disclosed, a number of substitutes may be used, including a belt, a ring holder, a brace, or a bracelet, among other suitable substitutes known to one skilled in the art.
  • the housing 1380 contains the processor and associated peripherals to provide the human-machine interface.
  • a display 1382 is located on the front section of the housing 1380 .
  • a speaker 1384 , a microphone 1388 , and a plurality of push-button switches 1386 and 1390 are also located on the front section of housing 1380 .
  • the electronic circuitry housed in the watch case 1380 detects adverse conditions such as falls or seizures.
  • the circuitry can recognize speech, namely utterances of spoken words by the user, and converting the utterances into digital signals.
  • the circuitry for detecting and processing speech to be sent from the wristwatch to the base station 20 over the mesh network includes a central processing unit (CPU) connected to a ROM/RAM memory via a bus.
  • the CPU is a preferably low power 16-bit or 32-bit microprocessor and the memory is preferably a high density, low-power RAM.
  • the CPU is coupled via the bus to processor wake-up logic, one or more accelerometers to detect sudden movement in a patient or wearer, an ADC 102 which receives speech input from the microphone.
  • the ADC converts the analog signal produced by the microphone into a sequence of digital values representing the amplitude of the signal produced by the microphone at a sequence of evenly spaced times.
  • the CPU is also coupled to a digital to analog (D/A) converter, which drives the speaker to communicate with the user. Speech signals from the microphone are first amplified, pass through an antialiasing filter before being sampled.
  • the front-end processing includes an amplifier, a bandpass filter to avoid antialiasing, and an analog-to-digital (A/D) converter or a CODEC.
  • ADC, the DAC and the interface for wireless transceiver and switches may be integrated into one integrated circuit to save space.
  • the wrist watch acts as a walkie-talkie so that voice is received over the mesh network by the base station 20 and then delivered to a call center over the POTS or PSTN network.
  • voice is provided to the call center using the Internet through suitable VOIP techniques.
  • speech recognition such as a speech recognizer is discussed in U.S. Pat. No. 6,070,140 by the inventor of the instant invention, the content of which is incorporated by reference.
  • the wireless nodes convert freely available energy inherent in most operating environments into conditioned electrical power.
  • Energy harvesting is defined as the conversion of ambient energy into usable electrical energy.
  • the environment represents a relatively inexhaustible source of energy.
  • Energy harvesters can be based on piezoelectric devices, solar cells or electromagnetic devices that convert mechanical vibrations.
  • Power generation with piezoelectrics can be done with body vibrations or by physical compression (impacting the material and using a rapid deceleration using foot action, for example).
  • the vibration energy harvester consists of three main parts.
  • a piezoelectric transducer (PZT) serves as the energy conversion device, a specialized power converter rectifies the resulting voltage, and a capacitor or battery stores the power.
  • the PZT takes the form of an aluminum cantilever with a piezoelectric patch.
  • the vibration-induced strain in the PZT produces an ac voltage.
  • the system repeatedly charges a battery or capacitor, which then operates the EKG/EMG sensors or other sensors at a relatively low duty cycle.
  • a vest made of piezoelectric materials can be wrapped around a person's chest to generate power when strained through breathing as breathing increases the circumference of the chest for an average human by about 2.5 to 5 cm. Energy can be constantly harvested because breathing is a constant activity, even when a person is sedate.
  • piezoelectric materials are placed in between the sole and the insole; therefore as the shoe bends from walking, the materials bend along with it. When the stave is bent, the piezoelectric sheets on the outside surface are pulled into expansion, while those on the inside surface are pushed into contraction due to their differing radii of curvature, producing voltages across the electrodes.
  • PZT materials from Advanced Cerametrics, Inc., Lambertville, N.J.
  • VSSP Advanced Cerametric's viscose suspension spinning process
  • VSSP can produce fibers ranging in diameter from 10 ⁇ m ( 1/50 of a human hair) to 250 ⁇ m and mechanical to electrical transduction efficiency can reach 70 percent compared with the 16-18 percent common to solar energy conversion.
  • the composite fibers can be molded into user-defined shapes and is flexible and motion-sensitive.
  • energy is harvested by the body motion such as the foot action or vibration of the PZT composites.
  • the energy is converted and stored in a low-leakage charge circuit until a predetermined threshold voltage is reached. Once the threshold is reached, the regulated power is allowed to flow for a sufficient period to power the wireless node such as the Zigbee CPU/transceiver.
  • the transmission is detected by nearby wireless nodes that are AC-powered and forwarded to the base station for signal processing. Power comes from the vibration of the system being monitored and the unit requires no maintenance, thus reducing life-cycle costs.
  • the housing of the unit can be PZT composite, thus reducing the weight.
  • body energy generation systems include electro active polymers (EAPs) and dielectric elastomers.
  • EAPs are a class of active materials that have a mechanical response to electrical stimulation and produce an electric potential in response to mechanical stimulation.
  • EAPs are divided into two categories, electronic, driven by electric field, and ionic, driven by diffusion of ions.
  • ionic polymers are used as biological actuators that assist muscles for organs such as the heart and eyes. Since the ionic polymers require a solvent, the hydrated human body provides a natural environment. Polymers are actuated to contract, assisting the heart to pump, or correcting the shape of the eye to improve vision. Another use is as miniature surgical tools that can be inserted inside the body.
  • EAPs can also be used as artificial smooth muscles, one of the original ideas for EAPs. These muscles could be placed in exoskeletal suits for soldiers or prosthetic devices for disabled persons.
  • ionic polymers can be the energy storage vessel for harvesting energy.
  • the capacitive characteristics of the EAP allow the polymers to be used in place of a standard capacitor bank.
  • EAP based jacket When a person moves his/her arms, it will put the electro active material around the elbow in tension to generate power.
  • Dielectric elastomers can support 50-100% area strain and generate power when compressed.
  • a shoe type electric generator can be deployed by placing the dielectric elastomers in the sole of a shoe. The constant compressive force provided by the feet while walking would ensure adequate power generation.
  • electromagnetics including coils, magnets, and a resonant beam, and micro-generators can be used to produce electricity from readily available foot movement.
  • a transmitter needs about 30 mW, but the device transmits for only tens of milliseconds, and a capacitor in the circuit can be charged using harvested energy and the capacitor energy drives the wireless transmission, which is the heaviest power requirement.
  • Electromagnetic energy harvesting uses a magnetic field to convert mechanical energy to electrical. A coil attached to the oscillating mass traverses through a magnetic field that is established by a stationary magnet. The coil travels through a varying amount of magnetic flux, inducing a voltage according to Faraday's law.
  • Electromagnetic devices use the motion of a magnet relative to a wire coil to generate an electric voltage.
  • a permanent magnet is placed inside a wound coil. As the magnet is moved through the coil it causes a changing magnetic flux. This flux is responsible for generating the voltage which collects on the coil terminals. This voltage can then be supplied to an electrical load.
  • electromagnetic devices are placed inside the heel of a shoe.
  • One implementation uses a sliding magnet-coil design, the other, opposing magnets with one fixed and one free to move inside the coil. If the length of the coil is increased, which increases the turns, the device is able to produce more power.
  • energy harvesting relies on the changing capacitance of vibration-dependant varactors.
  • a varactor, or variable capacitor is initially charged and, as its plates separate because of vibrations, mechanical energy is transformed into electrical energy.
  • MEMS variable capacitors are fabricated through relatively mature silicon micro-machining techniques.
  • the wireless node can be powered from thermal and/or kinetic energy. Temperature differentials between opposite segments of a conducting material result in heat flow and consequently charge flow, since mobile, high-energy carriers diffuse from high to low concentration regions.
  • Thermopiles consisting of n- and p-type materials electrically joined at the high-temperature junction are therefore constructed, allowing heat flow to carry the dominant charge carriers of each material to the low temperature end, establishing in the process a voltage difference across the base electrodes.
  • the generated voltage and power is proportional to the temperature differential and the Seebeck coefficient of the thermoelectric materials.
  • Body heat from a user's wrist is captured by a thermoelectric element whose output is boosted and used to charge a lithium ion rechargeable battery.
  • the unit utilizes the Seeback Effect which describes the voltage created when a temperature difference exists across two different metals.
  • the thermoelectric generator takes body heat and dissipates it to the ambient air, creating electricity in the process.
  • the kinetic energy of a person's movement is converted into energy.
  • a small weight inside the wireless node moves like a pendulum and turns a magnet to produce electricity which can be stored in a super-capacitor or a rechargeable lithium battery.
  • energy extraction from vibrations is based on the movement of a “spring-mounted” mass relative to its support frame. Mechanical acceleration is produced by vibrations that in turn cause the mass component to move and oscillate (kinetic energy). This relative displacement causes opposing frictional and damping forces to be exerted against the mass, thereby reducing and eventually extinguishing the oscillations. The damping forces literally absorb the kinetic energy of the initial vibration.
  • This energy can be converted into electrical energy via an electric field (electrostatic), magnetic field (electromagnetic), or strain on a piezoelectric material.
  • Another embodiment extracts energy from the surrounding environment using a small rectenna (microwave-power receivers or ultrasound power receivers) placed in patches or membranes on the skin or alternatively injected underneath the skin.
  • a small rectenna microwave-power receivers or ultrasound power receivers
  • the rectanna converts the received emitted power back to usable low frequency/dc power.
  • a basic rectanna consists of an antenna, a low pass filter, an ac/dc converter and a dc bypass filter.
  • the rectanna can capture renewable electromagnetic energy available in the radio frequency (RF) bands such as AM radio, FM radio, TV, very high frequency (VHF), ultra high frequency (UHF), global system for mobile communications (GSM), digital cellular systems (DCS) and especially the personal communication system (PCS) bands, and unlicensed ISM bands such as 2.4 GHz and 5.8 GHz bands, among others.
  • RF radio frequency
  • the system captures the ubiquitous electromagnetic energy (ambient RF noise and signals) opportunistically present in the environment and transforming that energy into useful electrical power.
  • the energy-harvesting antenna is preferably designed to be a wideband, omnidirectional antenna or antenna array that has maximum efficiency at selected bands of frequencies containing the highest energy levels.
  • each antenna in the array can be designed to have maximum efficiency at the same or different bands of frequency from one another.
  • the collected RF energy is then converted into usable DC power using a diode-type or other suitable rectifier. This power may be used to drive, for example, an amplifier/filter module connected to a second antenna system that is optimized for a particular frequency and application.
  • One antenna system can act as an energy harvester while the other antenna acts as a signal transmitter/receiver.
  • the antenna circuit elements are formed using standard wafer manufacturing techniques.
  • the antenna output is stepped up and rectified before presented to a trickle charger.
  • the charger can recharge a complete battery by providing a larger potential difference between terminals and more power for charging during a period of time. If battery includes individual micro-battery cells, the trickle charger provides smaller amounts of power to each individual battery cell, with the charging proceeding on a cell by cell basis. Charging of the battery cells continues whenever ambient power is available. As the load depletes cells, depleted cells are switched out with charged cells. The rotation of depleted cells and charged cells continues as required. Energy is banked and managed on a micro-cell basis.
  • photovoltaic cells convert incident light into electrical energy.
  • Each cell consists of a reverse biased pn+ junction, where light interfaces with the heavily doped and narrow n+ region. Photons are absorbed within the depletion region, generating electron-hole pairs. The built-in electric field of the junction immediately separates each pair, accumulating electrons and holes in the n+ and p-regions, respectively, and establishing in the process an open circuit voltage. With a load connected, accumulated electrons travel through the load and recombine with holes at the p-side, generating a photocurrent that is directly proportional to light intensity and independent of cell voltage.
  • an intermittent charger waits until sufficient energy is accumulated in a specially designed transitional storage such as a capacitor before attempting to transfer it to the storage device, lithium-ion battery, in this case.
  • a specially designed transitional storage such as a capacitor
  • the system must partition its functions into time slices (time-division multiplex), ensuring enough energy is harvested and stored in the battery before engaging in power-sensitive tasks.
  • Energy can be stored using a secondary (rechargeable) battery and/or a supercapacitor.
  • the different characteristics of batteries and supercapacitors make them suitable for different functions of energy storage.
  • Supercapacitors provide the most volumetrically efficient approach to meeting high power pulsed loads.
  • a battery would be the preferred energy storage device. If the energy must be delivered quickly, as in a pulse for RF communications, but long term storage is not critical, a supercapacitor would be sufficient.
  • the system can employ i) a battery (or several batteries), ii) a supercapacitor (or supercapacitors), or iii) a combination of batteries and supercapacitors appropriate for the application of interest.
  • a microbattery and a microsupercapacitor can be used to store energy.
  • supercapacitors are electrochemical devices; however, rather than generating a voltage from a chemical reaction, supercapacitors store energy by separating charged species in an electrolyte.
  • a flexible, thin-film, rechargeable battery from Cymbet Corp. of Elk River, Minn. provides 3.6V and can be recharged by a reader.
  • the battery cells can be from 5 to 25 microns thick.
  • the batteries can be recharged with solar energy, or can be recharged by inductive coupling.
  • the tag is put within range of a coil attached to an energy source. The coil “couples” with the antenna on the RFID tag, enabling the tag to draw energy from the magnetic field created by the two coils.
  • FIG. 6B shows an exemplary mesh network working with the wearable appliance of FIG. 6A .
  • Data collected and communicated on the display 1382 of the watch as well as voice is transmitted to a base station 1390 for communicating over a network to an authorized party 1394 .
  • the watch and the base station is part of a mesh network that may communicate with a medicine cabinet to detect opening or to each medicine container 1391 to detect medication compliance.
  • Other devices include mesh network thermometers, scales, or exercise devices.
  • the mesh network also includes a plurality of home/room appliances 1392 - 1399 . The ability to transmit voice is useful in the case the patient or wearer has fallen down and cannot walk to the base station 1390 to request help.
  • the watch captures voice from the user and transmits the voice over the Zigbee mesh network to the base station 1390 .
  • the base station 1390 in turn dials out to an authorized third party to allow voice communication and at the same time transmits the collected patient or wearer vital parameter data and identifying information so that help can be dispatched quickly, efficiently and error-free.
  • the base station 1390 is a POTS telephone base station connected to the wired phone network.
  • the base station 1390 can be a cellular telephone connected to a cellular network for voice and data transmission.
  • the base station 1390 can be a WiMAX or 802.16 standard base station that can communicate VOIP and data over a wide area network.
  • Zigbee or 802.15 appliances communicate locally and then transmits to the wide area network (WAN) such as the Internet over WiFi or WiMAX.
  • WAN wide area network
  • the base station can communicate with the WAN over POTS and a wireless network such as cellular or WiMAX or both.
  • FIG. 6B includes bioelectrical impedance (BI) spectroscopy sensors in addition to or as alternates to EKG sensors and heart sound transducer sensors.
  • BI spectroscopy is based on Ohm's Law: current in a circuit is directly proportional to voltage and inversely proportional to resistance in a DC circuit or impedance in an alternating current (AC) circuit.
  • Bioelectric impedance exchanges electrical energy with the patient or wearer body or body segment.
  • the exchanged electrical energy can include alternating current and/or voltage and direct current and/or voltage.
  • the exchanged electrical energy can include alternating currents and/or voltages at one or more frequencies.
  • the alternating currents and/or voltages can be provided at one or more frequencies between 100 Hz and 1 MHz, preferably at one or more frequencies between 5 KHz and 250 KHz.
  • a BI instrument operating at the single frequency of 50 KHz reflects primarily the extra cellular water compartment as a very small current passes through the cell. Because low frequency ( ⁇ 1 KHz) current does not penetrate the cells and that complete penetration occurs only at a very high frequency (>1 MHz), multi-frequency BI or bioelectrical impedance spectroscopy devices can be used to scan a wide range of frequencies.
  • two electrodes on the wrist watch or wrist band are used to apply AC or DC constant current into the body or body segment.
  • the voltage signal from the surface of the body is measured in terms of impedance using the same or an additional two electrodes on the watch or wrist band.
  • one electrode on the wrist watch or wrist band is used to apply AC or DC constant current into the body or body segment.
  • the voltage signal from the surface of the body is measured in terms of impedance using the same or an alternative electrode on the watch or wrist band.
  • the system of FIG. 6B may include a BI patch 1400 that wirelessly communicates BI information with the wrist watch.
  • Other patches 1400 can be used to collect other medical information or vital parameter and communicate with the wrist watch or base station or the information could be relayed through each wireless node or appliance to reach a destination appliance such as the base station, for example.
  • the system of FIG. 6B can also include a head-cap 1402 that allows a number of EEG probes access to the brain electrical activities, EKG probes to measure cranial EKG activity, as well as BI probes to determine cranial fluid presence indicative of a stroke.
  • the EEG probes allow the system to determine cognitive status of the patient or wearer to determine whether a stroke had just occurred, the EKG and the BI probes provide information on the stroke to enable timely treatment to minimize loss of functionality to the patient or wearer if treatment is delayed.
  • Bipolar or tetrapolar electrode systems can be used in the BI instruments.
  • the tetrapolar system provides a uniform current density distribution in the body segment and measures impedance with less electrode interface artifact and impedance errors.
  • a pair of surface electrodes I 1 , I 2
  • a pair of electrodes E 1 , E 2
  • Circular flat electrodes as well as band type electrodes can be used.
  • the electrodes are in direct contact with the skin surface.
  • the voltage measurements may employ one or more contactless, voltage sensitive electrodes such as inductively or capacitively coupled electrodes.
  • the current application and the voltage measurement electrodess in these embodiments can be the same, adjacent to one another, or at significantly different locations.
  • the electrode(s) can apply current levels from 20 uA to 10 mA rms at a frequency range of 20-100 KHz.
  • a constant current source and high input impedance circuit is used in conjunction with the tetrapolar electrode configuration to avoid the contact pressure effects at the electrode-skin interface.
  • the BI sensor can be a Series Model which assumes that there is one conductive path and that the body consists of a series of resistors. An electrical current, injected at a single frequency, is used to measure whole body impedance (i.e., wrist to ankle) for the purpose of estimating total body water and fat free mass.
  • the BI instrument can be a Parallel BI Model. In this model of impedance, the resistors and capacitors are oriented both in series and in parallel in the human body.
  • Whole body BI can be used to estimate TBW and FFM in healthy subjects or to estimate intracellular water (ICW) and body cell mass (BCM). High-low BI can be used to estimate extracellular water (ECW) and total body water (TBW).
  • Multi-frequency BI can be used to estimate ECW, ICW, and TBW; to monitor changes in the ECW/BCM and ECW/TBW ratios in clinical populations.
  • the instrument can also be a Segmental BI Model and can be used in the evaluation of regional fluid changes and in monitoring extra cellular water in patient or wearers with abnormal fluid distribution, such as those undergoing hemodialysis. Segmental BI can be used to measure fluid distribution or regional fluid accumulation in clinical populations.
  • Upper-body and Lower-body BI can be used to estimate percentage BF in healthy subjects with normal hydration status and fluid distribution.
  • the BI sensor can be used to detect acute dehydration, pulmonary edema (caused by mitral stenosis or left ventricular failure or congestive heart failure, among others), or hyperhydration cause by kidney dialysis, for example.
  • the system determines the impedance of skin and subcutaneous adipose tissue using tetrapolar and bipolar impedance measurements.
  • the inner electrodes act both as the electrodes that send the current (outer electrodes in the tetrapolar arrangement) and as receiving electrodes. If the outer two electrodes (electrodes sending current) are superimposed onto the inner electrodes (receiving electrodes) then a bipolar BIA arrangement exists with the same electrodes acting as receiving and sending electrodes.
  • the difference in impedance measurements between the tetrapolar and bipolar arrangement reflects the impedance of skin and subcutaneous fat.
  • the difference between the two impedance measurements represents the combined impedance of skin and subcutaneous tissue at one or more sites.
  • the system determines the resistivities of skin and subcutaneous adipose tissue, and then calculates the skinfold thickness (mainly due to adipose tissue).
  • BI analysis methods can be used in a variety of clinical applications such as to estimate body composition, to determine total body water, to assess compartmentalization of body fluids, to provide cardiac monitoring, measure blood flow, dehydration, blood loss, wound monitoring, ulcer detection and deep vein thrombosis.
  • Other uses for the BI sensor includes detecting and/or monitoring hypovolemia, hemorrhage or blood loss.
  • the impedance measurements can be made sequentially over a period of in time; and the system can determine whether the subject is externally or internally bleeding based on a change in measured impedance.
  • the watch can also report temperature, heat flux, vasodilation and blood pressure along with the BI information.
  • the BI system monitors cardiac function using impedance cardiography (ICG) technique.
  • ICG provides a single impedance tracing, from which parameters related to the pump function of the heart, such as cardiac output (CO), are estimated.
  • ICG measures the beat-to-beat changes of thoracic bioimpedance via four dual sensors applied on the neck and thorax in order to calculate stroke volume (SV).
  • SV stroke volume
  • ⁇ ⁇ ⁇ V ⁇ ⁇ ⁇ L 2 Z 0 2 ⁇ ⁇ ⁇ ⁇ Z
  • SV is determined as a function of the first derivative of the impedance waveform (dZ/dtmax) and the left ventricular ejection time (LVET)
  • L is approximated to be 17% of the patient or wearer's height (H) to yield the following:
  • the impedance cardiographic embodiment allows hemodynamic assessment to be regularly monitored to avoid the occurrence of an acute cardiac episode.
  • the system provides an accurate, noninvasive measurement of cardiac output (CO) monitoring so that ill and surgical patient or wearers undergoing major operations such as coronary artery bypass graft (CABG) would benefit.
  • CO cardiac output
  • CABG coronary artery bypass graft
  • SVR systemic vascular resistance
  • CO can be determined according to the following expression:
  • CO can be determined for every heart-beat.
  • the system can determine SV and CO on a beat-to-beat basis.
  • an array of BI sensors are place in proximity to the heart.
  • the array of BI sensors detect the presence or absence, or rate of change, or body fluids proximal to the heart.
  • the BI sensors can be supplemented by the EKG sensors.
  • Another unhealthy condition is known as congestive heart failure (“CHF”).
  • CHF also known as heart failure, is a condition where the heart has inadequate capacity to pump sufficient blood to meet metabolic demand.
  • CHF may be caused by a variety of sources, including, coronary artery disease, myocardial infarction, high blood pressure, heart valve disease, cardiomyopathy, congenital heart disease, endocarditis, myocarditis, and others.
  • Unhealthy heart conditions may be treated using a cardiac rhythm management (CRM) system.
  • CRM systems or pulse generator systems, include defibrillators (including implantable cardioverter defibrillator), pacemakers and other cardiac resynchronization devices.
  • BIA measurements can be made using an array of bipolar or tetrapolar electrodes that deliver a constant alternating current at 50 KHz frequency. Whole body measurements can be done using standard right-sided. The ability of any biological tissue to resist a constant electric current depends on the relative proportions of water and electrolytes it contains, and is called resistivity (in Ohms/cm 3).
  • the measuring of bioimpedance to assess congestive heart failure employs the different bio-electric properties of blood and lung tissue to permit separate assessment of: (a) systemic venous congestion via a low frequency or direct current resistance measurement of the current path through the right ventricle, right atrium, superior vena cava, and subclavian vein, or by computing the real component of impedance at a high frequency, and (b) pulmonary congestion via a high frequency measurement of capacitive impedance of the lung.
  • the resistance is impedance measured using direct current or alternating current (AC) which can flow through capacitors.
  • AC alternating current
  • a belt is worn by the patient or wearer with a plurality of BI probes positioned around the belt perimeter.
  • the output of the tetrapolar probes is processed using a second-order Newton-Raphson method to estimate the left and right-lung resistivity values in the thoracic geometry.
  • the locations of the electrodes are marked.
  • the belt is worn around the patient or wearer's thorax while sitting, and the reference electrode is attached to his waist.
  • the data is collected during tidal respiration to minimize lung resistivity changes due to breathing, and lasts approximately one minute.
  • the process is repeated periodically and the impedance trend is analyzed to detect CHF.
  • the system provides vital parameters to a call center and the call center can refer to a physician for consultation or can call 911 for assistance.
  • an array of noninvasive thoracic electrical bioimpedance monitoring probes can be used alone or in conjunction with other techniques such as impedance cardiography (ICG) for early comprehensive cardiovascular assessment and trending of acute trauma victims.
  • ICG impedance cardiography
  • This embodiment provides early, continuous cardiovascular assessment to help identify patient or wearers whose injuries were so severe that they were not likely to survive. This included severe blood and/or fluid volume deficits induced by trauma, which did not respond readily to expeditious volume resuscitation and vasopressor therapy.
  • One exemplary system monitors cardiorespiratory variables that served as statistically significant measures of treatment outcomes: Qt, BP, pulse oximetry, and transcutaneous Po2 (Ptco2).
  • a high Qt may not be sustainable in the presence of hypovolemia, acute anemia, pre-existing impaired cardiac function, acute myocardial injury, or coronary ischemia.
  • a fall in Ptco2 could also be interpreted as too high a metabolic demand for a patient or wearer's cardiovascular reserve. Too high a metabolic demand may compromise other critical organs. Acute lung injury from hypotension, blunt trauma, and massive fluid resuscitation can drastically reduce respiratory reserve.
  • thoracic impedance a resistive or reactive impedance associated with at least a portion of a thorax of a living organism.
  • the thoracic impedance signal is influenced by the patient or wearer's thoracic intravascular fluid tension, heart beat, and breathing (also referred to as “respiration” or “ventilation”).
  • a “de” or “baseline” or “low frequency” component of the thoracic impedance signal (e.g., less than a cutoff value that is approximately between 0.1 Hz and 0.5 Hz, inclusive, such as, for example, a cutoff value of approximately 0.1 Hz) provides information about the subject patient or wearer's thoracic fluid tension, and is therefore influenced by intravascular fluid shifts to and away from the thorax.
  • Higher frequency components of the thoracic impedance signal are influenced by the patient or wearer's breathing (e.g., approximately between 0.05 Hz and 2.0 Hz inclusive) and heartbeat (e.g., approximately between 0.5 Hz and 10 Hz inclusive).
  • a low intravascular fluid tension in the thorax (“thoracic hypotension”) may result from changes in posture. For example, in a person who has been in a recumbent position for some time, approximately 1 ⁇ 3 of the blood volume is in the thorax. When that person then sits upright, approximately 1 ⁇ 3 of the blood that was in the thorax migrates to the lower body. This increases thoracic impedance. Approximately 90% of this fluid shift takes place within 2 to 3 minutes after the person sits upright.
  • the accelerometer can be used to provide reproducible measurements. Body activity will increase cardiac output and also change the amount of blood in the systemic venous system or lungs. Measurements of congestion may be most reproducible when body activity is at a minimum and the patient or wearer is at rest.
  • the use of an accelerometer allows one to sense both body position and body activity. Comparative measurements over time may best be taken under reproducible conditions of body position and activity. Ideally, measurements for the upright position should be compared as among themselves. Likewise measurements in the supine, prone, left lateral decubitus and right lateral decubitus should be compared as among themselves. Other variables can be used to permit reproducible measurements, i.e. variations of the cardiac cycle and variations in the respiratory cycle.
  • the ventricles are at their most compliant during diastole.
  • the end of the diastolic period is marked by the QRS on the electrocardiographic means (EKG) for monitoring the cardiac cycle.
  • the second variable is respiratory variation in impedance, which is used to monitor respiratory rate and volume.
  • impedance can be measured during expiration to minimize the effect of breathing on central systemic venous volume. While respiration and CHF both cause variations in impedance, the rates and magnitudes of the impedance variation are different enough to separate out the respiratory variations which have a frequency of about 8 to 60 cycles per minute and congestion changes which take at least several minutes to hours or even days to occur.
  • the system can detect congestive heart failure (CHF) in early stages and alert a patient or wearer to prevent disabling and even lethal episodes of CHF. Early treatment can avert progression of the disorder to a dangerous stage.
  • CHF congestive heart failure
  • the conductivity of a region of the patient or wearer with a wound or is susceptible to wound formation is monitored by the system.
  • the system determines healing wounds if the impedance and reactance of the wound region increases as the skin region becomes dry.
  • the system detects infected, open, interrupted healing, or draining wounds through lower regional electric impedances.
  • the bioimpedance sensor can be used to determine body fat.
  • the BI system determines Total Body Water (TBW) which is an estimate of total hydration level, including intracellular and extracellular water; Intracellular Water (ICW) which is an estimate of the water in active tissue and as a percent of a normal range (near 60% of TBW); Extracellular Water (ECW) which is water in tissues and plasma and as a percent of a normal range (near 40% of TBW); Body Cell Mass (BCM) which is an estimate of total pounds/kg of all active cells; Extracellular Tissue (ECT)/Extracellular Mass (ECM) which is an estimate of the mass of all other non-muscle inactive tissues including ligaments, bone and ECW; Fat Free Mass (FFM)/Lean Body Mass (LBM) which is an estimate of the entire mass that is not fat. It should be available in pounds/kg and may be presented as a percent with a normal range; Fat Mass (FM) which is an estimate of pounds/kg of body fat and percentage body fat; and Phase Angle (PA) which is associated with both nutrition and physical
  • thermocouples or thermisters and/or heat flux sensors can also be provided to provide measured values useful in analysis.
  • skin surface temperature will change with changes in blood flow in the vicinity of the skin surface of an organism. Such changes in blood flow can occur for a number of reasons, including thermal regulation, conservation of blood volume, and hormonal changes.
  • skin surface measurements of temperature or heat flux are made in conjunction with hydration monitoring so that such changes in blood flow can be detected and appropriately treated.
  • the patch includes a sound transducer such as a microphone or a piezoelectric transducer to pick up sound produced by bones or joints during movement. If bone surfaces are rough and poorly lubricated, as in an arthritic knee, they will move unevenly against each other, producing a high-frequency, scratching sound. The high-frequency sound from joints is picked up by wide-band acoustic sensor(s) or microphone(s) on a patient or wearer's body such as the knee. As the patient or wearer flexes and extends their knee, the sensors measure the sound frequency emitted by the knee and correlate the sound to monitor osteoarthritis, for example.
  • a sound transducer such as a microphone or a piezoelectric transducer to pick up sound produced by bones or joints during movement. If bone surfaces are rough and poorly lubricated, as in an arthritic knee, they will move unevenly against each other, producing a high-frequency, scratching sound. The high-frequency sound from joints is picked up by wide-band a
  • the patch includes a Galvanic Skin Response (GSR) sensor.
  • GSR Galvanic Skin Response
  • a small current is passed through one of the electrodes into the user's body such as the fingers and the CPU calculates how long it takes for a capacitor to fill up.
  • the length of time the capacitor takes to fill up allows us to calculate the skin resistance: a short time means low resistance while a long time means high resistance.
  • the GSR reflects sweat gland activity and changes in the sympathetic nervous system and measurement variables. Measured from the palm or fingertips, there are changes in the relative conductance of a small electrical current between the electrodes.
  • the activity of the sweat glands in response to sympathetic nervous stimulation results in an increase in the level of conductance.
  • Fear, anger, startle response, orienting response and sexual feelings are all among the emotions which may produce similar GSR responses.
  • measurement of lung function such as peak expiratory flow readings is done though a sensor such as Wright's peak flow meter.
  • a respiratory estimator is provided that avoids the inconvenience of having the patient or wearer breathing through the flow sensor.
  • heart period data from EKG/ECG is used to extract respiratory detection features.
  • the heart period data is transformed into time-frequency distribution by applying a time-frequency transformation such as short-term Fourier transformation (STFT).
  • STFT short-term Fourier transformation
  • Other possible methods are, for example, complex demodulation and wavelet transformation.
  • one or more respiratory detection features may be determined by setting up amplitude modulation of time-frequency plane, among others.
  • the respiratory recognizer first generates a math model that correlates the respiratory detection features with the actual flow readings.
  • the math model can be adaptive based on pre-determined data and on the combination of different features to provide a single estimate of the respiration.
  • the estimator can be based on different mathematical functions, such as a curve fitting approach with linear or polynomical equations, and other types of neural network implementations, non-linear models, fuzzy systems, time series models, and other types of multivariate models capable of transferring and combining the information from several inputs into one estimate.
  • An estimate of the tidal volume may be derived by utilizing different forms of information on the basis of the heart period signal.
  • the functional organization of the respiratory system has an impact in both respiratory period and tidal volume. Therefore, given the known relationships between the respiratory period and tidal volume during and transitions to different states, the information inherent in the heart period derived respiratory frequency may be used in providing values of tidal volume.
  • the tidal volume contains inherent dynamics which may be, after modeling, applied to capture more closely the behavioral dynamics of the tidal volume.
  • the heart period signal itself, is closely associated with tidal volume and may be therefore used to increase the reliability of deriving information on tidal volume.
  • the accuracy of the tidal volume estimation may be further enhanced by using information on the subjects vital capacity (i.e., the maximal quantity of air that can be contained in the lungs during one breath).
  • the information on vital capacity as based on physiological measurement or on estimates derived from body measures such as height and weight, may be helpful in estimating tidal volume, since it is likely to reduce the effects of individual differences on the estimated tidal volume.
  • the mathematical model may first give values on the percentage of lung capacity in use, which may be then transformed to liters per breath.
  • the optimizing of tidal volume estimation can based on, for example, least squares or other type of fit between the features and actual tidal volume.
  • the minute ventilation may be derived by multiplying respiratory rate (breaths/min) with tidal volume (liters/breath).
  • inductive plethysmography can be used to measure a cross-sectional area of the body by determining the self-inductance of a flexible conductor closely encircling the area to be measured. Since the inductance of a substantially planar conductive loop is well known to vary as, inter alia, the cross-sectional area of the loop, an inductance measurement may be converted into a plethysmographic area determination. Varying loop inductance may be measured by techniques known in the art, such as, e.g., by connecting the loop as the inductance in a variable frequency LC oscillator, the frequency of the oscillator then varying with the cross-sectional area of the loop inductance varies.
  • Oscillator frequency is converted into a digital value, which is then further processed to yield the physiological parameters of interest.
  • a flexible conductor measuring a cross-sectional area of the body is closely looped around the area of the body so that the inductance, and the changes in inductance, being measured results from magnetic flux through the cross-sectional area being measured.
  • the inductance thus depends directly on the cross-sectional area being measured, and not indirectly on an area which changes as a result of the factors changing the measured cross-sectional area.
  • Various physiological parameters of medical and research interest may be extracted from repetitive measurements of the areas of various cross-sections of the body.
  • pulmonary function parameters such as respiration volumes and rates and apneas and their types, may be determined from measurements of, at least, a chest transverse cross-sectional area and also an abdominal transverse cross-sectional area.
  • Cardiac parameters such central venous pressure, left and right ventricular volumes waveforms, and aortic and carotid artery pressure waveforms, may be extracted from repetitive measurements of transverse cross-sectional areas of the neck and of the chest passing through the heart. Timing measurements can be obtained from concurrent ECG measurements, and less preferably from the carotid pulse signal present in the neck. From the cardiac-related signals, indications of ischemia may be obtained independently of any ECG changes.
  • Ventricular wall ischemia is known to result in paradoxical wall motion during ventricular contraction (the ischemic segment paradoxically “balloons” outward instead of normally contracting inward).
  • Such paradoxical wall motion may be extracted from chest transverse cross-section area measurements.
  • Left or right ventricular ischemia may be distinguished where paradoxical motion is seen predominantly in left or right ventricular waveforms, respectively.
  • observations of the onset of contraction in the left and right ventricles separately may be of use in providing feedback to bi-ventricular cardiac pacing devices.
  • pulse oximetry determines hemoglobin saturation by measuring the changing infrared optical properties of a finger. This signal may be disambiguated and combined with pulmonary data to yield improved information concerning lung function.
  • a cranial bioimpedance sensor is applied to detect fluids in the brain.
  • the brain tissue can be modeled as an electrical circuit where cells with the lipid bilayer act as capacitors and the intra and extra cellular fluids act as resistors.
  • the opposition to the flow of the electrical current through the cellular fluids is resistance.
  • the system takes 50-kHz single-frequency bioimpedance measurements reflecting the electrical conductivity of brain tissue.
  • the opposition to the flow of the current by the capacitance of lipid bilayer is reactance.
  • microamps of current at 50 kHz are applied to the electrode system.
  • the electrode system consists of a pair of coaxial electrodes each of which has a current electrode and a voltage sensing electrode.
  • one pair of gel current electrodes is placed on closed eyelids and the second pair of voltage electrodes is placed in the suboccipital region projecting towards the foramen magnum.
  • the electrical current passes through the orbital fissures and brain tissue.
  • the drop in voltage is detected by the suboccipital electrodes and then calculated by the processor to bioimpedance values.
  • the bioimpedance value is used to detect brain edema, which is defined as an increase in the water content of cerebral tissue which then leads to an increase in overall brain mass.
  • Two types of brain edema are vasogenic or cytotoxic.
  • Vasogenic edema is a result of increased capillary permeability.
  • Cytotoxic edema reflects the increase of brain water due to an osmotic imbalance between plasma and the brain extracellular fluid. Cerebral edema in brain swelling contributes to the increase in intracranial pressure and an early detection leads to timely stroke intervention.
  • a cranial bioimpedance tomography system constructs brain impedance maps from surface measurements using nonlinear optimization.
  • a nonlinear optimization technique utilizing known and stored constraint values permits reconstruction of a wide range of conductivity values in the tissue.
  • a Jacobian Matrix is renewed for a plurality of iterations.
  • the Jacobian Matrix describes changes in surface voltage that result from changes in conductivity.
  • the Jacobian Matrix stores information relating to the pattern and position of measuring electrodes, and the geometry and conductivity distributions of measurements resulting in a normal case and in an abnormal case.
  • the nonlinear estimation determines the maximum voltage difference in the normal and abnormal cases.
  • an electrode array sensor can include impedance, bio-potential, or electromagnetic field tomography imaging of cranial tissue.
  • the electrode array sensor can be a geometric array of discrete electrodes having an equally-spaced geometry of multiple nodes that are capable of functioning as sense and reference electrodes. In a typical tomography application the electrodes are equally-spaced in a circular configuration. Alternatively, the electrodes can have non-equal spacing and/or can be in rectangular or other configurations in one circuit or multiple circuits. Electrodes can be configured in concentric layers too. Points of extension form multiple nodes that are capable of functioning as an electrical reference. Data from the multiple reference points can be collected to generate a spectrographic composite for monitoring over time.
  • the patient or wearer's brain cell generates an electromagnetic field of positive or negative polarity, typically in the millivolt range.
  • the sensor measures the electromagnetic field by detecting the difference in potential between one or more test electrodes and a reference electrode.
  • the bio-potential sensor uses signal conditioners or processors to condition the potential signal.
  • the test electrode and reference electrode are coupled to a signal conditioner/processor that includes a lowpass filter to remove undesired high frequency signal components.
  • the electromagnetic field signal is typically a slowly varying DC voltage signal.
  • the lowpass filter removes undesired alternating current components arising from static discharge, electromagnetic interference, and other sources.
  • the impedance sensor has an electrode structure with annular concentric circles including a central electrode, an intermediate electrode and an outer electrode, all of which are connected to the skin.
  • One electrode is a common electrode and supplies a low frequency signal between this common electrode and another of the three electrodes.
  • An amplifier converts the resulting current into a voltage between the common electrode and another of the three electrodes.
  • a switch switches between a first circuit using the intermediate electrode as the common electrode and a second circuit that uses the outer electrode as a common electrode. The sensor selects depth by controlling the extension of the electric field in the vicinity of the measuring electrodes using the control electrode between the measuring electrodes.
  • the control electrode is actively driven with the same frequency as the measuring electrodes to a signal level taken from one of the measuring electrodes but multiplied by a complex number with real and imaginary parts controlled to attain a desired depth penetration.
  • the controlling field functions in the manner of a field effect transistor in which ionic and polarization effects act upon tissue in the manner of a semiconductor material.
  • the system can perform tomographic imaging or measurement, and/or object recognition.
  • a fast reconstruction technique is used to reduce computation load by utilizing prior information of normal and abnormal tissue conductivity characteristics to estimate tissue condition without requiring full computation of a non-linear inverse solution.
  • the bioimpedance system can be used with electro-encephalograph (EEG) or ERP. Since this embodiment collects signals related to blood flow in the brain, collection can be concentrated in those regions of the brain surface corresponding to blood vessels of interest.
  • EEG electro-encephalograph
  • a headcap with additional electrodes placed in proximity to regions of the brain surface fed by a blood vessel of interest, such as the medial cerebral artery enables targeted information from the regions of interest to be collected.
  • the headcap can cover the region of the brain surface that is fed by the medial cerebral artery.
  • Other embodiments of the headcap can concentrate electrodes on other regions of the brain surface, such as the region associated with the somatosensory motor cortex. In alternative embodiments, the headcap can cover the skull more completely.
  • Such a headcap can include electrodes throughout the cap while concentrating electrodes in a region of interest.
  • arrays of 1-16 head electrodes may be used, as compared to the International 10 / 20 system of 19-21 head electrodes generally used in an EEG instrument.
  • each amplifier for each EEG channel is a high quality analog amplifier device. Full bandwidth and ultra-low noise amplification are obtained for each electrode. Low pass, high pass, hum notch filters, gain, un-block, calibration and electrode impedance check facilities are included in each amplifier. All 8 channels in one EEG amplifier unit have the same filter, gain, etc. settings. Noise figures of less than 0.1 uV r.m.s. are achieved at the input and optical coupling stages. These figures, coupled with good isolation/common mode rejection result in signal clarity.
  • Nine high pass filter ranges include 0.01 Hz for readiness potential measurement, and 30 Hz for EMG measurement.
  • stimulations to elicit EEG signals are used in two different modes, i.e., auditory clicks and electric pulses to the skin.
  • the stimuli although concurrent, are at different prime number frequencies to permit separation of different evoked potentials (EPs) and avoid interference.
  • EP evoked potentials
  • Such concurrent stimulations for EP permit a more rapid, and less costly, examination and provide the patient or wearer's responses more quickly.
  • Power spectra of spontaneous EEG, waveshapes of Averaged Evoked Potentials, and extracted measures, such as frequency specific power ratios can be transmitted to a remote receiver.
  • the latencies of successive EP peaks of the patient or wearer may be compared to those of a normal group by use of a normative template.
  • the system provides a blood oxygen saturation monitor, using an infra-red or laser source, to alert the user if the patient or wearer's blood in the brain or some brain region is deoxygenated.
  • a stimulus device may optionally be placed on each subject, such as an audio generator in the form of an ear plug, which produces a series of “click” sounds.
  • the subject's brain waves are detected and converted into audio tones.
  • the device may have an array of LED (Light Emitting Diodes) which blink depending on the power and frequency composition of the brain wave signal. Power ratios in the frequencies of audio or somatosensory stimuli are similarly encoded.
  • the EEG can be transmitted to a remote physician or medical aide who is properly trained to determine whether the patient or wearer's brain function is abnormal and may evaluate the functional state of various levels of the patient or wearer's nervous system.
  • three pairs of electrodes are attached to the head of the subject under examination via tape or by wearing a cap with electrodes embedded.
  • the electrode pairs are as follows:
  • a ground electrode is located at an inactive site of the upper part of the vertebral column.
  • the electrodes are connected to differential amplification devices as disclosed below. Because the electrical charges of the brain are so small (on the order of microvolts), amplification is needed.
  • the three amplified analog signals are converted to digital signals and averaged over a certain number of successive digital values to eliminate erroneous values originated by noise on the analog signal.
  • timing signal which is also responsible for generating stimuli to the subject.
  • the responses are processed in a timed relation to the stimuli and averaged as the brain responds to these stimuli.
  • the responses are processed in a timed relation to the stimuli and averaged as the brain responds to these stimuli.
  • the responses are within certain time periods and time instances after the occurrence of a stimulus of interest.
  • two stimuli sets may be used in a manner that the brain has to respond to the two stimuli differently, one stimulus has a high probability of occurrence, and the other stimulus is a rare occurring phenomena.
  • the rare response is the response of importance.
  • Three response signals are sensed and joined into a three dimensional cartesian system by a mapping program.
  • the assignments can be
  • the assignment of the probes to the axes and the simultaneous sampling of the three response signals at the same rate and time relative to the stimuli allows to real-time map the electrical signal in a three dimensional space.
  • the signal can be displayed in a perspective representation of the three dimensional space, or the three components of the vector are displayed by projecting the vector onto the three planes X-Y, Y-Z, and X-Z, and the three planes are inspected together or separately. Spatial information is preserved for reconstruction as a map.
  • the Vector Amplitude (VA) measure provides information about how far from the center of the head the observed event is occurring; the center of the head being the center (0,0,0) of the coordinate system.
  • the cranial bioimpedance sensor can be applied singly or in combination with a cranial blood flow sensor, which can be optical, ultrasound, electromagnetic sensor(s) as described in more details below.
  • a cranial blood flow sensor which can be optical, ultrasound, electromagnetic sensor(s) as described in more details below.
  • the carotid artery is checked for plaque build-up.
  • Atherosclerosis is systemic—meaning that if the carotid artery has plaque buildup, other important arteries, such as coronary and leg arteries, might also be atherosclerotic.
  • an epicardial array monopolar ECG system converts signals into the multichannel spectrum domain and identifies decision variables from the autospectra.
  • the system detects and localizes the epicardial projections of ischemic myocardial ECGs during the cardiac activation phase. This is done by transforming ECG signals from an epicardial or torso sensor array into the multichannel spectral domain and identifying any one or more of a plurality of decision variables.
  • the ECG array data can be used to detect, localize and quantify reversible myocardial ischemia.
  • a trans-cranial Doppler velocimetry sensor provides a non-invasive technique for measuring blood flow in the brain.
  • An ultrasound beam from a transducer is directed through one of three natural acoustical windows in the skull to produce a waveform of blood flow in the arteries using Doppler sonography.
  • the data collected to determine the blood flow may include values such as the pulse cycle, blood flow velocity, end diastolic velocity, peak systolic velocity, mean flow velocity, total volume of cerebral blood flow, flow acceleration, the mean blood pressure in an artery, and the pulsatility index, or impedance to flow through a vessel.
  • condition of an artery may be derived, those conditions including stenosis, vasoconstriction, irreversible stenosis, vasodilation, compensatory vasodilation, hyperemic vasodilation, vascular failure, compliance, breakthrough, and pseudo-normalization.
  • the system can detect numbness or weakness of the face, arm or leg, especially on one side of the body.
  • the system detects sudden confusion, trouble speaking or understanding, sudden trouble seeing in one or both eyes, sudden trouble walking, dizziness, loss of balance or coordination, or sudden, severe headache with no known cause.
  • the system detects discomfort in the center of the chest that lasts more than a few minutes, or that goes away and comes back. Symptoms can include pain or discomfort in one or both arms, the back, neck, jaw or stomach. The system can also monitor for shortness of breath which may occur with or without chest discomfort. Other signs may include breaking out in a cold sweat, nausea or lightheadedness.
  • the automated analyzer can also consider related pathologies in analyzing a patient or wearer's risk of stroke, including but not limited to gastritis, increased intracranial pressure, sleep disorders, small vessel disease, and vasculitis.
  • the processor and transceiver on the watch, the patch(es) and the base station conform to the Zigbee protocol.
  • ZigBee is a cost-effective, standards-based wireless networking solution that supports low data-rates, low-power consumption, security, and reliability.
  • Single chip Zigbee controllers with wireless transceivers built-in include the Chipcon/Ember CC2420: Single-chip 802.15.4 radio transceiver and the FreeScale single chip Zigbee and microcontroller.
  • the processor communicates with a Z axis accelerometer measures the patient or wearer's up and down motion and/or an X and Y axis accelerometer measures the patient or wearer's forward and side movements.
  • EKG and/or blood pressure parameters can be captured by the processor. The controllers upload the captured data when the memory is full or while in wireless contact with other Zigbee nodes.
  • the wristwatch device can also be used to control home automation.
  • the user can have flexible management of lighting, heating and cooling systems from anywhere in the home.
  • the watch automates control of multiple home systems to improve conservation, convenience and safety.
  • the watch can capture highly detailed electric, water and gas utility usage data and embed intelligence to optimize consumption of natural resources.
  • the system is convenient in that it can be installed, upgraded and networked without wires.
  • the patient or wearer can receive automatic notification upon detection of unusual events in his or her home. For example, if smoke or carbon monoxide detectors detect a problem, the wrist-watch can buzz or vibrate to alert the user and the central hub triggers selected lights to illuminate the safest exit route.
  • the watch serves a key fob allowing the user to wirelessly unlock doors controlled by Zigbee wireless receiver.
  • the door Zigbee transceiver receives a request to unlock the door, and the Zigbee transceiver on the door transmits an authentication request using suitable security mechanism.
  • the Zigbee doorlock device sends access signals to the lighting, air-conditioning and entertainment systems, among others. The lights and temperature are automatically set to pre-programmed preferences when the user's presence is detected.
  • Zigbee is mentioned as an exemplary protocol, other protocols such as UWB, Bluetooth, WiFi and WiMAX can be used as well.
  • a diaper pad is used to hold an array of integrated sensors and the pad can be placed over a diaper, clothing, or blanket.
  • the integrated sensors can provide data for measuring position, temperature, sound, vibration, movement, and optionally other physical properties through additional sensors.
  • Each pad can have sensors that provide one or more of the above data. The sensors can be added or removed as necessary depending on the type of data being collected.
  • the sensor can be water proof and disposable.
  • the sensor can be switch on/off locally or remotely.
  • the sensor can be removable or clip on easily.
  • the sensor can store or beam out information for analysis purpose, e.g. store body temperature every 5 seconds.
  • the sensor can be turn-on for other purposed, e.g. diaper wet, it will beep and allow a baby care provider to take care of the business in time.
  • the array of sensors can be self selective, e.g., when one sensor can detect strong heart beat, it will turn off others to do so.
  • the sensor can be used for drug delivery system, e.g. when patient or wearer has abdomen pain, soothing drug can be applied, based on the level of pain the sensor detects, different dose of drugs will be applied.
  • the array of sensors may allow the selection and analysis of zones of sensors in the areas of interest such as the abdomen area.
  • Each sensor array has a low spatial resolution: approximately 10 cm between each sensor.
  • Other sensors may include those worn on the body, such as in watch bands, finger rings, or adhesive sensors, but telemetry, not wires, would be used to communicate with the controller.
  • the sensor can be passive device such as a reader, which mounted near the crib can active it from time to time. In any emergency situation, the sensor automatically signals a different state which the reader can detect.
  • the sensor can be active and powered by body motion or body heat.
  • the sensor can detect low battery situation and warn the user to provide a replacement battery.
  • a plurality of sensors attached to the infant collects the vital parameters.
  • the sensors can be attached to the infant's clothing (shirt or pant), diaper, undergarment or bed sheet, bed linen, or bed spread.
  • the patient or wearer may wear one or more sensors, for example devices for sensing EMG, EKG, blood pressure, sugar level, weight, temperature and pressure, among others.
  • an optical temperature sensor can be used.
  • a temperature thermistor can be used to sense patient or wearer temperature.
  • a fat scale sensor can be used to detect the patient or wearer's fat content.
  • a pressure sensor such as a MEMS sensor can be used to sense pressure on the patient or wearer.
  • the sensors are mounted on the patient or wearer's wrist (such as a wristwatch sensor) and other convenient anatomical locations.
  • Exemplary sensors include standard medical diagnostics for detecting the body's electrical signals emanating from muscles (EMG and EOG) and brain (EEG) and cardiovascular system (ECG).
  • Leg sensors can include piezoelectric accelerometers designed to give qualitative assessment of limb movement.
  • thoracic and abdominal bands used to measure expansion and contraction of the thorax and abdomen respectively.
  • a small sensor can be mounted on the subject's finger in order to detect blood-oxygen levels and pulse rate.
  • a microphone can be attached to throat and used in sleep diagnostic recordings for detecting breathing and other noise.
  • One or more position sensors can be used for detecting orientation of body (lying on left side, right side or back) during sleep diagnostic recordings.
  • Each of sensors can individually transmit data to the server 20 using wired or wireless transmission.
  • all sensors can be fed through a common bus into a single transceiver for wired or wireless transmission.
  • the transmission can be done using a magnetic medium such as a floppy disk or a flash memory card, or can be done using infrared or radio network link, among others.
  • the sensors for monitoring vital signs are enclosed in a wrist-watch sized case supported on a wrist band.
  • the sensors can be attached to the back of the case.
  • Cygnus' AutoSensor (Redwood City, Calif.) is used as a glucose sensor. A low electric current pulls glucose through the skin. Glucose is accumulated in two gel collection discs in the AutoSensor. The AutoSensor measures the glucose and a reading is displayed by the watch.
  • EKG/ECG contact points are positioned on the back of the wrist-watch case.
  • a pressure sensor is housed in a casing with a ‘free-floating’ plunger as the sensor applanates the radial artery.
  • a strap provides a constant force for effective applanation and ensuring the position of the sensor housing to remain constant after any wrist movements.
  • the change in the electrical signals due to change in pressure is detected as a result of the piezoresistive nature of the sensor are then analyzed to arrive at various arterial pressure, systolic pressure, diastolic pressure, time indices, and other blood pressure parameters.
  • the heartbeat detector can be one of: EKG detector, ECG detector, optical detector, ultrasonic detector, or microphone/digital stethoscope for picking up heart sound.
  • EKG/ECG contact point is provided on the back of the wrist watch case and one or more EKG/ECG contact points are provided on the surface of the watch so that when a user's finger or skin touches the contact points, an electrical signal indicative of heartbeat activity is generated.
  • An electrocardiogram (ECG) or EKG is a graphic tracing of the voltage generated by the cardiac or heart muscle during a heartbeat. It provides very accurate evaluation of the performance of the heart.
  • the heart generates an electrochemical impulse that spreads out in the heart in such a fashion as to cause the cells to contract and relax in a timely order and thus give the heart a pumping characteristic.
  • This sequence is initiated by a group of nerve cells called the sinoatrial (SA) node resulting in a polarization and depolarization of the cells of the heart.
  • SA sinoatrial
  • This action is electrical in nature and because the body is conductive with its fluid content, this electrochemical action can be measured at the surface of the body.
  • An actual voltage potential of approximately 1 mV develops between various body points. This can be measured by placing electrode contacts on the body. The four extremities and the chest wall have become standard sites for applying the electrodes.
  • Standardizing electrocardiograms makes it possible to compare them as taken from person to person and from time to time from the same person.
  • the normal electrocardiogram shows typical upward and downward deflections that reflect the alternate contraction of the atria (the two upper chambers) and of the ventricles (the two lower chambers) of the heart.
  • the voltages produced represent pressures exerted by the heart muscles in one pumping cycle.
  • the first upward deflection, P is due to atria contraction and is known as the atrial complex.
  • the other deflections, Q, R, S, and T are all due to the action of the ventricles and are known as the ventricular complexes. Any deviation from the norm in a particular electrocardiogram is indicative of a possible heart disorder.
  • the CPU measures the time duration between the sequential pulses and converts each such measurement into a corresponding timing measurement indicative of heart rate.
  • the CPU also processes a predetermined number of most recently occurring timing measurements in a prescribed fashion, to produce an estimate of heartbeat rate for display on a display device on the watch and/or for transmission over the wireless network. This estimate is updated with the occurrence of each successive pulse.
  • the CPU produces the estimate of heartbeat rate by first averaging a plurality of measurements, then adjusting the particular one of the measurements that differs most from the average to be equal to that average, and finally computing an adjusted average based on the adjusted set of measurements.
  • the process may repeat the foregoing operations a number of times so that the estimate of heartbeat rate is substantially unaffected by the occurrence of heartbeat artifacts.
  • the heartbeat detection circuitry includes a differential amplifier for amplifying the signal transmitted from the EKG/ECG electrodes and for converting it into single-ended form, and a bandpass filter and a 60 Hz notch filter for removing background noise.
  • the CPU measures the time durations between the successive pulses and estimates the heartbeat rate. The time durations between the successive pulses of the pulse sequence signal provides an estimate of heartbeat rate. Each time duration measurement is first converted to a corresponding rate, preferably expressed in beats per minute (bpm), and then stored in a file, taking the place of the earliest measurement previously stored. After a new measurement is entered into the file, the stored measurements are averaged, to produce an average rate measurement.
  • the CPU optionally determines which of the stored measurements differs most from the average, and replaces that measurement with the average.
  • the CPU increments a period timer used in measuring the time duration between successive pulses. This timer is incremented in steps of about two milliseconds in one embodiment. It is then determined whether or not a pulse has occurred during the previous two milliseconds. If it has not, the CPU returns to the initial step of incrementing the period timer. If a heartbeat has occurred, on the other hand, the CPU converts the time duration measurement currently stored in the period timer to a corresponding heartbeat rate, preferably expressed in bpm. After the heartbeat rate measurement is computed, the CPU determines whether or not the computed rate is intermediate prescribed thresholds of 20 bpm and 240 bpm. If it is not, it is assumed that the detected pulse was not in fact a heartbeat and the period timer is cleared.
  • an optical transducer is positioned on a finger, wrist, or ear lobe.
  • the ear, wrist or finger pulse oximeter waveform is then analyzed to extract the beat-to-beat amplitude, area, and width (half height) measurements.
  • the oximeter waveform is used to generate heartbeat rate in this embodiment.
  • a reflective sensor such as the Honeywell HLC1395 can be used.
  • the device emits lights from a window in the infrared spectrum and receives reflected light in a second window.
  • blood flow increases temporarily and more red blood cells flow through the windows, which increases the light reflected back to the detector.
  • the light can be reflected, refracted, scattered, and absorbed by one or more detectors. Suitable noise reduction is done, and the resulting optical waveform is captured by the CPU.
  • blood pressure is estimated from the optical reading using a mathematical model such as a linear correlation with a known blood pressure reading.
  • the pulse oximeter readings are compared to the blood-pressure readings from a known working blood pressure measurement device during calibration. Using these measurements the linear equation is developed relating oximeter output waveform such as width to blood-pressure (systolic, mean and pulse pressure).
  • a transform such as a Fourier analysis or a Wavelet transform
  • Other non-linear math model or relationship can be determined to relate the oximeter waveform to the blood pressure.
  • the pulse oximeter probe and a blood pressure cuff are placed on the corresponding contralateral limb to the oscillometric (Dinamap 8100; Critikon, Inc, Tampa, Fla., USA) cuff site.
  • the pulse oximeter captures data on plethysmographic waveform, heart rate, and oxygen saturation. Simultaneous blood pressure measurements were obtained from the oscillometric device, and the pulse oximeter. Systolic, diastolic, and mean blood pressures are recorded from the oscillometric device. This information is used derive calibration parameters relating the pulse oximeter output to the expected blood pressure. During real time operation, the calibration parameters are applied to the oximeter output to predict blood pressure in a continuous or in a periodic fashion.
  • the device includes an accelerometer or alternative motion-detecting device to determine when the patient or wearer′ hand is at rest, thereby reducing motion-related artifacts introduced to the measurement during calibration and/or operation.
  • the accelerometer can also function as a falls detection device.
  • a piezo film sensor element is placed on the wristwatch band.
  • the sensor can be the SDT1-028K made by Measurement Specialties, Inc.
  • the sensor should have features such as: (a) it is sensitive to low level mechanical movements, (b) it has an electrostatic shield located on both sides of the element (to minimize 50/60 Hz AC line interference), (c) it is responsive to low frequency movements in the 0.7-12 Hz range of interest.
  • a filter/amplifier circuit has a three-pole low pass filter with a lower ( ⁇ 3 dB) cutoff frequency at about 12-13 Hz.
  • the low-pass filter prevents unwanted 50/60 Hz AC line interference from entering the sensor.
  • the piezo film element has a wide band frequency response so the filter also attenuates any extraneous sound waves or vibrations that get into the piezo element.
  • the DC gain is about +30 dB.
  • Waveform averaging can be used to reduce noise. It reinforces the waveform of interest by minimizing the effect of any random noise. These pulses were obtained when the arm was motionless. If the arm was moved while capturing the data the waveform did not look nearly as clean. That's because motion of the arm causes the sonic vibrations to enter the piezo film through the arm or by way of the cable.
  • An accelerometer is used to detect arm movement and used to remove inappropriate data capture.
  • two piezo film sensors and filter/amplifier circuits can be configured as a non-invasive velocity type blood pressure monitor.
  • One sensor can be on the wrist and the other can be located on the inner left elbow at the same location where Korotkoff sounds are monitored during traditional blood pressure measurements with a spygmometer.
  • the correlation between pulse delay and blood pressure is well known in the art of non-invasive blood pressure monitors.
  • an ultrasonic transducer generates and transmits an acoustic wave into the user's body such as the wrist or finger. The transducer subsequently receives pressure waves in the form of echoes resulting from the transmitted acoustic waves.
  • an ultrasonic driving and receiving circuit generates electrical pulses which, when applied to the transducer produce acoustic energy having a frequency on the order of 8 MHz, a pulse width or duration of approximately 8 microseconds, and a pulse repetition interval (PRI) of approximately 16 microseconds, although other values of frequency, pulse width, and PRI may be used.
  • PRI pulse repetition interval
  • the transducer emits an 8 microsecond ultrasonic pulse, which is followed by an 8 microsecond “listen” period, every 16 microseconds.
  • the echoes from these pulses are received by the ultrasonic transducer during the listen period.
  • the ultrasonic transducer can be a ceramic piezoelectric device of the type well known in the art, although other types may be substituted.
  • the transducer converts the received acoustic signal to an electrical signal, which is then supplied to the receiving section of the ultrasonic driver and receiver circuit 616 , which contains two receiver circuits.
  • the output of the first receiver circuit is an analog signal representative of the Doppler frequency of the echo received by the transducer which is digitized and supplied to the CPU.
  • the digitized Doppler frequency is scaled to compute the blood velocity within the artery based on the Doppler frequency.
  • the time-frequency distribution of the blood velocity is then computed.
  • the CPU maps in time the peak of the time-frequency distribution to the corresponding pressure waveform to produce the estimated mean arterial pressure (MAP).
  • MAP mean arterial pressure
  • the output of the ultrasonic receiver circuit is an analog echo signal proportional to absorption of the transmitted frequencies by blood or tissue. This analog signal is digitized and process so that each group of echoes, generated for a different transversal position, is integrated to determine a mean value.
  • the mean echo values are compared to determine the minimum value, which is caused by direct positioning over the artery.
  • the device includes an accelerometer or alternative motion-detecting device to determine when the patient or wearer′ hand is at rest, thereby reducing motion-related artifacts introduced to the measurement.
  • a transducer in yet another ultrasonic embodiment, includes a first and a second piezoelectric crystal, wherein the crystals are positioned at an angle to each other, and wherein the angle is determined based on the distance of the transducer to the living subject.
  • the first piezoelectric crystal is energized by an original ultrasonic frequency signal, wherein the original ultrasonic frequency signal is reflected off the living subject and received by the second piezoelectric crystal.
  • the system includes a pair of piezoelectric crystals at an angle to each other, wherein the angle is determined by the depth of the object being monitored.
  • the angle of the two crystals with respect to the direction of the blood flow would be about 5 to about 20 degrees.
  • One of the crystals is energized at an ultrasonic frequency.
  • the signal is then reflected back by the user's wrist and picked up by the second crystal.
  • the frequency received is either higher or lower than the original frequency depending upon the direction and the speed of the fluidic mass flow. For example, when blood flow is monitored, the direction of flow is fixed.
  • the Doppler frequency which is the difference between the original and the reflected frequency depends only upon the speed of the blood flow.
  • Ultrasonic energy is delivered to one of the two piezoelectric elements in the module by the power amplifier. The other element picks up the reflected ultrasonic signal as Doppler frequencies.
  • a microphone or a piezoelectric transducer is placed near the wrist artery to pick up heart rate information.
  • the microphone sensor and optionally the EKG sensor are place on the wrist band 1374 of the watch to analyze the acoustic signal or signals emanating from the cardiovascular system and, optionally can combine the sound with an electric signal (EKG) emanating from the cardiovascular system and/or an acoustic signal emanating from the respiratory system.
  • EKG electric signal
  • the system can perform automated auscultation of the cardiovascular system, the respiratory system, or both.
  • the system can differentiate pathological from benign heart murmurs, detect cardiovascular diseases or conditions that might otherwise escape attention, recommend that the patient or wearer go through for a diagnostic study such as an echocardiography or to a specialist, monitor the course of a disease and the effects of therapy, decide when additional therapy or intervention is necessary, and providing a more objective basis for the decision(s) made.
  • the analysis includes selecting one or more beats for analysis, wherein each beat comprises an acoustic signal emanating from the cardiovascular system; performing a time-frequency analysis of beats selected for analysis so as to provide information regarding the distribution of energy, the relative distribution of energy, or both, over different frequency ranges at one or more points in the cardiac cycle; and processing the information to reach a clinically relevant conclusion or recommendation.
  • the system selects one or more beats for analysis, wherein each beat comprises an acoustic signal emanating from the cardiovascular system; performs a time-frequency analysis of beats selected for analysis so as to provide information regarding the distribution of energy, the relative distribution of energy, or both, over different frequency ranges at one or more points in the cardiac cycle; and present information derived at least in part from the acoustic signal, wherein the information comprises one or more items selected from the group consisting of: a visual or audio presentation of a prototypical beat, a display of the time-frequency decomposition of one or more beats or prototypical beats, and a playback of the acoustic signal at a reduced rate with preservation of frequency content.
  • the wrist band incorporates a flexible magnet to provide a magnetic field and one or more electrodes positioned on the wrist band to measure voltage drops which are proportional to the blood velocity
  • instantaneously variation of the flow can be detected but not artery flow by itself.
  • the user or an actuator such as motorized cuff temporarily stops the blood flow in the vein by applying external pressure or by any other method.
  • the decay of the artery flow is measured. This measurement may be used for zeroing the sensor and may be used in a model for estimating the steady artery flow.
  • the decay in artery flow due to occlusion of veins is measured to arrive at a model the rate of artery decay.
  • the system estimates an average artery flow before occlusion.
  • the blood flow can then be related to the blood pressure.
  • an ionic flow sensor is used with a driving electrode that produces a pulsatile current.
  • the pulsatile current causes a separation of positive and negative charges that flows in the blood of the arteries and veins passing in the wrist area.
  • electrophoresis principle the resistance of the volume surrounded by the source first decreases and then increases. The difference in resistance in the blood acts as a mark that moves according to the flow of blood so that marks are flowing in opposite directions by arteries and veins.
  • accelerometer information is used to detect that the patient or wearer is at rest prior to making a blood pressure measurement and estimation.
  • a temperature sensor may be incorporated so that the temperature is known at any minute.
  • the processor correlates the temperature measurement to the blood flow measurement for calibration purposes.
  • the automatic identification of the first, second, third and fourth heart sounds (S1, S2, S3, S4) is done.
  • the system analyzes the patient or wearer for mitral valve prolapse. The system performs a time-frequency analysis of an acoustic signal emanating from the subject's cardiovascular system and examines the energy content of the signal in one or more frequency bands, particularly higher frequency bands, in order to determine whether a subject suffers from mitral valve prolapse.
  • FIG. 7 shows an exemplary mesh network that includes the wrist-watch of FIG. 6 in communication with a mesh network including a telephone such as a wired telephone as well as a cordless telephone.
  • the mesh network is an IEEE 802.15.4 (ZigBee) network.
  • IEEE 802.15.4 defines two device types; the reduced function device (RFD) and the full function device (FFD).
  • RFID reduced function device
  • FFD full function device
  • ZigBee these are referred to as the ZigBee Physical Device types.
  • a ZigBee network a node can have three roles: ZigBee Coordinator, ZigBee Router, and ZigBee End Device. These are the ZigBee Logical Device types.
  • the main responsibility of a ZigBee Coordinator is to establish a network and to define its main parameters (e.g.
  • ZigBee Routers can act as relays between devices that are too far apart to communicate directly.
  • ZigBee End Devices do not participate in routing.
  • An FFD can talk to RFDs or other FFDs, while an RFD can talk only to an FFD.
  • An RFD is intended for applications that are extremely simple, such as a light switch or a passive infrared sensor; they do not have the need to send large amounts of data and may only associate with a single FFD at a time. Consequently, the RFD can be implemented using minimal resources and memory capacity and have lower cost than an FFD.
  • An FFD can be used to implement all three ZigBee Logical Device types, while an RFD can take the role as an End Device.
  • the network nodes can be mesh network appliances to provide voice communications, home security, door access control, lighting control, power outlet control, dimmer control, switch control, temperature control, humidity control, carbon monoxide control, fire alarm control, blind control, shade control, window control, oven control, cooking range control, personal computer control, entertainment console control, television control, projector control, garage door control, car control, pool temperature control, water pump control, furnace control, heater control, thermostat control, electricity meter monitor, water meter monitor, gas meter monitor, or remote diagnotics.
  • the telephone can be connected to a cellular telephone to answer calls directed at the cellular telephone.
  • the connection can be wired or wireless using Bluetooth or ZigBee.
  • the telephone synchronizes calendar, contact, emails, blogs, or instant messaging with the cellular telephone.
  • a web server can communicate with the Internet through the POTS to provide information to an authorized remote user who logs into the server.
  • a wireless router such as 802.11 router, 802.16 router, WiFi router, WiMAX router, Bluetooth router, X10 router can be connected to the mesh network.
  • a mesh network appliance can be connected to a power line to communicate X10 data to and from the mesh network.
  • X10 is a communication protocol that allows up to 256 X10 products to talk to each other using the existing electrical wiring in the home.
  • the installation is simple, a transmitter plugs (or wires) in at one location in the home and sends its control signal (on, off, dim, bright, etc.) to a receiver which plugs (or wires) into another location in the home.
  • the mesh network appliance translates messages intended for X10 device to be relayed over the ZigBee wireless network, and then transmitted over the power line using a ZigBee to X10 converter appliance.
  • An in-door positioning system links one or more mesh network appliances to provide location information.
  • the radio frequency signals have negligible multipath delay spread (for timing purposes) over short distances.
  • radio strength can be used as a basis for determining position.
  • time of arrival can be used to determine position, or a combination of radio signal strength and time of arrival can be used.
  • Position estimates can also be achieved in an embodiment by beamforming, a method that exchanges time-stamped raw data among the nodes. While the processing is relatively more costly, it yields processed data with a higher signal to noise ratio (SNR) for subsequent classification decisions, and enables estimates of angles of arrival for targets that are outside the convex hull of the participating sensors.
  • SNR signal to noise ratio
  • Two such clusters of ZigBee nodes can then provide for triangulation of distant targets.
  • beamforming enables suppression of interfering sources, by placing nulls in the synthetic beam pattern in their directions.
  • Another use of beamforming is in self-location of nodes when the positions of only a very small number of nodes or appliances are known such as those sensors nearest the wireless stations.
  • each node knows the distances to its neighbors due to their positions, and some small fraction of the nodes (such as those nearest a PC with GPS) of the network know their true locations.
  • estimates of the locations of the nodes that lie within or near the convex hull of the nodes with known position can be quickly generated.
  • the shortest distance (multihop) paths are determined between each reference node. All nodes on this path are assigned a location that is the simple linear average of the two reference locations, as if the path were a straight line. A node which lies on the intersection of two such paths is assigned the average of the two indicated locations. All nodes that have been assigned locations now serve as references. The shortest paths among these new reference nodes are computed, assigning locations to all intermediate nodes as before, and continuing these iterations until no further nodes get assigned locations. This will not assign initial position estimates to all sensors. The remainder can be assigned locations based on pairwise averages of distances to the nearest four original reference nodes. Some consistency checks on location can be made using trigonometry and one further reference node to determine whether or not the node likely lies within the convex hull of the original four reference sensors.
  • trigonometry can be used to precisely determine the location of the third node. Distances from another node can resolve any ambiguity.
  • simple geometry produces precise calculations in three dimensions given four reference nodes. But since the references may also have uncertainty, an alternative procedure is to perform a series of iterations where successive trigonometric calculations result only in a delta of movement in the position of the node. This process can determine locations of nodes outside the convex hull of the reference sensors. It is also amenable to averaging over the positions of all neighbors, since there will often be more neighbors than are strictly required to determine location. This will reduce the effects of distance measurement errors.
  • the network can solve the complete set of equations of intersections of hyperbola as a least squares optimization problem.
  • any or all of the nodes may include transducers for acoustic, infrared (IR), and radio frequency (RF) ranging. Therefore, the nodes have heterogeneous capabilities for ranging. The heterogeneous capabilities further include different margins of ranging error.
  • the ranging system is re-used for sensing and communication functions. For example, wideband acoustic functionality is available for use in communicating, bistatic sensing, and ranging. Such heterogeneous capability of the sensors 40 can provide for ranging functionality in addition to communications functions. As one example, repeated use of the communications function improves position determination accuracy over time. Also, when the ranging and the timing are conducted together, they can be integrated in a self-organization protocol in order to reduce energy consumption.
  • ranging sources information from several ranging sources is capable of being fused to provide improved accuracy and resistance to environmental variability.
  • Each ranging means is exploited as a communication means, thereby providing improved robustness in the presence of noise and interference.
  • Those skilled in the art will realize that there are many architectural possibilities, but allowing for heterogeneity from the outset is a component in many of the architectures.
  • a ring 130 has an opening 132 for transmitting and receiving acoustic energy to and from the sensor 84 in an acoustic implementation.
  • a second opening (not shown) is provided to emit an optical signal from an LED, for example, and an optical detector can be located at the opening 132 to receive the optical signal passing through the finger wearing the ring 130 .
  • the ring has an electrically movable portion 134 and rigid portions 136 - 138 connected thereto. The electrically movable portion 134 can squeeze the finger as directed by the CPU during an applanation sweep to determine the arterial blood pressure.
  • FIG. 9 shows an alternate finger cover embodiment where a finger-mounted module housing the photo-detector and light source.
  • the finger mounted module can be used to measure information that is processed to determine the user's blood pressure by measuring blood flow in the user's finger and sending the information through a wireless connection to the base station.
  • the housing is made from a flexible polymer material.
  • the monitoring device can be part of an earring jewelry clipped to the ear lobe.
  • the monitoring device has a jewelry body 149 that contains the monitoring electronics and power source.
  • the surface of the body 149 is an ornamental surface such as jade, ivory, pearl, silver, or gold, among others.
  • the body 149 has an opening 148 that transmits energy such as optical or acoustic energy through the ear lobe to be detected by a sensor 144 mounted on a clamp portion that is secured to the body 149 at a base 147 .
  • the energy detected through the sensor 144 is communicated through an electrical connector to the electronics in the jewelry body 149 for processing the received energy and for performing wireless communication with a base station.
  • a bolt 145 having a stop end 146 allows the user to adjust the pressure of the clamp against the ear lobe.
  • a spring biased clip is employed to retain the clip on the wearer's ear lobe.
  • a pair of members, which snap together under pressure, are commonly used and the spring pressure employed should be strong enough to suit different thicknesses of the ear lobe.
  • FIGS. 11 and 12 show two additional embodiments of the monitoring device.
  • a wearable monitoring device is shown.
  • the monitoring device has a body 160 comprising microphone ports 162 , 164 and 170 arranged in a first order noise cancelling microphone arrangement.
  • the microphones 162 and 164 are configured to optimally receive distant noises, while the microphone 170 is optimized for capturing the user's speech.
  • a touch sensitive display 166 and a plurality of keys 168 are provided to capture hand inputs.
  • a speaker 172 is provided to generate a verbal feedback to the user.
  • a body 172 houses a microphone port 174 and a speaker port 176 .
  • the body 172 is coupled to the user via the necklace 178 so as to provide a personal, highly accessible personal computer. Due to space limitations, voice input/output is an important user interface of the jewelry-sized computer.
  • a necklace is disclosed, one skilled in the art can use a number of other substitutes such as a belt, a brace, a ring, or a band to secure the jewelry-sized computer to the user.
  • FIG. 13 shows an exemplary ear phone embodiment 180 .
  • the ear phone 180 has an optical transmitter 182 which emits LED wavelengths that are received by the optical receiver 184 .
  • the blood oximetry information is generated and used to determine blood pulse or blood pressure.
  • a module 186 contains mesh network communication electronics, accelerometer, and physiological sensors such as EKG/ECG sensors or temperature sensors or ultrasonic sensors.
  • a speaker (not shown) is provided to enable voice communication over the mesh network, and a microphone 188 is provided to pick up voice during verbal communication and pick up heart sound when the user is not using the microphone for voice communication.
  • the ear phone optionally has an ear canal temperature sensor for sensing temperature in a human.
  • FIG. 14A shows an exemplary adhesive patch embodiment.
  • the patch may be applied to a persons skin by anyone including the person themselves or an authorized person such as a family member or physician.
  • the adhesive patch is shown generally at 190 having a gauze pad 194 attached to one side of a backing 192 , preferably of plastic, and wherein the pad can have an impermeable side 194 coating with backing 192 and a module 196 which contains electronics for communicating with the mesh network and for sensing acceleration and bioimpedance, EKG/ECG, heart sound, microphone, optical sensor, or ultrasonic sensor in contacts with a wearer's skin.
  • the module 196 has a skin side that may be coated with a conductive electrode lotion or gel to improve the contact.
  • the entire patch described above may be covered with a plastic or foil strip to retain moisture and retard evaporation by a conductive electrode lotion or gel provided improve the electrode contact.
  • an acoustic sensor microphone or piezoelectric sensor
  • an electrical sensor such as EKG sensor contact the patient or wearer with a conductive gel material.
  • the conductive gel material provides transmission characteristics so as to provide an effective acoustic impedance match to the skin in addition to providing electrical conductivity for the electrical sensor.
  • the acoustic transducer can be directed mounted on the conductive gel material substantially with or without an intermediate air buffer. The entire patch is then packaged as sterile as are other over-the-counter adhesive bandages.
  • the module 196 When the patch is worn out, the module 196 may be removed and a new patch backing 192 may be used in place of the old patch.
  • One or more patches may be applied to the patient or wearer's body and these patches may communicate wirelessly using the mesh network or alternatively they may communicate through a personal area network using the patient or wearer's body as a communication medium.
  • positional measurement is not limited to longitude and latitude measurements, or to metes and bounds, but includes information in any form from which geophysical positions can be derived. These include, but are not limited to, the distance and direction from a known benchmark, measurements of the time required for certain signals to travel from a known source to the geophysical location where the signals may be electromagnetic or other forms, or measured in terms of phase, range, Doppler or other units.
  • FIG. 14B shows a sunglass or eyeglass embodiment which contains electronics for communicating with the mesh network and for sensing acceleration and bioimpedance, EKG/ECG, EMG, heart sound, microphone, optical sensor, or ultrasonic sensor in contacts with a wearer's skin.
  • the ear module 310 contains optical sensors to detect temperature, blood flow and blood oxygen level as well as a speaker to provide wireless communication or hearing aid. The blood flow or velocity information can be used to estimate blood pressure.
  • the side module 312 can contain an array of bioimpedance sensors such as bipolar or tetrapolar bioimpedance probes to sense fluids in the brain.
  • Additional bioimpedance electrodes can be positioned around the rim of the glasses as well as the glass handle or in any spots on the eyewear that contacts the user.
  • the side module 312 or 314 can also contain one or more EKG electrodes to detect heart beat parameters and to detect heart problems.
  • the side module 312 or 314 can also contain piezoelectric transducers or microphones to detect heart activities near the brain.
  • the side module 312 or 314 can also contain ultrasound transmitter and receiver to create an ultrasound model of brain fluids.
  • an acoustic sensor microphone or piezoelectric sensor
  • an electrical sensor such as EKG sensor contact the patient or wearer with a conductive gel material.
  • the conductive gel material provides transmission characteristics so as to provide an effective acoustic impedance match to the skin in addition to providing electrical conductivity for the electrical sensor.
  • the acoustic transducer can be directed mounted on the conductive gel material substantially with or without an intermediate air buffer.
  • electronics components are distributed between first and second ear stems.
  • the method further comprises providing a nose bridge, wherein digital signals generated by the electronics circuit are transmitted across the nose bridge.
  • the eyewear device may communicate wirelessly using the mesh network or alternatively they may communicate through a personal area network using the patient or wearer's body as a communication medium. Voice can be transmitted over the mesh wireless network.
  • the speaker can play digital audio file, which can be compressed according to a compression format.
  • the compression format may be selected from the group consisting of: PCM, DPCM, ADPCM, AAC, RAW, DM, RIFF, WAV, BWF, RIFF, AU, SND, CDA, MPEG, MPEG-1, MPEG-2, MPEG-2.5, MPEG-4, MPEG-J, MPEG 2-ACC, MP3, MP3Pro, ACE, MACE, MACE-3, MACE-6, AC-3, ATRAC, ATRAC3, EPAC, Twin VQ, VQF, WMA, WMA with DRM, DTS, DVD Audio, SACD, TAC, SHN, OGG, Ogg Vorbis, Ogg Tarkin, Ogg Theora, ASF, LQT, QDMC, A2b, .ra, .rm, and Real Audio G2, RMX formats, Fairplay, Quicktime, SWF, and PCA, among others.
  • the eye wear device of FIG. 14B can provide a data port, wherein the data port is carried by the ear stem.
  • the data port may be a mini-USB connector, a FIREWIRE connector, an IEEE 1394 cable connector, an RS232 connector, a JTAB connector, an antenna, a wireless receiver, a radio, an RF receiver, or a Bluetooth receiver.
  • the wearable device is removably connectable to a computing device.
  • the wearable wireless audio device may be removably connectable to a computing device with a data port, wherein said data port is mounted to said wearable wireless audio device.
  • projectors can project images on the glasses to provide head-mounted display on the eye wear device.
  • the processor can display fact, figure, to do list, and reminders need in front of the user's eyes.
  • FIG. 15A shows a system block diagram of the network-based patient or wearer monitoring system in a hospital or nursing home setting.
  • the system has a patient or wearer component 215 , a server component 216 , and a client component 217 .
  • the patient or wearer component 215 has one or more mesh network patient or wearer transmitters 202 for transmitting data to the central station.
  • the central server comprises one or more Web servers 205 , one or more waveform servers 204 and one or more mesh network receivers 211 .
  • the output of each mesh network receiver 211 is connected to at least one of the waveform servers 204 .
  • the waveform servers 204 and Web the servers 205 are connected to the network 105 .
  • the Web servers 205 are also connected to a hospital database 230 .
  • the hospital database 230 contains patient or wearer records.
  • a plurality of nurse stations provide a plurality of nurse computer user interface 208 .
  • the user interface 208 receives data from an applet 210 that communicates with the waveform server 204 and updates the display of the nurse computers for treating patient or wearers.
  • the network client component 217 comprises a series of workstations 106 connected to the network 105 .
  • Each workstation 106 runs a World Wide Web (WWW or Web) browser application 208 .
  • Each Web browser can open a page that includes one or more media player applets 210 .
  • the waveform servers 204 use the network 105 to send a series of messages 220 to the Web servers 205 .
  • the Web servers 205 use the network 105 to communicate messages, shown as a path 221 , to the workstations 106 .
  • the media player applets running on the workstations 106 use the network 105 to send messages over a path 223 directly to the waveform servers 204 .
  • FIG. 15B shows a variation of the system of FIG. 15A for call center monitoring.
  • the patient or wearer appliances 202 wirelessly communicate to home base stations (not shown) which are connected to the POTS or PSTN network for voice as well as data transmission.
  • the data is captured by the waveform server 204 and the voice is passed through to the call center agent computer 207 where the agent can communicate by voice with the patient or wearer.
  • the call center agent can forward the call to a professional such as a nurse or doctor or emergency service personnel if necessary.
  • the system can include a patient or wearer monitoring appliance coupled to the POTS or PSTN through the mesh network.
  • the patient or wearer monitoring appliance monitors drug usage and patient or wearer falls.
  • the patient or wearer monitoring appliance monitors patient or wearer movement.
  • a call center can call to the telephone to provide a human response.
  • the system includes a communication network (e.g., the Public Switch Telephone Network or PSTN or POTS), a wide area communication network (e.g., TCP/IP network) in call centers.
  • the communication network receives calls destined for one of the call centers.
  • each call destined for one of the call centers is preferably associated with a particular patient or wearer, a call identifier or a call identifier of a particular set of identifiers.
  • a call identifier associated with an incoming call may be an identifier dialed or otherwise input by the caller.
  • the call centers may be locations for receiving calls from a particular hospital or nursing home.
  • FIG. 15C shows an exemplary interface to monitor a plurality of persons
  • FIG. 15D shows an exemplary dash-board that provides summary information on the status of a plurality of persons.
  • a display can track a plurality of patient or wearers.
  • a warning (such as sound or visual warning in the form of light or red flashing text) can be generated to point out the particular patient or wearer that may need help or attention.
  • a magnifier glass can be dragged over a particular individual icon to expand and show detailed vital parameters of the individual and if available, images from the camera 10 trained on the individual for real time video feedback.
  • the user can initiate voice communication with the user for confirmation purposes by clicking on a button provided on the interface and speaking into a microphone on the professional's workstation.
  • FIG. 15E shows an exemplary multi-station vital parameter user interface for a professional embodiment
  • FIG. 15F shows an exemplary trending pattern display.
  • the clinician interface uses simple point and click actions with a computer mouse or trackball. The clinician can initiate or change monitoring functions from either the Central Station or the bedside monitor.
  • patient or wearer data such as EKG/EMG/EEG/BP data can be shown either by a scrolling waveform that moves along the screen display, or by a moving bar where the waveform is essentially stationary and the bar moves across the screen.
  • software for the professional monitoring system provides a login screen to enter user name and password, together with database credentials.
  • Select Record function the user can select a person, based on either entered or preselected criteria. From here navigate to their demographics, medical record, etc.
  • the system can show a persons demographics, includes aliases, people involved in their care, friends and family, previous addresses, home and work locations, alternative numbers and custom fields.
  • the system can show all data elements of a person's medical record. These data elements are not ‘hard wired’, but may be configured in the data dictionary to suit particular user requirements. It is possible to create views of the record that filter it to show (for instance) just the medications or diagnosis, etc. Any data element can be designated ‘plan able’ in the data dictionary and then scheduled.
  • a Summary Report can be done.
  • Reports can be created that can format and analyze any data stored on the server.
  • the system supports OLE controls and can include graphs, bar codes, etc. These can be previewed on screen, printed out or exported in a wide variety of formats.
  • the system also maintains a directory of all organizations the administrator wishes to record as well as your own. These locations are then used to record the location for elements of the medical record (where applicable), work addresses for people involved in the care and for residential addresses for people in residential care.
  • the data elements that form the medical record are not ‘hard wired’ (ie predefined) but may be customized by the users to suit current and future requirements.
  • the wearable appliance can store patient or wearer data in its data storage device such as flash memory.
  • the data can include Immunizations and dates; medications (prescriptions and supplements); physician names, addresses, phone numbers, email addresses; location and details of advance directives; insurance company, billing address, phone number, policy number; emergency contacts, addresses, home/business/pager phone numbers, email addresses.
  • the data can include color or black and white photo of the wearer of the device; a thumb print, iris print of other distinguishing physical characteristic; dental records; sample ECG or Cardiac Echo Scan; blood type; present medication being taken; drug interaction precautions; drug and/or allergic reaction precautions; a description of serious preexisting medical conditions; Emergency Medical Instructions, which could include: administering of certain suggested drugs or physical treatments; calling emergency physician numbers listed; bringing the patient or wearer to a certain type of clinic or facility based on religious beliefs; and living will instructions in the case of seriously ill patient or wearers; Organ Donor instructions; Living Will instructions which could include: instructions for life support or termination of treatment; notification of next of kin and/or friends including addresses and telephone numbers; ECG trace; Cardiac Echo Scan; EEG trace; diabetes test results; x-ray scans, among others.
  • the wearable appliance stores the wearer's medical records and ID information.
  • new/original medical information is organized and edited to fit into the BWD page format either in physicians office or by a third party with access to a patient or wearer's medical records using the base unit storage and encrypting software which can be stored in a normal pc or other compatible computer device.
  • the system can encrypt the records so as to be secure and confidential and only accessible to authorized individuals with compatible de-encrypting software.
  • a Paramedic, EMT or Emergency Room Technician can use a wireless interrogator to rapidly retrieve and display the stored medical records in the wearable appliance and send the medical records via wireless telemetry to a remote emergency room or physicians office for rapid and life saving medical intervention in a crisis situation.
  • the personal health information service is also helpful as it eliminates the hassle of repeatedly filling out forms when changing health plans or seeing a new physician; stores vaccination records to schools or organizations without calling the pediatrician; or enlists the doctor's or pharmacist's advice about multiple medications without carrying all the bottles to a personal visit.
  • the system can store 48 hrs. of EKG, EEG, EMG, or blood pressure data.
  • a plurality of body worn sensors with in-door positioning can be used as an Emergency Department and Urgent Care Center Tracking System.
  • the system tracks time from triage to MD assessment, identifies patient or wearers that have not yet been registered, records room usage, average wait time, and average length of stay.
  • the system allows user defined “activities” so that hospitals can track times and assist in improving patient or wearer flow and satisfaction.
  • the system can set custom alerts and send email/pager notifications to better identify long patient or wearer wait times and record the number of these alert occurrences.
  • the system can manage room usage by identifying those rooms which are under/over utilized.
  • the hospital administrator can set manual or automatic alerts and generate custom reports for analysis of patient or wearer flow.
  • the system maximizes revenue by streamlining processes and improving throughput; improves charge capture by ensuring compliance with regulatory standards; increases accountability by collecting clear, meaningful data; enhances risk management and QA; and decreases liability.
  • FIG. 16A shows ant exemplary process to continuously determine blood pressure of a patient or wearer.
  • the process generates a blood pressure model of a patient or wearer ( 2002 ); determines a blood flow velocity using a piezoelectric transducer ( 2004 ); and provides the blood flow velocity to the blood pressure model to continuously estimate blood pressure ( 2006 ).
  • FIG. 16B shows another exemplary process to continuously determine blood pressure of a patient or wearer.
  • a monitoring device and calibration device are attached to patient or wearer ( 2010 ).
  • the monitoring device generates patient or wearer blood flow velocity, while actual blood pressure is measured by a calibration device ( 2012 ).
  • the process generates a blood pressure model based on the blood flow velocity and the actual blood pressure ( 2014 ).
  • the calibration device can be removed ( 2016 ).
  • the process periodically samples blood flow velocity from the monitoring device on a real-time basis ( 18 ) and provides the blood flow velocity as input information to the blood pressure model to estimate blood pressure ( 20 ). This process can be done in continuously or periodically as specified by a user.
  • acoustic pulses are generated and transmitted into the artery using an ultrasonic transducer positioned near a wrist artery. These pulses are reflected by various structures or entities within the artery (such as the artery walls, and the red blood cells within the subject's blood), and subsequently received as frequency shifts by the ultrasonic transducer.
  • the blood flow velocity is determined. In this process, the frequencies of those echoes reflected by blood cells within the blood flowing in the artery differ from that of the transmitted acoustic pulses due to the motion of the blood cells.
  • This well known “Doppler shift” in frequency is used to calculate the blood flow velocity.
  • the Doppler frequency is used to determine mean blood velocity. For example, U.S. Pat. No. 6,514,211, the content of which is incorporated by reference, discusses blood flow velocity using a time-frequency representation.
  • the system can obtain one or more numerical calibration curves describing the patient or wearer's vital signs such as blood pressure.
  • the system can then direct energy such as infrared or ultrasound at the patient or wearer's artery and detecting reflections thereof to determine blood flow velocity from the detected reflections.
  • the system can numerically fit or map the blood flow velocity to one or more calibration parameters describing a vital-sign value.
  • the calibration parameters can then be compared with one or more numerical calibration curves to determine the blood pressure.
  • the system can analyze blood pressure, and heart rate, and pulse oximetry values to characterize the user's cardiac condition.
  • These programs may provide a report that features statistical analysis of these data to determine averages, data displayed in a graphical format, trends, and comparisons to doctor-recommended values.
  • feed forward artificial neural networks are used to classify valve-related heart disorders.
  • the heart sounds are captured using the microphone or piezoelectric transducer. Relevant features were extracted using several signal processing tools, discrete wavelet transfer, fast fourier transform, and linear prediction coding.
  • the heart beat sounds are processed to extract the necessary features by: a) denoising using wavelet analysis, b) separating one beat out of each record c) identifying each of the first heart sound (FHS) and the second heart sound (SHS).
  • Valve problems are classified according to the time separation between the FHS and th SHS relative to cardiac cycle time, namely whether it is greater or smaller than 20% of cardiac cycle time.
  • the NN comprises 6 nodes at both ends, with one hidden layer containing 10 nodes.
  • LPC linear predictive code
  • a normalized energy spectrum of the sound data is obtained by applying a Fast Fourier Transform.
  • the various spectral resolutions and frequency ranges were used as inputs into the NN to optimize these parameters to obtain the most favorable results.
  • the heart sounds are denoised using six-stage wavelet decomposition, thresholding, and then reconstruction.
  • Three feature extraction techniques were used: the Decimation method, and the wavelet method.
  • HMMs Hidden Markov Models
  • a wavelet transform is applied to a window of two periods of heart sounds. Two analyses are realized for the signals in the window: segmentation of first and second heart sounds, and the extraction of the features. After segmentation, feature vectors are formed by using he wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming.
  • the wavelet decomposition and reconstruction method extract features from the heart sound recordings.
  • An artificial neural network classification method classifies the heart sound signals into physiological and pathological murmurs.
  • the heart sounds are segmented into four parts: the first heart sound, the systolic period, the second heart sound, and the diastolic period.
  • the following features can be extracted and used in the classification algorithm: a) Peak intensity, peak timing, and the duration of the first heart sound b) the duration of the second heart sound c) peak intensity of the aortic component of S2(A2) and the pulmonic component of S2 (P2), the splitting interval and the reverse flag of A2 and P2, and the timing of A2 d) the duration, the three largest frequency components of the systolic signal and the shape of the envelope of systolic murmur e) the duration the three largest frequency components of the diastolic signal and the shape of the envelope of the diastolic murmur.
  • the time intervals between the ECG R-waves are detected using an envelope detection process.
  • the intervals between R and T waves are also determined.
  • the Fourier transform is applied to the sound to detect S1 and S2.
  • the system applies Fourier transform to detect S1 in the interval 0.1-0.5R-R.
  • the system looks for S2 the intervals R-T and 0.6 R-R.
  • S2 has an aortic component A2 and a pulmonary component P2.
  • the interval between these two components and its changes with respiration has clinical significance.
  • A2 sound occurs before P2, and the intensity of each component depends on the closing pressure and hence A2 is louder than P2.
  • the third heard sound S3 results from the sudden halt in the movement of the ventricle in response to filling in early diastole after the AV valves and is normally observed in children and young adults.
  • the fourth heart sound S4 is caused by the sudden halt of the ventricle in response to filling in presystole due to atrial contraction.
  • the S2 is identified and a normalized splitting interval between A2 and P2 is determined. If there is no overlap, A2 and P2 are determined from the heart sound. When overlap exists between A2 and P2, the sound is dechirped for identification and extraction of A2 and P2 from S2.
  • a non linear regressive analysis maps the relationship between the normalized NSI and PAP.
  • a mapping process such as a curve-fitting procedure determines the curve that provides the best fit with the patient or wearer data. Once the mathematical relationship is determined, NSI can be used to provide an accurate quantitative estimate of the systolic and mean PAP relatively independent of heart rate and systemic arterial pressure.
  • the first heart sound (S1) is detected using a time-delayed neural network (TDNN).
  • TDNN time-delayed neural network
  • the network consists of a single hidden layer, with time-delayed links connecting the hidden units to the time-frequency energy coefficients of a Morlet wavelet decomposition of the input phonocardiogram (PCG) signal.
  • PCG input phonocardiogram
  • the neural network operates on a 200 msec sliding window with each time-delay hidden unit spanning 100 msec of wavelet data.
  • a local signal analysis is used with a classifier to detect, characterize, and interpret sounds corresponding to symptoms important for cardiac diagnosis.
  • the system detects a plurality of different heart conditions. Heart sounds are automatically segmented into a segment of a single heart beat cycle. Each segment are then transformed using 7 level wavelet decomposition, based on Coifman 4th order wavelet kernel. The resulting vectors 4096 values, are reduced to 256 element feature vectors, this simplified the neural network and reduced noise.
  • feature vectors are formed by using the wavelet detail and approximation coefficients at the second and sixth decomposition levels.
  • the classification is performed in 4 steps: segmentation of the first and second heart sounds, normalization process, feature extraction, and classification by the artificial neural network.
  • the system distinguishes (1) the Aortic Stenosis (AS) from the Mitral Regurgitation (MR) and (2) the Opening Snap (OS), the Second Heart Sound Split (A2_P2) and the Third Heart Sound (S3).
  • the heart sound signals are processed to detect the first and second heart sounds in the following steps: a) wavelet decomposition, b) calculation of normalized average Shannon Energy, c) a morphological transform action that amplifies the sharp peaks and attenuates the broad ones d) a method that selects and recovers the peaks corresponding to S1 and S2 and rejects others e) algorithm that determines the boundaries of S1 and S2 in each heart cycle f) a method that distinguishes S1 from S2.
  • the digitized heart sound signal is parameterized into acoustic features by a feature extractor.
  • the output of the feature extractor is delivered to a sound recognizer.
  • the feature extractor can include the short time energy, the zero crossing rates, the level crossing rates, the filter-bank spectrum, the linear predictive coding (LPC), and the fractal method of analysis.
  • LPC linear predictive coding
  • vector quantization may be utilized in combination with any representation techniques.
  • one skilled in the art may use an auditory signal-processing model in place of the spectral models to enhance the system's robustness to noise and reverberation.
  • the digitized heart sound signal series s(n) is put through a low-order filter, typically a first-order finite impulse response filter, to spectrally flatten the signal and to make the signal less susceptible to finite precision effects encountered later in the signal processing.
  • the signal is pre-emphasized preferably using a fixed pre-emphasis network, or preemphasizer.
  • the signal can also be passed through a slowly adaptive pre-emphasizer.
  • the preemphasized heart sound signal is next presented to a frame blocker to be blocked into frames of N samples with adjacent frames being separated by M samples.
  • frame 1 contains the first 400 samples.
  • the frame 2 also contains 400 samples, but begins at the 300th sample and continues until the 700th sample.
  • each frame is windowed to minimize signal discontinuities at the beginning and end of each frame.
  • the windower tapers the signal to zero at the beginning and end of each frame.
  • the window used for the autocorrelation method of LPC is the Hamming window.
  • a noise canceller operates in conjunction with the autocorrelator to minimize noise. Noise in the heart sound pattern is estimated during quiet periods, and the temporally stationary noise sources are damped by means of spectral subtraction, where the autocorrelation of a clean heart sound signal is obtained by subtracting the autocorrelation of noise from that of corrupted heart sound.
  • the noise cancellation unit if the energy of the current frame exceeds a reference threshold level, the heart is generating sound and the autocorrelation of coefficients representing noise is not updated. However, if the energy of the current frame is below the reference threshold level, the effect of noise on the correlation coefficients is subtracted off in the spectral domain. The result is half-wave rectified with proper threshold setting and then converted to the desired autocorrelation coefficients.
  • the output of the autocorrelator and the noise canceller are presented to one or more parameterization units, including an LPC parameter unit, an FFT parameter unit, an auditory model parameter unit, a fractal parameter unit, or a wavelet parameter unit, among others. The LPC parameter is then converted into cepstral coefficients.
  • the cepstral coefficients are the coefficients of the Fourier transform representation of the log magnitude spectrum.
  • a filter bank spectral analysis which uses the short-time Fourier transformation (STFT) may also be used alone or in conjunction with other parameter blocks.
  • STFT short-time Fourier transformation
  • FFT is well known in the art of digital signal processing. Such a transform converts a time domain signal, measured as amplitude over time, into a frequency domain spectrum, which expresses the frequency content of the time domain signal as a number of different frequency bands. The FFT thus produces a vector of values corresponding to the energy amplitude in each of the frequency bands.
  • the FFT converts the energy amplitude values into a logarithmic value which reduces subsequent computation since the logarithmic values are more simple to perform calculations on than the longer linear energy amplitude values produced by the FFT, while representing the same dynamic range. Ways for improving logarithmic conversions are well known in the art, one of the simplest being use of a look-up table.
  • the FFT modifies its output to simplify computations based on the amplitude of a given frame. This modification is made by deriving an average value of the logarithms of the amplitudes for all bands. This average value is then subtracted from each of a predetermined group of logarithms, representative of a predetermined group of frequencies.
  • the predetermined group consists of the logarithmic values, representing each of the frequency bands.
  • utterances are converted from acoustic data to a sequence of vectors of k dimensions, each sequence of vectors identified as an acoustic frame, each frame represents a portion of the utterance.
  • auditory modeling parameter unit can be used alone or in conjunction with others to improve the parameterization of heart sound signals in noisy and reverberant environments.
  • the filtering section may be represented by a plurality of filters equally spaced on a log-frequency scale from 0 Hz to about 3000 Hz and having a prescribed response corresponding to the cochlea.
  • the nerve fiber firing mechanism is simulated by a multilevel crossing detector at the output of each cochlear filter.
  • the ensemble of the multilevel crossing intervals corresponds to the firing activity at the auditory nerve fiber-array.
  • the interval between each successive pair of same direction, either positive or negative going, crossings of each predetermined sound intensity level is determined and a count of the inverse of these interspike intervals of the multilevel detectors for each spectral portion is stored as a function of frequency.
  • the resulting histogram of the ensemble of inverse interspike intervals forms a spectral pattern that is representative of the spectral distribution of the auditory neural response to the input sound and is relatively insensitive to noise
  • the use of a plurality of logarithmically related sound intensity levels accounts for the intensity of the input signal in a particular frequency range.
  • a signal of a particular frequency having high intensity peaks results in a much larger count for that frequency than a low intensity signal of the same frequency.
  • the multiple level histograms of the type described herein readily indicate the intensity levels of the nerve firing spectral distribution and cancel noise effects in the individual intensity level histograms.
  • the fractal parameter block can further be used alone or in conjunction with others to represent spectral information. Fractals have the property of self similarity as the spatial scale is changed over many orders of magnitude.
  • a fractal function includes both the basic form inherent in a shape and the statistical or random properties of the replacement of that shape in space.
  • a fractal generator employs mathematical operations known as local affine transformations.
  • the encoded output constitutes a “fractal transform” of the spectral data and consists of coefficients of the affine transformations. Different fractal transforms correspond to different images or sounds.
  • a wavelet parameterization block can be used alone or in conjunction with others to generate the parameters.
  • the discrete wavelet transform can be viewed as a rotation in function space, from the input space, or time domain, to a different domain.
  • the DWT consists of applying a wavelet coefficient matrix hierarchically, first to the full data vector of length N, then to a smooth vector of length N/2, then to the smooth-smooth vector of length N/4, and so on. Most of the usefulness of wavelets rests on the fact that wavelet transforms can usefully be severely truncated, or turned into sparse expansions.
  • the wavelet transform of the heart sound signal is performed.
  • the wavelet coefficients are allocated in a non-uniform, optimized manner. In general, large wavelet coefficients are quantized accurately, while small coefficients are quantized coarsely or even truncated completely to achieve the parameterization. Due to the sensitivity of the low-order cepstral coefficients to the overall spectral slope and the sensitivity of the high-order cepstral coefficients to noise variations, the parameters generated may be weighted by a parameter weighing block, which is a tapered window, so as to minimize these sensitivities. Next, a temporal derivator measures the dynamic changes in the spectra. Power features are also generated to enable the system to distinguish heart sound from silence.
  • the heart sound parameters are next assembled into a multidimensional vector and a large collection of such feature signal vectors can be used to generate a much smaller set of vector quantized (VQ) feature signals by a vector quantizer that cover the range of the larger collection.
  • VQ vector quantized
  • the VQ representation simplifies the computation for determining the similarity of spectral analysis vectors and reduces the similarity computation to a look-up table of similarities between pairs of codebook vectors.
  • the preferred embodiment partitions the feature parameters into separate codebooks, preferably three.
  • the first, second and third codebooks correspond to the cepstral coefficients, the differenced cepstral coefficients, and the differenced power coefficients.
  • an input vector is represented by the codeword closest to the input vector in terms of distortion.
  • an object either belongs to or does not belong to a set. This is in contrast to fuzzy sets where the membership of an object to a set is not so clearly defined so that the object can be a part member of a set. Data are assigned to fuzzy sets based upon the degree of membership therein, which ranges from 0 (no membership) to 1.0 (full membership).
  • a fuzzy set theory uses membership functions to determine the fuzzy set or sets to which a particular data value belongs and its degree of membership therein.
  • an adaptive clustering technique called hierarchical spectral clustering.
  • Such speaker changes can result from temporary or permanent changes in vocal tract characteristics or from environmental effects.
  • the codebook performance is improved by collecting heart sound patterns over a long period of time to account for natural variations in speaker behavior.
  • data from the vector quantizer is presented to one or more recognition models, including an HMM model, a dynamic time warping model, a neural network, a fuzzy logic, or a template matcher, among others. These models may be used singly or in combination.
  • dynamic programming slides, or expands and contracts, an operating region, or window, relative to the frames of heart sound so as to align those frames with the node models of each S1-S4 pattern to find a relatively optimal time alignment between those frames and those nodes.
  • the dynamic processing in effect calculates the probability that a given sequence of frames matches a given word model as a function of how well each such frame matches the node model with which it has been time-aligned.
  • the word model which has the highest probability score is selected as corresponding to the heart sound.
  • Dynamic programming obtains a relatively optimal time alignment between the heart sound to be recognized and the nodes of each word model, which compensates for the unavoidable differences in speaking rates which occur in different utterances of the same word.
  • dynamic programming scores words as a function of the fit between word models and the heart sound over many frames, it usually gives the correct word the best score, even if the word has been slightly misspoken or obscured by background sound. This is important, because humans often mispronounce words either by deleting or mispronouncing proper sounds, or by inserting sounds which do not belong.
  • DTW dynamic time warping
  • Dynamic programming considers all possible points within the permitted domain for each value of i. Because the best path from the current point to the next point is independent of what happens beyond that point.
  • the total cost of [i(k), j(k)] is the cost of the point itself plus the cost of the minimum path to it.
  • the values of the predecessors can be kept in an M ⁇ N array, and the accumulated cost kept in a 2 ⁇ N array to contain the accumulated costs of the immediately preceding column and the current column.
  • this method requires significant computing resources. For the heart sound recognizer to find the optimal time alignment between a sequence of frames and a sequence of node models, it must compare most frames against a plurality of node models.
  • One method of reducing the amount of computation required for dynamic programming is to use pruning Pruning terminates the dynamic programming of a given portion of heart sound against a given word model if the partial probability score for that comparison drops below a given threshold.
  • one embodiment limits the search to that within a legal path of the warping.
  • a Hidden Markov model can be used in one embodiment to evaluate the probability of occurrence of a sequence of observations O(1), O(2), . . . O(t), . . . , O(T), where each observation O(t) may be either a discrete symbol under the VQ approach or a continuous vector.
  • the sequence of observations may be modeled as a probabilistic function of an underlying Markov chain having state transitions that are not directly observable.
  • Each a(i,j) term of the transition matrix is the probability of making a transition to state j given that the model is in state i.
  • the first state is always constrained to be the initial state for the first time frame of the utterance, as only a prescribed set of left-to-right state transitions are possible.
  • a predetermined final state is defined from which transitions to other states cannot occur. Transitions are restricted to reentry of a state or entry to one of the next two states. Such transitions are defined in the model as transition probabilities.
  • the probability a(2, 1) of entering state 1 or the probability a(2,5) of entering state 5 is zero and the sum of the probabilities a(2,1) through a(2,5) is one.
  • the Markov model is formed for a reference pattern from a plurality of sequences of training patterns and the output symbol probabilities are multivariate Gaussian function probability densities.
  • the heart sound traverses through the feature extractor.
  • the resulting feature vector series is processed by a parameter estimator, whose output is provided to the hidden Markov model.
  • the hidden Markov model is used to derive a set of reference pattern templates, each template representative of an identified S1-S4 pattern in a vocabulary set of reference patterns.
  • the Markov model reference templates are next utilized to classify a sequence of observations into one of the reference patterns based on the probability of generating the observations from each Markov model reference pattern template.
  • the unknown pattern can then be identified as the reference pattern with the highest probability in the likelihood calculator.
  • a heart sound analyzer detects Normal S1, Split S1, Normal S2, Normal split S2, Wide split S2, Paradoxical split S2, Fixed split S2, S3 right ventricle origin, S3 left ventricle origin, opening snap, S4 right ventricle origin, S4 left ventricle origin, aortic ejection sound, and pulmonic ejection sound, among others.
  • the sound analyzer can be an HMM type analyzer, a neural network type analyzer, a fuzzy logic type analyzer, a genetic algorithm type analyzer, a rule-based analyzer, or any suitable classifier.
  • the heart sound data is captured, filtered, and the major features of the heart sound are determined and then operated by a classifier such as HMM or neural network, among others.
  • the analyzer can detect S1, whose major audible components are related to mitral and tricuspid valve closure.
  • Mitral (MI) closure is the first audible component of the first sound. It normally occurs before tricuspid (T1) closure, and is of slightly higher intensity than T1.
  • a split of the first sound occurs when both components that make up the sound are separately distinguishable. In a normally split first sound, the mitral and tricuspid components are 20 to 30 milliseconds apart. Under certain conditions a wide or abnormally split first sound can be heard. An abnormally wide split first sound can be due to either electrical or mechanical causes, which create asynchrony of the two ventricles. Some of the electrical causes may be right bundle branch block, premature ventricular beats and ventricular tachycardia.
  • An apparently wide split can be caused by another sound around the time of the first.
  • the closure of the aortic and pulmonic valves contributes to second sound production.
  • the aortic valve closes before the pulmonic valve.
  • the left sided mechanical events normally precede right sided events.
  • the system can analyze the second sound S2.
  • the aortic (A2) component of the second sound is the loudest of the two components and is discernible at all auscultation sites, but especially well at the base.
  • the pulmonic (P2) component of the second sound is the softer of the two components and is usually audible at base left.
  • a physiological split occurs when both components of the second sound are separately distinguishable. Normally this split sound is heard on inspiration and becomes single on expiration.
  • the A2 and P2 components of the physiological split usually coincide, or are less than 30 milliseconds apart during expiration and often moved to around 50 to 60 milliseconds apart by the end of inspiration.
  • the physiological split is heard during inspiration because it is during that respiratory cycle that intrathoracic pressure drops. This drop permits more blood to return to the right heart.
  • the increased blood volume in the right ventricle results in a delayed pulmonic valve closure.
  • the capacity of the pulmonary vessels in the lung is increased, which results in a slight decrease in the blood volume returning to the left heart.
  • With less blood in the left ventricle its ejection takes less time, resulting in earlier closing of the aortic valve. Therefore, the net effect of inspiration is to cause aortic closure to occur earlier, and pulmonary closure to occur later.
  • a split second is heard during inspiration, and a single second sound is heard during expiration.
  • a reversed (paradoxical) split of the second sound occurs when there is a reversal of the normal closure sequence with pulmonic closure occurring before aortic.
  • the second sound is single, and during expiration the second sound splits.
  • This paradoxical splitting of the second sound may be heard when aortic closure is delayed, as in marked volume or pressure loads on the left ventricle (i.e., aortic stenosis) or with conduction defects which delay left ventricular depolarization (i.e., left bundle branch block).
  • the normal physiological split second sound can be accentuated by conditions that cause an abnormal delay in pulmonic valve-1 closure. Such a delay may be due to an increased volume in the right ventricle as o compared with the left (atrial septal defect, or ventricular septal defect); chronic right ventricular outflow obstruction (pulmonic stenosis); acute or chronic dilatation of the.
  • the wide split has a duration of 40 to 50′ milliseconds, compared to the normal physiologic split of 30 milliseconds.
  • Fixed splitting of the second sound refers to split sound which displays little or no respiratory variation. The two components making up the sound occur in their normal sequence, but the ventricles are unable to change their volumes with respiration. This finding is typical in atrial septal defect, but is occasionally heard in congestive heart failure. The fixed split is heard best at base left with the diaphragm.
  • the third heart sound is also of low frequency, but it is heard just after the second heart sound. It occurs in early diastole, during the time of rapid ventricular filling. This sound occurs about 140 to 160 milliseconds after the second sound.
  • the S3 is often heard in normal children or young adults but when heard in individuals over the age of 40 it usually reflects cardiac disease characterized by ventricular dilatation, decreased systolic function, and elevated ventricular diastolic filling pressure.
  • the nomenclature includes the term ventricular gallop, protodiastolic gallop, S3 gallop, or the more common, S3. When normal it is referred to as a physiological third heart sound, and is usually not heard past the age of forty.
  • the abnormal, or pathological third heart sound may be heard in individuals with coronary artery disease, cardiomyopathies, incompetent valves, left to right shunts, Ventricular Septal Defect (VSD), or Patent Ductus Arteriosus (PDA).
  • the pathological S3 may be the first clinical sign of congestive heart failure.
  • the fourth heart sound is a low frequency sound heard just before the first heart sound, usually preceding this sound by a longer interval than that separating the two components of the normal first sound. It has also been known as an “atrial gallop”, a “presystolic gallop”, and an “S4 gallop”. It is most commonly known as an “S4”.
  • the S4 is a diastolic sound, which occurs during the late diastolic filling phase at the time when the atria contract.
  • the ventricles When the ventricles have a decreased compliance, or are receiving an increased diastolic volume, they generate a low frequency vibration, the S4.
  • Some authorities believe the S4 may be normal in youth, but is seldom considered normal after the age of 20.
  • the abnormal or pathological S4 is heard in primary myocardial disease, coronary artery disease, hypertension, and aortic and pulmonic stenosis.
  • the S4 may have its origin in either the left or right heart.
  • the S4 of left ventricular origin is best heard at the apex, with the patient or wearer supine, or in the left lateral recumbent position.
  • Ejection sounds are high frequency clicky sounds occurring shortly after the first sound with the onset of ventricular ejection. They are produced by the opening of the semilunar valves, aortic or pulmonic, either when one of these valves is diseased, or when ejection is rapid through a normal valve. They are heard best at the base, and may be of either aortic or pulmonic origin. Ejection sounds of aortic origin often radiate widely and may be heard anywhere on a straight line from the base right to the apex.
  • Aortic ejection sounds are most typically heard in patient or wearers with valvular aortic stenosis, but are occasionally heard in various other conditions, such as aortic insufficiency, coarctation of the aorta, or aneurysm of the ascending aorta. Ejection sounds of pulmonic origin are heard anywhere on a straight line from base left, where they are usually best heard, to the epigastrium. Pulmonic ejection sounds are typically heard in pulmonic stenosis, but may be encountered in pulmonary hypertension, atrial septal defects (ASD) or in conditions causing enlargement of the pulmonary artery.
  • ASD atrial septal defects
  • Clicks are high frequency sounds which occur in systole, either mid, early, or late.
  • the click generally occurs at least 100 milliseconds after the first sound.
  • the most common cause of the click is mitral valve prolapse.
  • the clicks of mitral origin are best heard at the apex, or toward the left lateral sternal border.
  • the click will move closer to the first sound when volume to the ventricle is reduced, as occurs in standing or the Valsalva maneuver.
  • the opening snap is a short high frequency sound, which occurs after the second heart sound in early diastole. It usually follows the second sound by about 60 to 100 milliseconds.
  • a tricuspid opening snap may be heard in tricuspid stenosis or in association with increased flow across the tricuspid valve, as in ASD.
  • the tricuspid opening snap is loudest at the left lateral sternal border, and becomes louder with inspiration.
  • Murmurs are sustained noises that are audible during the time periods of systole, diastole, or both. They are basically produced by these factors: 1) Backward regurgitation through a leaking valve or septal defect; 2) Forward flow through a narrowed or deformed valve or conduit or through an arterial venous connection; 3) High rate of blood flow through a normal or abnormal valve; 4) Vibration of loose structures within the heart (i.e., chordae tendineae or valvular tissue).
  • Murmurs that occur when the ventricles are contracting, that is, during systole are referred to as systolic murmurs.
  • Murmurs occurring when the ventricles are relaxed and filling, that is during diastole are referred to as diastolic murmurs. There are six characteristics useful in murmur identification and differentiation:
  • Murmurs of mitral origin are usually best heard at the apex. Tricuspid murmurs at the lower left lateral sternal border, and pulmonic murmurs at base left. Aortic systolic murmurs are best heard at base right, and aortic diastolic murmurs at Erb's point, the third intercostal space to the left of the sternum.
  • Timing (Occurring during systole, diastole, or both).
  • Systolic murmurs are sustained noises that are audible during the time period of systole, or the period between S1 and S2. Forward flow across the aortic or pulmonic valves, or regurgitant flow from the mitral or tricuspid valve may produce a systolic murmur. Systolic murmurs may be normal, and can represent normal blood flow, i.e., thin chest, babies and children, or increased blood flow, i.e., pregnant women. Early systolic murmurs begin with or shortly after the first sound and peak in the first third of systole. Early murmurs have the greatest intensity in the early part of the cycle. The commonest cause is the innocent murmur of childhood (to be discussed later).
  • VSD ventricular septal defect
  • the early systolic murmur of a small VSD begins with S1 and stops in mid systole, because as ejection continues and the ventricular size decreases, the small defect is sealed shut, causing the murmur to soften or cease.
  • This murmur is characteristic of the type of children's VSD located in the muscular portion of the ventricular septum. This defect may disappear with age.
  • a mid-systolic murmur begins shortly after the first sound, peaks in the middle of systole, and does not quite extend to the second sound. It is the crescendo decrescendo murmur which builds up and decrease symmetrically.
  • murmur It is also known as an ejection murmur. It most commonly is due to forward blood flow through a normal, narrow or irregular valve, i.e., aortic or pulmonic stenosis.
  • the murmur begins when the pressure in the respective ventricle exceeds the aortic or pulmonary arterial pressure. The most characteristic feature of this murmur is its cessation before the second sound, thus leaving this latter sound identifiable as a discrete entity.
  • This type of murmur is commonly heard in normal individuals, particularly in the young, who usually have increased blood volumes flowing over normal valves. In this setting the murmur is usually short, with its peak intensity early in systole, and is soft, seldom over 2 over 6 in intensity. It is then designated as an innocent murmur. In order for a murmur to be classified as innocent (i.e. normal), the following are present:
  • Obstruction or stenosis across the aortic or pulmonic valves also may give rise to a murmur of this type. These murmurs are usually longer and louder than the innocent murmur, and reach a peak intensity in mid-systole.
  • the murmur of aortic stenosis is harsh in quality and is heard equally well with either the bell or the diaphragm. It is heard best at base right, and radiates to the apex and to the neck bilaterally.
  • An early diastolic murmur begins with a second sound, and peaks in the first third of diastole.
  • Common causes are aortic regurgitation and pulmonic regurgitation.
  • the early diastolic murmur of aortic regurgitation usually has a high frequency blowing quality, is heard best with a diaphragm at Erb's point, and radiates downward along the left sternal border.
  • Aortic regurgitation tends to be of short duration, and heard best on inspiration. This respiratory variation is helpful in differentiating pulmonic regurgitation from aortic regurgitation.
  • a mid-diastolic murmur begins after the second sound and peaks in mid-diastole.
  • Mitral stenosis Common causes are mitral stenosis, and tricuspid stenosis.
  • the murmur of mitral stenosis is a low frequency, crescendo de crescendo rumble, heard at the apex with the bell lightly held. If it radiates, it does so minimally to the axilla.
  • Mitral stenosis normally produces three distinct abnormalities which can be heard: 1) A loud first sound 2 ) An opening snap, and 3) A mid-diastolic rumble with a late diastolic accentuation.
  • a late diastolic murmur occurs in the latter half of diastole, synchronous with atrial contraction, and extends to the first sound. Although occasionally occurring alone, it is usually a component of the longer diastolic murmur of mitral stenosis or tricuspid stenosis. This murmur is low in frequency, and rumbling in quality.
  • a continuous murmur usually begins during systole and extends through the second sound and throughout the diastolic period.
  • Patent Ductus Arteriosus is the classical example of this murmur. This condition is usually corrected in childhood. It is heard best at base left, and is usually easily audible with the bell or diaphragm. Another example of a continuous murmur is the so-called venous hum, but in this instance one hears a constant roaring sound which changes little with the cardiac cycle.
  • a late systolic murmur begins in the latter half of systole, peaks in the later third of systole, and extends to the second sound. It is a modified regurgitant murmur with a backward flow through an incompetent valve, usually the mitral valve. It is commonly heard in mitral valve prolapse, and is usually high in frequency (blowing in quality), and heard best with a diaphragm at the apex. It may radiate to the axilla or left sternal border.
  • a pansystolic or holosystolic murmur is heard continuously throughout systole. It begins with the first heart sound, and ends with the second heart sound.
  • Diastolic murmurs are sustained noises that are audible between S2 and the next S. Unlike systolic murmurs, diastolic murmurs should usually be considered pathological, and not normal. Typical abnormalities causing diastolic murmurs are aortic regurgitation, pulmonic regurgitation, mitral stenosis, and tricuspid stenosis.
  • diastolic murmurs The timing of diastolic murmurs is the primary concern of this program. These murmurs can be early, mid, late and pan in nature.
  • a pericardial friction rub there are three sounds, one systolic, and two diastolic.
  • the systolic sound may occur anywhere in systole, and the two diastolic sounds occur at the times the ventricles are stretched. This stretching occurs in early diastole, and at the end of diastole.
  • the pericardial friction rub has a scratching, grating, or squeaking leathery quality. It tends to be high in frequency and best heard with a diaphragm.
  • a pericardial friction rub is a sign of pericardial inflammation and may be heard in infective pericarditis, in myocardial infarction, following cardiac surgery, trauma, and in autoimmune problems such as rheumatic fever.
  • an interval provides a measure of the state of the heart and can indicate the presence of certain cardiological conditions.
  • An EKG analyzer is provided to interpret EKG/ECG data and generate warnings if needed. The analyzer examines intervals in the ECG waveform such as the QT interval and the PR interval.
  • the QT interval is defined as the time from the start of the QRS complex to the end of the T wave and corresponds to the total duration of electrical activity (both depolarization and repolarization) in the ventricles.
  • the PR interval is defined as the time from the start of the P wave to the start of the QRS complex and corresponds to the time from the onset of atrial depolarization to the onset of ventricular depolarization.
  • hidden Markov and hidden semi-Markov models are used for automatically segmenting an electrocardiogram waveform into its constituent waveform features.
  • An undecimated wavelet transform is used to generate an overcomplete representation of the signal that is more appropriate for subsequent modelling.
  • the wavelet methods such as the undecimated wavelet transform, can be used instead of raw time series data to generate an encoding of the ECG which is tuned to the unique spectral characteristics of the ECG waveform features.
  • the segmentation process can use of explicit state duration modelling with hidden semi-Markov models. Using a labelled data set of ECG waveforms, a hidden Markov model is trained in a supervised manner. The model was comprised of the following states: P wave, QRS complex, T wave, U wave, and Baseline. The parameters of the transition matrix aij were computed using the maximum likelihood estimates.
  • the ECG data is encoded with wavelets from the Daubechies, Symlet, Coiflet or Biorthogonal wavelet families, among others.
  • a wavelet at a given scale is associated with a bandpass filter of a particular centre frequency.
  • the optimal wavelet basis will correspond to the set of bandpass filters that are tuned to the unique spectral characteristics of the ECG.
  • a hidden semi-Markov model (HSMM) is used.
  • HSMM differs from a standard HMM in that each of the self-transition coefficients aii are set to zero, and an explicit probability density is specified for the duration of each state. In this way, the individual state duration densities govern the amount of time the model spends in a given state, and the transition matrix governs the probability of the next state once this time has elapsed.
  • the patterns of the constituent waveform features determined by the HMM or neural networks, among other classifiers can be used for detecting heart attacks or stroke attacks, among others.
  • the detection and classification of ventricular complexes from the ECG data is can be used for rhythm and various types of arrhythmia to be recognized.
  • the system analyzes pattern recognition parameters for classification of normal QRS complexes and premature ventricular contractions (PVC).
  • Exemplary parameters include the width of the QRS complex, vectorcardiogram parameters, amplitudes of positive and negative peaks, area of positive and negative waves, various time-interval durations, amplitude and angle of the QRS vector, among others.
  • the EKG analyzer can analyze EKG/ECG patterns for Hypertrophy, Enlargement of the Heart, Atrial Enlargement, Ventricular Hypertrophy, Arrhythmias, Ectopic Supraventricular Arrhythmias, Ventricular Tachycardia (VT), Paroxysmal Supraventricular Tachycardia (PSVT), Conduction Blocks, AV Block, Bundle Branch Block, Hemiblocks, Bifascicular Block, Preexcitation Syndromes, Wolff-Parkinson-White Syndrome, Lown-Ganong-Levine Syndrome, Myocardial Ischemia, Infarction, Non-Q Wave Myocardial Infarction, Angina, Electrolyte Disturbances, Heart Attack, Stroke Attack, Hypothermia, Pulmonary Disorder, Central Nervous System Disease, or Athlete's Heart, for example.
  • FIG. 16C shows an exemplary process to detect stroke attack.
  • 3D accelerometer sensing is used.
  • the process looks for weakness (hemiparesis) in either the left half or the right half of the body, for example the left/right arms, legs, or face ( 3000 ).
  • the system analyzes walking pattern to see if the patient or wearer has a loss of balance or coordination ( 3002 ).
  • the system then asks the user to move hands/feet in a predetermined pattern ( 3004 ) and reads accelerometer output in accordance with predetermined pattern movement ( 3006 ).
  • the system can ask the user to point his/her right or left hand to the nose.
  • the accelerometer outputs are tested to check if the correct hand did reach the nose.
  • the user can be prompted to extend his or her hands on both side and wiggle the hands or to kick the legs.
  • the outputs of the accelerometers are used to confirm that the user is able to follow direction.
  • the accelerometer outputs are provided to a pattern classifier, which can be an HMM, a neural network, a Bayesian network, fuzzy logic, or any suitable classifiers ( 3008 ).
  • the system also checks whether patient or wearer is experiencing dizziness or sudden, severe headache with no known cause ( 3010 ).
  • the system displays a text image and asks the patient or wearer to read back the text image, one eye at a time ( 3012 ).
  • a speech recognizer module the user speech is converted into text to compare against the text image.
  • the speech recognizer also detects if the user exhibits signs of confusion, trouble speaking or understanding ( 3014 ).
  • the system also asks the patient or wearer if they feel numbness in the body-arms, legs, face ( 3016 ).
  • the system asks the patient or wearer to squeeze gauge/force sensor to determine force applied during squeeze ( 3018 ). If any of the above tests indicate a possible stroke, the system displays a warning to the patient or wearer and also connects the patient or wearer to the appropriate emergency response authority, family member, or physician.
  • an HMM is used to track patient or wearer motor skills or patient or wearer movement patterns.
  • Human movement involves a periodic motion of the legs.
  • Regular walking involves the coordination of motion at the hip, knee and ankle, which consist of complex joints.
  • the muscular groups attached at various locations along the skeletal structure often have multiple functions. The majority of energy expended during walking is for vertical motion of the body. When a body is in contact with the ground, the downward force due to gravity is reflected back to the body as a reaction to the force. When a person stands still, this ground reaction force is equal to the person's weight multiplied by gravitational acceleration. Forces can act in other directions. For example, when we walk, we also produce friction forces on the ground.
  • sensors can be placed on the four branches of the links connect to the root node (torso) with the connected joint, left shoulder (LS), right shoulder (RS), left hip (LH), and right hip (RH). Furthermore, the left elbow (LE), right elbow (RE), left knee (LK), and right knee (RK) connect the upper and the lower extremities.
  • the wireless monitoring devices can also be placed on upper back body near the neck, mid back near the waist, and at the front of the right leg near the ankle, among others.
  • model-states contains the extracted features of body signatures and other associated characteristics of body signatures.
  • a posture graph is used to depict the inter-relationships among all the model-states, defined as PG(ND,LK), where ND is a finite set of nodes and LK is a set of directional connections between every two nodes.
  • the directional connection links are called posture links.
  • Each node represents one model-state, and each link indicates a transition between two model-states. In the posture graph, each node may have posture links pointing to itself or the other nodes.
  • the system obtains the human body profile and the body signatures to produce feature vectors.
  • the system In the model construction phase, the system generate a posture graph, examine features from body signatures to construct the model parameters of HMM, and analyze human body contours to generate the model parameters of ASMs.
  • the system uses features extracted from the body signature sequence and then applies the pre-trained HMM to find the posture transition path, which can be used to recognize the motion type. Then, a motion characteristic curve generation procedure computes the motion parameters and produces the motion characteristic curves.
  • motion parameters and curves are stored over time, and if differences for the motion parameters and curves over time is detected, the system then runs the patient or wearer through additional tests to confirm a stroke attack, and if a stroke attack is suspected, the system prompts the user to seek medical attention immediately and preferably within the 3 hour for receiving TPA.
  • FIG. 16E shows one exemplary process for determining weakness in the left or right half of the body.
  • the process compares historical left shoulder (LS) strength against current LS strength ( 3200 ).
  • the process also compares historical right shoulder (RS) strength against current RS strength ( 3202 ).
  • the process can compare historical left hip (LH) strength against current LH strength ( 3204 ).
  • the process can also compare historical right hip (RH) strength against current RH strength ( 3206 ). If the variance between historical and current strength exceeds threshold, the process generates warnings ( 3208 ).
  • similar comparisons can be made for sensors attached to the left elbow (LE), right elbow (RE), left knee (LK), and right knee (RK) connect the upper and the lower extremities, among others.
  • the system can ask the patient or wearer to squeeze a strength gauge, piezoelectric sensor, or force sensor to determine force applied during squeeze.
  • the user holds the sensor or otherwise engages the sensor.
  • the user applies and holds a force (e.g., compression, torque, etc.) to the sensor, which starts a timer clock and triggers a sampling start indicator to notify the user to continue to apply (maximum) force to the sensor.
  • Strength measurements are then sampled periodically during the sampling period until the expiration of time. From the sampled strength data, certain strength measurement values are selected, such as the maximum value, average value(s), or values obtained during the sampling period.
  • the user can test both hands at the same time, or alternatively he may test one hand at a time.
  • a similar approach is used to sense leg strength, except that the user is asked to pushed down on a scale to determine the foot force generated by the user.
  • the system can detect hemiparesis, a very common symptom of stroke, by detecting muscular weakness or partial paralysis to one side of the body. Additionally, the accelerometers can detect ataxia, which is an impaired ability to perform smooth coordinated voluntary movements. Additionally, the system can detect aphasia, including receptive aphasia and expressive aphasia. Aphasia is a cognitive disorder marked by an impaired ability to comprehend (receptive aphasia) or express (expressive aphasia) language. Exemplary embodiments are disclosed for detecting receptive aphasia by displaying text or playing verbal instructions to the user, followed by measuring the correctness and/or time delay of the response from the user.
  • Exemplary embodiments are also disclosed for detecting expressive aphasia by positing sound made by an animal to the user, prompting the user to identify or name the animal, and measuring the correctness and/or time delay of the response from the user.
  • the system can also detect dysarthria, a disorder of speech articulation (e.g., slurred speech), by prompting the user to say a word or phrase that is recorded for subsequent comparison by voice pattern recognition or evaluation by medical personnel.
  • the system automatically reminds the user to get help if he feels a sudden numbness or weakness of the face, arm or leg, especially on one side of the body, sudden confusion, trouble speaking or understanding, sudden trouble seeing in one or both eyes, or sudden trouble walking, dizziness, loss of balance or coordination.
  • the accelerometers distinguish between lying down and each upright position of sitting and standing based on the continuous output of the 3D accelerometer.
  • the system can detect (a) extended time in a single position; (b) extended time sitting in a slouching posture (kyphosis) as opposed to sitting in an erect posture (lordosis); and (c) repetitive stressful movements, such as may be found on some manufacturing lines, while typing for an extended period of time without proper wrist support, or while working all day at a job lifting boxes, among others.
  • angular position sensors one on each side of the hip joint, can be used to distinguish lying down, sitting, and standing positions.
  • the present invention repeatedly records position and/or posture data over time.
  • magnetometers can be attached to a thigh and the torso to provide absolute rotational position about an axis coincident with Earth's gravity vector (compass heading, or yaw).
  • the rotational position can be determined through the in-door positioning system as discussed above.
  • patient or wearers can experience a loss of consciousness, cognitive deficits, speech dysfunction, limb weakness, hemiplegia, vertigo, diplopia, lower cranial nerve dysfunction, gaze deviation, ataxia, hemianopia, and aphasia, among others.
  • Four classic syndromes that are characteristically caused by lacunar-type stroke are: pure motor hemiparesis, pure sensory syndrome, ataxic hemiparesis syndrome, and clumsy-hand dysarthria syndrome.
  • Patient or wearers with pure motor hemiparesis present with face, arm, and leg weakness. This condition usually affects the extremities equally, but in some cases it affects one extremity more than the other.
  • the most common stroke location in affected patient or wearers is the posterior limb of the internal capsule, which carries the descending corticospinal and corticobulbar fibers.
  • Other stroke locations include the pons, midbrain, and medulla.
  • Pure sensory syndrome is characterized by hemibody sensory symptoms that involve the face, arm, leg, and trunk. It is usually the result of an infarct in the thalamus.
  • Ataxic hemiparesis syndrome features a combination of cerebellar and motor symptoms on the same side of the body. The leg is typically more affected than the arm. This syndrome can occur as a result of a stroke in the pons, the internal capsule, or the midbrain, or in the anterior cerebral artery distribution.
  • the system can detect symptoms suggestive of a brainstem stroke include vertigo, diplopia, bilateral abnormalities, lower cranial nerve dysfunction, gaze deviation (toward the side of weakness), and ataxia. Indications of higher cortical dysfunction-such as neglect, hemianopsia, aphasia, and gaze preference (opposite the side of weakness)-suggest hemispheric dysfunction with involvement of a superficial territory from an atherothrombotic or embolic occlusion of a mainstem vessel or peripheral branch.
  • the system can detect a pattern of motor weakness.
  • Ischemia of the cortex supplied by the middle cerebral artery typically causes weakness that (1) is more prominent in the arm than in the leg and (2) involves the distal muscles more than the proximal muscles.
  • involvement of an area supplied by the superficial anterior cerebral artery results in weakness that (1) is more prominent in the leg than the arm and (2) involves proximal upper extremity (shoulder) muscles more than distal upper extremity muscles.
  • Flaccid paralysis of both the arm and leg (unilateral) suggests ischemia of the descending motor tracts in the basal ganglia or brainstem. This is often caused by an occlusion of a penetrating artery as a result of small-vessel disease.
  • IV tissue plasminogen activator t-PA
  • IV intravenous
  • t-PA tissue plasminogen activator
  • One major symptom of a stroke is unexplained weakness or numbness in the muscle.
  • the system applies a pattern recognizer such as a neural network or a Hidden Markov Model (HMM) to analyze accelerometer output.
  • HMM Hidden Markov Model
  • EMG electromyography
  • EMG and a pattern analyzer is used to detect muscle weakness.
  • a pattern analyzer analyzes both accelerometer and EMG data to determine muscle weakness.
  • historical ambulatory information time and place is used to further detect changes in muscle strength.
  • accelerometer data is used to confirm that the patient or wearer is at rest so that EMG data can be accurately captured or to compensate for motion artifacts in the EMG data in accordance with a linear or non-linear compensation table.
  • the EMG data is used to detect muscle fatigue and to generate a warning to the patient or wearer to get to a resting place or a notification to a nurse or caregiver to render timely assistance.
  • the amplitude of the EMG signal is stochastic (random) in nature and can be reasonably represented by a Gausian distribution function.
  • the amplitude of the signal can range from 0 to 10 mV (peak-to-peak) or 0 to 1.5 mV (rms).
  • the usable energy of the signal is limited to the 0 to 500 Hz frequency range, with the dominant energy being in the 50-150 Hz range. Usable signals are those with energy above the electrical noise level.
  • the dominant concern for the ambient noise arises from the 60 Hz (or 50 Hz) radiation from power sources.
  • the ambient noise signal may have an amplitude that is one to three orders of magnitude greater than the EMG signal.
  • a differential instrumentation amplifier is employed. Any signal that originates far away from the detection sites will appear as a common signal, whereas signals in the immediate vicinity of the detection surfaces will be different and consequently will be amplified. Thus, relatively distant power lines noise signals will be removed and relatively local EMG signals will be amplified.
  • the source impedance at the junction of the skin and detection surface may range from several thousand ohms to several megohms for dry skin.
  • the input impedance of the differential amplifier is as large as possible, without causing ancillary complications to the workings of the differential amplifier.
  • the signal to noise ratio is increased by filtering between 20-500 Hz with a roll-off of 12 dB/octave.
  • direct EMG pre-amplification at the skin surface provides the best myoelectric signal quality for accurate, reliable EMG signal detection and eliminates cable motion artifact.
  • the double-differential instrumentation pre-amplifier design attenuates unwanted common-mode bioelectric signals to reduce cross-talk from adjacent muscle groups. Internal RFI and ESD protection prevents radio frequency interference and static damage.
  • the constant low-impedance output of the pre-amplifier completely eliminates cable noise and cable motion artifacts without requiring any additional signal processing within the pre-amplifier.
  • An integral ground reference plane provides immunity to electromagnetic environmental noise. All signal and power conductors in the pre-amplifier cable are enclosed inside an independent, isolated shield to eliminate interference from AC power-lines and other sources.
  • the contacts are corrosion-free, medical grade stainless steel for maximal signal flow.
  • the system uses biocompatible housing and sensor materials to prevent allergic reactions.
  • MA-311 EMG pre-amplifiers from Motion Lab Systems, Inc., Baton Rouge, La.
  • the pre-amplifiers incorporate both radio frequency interference (RFI) filters and electrostatic discharge (ESD) protection circuitry resulting in an extraordinarily reliable EMG pre-amplifier that can be used in almost any environment.
  • RFID radio frequency interference
  • ESD electrostatic discharge
  • the unique design of the Motion Lab Systems EMG pre-amplifiers enables researchers to produce high-quality, low-noise EMG data from subjects under the most adverse conditions (e.g. on treadmills, using mobile phones etc.) without any skin preparation or subsequent signal processing.
  • a micro-powered EMG embodiment in another implementation, includes an instrumentation amplifier and an AC coupling that maintains a high CMRR with a gain of about 1000.
  • the electronic circuits are mounted on a flexible circuit board (FPC) with slidable electrode settings that allows differential recording at various distances between the electrodes.
  • the high gain amplifier is placed next to the recording electrodes to achieve high SNR. Battery power provides isolation and low noise at various frequencies that would likely not be fully attenuated by the PSRR and causing alias errors.
  • the system can detect dominant symptoms of stroke can include weakness or paralysis of the arms and/or legs, incoordination (ataxia), numbness in the arms/legs using accelerometers or EMG sensors.
  • the EMG sensors can detect muscle fatigue and can warn the patient or wearer to get to a resting area if necessary to prevent a fall.
  • the system can detect partial/total loss of vision by asking the patient or wearer to read a predetermined phrase and detect slur using speech recognizer.
  • the system can detect loss of consciousness/coma by detecting lack of movement. Voice/speech disturbances are not initially the dominant symptoms in stroke, and the disturbances can be detected by a speech recognizer.
  • the system uses PNL (probabilistic networks library) to detect unusual patient or wearer movement/ambulatory activities that will lead to a more extensive check for stroke occurrence.
  • PNL supports dynamic Bayes nets, and factor graphs; influence diagrams.
  • For inference PNL supports exact inference using the junction tree algorithm, and approximate inference using loopy belief propagation or Gibbs sampling. Learning can be divided along many axes: parameter or structure, directed or undirected, fully observed or partially observed, batch or online, discriminative or maximum likelihood, among others.
  • the system performs data normalization and filtering for the accelerometers and EMG sensors that detect patient or wearer movements and muscle strength.
  • the data can include in-door positioning information, 3D acceleration information, or EMG/EKG/EEG data, for example.
  • the data can be processed using wavelet as discussed above or using any suitable normalization/filtering techniques.
  • the system performs parameterization and discretization.
  • the Bayesian network is adapted in accordance with a predefined network topology.
  • the system also defines conditional probability distributions.
  • the system then generates the probability of event P(y), under various scenarios.
  • Training data is acquired and a training method is built for the Bayesian network engine.
  • the system tunes model parameters and performs testing on the thus formed Bayesian network.
  • a housing (such as a strap, a wrist-band, or a patch) provides a plurality of sensor contacts for EKG and/or EMG.
  • the same contacts can be used for detecting EKG or EMG and can be placed as two parallel contacts (linear or spot shape) on opposite sides of the band, two adjacent parallel contacts on the inner surface of the band, two parallel adjacent contacts on the back of the wrist-watch, or alternatively one contact on the back of the watch and one contact on the wrist-band.
  • the outputs of the differential contacts are filtered to remove motion artifacts.
  • the differential signal is captured, and suitably filtered using high pass/low pass filters to remove noise, and digitized for signal processing.
  • separate amplifiers are used to detect EKG (between 50 mHz and 200 Hz) and for EMG (between 10 Hz and 500 Hz).
  • one common amp is used for both EKG/EMG, and software filter is applied to the digitized signal to extract EKG and EMG signals, respectively.
  • the unit can apply Wavelet processing to convert the signal into the frequency domain and apply recognizers such as Bayesian, NN or HMM to pull the EMG or EKG signals from noise.
  • the system uses a plurality of wireless nodes to transmit position and to triangulate with the mobile node to determine position.
  • 3D accelerometer outputs can be integrated to provide movement vectors and positioning information. Both radio triangulation and accelerometer data can confirm the position of the patient or wearer.
  • the RF signature of a plurality of nodes with known position can be used to detect proximity to a particular node with a known position and the patient or wearer's position can be extrapolated therefrom.
  • Analog Device's AD627 a micro-power instrumentation amplifier
  • the power rails Vs can be as low as ⁇ 1.1 Volt, which is ideal for battery-powered applications. With a maximum quiescent current of 85 ⁇ A (60 ⁇ A typical), the unit can operate continuously for several hundred hours before requiring battery replacement.
  • the batteries are lithium cells providing 3.0V to be capable of recording signals up to +1 mV to provide sufficient margin to deal with various artifacts such as offsets and temperature drifts.
  • the amplifier's reference is connected to the analog ground to avoid additional power consumption and provide a low impedance connection to maintain the high CMRR.
  • an additional amplifier can be used.
  • the high-pass filtering does not require additional components since it is achieved by the limits of the gain versus frequency characteristics of the instrumentation amplifier.
  • the amplifier has been selected such that with a gain of 60 dB, a flat response could be observed up to a maximum of 100 Hz with gain attenuation above 100 Hz in one implementation.
  • a high pass filter is used so that the cut-off frequency becomes dependent upon the gain value of the unit.
  • the bootstrap AC-coupling maintains a much higher CMRR so critical in differential measurements. Assuming that the skin-electrode impedance may vary between 5 K- and 10 K-ohms, 1 M-ohm input impedance is used to maintain loading errors below acceptable thresholds between 0.5% and 1%.
  • the detection surfaces When an electrode is placed on the skin, the detection surfaces come in contact with the electrolytes in the skin. A chemical reaction takes place which requires some time to stabilize, typically in the order of a few seconds. The chemical reaction should remain stable during the recording session and should not change significantly if the electrical characteristics of the skin change from sweating or humidity changes.
  • the active electrodes do not require any abrasive skin preparation and removal of hair.
  • the electrode geometry can be circular or can be elongated such as bars. The bar configuration intersects more fibers.
  • the inter detection-surface distance affects the bandwidth and amplitude of the EMG signal; a smaller distance shifts the bandwidth to higher frequencies and lowers the amplitude of the signal.
  • An inter detection-surface of 1.0 cm provides one configuration that detects representative electrical activity of the muscle during a contraction.
  • the electrode can be placed between a motor point and the tendon insertion or between two motor points, and along the longitudinal midline of the muscle.
  • the longitudinal axis of the electrode (which passes through both detection surfaces) should be aligned parallel to the length of the muscle fibers.
  • the electrode location is positioned between the motor point (or innervation zone) and the tendinous insertion, with the detection surfaces arranged so that they intersect as many muscle fibers as possible.
  • a multi-functional bio-data acquisition provides programmable multiplexing of the same differential amplifiers for extracting EEG (electroencephalogram), ECG (electrocardiogram), or EMG (electromyogram) waves.
  • the system includes an AC-coupled chopped instrumentation amplifier, a spike filtering stage, a constant gain stage, and a continuous-time variable gain stage, whose gain is defined by the ratio of the capacitors.
  • the system consumes microamps from 3V.
  • the gain of the channel can be digitally set to 400, 800, 1600 or 2600.
  • the bandwidth of the circuit can be adjusted via the bandwidth select switches for different biopotentials.
  • the high cut-off frequency of the circuit can be digitally selected for different applications of EEG acquisition.
  • a high-resolution, rectangular, surface array electrode-amplifier and associated signal conditioning circuitry captures electromyogram (EMG) signals.
  • the embodiment has a rectangular array electrode-amplifier followed by a signal conditioning circuit.
  • the signal conditioning circuit is generic, i.e., capable of receiving inputs from a number of different/interchangeable EMG/EKG/EEG electrode-amplifier sources (including from both monopolar and bipolar electrode configurations).
  • the electrode-amplifier is cascaded with a separate signal conditioner minimizes noise and motion artifact by buffering the EMG signal near the source (the amplifier presents a very high impedance input to the EMG source, and a very low output impedance); minimizes noise by amplifying the EMG signal early in the processing chain (assuming the electrode-amplifier includes signal gain) and minimizes the physical size of this embodiment by only including a first amplification stage near the body.
  • the signals are digitized and transmitted over a wireless network such as WiFI, Zigbee, or Bluetooth transceivers and processed by the base station that is remote from the patient or wearer.
  • the output of the electrode-amplifier is a single-ended signal (referenced to the isolated reference).
  • the electrode-amplifier transduces and buffers the EMG signal, providing high gain without causing saturation due to either offset potentials or motion artifact.
  • the signal conditioning circuit provides selectable gain (to magnify the signal up to the range of the data recording/monitoring instrumentation, high-pass filtering (to attenuate motion artifact and any offset potentials), electrical isolation (to prevent injurious current from entering the subject) and low-pass filtering (for anti-aliasing and to attenuate noise out of the physiologic frequency range).
  • FIGS. 17B and 17C shows exemplary sEMG outputs from a differential amplifier to detect muscle strength.
  • FIG. 17B shows the left and right body EMG signals for the patient or wearer in a normal state
  • FIG. 17C illustrates a patient or wearer with degraded muscle capability.
  • muscle fire in a smooth fashion in normal individuals, with little irritability or fasiculation.
  • Muscles fire symmetrically in healthy state when comparing left and right sides in motion.
  • healthy patient or wearers show a greater consistency in muscle patterns than injured patient or wearers, with the injured showing a greater increase in variability. Such variations are detected by EMG analyzers.
  • the EMG signal can be rectified, integrated a specified interval of and subsequently forming a time series of the integrated values.
  • the system can calculate the root-mean-squared (rms) and the average rectified (avr) value of the EMG signal.
  • the system can also determine muscle fatigue through the analysis of the frequency spectrum of the signal.
  • the system can also assess neurological diseases which affect the fiber typing or the fiber cross-sectional area of the muscle.
  • Various mathematical techniques and Artificial Intelligence (AI) analyzer can be applied. Mathematical models include wavelet transform, time-frequency approaches, Fourier transform, Wigner-Ville Distribution (WVD), statistical measures, and higher-order statistics.
  • AI approaches towards signal recognition include Artificial Neural Networks (ANN), dynamic recurrent neural networks (DRNN), fuzzy logic system, Genetic Algorithm (GA), and Hidden Markov Model (HMM).
  • ANN Artificial Neural Networks
  • DRNN dynamic recurrent neural networks
  • GA Genetic Algorithm
  • HMM Hidden Markov
  • a single-threshold method or alternatively a double threshold method can be used which compares the EMG signal with one or more fixed thresholds.
  • the embodiment is based on the comparison of the rectified raw signals and one or more amplitude thresholds whose value depends on the mean power of the background noise.
  • the system can perform spectrum matching instead of waveform matching techniques when the interference is induced by low frequency baseline drift or by high frequency noise.
  • EMG signals are the superposition of activities of multiple motor units.
  • the EMG signal can be decomposed to reveal the mechanisms pertaining to muscle and nerve control.
  • Decomposition of EMG signal can be done by wavelet spectrum matching and principle component analysis of wavelet coefficients where the signal is de-noised and then EMG spikes are detected, classified and separated.
  • principle components analysis (PAC) for wavelet coefficients is used with the following stages: segmentation, wavelet transform, PCA, and clustering.
  • EMG signal decomposition can also be done using non-linear least mean square (LMS) optimization of higher-order cumulants.
  • LMS non-linear least mean square
  • the wavelet transform is an efficient mathematical tool for local analysis of non-stationary and fast transient signals.
  • WT filters One of the main properties of WT is that it can be implemented by means of a discrete time filter bank.
  • the Fourier transforms of the wavelets are referred as WT filters.
  • the WT represents a very suitable method for the classification of EMG signals.
  • the system can also apply Cohen class transformation, Wigner-Ville distribution (WVD), and Choi-Williams distribution or other time-frequency approaches for EMG signal processing.
  • the class time-frequency representation is particularly suitable to analyze surface myoelectric signals recorded during dynamic contractions, which can be modeled as realizations of nonstationary stochastic process.
  • the WVD is a time-frequency that can display the frequency as a function of time, thus utilizing all available information contained in the EMG signal.
  • the EMG signal can often be considered as quasi-stationary there is still important information that is transited and may be distinguished by WVD.
  • Implementing the WVD with digital computer requires a discrete form. This allows the use of fast Fourier transform (FFT), which produces a discrete-time, discrete-frequency representation.
  • FFT fast Fourier transform
  • STFT Short-time Fourier Transform
  • the Choi-Williams method is a reduced interference distribution.
  • the STFT can be used to show the compression of the spectrum as the muscle fatigue.
  • the WVD has cross-terms and therefore is not a precise representation of the changing of the frequency components with fatigue.
  • the autoregressive (AR) time series model can be used to study EMG signal.
  • neural networks can process EMG signal where EMG features are first extracted through Fourier analysis and clustered using fuzzy c-means algorithm.
  • Fuzzy c-means is a method of clustering which allows data to belong to two or more clusters.
  • the neural network output represents a degree of desired muscle stimulation over a synergic, but enervated muscle.
  • Error-back propagation method is used as a learning procedure for multilayred, feedforward neural network.
  • the network topology can be the feedforward variety with one input layer containing 256 input neurodes, one hidden layer with two neurodes and one output neurode. Fuzzy logic systems are advantageous in biomedical signal processing and classification. Biomedical signals such as EMG signals are not always strictly repeatable and may sometimes even be contradictory. The experience of medical experts can be incorporated.
  • HOS higher-order statistics
  • EMG can be used to sense isometric muscular activity (type of muscular activity that does not translate into movement). This feature makes it possible to define a class of subtle motionless gestures to control interface without being noticed and without disrupting the surrounding environment.
  • EMG the user can react to the cues in a subtle way, without disrupting their environment and without using their hands on the interface.
  • the EMG controller does not occupy the user's hands, and does not require them to operate it; hence it is “hands free”.
  • the system can be used in interactive computer gaming which would have access to heart rate, galvanic skin response, and eye movement signals, so the game could respond to a player's emotional state or guess his or her level of situation awareness by monitoring eye movements.
  • EMG/EEG signal can be used for man-machine interfaces by directly connecting a person to a computer via the human electrical nervous system. Based on EMG and EEG signals, the system applies pattern recognition system to interpret these signals as computer control commands. The system can also be used for Mime Speech Recognition which recognizes speech by observing the muscle associated with speech and is not based on voice signals but EMG. The MSR realizes unvoiced communication and because voice signals are not used, MSR can be applied in noisy environments; it can support people without vocal cords and aphasics. In another embodiment, EMG and/or electroencephalogram (EEG) features are used for predicting behavioral alertness levels. EMG and EEG features were derived from temporal, frequency spectral, and statistical analyses.
  • Behavioral alertness levels were quantified by correct rates of performance on an auditory and a visual vigilance task, separately.
  • a subset of three EEG features, the relative spectral amplitudes in the alpha (alpha %, 8-13 Hz) and theta (theta %, 4-8 Hz) bands, and the mean frequency of the EEG spectrum (MF) can be used for predicting the auditory alertness level.
  • an HMM is used to determine the physical activities of a patient or wearer, to monitor overall activity levels and assess compliance with a prescribed exercise regimen and/or efficacy of a treatment program.
  • the HMM may also measure the quality of movement of the monitored activities.
  • the system may be calibrated or trained in the manner previously described, to recognize movements of a prescribed exercise program. Motor function information associated with the recognized movements may be sent to the server for subsequent review.
  • a physician, clinician, or physical therapist with access to patient or wearer data may remotely monitor compliance with the prescribed program or a standardized test on motor skill.
  • patient or wearers can take the Wolf Motor Function test and acceleration data is captured on the following tasks:

Abstract

A mobile system for a user includes a telephone having one or more sensors to capture fitness data or vital sign data, the telephone having a wireless transceiver coupled to the processor to communicate fitness or vital sign data over a personal area network; and a processor coupled to the personal area network to process the fitness or vital sign data.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 14/279,319, filed May 16, 2014, which is a continuation of U.S. patent application Ser. No. 13/858,855, filed Apr. 8, 2013, now U.S. Pat. No. 8,764,651, Jul. 1, 2014, which is a continuation of U.S. patent application Ser. No. 13/337,219, filed Dec. 26, 2011, now U.S. Pat. No. 8,449,471, issued May 28, 2013, which is a continuation of U.S. patent application Ser. No. 12/486,810, filed Jun. 18, 2009, now U.S. Pat. No. 8,108,036, issued Jan. 31, 2012, which is a continuation of U.S. patent application Ser. No. 11/439,631, filed May 24, 2006, now U.S. Pat. No. 7,558,622, issued Jul. 7, 2009, the disclosures of which are incorporated herein by reference.
  • BACKGROUND
  • This invention relates generally to methods and systems for monitoring a person.
  • As the population ages, health and fitness become important. Historically, monitoring fitness is done by manually recording one's exercise activities. However, such manual recording is inconvenient and inaccurate.
  • SUMMARY
  • In one aspect, a mobile system includes a telephone having one or more sensors to capture fitness data or vital sign data, the telephone having a wireless transceiver coupled to the processor to communicate fitness or vital sign data over a personal area network; and a processor coupled to the personal area network to process the fitness or vital sign data.
  • In another aspect, a system includes a telephone having one or more sensors to capture fitness data or vital sign data, the telephone having a wireless transceiver coupled to the processor to communicate fitness or vital sign data over a personal area network; and a watch coupled to the personal area network to also capture fitness or vital sign data.
  • In another aspect, a fitness monitoring system for a user includes a body wearable appliance placed on or near the user skin and having one or more sensors to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • In another aspect, a system includes a body wearable appliance placed on or near the user skin and having an accelerometer to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • In yet another aspect, a system includes a wearable appliance with a band to secure to the person's body and having one or more sensors to capture fitness data and a wireless transceiver to communicate fitness data; and a processor coupled to the wireless transceiver to receive fitness data.
  • In one aspect, a monitoring system for a person includes one or more wireless nodes and a stroke sensor coupled to the person and the wireless nodes to determine vital signs.
  • In another aspect, a heart monitoring system for a patient or wearer or wearer includes one or more wireless nodes forming a wireless network; a wearable appliance having a wireless transceiver to communicate with the one or more wireless nodes; and an analyzer to determine vital signs, the analyzer coupled to the wireless transceiver to receive patient or wearer or wearer data over the wireless network.
  • In another aspect, heart monitoring system for a patient or wearer or wearer includes one or more wireless nodes forming a wireless mesh network; a wearable appliance having a wireless transceiver adapted to communicate with the one or more wireless nodes; and a statistical analyzer to determine vital signs that can signal heart attack or stroke attack, the statistical analyzer coupled to the wireless transceiver to communicate patient or wearer or wearer data over the wireless mesh network.
  • In yet another aspect, a monitoring system for a person includes one or more wireless nodes and an electromyography (EMG) sensor coupled to the person and the wireless nodes to determine a stroke attack.
  • In another aspect, a health care monitoring system for a person includes one or more wireless nodes forming a wireless mesh network; a wearable appliance having a sound transducer coupled to the wireless transceiver; and a bioelectric impedance (BI) sensor coupled to the wireless mesh network to communicate BI data over the wireless mesh network.
  • In a further aspect, a heart monitoring system for a person includes one or more wireless nodes forming a wireless mesh network and a wearable appliance having a sound transducer coupled to the wireless transceiver; and a heart disease recognizer coupled to the sound transducer to determine cardiovascular health and to transmit heart sound over the wireless mesh network to a remote listener if the recognizer identifies a cardiovascular problem. The heart sound being transmitted may be compressed to save transmission bandwidth.
  • In yet another aspect, a monitoring system for a person includes one or more wireless nodes; and a wristwatch having a wireless transceiver adapted to communicate with the one or more wireless nodes; and an accelerometer to detect a dangerous condition and to generate a warning when the dangerous condition is detected.
  • In yet another aspect, a monitoring system for a person includes one or more wireless nodes forming a wireless mesh network; and a wearable appliance having a wireless transceiver adapted to communicate with the one or more wireless nodes; and a heartbeat detector coupled to the wireless transceiver. The system may also include an accelerometer to detect a dangerous condition such as a falling condition and to generate a warning when the dangerous condition is detected.
  • Implementations of the above aspect may include one or more of the following. The wristwatch determines position based on triangulation. The wristwatch determines position based on RF signal strength and RF signal angle. A switch detects a confirmatory signal from the person. The confirmatory signal includes a head movement, a hand movement, or a mouth movement. The confirmatory signal includes the person's voice. A processor in the system executes computer readable code to transmit a help request to a remote computer. The code can encrypt or scramble data for privacy. The processor can execute voice over IP (VOIP) code to allow a user and a remote person to audibly communicate with each other. The voice communication system can include Zigbee VOIP or Bluetooth VOIP or 802.XX VOIP. The remote person can be a doctor, a nurse, a medical assistant, or a caregiver. The system includes code to store and analyze patient or wearer information. The patient or wearer information includes medicine taking habits, eating and drinking habits, sleeping habits, or excise habits. A patient or wearer interface is provided on a user computer for accessing information and the patient or wearer interface includes in one implementation a touch screen; voice-activated text reading; and one touch telephone dialing. The processor can execute code to store and analyze information relating to the person's ambulation. A global positioning system (GPS) receiver can be used to detect movement and where the person falls. The system can include code to map the person's location onto an area for viewing. The system can include one or more cameras positioned to capture three dimensional (3D) video of the patient or wearer; and a server coupled to the one or more cameras, the server executing code to detect a dangerous condition for the patient or wearer based on the 3D video and allow a remote third party to view images of the patient or wearer when the dangerous condition is detected.
  • In another aspect, a monitoring system for a person includes one or more wireless bases; and a cellular telephone having a wireless transceiver adapted to communicate with the one or more wireless bases; and an accelerometer to detect a dangerous condition and to generate a warning when the dangerous condition is detected.
  • In yet another aspect, a monitoring system includes one or more cameras to determine a three dimensional (3D) model of a person; means to detect a dangerous condition based on the 3D model; and means to generate a warning when the dangerous condition is detected.
  • In another aspect, a method to detect a dangerous condition for an infant includes placing a pad with one or more sensors in the infant's diaper; collecting infant vital parameters; processing the vital parameter to detect SIDS onset; and generating a warning.
  • Advantages of the system may include one or more of the following. The system detects the warning signs of stroke and prompts the user to reach a health care provider within 2 hours of symptom onset. The system enables patent to properly manage acute stroke, and the resulting early treatment might reduce the degree of morbidity that is associated with first-ever strokes.
  • Other advantages of the invention may include one or more of the following. The system for non-invasively and continually monitors a subject's arterial blood pressure, with reduced susceptibility to noise and subject movement, and relative insensitivity to placement of the apparatus on the subject. The system does not need frequent recalibration of the system while in use on the subject.
  • In particular, it allows patient or wearers to conduct a low-cost, comprehensive, real-time monitoring of their blood pressure. Using the web services software interface, the invention then avails this information to hospitals, home-health care organizations, insurance companies, pharmaceutical agencies conducting clinical trials and other organizations. Information can be viewed using an Internet-based website, a personal computer, or simply by viewing a display on the monitor. Data measured several times each day provide a relatively comprehensive data set compared to that measured during medical appointments separated by several weeks or even months. This allows both the patient or wearer and medical professional to observe trends in the data, such as a gradual increase or decrease in blood pressure, which may indicate a medical condition. The invention also minimizes effects of white coat syndrome since the monitor automatically makes measurements with basically no discomfort; measurements are made at the patient or wearer's home or work, rather than in a medical office.
  • The wearable appliance is small, easily worn by the patient or wearer during periods of exercise or day-to-day activities, and non-invasively measures blood pressure can be done in a matter of seconds without affecting the patient or wearer. An on-board or remote processor can analyze the time-dependent measurements to generate statistics on a patient or wearer's blood pressure (e.g., average pressures, standard deviation, beat-to-beat pressure variations) that are not available with conventional devices that only measure systolic and diastolic blood pressure at isolated times.
  • The wearable appliance provides an in-depth, cost-effective mechanism to evaluate a patient or wearer's cardiac condition. Certain cardiac conditions can be controlled, and in some cases predicted, before they actually occur. Moreover, data from the patient or wearer can be collected and analyzed while the patient or wearer participates in their normal, day-to-day activities.
  • In cases where the device has fall detection in addition to blood pressure measurement, other advantages of the invention may include one or more of the following. The system provides timely assistance and enables elderly and disabled individuals to live relatively independent lives. The system monitors physical activity patterns, detects the occurrence of falls, and recognizes body motion patterns leading to falls. Continuous monitoring of patient or wearers is done in an accurate, convenient, unobtrusive, private and socially acceptable manner since a computer monitors the images and human involvement is allowed only under pre-designated events. The patient or wearer's privacy is preserved since human access to videos of the patient or wearer is restricted: the system only allows human viewing under emergency or other highly controlled conditions designated in advance by the user. When the patient or wearer is healthy, people cannot view the patient or wearer's video without the patient or wearer's consent. Only when the patient or wearer's safety is threatened would the system provide patient or wearer information to authorized medical providers to assist the patient or wearer. When an emergency occurs, images of the patient or wearer and related medical data can be compiled and sent to paramedics or hospital for proper preparation for pick up and check into emergency room.
  • The system allows certain designated people such as a family member, a friend, or a neighbor to informally check on the well-being of the patient or wearer. The system is also effective in containing the spiraling cost of healthcare and outpatient or wearer care as a treatment modality by providing remote diagnostic capability so that a remote healthcare provider (such as a doctor, nurse, therapist or caregiver) can visually communicate with the patient or wearer in performing remote diagnosis. The system allows skilled doctors, nurses, physical therapists, and other scarce resources to assist patient or wearers in a highly efficient manner since they can do the majority of their functions remotely.
  • Additionally, a sudden change of activity (or inactivity) can indicate a problem. The remote healthcare provider may receive alerts over the Internet or urgent notifications over the phone in case of such sudden accident indicating changes. Reports of health/activity indicators and the overall well being of the individual can be compiled for the remote healthcare provider. Feedback reports can be sent to monitored subjects, their designated informal caregiver and their remote healthcare provider. Feedback to the individual can encourage the individual to remain active. The content of the report may be tailored to the target recipient's needs, and can present the information in a format understandable by an elder person unfamiliar with computers, via an appealing patient or wearer interface. The remote healthcare provider will have access to the health and well-being status of their patient or wearers without being intrusive, having to call or visit to get such information interrogatively. Additionally, remote healthcare provider can receive a report on the health of the monitored subjects that will help them evaluate these individuals better during the short routine check up visits. For example, the system can perform patient or wearer behavior analysis such as eating/drinking/smoke habits and medication compliance, among others.
  • The patient or wearer's home equipment is simple to use and modular to allow for the accommodation of the monitoring device to the specific needs of each patient or wearer. Moreover, the system is simple to install. Regular monitoring of the basic wellness parameters provides significant benefits in helping to capture adverse events sooner, reduce hospital admissions, and improve the effectiveness of medications, hence, lowering patient or wearer care costs and improving the overall quality of care. Suitable users for such systems are disease management companies, health insurance companies, self-insured employers, medical device manufacturers and pharmaceutical firms.
  • The system reduces costs by automating data collection and compliance monitoring, and hence reduce the cost of nurses for hospital and nursing home applications. At-home vital signs monitoring enables reduced hospital admissions and lower emergency room visits of chronic patient or wearers. Operators in the call centers or emergency response units get high quality information to identify patient or wearers that need urgent care so that they can be treated quickly, safely, and cost effectively. The Web based tools allow easy access to patient or wearer information for authorized parties such as family members, neighbors, physicians, nurses, pharmacists, caregivers, and other affiliated parties to improve the Quality of Care for the patient or wearer.
  • In an on-line pharmacy aspect, a method for providing patient or wearer access to medication includes collecting patient or wearer medical information from a patient or wearer computer; securing the patient or wearer medical information and sending the secured patient or wearer medical information from the patient or wearer computer to a remote computer; remotely examining the patient or wearer and reviewing the patient or wearer medical information; generating a prescription for the patient or wearer and sending the prescription to a pharmacy; and performing a drug interaction analysis on the prescription.
  • Implementations of the on-line pharmacy aspect may include one or more of the following. The medical information can include temperature, EKG, blood pressure, weight, sugar level, image of the patient or wearer, or sound of the patient or wearer. Responses from the patient or wearer to a patient or wearer medical questionnaire can be captured. The doctor can listen to the patient or wearer's organ with a digital stethoscope, scanning a video of the patient or wearer, running a diagnostic test on the patient or wearer, verbally communicating with the patient or wearer. The digital stethoscope can be a microphone or piezeoelectric transducer coupled to the Zigbee or Bluetooth network to relay the sound. A plurality of medical rules can be applied to the medical information to arrive at a diagnosis. Genetic tests or pharmacogenetic tests can be run on the patient or wearer to check compatibility with the prescription. Approval for the prescription can come from one of: a doctor, a physician, a physician assistant, a nurse. The system can monitor drug compliance, and can automatically ordering a medication refill from the pharmacy.
  • In yet another embodiment, a wireless housing provides one or more bioelectric contacts conveniently positioned to collect bioelectric patient or wearer data. The housing can be a patch, a wristwatch, a band, a wristband, a chest band, a leg band, a sock, a glove, a foot pad, a head-band, an ear-clip, an ear phone, a shower-cap, an armband, an ear-ring, eye-glasses, sun-glasses, a belt, a sock, a shirt, a garment, a jewelry, a bed spread, a pillow cover, a pillow, a mattress, a blanket or a sleeping garment such as a pajama. The bed spread, pillow cover, pillow, mattress, blanket or pajama can have bioelectrically conductive contacts in an array so that the patient or wearer can enjoy his/her sleep while vital parameters can be captured. In one embodiment, an array of parallel conductive lines can be formed on the housing side that faces the patient or wearer and the electrical signal can be picked up. The data captured by the contacts are transmitted over the mesh network such as ZigBee to a base station.
  • In the above embodiments, the base station can perform the bioelectric signal processing to extract patient or wearer parameters from data captured by the contacts. In this case, the base station may need a DSP or powerful CPU to perform the calculations. Alternatively, in an ASP model, the base station can simply compress the data and upload the data to a central server or server farm for processing and the result of the signal processing are sent back to the base station for relay to the patient or wearer interface which can be a wrist-watch, a pad, or a band, among others, for notification of any warning signs.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates an exemplary system for monitoring a person.
  • FIG. 2A illustrates a process for determining three dimensional (3D) detection.
  • FIG. 2B shows an exemplary calibration sheet.
  • FIG. 3 illustrates a process for detecting falls.
  • FIG. 4 illustrates a process for detecting facial expressions.
  • FIG. 5 illustrates an exemplary process for determining and getting assistance for a patient or wearer or user.
  • FIG. 6A shows an exemplary wrist-watch based assistance device.
  • FIG. 6B shows an exemplary mesh network working with the wearable appliance of FIG. 6A.
  • FIG. 7 shows an exemplary mesh network in communication with the wrist-watch device of FIG. 6B.
  • FIGS. 8-13 and FIGS. 14A-14B show various exemplary wearable appliances to monitor a patient or wearer.
  • FIGS. 15A-15B show exemplary systems for performing patient or wearer monitoring.
  • FIG. 15C shows an exemplary interface to monitor a plurality of persons.
  • FIG. 15D shows an exemplary dash-board that provides summary information on the status of a plurality of persons.
  • FIG. 15E shows an exemplary multi-station vital parameter user interface for a professional embodiment.
  • FIG. 15F shows an exemplary trending pattern display.
  • FIGS. 16A-16B show exemplary blood pressure determination processes.
  • FIGS. 16C-E shows exemplary stroke determination processes.
  • FIG. 17A shows an exemplary EMG sensor.
  • FIGS. 17B-C show exemplary EMG graphs of a patient or wearer.
  • DESCRIPTION
  • FIG. 1 shows an exemplary personal monitoring system. The system can operate in a home, a nursing home, or a hospital. In this system, one or more mesh network appliances 8 are provided to enable wireless communication in the home monitoring system. Appliances 8 in the mesh network can include home security monitoring devices, door alarm, window alarm, home temperature control devices, fire alarm devices, among others. Appliances 8 in the mesh network can be one of multiple portable physiological transducer, such as a blood pressure monitor, heart rate monitor, weight scale, thermometer, spirometer, single or multiple lead electrocardiograph (ECG), a pulse oxymeter, a body fat monitor, a cholesterol monitor, a signal from a medicine cabinet, a signal from a drug container, a signal from a commonly used appliance such as a refrigerator/stove/oven/washer, or a signal from an exercise machine, such as a heart rate. As will be discussed in more detail below, one appliance is a patient or wearer monitoring device that can be worn by the patient or wearer and includes a single or bi-directional wireless communication link, generally identified by the bolt symbol in FIG. 1, for transmitting data from the appliances 8 to the local hub or receiving station or base station server 20 by way of a wireless radio frequency (RF) link using a proprietary or non-proprietary protocol. For example, within a house, a user may have mesh network appliances that detect window and door contacts, smoke detectors and motion sensors, video cameras, key chain control, temperature monitors, CO and other gas detectors, vibration sensors, and others. A user may have flood sensors and other detectors on a boat. An individual, such as an ill or elderly grandparent, may have access to a panic transmitter or other alarm transmitter. Other sensors and/or detectors may also be included. The user may register these appliances on a central security network by entering the identification code for each registered appliance/device and/or system. The mesh network can be Bluetooth, Zigbee network or 802.15 network. More details of the mesh network is shown in FIG. 7 and discussed in more detail below.
  • A plurality of monitoring cameras 10 may be placed in various predetermined positions in a home of a patient or wearer 30. The cameras 10 can be wired or wireless. For example, the cameras can communicate over infrared links or over radio links conforming to the 802X (e.g. 802.11A, 802.11B, 802.11G, 802.15) standard or the Bluetooth standard to a base station/server 20 may communicate over various communication links, such as a direct connection, such a serial connection, USB connection, Firewire connection or may be optically based, such as infrared or wireless based, for example, home RF, IEEE standard 802.11a/b, Bluetooth or the like. In one embodiment, appliances 8 monitor the patient or wearer and activate the camera 10 to capture and transmit video to an authorized third party for providing assistance should the appliance 8 detects that the user needs assistance or that an emergency had occurred.
  • The base station/server 20 stores the patient or wearer's ambulation pattern and vital parameters and can be accessed by the patient or wearer's family members (sons/daughters), physicians, caretakers, nurses, hospitals, and elderly community. The base station/server 20 may communicate with the remote server 200 by DSL, T-1 connection over a private communication network or a public information network, such as the Internet 100, among others.
  • The patient or wearer 30 may wear one or more wearable patient or wearer monitoring appliances such as wrist-watches or clip on devices or electronic jewelry to monitor the patient or wearer. One wearable appliance such as a wrist-watch includes sensors 40, for example devices for sensing ECG, EKG, blood pressure, sugar level, among others. In one embodiment, the sensors 40 are mounted on the patient or wearer's wrist (such as a wristwatch sensor) and other convenient anatomical locations. Exemplary sensors 40 include standard medical diagnostics for detecting the body's electrical signals emanating from muscles (EMG and EOG) and brain (EEG) and cardiovascular system (ECG). Leg sensors can include piezoelectric accelerometers designed to give qualitative assessment of limb movement. Additionally, thoracic and abdominal bands used to measure expansion and contraction of the thorax and abdomen respectively. A small sensor can be mounted on the subject's finger in order to detect blood-oxygen levels and pulse rate. Additionally, a microphone can be attached to throat and used in sleep diagnostic recordings for detecting breathing and other noise. One or more position sensors can be used for detecting orientation of body (lying on left side, right side or back) during sleep diagnostic recordings. Each of sensors 40 can individually transmit data to the server 20 using wired or wireless transmission. Alternatively, all sensors 40 can be fed through a common bus into a single transceiver for wired or wireless transmission. The transmission can be done using a magnetic medium such as a floppy disk or a flash memory card, or can be done using infrared or radio network link, among others. The sensor 40 can also include an indoor positioning system or alternatively a global position system (GPS) receiver that relays the position and ambulatory patterns of the patient or wearer to the server 20 for mobility tracking.
  • In one embodiment, the sensors 40 for monitoring vital signs are enclosed in a wrist-watch sized case supported on a wrist band. The sensors can be attached to the back of the case. For example, in one embodiment, Cygnus' AutoSensor (Redwood City, Calif.) is used as a glucose sensor. A low electric current pulls glucose through the skin. Glucose is accumulated in two gel collection discs in the AutoSensor. The AutoSensor measures the glucose and a reading is displayed by the watch.
  • In another embodiment, EKG/ECG contact points are positioned on the back of the wrist-watch case. In yet another embodiment that provides continuous, beat-to-beat wrist arterial pulse rate measurements, a pressure sensor is housed in a casing with a ‘free-floating’ plunger as the sensor applanates the radial artery. A strap provides a constant force for effective applanation and ensuring the position of the sensor housing to remain constant after any wrist movements. The change in the electrical signals due to change in pressure is detected as a result of the piezoresistive nature of the sensor are then analyzed to arrive at various arterial pressure, systolic pressure, diastolic pressure, time indices, and other blood pressure parameters.
  • The case may be of a number of variations of shape but can be conveniently made a rectangular, approaching a box-like configuration. The wrist-band can be an expansion band or a wristwatch strap of plastic, leather or woven material. The wrist-band further contains an antenna for transmitting or receiving radio frequency signals. The wristband and the antenna inside the band are mechanically coupled to the top and bottom sides of the wrist-watch housing. Further, the antenna is electrically coupled to a radio frequency transmitter and receiver for wireless communications with another computer or another user. Although a wrist-band is disclosed, a number of substitutes may be used, including a belt, a ring holder, a brace, or a bracelet, among other suitable substitutes known to one skilled in the art. The housing contains the processor and associated peripherals to provide the human-machine interface. A display is located on the front section of the housing. A speaker, a microphone, and a plurality of push-button switches and are also located on the front section of housing. An infrared LED transmitter and an infrared LED receiver are positioned on the right side of housing to enable the watch to communicate with another computer using infrared transmission.
  • In another embodiment, the sensors 40 are mounted on the patient or wearer's clothing. For example, sensors can be woven into a single-piece garment (an undershirt) on a weaving machine. A plastic optical fiber can be integrated into the structure during the fabric production process without any discontinuities at the armhole or the seams. An interconnection technology transmits information from (and to) sensors mounted at any location on the body thus creating a flexible “bus” structure. T-Connectors—similar to “button clips” used in clothing—are attached to the fibers that serve as a data bus to carry the information from the sensors (e.g., EKG sensors) on the body. The sensors will plug into these connectors and at the other end similar T-Connectors will be used to transmit the information to monitoring equipment or personal status monitor. Since shapes and sizes of humans will be different, sensors can be positioned on the right locations for all patient or wearers and without any constraints being imposed by the clothing. Moreover, the clothing can be laundered without any damage to the sensors themselves. In addition to the fiber optic and specialty fibers that serve as sensors and data bus to carry sensory information from the wearer to the monitoring devices, sensors for monitoring the respiration rate can be integrated into the structure.
  • In another embodiment, instead of being mounted on the patient or wearer, the sensors can be mounted on fixed surfaces such as walls or tables, for example. One such sensor is a motion detector. Another sensor is a proximity sensor. The fixed sensors can operate alone or in conjunction with the cameras 10. In one embodiment where the motion detector operates with the cameras 10, the motion detector can be used to trigger camera recording. Thus, as long as motion is sensed, images from the cameras 10 are not saved. However, when motion is not detected, the images are stored and an alarm may be generated. In another embodiment where the motion detector operates stand alone, when no motion is sensed, the system generates an alarm.
  • The server 20 also executes one or more software modules to analyze data from the patient or wearer. A module 50 monitors the patient or wearer's vital signs such as ECG/EKG and generates warnings should problems occur. In this module, vital signs can be collected and communicated to the server 20 using wired or wireless transmitters. In one embodiment, the server 20 feeds the data to a statistical analyzer such as a neural network which has been trained to flag potentially dangerous conditions. The neural network can be a back-propagation neural network, for example. In this embodiment, the statistical analyzer is trained with training data where certain signals are determined to be undesirable for the patient or wearer, given his age, weight, and physical limitations, among others. For example, the patient or wearer's glucose level should be within a well established range, and any value outside of this range is flagged by the statistical analyzer as a dangerous condition. As used herein, the dangerous condition can be specified as an event or a pattern that can cause physiological or psychological damage to the patient or wearer. Moreover, interactions between different vital signals can be accounted for so that the statistical analyzer can take into consideration instances where individually the vital signs are acceptable, but in certain combinations, the vital signs can indicate potentially dangerous conditions. Once trained, the data received by the server 20 can be appropriately scaled and processed by the statistical analyzer. In addition to statistical analyzers, the server 20 can process vital signs using rule-based inference engines, fuzzy logic, as well as conventional if-then logic. Additionally, the server can process vital signs using Hidden Markov Models (HMMs), dynamic time warping, or template matching, among others.
  • Through various software modules, the system reads video sequence and generates a 3D anatomy file out of the sequence. The proper bone and muscle scene structure are created for head and face. A based profile stock phase shape will be created by this scene structure. Every scene will then be normalized to a standardized viewport.
  • A module 52 monitors the patient or wearer ambulatory pattern and generates warnings should the patient or wearer's patterns indicate that the patient or wearer has fallen or is likely to fall. 3D detection is used to monitor the patient or wearer's ambulation. In the 3D detection process, by putting 3 or more known coordinate objects in a scene, camera origin, view direction and up vector can be calculated and the 3D space that each camera views can be defined.
  • In one embodiment with two or more cameras, camera parameters (e.g. field of view) are preset to fixed numbers. Each pixel from each camera maps to a cone space. The system identifies one or more 3D feature points (such as a birthmark or an identifiable body landmark) on the patient or wearer. The 3D feature point can be detected by identifying the same point from two or more different angles. By determining the intersection for the two or more cones, the system determines the position of the feature point. The above process can be extended to certain feature curves and surfaces, e.g. straight lines, arcs; flat surfaces, cylindrical surfaces. Thus, the system can detect curves if a feature curve is known as a straight line or arc. Additionally, the system can detect surfaces if a feature surface is known as a flat or cylindrical surface. The further the patient or wearer is from the camera, the lower the accuracy of the feature point determination. Also, the presence of more cameras would lead to more correlation data for increased accuracy in feature point determination. When correlated feature points, curves and surfaces are detected, the remaining surfaces are detected by texture matching and shading changes. Predetermined constraints are applied based on silhouette curves from different views. A different constraint can be applied when one part of the patient or wearer is occluded by another object. Further, as the system knows what basic organic shape it is detecting, the basic profile can be applied and adjusted in the process.
  • In a single camera embodiment, the 3D feature point (e.g. a birth mark) can be detected if the system can identify the same point from two frames. The relative motion from the two frames should be small but detectable. Other features curves and surfaces will be detected correspondingly, but can be tessellated or sampled to generate more feature points. A transformation matrix is calculated between a set of feature points from the first frame to a set of feature points from the second frame. When correlated feature points, curves and surfaces are detected, the rest of the surfaces will be detected by texture matching and shading changes.
  • Each camera exists in a sphere coordinate system where the sphere origin (0,0,0) is defined as the position of the camera. The system detects theta and phi for each observed object, but not the radius or size of the object. The radius is approximated by detecting the size of known objects and scaling the size of known objects to the object whose size is to be determined. For example, to detect the position of a ball that is 10 cm in radius, the system detects the ball and scales other features based on the known ball size. For human, features that are known in advance include head size and leg length, among others. Surface texture can also be detected, but the light and shade information from different camera views is removed. In either single or multiple camera embodiments, depending on frame rate and picture resolution, certain undetected areas such as holes can exist. For example, if the patient or wearer yawns, the patient or wearer's mouth can appear as a hole in an image. For 3D modeling purposes, the hole can be filled by blending neighborhood surfaces. The blended surfaces are behind the visible line.
  • In one embodiment shown in FIG. 2A, each camera is calibrated before 3D detection is done. Pseudo-code for one implementation of a camera calibration process is as follows:
  • Place a calibration sheet with known dots at a known distance (e.g. 1 meter), and perpendicular to a camera view.
  • Take snap shot of the sheet, and correlate the position of the dots to the camera image:
      • Dot1(x,y,1)←>pixel (x,y)
  • Place a different calibration sheet that contains known dots at another different known distance (e.g. 2 meters), and perpendicular to camera view.
  • Take another snapshot of the sheet, and correlate the position of the dots to the camera image:
      • Dot2 (x,y,2)←>pixel (x,y)
  • Smooth the dots and pixels to minimize digitization errors. By smoothing the map using a global map function, step errors will be eliminated and each pixel will be mapped to a cone space.
  • For each pixel, draw a line from Dot1(x, y, z) to Dot2 (x, y, z) defining a cone center where the camera can view.
  • One smoothing method is to apply a weighted filter for Dot1 and Dot2. A weight filter can be used. In one example, the following exemplary filter is applied.
      • 1 2 1
      • 2 4 2
      • 1 2 1
  • Assuming Dot1_Left refers to the value of the dot on the left side of Dot1 and Dot1_Right refers to the value of the dot to the right of Dot1 and Dot1_Upper refers to the dot above Dot1, for example, the resulting smoothed Dot1 value is as follows:
      • 1/16*(Dot1*4+Dot1_Left*2+Dot1_Right*2+Dot1_Upper*2+Dot1_Down*2+Dot1_UpperLeft+Dot1_UpperRight+Dot1_LowerLeft+Dot1_LowerRight)
  • Similarly, the resulting smoothed Dot2 value is as follows:
      • 1/16*(Dot2*4+Dot2 Left*2+Dot2 Right*2+Dot2 Upper*2+Dot2 Down*2+Dot2 UpperLeft+Dot2 UpperRight+Dot2 LowerLeft+Dot2 LowerRight)
  • In another smoothing method, features from Dot1 sheet are mapped to a sub pixel level and features of Dot2 sheet are mapped to a sub pixel level and smooth them. To illustrate, Dot1 dot center (5, 5, 1) are mapped to pixel (1.05, 2.86), and Dot2 dot center (10, 10, 2) are mapped to pixel (1.15, 2.76). A predetermined correlation function is then applied.
  • FIG. 2B shows an exemplary calibration sheet having a plurality of dots. In this embodiment, the dots can be circular dots and square dots which are interleaved among each others. The dots should be placed relatively close to each other and each dot size should not be too large, so we can have as many dots as possible in one snapshot. However, the dots should not be placed too close to each other and the dot size should not be too small, so they are not identifiable.
  • A module 54 monitors patient or wearer activity and generates a warning if the patient or wearer has fallen. In one implementation, the system detects the speed of center of mass movement. If the center of mass movement is zero for a predetermined period, the patient or wearer is either sleeping or unconscious. The system then attempts to signal the patient or wearer and receive confirmatory signals indicating that the patient or wearer is conscious. If patient or wearer does not confirm, then the system generates an alarm. For example, if the patient or wearer has fallen, the system would generate an alarm signal that can be sent to friends, relatives or neighbors of the patient or wearer. Alternatively, a third party such as a call center can monitor the alarm signal. Besides monitoring for falls, the system performs video analysis of the patient or wearer. For example, during a particular day, the system can determine the amount of time for exercise, sleep, and entertainment, among others. The network of sensors in a patient or wearer's home can recognize ordinary patterns—such as eating, sleeping, and greeting visitors—and to alert caretakers to out-of-the-ordinary ones—such as prolonged inactivity or absence. For instance, if the patient or wearer goes into the bathroom then disappears off the sensor for 13 minutes and don't show up anywhere else in the house, the system infers that patient or wearer had taken a bath or a shower. However, if a person falls and remains motionless for a predetermined period, the system would record the event and notify a designated person to get assistance.
  • A fall detection process (shown in FIG. 3) performs the following operations:
  • Find floor space area
  • Define camera view background 3D scene
  • Calculate patient or wearer's key features
  • Detect fall
  • In one implementation, pseudo-code for determining the floor space area is as follows:
  • Sample the camera view space by M by N, e.g. M=1000, N=500.
  • Calculate all sample points the 3D coordinates in room coordinate system; where Z axis is pointing up. Refer to the 3D detection for how to calculate 3D positions.
  • Find the lowest Z value point (Zmin)
  • Find all points whose Z values are less than Zmin+Ztol; where Ztol is a user adjustable value, e.g. 2 inches.
  • If rooms have different elevation levels, then excluding the lowest Z floor points, repeat step 2, 3 and 4 while keeping the lowest Z is within Zto12 of previous Z. In this example Zto12=2 feet, which means the floor level difference should be within 2 feet.
  • Detect stairs by finding approximate same flat area but within equal Z differences between them.
  • Optionally, additional information from the user can be used to define floor space more accurately, especially in single camera system where the coordinates are less accurate, e.g.:
  • Import the CAD file from constructors' blue prints.
  • Pick regions from the camera space to define the floor, then use software to calculate its room coordinates.
  • User software to find all flat surfaces, e.g. floors, counter tops, then user pick the ones, which are actually floors and/or stairs.
  • In the implementation, pseudo-code for determining the camera view background 3D scene is as follows:
  • With the same sample points, calculate x, y coordinates and the Z depth and calculate 3D positions.
  • Determine background scene using one the following methods, among others:
  • When there is nobody in the room.
  • Retrieve and update the previous calculated background scene.
  • Continuous updating every sample point when the furthest Z value was found, that is the background value.
  • In the implementation, pseudo-code for determining key features of the patient or wearer is as follows:
  • Foreground objects can be extracted by comparing each sample point's Z value to the background scene point's Z value, if it is smaller, then it is on the foreground.
  • In normal condition, the feet/shoe can be detected by finding the lowest Z point clouds close the floor in room space, its color will be extracted.
  • In normal condition, the hair/hat can be detected by finding the highest Z point clouds close the floor in room space, its color will be extracted.
  • The rest of the features can be determined by searching from either head or toe. E.g, hat, hair, face, eye, mouth, ear, earring, neck, lipstick, moustache, jacket, limbs, belt, ring, hand, etc.
  • The key dimension of features will be determined by retrieving the historic stored data or recalculated, e.g., head size, mouth width, arm length, leg length, waist, etc.
  • In abnormal conditions, features can be detected by detect individual features then correlated them to different body parts. E.g, if patient or wearer's skin is black, we can hardly get a yellow or white face, by detecting eye and nose, we know which part is the face, then we can detect other characteristics.
  • If the center of mass movement ceases to move for a predetermined period, the system can generate the warning. In another embodiment, before generating the warning, the system can request the patient or wearer to confirm that he or she does not need assistance. The confirmation can be in the form of a button that the user can press to override the warning. Alternatively, the confirmation can be in the form of a single utterance that is then detected by a speech recognizer.
  • In another embodiment, the confirmatory signal is a patient or wearer gesture. The patient or wearer can nod his or her head to request help and can shake the head to cancel the help request. Alternatively, the patient or wearer can use a plurality of hand gestures to signal to the server 20 the actions that the patient or wearer desires.
  • By adding other detecting mechanism such as sweat detection, the system can know whether patient or wearer is uncomfortable or not. Other items that can be monitored include chest movement (frequency and amplitude) and rest length when the patient or wearer sits still in one area, among others.
  • Besides monitoring for falls, the system performs video analysis of the patient or wearer. For example, during a particular day, the system can determine the amount of time for exercise, sleep, entertainment, among others. The network of sensors in a patient or wearer's home can recognize ordinary patterns—such as eating, sleeping, and greeting visitors—and to alert caretakers to out-of-the-ordinary ones—such as prolonged inactivity or absence. For instance, if the patient or wearer goes into the bathroom then disappears off the camera 10 view for a predetermined period and does not show up anywhere else in the house, the system infers that patient or wearer had taken a bath or a shower. However, if a person falls and remains motionless for a predetermined period, the system would record the event and notify a designated person to get assistance.
  • In one embodiment, changes in the patient or wearer's skin color can be detected by measuring the current light environment, properly calibrating color space between two photos, and then determining global color change between two states. Thus, when the patient or wearer's face turn red, based on the redness, a severity level warning is generated.
  • In another embodiment, changes in the patient or wearer's face are detected by analyzing a texture distortion in the images. If the patient or wearer perspires heavily, the texture will show small glisters, make-up smudges, or sweat/tear drippings. Another example is, when long stretched face will be detected as texture distortion. Agony will show certain wrinkle texture patterns, among others.
  • The system can also utilize high light changes. Thus, when the patient or wearer sweats or changes facial appearance, different high light areas are shown, glisters reflect light and pop up geometry generates more high light areas.
  • A module 62 analyzes facial changes such as facial asymmetries. The change will be detected by superimpose a newly acquired 3D anatomy structure to a historical (normal) 3D anatomy structure to detect face/eye sagging or excess stretch of facial muscles.
  • In one embodiment shown in FIG. 4, a facial expression analysis process performs the following operations:
  • Find floor space area
  • Define camera view background 3D scene
  • Calculate patient or wearer's key features
  • Extract facial objects
  • Detect facial orientation
  • Detect facial expression
  • The first three steps are already discussed above. The patient or wearer's key features provide information on the location of the face, and once the face area has been determined, other features can be detected by detecting relative position to each other and special characteristics of the features:
  • Eye: pupil can be detected by applying Chamfer matching algorithm, by using stock pupil objects.
  • Hair: located on the top of the head, using previous stored hair color to locate the hair point clouds.
  • Birthmarks, wrinkles and tattoos: pre store all these features then use Chamfer matching to locate them.
  • Nose: nose bridge and nose holes usually show special characteristics for detection, sometime depend on the view angle, is side view, special silhouette will be shown.
  • Eye browse, Lips and Moustache: All these features have special colors, e.g. red lipstick; and base shape, e.g. patient or wearer has no expression with mouth closed. Software will locate these features by color matching, then try to deform the base shape based on expression, and match shape with expression, we can detect objects and expression at the same time.
  • Teeth, earring, necklace: All these features can be detected by color and style, which will give extra information.
  • In one implementation, pseudo-code for detecting facial orientation is as follows:
  • Detect forehead area
  • Use the previously determined features and superimpose them on the base face model to detect a patient or wearer face orientation.
  • During operation, the module checks whether broadband network is available. If broadband network is available, the module 80 allows high resolution video, among others, to be broadcasted directly from the server 20 to the third party or indirectly from the server 20 to the remote server 200 to the third party. In parallel, the module 80 allows sound to be transmitted using the telephone circuit. In this manner, high resolution video can be transmitted since sound data is separately sent through the POTS network.
  • If broadband network is not available, the system relies on the POTS telephone network for transmission of voice and images. In this system, one or more images are compressed for burst transmission, and at the request of the third party or the remote server 200, the telephone's sound system is placed on hold for a brief period to allow transmission of images over the POTS network. In this manner, existing POTS lifeline telephone can be used to monitor patient or wearers. The resolution and quantity of images are selectable by the third party. Thus, using only the lifeline as a communication medium, the person monitoring the patient or wearer can elect to only listen, to view one high resolution image with duplex telephone voice transmission, to view a few low resolution images, to view a compressed stream of low resolution video with digitized voice, among others.
  • During installation or while no live person in the scene, each camera will capture its own environment objects and store it as background images, the software then detect the live person in the scene, changes of the live person, so only the portion of live person will be send to the local server, other compression techniques will be applied, e.g. send changing file, balanced video streaming based on change.
  • The local server will control and schedule how the video/picture will be send, e.g. when the camera is view an empty room, no pictures will be sent, the local server will also determine which camera is at the right view, and request only the corresponding video be sent. The local server will determine which feature it is interested in looking at, e.g. face and request only that portion be sent.
  • With predetermined background images and local server controlled streaming, the system will enable higher resolution and more camera system by using narrower bandwidth.
  • Through this module, a police officer, a security agent, or a healthcare agent such as a physician at a remote location can engage, in interactive visual communication with the patient or wearer. The patient or wearer's health data or audio-visual signal can be remotely accessed. The patient or wearer also has access to a video transmission of the third party. Should the patient or wearer experience health symptoms requiring intervention and immediate care, the health care practitioner at the central station may summon help from an emergency services provider. The emergency services provider may send an ambulance, fire department personnel, family member, or other emergency personnel to the patient or wearer's remote location. The emergency services provider may, perhaps, be an ambulance facility, a police station, the local fire department, or any suitable support facility.
  • Communication between the patient or wearer's remote location and the central station can be initiated by a variety of techniques. One method is by manually or automatically placing a call on the telephone to the patient or wearer's home or from the patient or wearer's home to the central station.
  • Alternatively, the system can ask a confirmatory question to the patient or wearer through text to speech software. The patient or wearer can be orally instructed by the health practitioner to conduct specific physical activities such as specific arm movements, walking, bending, among others. The examination begins during the initial conversation with the monitored subject. Any changes in the spontaneous gestures of the body, arms and hands during speech as well as the fulfillment of nonspecific tasks are important signs of possible pathological events. The monitoring person can instruct the monitored subject to perform a series of simple tasks which can be used for diagnosis of neurological abnormalities. These observations may yield early indicators of the onset of a disease.
  • A network 100 such as the Internet receives images from the server 20 and passes the data to one or more remote servers 200. The images are transmitted from the server 200 over a secure communication link such as virtual private network (VPN) to the remote server(s) 200.
  • In one embodiment where cameras are deployed, the server 200 collects data from a plurality of cameras and uses the 3D images technology to determine if the patient or wearer needs help. The system can transmit video (live or archived) to the friend, relative, neighbor, or call center for human review. At each viewer site, after a viewer specifies the correct URL to the client browser computer, a connection with the server 200 is established and user identity authenticated using suitable password or other security mechanisms. The server 200 then retrieves the document from its local disk or cache memory storage and transmits the content over the network. In the typical scenario, the user of a Web browser requests that a media stream file be downloaded, such as sending, in particular, the URL of a media redirection file from a Web server. The media redirection file (MRF) is a type of specialized Hypertext Markup Language (HTML) file that contains instructions for how to locate the multimedia file and in what format the multimedia file is in. The Web server returns the MRF file to the user's browser program. The browser program then reads the MRF file to determine the location of the media server containing one or more multimedia content files. The browser then launches the associated media player application program and passes the MRF file to it. The media player reads the MRF file to obtain the information needed to open a connection to a media server, such as a URL, and the required protocol information, depending upon the type of medial content is in the file. The streaming media content file is then routed from the media server down to the user.
  • In the camera embodiment, the transactions between the server 200 and one of the remote servers 200 are detailed. The server 200 compares one image frame to the next image frame. If no difference exists, the duplicate frame is deleted to minimize storage space. If a difference exists, only the difference information is stored as described in the JPEG standard. This operation effectively compresses video information so that the camera images can be transmitted even at telephone modem speed of 64 k or less. More aggressive compression techniques can be used. For example, patient or wearer movements can be clusterized into a group of known motion vectors, and patient or wearer movements can be described using a set of vectors. Only the vector data is saved. During view back, each vector is translated into a picture object which is suitably rasterized. The information can also be compressed as motion information.
  • Next, the server 200 transmits the compressed video to the remote server 200. The server 200 stores and caches the video data so that multiple viewers can view the images at once since the server 200 is connected to a network link such as telephone line modem, cable modem, DSL modem, and ATM transceiver, among others.
  • The system can also monitor the patient or wearer's gait pattern and generate warnings should the patient or wearer's gait patterns indicate that the patient or wearer is likely to fall. The system will detect patient or wearer skeleton structure, stride and frequency; and based on this information to judge whether patient or wearer has joint problem, asymmetrical bone structure, among others. The system can store historical gait information, and by overlaying current structure to the historical (normal) gait information, gait changes can be detected. In the camera embodiment, an estimate of the gait pattern is done using the camera. In a camera-less embodiment, the gait can be sensed by providing a sensor on the floor and a sensor near the head and the variance in the two sensor positions are used to estimate gait characteristics.
  • The system also provides a patient or wearer interface 90 to assist the patient or wearer in easily accessing information. In one embodiment, the patient or wearer interface includes a touch screen; voice-activated text reading; one touch telephone dialing; and video conferencing. The touch screen has large icons that are preselected to the patient or wearer's needs, such as his or her favorite web sites or application programs. The voice activated text reading allows a user with poor eye-sight to get information from the patient or wearer interface 90. Buttons with pre-designated dialing numbers, or video conferencing contact information allow the user to call a friend or a healthcare provider quickly.
  • In one embodiment, medicine for the patient or wearer is tracked using radio frequency identification (RFID) tags. In this embodiment, each drug container is tracked through an RFID tag that is also a drug label. The RF tag is an integrated circuit that is coupled with a mini-antenna to transmit data. The circuit contains memory that stores the identification Code and other pertinent data to be transmitted when the chip is activated or interrogated using radio energy from a reader. A reader consists of an RF antenna, transceiver and a micro-processor. The transceiver sends activation signals to and receives identification data from the tag. The antenna may be enclosed with the reader or located outside the reader as a separate piece. RFID readers communicate directly with the RFID tags and send encrypted usage data over the patient or wearer's network to the server 200 and eventually over the Internet 100. The readers can be built directly into the walls or the cabinet doors.
  • In one embodiment, capacitively coupled RFID tags are used. The capacitive RFID tag includes a silicon microprocessor that can store 96 bits of information, including the pharmaceutical manufacturer, drug name, usage instruction and a 40-bit serial number. A conductive carbon ink acts as the tag's antenna and is applied to a paper substrate through conventional printing means. The silicon chip is attached to printed carbon-ink electrodes on the back of a paper label, creating a low-cost, disposable tag that can be integrated on the drug label. The information stored on the drug labels is written in a Medicine Markup Language (MML), which is based on the eXtensible Markup Language (XML). MML would allow all computers to communicate with any computer system in a similar way that Web servers read Hyper Text Markup Language (HTML), the common language used to create Web pages.
  • After receiving the medicine container, the patient or wearer places the medicine in a medicine cabinet, which is also equipped with a tag reader. This smart cabinet then tracks all medicine stored in it. It can track the medicine taken, how often the medicine is restocked and can let the patient or wearer know when a particular medication is about to expire. At this point, the server 200 can order these items automatically. The server 200 also monitors drug compliance, and if the patient or wearer does not remove the bottle to dispense medication as prescribed, the server 200 sends a warning to the healthcare provider.
  • The database tracks typical arm and leg movements to determine whether the user is experiencing muscle weakness reflective of a stroke. If muscle weakness is detected, the system presents the user with additional tests to confirm the likelihood of a stroke attack. If the information indicates a stroke had occurred, the system stores the time of the stroke detection and calls for emergency assistance to get timely treatment for the stroke. The user's habits and movements can be determined by the system for stroke detection. This is done by tracking location, ambulatory travel vectors and time in a database. If the user typically sleeps between 10 pm to 6 am, the location would reflect that the user's location maps to the bedroom between 10 pm and 6 am. In one exemplary system, the system builds a schedule of the user's activity as follows:
  • Location Time Start Time End Heart Rate
    Bed room
    10 pm 6 am 60-80 
    Gym room 6 am 7 am 90-120
    Bath room 7 am 7:30 am 85-120
    Dining room 7:30 am 8:45 am 80-90 
    Home Office 8:45 am 11:30 am 85-100
    . . .
    . . .
  • The habit tracking is adaptive in that it gradually adjusts to the user's new habits. If there are sudden changes, the system flags these sudden changes for follow up. For instance, if the user spends three hours in the bathroom, the system prompts the third party (such as a call center) to follow up with the patient or wearer to make sure he or she does not need help.
  • In one embodiment, data driven analyzers may be used to track the patient or wearer's habits. These data driven analyzers may incorporate a number of models such as parametric statistical models, non-parametric statistical models, clustering models, nearest neighbor models, regression methods, and engineered (artificial) neural networks. Prior to operation, data driven analyzers or models of the patient or wearer's habits or ambulation patterns are built using one or more training sessions. The data used to build the analyzer or model in these sessions are typically referred to as training data. As data driven analyzers are developed by examining only training examples, the selection of the training data can significantly affect the accuracy and the learning speed of the data driven analyzer. One approach used heretofore generates a separate data set referred to as a test set for training purposes. The test set is used to avoid overfitting the model or analyzer to the training data. Overfitting refers to the situation where the analyzer has memorized the training data so well that it fails to fit or categorize unseen data. Typically, during the construction of the analyzer or model, the analyzer's performance is tested against the test set. The selection of the analyzer or model parameters is performed iteratively until the performance of the analyzer in classifying the test set reaches an optimal point. At this point, the training process is completed. An alternative to using an independent training and test set is to use a methodology called cross-validation. Cross-validation can be used to determine parameter values for a parametric analyzer or model for a non-parametric analyzer. In cross-validation, a single training data set is selected. Next, a number of different analyzers or models are built by presenting different parts of the training data as test sets to the analyzers in an iterative process. The parameter or model structure is then determined on the basis of the combined performance of all models or analyzers. Under the cross-validation approach, the analyzer or model is typically retrained with data using the determined optimal model structure.
  • In general, multiple dimensions of a user's daily activities such as start and stop times of interactions of different interactions are encoded as distinct dimensions in a database. A predictive model, including time series models such as those employing autoregression analysis and other standard time series methods, dynamic Bayesian networks and Continuous Time Bayesian Networks, or temporal Bayesian-network representation and reasoning methodology, is built, and then the model, in conjunction with a specific query makes target inferences.
  • Bayesian networks provide not only a graphical, easily interpretable alternative language for expressing background knowledge, but they also provide an inference mechanism; that is, the probability of arbitrary events can be calculated from the model. Intuitively, given a Bayesian network, the task of mining interesting unexpected patterns can be rephrased as discovering item sets in the data which are much more—or much less—frequent than the background knowledge suggests. These cases are provided to a learning and inference subsystem, which constructs a Bayesian network that is tailored for a target prediction. The Bayesian network is used to build a cumulative distribution over events of interest.
  • In another embodiment, a genetic algorithm (GA) search technique can be used to find approximate solutions to identifying the user's habits. Genetic algorithms are a particular class of evolutionary algorithms that use techniques inspired by evolutionary biology such as inheritance, mutation, natural selection, and recombination (or crossover). Genetic algorithms are typically implemented as a computer simulation in which a population of abstract representations (called chromosomes) of candidate solutions (called individuals) to an optimization problem evolves toward better solutions. Traditionally, solutions are represented in binary as strings of 0s and 1s, but different encodings are also possible. The evolution starts from a population of completely random individuals and happens in generations. In each generation, the fitness of the whole population is evaluated, multiple individuals are stochastically selected from the current population (based on their fitness), modified (mutated or recombined) to form a new population, which becomes current in the next iteration of the algorithm.
  • Substantially any type of learning system or process may be employed to determine the user's ambulatory and living patterns so that unusual events can be flagged.
  • In one embodiment, clustering operations are performed to detect patterns in the data. In another embodiment, a neural network is used to recognize each pattern as the neural network is quite robust at recognizing user habits or patterns. Once the treatment features have been characterized, the neural network then compares the input user information with stored templates of treatment vocabulary known by the neural network recognizer, among others. The recognition models can include a Hidden Markov Model (HMM), a dynamic programming model, a neural network, a fuzzy logic, or a template matcher, among others. These models may be used singly or in combination.
  • The system allows patient or wearers to conduct a low-cost, comprehensive, real-time monitoring of their vital parameters such as ambulation and falls. Information can be viewed using an Internet-based website, a personal computer, or simply by viewing a display on the monitor. Data measured several times each day provide a relatively comprehensive data set compared to that measured during medical appointments separated by several weeks or even months. This allows both the patient or wearer and medical professional to observe trends in the data, such as a gradual increase or decrease in blood pressure, which may indicate a medical condition. The invention also minimizes effects of white coat syndrome since the monitor automatically makes measurements with basically no discomfort; measurements are made at the patient or wearer's home or work, rather than in a medical office.
  • The wearable appliance is small, easily worn by the patient or wearer during periods of exercise or day-to-day activities, and non-invasively measures blood pressure can be done in a matter of seconds without affecting the patient or wearer. An on-board or remote processor can analyze the time-dependent measurements to generate statistics on a patient or wearer's blood pressure (e.g., average pressures, standard deviation, beat-to-beat pressure variations) that are not available with conventional devices that only measure systolic and diastolic blood pressure at isolated times.
  • The wearable appliance provides an in-depth, cost-effective mechanism to evaluate a patient or wearer's health condition. Certain cardiac conditions can be controlled, and in some cases predicted, before they actually occur. Moreover, data from the patient or wearer can be collected and analyzed while the patient or wearer participates in their normal, day-to-day activities.
  • Software programs associated with the Internet-accessible website, secondary software system, and the personal computer analyze the blood pressure, and heart rate, and pulse oximetry values to characterize the patient or wearer's cardiac condition. These programs, for example, may provide a report that features statistical analysis of these data to determine averages, data displayed in a graphical format, trends, and comparisons to doctor-recommended values.
  • When the appliance cannot communicate with the mesh network, the appliance simply stores information in memory and continues to make measurements. The watch component automatically transmits all the stored information (along with a time/date stamp) when it comes in proximity to the wireless mesh network, which then transmits the information through the wireless network.
  • In one embodiment, the server provides a web services that communicate with third party software through an interface. To generate vital parameters such as blood pressure information for the web services software interface, the patient or wearer continuously wears the blood-pressure monitor for a short period of time, e.g. one to two weeks after visiting a medical professional during a typical ‘check up’ or after signing up for a short-term monitoring program through the website. In this case, the wearable device such as the watch measures mobility through the accelerometer and blood pressure in a near-continuous, periodic manner such as every fifteen minutes. This information is then transmitted over the mesh network to a base station that communicates over the Internet to the server.
  • To view information sent from the blood-pressure monitor and fall detector on the wearable appliance, the patient or wearer or an authorized third party such as family members, emergency personnel, or medical professional accesses a patient or wearer user interface hosted on the web server 200 through the Internet 100 from a remote computer system. The patient or wearer interface displays vital information such as ambulation, blood pressure and related data measured from a single patient or wearer. The system may also include a call center, typically staffed with medical professionals such as doctors, nurses, or nurse practitioners, whom access a care-provider interface hosted on the same website on the server 200. The care-provider interface displays vital data from multiple patient or wearers.
  • The wearable appliance has an indoor positioning system and processes these signals to determine a location (e.g., latitude, longitude, and altitude) of the monitor and, presumably, the patient or wearer. This location could be plotted on a map by the server, and used to locate a patient or wearer during an emergency, e.g. to dispatch an ambulance.
  • In one embodiment, the web page hosted by the server 200 includes a header field that lists general information about the patient or wearer (e.g. name, age, and ID number, general location, and information concerning recent measurements); a table that lists recently measured blood pressure data and suggested (i.e. doctor-recommended) values of these data; and graphs that plot the systolic and diastolic blood pressure data in a time-dependent manner. The header field additionally includes a series of tabs that each link to separate web pages that include, e.g., tables and graphs corresponding to a different data measured by the wearable device such as calorie consumption/dissipation, ambulation pattern, sleeping pattern, heart rate, pulse oximetry, and temperature. The table lists a series of data fields that show running average values of the patient or wearer's daily, monthly, and yearly vital parameters. The levels are compared to a series of corresponding ‘suggested’ values of vital parameters that are extracted from a database associated with the web site. The suggested values depend on, among other things, the patient or wearer's age, sex, and weight. The table then calculates the difference between the running average and suggested values to give the patient or wearer an idea of how their data compares to that of a healthy patient or wearer. The web software interface may also include security measures such as authentication, authorization, encryption, credential presentation, and digital signature resolution. The interface may also be modified to conform to industry-mandated, XML schema definitions, while being ‘backwards compatible’ with any existing XML schema definitions.
  • The system provides for self-registration of appliances by the user. Data can be synchronized between the Repository and appliance(s) via the base station 20. The user can preview the readings received from the appliance(s) and reject erroneous readings. The user or treating professional can set up the system to generate alerts against received data, based on pre-defined parameters. The system can determine trends in received data, based on user defined parameters.
  • Appliance registration is the process by which a patient or wearer monitoring appliance is associated with one or more users of the system. This mechanism is also used when provisioning appliances for a user by a third party, such as a clinician (or their respective delegate). In one implementation, the user (or delegate) logs into the portal to select one or more appliances and available for registration. In turn, the base station server 20 broadcasts a query to all nodes in the mesh network to retrieve identification information for the appliance such as manufacturer information, appliance model information, appliance serial number and optionally a hub number (available on hub packaging). The user may register more than one appliance at this point. The system optionally sets up a service subscription for appliance(s) usage. This includes selecting service plans and providing payment information. The appliance(s) are then associated with this user's account and a control file with appliance identification information is synchronized between the server 200 and the base station 20 and each appliance on initialization. In one embodiment, each appliance 8 transmits data to the base station 20 in an XML format for ease of interfacing and is either kept encrypted or in a non-readable format on the base station 20 for security reasons.
  • The base station 20 frequently collects and synchronizes data from the appliances 8. The base station 20 may use one of various transportation methods to connect to the repository on the server 200 using a PC as conduit or through a connection established using an embedded modem (connected to a phone line), a wireless router (DSL or cable wireless router), a cellular modem, or another network-connected appliance (such as, but not limited to, a web-phone, video-phone, embedded computer, PDA or handheld computer).
  • In one embodiment, users may set up alerts or reminders that are triggered when one or more reading meet a certain set of conditions, depending on parameters defined by the user. The user chooses the condition that they would like to be alerted to and by providing the parameters (e.g. threshold value for the reading) for alert generation. Each alert may have an interval which may be either the number of data points or a time duration in units such as hours, days, weeks or months. The user chooses the destination where the alert may be sent. This destination may include the user's portal, e-mail, pager, voice-mail or any combination of the above.
  • Trends are determined by applying mathematical and statistical rules (e.g. moving average and deviation) over a set of reading values. Each rule is configurable by parameters that are either automatically calculated or are set by the user.
  • Different web pages may be designed and accessed depending on the end-user. As described above, individual users have access to web pages that only their ambulation and blood pressure data (i.e., the patient or wearer interface), while organizations that support a large number of patient or wearers (nursing homes or hospitals) have access to web pages that contain data from a group of patient or wearers using a care-provider interface. Other interfaces can also be used with the web site, such as interfaces used for: insurance companies, members of a particular company, clinical trials for pharmaceutical companies, and e-commerce purposes. Vital patient or wearer data displayed on these web pages, for example, can be sorted and analyzed depending on the patient or wearer's medical history, age, sex, medical condition, and geographic location. The web pages also support a wide range of algorithms that can be used to analyze data once they are extracted from the data packets. For example, an instant message or email can be sent out as an ‘alert’ in response to blood pressure indicating a medical condition that requires immediate attention. Alternatively, the message could be sent out when a data parameter (e.g. systolic blood pressure) exceeds a predetermined value. In some cases, multiple parameters (e.g., fall detection, positioning data, and blood pressure) can be analyzed simultaneously to generate an alert message. In general, an alert message can be sent out after analyzing one or more data parameters using any type of algorithm. These algorithms range from the relatively simple (e.g., comparing blood pressure to a recommended value) to the complex (e.g., predictive medical diagnoses using ‘data mining’ techniques). In some cases data may be ‘fit’ using algorithms such as a linear or non-linear least-squares fitting algorithm.
  • In one embodiment, a physician, other health care practitioner, or emergency personnel is provided with access to patient or wearer medical information through the server 200. In one embodiment, if the wearable appliance detects that the patient or wearer needs help, or if the patient or wearer decides help is needed, the system can call his or her primary care physician. If the patient or wearer is unable to access his or her primary care physician (or another practicing physician providing care to the patient or wearer) a call from the patient or wearer is received, by an answering service or a call center associated with the patient or wearer or with the practicing physician. The call center determines whether the patient or wearer is exhibiting symptoms of an emergency condition by polling vital patient or wearer information generated by the wearable device, and if so, the answering service contacts 911 emergency service or some other emergency service. The call center can review falls information, blood pressure information, and other vital information to determine if the patient or wearer is in need of emergency assistance. If it is determined that the patient or wearer in not exhibiting symptoms of an emergent condition, the answering service may then determine if the patient or wearer is exhibiting symptoms of a non-urgent condition. If the patient or wearer is exhibiting symptoms of a non-urgent condition, the answering service will inform the patient or wearer that he or she may log into the server 200 for immediate information on treatment of the condition. If the answering service determines that the patient or wearer is exhibiting symptoms that are not related to a non-urgent condition, the answering service may refer the patient or wearer to an emergency room, a clinic, the practicing physician (when the practicing physician is available) for treatment.
  • In another embodiment, a system for delivering medical examination, diagnosis, and treatment services from a physician to a patient or wearer over a network includes a first plurality of health care practitioners at a plurality of terminals, each of the first plurality of health care practitioner terminals including a display device that shows information collected by the wearable appliances and a second plurality of patient or wearer terminals or wearable appliances in audiovisual communication over a network with any of the first plurality of health care practitioner terminals. A call center is in communication with the patient or wearer wearable appliances and the health care practitioner terminals, the call center routing a call from a patient or wearer at one of the patient or wearer terminals to an available health care practitioner at one of the health care practitioner terminals, so that the available health care practitioner may carry on a two-way conversation with the patient or wearer. A protocol database resident on a digital storage medium is accessible to each of the health care practitioner terminals. The protocol database contains a plurality of protocol segments such that a relevant segment of the protocol may be displayed in real time on the display device of the health care practitioner terminal of the available health care practitioner for use by the available health care practitioner in making an assessment of the patient or wearer. The relevant segment of the protocol displayed in real time on the display device of the health care practitioner terminal may include an electronic link that establishes communication between the available health care practitioner and a third party and the third party may be one or more of a primary care physician, specialist, hospital, emergency room, ambulance service, clinic or pharmacy.
  • In accordance with other related embodiment, the patient or wearer wearable appliance may include establish a direct connection to the call center by pushing a button on the appliance. Further, the protocol database may be resident on a server that is in communication with each of the health care practitioner terminals and each of the health care practitioner terminals may include a local storage device and the protocol database is replicated on the local storage device of one or more of the physician terminals.
  • In another embodiment, a system for delivering medical examination, diagnosis, and treatment services from a physician to a patient or wearer over a network includes a first plurality of health care practitioner terminals, each of the first plurality of health care practitioner terminals including a display device and a second plurality of patient or wearer terminals in audiovisual communication over a network with any of the first plurality of health care practitioner terminals. Each of the second plurality of patient or wearer terminals includes a camera having pan, tilt and zoom modes, such modes being controlled from the first plurality of health care practitioner terminals. A call center is in communication with the patient or wearer terminals and the health care practitioner terminals and the call center routes a call from a patient or wearer at one of the patient or wearer terminals to an available health care practitioner at one of the health care practitioner terminals, so that the available health care practitioner may carry on a two-way conversation with the patient or wearer and visually observe the patient or wearer.
  • Due to its awareness of the patient or wearer's position, the server 200 can optionally control a mobility assistance device such as a smart cane or robot. The robotic smart cane sends video from its camera to the server 20, which in turn coordinates the position of the robot, as determined by the cameras 10 mounted in the home as well as the robot camera. The robot position, as determined by the server 20, is then transmitted to the robot for navigation. The robot has a frame with an extended handle. The handle includes handle sensors mounted thereon to detect the force places on each handle to receive as input the movement desired by the patient or wearer. In one embodiment, the robot has a control navigation system that accepts patient or wearer command as well as robot self-guidance command. The mobility is a result of give-and-take between the patient or wearer's self-propulsion and the walker's automated reactions. Thus, when the patient or wearer moves the handle to the right, the robot determines that the patient or wearer is interested in turning and actuates the drive systems appropriately. However, if the patient or wearer is turning into an obstacle, as determined by the cameras and the server 20, the drive system provides gentle resistance that tells the patient or wearer of an impending collision.
  • FIG. 5 shows an exemplary process to monitor patient or wearer. First, the process sets up mesh network appliances (1000). Next, the process determines patient or wearer position using in-door positioning system (1002). The process then determines patient or wearer movement using accelerometer output (1004). Sharp accelerations may be used to indicate fall. Further, the z axis accelerometer changes can indicate the height of the appliance from the floor and if the height is near zero, the system infers that the patient or wearer had fallen. The system can also determine vital parameter including patient or wearer heart rate (1006). The system determines if patient or wearer needs assistance based on in-door position, fall detection and vital parameter (1008). If a fall is suspected, the system confirms the fall by communicating with the patient or wearer prior to calling a third party such as the patient or wearer's physician, nurse, family member, 911, 511, 411, or a paid call center to get assistance for the patient or wearer (1010). If confirmed or if the patient or wearer is non-responsive, the system contacts the third party and sends voice over mesh network to appliance on the patient or wearer to allow one or more third parties to talk with the patient or wearer (1012). If needed, the system calls and/or conferences emergency personnel into the call (1014).
  • In one embodiment, if the patient or wearer is outside of the mesh network range such as when the user is traveling away from his/her home, the system continuously records information into memory until the home mesh network is reached or until the monitoring appliance reaches an internet access point. While the wearable appliance is outside of the mesh network range, the device searches for a cell phone with an expansion card plugged into a cell phone expansion slot such as the SDIO slot. If the wearable appliance detects a cell phone that is mesh network compatible, the wearable appliance communicates with the cell phone and provides information to the server 200 using the cellular connection. In one embodiment, a Zigbee SDIO card from C-guys, Inc., enables device-to-device communications for PDAs and smart phones. C-guys' ZigBee SDIO card includes the company's CG-100 SDIO application interface controller, which is designed to convert an application signal to an SD signal (or vice versa). The ZigBee card can provide signal ranges of up to 10 m in the 2.4 GHz band and data rates of up to 200 kbps. The card has peer-to-peer communications mode and supports direct application to PDAs or any SD supported hand-held cell phones. In this embodiment, the PDA or cell phone can provide a GPS position information instead of the indoor position information generated by the mesh network appliances 8. The cell phone GPS position information, accelerometer information and vital information such as heart rate information is transmitted using the cellular channel to the server 200 for processing as is normal. In another embodiment where the phone works through WiFi (802.11) or WiMAX (802.16) or ultra-wideband protocol instead of the cellular protocol, the wearable appliance can communicate over these protocols using a suitable mesh network interface to the phone. In instances where the wearable appliance is outside of its home base and a dangerous condition such as a fall is detected, the wearable appliance can initiate a distress call to the authorized third party using cellular, WiFi, WiMAX, or UWB protocols as is available.
  • FIG. 6A shows a portable embodiment of the present invention where the voice recognizer is housed in a wrist-watch. As shown in FIG. 6, the device includes a wrist-watch sized case 1380 supported on a wrist band 1374. The case 1380 may be of a number of variations of shape but can be conveniently made a rectangular, approaching a box-like configuration. The wrist-band 1374 can be an expansion band or a wristwatch strap of plastic, leather or woven material. The processor or CPU of the wearable appliance is connected to a radio frequency (RF) transmitter/receiver (such as a Bluetooth device, a Zigbee device, a WiFi device, a WiMAX device, or an 802.X transceiver, among others.
  • In one embodiment, the back of the device is a conductive metal electrode 1381 that in conjunction with a second electrode 1383 mounted on the wrist band 1374, enables differential EKG or ECG to be measured. The electrical signal derived from the electrodes is typically 1 mV peak-peak. In one embodiment where only one electrode 1381 or 1383 is available, an amplification of about 1000 is necessary to render this signal usable for heart rate detection. In the embodiment with electrodes 1381 and 1383 available, a differential amplifier is used to take advantage of the identical common mode signals from the EKG contact points, the common mode noise is automatically cancelled out using a matched differential amplifier. In one embodiment, the differential amplifier is a Texas Instruments INA321 instrumentation amplifier that has matched and balanced integrated gain resistors. This device is specified to operate with a minimum of 2.7V single rail power supply. The INA321 provides a fixed amplification of 5× for the EKG signal. With its CMRR specification of 94 dB extended up to 3 KHz the INA321 rejects the common mode noise signals including the line frequency and its harmonics. The quiescent current of the INA321 is 40 mA and the shut down mode current is less than 1 mA. The amplified EKG signal is internally fed to the on chip analog to digital converter. The ADC samples the EKG signal with a sampling frequency of 512 Hz. Precise sampling period is achieved by triggering the ADC conversions with a timer that is clocked from a 32.768 kHz low frequency crystal oscillator. The sampled EKG waveform contains some amount of super imposed line frequency content. This line frequency noise is removed by digitally filtering the samples. In one implementation, a 17-tap low pass FIR filter with pass band upper frequency of 6 Hz and stop band lower frequency of 30 Hz is implemented in this application. The filter coefficients are scaled to compensate the filter attenuation and provide additional gain for the EKG signal at the filter output. This adds up to a total amplification factor of greater than 1000× for the EKG signal.
  • The wrist band 1374 can also contain other electrical devices such as ultrasound transducer, optical transducer or electromagnetic sensors, among others. In one embodiment, the transducer is an ultrasonic transducer that generates and transmits an acoustic wave upon command from the CPU during one period and listens to the echo returns during a subsequent period. In use, the transmitted bursts of sonic energy are scattered by red blood cells flowing through the subject's radial artery, and a portion of the scattered energy is directed back toward the ultrasonic transducer 84. The time required for the return energy to reach the ultrasonic transducer varies according to the speed of sound in the tissue and according to the depth of the artery. Typical transit times are in the range of 6 to 7 microseconds. The ultrasonic transducer is used to receive the reflected ultrasound energy during the dead times between the successive transmitted bursts. The frequency of the ultrasonic transducer's transmit signal will differ from that of the return signal, because the scattering red blood cells within the radial artery are moving. Thus, the return signal, effectively, is frequency modulated by the blood flow velocity.
  • A driving and receiving circuit generates electrical pulses which, when applied to the transducer, produce acoustic energy having a frequency on the order of 8 MHz, a pulse width or duration of approximately 8 microseconds, and a pulse repetition interval (PRI) of approximately 16 μs, although other values of frequency, pulse width, and PRI may be used. In one embodiment, the transducer 84 emits an 8 microsecond pulse, which is followed by an 8 microsecond “listen” period, every 16 microseconds. The echoes from these pulses are received by the ultrasonic transducer 84 during the listen period. The ultrasonic transducer can be a ceramic piezoelectric device of the type well known in the art, although other types may be substituted.
  • An analog signal representative of the Doppler frequency of the echo is received by the transducer and converted to a digital representation by the ADC, and supplied to the CPU for signal processing. Within the CPU, the digitized Doppler frequency is scaled to compute the blood flow velocity within the artery based on the Doppler frequency. Based on the real time the blood flow velocity, the CPU applies the vital model to the corresponding blood flow velocity to produce the estimated blood pressure value.
  • Prior to operation, calibration is done using a calibration device and the monitoring device to simultaneously collect blood pressure values (systolic, diastolic pressures) and a corresponding blood flow velocity generated by the monitoring device. The calibration device is attached to the base station and measures systolic and diastolic blood pressure using a cuff-based blood pressure monitoring device that includes a motor-controlled pump and data-processing electronics. While the cuff-based blood pressure monitoring device collects patient or wearer data, the transducer collects patient or wearer data in parallel and through the watch's radio transmitter, blood flow velocity is sent to the base station for generating a computer model that converts the blood flow velocity information into systolic and diastolic blood pressure values and this information is sent wirelessly from the base station to the watch for display and to a remote server if needed. This process is repeated at a later time (e.g., 15 minutes later) to collect a second set of calibration parameters. In one embodiment, the computer model fits the blood flow velocity to the systolic/diastolic values. In another embodiment, the computer trains a neural network or HMM to recognize the systolic and diastolic blood pressure values.
  • After the computer model has been generated, the system is ready for real-time blood pressure monitoring. In an acoustic embodiment, the transducer directs ultrasound at the patient or wearer's artery and subsequently listens to the echos therefrom. The echoes are used to determine blood flow, which is fed to the computer model to generate the systolic and diastolic pressure values as well as heart rate value. The CPU's output signal is then converted to a form useful to the user such as a digital or analog display, computer data file, or audible indicator. The output signal can drive a speaker to enable an operator to hear a representation of the Doppler signals and thereby to determine when the transducer is located approximately over the radial artery. The output signal can also be wirelessly sent to a base station for subsequent analysis by a physician, nurse, caregiver, or treating professional. The output signal can also be analyzed for medical attention and medical treatment.
  • It is noted that while the above embodiment utilizes a preselected pulse duration of 8 microseconds and pulse repetition interval of 16 microseconds, other acoustic sampling techniques may be used in conjunction with the invention. For example, in a second embodiment of the ultrasonic driver and receiver circuit (not shown), the acoustic pulses are range-gated with a more complex implementation of the gate logic. As is well known in the signal processing arts, range-gating is a technique by which the pulse-to-pulse interval is varied based on the receipt of range information from earlier emitted and reflected pulses. Using this technique, the system may be “tuned” to receive echoes falling within a specific temporal window which is chosen based on the range of the echo-producing entity in relation to the acoustic source. The delay time before the gate is turned on determines the depth of the sample volume. The amount of time the gate is activated establishes the axial length of the sample volume. Thus, as the acoustic source (in this case the ultrasonic transducer 84) is tuned to the echo-producing entity (red blood cells, or arterial walls), the pulse repetition interval is shortened such that the system may obtain more samples per unit time, thereby increasing its resolution. It will be recognized that other acoustic processing techniques may also be used, all of which are considered to be equivalent.
  • In one optical embodiment, the transducer can be an optical transducer. The optical transducer can be a light source and a photo-detector embedded in the wrist band portions 1374. The light source can be light-emitting diodes that generate red (λ˜630 nm) and infrared (λ˜900 nm) radiation, for example. The light source and the photo-detector are slidably adjustable and can be moved along the wrist band to optimize beam transmission and pick up. As the heart pumps blood through the patient or wearer's finger, blood cells absorb and transmit varying amounts of the red and infrared radiation depending on how much oxygen binds to the cells' hemoglobin. The photo-detector detects transmission at the predetermined wavelengths, for example red and infrared wavelengths, and provides the detected transmission to a pulse-oximetry circuit embedded within the wrist-watch. The output of the pulse-oximetry circuit is digitized into a time-dependent optical waveform, which is then sent back to the pulse-oximetry circuit and analyzed to determine the user's vital signs.
  • In the electromagnetic sensor embodiment, the wrist band 1374 is a flexible plastic material incorporated with a flexible magnet. The magnet provides a magnetic field, and one or more electrodes similar to electrode 1383 are positioned on the wrist band to measure voltage drops which are proportional to the blood velocity. The electromagnetic embodiment may be mounted on the upper arm of the patient or wearer, on the ankle or on the neck where peripheral blood vessels pass through and their blood velocity may be measured with minimal interruptions. The flexible magnet produces a pseudo-uniform (non-gradient) magnetic field. The magnetic field can be normal to the blood flow direction when wrist band 1374 is mounted on the user's wrist or may be a rotative pseudo-uniform magnetic field so that the magnetic field is in a transversal direction in respect to the blood flow direction. The electrode output signals are processed to obtain a differential measurement enhancing the signal to noise ratio. The flow information is derived based on the periodicity of the signals. The decoded signal is filtered over several periods and then analyzed for changes used to estimate artery and vein blood flow. Systemic stroke volume and cardiac output may be calculated from the peripheral SV index value.
  • The wrist-band 1374 further contains an antenna 1376 for transmitting or receiving radio frequency signals. The wristband 1374 and the antenna 1376 inside the band are mechanically coupled to the top and bottom sides of the wrist-watch housing 1380. Further, the antenna 1376 is electrically coupled to a radio frequency transmitter and receiver for wireless communications with another computer or another user. Although a wrist-band is disclosed, a number of substitutes may be used, including a belt, a ring holder, a brace, or a bracelet, among other suitable substitutes known to one skilled in the art. The housing 1380 contains the processor and associated peripherals to provide the human-machine interface. A display 1382 is located on the front section of the housing 1380. A speaker 1384, a microphone 1388, and a plurality of push- button switches 1386 and 1390 are also located on the front section of housing 1380.
  • The electronic circuitry housed in the watch case 1380 detects adverse conditions such as falls or seizures. In one implementation, the circuitry can recognize speech, namely utterances of spoken words by the user, and converting the utterances into digital signals. The circuitry for detecting and processing speech to be sent from the wristwatch to the base station 20 over the mesh network includes a central processing unit (CPU) connected to a ROM/RAM memory via a bus. The CPU is a preferably low power 16-bit or 32-bit microprocessor and the memory is preferably a high density, low-power RAM. The CPU is coupled via the bus to processor wake-up logic, one or more accelerometers to detect sudden movement in a patient or wearer, an ADC 102 which receives speech input from the microphone. The ADC converts the analog signal produced by the microphone into a sequence of digital values representing the amplitude of the signal produced by the microphone at a sequence of evenly spaced times. The CPU is also coupled to a digital to analog (D/A) converter, which drives the speaker to communicate with the user. Speech signals from the microphone are first amplified, pass through an antialiasing filter before being sampled. The front-end processing includes an amplifier, a bandpass filter to avoid antialiasing, and an analog-to-digital (A/D) converter or a CODEC. To minimize space, the ADC, the DAC and the interface for wireless transceiver and switches may be integrated into one integrated circuit to save space. In one embodiment, the wrist watch acts as a walkie-talkie so that voice is received over the mesh network by the base station 20 and then delivered to a call center over the POTS or PSTN network. In another embodiment, voice is provided to the call center using the Internet through suitable VOIP techniques. In one embodiment, speech recognition such as a speech recognizer is discussed in U.S. Pat. No. 6,070,140 by the inventor of the instant invention, the content of which is incorporated by reference.
  • In one embodiment, the wireless nodes convert freely available energy inherent in most operating environments into conditioned electrical power. Energy harvesting is defined as the conversion of ambient energy into usable electrical energy. When compared with the energy stored in common storage elements, like batteries and the like, the environment represents a relatively inexhaustible source of energy. Energy harvesters can be based on piezoelectric devices, solar cells or electromagnetic devices that convert mechanical vibrations.
  • Power generation with piezoelectrics can be done with body vibrations or by physical compression (impacting the material and using a rapid deceleration using foot action, for example). The vibration energy harvester consists of three main parts. A piezoelectric transducer (PZT) serves as the energy conversion device, a specialized power converter rectifies the resulting voltage, and a capacitor or battery stores the power. The PZT takes the form of an aluminum cantilever with a piezoelectric patch. The vibration-induced strain in the PZT produces an ac voltage. The system repeatedly charges a battery or capacitor, which then operates the EKG/EMG sensors or other sensors at a relatively low duty cycle. In one embodiment, a vest made of piezoelectric materials can be wrapped around a person's chest to generate power when strained through breathing as breathing increases the circumference of the chest for an average human by about 2.5 to 5 cm. Energy can be constantly harvested because breathing is a constant activity, even when a person is sedate. In another embodiment, piezoelectric materials are placed in between the sole and the insole; therefore as the shoe bends from walking, the materials bend along with it. When the stave is bent, the piezoelectric sheets on the outside surface are pulled into expansion, while those on the inside surface are pushed into contraction due to their differing radii of curvature, producing voltages across the electrodes. In another embodiment, PZT materials from Advanced Cerametrics, Inc., Lambertville, N.J. can be incorporated into flexible, motion sensitive (vibration, compression or flexure), active fiber composite shapes that can be placed in shoes, boots, and clothing or any location where there is a source of waste energy or mechanical force. These flexible composites generate power from the scavenged energy and harness it using microprocessor controls developed specifically for this purpose. Advanced Cerametric's viscose suspension spinning process (VSSP) can produce fibers ranging in diameter from 10 μm ( 1/50 of a human hair) to 250 μm and mechanical to electrical transduction efficiency can reach 70 percent compared with the 16-18 percent common to solar energy conversion. The composite fibers can be molded into user-defined shapes and is flexible and motion-sensitive. In one implementation, energy is harvested by the body motion such as the foot action or vibration of the PZT composites. The energy is converted and stored in a low-leakage charge circuit until a predetermined threshold voltage is reached. Once the threshold is reached, the regulated power is allowed to flow for a sufficient period to power the wireless node such as the Zigbee CPU/transceiver. The transmission is detected by nearby wireless nodes that are AC-powered and forwarded to the base station for signal processing. Power comes from the vibration of the system being monitored and the unit requires no maintenance, thus reducing life-cycle costs. In one embodiment, the housing of the unit can be PZT composite, thus reducing the weight.
  • In another embodiment, body energy generation systems include electro active polymers (EAPs) and dielectric elastomers. EAPs are a class of active materials that have a mechanical response to electrical stimulation and produce an electric potential in response to mechanical stimulation. EAPs are divided into two categories, electronic, driven by electric field, and ionic, driven by diffusion of ions. In one embodiment, ionic polymers are used as biological actuators that assist muscles for organs such as the heart and eyes. Since the ionic polymers require a solvent, the hydrated human body provides a natural environment. Polymers are actuated to contract, assisting the heart to pump, or correcting the shape of the eye to improve vision. Another use is as miniature surgical tools that can be inserted inside the body. EAPs can also be used as artificial smooth muscles, one of the original ideas for EAPs. These muscles could be placed in exoskeletal suits for soldiers or prosthetic devices for disabled persons. Along with the energy generation device, ionic polymers can be the energy storage vessel for harvesting energy. The capacitive characteristics of the EAP allow the polymers to be used in place of a standard capacitor bank. With EAP based jacket, when a person moves his/her arms, it will put the electro active material around the elbow in tension to generate power. Dielectric elastomers can support 50-100% area strain and generate power when compressed. Although the material could again be used in a bending arm type application, a shoe type electric generator can be deployed by placing the dielectric elastomers in the sole of a shoe. The constant compressive force provided by the feet while walking would ensure adequate power generation.
  • For wireless nodes that require more power, electromagnetics, including coils, magnets, and a resonant beam, and micro-generators can be used to produce electricity from readily available foot movement. Typically, a transmitter needs about 30 mW, but the device transmits for only tens of milliseconds, and a capacitor in the circuit can be charged using harvested energy and the capacitor energy drives the wireless transmission, which is the heaviest power requirement. Electromagnetic energy harvesting uses a magnetic field to convert mechanical energy to electrical. A coil attached to the oscillating mass traverses through a magnetic field that is established by a stationary magnet. The coil travels through a varying amount of magnetic flux, inducing a voltage according to Faraday's law. The induced voltage is inherently small and must therefore be increased to viably source energy. Methods to increase the induced voltage include using a transformer, increasing the number of turns of the coil, and/or increasing the permanent magnetic field. Electromagnetic devices use the motion of a magnet relative to a wire coil to generate an electric voltage. A permanent magnet is placed inside a wound coil. As the magnet is moved through the coil it causes a changing magnetic flux. This flux is responsible for generating the voltage which collects on the coil terminals. This voltage can then be supplied to an electrical load. Because an electromagnetic device needs a magnet to be sliding through the coil to produce voltage, energy harvesting through vibrations is an ideal application. In one embodiment, electromagnetic devices are placed inside the heel of a shoe. One implementation uses a sliding magnet-coil design, the other, opposing magnets with one fixed and one free to move inside the coil. If the length of the coil is increased, which increases the turns, the device is able to produce more power.
  • In an electrostatic (capacitive) embodiment, energy harvesting relies on the changing capacitance of vibration-dependant varactors. A varactor, or variable capacitor, is initially charged and, as its plates separate because of vibrations, mechanical energy is transformed into electrical energy. MEMS variable capacitors are fabricated through relatively mature silicon micro-machining techniques.
  • In another embodiment, the wireless node can be powered from thermal and/or kinetic energy. Temperature differentials between opposite segments of a conducting material result in heat flow and consequently charge flow, since mobile, high-energy carriers diffuse from high to low concentration regions. Thermopiles consisting of n- and p-type materials electrically joined at the high-temperature junction are therefore constructed, allowing heat flow to carry the dominant charge carriers of each material to the low temperature end, establishing in the process a voltage difference across the base electrodes. The generated voltage and power is proportional to the temperature differential and the Seebeck coefficient of the thermoelectric materials. Body heat from a user's wrist is captured by a thermoelectric element whose output is boosted and used to charge a lithium ion rechargeable battery. The unit utilizes the Seeback Effect which describes the voltage created when a temperature difference exists across two different metals. The thermoelectric generator takes body heat and dissipates it to the ambient air, creating electricity in the process.
  • In another embodiment, the kinetic energy of a person's movement is converted into energy. As a person moves their weight, a small weight inside the wireless node moves like a pendulum and turns a magnet to produce electricity which can be stored in a super-capacitor or a rechargeable lithium battery. Similarly, in a vibration energy embodiment, energy extraction from vibrations is based on the movement of a “spring-mounted” mass relative to its support frame. Mechanical acceleration is produced by vibrations that in turn cause the mass component to move and oscillate (kinetic energy). This relative displacement causes opposing frictional and damping forces to be exerted against the mass, thereby reducing and eventually extinguishing the oscillations. The damping forces literally absorb the kinetic energy of the initial vibration. This energy can be converted into electrical energy via an electric field (electrostatic), magnetic field (electromagnetic), or strain on a piezoelectric material.
  • Another embodiment extracts energy from the surrounding environment using a small rectenna (microwave-power receivers or ultrasound power receivers) placed in patches or membranes on the skin or alternatively injected underneath the skin.
  • The rectanna converts the received emitted power back to usable low frequency/dc power. A basic rectanna consists of an antenna, a low pass filter, an ac/dc converter and a dc bypass filter. The rectanna can capture renewable electromagnetic energy available in the radio frequency (RF) bands such as AM radio, FM radio, TV, very high frequency (VHF), ultra high frequency (UHF), global system for mobile communications (GSM), digital cellular systems (DCS) and especially the personal communication system (PCS) bands, and unlicensed ISM bands such as 2.4 GHz and 5.8 GHz bands, among others. The system captures the ubiquitous electromagnetic energy (ambient RF noise and signals) opportunistically present in the environment and transforming that energy into useful electrical power. The energy-harvesting antenna is preferably designed to be a wideband, omnidirectional antenna or antenna array that has maximum efficiency at selected bands of frequencies containing the highest energy levels. In a system with an array of antennas, each antenna in the array can be designed to have maximum efficiency at the same or different bands of frequency from one another. The collected RF energy is then converted into usable DC power using a diode-type or other suitable rectifier. This power may be used to drive, for example, an amplifier/filter module connected to a second antenna system that is optimized for a particular frequency and application. One antenna system can act as an energy harvester while the other antenna acts as a signal transmitter/receiver. The antenna circuit elements are formed using standard wafer manufacturing techniques. The antenna output is stepped up and rectified before presented to a trickle charger. The charger can recharge a complete battery by providing a larger potential difference between terminals and more power for charging during a period of time. If battery includes individual micro-battery cells, the trickle charger provides smaller amounts of power to each individual battery cell, with the charging proceeding on a cell by cell basis. Charging of the battery cells continues whenever ambient power is available. As the load depletes cells, depleted cells are switched out with charged cells. The rotation of depleted cells and charged cells continues as required. Energy is banked and managed on a micro-cell basis.
  • In a solar cell embodiment, photovoltaic cells convert incident light into electrical energy. Each cell consists of a reverse biased pn+ junction, where light interfaces with the heavily doped and narrow n+ region. Photons are absorbed within the depletion region, generating electron-hole pairs. The built-in electric field of the junction immediately separates each pair, accumulating electrons and holes in the n+ and p-regions, respectively, and establishing in the process an open circuit voltage. With a load connected, accumulated electrons travel through the load and recombine with holes at the p-side, generating a photocurrent that is directly proportional to light intensity and independent of cell voltage.
  • As the energy-harvesting sources supply energy in irregular, random “bursts,” an intermittent charger waits until sufficient energy is accumulated in a specially designed transitional storage such as a capacitor before attempting to transfer it to the storage device, lithium-ion battery, in this case. Moreover, the system must partition its functions into time slices (time-division multiplex), ensuring enough energy is harvested and stored in the battery before engaging in power-sensitive tasks. Energy can be stored using a secondary (rechargeable) battery and/or a supercapacitor. The different characteristics of batteries and supercapacitors make them suitable for different functions of energy storage. Supercapacitors provide the most volumetrically efficient approach to meeting high power pulsed loads. If the energy must be stored for a long time, and released slowly, for example as back up, a battery would be the preferred energy storage device. If the energy must be delivered quickly, as in a pulse for RF communications, but long term storage is not critical, a supercapacitor would be sufficient. The system can employ i) a battery (or several batteries), ii) a supercapacitor (or supercapacitors), or iii) a combination of batteries and supercapacitors appropriate for the application of interest. In one embodiment, a microbattery and a microsupercapacitor can be used to store energy. Like batteries, supercapacitors are electrochemical devices; however, rather than generating a voltage from a chemical reaction, supercapacitors store energy by separating charged species in an electrolyte. In one embodiment, a flexible, thin-film, rechargeable battery from Cymbet Corp. of Elk River, Minn. provides 3.6V and can be recharged by a reader. The battery cells can be from 5 to 25 microns thick. The batteries can be recharged with solar energy, or can be recharged by inductive coupling. The tag is put within range of a coil attached to an energy source. The coil “couples” with the antenna on the RFID tag, enabling the tag to draw energy from the magnetic field created by the two coils.
  • FIG. 6B shows an exemplary mesh network working with the wearable appliance of FIG. 6A. Data collected and communicated on the display 1382 of the watch as well as voice is transmitted to a base station 1390 for communicating over a network to an authorized party 1394. The watch and the base station is part of a mesh network that may communicate with a medicine cabinet to detect opening or to each medicine container 1391 to detect medication compliance. Other devices include mesh network thermometers, scales, or exercise devices. The mesh network also includes a plurality of home/room appliances 1392-1399. The ability to transmit voice is useful in the case the patient or wearer has fallen down and cannot walk to the base station 1390 to request help. Hence, in one embodiment, the watch captures voice from the user and transmits the voice over the Zigbee mesh network to the base station 1390. The base station 1390 in turn dials out to an authorized third party to allow voice communication and at the same time transmits the collected patient or wearer vital parameter data and identifying information so that help can be dispatched quickly, efficiently and error-free. In one embodiment, the base station 1390 is a POTS telephone base station connected to the wired phone network. In a second embodiment, the base station 1390 can be a cellular telephone connected to a cellular network for voice and data transmission. In a third embodiment, the base station 1390 can be a WiMAX or 802.16 standard base station that can communicate VOIP and data over a wide area network. I one implementation, Zigbee or 802.15 appliances communicate locally and then transmits to the wide area network (WAN) such as the Internet over WiFi or WiMAX. Alternatively, the base station can communicate with the WAN over POTS and a wireless network such as cellular or WiMAX or both.
  • One embodiment of FIG. 6B includes bioelectrical impedance (BI) spectroscopy sensors in addition to or as alternates to EKG sensors and heart sound transducer sensors. BI spectroscopy is based on Ohm's Law: current in a circuit is directly proportional to voltage and inversely proportional to resistance in a DC circuit or impedance in an alternating current (AC) circuit. Bioelectric impedance exchanges electrical energy with the patient or wearer body or body segment. The exchanged electrical energy can include alternating current and/or voltage and direct current and/or voltage. The exchanged electrical energy can include alternating currents and/or voltages at one or more frequencies. For example, the alternating currents and/or voltages can be provided at one or more frequencies between 100 Hz and 1 MHz, preferably at one or more frequencies between 5 KHz and 250 KHz. A BI instrument operating at the single frequency of 50 KHz reflects primarily the extra cellular water compartment as a very small current passes through the cell. Because low frequency (<1 KHz) current does not penetrate the cells and that complete penetration occurs only at a very high frequency (>1 MHz), multi-frequency BI or bioelectrical impedance spectroscopy devices can be used to scan a wide range of frequencies.
  • In a tetrapolar implementation, two electrodes on the wrist watch or wrist band are used to apply AC or DC constant current into the body or body segment. The voltage signal from the surface of the body is measured in terms of impedance using the same or an additional two electrodes on the watch or wrist band. In a bipolar implementation, one electrode on the wrist watch or wrist band is used to apply AC or DC constant current into the body or body segment. The voltage signal from the surface of the body is measured in terms of impedance using the same or an alternative electrode on the watch or wrist band. The system of FIG. 6B may include a BI patch 1400 that wirelessly communicates BI information with the wrist watch. Other patches 1400 can be used to collect other medical information or vital parameter and communicate with the wrist watch or base station or the information could be relayed through each wireless node or appliance to reach a destination appliance such as the base station, for example. The system of FIG. 6B can also include a head-cap 1402 that allows a number of EEG probes access to the brain electrical activities, EKG probes to measure cranial EKG activity, as well as BI probes to determine cranial fluid presence indicative of a stroke. As will be discussed below, the EEG probes allow the system to determine cognitive status of the patient or wearer to determine whether a stroke had just occurred, the EKG and the BI probes provide information on the stroke to enable timely treatment to minimize loss of functionality to the patient or wearer if treatment is delayed.
  • Bipolar or tetrapolar electrode systems can be used in the BI instruments. Of these, the tetrapolar system provides a uniform current density distribution in the body segment and measures impedance with less electrode interface artifact and impedance errors. In the tetrapolar system, a pair of surface electrodes (I1, I2) is used as current electrodes to introduce a low intensity constant current at high frequency into the body. A pair of electrodes (E1, E2) measures changes accompanying physiological events. Voltage measured across E1-E2 is directly proportional to the segment electrical impedance of the human subject. Circular flat electrodes as well as band type electrodes can be used. In one embodiment, the electrodes are in direct contact with the skin surface. In other embodiments, the voltage measurements may employ one or more contactless, voltage sensitive electrodes such as inductively or capacitively coupled electrodes. The current application and the voltage measurement electrodess in these embodiments can be the same, adjacent to one another, or at significantly different locations. The electrode(s) can apply current levels from 20 uA to 10 mA rms at a frequency range of 20-100 KHz. A constant current source and high input impedance circuit is used in conjunction with the tetrapolar electrode configuration to avoid the contact pressure effects at the electrode-skin interface.
  • The BI sensor can be a Series Model which assumes that there is one conductive path and that the body consists of a series of resistors. An electrical current, injected at a single frequency, is used to measure whole body impedance (i.e., wrist to ankle) for the purpose of estimating total body water and fat free mass. Alternatively, the BI instrument can be a Parallel BI Model. In this model of impedance, the resistors and capacitors are oriented both in series and in parallel in the human body. Whole body BI can be used to estimate TBW and FFM in healthy subjects or to estimate intracellular water (ICW) and body cell mass (BCM). High-low BI can be used to estimate extracellular water (ECW) and total body water (TBW). Multi-frequency BI can be used to estimate ECW, ICW, and TBW; to monitor changes in the ECW/BCM and ECW/TBW ratios in clinical populations. The instrument can also be a Segmental BI Model and can be used in the evaluation of regional fluid changes and in monitoring extra cellular water in patient or wearers with abnormal fluid distribution, such as those undergoing hemodialysis. Segmental BI can be used to measure fluid distribution or regional fluid accumulation in clinical populations. Upper-body and Lower-body BI can be used to estimate percentage BF in healthy subjects with normal hydration status and fluid distribution. The BI sensor can be used to detect acute dehydration, pulmonary edema (caused by mitral stenosis or left ventricular failure or congestive heart failure, among others), or hyperhydration cause by kidney dialysis, for example. In one embodiment, the system determines the impedance of skin and subcutaneous adipose tissue using tetrapolar and bipolar impedance measurements. In the bipolar arrangement the inner electrodes act both as the electrodes that send the current (outer electrodes in the tetrapolar arrangement) and as receiving electrodes. If the outer two electrodes (electrodes sending current) are superimposed onto the inner electrodes (receiving electrodes) then a bipolar BIA arrangement exists with the same electrodes acting as receiving and sending electrodes. The difference in impedance measurements between the tetrapolar and bipolar arrangement reflects the impedance of skin and subcutaneous fat. The difference between the two impedance measurements represents the combined impedance of skin and subcutaneous tissue at one or more sites. The system determines the resistivities of skin and subcutaneous adipose tissue, and then calculates the skinfold thickness (mainly due to adipose tissue).
  • Various BI analysis methods can be used in a variety of clinical applications such as to estimate body composition, to determine total body water, to assess compartmentalization of body fluids, to provide cardiac monitoring, measure blood flow, dehydration, blood loss, wound monitoring, ulcer detection and deep vein thrombosis. Other uses for the BI sensor includes detecting and/or monitoring hypovolemia, hemorrhage or blood loss. The impedance measurements can be made sequentially over a period of in time; and the system can determine whether the subject is externally or internally bleeding based on a change in measured impedance. The watch can also report temperature, heat flux, vasodilation and blood pressure along with the BI information.
  • In one embodiment, the BI system monitors cardiac function using impedance cardiography (ICG) technique. ICG provides a single impedance tracing, from which parameters related to the pump function of the heart, such as cardiac output (CO), are estimated. ICG measures the beat-to-beat changes of thoracic bioimpedance via four dual sensors applied on the neck and thorax in order to calculate stroke volume (SV). By using the resistivity p of blood and the length L of the chest, the impedance change ΔZ and base impedance (Zo) to the volume change ΔV of the tissue under measurement can be derived as follows:
  • Δ V = ρ L 2 Z 0 2 Δ Z
  • In one embodiment, SV is determined as a function of the first derivative of the impedance waveform (dZ/dtmax) and the left ventricular ejection time (LVET)
  • SV = ρ L 2 Z 0 2 ( Z t ) m ax LVET
  • In one embodiment, L is approximated to be 17% of the patient or wearer's height (H) to yield the following:
  • SV = ( ( 0.17 H ) 3 4.2 ) ( Z t ) ma x Z 0 LVET
  • In another embodiment, a or the actual weight divided by the ideal weight is used:
  • SV = δ × ( ( 0.17 H ) 3 4.2 ) ( Z t ) ma x Z 0 LVET
  • The impedance cardiographic embodiment allows hemodynamic assessment to be regularly monitored to avoid the occurrence of an acute cardiac episode. The system provides an accurate, noninvasive measurement of cardiac output (CO) monitoring so that ill and surgical patient or wearers undergoing major operations such as coronary artery bypass graft (CABG) would benefit. In addition, many patient or wearers with chronic and comorbid diseases that ultimately lead to the need for major operations and other costly interventions might benefit from more routine monitoring of CO and its dependent parameters such as systemic vascular resistance (SVR).
  • Once SV has been determined, CO can be determined according to the following expression:

  • CO=SV*HR,
  • where HR=heart rate
  • CO can be determined for every heart-beat. Thus, the system can determine SV and CO on a beat-to-beat basis.
  • In one embodiment to monitor heart failure, an array of BI sensors are place in proximity to the heart. The array of BI sensors detect the presence or absence, or rate of change, or body fluids proximal to the heart. The BI sensors can be supplemented by the EKG sensors. A normal, healthy, heart beats at a regular rate. Irregular heart beats, known as cardiac arrhythmia, on the other hand, may characterize an unhealthy condition. Another unhealthy condition is known as congestive heart failure (“CHF”). CHF, also known as heart failure, is a condition where the heart has inadequate capacity to pump sufficient blood to meet metabolic demand. CHF may be caused by a variety of sources, including, coronary artery disease, myocardial infarction, high blood pressure, heart valve disease, cardiomyopathy, congenital heart disease, endocarditis, myocarditis, and others. Unhealthy heart conditions may be treated using a cardiac rhythm management (CRM) system. Examples of CRM systems, or pulse generator systems, include defibrillators (including implantable cardioverter defibrillator), pacemakers and other cardiac resynchronization devices.
  • In one implementation, BIA measurements can be made using an array of bipolar or tetrapolar electrodes that deliver a constant alternating current at 50 KHz frequency. Whole body measurements can be done using standard right-sided. The ability of any biological tissue to resist a constant electric current depends on the relative proportions of water and electrolytes it contains, and is called resistivity (in Ohms/cm 3). The measuring of bioimpedance to assess congestive heart failure employs the different bio-electric properties of blood and lung tissue to permit separate assessment of: (a) systemic venous congestion via a low frequency or direct current resistance measurement of the current path through the right ventricle, right atrium, superior vena cava, and subclavian vein, or by computing the real component of impedance at a high frequency, and (b) pulmonary congestion via a high frequency measurement of capacitive impedance of the lung. The resistance is impedance measured using direct current or alternating current (AC) which can flow through capacitors.
  • In one embodiment, a belt is worn by the patient or wearer with a plurality of BI probes positioned around the belt perimeter. The output of the tetrapolar probes is processed using a second-order Newton-Raphson method to estimate the left and right-lung resistivity values in the thoracic geometry. The locations of the electrodes are marked. During the measurements procedure, the belt is worn around the patient or wearer's thorax while sitting, and the reference electrode is attached to his waist. The data is collected during tidal respiration to minimize lung resistivity changes due to breathing, and lasts approximately one minute. The process is repeated periodically and the impedance trend is analyzed to detect CHF. Upon detection, the system provides vital parameters to a call center and the call center can refer to a physician for consultation or can call 911 for assistance.
  • In one embodiment, an array of noninvasive thoracic electrical bioimpedance monitoring probes can be used alone or in conjunction with other techniques such as impedance cardiography (ICG) for early comprehensive cardiovascular assessment and trending of acute trauma victims. This embodiment provides early, continuous cardiovascular assessment to help identify patient or wearers whose injuries were so severe that they were not likely to survive. This included severe blood and/or fluid volume deficits induced by trauma, which did not respond readily to expeditious volume resuscitation and vasopressor therapy. One exemplary system monitors cardiorespiratory variables that served as statistically significant measures of treatment outcomes: Qt, BP, pulse oximetry, and transcutaneous Po2 (Ptco2). A high Qt may not be sustainable in the presence of hypovolemia, acute anemia, pre-existing impaired cardiac function, acute myocardial injury, or coronary ischemia. Thus a fall in Ptco2 could also be interpreted as too high a metabolic demand for a patient or wearer's cardiovascular reserve. Too high a metabolic demand may compromise other critical organs. Acute lung injury from hypotension, blunt trauma, and massive fluid resuscitation can drastically reduce respiratory reserve.
  • One embodiment that measures thoracic impedance (a resistive or reactive impedance associated with at least a portion of a thorax of a living organism). The thoracic impedance signal is influenced by the patient or wearer's thoracic intravascular fluid tension, heart beat, and breathing (also referred to as “respiration” or “ventilation”). A “de” or “baseline” or “low frequency” component of the thoracic impedance signal (e.g., less than a cutoff value that is approximately between 0.1 Hz and 0.5 Hz, inclusive, such as, for example, a cutoff value of approximately 0.1 Hz) provides information about the subject patient or wearer's thoracic fluid tension, and is therefore influenced by intravascular fluid shifts to and away from the thorax. Higher frequency components of the thoracic impedance signal are influenced by the patient or wearer's breathing (e.g., approximately between 0.05 Hz and 2.0 Hz inclusive) and heartbeat (e.g., approximately between 0.5 Hz and 10 Hz inclusive). A low intravascular fluid tension in the thorax (“thoracic hypotension”) may result from changes in posture. For example, in a person who has been in a recumbent position for some time, approximately ⅓ of the blood volume is in the thorax. When that person then sits upright, approximately ⅓ of the blood that was in the thorax migrates to the lower body. This increases thoracic impedance. Approximately 90% of this fluid shift takes place within 2 to 3 minutes after the person sits upright.
  • The accelerometer can be used to provide reproducible measurements. Body activity will increase cardiac output and also change the amount of blood in the systemic venous system or lungs. Measurements of congestion may be most reproducible when body activity is at a minimum and the patient or wearer is at rest. The use of an accelerometer allows one to sense both body position and body activity. Comparative measurements over time may best be taken under reproducible conditions of body position and activity. Ideally, measurements for the upright position should be compared as among themselves. Likewise measurements in the supine, prone, left lateral decubitus and right lateral decubitus should be compared as among themselves. Other variables can be used to permit reproducible measurements, i.e. variations of the cardiac cycle and variations in the respiratory cycle. The ventricles are at their most compliant during diastole. The end of the diastolic period is marked by the QRS on the electrocardiographic means (EKG) for monitoring the cardiac cycle. The second variable is respiratory variation in impedance, which is used to monitor respiratory rate and volume. As the lungs fill with air during inspiration, impedance increases, and during expiration, impedance decreases. Impedance can be measured during expiration to minimize the effect of breathing on central systemic venous volume. While respiration and CHF both cause variations in impedance, the rates and magnitudes of the impedance variation are different enough to separate out the respiratory variations which have a frequency of about 8 to 60 cycles per minute and congestion changes which take at least several minutes to hours or even days to occur. Also, the magnitude of impedance change is likely to be much greater for congestive changes than for normal respiratory variation. Thus, the system can detect congestive heart failure (CHF) in early stages and alert a patient or wearer to prevent disabling and even lethal episodes of CHF. Early treatment can avert progression of the disorder to a dangerous stage.
  • In an embodiment to monitor wounds such as diabetic related wounds, the conductivity of a region of the patient or wearer with a wound or is susceptible to wound formation is monitored by the system. The system determines healing wounds if the impedance and reactance of the wound region increases as the skin region becomes dry. The system detects infected, open, interrupted healing, or draining wounds through lower regional electric impedances. In yet another embodiment, the bioimpedance sensor can be used to determine body fat. In one embodiment, the BI system determines Total Body Water (TBW) which is an estimate of total hydration level, including intracellular and extracellular water; Intracellular Water (ICW) which is an estimate of the water in active tissue and as a percent of a normal range (near 60% of TBW); Extracellular Water (ECW) which is water in tissues and plasma and as a percent of a normal range (near 40% of TBW); Body Cell Mass (BCM) which is an estimate of total pounds/kg of all active cells; Extracellular Tissue (ECT)/Extracellular Mass (ECM) which is an estimate of the mass of all other non-muscle inactive tissues including ligaments, bone and ECW; Fat Free Mass (FFM)/Lean Body Mass (LBM) which is an estimate of the entire mass that is not fat. It should be available in pounds/kg and may be presented as a percent with a normal range; Fat Mass (FM) which is an estimate of pounds/kg of body fat and percentage body fat; and Phase Angle (PA) which is associated with both nutrition and physical fitness.
  • Additional sensors such as thermocouples or thermisters and/or heat flux sensors can also be provided to provide measured values useful in analysis. In general, skin surface temperature will change with changes in blood flow in the vicinity of the skin surface of an organism. Such changes in blood flow can occur for a number of reasons, including thermal regulation, conservation of blood volume, and hormonal changes. In one implementation, skin surface measurements of temperature or heat flux are made in conjunction with hydration monitoring so that such changes in blood flow can be detected and appropriately treated.
  • In one embodiment, the patch includes a sound transducer such as a microphone or a piezoelectric transducer to pick up sound produced by bones or joints during movement. If bone surfaces are rough and poorly lubricated, as in an arthritic knee, they will move unevenly against each other, producing a high-frequency, scratching sound. The high-frequency sound from joints is picked up by wide-band acoustic sensor(s) or microphone(s) on a patient or wearer's body such as the knee. As the patient or wearer flexes and extends their knee, the sensors measure the sound frequency emitted by the knee and correlate the sound to monitor osteoarthritis, for example.
  • In another embodiment, the patch includes a Galvanic Skin Response (GSR) sensor. In this sensor, a small current is passed through one of the electrodes into the user's body such as the fingers and the CPU calculates how long it takes for a capacitor to fill up. The length of time the capacitor takes to fill up allows us to calculate the skin resistance: a short time means low resistance while a long time means high resistance. The GSR reflects sweat gland activity and changes in the sympathetic nervous system and measurement variables. Measured from the palm or fingertips, there are changes in the relative conductance of a small electrical current between the electrodes. The activity of the sweat glands in response to sympathetic nervous stimulation (Increased sympathetic activation) results in an increase in the level of conductance. Fear, anger, startle response, orienting response and sexual feelings are all among the emotions which may produce similar GSR responses.
  • In yet another embodiment, measurement of lung function such as peak expiratory flow readings is done though a sensor such as Wright's peak flow meter. In another embodiment, a respiratory estimator is provided that avoids the inconvenience of having the patient or wearer breathing through the flow sensor. In the respiratory estimator embodiment, heart period data from EKG/ECG is used to extract respiratory detection features. The heart period data is transformed into time-frequency distribution by applying a time-frequency transformation such as short-term Fourier transformation (STFT). Other possible methods are, for example, complex demodulation and wavelet transformation. Next, one or more respiratory detection features may be determined by setting up amplitude modulation of time-frequency plane, among others. The respiratory recognizer first generates a math model that correlates the respiratory detection features with the actual flow readings. The math model can be adaptive based on pre-determined data and on the combination of different features to provide a single estimate of the respiration. The estimator can be based on different mathematical functions, such as a curve fitting approach with linear or polynomical equations, and other types of neural network implementations, non-linear models, fuzzy systems, time series models, and other types of multivariate models capable of transferring and combining the information from several inputs into one estimate. Once the math model has been generated, the respirator estimator provides a real-time flow estimate by receiving EKG/ECG information and applying the information to the math model to compute the respiratory rate. Next, the computation of ventilation uses information on the tidal volume. An estimate of the tidal volume may be derived by utilizing different forms of information on the basis of the heart period signal. For example, the functional organization of the respiratory system has an impact in both respiratory period and tidal volume. Therefore, given the known relationships between the respiratory period and tidal volume during and transitions to different states, the information inherent in the heart period derived respiratory frequency may be used in providing values of tidal volume. In specific, the tidal volume contains inherent dynamics which may be, after modeling, applied to capture more closely the behavioral dynamics of the tidal volume. Moreover, it appears that the heart period signal, itself, is closely associated with tidal volume and may be therefore used to increase the reliability of deriving information on tidal volume. The accuracy of the tidal volume estimation may be further enhanced by using information on the subjects vital capacity (i.e., the maximal quantity of air that can be contained in the lungs during one breath). The information on vital capacity, as based on physiological measurement or on estimates derived from body measures such as height and weight, may be helpful in estimating tidal volume, since it is likely to reduce the effects of individual differences on the estimated tidal volume. Using information on the vital capacity, the mathematical model may first give values on the percentage of lung capacity in use, which may be then transformed to liters per breath. The optimizing of tidal volume estimation can based on, for example, least squares or other type of fit between the features and actual tidal volume. The minute ventilation may be derived by multiplying respiratory rate (breaths/min) with tidal volume (liters/breath).
  • In another embodiment, inductive plethysmography can be used to measure a cross-sectional area of the body by determining the self-inductance of a flexible conductor closely encircling the area to be measured. Since the inductance of a substantially planar conductive loop is well known to vary as, inter alia, the cross-sectional area of the loop, an inductance measurement may be converted into a plethysmographic area determination. Varying loop inductance may be measured by techniques known in the art, such as, e.g., by connecting the loop as the inductance in a variable frequency LC oscillator, the frequency of the oscillator then varying with the cross-sectional area of the loop inductance varies. Oscillator frequency is converted into a digital value, which is then further processed to yield the physiological parameters of interest. Specifically, a flexible conductor measuring a cross-sectional area of the body is closely looped around the area of the body so that the inductance, and the changes in inductance, being measured results from magnetic flux through the cross-sectional area being measured. The inductance thus depends directly on the cross-sectional area being measured, and not indirectly on an area which changes as a result of the factors changing the measured cross-sectional area. Various physiological parameters of medical and research interest may be extracted from repetitive measurements of the areas of various cross-sections of the body. For example, pulmonary function parameters, such as respiration volumes and rates and apneas and their types, may be determined from measurements of, at least, a chest transverse cross-sectional area and also an abdominal transverse cross-sectional area. Cardiac parameters, such central venous pressure, left and right ventricular volumes waveforms, and aortic and carotid artery pressure waveforms, may be extracted from repetitive measurements of transverse cross-sectional areas of the neck and of the chest passing through the heart. Timing measurements can be obtained from concurrent ECG measurements, and less preferably from the carotid pulse signal present in the neck. From the cardiac-related signals, indications of ischemia may be obtained independently of any ECG changes. Ventricular wall ischemia is known to result in paradoxical wall motion during ventricular contraction (the ischemic segment paradoxically “balloons” outward instead of normally contracting inward). Such paradoxical wall motion, and thus indications of cardiac ischemia, may be extracted from chest transverse cross-section area measurements. Left or right ventricular ischemia may be distinguished where paradoxical motion is seen predominantly in left or right ventricular waveforms, respectively. For another example, observations of the onset of contraction in the left and right ventricles separately may be of use in providing feedback to bi-ventricular cardiac pacing devices. For a further example, pulse oximetry determines hemoglobin saturation by measuring the changing infrared optical properties of a finger. This signal may be disambiguated and combined with pulmonary data to yield improved information concerning lung function.
  • In one embodiment to monitor and predict stroke attack, a cranial bioimpedance sensor is applied to detect fluids in the brain. The brain tissue can be modeled as an electrical circuit where cells with the lipid bilayer act as capacitors and the intra and extra cellular fluids act as resistors. The opposition to the flow of the electrical current through the cellular fluids is resistance. The system takes 50-kHz single-frequency bioimpedance measurements reflecting the electrical conductivity of brain tissue. The opposition to the flow of the current by the capacitance of lipid bilayer is reactance. In this embodiment, microamps of current at 50 kHz are applied to the electrode system. In one implementation, the electrode system consists of a pair of coaxial electrodes each of which has a current electrode and a voltage sensing electrode. For the measurement of cerebral bioimpedance, one pair of gel current electrodes is placed on closed eyelids and the second pair of voltage electrodes is placed in the suboccipital region projecting towards the foramen magnum. The electrical current passes through the orbital fissures and brain tissue. The drop in voltage is detected by the suboccipital electrodes and then calculated by the processor to bioimpedance values. The bioimpedance value is used to detect brain edema, which is defined as an increase in the water content of cerebral tissue which then leads to an increase in overall brain mass. Two types of brain edema are vasogenic or cytotoxic. Vasogenic edema is a result of increased capillary permeability. Cytotoxic edema reflects the increase of brain water due to an osmotic imbalance between plasma and the brain extracellular fluid. Cerebral edema in brain swelling contributes to the increase in intracranial pressure and an early detection leads to timely stroke intervention.
  • In another example, a cranial bioimpedance tomography system constructs brain impedance maps from surface measurements using nonlinear optimization. A nonlinear optimization technique utilizing known and stored constraint values permits reconstruction of a wide range of conductivity values in the tissue. In the nonlinear system, a Jacobian Matrix is renewed for a plurality of iterations. The Jacobian Matrix describes changes in surface voltage that result from changes in conductivity. The Jacobian Matrix stores information relating to the pattern and position of measuring electrodes, and the geometry and conductivity distributions of measurements resulting in a normal case and in an abnormal case. The nonlinear estimation determines the maximum voltage difference in the normal and abnormal cases.
  • In one embodiment, an electrode array sensor can include impedance, bio-potential, or electromagnetic field tomography imaging of cranial tissue. The electrode array sensor can be a geometric array of discrete electrodes having an equally-spaced geometry of multiple nodes that are capable of functioning as sense and reference electrodes. In a typical tomography application the electrodes are equally-spaced in a circular configuration. Alternatively, the electrodes can have non-equal spacing and/or can be in rectangular or other configurations in one circuit or multiple circuits. Electrodes can be configured in concentric layers too. Points of extension form multiple nodes that are capable of functioning as an electrical reference. Data from the multiple reference points can be collected to generate a spectrographic composite for monitoring over time.
  • The patient or wearer's brain cell generates an electromagnetic field of positive or negative polarity, typically in the millivolt range. The sensor measures the electromagnetic field by detecting the difference in potential between one or more test electrodes and a reference electrode. The bio-potential sensor uses signal conditioners or processors to condition the potential signal. In one example, the test electrode and reference electrode are coupled to a signal conditioner/processor that includes a lowpass filter to remove undesired high frequency signal components. The electromagnetic field signal is typically a slowly varying DC voltage signal. The lowpass filter removes undesired alternating current components arising from static discharge, electromagnetic interference, and other sources.
  • In one embodiment, the impedance sensor has an electrode structure with annular concentric circles including a central electrode, an intermediate electrode and an outer electrode, all of which are connected to the skin. One electrode is a common electrode and supplies a low frequency signal between this common electrode and another of the three electrodes. An amplifier converts the resulting current into a voltage between the common electrode and another of the three electrodes. A switch switches between a first circuit using the intermediate electrode as the common electrode and a second circuit that uses the outer electrode as a common electrode. The sensor selects depth by controlling the extension of the electric field in the vicinity of the measuring electrodes using the control electrode between the measuring electrodes. The control electrode is actively driven with the same frequency as the measuring electrodes to a signal level taken from one of the measuring electrodes but multiplied by a complex number with real and imaginary parts controlled to attain a desired depth penetration. The controlling field functions in the manner of a field effect transistor in which ionic and polarization effects act upon tissue in the manner of a semiconductor material.
  • With multiple groups of electrodes and a capability to measure at a plurality of depths, the system can perform tomographic imaging or measurement, and/or object recognition. In one embodiment, a fast reconstruction technique is used to reduce computation load by utilizing prior information of normal and abnormal tissue conductivity characteristics to estimate tissue condition without requiring full computation of a non-linear inverse solution.
  • In another embodiment, the bioimpedance system can be used with electro-encephalograph (EEG) or ERP. Since this embodiment collects signals related to blood flow in the brain, collection can be concentrated in those regions of the brain surface corresponding to blood vessels of interest. A headcap with additional electrodes placed in proximity to regions of the brain surface fed by a blood vessel of interest, such as the medial cerebral artery enables targeted information from the regions of interest to be collected. The headcap can cover the region of the brain surface that is fed by the medial cerebral artery. Other embodiments of the headcap can concentrate electrodes on other regions of the brain surface, such as the region associated with the somatosensory motor cortex. In alternative embodiments, the headcap can cover the skull more completely. Further, such a headcap can include electrodes throughout the cap while concentrating electrodes in a region of interest. Depending upon the particular application, arrays of 1-16 head electrodes may be used, as compared to the International 10/20 system of 19-21 head electrodes generally used in an EEG instrument.
  • In one implementation, each amplifier for each EEG channel is a high quality analog amplifier device. Full bandwidth and ultra-low noise amplification are obtained for each electrode. Low pass, high pass, hum notch filters, gain, un-block, calibration and electrode impedance check facilities are included in each amplifier. All 8 channels in one EEG amplifier unit have the same filter, gain, etc. settings. Noise figures of less than 0.1 uV r.m.s. are achieved at the input and optical coupling stages. These figures, coupled with good isolation/common mode rejection result in signal clarity. Nine high pass filter ranges include 0.01 Hz for readiness potential measurement, and 30 Hz for EMG measurement.
  • In one embodiment, stimulations to elicit EEG signals are used in two different modes, i.e., auditory clicks and electric pulses to the skin. The stimuli, although concurrent, are at different prime number frequencies to permit separation of different evoked potentials (EPs) and avoid interference. Such concurrent stimulations for EP permit a more rapid, and less costly, examination and provide the patient or wearer's responses more quickly. Power spectra of spontaneous EEG, waveshapes of Averaged Evoked Potentials, and extracted measures, such as frequency specific power ratios, can be transmitted to a remote receiver. The latencies of successive EP peaks of the patient or wearer may be compared to those of a normal group by use of a normative template. To test for ischemic stroke or intracerebral or subarachnoid hemorrhage, the system provides a blood oxygen saturation monitor, using an infra-red or laser source, to alert the user if the patient or wearer's blood in the brain or some brain region is deoxygenated.
  • A stimulus device may optionally be placed on each subject, such as an audio generator in the form of an ear plug, which produces a series of “click” sounds. The subject's brain waves are detected and converted into audio tones. The device may have an array of LED (Light Emitting Diodes) which blink depending on the power and frequency composition of the brain wave signal. Power ratios in the frequencies of audio or somatosensory stimuli are similarly encoded. The EEG can be transmitted to a remote physician or medical aide who is properly trained to determine whether the patient or wearer's brain function is abnormal and may evaluate the functional state of various levels of the patient or wearer's nervous system.
  • In another embodiment, three pairs of electrodes are attached to the head of the subject under examination via tape or by wearing a cap with electrodes embedded. In one embodiment, the electrode pairs are as follows:
  • 1) top of head to anterior throat
  • 2) inion-nasion
  • 3) left to right mastoid (behind ear).
  • A ground electrode is located at an inactive site of the upper part of the vertebral column. The electrodes are connected to differential amplification devices as disclosed below. Because the electrical charges of the brain are so small (on the order of microvolts), amplification is needed. The three amplified analog signals are converted to digital signals and averaged over a certain number of successive digital values to eliminate erroneous values originated by noise on the analog signal.
  • All steps defined above are linked to a timing signal which is also responsible for generating stimuli to the subject. The responses are processed in a timed relation to the stimuli and averaged as the brain responds to these stimuli. Of special interest are the responses within certain time periods and time instances after the occurrence of a stimulus of interest. These time periods and instances and their references can be:
      • 25 to 60 milliseconds: P1-N1
      • 180 to 250 milliseconds: N2
      • 100 milliseconds: N100
      • 200 milliseconds: P2
      • 300 milliseconds: P300.
  • In an examination two stimuli sets may be used in a manner that the brain has to respond to the two stimuli differently, one stimulus has a high probability of occurrence, and the other stimulus is a rare occurring phenomena. The rare response is the response of importance. Three response signals are sensed and joined into a three dimensional cartesian system by a mapping program. The assignments can be
      • nasion-inion=X,
      • left-right mastoid=Y, and
      • top of head to anterior throat=Z.
  • The assignment of the probes to the axes and the simultaneous sampling of the three response signals at the same rate and time relative to the stimuli allows to real-time map the electrical signal in a three dimensional space. The signal can be displayed in a perspective representation of the three dimensional space, or the three components of the vector are displayed by projecting the vector onto the three planes X-Y, Y-Z, and X-Z, and the three planes are inspected together or separately. Spatial information is preserved for reconstruction as a map. The Vector Amplitude (VA) measure provides information about how far from the center of the head the observed event is occurring; the center of the head being the center (0,0,0) of the coordinate system.
  • The cranial bioimpedance sensor can be applied singly or in combination with a cranial blood flow sensor, which can be optical, ultrasound, electromagnetic sensor(s) as described in more details below. In an ultrasound imaging implementation, the carotid artery is checked for plaque build-up. Atherosclerosis is systemic—meaning that if the carotid artery has plaque buildup, other important arteries, such as coronary and leg arteries, might also be atherosclerotic.
  • In another embodiment, an epicardial array monopolar ECG system converts signals into the multichannel spectrum domain and identifies decision variables from the autospectra. The system detects and localizes the epicardial projections of ischemic myocardial ECGs during the cardiac activation phase. This is done by transforming ECG signals from an epicardial or torso sensor array into the multichannel spectral domain and identifying any one or more of a plurality of decision variables. The ECG array data can be used to detect, localize and quantify reversible myocardial ischemia.
  • In yet another embodiment, a trans-cranial Doppler velocimetry sensor provides a non-invasive technique for measuring blood flow in the brain. An ultrasound beam from a transducer is directed through one of three natural acoustical windows in the skull to produce a waveform of blood flow in the arteries using Doppler sonography. The data collected to determine the blood flow may include values such as the pulse cycle, blood flow velocity, end diastolic velocity, peak systolic velocity, mean flow velocity, total volume of cerebral blood flow, flow acceleration, the mean blood pressure in an artery, and the pulsatility index, or impedance to flow through a vessel. From this data, the condition of an artery may be derived, those conditions including stenosis, vasoconstriction, irreversible stenosis, vasodilation, compensatory vasodilation, hyperemic vasodilation, vascular failure, compliance, breakthrough, and pseudo-normalization.
  • In addition to the above techniques to detect stroke attack, the system can detect numbness or weakness of the face, arm or leg, especially on one side of the body. The system detects sudden confusion, trouble speaking or understanding, sudden trouble seeing in one or both eyes, sudden trouble walking, dizziness, loss of balance or coordination, or sudden, severe headache with no known cause.
  • In one embodiment to detect heart attack, the system detects discomfort in the center of the chest that lasts more than a few minutes, or that goes away and comes back. Symptoms can include pain or discomfort in one or both arms, the back, neck, jaw or stomach. The system can also monitor for shortness of breath which may occur with or without chest discomfort. Other signs may include breaking out in a cold sweat, nausea or lightheadedness.
  • The automated analyzer can also consider related pathologies in analyzing a patient or wearer's risk of stroke, including but not limited to gastritis, increased intracranial pressure, sleep disorders, small vessel disease, and vasculitis.
  • In one embodiment, the processor and transceiver on the watch, the patch(es) and the base station conform to the Zigbee protocol. ZigBee is a cost-effective, standards-based wireless networking solution that supports low data-rates, low-power consumption, security, and reliability. Single chip Zigbee controllers with wireless transceivers built-in include the Chipcon/Ember CC2420: Single-chip 802.15.4 radio transceiver and the FreeScale single chip Zigbee and microcontroller. In various embodiments, the processor communicates with a Z axis accelerometer measures the patient or wearer's up and down motion and/or an X and Y axis accelerometer measures the patient or wearer's forward and side movements. In one embodiment, EKG and/or blood pressure parameters can be captured by the processor. The controllers upload the captured data when the memory is full or while in wireless contact with other Zigbee nodes.
  • The wristwatch device can also be used to control home automation. The user can have flexible management of lighting, heating and cooling systems from anywhere in the home. The watch automates control of multiple home systems to improve conservation, convenience and safety. The watch can capture highly detailed electric, water and gas utility usage data and embed intelligence to optimize consumption of natural resources. The system is convenient in that it can be installed, upgraded and networked without wires. The patient or wearer can receive automatic notification upon detection of unusual events in his or her home. For example, if smoke or carbon monoxide detectors detect a problem, the wrist-watch can buzz or vibrate to alert the user and the central hub triggers selected lights to illuminate the safest exit route.
  • In another embodiment, the watch serves a key fob allowing the user to wirelessly unlock doors controlled by Zigbee wireless receiver. In this embodiment, when the user is within range, the door Zigbee transceiver receives a request to unlock the door, and the Zigbee transceiver on the door transmits an authentication request using suitable security mechanism. Upon entry, the Zigbee doorlock device sends access signals to the lighting, air-conditioning and entertainment systems, among others. The lights and temperature are automatically set to pre-programmed preferences when the user's presence is detected.
  • Although Zigbee is mentioned as an exemplary protocol, other protocols such as UWB, Bluetooth, WiFi and WiMAX can be used as well.
  • While the foregoing addresses the needs of the elderly, the system can assist infants as well. Much attention has been given to ways to reduce a risk of dying from Sudden Infant Death Syndrome (SIDS), an affliction which threatens infants who have died in their sleep for heretofore unknown reasons. Many different explanations for this syndrome and ways to prevent the syndrome are found in the literature. It is thought that infants which sleep on their backs may be at risk of death because of the danger of formula regurgitation and liquid aspiration into the lungs. It has been thought that infants of six (6) months or less do not have the motor skills or body muscular development to regulate movements responsive to correcting breathing problems that may occur during sleep.
  • In an exemplary system to detect and minimize SIDS problem in an infant patient or wearer, a diaper pad is used to hold an array of integrated sensors and the pad can be placed over a diaper, clothing, or blanket. The integrated sensors can provide data for measuring position, temperature, sound, vibration, movement, and optionally other physical properties through additional sensors. Each pad can have sensors that provide one or more of the above data. The sensors can be added or removed as necessary depending on the type of data being collected.
  • The sensor can be water proof and disposable. The sensor can be switch on/off locally or remotely. The sensor can be removable or clip on easily. The sensor can store or beam out information for analysis purpose, e.g. store body temperature every 5 seconds. The sensor can be turn-on for other purposed, e.g. diaper wet, it will beep and allow a baby care provider to take care of the business in time. The array of sensors can be self selective, e.g., when one sensor can detect strong heart beat, it will turn off others to do so.
  • The sensor can be used for drug delivery system, e.g. when patient or wearer has abdomen pain, soothing drug can be applied, based on the level of pain the sensor detects, different dose of drugs will be applied.
  • The array of sensors may allow the selection and analysis of zones of sensors in the areas of interest such as the abdomen area. Each sensor array has a low spatial resolution: approximately 10 cm between each sensor. In addition to lower cost due to the low number of sensors, it is also possible to modify the data collection rate from certain sensors that are providing high-quality data. Other sensors may include those worn on the body, such as in watch bands, finger rings, or adhesive sensors, but telemetry, not wires, would be used to communicate with the controller.
  • The sensor can be passive device such as a reader, which mounted near the crib can active it from time to time. In any emergency situation, the sensor automatically signals a different state which the reader can detect.
  • The sensor can be active and powered by body motion or body heat. The sensor can detect low battery situation and warn the user to provide a replacement battery.
  • In one embodiment, a plurality of sensors attached to the infant collects the vital parameters. For example, the sensors can be attached to the infant's clothing (shirt or pant), diaper, undergarment or bed sheet, bed linen, or bed spread.
  • The patient or wearer may wear one or more sensors, for example devices for sensing EMG, EKG, blood pressure, sugar level, weight, temperature and pressure, among others. In one embodiment, an optical temperature sensor can be used. In another embodiment, a temperature thermistor can be used to sense patient or wearer temperature. In another embodiment, a fat scale sensor can be used to detect the patient or wearer's fat content. In yet another embodiment, a pressure sensor such as a MEMS sensor can be used to sense pressure on the patient or wearer.
  • In one embodiment, the sensors are mounted on the patient or wearer's wrist (such as a wristwatch sensor) and other convenient anatomical locations. Exemplary sensors include standard medical diagnostics for detecting the body's electrical signals emanating from muscles (EMG and EOG) and brain (EEG) and cardiovascular system (ECG). Leg sensors can include piezoelectric accelerometers designed to give qualitative assessment of limb movement. Additionally, thoracic and abdominal bands used to measure expansion and contraction of the thorax and abdomen respectively. A small sensor can be mounted on the subject's finger in order to detect blood-oxygen levels and pulse rate. Additionally, a microphone can be attached to throat and used in sleep diagnostic recordings for detecting breathing and other noise. One or more position sensors can be used for detecting orientation of body (lying on left side, right side or back) during sleep diagnostic recordings. Each of sensors can individually transmit data to the server 20 using wired or wireless transmission. Alternatively, all sensors can be fed through a common bus into a single transceiver for wired or wireless transmission. The transmission can be done using a magnetic medium such as a floppy disk or a flash memory card, or can be done using infrared or radio network link, among others.
  • In one embodiment, the sensors for monitoring vital signs are enclosed in a wrist-watch sized case supported on a wrist band. The sensors can be attached to the back of the case. For example, in one embodiment, Cygnus' AutoSensor (Redwood City, Calif.) is used as a glucose sensor. A low electric current pulls glucose through the skin. Glucose is accumulated in two gel collection discs in the AutoSensor. The AutoSensor measures the glucose and a reading is displayed by the watch.
  • In another embodiment, EKG/ECG contact points are positioned on the back of the wrist-watch case. In yet another embodiment that provides continuous, beat-to-beat wrist arterial pulse rate measurements, a pressure sensor is housed in a casing with a ‘free-floating’ plunger as the sensor applanates the radial artery. A strap provides a constant force for effective applanation and ensuring the position of the sensor housing to remain constant after any wrist movements. The change in the electrical signals due to change in pressure is detected as a result of the piezoresistive nature of the sensor are then analyzed to arrive at various arterial pressure, systolic pressure, diastolic pressure, time indices, and other blood pressure parameters.
  • The heartbeat detector can be one of: EKG detector, ECG detector, optical detector, ultrasonic detector, or microphone/digital stethoscope for picking up heart sound. In one embodiment, one EKG/ECG contact point is provided on the back of the wrist watch case and one or more EKG/ECG contact points are provided on the surface of the watch so that when a user's finger or skin touches the contact points, an electrical signal indicative of heartbeat activity is generated. An electrocardiogram (ECG) or EKG is a graphic tracing of the voltage generated by the cardiac or heart muscle during a heartbeat. It provides very accurate evaluation of the performance of the heart. The heart generates an electrochemical impulse that spreads out in the heart in such a fashion as to cause the cells to contract and relax in a timely order and thus give the heart a pumping characteristic. This sequence is initiated by a group of nerve cells called the sinoatrial (SA) node resulting in a polarization and depolarization of the cells of the heart. Because this action is electrical in nature and because the body is conductive with its fluid content, this electrochemical action can be measured at the surface of the body. An actual voltage potential of approximately 1 mV develops between various body points. This can be measured by placing electrode contacts on the body. The four extremities and the chest wall have become standard sites for applying the electrodes. Standardizing electrocardiograms makes it possible to compare them as taken from person to person and from time to time from the same person. The normal electrocardiogram shows typical upward and downward deflections that reflect the alternate contraction of the atria (the two upper chambers) and of the ventricles (the two lower chambers) of the heart. The voltages produced represent pressures exerted by the heart muscles in one pumping cycle. The first upward deflection, P, is due to atria contraction and is known as the atrial complex. The other deflections, Q, R, S, and T, are all due to the action of the ventricles and are known as the ventricular complexes. Any deviation from the norm in a particular electrocardiogram is indicative of a possible heart disorder.
  • The CPU measures the time duration between the sequential pulses and converts each such measurement into a corresponding timing measurement indicative of heart rate. The CPU also processes a predetermined number of most recently occurring timing measurements in a prescribed fashion, to produce an estimate of heartbeat rate for display on a display device on the watch and/or for transmission over the wireless network. This estimate is updated with the occurrence of each successive pulse.
  • In one embodiment, the CPU produces the estimate of heartbeat rate by first averaging a plurality of measurements, then adjusting the particular one of the measurements that differs most from the average to be equal to that average, and finally computing an adjusted average based on the adjusted set of measurements. The process may repeat the foregoing operations a number of times so that the estimate of heartbeat rate is substantially unaffected by the occurrence of heartbeat artifacts.
  • In one EKG or ECG detector, the heartbeat detection circuitry includes a differential amplifier for amplifying the signal transmitted from the EKG/ECG electrodes and for converting it into single-ended form, and a bandpass filter and a 60 Hz notch filter for removing background noise. The CPU measures the time durations between the successive pulses and estimates the heartbeat rate. The time durations between the successive pulses of the pulse sequence signal provides an estimate of heartbeat rate. Each time duration measurement is first converted to a corresponding rate, preferably expressed in beats per minute (bpm), and then stored in a file, taking the place of the earliest measurement previously stored. After a new measurement is entered into the file, the stored measurements are averaged, to produce an average rate measurement. The CPU optionally determines which of the stored measurements differs most from the average, and replaces that measurement with the average.
  • Upon initiation, the CPU increments a period timer used in measuring the time duration between successive pulses. This timer is incremented in steps of about two milliseconds in one embodiment. It is then determined whether or not a pulse has occurred during the previous two milliseconds. If it has not, the CPU returns to the initial step of incrementing the period timer. If a heartbeat has occurred, on the other hand, the CPU converts the time duration measurement currently stored in the period timer to a corresponding heartbeat rate, preferably expressed in bpm. After the heartbeat rate measurement is computed, the CPU determines whether or not the computed rate is intermediate prescribed thresholds of 20 bpm and 240 bpm. If it is not, it is assumed that the detected pulse was not in fact a heartbeat and the period timer is cleared.
  • In an optical heartbeat detector embodiment, an optical transducer is positioned on a finger, wrist, or ear lobe. The ear, wrist or finger pulse oximeter waveform is then analyzed to extract the beat-to-beat amplitude, area, and width (half height) measurements. The oximeter waveform is used to generate heartbeat rate in this embodiment. In one implementation, a reflective sensor such as the Honeywell HLC1395 can be used. The device emits lights from a window in the infrared spectrum and receives reflected light in a second window. When the heart beats, blood flow increases temporarily and more red blood cells flow through the windows, which increases the light reflected back to the detector. The light can be reflected, refracted, scattered, and absorbed by one or more detectors. Suitable noise reduction is done, and the resulting optical waveform is captured by the CPU.
  • In another optical embodiment, blood pressure is estimated from the optical reading using a mathematical model such as a linear correlation with a known blood pressure reading. In this embodiment, the pulse oximeter readings are compared to the blood-pressure readings from a known working blood pressure measurement device during calibration. Using these measurements the linear equation is developed relating oximeter output waveform such as width to blood-pressure (systolic, mean and pulse pressure). In one embodiment, a transform (such as a Fourier analysis or a Wavelet transform) of the oximeter output can be used to generate a model to relate the oximeter output waveform to the blood pressure. Other non-linear math model or relationship can be determined to relate the oximeter waveform to the blood pressure.
  • In one implementation, the pulse oximeter probe and a blood pressure cuff are placed on the corresponding contralateral limb to the oscillometric (Dinamap 8100; Critikon, Inc, Tampa, Fla., USA) cuff site. The pulse oximeter captures data on plethysmographic waveform, heart rate, and oxygen saturation. Simultaneous blood pressure measurements were obtained from the oscillometric device, and the pulse oximeter. Systolic, diastolic, and mean blood pressures are recorded from the oscillometric device. This information is used derive calibration parameters relating the pulse oximeter output to the expected blood pressure. During real time operation, the calibration parameters are applied to the oximeter output to predict blood pressure in a continuous or in a periodic fashion. In yet another embodiment, the device includes an accelerometer or alternative motion-detecting device to determine when the patient or wearer′ hand is at rest, thereby reducing motion-related artifacts introduced to the measurement during calibration and/or operation. The accelerometer can also function as a falls detection device.
  • In an ultrasonic embodiment, a piezo film sensor element is placed on the wristwatch band. The sensor can be the SDT1-028K made by Measurement Specialties, Inc. The sensor should have features such as: (a) it is sensitive to low level mechanical movements, (b) it has an electrostatic shield located on both sides of the element (to minimize 50/60 Hz AC line interference), (c) it is responsive to low frequency movements in the 0.7-12 Hz range of interest. A filter/amplifier circuit has a three-pole low pass filter with a lower (−3 dB) cutoff frequency at about 12-13 Hz. The low-pass filter prevents unwanted 50/60 Hz AC line interference from entering the sensor. However, the piezo film element has a wide band frequency response so the filter also attenuates any extraneous sound waves or vibrations that get into the piezo element. The DC gain is about +30 dB.
  • Waveform averaging can be used to reduce noise. It reinforces the waveform of interest by minimizing the effect of any random noise. These pulses were obtained when the arm was motionless. If the arm was moved while capturing the data the waveform did not look nearly as clean. That's because motion of the arm causes the sonic vibrations to enter the piezo film through the arm or by way of the cable. An accelerometer is used to detect arm movement and used to remove inappropriate data capture.
  • In one embodiment that can determine blood pressure, two piezo film sensors and filter/amplifier circuits can be configured as a non-invasive velocity type blood pressure monitor. One sensor can be on the wrist and the other can be located on the inner left elbow at the same location where Korotkoff sounds are monitored during traditional blood pressure measurements with a spygmometer. The correlation between pulse delay and blood pressure is well known in the art of non-invasive blood pressure monitors.
  • In yet another embodiment, an ultrasonic transducer generates and transmits an acoustic wave into the user's body such as the wrist or finger. The transducer subsequently receives pressure waves in the form of echoes resulting from the transmitted acoustic waves. In one embodiment, an ultrasonic driving and receiving circuit generates electrical pulses which, when applied to the transducer produce acoustic energy having a frequency on the order of 8 MHz, a pulse width or duration of approximately 8 microseconds, and a pulse repetition interval (PRI) of approximately 16 microseconds, although other values of frequency, pulse width, and PRI may be used. Hence, the transducer emits an 8 microsecond ultrasonic pulse, which is followed by an 8 microsecond “listen” period, every 16 microseconds. The echoes from these pulses are received by the ultrasonic transducer during the listen period. The ultrasonic transducer can be a ceramic piezoelectric device of the type well known in the art, although other types may be substituted. The transducer converts the received acoustic signal to an electrical signal, which is then supplied to the receiving section of the ultrasonic driver and receiver circuit 616, which contains two receiver circuits. The output of the first receiver circuit is an analog signal representative of the Doppler frequency of the echo received by the transducer which is digitized and supplied to the CPU. Within the CPU, the digitized Doppler frequency is scaled to compute the blood velocity within the artery based on the Doppler frequency. The time-frequency distribution of the blood velocity is then computed. Finally, the CPU maps in time the peak of the time-frequency distribution to the corresponding pressure waveform to produce the estimated mean arterial pressure (MAP). The output of the ultrasonic receiver circuit is an analog echo signal proportional to absorption of the transmitted frequencies by blood or tissue. This analog signal is digitized and process so that each group of echoes, generated for a different transversal position, is integrated to determine a mean value. The mean echo values are compared to determine the minimum value, which is caused by direct positioning over the artery. In one embodiment, the device includes an accelerometer or alternative motion-detecting device to determine when the patient or wearer′ hand is at rest, thereby reducing motion-related artifacts introduced to the measurement.
  • In yet another ultrasonic embodiment, a transducer includes a first and a second piezoelectric crystal, wherein the crystals are positioned at an angle to each other, and wherein the angle is determined based on the distance of the transducer to the living subject. The first piezoelectric crystal is energized by an original ultrasonic frequency signal, wherein the original ultrasonic frequency signal is reflected off the living subject and received by the second piezoelectric crystal. More specifically, the system includes a pair of piezoelectric crystals at an angle to each other, wherein the angle is determined by the depth of the object being monitored. If the object is the radial artery of a human subject (e.g., adult, infant), the angle of the two crystals with respect to the direction of the blood flow would be about 5 to about 20 degrees. One of the crystals is energized at an ultrasonic frequency. The signal is then reflected back by the user's wrist and picked up by the second crystal. The frequency received is either higher or lower than the original frequency depending upon the direction and the speed of the fluidic mass flow. For example, when blood flow is monitored, the direction of flow is fixed. Thus, the Doppler frequency which is the difference between the original and the reflected frequency depends only upon the speed of the blood flow. Ultrasonic energy is delivered to one of the two piezoelectric elements in the module by the power amplifier. The other element picks up the reflected ultrasonic signal as Doppler frequencies.
  • In a digital stethoscope embodiment, a microphone or a piezoelectric transducer is placed near the wrist artery to pick up heart rate information. In one embodiment, the microphone sensor and optionally the EKG sensor are place on the wrist band 1374 of the watch to analyze the acoustic signal or signals emanating from the cardiovascular system and, optionally can combine the sound with an electric signal (EKG) emanating from the cardiovascular system and/or an acoustic signal emanating from the respiratory system. The system can perform automated auscultation of the cardiovascular system, the respiratory system, or both. For example, the system can differentiate pathological from benign heart murmurs, detect cardiovascular diseases or conditions that might otherwise escape attention, recommend that the patient or wearer go through for a diagnostic study such as an echocardiography or to a specialist, monitor the course of a disease and the effects of therapy, decide when additional therapy or intervention is necessary, and providing a more objective basis for the decision(s) made. In one embodiment, the analysis includes selecting one or more beats for analysis, wherein each beat comprises an acoustic signal emanating from the cardiovascular system; performing a time-frequency analysis of beats selected for analysis so as to provide information regarding the distribution of energy, the relative distribution of energy, or both, over different frequency ranges at one or more points in the cardiac cycle; and processing the information to reach a clinically relevant conclusion or recommendation. In another implementation, the system selects one or more beats for analysis, wherein each beat comprises an acoustic signal emanating from the cardiovascular system; performs a time-frequency analysis of beats selected for analysis so as to provide information regarding the distribution of energy, the relative distribution of energy, or both, over different frequency ranges at one or more points in the cardiac cycle; and present information derived at least in part from the acoustic signal, wherein the information comprises one or more items selected from the group consisting of: a visual or audio presentation of a prototypical beat, a display of the time-frequency decomposition of one or more beats or prototypical beats, and a playback of the acoustic signal at a reduced rate with preservation of frequency content.
  • In an electromagnetic embodiment where the wrist band incorporates a flexible magnet to provide a magnetic field and one or more electrodes positioned on the wrist band to measure voltage drops which are proportional to the blood velocity, instantaneously variation of the flow can be detected but not artery flow by itself. To estimate the flow of blood in the artery, the user or an actuator such as motorized cuff temporarily stops the blood flow in the vein by applying external pressure or by any other method. During the period of time in which the vein flow is occluded, the decay of the artery flow is measured. This measurement may be used for zeroing the sensor and may be used in a model for estimating the steady artery flow. The decay in artery flow due to occlusion of veins is measured to arrive at a model the rate of artery decay. The system then estimates an average artery flow before occlusion. The blood flow can then be related to the blood pressure.
  • In another embodiment, an ionic flow sensor is used with a driving electrode that produces a pulsatile current. The pulsatile current causes a separation of positive and negative charges that flows in the blood of the arteries and veins passing in the wrist area. Using electrophoresis principle, the resistance of the volume surrounded by the source first decreases and then increases. The difference in resistance in the blood acts as a mark that moves according to the flow of blood so that marks are flowing in opposite directions by arteries and veins.
  • In the above embodiments, accelerometer information is used to detect that the patient or wearer is at rest prior to making a blood pressure measurement and estimation. Further, a temperature sensor may be incorporated so that the temperature is known at any minute. The processor correlates the temperature measurement to the blood flow measurement for calibration purposes.
  • In another embodiment, the automatic identification of the first, second, third and fourth heart sounds (S1, S2, S3, S4) is done. In yet another embodiment, based on the heart sound, the system analyzes the patient or wearer for mitral valve prolapse. The system performs a time-frequency analysis of an acoustic signal emanating from the subject's cardiovascular system and examines the energy content of the signal in one or more frequency bands, particularly higher frequency bands, in order to determine whether a subject suffers from mitral valve prolapse.
  • FIG. 7 shows an exemplary mesh network that includes the wrist-watch of FIG. 6 in communication with a mesh network including a telephone such as a wired telephone as well as a cordless telephone. In one embodiment, the mesh network is an IEEE 802.15.4 (ZigBee) network. IEEE 802.15.4 defines two device types; the reduced function device (RFD) and the full function device (FFD). In ZigBee these are referred to as the ZigBee Physical Device types. In a ZigBee network a node can have three roles: ZigBee Coordinator, ZigBee Router, and ZigBee End Device. These are the ZigBee Logical Device types. The main responsibility of a ZigBee Coordinator is to establish a network and to define its main parameters (e.g. choosing a radio-frequency channel and defining a unique network identifier). One can extend the communication range of a network by using ZigBee Routers. These can act as relays between devices that are too far apart to communicate directly. ZigBee End Devices do not participate in routing. An FFD can talk to RFDs or other FFDs, while an RFD can talk only to an FFD. An RFD is intended for applications that are extremely simple, such as a light switch or a passive infrared sensor; they do not have the need to send large amounts of data and may only associate with a single FFD at a time. Consequently, the RFD can be implemented using minimal resources and memory capacity and have lower cost than an FFD. An FFD can be used to implement all three ZigBee Logical Device types, while an RFD can take the role as an End Device.
  • The network nodes can be mesh network appliances to provide voice communications, home security, door access control, lighting control, power outlet control, dimmer control, switch control, temperature control, humidity control, carbon monoxide control, fire alarm control, blind control, shade control, window control, oven control, cooking range control, personal computer control, entertainment console control, television control, projector control, garage door control, car control, pool temperature control, water pump control, furnace control, heater control, thermostat control, electricity meter monitor, water meter monitor, gas meter monitor, or remote diagnotics. The telephone can be connected to a cellular telephone to answer calls directed at the cellular telephone. The connection can be wired or wireless using Bluetooth or ZigBee. The telephone synchronizes calendar, contact, emails, blogs, or instant messaging with the cellular telephone. Similarly, the telephone synchronizes calendar, contact, emails, blogs, or instant messaging with a personal computer. A web server can communicate with the Internet through the POTS to provide information to an authorized remote user who logs into the server. A wireless router such as 802.11 router, 802.16 router, WiFi router, WiMAX router, Bluetooth router, X10 router can be connected to the mesh network.
  • A mesh network appliance can be connected to a power line to communicate X10 data to and from the mesh network. X10 is a communication protocol that allows up to 256 X10 products to talk to each other using the existing electrical wiring in the home. Typically, the installation is simple, a transmitter plugs (or wires) in at one location in the home and sends its control signal (on, off, dim, bright, etc.) to a receiver which plugs (or wires) into another location in the home. The mesh network appliance translates messages intended for X10 device to be relayed over the ZigBee wireless network, and then transmitted over the power line using a ZigBee to X10 converter appliance.
  • An in-door positioning system links one or more mesh network appliances to provide location information. Inside the home or office, the radio frequency signals have negligible multipath delay spread (for timing purposes) over short distances. Hence, radio strength can be used as a basis for determining position. Alternatively, time of arrival can be used to determine position, or a combination of radio signal strength and time of arrival can be used. Position estimates can also be achieved in an embodiment by beamforming, a method that exchanges time-stamped raw data among the nodes. While the processing is relatively more costly, it yields processed data with a higher signal to noise ratio (SNR) for subsequent classification decisions, and enables estimates of angles of arrival for targets that are outside the convex hull of the participating sensors. Two such clusters of ZigBee nodes can then provide for triangulation of distant targets. Further, beamforming enables suppression of interfering sources, by placing nulls in the synthetic beam pattern in their directions. Another use of beamforming is in self-location of nodes when the positions of only a very small number of nodes or appliances are known such as those sensors nearest the wireless stations. In one implementation where each node knows the distances to its neighbors due to their positions, and some small fraction of the nodes (such as those nearest a PC with GPS) of the network know their true locations. As part of the network-building procedure, estimates of the locations of the nodes that lie within or near the convex hull of the nodes with known position can be quickly generated. To start, the shortest distance (multihop) paths are determined between each reference node. All nodes on this path are assigned a location that is the simple linear average of the two reference locations, as if the path were a straight line. A node which lies on the intersection of two such paths is assigned the average of the two indicated locations. All nodes that have been assigned locations now serve as references. The shortest paths among these new reference nodes are computed, assigning locations to all intermediate nodes as before, and continuing these iterations until no further nodes get assigned locations. This will not assign initial position estimates to all sensors. The remainder can be assigned locations based on pairwise averages of distances to the nearest four original reference nodes. Some consistency checks on location can be made using trigonometry and one further reference node to determine whether or not the node likely lies within the convex hull of the original four reference sensors.
  • In two dimensions, if two nodes have known locations, and the distances to a third node are known from the two nodes, then trigonometry can be used to precisely determine the location of the third node. Distances from another node can resolve any ambiguity. Similarly, simple geometry produces precise calculations in three dimensions given four reference nodes. But since the references may also have uncertainty, an alternative procedure is to perform a series of iterations where successive trigonometric calculations result only in a delta of movement in the position of the node. This process can determine locations of nodes outside the convex hull of the reference sensors. It is also amenable to averaging over the positions of all neighbors, since there will often be more neighbors than are strictly required to determine location. This will reduce the effects of distance measurement errors. Alternatively, the network can solve the complete set of equations of intersections of hyperbola as a least squares optimization problem.
  • In yet another embodiment, any or all of the nodes may include transducers for acoustic, infrared (IR), and radio frequency (RF) ranging. Therefore, the nodes have heterogeneous capabilities for ranging. The heterogeneous capabilities further include different margins of ranging error. Furthermore, the ranging system is re-used for sensing and communication functions. For example, wideband acoustic functionality is available for use in communicating, bistatic sensing, and ranging. Such heterogeneous capability of the sensors 40 can provide for ranging functionality in addition to communications functions. As one example, repeated use of the communications function improves position determination accuracy over time. Also, when the ranging and the timing are conducted together, they can be integrated in a self-organization protocol in order to reduce energy consumption. Moreover, information from several ranging sources is capable of being fused to provide improved accuracy and resistance to environmental variability. Each ranging means is exploited as a communication means, thereby providing improved robustness in the presence of noise and interference. Those skilled in the art will realize that there are many architectural possibilities, but allowing for heterogeneity from the outset is a component in many of the architectures.
  • Turning now to FIGS. 8-13, various exemplary monitoring devices are shown. In FIG. 8, a ring 130 has an opening 132 for transmitting and receiving acoustic energy to and from the sensor 84 in an acoustic implementation. In an optical implementation, a second opening (not shown) is provided to emit an optical signal from an LED, for example, and an optical detector can be located at the opening 132 to receive the optical signal passing through the finger wearing the ring 130. In another implementation, the ring has an electrically movable portion 134 and rigid portions 136-138 connected thereto. The electrically movable portion 134 can squeeze the finger as directed by the CPU during an applanation sweep to determine the arterial blood pressure.
  • FIG. 9 shows an alternate finger cover embodiment where a finger-mounted module housing the photo-detector and light source. The finger mounted module can be used to measure information that is processed to determine the user's blood pressure by measuring blood flow in the user's finger and sending the information through a wireless connection to the base station. In one implementation, the housing is made from a flexible polymer material.
  • In an embodiment to be worn on the patient or wearer's ear lobe, the monitoring device can be part of an earring jewelry clipped to the ear lobe. In the implementation of FIG. 10, the monitoring device has a jewelry body 149 that contains the monitoring electronics and power source. The surface of the body 149 is an ornamental surface such as jade, ivory, pearl, silver, or gold, among others. The body 149 has an opening 148 that transmits energy such as optical or acoustic energy through the ear lobe to be detected by a sensor 144 mounted on a clamp portion that is secured to the body 149 at a base 147. The energy detected through the sensor 144 is communicated through an electrical connector to the electronics in the jewelry body 149 for processing the received energy and for performing wireless communication with a base station. In FIG. 2E, a bolt 145 having a stop end 146 allows the user to adjust the pressure of the clamp against the ear lobe. In other implementations, a spring biased clip is employed to retain the clip on the wearer's ear lobe. A pair of members, which snap together under pressure, are commonly used and the spring pressure employed should be strong enough to suit different thicknesses of the ear lobe.
  • FIGS. 11 and 12 show two additional embodiments of the monitoring device. In FIG. 11, a wearable monitoring device is shown. The monitoring device has a body 160 comprising microphone ports 162, 164 and 170 arranged in a first order noise cancelling microphone arrangement. The microphones 162 and 164 are configured to optimally receive distant noises, while the microphone 170 is optimized for capturing the user's speech. A touch sensitive display 166 and a plurality of keys 168 are provided to capture hand inputs. Further, a speaker 172 is provided to generate a verbal feedback to the user.
  • Turning now to FIG. 12, a jewelry-sized monitoring device is illustrated. In this embodiment, a body 172 houses a microphone port 174 and a speaker port 176. The body 172 is coupled to the user via the necklace 178 so as to provide a personal, highly accessible personal computer. Due to space limitations, voice input/output is an important user interface of the jewelry-sized computer. Although a necklace is disclosed, one skilled in the art can use a number of other substitutes such as a belt, a brace, a ring, or a band to secure the jewelry-sized computer to the user.
  • FIG. 13 shows an exemplary ear phone embodiment 180. The ear phone 180 has an optical transmitter 182 which emits LED wavelengths that are received by the optical receiver 184. The blood oximetry information is generated and used to determine blood pulse or blood pressure. Additionally, a module 186 contains mesh network communication electronics, accelerometer, and physiological sensors such as EKG/ECG sensors or temperature sensors or ultrasonic sensors. In addition, a speaker (not shown) is provided to enable voice communication over the mesh network, and a microphone 188 is provided to pick up voice during verbal communication and pick up heart sound when the user is not using the microphone for voice communication. The ear phone optionally has an ear canal temperature sensor for sensing temperature in a human.
  • FIG. 14A shows an exemplary adhesive patch embodiment. The patch may be applied to a persons skin by anyone including the person themselves or an authorized person such as a family member or physician. The adhesive patch is shown generally at 190 having a gauze pad 194 attached to one side of a backing 192, preferably of plastic, and wherein the pad can have an impermeable side 194 coating with backing 192 and a module 196 which contains electronics for communicating with the mesh network and for sensing acceleration and bioimpedance, EKG/ECG, heart sound, microphone, optical sensor, or ultrasonic sensor in contacts with a wearer's skin. In one embodiment, the module 196 has a skin side that may be coated with a conductive electrode lotion or gel to improve the contact. The entire patch described above may be covered with a plastic or foil strip to retain moisture and retard evaporation by a conductive electrode lotion or gel provided improve the electrode contact. In one embodiment, an acoustic sensor (microphone or piezoelectric sensor) and an electrical sensor such as EKG sensor contact the patient or wearer with a conductive gel material. The conductive gel material provides transmission characteristics so as to provide an effective acoustic impedance match to the skin in addition to providing electrical conductivity for the electrical sensor. The acoustic transducer can be directed mounted on the conductive gel material substantially with or without an intermediate air buffer. The entire patch is then packaged as sterile as are other over-the-counter adhesive bandages. When the patch is worn out, the module 196 may be removed and a new patch backing 192 may be used in place of the old patch. One or more patches may be applied to the patient or wearer's body and these patches may communicate wirelessly using the mesh network or alternatively they may communicate through a personal area network using the patient or wearer's body as a communication medium.
  • The term “positional measurement,” as that term is used herein, is not limited to longitude and latitude measurements, or to metes and bounds, but includes information in any form from which geophysical positions can be derived. These include, but are not limited to, the distance and direction from a known benchmark, measurements of the time required for certain signals to travel from a known source to the geophysical location where the signals may be electromagnetic or other forms, or measured in terms of phase, range, Doppler or other units.
  • FIG. 14B shows a sunglass or eyeglass embodiment which contains electronics for communicating with the mesh network and for sensing acceleration and bioimpedance, EKG/ECG, EMG, heart sound, microphone, optical sensor, or ultrasonic sensor in contacts with a wearer's skin. In one embodiment, the ear module 310 contains optical sensors to detect temperature, blood flow and blood oxygen level as well as a speaker to provide wireless communication or hearing aid. The blood flow or velocity information can be used to estimate blood pressure. The side module 312 can contain an array of bioimpedance sensors such as bipolar or tetrapolar bioimpedance probes to sense fluids in the brain. Additional bioimpedance electrodes can be positioned around the rim of the glasses as well as the glass handle or in any spots on the eyewear that contacts the user. The side module 312 or 314 can also contain one or more EKG electrodes to detect heart beat parameters and to detect heart problems. The side module 312 or 314 can also contain piezoelectric transducers or microphones to detect heart activities near the brain. The side module 312 or 314 can also contain ultrasound transmitter and receiver to create an ultrasound model of brain fluids. In one embodiment, an acoustic sensor (microphone or piezoelectric sensor) and an electrical sensor such as EKG sensor contact the patient or wearer with a conductive gel material. The conductive gel material provides transmission characteristics so as to provide an effective acoustic impedance match to the skin in addition to providing electrical conductivity for the electrical sensor. The acoustic transducer can be directed mounted on the conductive gel material substantially with or without an intermediate air buffer. In another embodiment, electronics components are distributed between first and second ear stems. In yet another embodiment, the method further comprises providing a nose bridge, wherein digital signals generated by the electronics circuit are transmitted across the nose bridge. The eyewear device may communicate wirelessly using the mesh network or alternatively they may communicate through a personal area network using the patient or wearer's body as a communication medium. Voice can be transmitted over the mesh wireless network. The speaker can play digital audio file, which can be compressed according to a compression format. The compression format may be selected from the group consisting of: PCM, DPCM, ADPCM, AAC, RAW, DM, RIFF, WAV, BWF, RIFF, AU, SND, CDA, MPEG, MPEG-1, MPEG-2, MPEG-2.5, MPEG-4, MPEG-J, MPEG 2-ACC, MP3, MP3Pro, ACE, MACE, MACE-3, MACE-6, AC-3, ATRAC, ATRAC3, EPAC, Twin VQ, VQF, WMA, WMA with DRM, DTS, DVD Audio, SACD, TAC, SHN, OGG, Ogg Vorbis, Ogg Tarkin, Ogg Theora, ASF, LQT, QDMC, A2b, .ra, .rm, and Real Audio G2, RMX formats, Fairplay, Quicktime, SWF, and PCA, among others.
  • In one embodiment, the eye wear device of FIG. 14B can provide a data port, wherein the data port is carried by the ear stem. The data port may be a mini-USB connector, a FIREWIRE connector, an IEEE 1394 cable connector, an RS232 connector, a JTAB connector, an antenna, a wireless receiver, a radio, an RF receiver, or a Bluetooth receiver. In another embodiment, the wearable device is removably connectable to a computing device. The wearable wireless audio device may be removably connectable to a computing device with a data port, wherein said data port is mounted to said wearable wireless audio device. In another embodiment, projectors can project images on the glasses to provide head-mounted display on the eye wear device. The processor can display fact, figure, to do list, and reminders need in front of the user's eyes.
  • FIG. 15A shows a system block diagram of the network-based patient or wearer monitoring system in a hospital or nursing home setting. The system has a patient or wearer component 215, a server component 216, and a client component 217. The patient or wearer component 215 has one or more mesh network patient or wearer transmitters 202 for transmitting data to the central station. The central server comprises one or more Web servers 205, one or more waveform servers 204 and one or more mesh network receivers 211. The output of each mesh network receiver 211 is connected to at least one of the waveform servers 204. The waveform servers 204 and Web the servers 205 are connected to the network 105. The Web servers 205 are also connected to a hospital database 230. The hospital database 230 contains patient or wearer records. In the embodiment of FIG. 15A, a plurality of nurse stations provide a plurality of nurse computer user interface 208. The user interface 208 receives data from an applet 210 that communicates with the waveform server 204 and updates the display of the nurse computers for treating patient or wearers.
  • The network client component 217 comprises a series of workstations 106 connected to the network 105. Each workstation 106 runs a World Wide Web (WWW or Web) browser application 208. Each Web browser can open a page that includes one or more media player applets 210. The waveform servers 204 use the network 105 to send a series of messages 220 to the Web servers 205. The Web servers 205 use the network 105 to communicate messages, shown as a path 221, to the workstations 106. The media player applets running on the workstations 106 use the network 105 to send messages over a path 223 directly to the waveform servers 204.
  • FIG. 15B shows a variation of the system of FIG. 15A for call center monitoring. In this embodiment, the patient or wearer appliances 202 wirelessly communicate to home base stations (not shown) which are connected to the POTS or PSTN network for voice as well as data transmission. The data is captured by the waveform server 204 and the voice is passed through to the call center agent computer 207 where the agent can communicate by voice with the patient or wearer. The call center agent can forward the call to a professional such as a nurse or doctor or emergency service personnel if necessary. Hence, the system can include a patient or wearer monitoring appliance coupled to the POTS or PSTN through the mesh network. The patient or wearer monitoring appliance monitors drug usage and patient or wearer falls. The patient or wearer monitoring appliance monitors patient or wearer movement. A call center can call to the telephone to provide a human response.
  • In one exemplary monitoring service providing system, such as an emergency service providing system, the system includes a communication network (e.g., the Public Switch Telephone Network or PSTN or POTS), a wide area communication network (e.g., TCP/IP network) in call centers. The communication network receives calls destined for one of the call centers. In this regard, each call destined for one of the call centers is preferably associated with a particular patient or wearer, a call identifier or a call identifier of a particular set of identifiers. A call identifier associated with an incoming call may be an identifier dialed or otherwise input by the caller. For example, the call centers may be locations for receiving calls from a particular hospital or nursing home.
  • While the patient or wearer interface 90 (FIG. 1A) can provide information for a single person, FIG. 15C shows an exemplary interface to monitor a plurality of persons, while FIG. 15D shows an exemplary dash-board that provides summary information on the status of a plurality of persons. As shown in FIG. 1C, for professional use such as in hospitals, nursing homes, or retirement homes, a display can track a plurality of patient or wearers. In FIG. 15C, a warning (such as sound or visual warning in the form of light or red flashing text) can be generated to point out the particular patient or wearer that may need help or attention. In FIG. 15D, a magnifier glass can be dragged over a particular individual icon to expand and show detailed vital parameters of the individual and if available, images from the camera 10 trained on the individual for real time video feedback. The user can initiate voice communication with the user for confirmation purposes by clicking on a button provided on the interface and speaking into a microphone on the professional's workstation.
  • In one embodiment for professional users such as hospitals and nursing homes, a Central Monitoring Station provides alarm and vital sign oversight for a plurality of patient or wearers from a single computer workstation. FIG. 15E shows an exemplary multi-station vital parameter user interface for a professional embodiment, while FIG. 15F shows an exemplary trending pattern display. The clinician interface uses simple point and click actions with a computer mouse or trackball. The clinician can initiate or change monitoring functions from either the Central Station or the bedside monitor. One skilled in the art will recognize that patient or wearer data such as EKG/EMG/EEG/BP data can be shown either by a scrolling waveform that moves along the screen display, or by a moving bar where the waveform is essentially stationary and the bar moves across the screen.
  • In one embodiment, software for the professional monitoring system provides a login screen to enter user name and password, together with database credentials. In Select Record function, the user can select a person, based on either entered or preselected criteria. From here navigate to their demographics, medical record, etc. The system can show a persons demographics, includes aliases, people involved in their care, friends and family, previous addresses, home and work locations, alternative numbers and custom fields. The system can show all data elements of a person's medical record. These data elements are not ‘hard wired’, but may be configured in the data dictionary to suit particular user requirements. It is possible to create views of the record that filter it to show (for instance) just the medications or diagnosis, etc. Any data element can be designated ‘plan able’ in the data dictionary and then scheduled. A Summary Report can be done. Example of a report displayed in simple format, selecting particular elements and dates. As many of these reports as required can be created, going across all data in the system based on some criteria, with a particular selection of fields and sorting, grouping and totaling criteria. Reports can be created that can format and analyze any data stored on the server. The system supports OLE controls and can include graphs, bar codes, etc. These can be previewed on screen, printed out or exported in a wide variety of formats. The system also maintains a directory of all organizations the administrator wishes to record as well as your own. These locations are then used to record the location for elements of the medical record (where applicable), work addresses for people involved in the care and for residential addresses for people in residential care. The data elements that form the medical record are not ‘hard wired’ (ie predefined) but may be customized by the users to suit current and future requirements.
  • In one embodiment, the wearable appliance can store patient or wearer data in its data storage device such as flash memory. The data can include Immunizations and dates; medications (prescriptions and supplements); physician names, addresses, phone numbers, email addresses; location and details of advance directives; insurance company, billing address, phone number, policy number; emergency contacts, addresses, home/business/pager phone numbers, email addresses. The data can include color or black and white photo of the wearer of the device; a thumb print, iris print of other distinguishing physical characteristic; dental records; sample ECG or Cardiac Echo Scan; blood type; present medication being taken; drug interaction precautions; drug and/or allergic reaction precautions; a description of serious preexisting medical conditions; Emergency Medical Instructions, which could include: administering of certain suggested drugs or physical treatments; calling emergency physician numbers listed; bringing the patient or wearer to a certain type of clinic or facility based on religious beliefs; and living will instructions in the case of seriously ill patient or wearers; Organ Donor instructions; Living Will instructions which could include: instructions for life support or termination of treatment; notification of next of kin and/or friends including addresses and telephone numbers; ECG trace; Cardiac Echo Scan; EEG trace; diabetes test results; x-ray scans, among others. The wearable appliance stores the wearer's medical records and ID information. In one embodiment, to start the process new/original medical information is organized and edited to fit into the BWD page format either in physicians office or by a third party with access to a patient or wearer's medical records using the base unit storage and encrypting software which can be stored in a normal pc or other compatible computer device. The system can encrypt the records so as to be secure and confidential and only accessible to authorized individuals with compatible de-encrypting software. In the event the wearer is stricken with an emergency illness a Paramedic, EMT or Emergency Room Technician can use a wireless interrogator to rapidly retrieve and display the stored medical records in the wearable appliance and send the medical records via wireless telemetry to a remote emergency room or physicians office for rapid and life saving medical intervention in a crisis situation. In a Non-emergency Situation, the personal health information service is also helpful as it eliminates the hassle of repeatedly filling out forms when changing health plans or seeing a new physician; stores vaccination records to schools or organizations without calling the pediatrician; or enlists the doctor's or pharmacist's advice about multiple medications without carrying all the bottles to a personal visit. The system can store 48 hrs. of EKG, EEG, EMG, or blood pressure data.
  • In one embodiment, a plurality of body worn sensors with in-door positioning can be used as an Emergency Department and Urgent Care Center Tracking System. The system tracks time from triage to MD assessment, identifies patient or wearers that have not yet been registered, records room usage, average wait time, and average length of stay. The system allows user defined “activities” so that hospitals can track times and assist in improving patient or wearer flow and satisfaction. The system can set custom alerts and send email/pager notifications to better identify long patient or wearer wait times and record the number of these alert occurrences. The system can manage room usage by identifying those rooms which are under/over utilized. The hospital administrator can set manual or automatic alerts and generate custom reports for analysis of patient or wearer flow. The system maximizes revenue by streamlining processes and improving throughput; improves charge capture by ensuring compliance with regulatory standards; increases accountability by collecting clear, meaningful data; enhances risk management and QA; and decreases liability.
  • FIG. 16A shows ant exemplary process to continuously determine blood pressure of a patient or wearer. The process generates a blood pressure model of a patient or wearer (2002); determines a blood flow velocity using a piezoelectric transducer (2004); and provides the blood flow velocity to the blood pressure model to continuously estimate blood pressure (2006).
  • FIG. 16B shows another exemplary process to continuously determine blood pressure of a patient or wearer. First, during an initialization mode, a monitoring device and calibration device are attached to patient or wearer (2010). The monitoring device generates patient or wearer blood flow velocity, while actual blood pressure is measured by a calibration device (2012). Next, the process generates a blood pressure model based on the blood flow velocity and the actual blood pressure (2014). Once this is done, the calibration device can be removed (2016). Next, during an operation mode, the process periodically samples blood flow velocity from the monitoring device on a real-time basis (18) and provides the blood flow velocity as input information to the blood pressure model to estimate blood pressure (20). This process can be done in continuously or periodically as specified by a user.
  • In one embodiment, to determine blood flow velocity, acoustic pulses are generated and transmitted into the artery using an ultrasonic transducer positioned near a wrist artery. These pulses are reflected by various structures or entities within the artery (such as the artery walls, and the red blood cells within the subject's blood), and subsequently received as frequency shifts by the ultrasonic transducer. Next, the blood flow velocity is determined. In this process, the frequencies of those echoes reflected by blood cells within the blood flowing in the artery differ from that of the transmitted acoustic pulses due to the motion of the blood cells. This well known “Doppler shift” in frequency is used to calculate the blood flow velocity. In one embodiment for determining blood flow velocity, the Doppler frequency is used to determine mean blood velocity. For example, U.S. Pat. No. 6,514,211, the content of which is incorporated by reference, discusses blood flow velocity using a time-frequency representation.
  • In one implementation, the system can obtain one or more numerical calibration curves describing the patient or wearer's vital signs such as blood pressure. The system can then direct energy such as infrared or ultrasound at the patient or wearer's artery and detecting reflections thereof to determine blood flow velocity from the detected reflections. The system can numerically fit or map the blood flow velocity to one or more calibration parameters describing a vital-sign value. The calibration parameters can then be compared with one or more numerical calibration curves to determine the blood pressure.
  • Additionally, the system can analyze blood pressure, and heart rate, and pulse oximetry values to characterize the user's cardiac condition. These programs, for example, may provide a report that features statistical analysis of these data to determine averages, data displayed in a graphical format, trends, and comparisons to doctor-recommended values.
  • In one embodiment, feed forward artificial neural networks (NNs) are used to classify valve-related heart disorders. The heart sounds are captured using the microphone or piezoelectric transducer. Relevant features were extracted using several signal processing tools, discrete wavelet transfer, fast fourier transform, and linear prediction coding. The heart beat sounds are processed to extract the necessary features by: a) denoising using wavelet analysis, b) separating one beat out of each record c) identifying each of the first heart sound (FHS) and the second heart sound (SHS). Valve problems are classified according to the time separation between the FHS and th SHS relative to cardiac cycle time, namely whether it is greater or smaller than 20% of cardiac cycle time. In one embodiment, the NN comprises 6 nodes at both ends, with one hidden layer containing 10 nodes. In another embodiment, linear predictive code (LPC) coefficients for each event were fed to two separate neural networks containing hidden neurons.
  • In another embodiment, a normalized energy spectrum of the sound data is obtained by applying a Fast Fourier Transform. The various spectral resolutions and frequency ranges were used as inputs into the NN to optimize these parameters to obtain the most favorable results.
  • In another embodiment, the heart sounds are denoised using six-stage wavelet decomposition, thresholding, and then reconstruction. Three feature extraction techniques were used: the Decimation method, and the wavelet method.
  • Classification of the heart diseases is done using Hidden Markov Models (HMMs).
  • In yet another embodiment, a wavelet transform is applied to a window of two periods of heart sounds. Two analyses are realized for the signals in the window: segmentation of first and second heart sounds, and the extraction of the features. After segmentation, feature vectors are formed by using he wavelet detail coefficients at the sixth decomposition level. The best feature elements are analyzed by using dynamic programming.
  • In another embodiment, the wavelet decomposition and reconstruction method extract features from the heart sound recordings. An artificial neural network classification method classifies the heart sound signals into physiological and pathological murmurs. The heart sounds are segmented into four parts: the first heart sound, the systolic period, the second heart sound, and the diastolic period. The following features can be extracted and used in the classification algorithm: a) Peak intensity, peak timing, and the duration of the first heart sound b) the duration of the second heart sound c) peak intensity of the aortic component of S2(A2) and the pulmonic component of S2 (P2), the splitting interval and the reverse flag of A2 and P2, and the timing of A2 d) the duration, the three largest frequency components of the systolic signal and the shape of the envelope of systolic murmur e) the duration the three largest frequency components of the diastolic signal and the shape of the envelope of the diastolic murmur.
  • In one embodiment, the time intervals between the ECG R-waves are detected using an envelope detection process. The intervals between R and T waves are also determined. The Fourier transform is applied to the sound to detect S1 and S2. To expedite processing, the system applies Fourier transform to detect S1 in the interval 0.1-0.5R-R. The system looks for S2 the intervals R-T and 0.6 R-R. S2 has an aortic component A2 and a pulmonary component P2. The interval between these two components and its changes with respiration has clinical significance. A2 sound occurs before P2, and the intensity of each component depends on the closing pressure and hence A2 is louder than P2. The third heard sound S3 results from the sudden halt in the movement of the ventricle in response to filling in early diastole after the AV valves and is normally observed in children and young adults. The fourth heart sound S4 is caused by the sudden halt of the ventricle in response to filling in presystole due to atrial contraction.
  • In yet another embodiment, the S2 is identified and a normalized splitting interval between A2 and P2 is determined. If there is no overlap, A2 and P2 are determined from the heart sound. When overlap exists between A2 and P2, the sound is dechirped for identification and extraction of A2 and P2 from S2. The A2-P2 splitting interval (SI) is calculated by computing the cross-correlation function between A2 and P2 and measuring the time of occurrence of its maximum amplitude. SI is then normalized (NSI) for heart rate as follows: NSI=SI/cardiac cycle time. The duration of the cardiac cycle can be the average interval of QRS waves of the ECG. It could also be estimated by computing the mean interval between a series of consecutive S1 and S2 from the heart sound data. A non linear regressive analysis maps the relationship between the normalized NSI and PAP. A mapping process such as a curve-fitting procedure determines the curve that provides the best fit with the patient or wearer data. Once the mathematical relationship is determined, NSI can be used to provide an accurate quantitative estimate of the systolic and mean PAP relatively independent of heart rate and systemic arterial pressure.
  • In another embodiment, the first heart sound (S1) is detected using a time-delayed neural network (TDNN). The network consists of a single hidden layer, with time-delayed links connecting the hidden units to the time-frequency energy coefficients of a Morlet wavelet decomposition of the input phonocardiogram (PCG) signal. The neural network operates on a 200 msec sliding window with each time-delay hidden unit spanning 100 msec of wavelet data.
  • In yet another embodiment, a local signal analysis is used with a classifier to detect, characterize, and interpret sounds corresponding to symptoms important for cardiac diagnosis. The system detects a plurality of different heart conditions. Heart sounds are automatically segmented into a segment of a single heart beat cycle. Each segment are then transformed using 7 level wavelet decomposition, based on Coifman 4th order wavelet kernel. The resulting vectors 4096 values, are reduced to 256 element feature vectors, this simplified the neural network and reduced noise.
  • In another embodiment, feature vectors are formed by using the wavelet detail and approximation coefficients at the second and sixth decomposition levels. The classification (decision making) is performed in 4 steps: segmentation of the first and second heart sounds, normalization process, feature extraction, and classification by the artificial neural network.
  • In another embodiment using decision trees, the system distinguishes (1) the Aortic Stenosis (AS) from the Mitral Regurgitation (MR) and (2) the Opening Snap (OS), the Second Heart Sound Split (A2_P2) and the Third Heart Sound (S3). The heart sound signals are processed to detect the first and second heart sounds in the following steps: a) wavelet decomposition, b) calculation of normalized average Shannon Energy, c) a morphological transform action that amplifies the sharp peaks and attenuates the broad ones d) a method that selects and recovers the peaks corresponding to S1 and S2 and rejects others e) algorithm that determines the boundaries of S1 and S2 in each heart cycle f) a method that distinguishes S1 from S2.
  • In one embodiment, once the heart sound signal has been digitized and captured into the memory, the digitized heart sound signal is parameterized into acoustic features by a feature extractor. The output of the feature extractor is delivered to a sound recognizer. The feature extractor can include the short time energy, the zero crossing rates, the level crossing rates, the filter-bank spectrum, the linear predictive coding (LPC), and the fractal method of analysis. In addition, vector quantization may be utilized in combination with any representation techniques. Further, one skilled in the art may use an auditory signal-processing model in place of the spectral models to enhance the system's robustness to noise and reverberation.
  • In one embodiment of the feature extractor, the digitized heart sound signal series s(n) is put through a low-order filter, typically a first-order finite impulse response filter, to spectrally flatten the signal and to make the signal less susceptible to finite precision effects encountered later in the signal processing. The signal is pre-emphasized preferably using a fixed pre-emphasis network, or preemphasizer. The signal can also be passed through a slowly adaptive pre-emphasizer. The preemphasized heart sound signal is next presented to a frame blocker to be blocked into frames of N samples with adjacent frames being separated by M samples. In one implementation, frame 1 contains the first 400 samples. The frame 2 also contains 400 samples, but begins at the 300th sample and continues until the 700th sample. Because the adjacent frames overlap, the resulting LPC spectral analysis will be correlated from frame to frame. Each frame is windowed to minimize signal discontinuities at the beginning and end of each frame. The windower tapers the signal to zero at the beginning and end of each frame. Preferably, the window used for the autocorrelation method of LPC is the Hamming window. A noise canceller operates in conjunction with the autocorrelator to minimize noise. Noise in the heart sound pattern is estimated during quiet periods, and the temporally stationary noise sources are damped by means of spectral subtraction, where the autocorrelation of a clean heart sound signal is obtained by subtracting the autocorrelation of noise from that of corrupted heart sound. In the noise cancellation unit, if the energy of the current frame exceeds a reference threshold level, the heart is generating sound and the autocorrelation of coefficients representing noise is not updated. However, if the energy of the current frame is below the reference threshold level, the effect of noise on the correlation coefficients is subtracted off in the spectral domain. The result is half-wave rectified with proper threshold setting and then converted to the desired autocorrelation coefficients. The output of the autocorrelator and the noise canceller are presented to one or more parameterization units, including an LPC parameter unit, an FFT parameter unit, an auditory model parameter unit, a fractal parameter unit, or a wavelet parameter unit, among others. The LPC parameter is then converted into cepstral coefficients. The cepstral coefficients are the coefficients of the Fourier transform representation of the log magnitude spectrum. A filter bank spectral analysis, which uses the short-time Fourier transformation (STFT) may also be used alone or in conjunction with other parameter blocks. FFT is well known in the art of digital signal processing. Such a transform converts a time domain signal, measured as amplitude over time, into a frequency domain spectrum, which expresses the frequency content of the time domain signal as a number of different frequency bands. The FFT thus produces a vector of values corresponding to the energy amplitude in each of the frequency bands. The FFT converts the energy amplitude values into a logarithmic value which reduces subsequent computation since the logarithmic values are more simple to perform calculations on than the longer linear energy amplitude values produced by the FFT, while representing the same dynamic range. Ways for improving logarithmic conversions are well known in the art, one of the simplest being use of a look-up table. In addition, the FFT modifies its output to simplify computations based on the amplitude of a given frame. This modification is made by deriving an average value of the logarithms of the amplitudes for all bands. This average value is then subtracted from each of a predetermined group of logarithms, representative of a predetermined group of frequencies. The predetermined group consists of the logarithmic values, representing each of the frequency bands. Thus, utterances are converted from acoustic data to a sequence of vectors of k dimensions, each sequence of vectors identified as an acoustic frame, each frame represents a portion of the utterance. Alternatively, auditory modeling parameter unit can be used alone or in conjunction with others to improve the parameterization of heart sound signals in noisy and reverberant environments. In this approach, the filtering section may be represented by a plurality of filters equally spaced on a log-frequency scale from 0 Hz to about 3000 Hz and having a prescribed response corresponding to the cochlea. The nerve fiber firing mechanism is simulated by a multilevel crossing detector at the output of each cochlear filter. The ensemble of the multilevel crossing intervals corresponds to the firing activity at the auditory nerve fiber-array. The interval between each successive pair of same direction, either positive or negative going, crossings of each predetermined sound intensity level is determined and a count of the inverse of these interspike intervals of the multilevel detectors for each spectral portion is stored as a function of frequency. The resulting histogram of the ensemble of inverse interspike intervals forms a spectral pattern that is representative of the spectral distribution of the auditory neural response to the input sound and is relatively insensitive to noise The use of a plurality of logarithmically related sound intensity levels accounts for the intensity of the input signal in a particular frequency range. Thus, a signal of a particular frequency having high intensity peaks results in a much larger count for that frequency than a low intensity signal of the same frequency. The multiple level histograms of the type described herein readily indicate the intensity levels of the nerve firing spectral distribution and cancel noise effects in the individual intensity level histograms. Alternatively, the fractal parameter block can further be used alone or in conjunction with others to represent spectral information. Fractals have the property of self similarity as the spatial scale is changed over many orders of magnitude. A fractal function includes both the basic form inherent in a shape and the statistical or random properties of the replacement of that shape in space. As is known in the art, a fractal generator employs mathematical operations known as local affine transformations. These transformations are employed in the process of encoding digital data representing spectral data. The encoded output constitutes a “fractal transform” of the spectral data and consists of coefficients of the affine transformations. Different fractal transforms correspond to different images or sounds.
  • Alternatively, a wavelet parameterization block can be used alone or in conjunction with others to generate the parameters. Like the FFT, the discrete wavelet transform (DWT) can be viewed as a rotation in function space, from the input space, or time domain, to a different domain. The DWT consists of applying a wavelet coefficient matrix hierarchically, first to the full data vector of length N, then to a smooth vector of length N/2, then to the smooth-smooth vector of length N/4, and so on. Most of the usefulness of wavelets rests on the fact that wavelet transforms can usefully be severely truncated, or turned into sparse expansions. In the DWT parameterization block, the wavelet transform of the heart sound signal is performed. The wavelet coefficients are allocated in a non-uniform, optimized manner. In general, large wavelet coefficients are quantized accurately, while small coefficients are quantized coarsely or even truncated completely to achieve the parameterization. Due to the sensitivity of the low-order cepstral coefficients to the overall spectral slope and the sensitivity of the high-order cepstral coefficients to noise variations, the parameters generated may be weighted by a parameter weighing block, which is a tapered window, so as to minimize these sensitivities. Next, a temporal derivator measures the dynamic changes in the spectra. Power features are also generated to enable the system to distinguish heart sound from silence.
  • After the feature extraction has been performed, the heart sound parameters are next assembled into a multidimensional vector and a large collection of such feature signal vectors can be used to generate a much smaller set of vector quantized (VQ) feature signals by a vector quantizer that cover the range of the larger collection. In addition to reducing the storage space, the VQ representation simplifies the computation for determining the similarity of spectral analysis vectors and reduces the similarity computation to a look-up table of similarities between pairs of codebook vectors. To reduce the quantization error and to increase the dynamic range and the precision of the vector quantizer, the preferred embodiment partitions the feature parameters into separate codebooks, preferably three. In the preferred embodiment, the first, second and third codebooks correspond to the cepstral coefficients, the differenced cepstral coefficients, and the differenced power coefficients.
  • With conventional vector quantization, an input vector is represented by the codeword closest to the input vector in terms of distortion. In conventional set theory, an object either belongs to or does not belong to a set. This is in contrast to fuzzy sets where the membership of an object to a set is not so clearly defined so that the object can be a part member of a set. Data are assigned to fuzzy sets based upon the degree of membership therein, which ranges from 0 (no membership) to 1.0 (full membership). A fuzzy set theory uses membership functions to determine the fuzzy set or sets to which a particular data value belongs and its degree of membership therein.
  • To handle the variance of heart sound patterns of individuals over time and to perform speaker adaptation in an automatic, self-organizing manner, an adaptive clustering technique called hierarchical spectral clustering is used. Such speaker changes can result from temporary or permanent changes in vocal tract characteristics or from environmental effects. Thus, the codebook performance is improved by collecting heart sound patterns over a long period of time to account for natural variations in speaker behavior. In one embodiment, data from the vector quantizer is presented to one or more recognition models, including an HMM model, a dynamic time warping model, a neural network, a fuzzy logic, or a template matcher, among others. These models may be used singly or in combination.
  • In dynamic processing, at the time of recognition, dynamic programming slides, or expands and contracts, an operating region, or window, relative to the frames of heart sound so as to align those frames with the node models of each S1-S4 pattern to find a relatively optimal time alignment between those frames and those nodes. The dynamic processing in effect calculates the probability that a given sequence of frames matches a given word model as a function of how well each such frame matches the node model with which it has been time-aligned. The word model which has the highest probability score is selected as corresponding to the heart sound.
  • Dynamic programming obtains a relatively optimal time alignment between the heart sound to be recognized and the nodes of each word model, which compensates for the unavoidable differences in speaking rates which occur in different utterances of the same word. In addition, since dynamic programming scores words as a function of the fit between word models and the heart sound over many frames, it usually gives the correct word the best score, even if the word has been slightly misspoken or obscured by background sound. This is important, because humans often mispronounce words either by deleting or mispronouncing proper sounds, or by inserting sounds which do not belong.
  • In dynamic time warping (DTW), the input heart sound A, defined as the sampled time values A=a(1) . . . a(n), and the vocabulary candidate B, defined as the sampled time values B=b(1) . . . b(n), are matched up to minimize the discrepancy in each matched pair of samples. Computing the warping function can be viewed as the process of finding the minimum cost path from the beginning to the end of the words, where the cost is a function of the discrepancy between the corresponding points of the two words to be compared. Dynamic programming considers all possible points within the permitted domain for each value of i. Because the best path from the current point to the next point is independent of what happens beyond that point. Thus, the total cost of [i(k), j(k)] is the cost of the point itself plus the cost of the minimum path to it. Preferably, the values of the predecessors can be kept in an M×N array, and the accumulated cost kept in a 2×N array to contain the accumulated costs of the immediately preceding column and the current column. However, this method requires significant computing resources. For the heart sound recognizer to find the optimal time alignment between a sequence of frames and a sequence of node models, it must compare most frames against a plurality of node models. One method of reducing the amount of computation required for dynamic programming is to use pruning Pruning terminates the dynamic programming of a given portion of heart sound against a given word model if the partial probability score for that comparison drops below a given threshold. This greatly reduces computation, since the dynamic programming of a given portion of heart sound against most words produces poor dynamic programming scores rather quickly, enabling most words to be pruned after only a small percent of their comparison has been performed. To reduce the computations involved, one embodiment limits the search to that within a legal path of the warping.
  • A Hidden Markov model can be used in one embodiment to evaluate the probability of occurrence of a sequence of observations O(1), O(2), . . . O(t), . . . , O(T), where each observation O(t) may be either a discrete symbol under the VQ approach or a continuous vector. The sequence of observations may be modeled as a probabilistic function of an underlying Markov chain having state transitions that are not directly observable. The transitions between states are represented by a transition matrix A=[a(i,j)]. Each a(i,j) term of the transition matrix is the probability of making a transition to state j given that the model is in state i. The output symbol probability of the model is represented by a set of functions B=[b(j)(O(t)], where the b(j)(O(t) term of the output symbol matrix is the probability of outputting observation O(t), given that the model is in state j. The first state is always constrained to be the initial state for the first time frame of the utterance, as only a prescribed set of left-to-right state transitions are possible. A predetermined final state is defined from which transitions to other states cannot occur. Transitions are restricted to reentry of a state or entry to one of the next two states. Such transitions are defined in the model as transition probabilities. For example, a heart sound pattern currently having a frame of feature signals in state 2 has a probability of reentering state 2 of a(2,2), a probability a(2,3) of entering state 3 and a probability of a(2,4)=1−a(2, 1)−a(2,2) of entering state 4. The probability a(2, 1) of entering state 1 or the probability a(2,5) of entering state 5 is zero and the sum of the probabilities a(2,1) through a(2,5) is one. Although the preferred embodiment restricts the flow graphs to the present state or to the next two states, one skilled in the art can build an HMM model without any transition restrictions.
  • The Markov model is formed for a reference pattern from a plurality of sequences of training patterns and the output symbol probabilities are multivariate Gaussian function probability densities. The heart sound traverses through the feature extractor. During learning, the resulting feature vector series is processed by a parameter estimator, whose output is provided to the hidden Markov model. The hidden Markov model is used to derive a set of reference pattern templates, each template representative of an identified S1-S4 pattern in a vocabulary set of reference patterns. The Markov model reference templates are next utilized to classify a sequence of observations into one of the reference patterns based on the probability of generating the observations from each Markov model reference pattern template. During recognition, the unknown pattern can then be identified as the reference pattern with the highest probability in the likelihood calculator.
  • In one embodiment, a heart sound analyzer detects Normal S1, Split S1, Normal S2, Normal split S2, Wide split S2, Paradoxical split S2, Fixed split S2, S3 right ventricle origin, S3 left ventricle origin, opening snap, S4 right ventricle origin, S4 left ventricle origin, aortic ejection sound, and pulmonic ejection sound, among others. The sound analyzer can be an HMM type analyzer, a neural network type analyzer, a fuzzy logic type analyzer, a genetic algorithm type analyzer, a rule-based analyzer, or any suitable classifier. The heart sound data is captured, filtered, and the major features of the heart sound are determined and then operated by a classifier such as HMM or neural network, among others.
  • The analyzer can detect S1, whose major audible components are related to mitral and tricuspid valve closure. Mitral (MI) closure is the first audible component of the first sound. It normally occurs before tricuspid (T1) closure, and is of slightly higher intensity than T1. A split of the first sound occurs when both components that make up the sound are separately distinguishable. In a normally split first sound, the mitral and tricuspid components are 20 to 30 milliseconds apart. Under certain conditions a wide or abnormally split first sound can be heard. An abnormally wide split first sound can be due to either electrical or mechanical causes, which create asynchrony of the two ventricles. Some of the electrical causes may be right bundle branch block, premature ventricular beats and ventricular tachycardia. An apparently wide split can be caused by another sound around the time of the first. The closure of the aortic and pulmonic valves contributes to second sound production. In the normal sequence, the aortic valve closes before the pulmonic valve. The left sided mechanical events normally precede right sided events.
  • The system can analyze the second sound S2. The aortic (A2) component of the second sound is the loudest of the two components and is discernible at all auscultation sites, but especially well at the base. The pulmonic (P2) component of the second sound is the softer of the two components and is usually audible at base left. A physiological split occurs when both components of the second sound are separately distinguishable. Normally this split sound is heard on inspiration and becomes single on expiration. The A2 and P2 components of the physiological split usually coincide, or are less than 30 milliseconds apart during expiration and often moved to around 50 to 60 milliseconds apart by the end of inspiration. The physiological split is heard during inspiration because it is during that respiratory cycle that intrathoracic pressure drops. This drop permits more blood to return to the right heart. The increased blood volume in the right ventricle results in a delayed pulmonic valve closure. At the same time, the capacity of the pulmonary vessels in the lung is increased, which results in a slight decrease in the blood volume returning to the left heart. With less blood in the left ventricle, its ejection takes less time, resulting in earlier closing of the aortic valve. Therefore, the net effect of inspiration is to cause aortic closure to occur earlier, and pulmonary closure to occur later. Thus, a split second is heard during inspiration, and a single second sound is heard during expiration. A reversed (paradoxical) split of the second sound occurs when there is a reversal of the normal closure sequence with pulmonic closure occurring before aortic. During inspiration the second sound is single, and during expiration the second sound splits. This paradoxical splitting of the second sound may be heard when aortic closure is delayed, as in marked volume or pressure loads on the left ventricle (i.e., aortic stenosis) or with conduction defects which delay left ventricular depolarization (i.e., left bundle branch block). The normal physiological split second sound can be accentuated by conditions that cause an abnormal delay in pulmonic valve-1 closure. Such a delay may be due to an increased volume in the right ventricle as o compared with the left (atrial septal defect, or ventricular septal defect); chronic right ventricular outflow obstruction (pulmonic stenosis); acute or chronic dilatation of the. right ventricle due to sudden rise in pulmonary artery pressure (pulmonary embolism); electrical delay or activation of AA the right ventricle (right bundle branch block); decreased elastic recoil of the pulmonary artery (idiopathic dilatation of the pulmonary artery). The wide split has a duration of 40 to 50′ milliseconds, compared to the normal physiologic split of 30 milliseconds. Fixed splitting of the second sound refers to split sound which displays little or no respiratory variation. The two components making up the sound occur in their normal sequence, but the ventricles are unable to change their volumes with respiration. This finding is typical in atrial septal defect, but is occasionally heard in congestive heart failure. The fixed split is heard best at base left with the diaphragm.
  • The third heart sound is also of low frequency, but it is heard just after the second heart sound. It occurs in early diastole, during the time of rapid ventricular filling. This sound occurs about 140 to 160 milliseconds after the second sound. The S3 is often heard in normal children or young adults but when heard in individuals over the age of 40 it usually reflects cardiac disease characterized by ventricular dilatation, decreased systolic function, and elevated ventricular diastolic filling pressure. The nomenclature includes the term ventricular gallop, protodiastolic gallop, S3 gallop, or the more common, S3. When normal it is referred to as a physiological third heart sound, and is usually not heard past the age of forty. The abnormal, or pathological third heart sound, may be heard in individuals with coronary artery disease, cardiomyopathies, incompetent valves, left to right shunts, Ventricular Septal Defect (VSD), or Patent Ductus Arteriosus (PDA). The pathological S3 may be the first clinical sign of congestive heart failure. The fourth heart sound is a low frequency sound heard just before the first heart sound, usually preceding this sound by a longer interval than that separating the two components of the normal first sound. It has also been known as an “atrial gallop”, a “presystolic gallop”, and an “S4 gallop”. It is most commonly known as an “S4”.
  • The S4 is a diastolic sound, which occurs during the late diastolic filling phase at the time when the atria contract. When the ventricles have a decreased compliance, or are receiving an increased diastolic volume, they generate a low frequency vibration, the S4. Some authorities believe the S4 may be normal in youth, but is seldom considered normal after the age of 20. The abnormal or pathological S4 is heard in primary myocardial disease, coronary artery disease, hypertension, and aortic and pulmonic stenosis. The S4 may have its origin in either the left or right heart. The S4 of left ventricular origin is best heard at the apex, with the patient or wearer supine, or in the left lateral recumbent position. Its causes include severe hypertension, aortic stenosis, cardiomyopathies, and left ventricular myocardial infarctions. In association with ischemic heart disease the S4 is often loudest during episodes of angina pectoris or may occur early after an acute myocardial infarction, often becoming fainter as the patient or wearer improves. The S4 of right ventricular origin is best heard at the left lateral sternal border. It is usually accentuated with inspiration, and may be due to pulmonary stenosis, pulmonary hypertension, or right ventricular myocardial infarction. When both the third heart sound and a fourth heart sound are present, with a normal heart rate, 60-100 heart beats per minute, the four sound cadence of a quadruple rhythm may be heard.
  • Ejection sounds are high frequency clicky sounds occurring shortly after the first sound with the onset of ventricular ejection. They are produced by the opening of the semilunar valves, aortic or pulmonic, either when one of these valves is diseased, or when ejection is rapid through a normal valve. They are heard best at the base, and may be of either aortic or pulmonic origin. Ejection sounds of aortic origin often radiate widely and may be heard anywhere on a straight line from the base right to the apex. Aortic ejection sounds are most typically heard in patient or wearers with valvular aortic stenosis, but are occasionally heard in various other conditions, such as aortic insufficiency, coarctation of the aorta, or aneurysm of the ascending aorta. Ejection sounds of pulmonic origin are heard anywhere on a straight line from base left, where they are usually best heard, to the epigastrium. Pulmonic ejection sounds are typically heard in pulmonic stenosis, but may be encountered in pulmonary hypertension, atrial septal defects (ASD) or in conditions causing enlargement of the pulmonary artery. Clicks are high frequency sounds which occur in systole, either mid, early, or late. The click generally occurs at least 100 milliseconds after the first sound. The most common cause of the click is mitral valve prolapse. The clicks of mitral origin are best heard at the apex, or toward the left lateral sternal border. The click will move closer to the first sound when volume to the ventricle is reduced, as occurs in standing or the Valsalva maneuver. The opening snap is a short high frequency sound, which occurs after the second heart sound in early diastole. It usually follows the second sound by about 60 to 100 milliseconds. It is most frequently the result of the sudden arrest of the opening of the mitral valve, occurring in mitral stenosis, but may also be encountered in conditions producing increased flow through this valve (i.e., VSD or PDA). In tricuspid stenosis or in association with increased flow across the tricuspid valve, as in ASD, a tricuspid opening snap may be heard. The tricuspid opening snap is loudest at the left lateral sternal border, and becomes louder with inspiration.
  • Murmurs are sustained noises that are audible during the time periods of systole, diastole, or both. They are basically produced by these factors: 1) Backward regurgitation through a leaking valve or septal defect; 2) Forward flow through a narrowed or deformed valve or conduit or through an arterial venous connection; 3) High rate of blood flow through a normal or abnormal valve; 4) Vibration of loose structures within the heart (i.e., chordae tendineae or valvular tissue). Murmurs that occur when the ventricles are contracting, that is, during systole, are referred to as systolic murmurs. Murmurs occurring when the ventricles are relaxed and filling, that is during diastole, are referred to as diastolic murmurs. There are six characteristics useful in murmur identification and differentiation:
  • 1) Location or the valve area over which the murmur is best heard. This is one clue to the origin of the murmur. Murmurs of mitral origin are usually best heard at the apex. Tricuspid murmurs at the lower left lateral sternal border, and pulmonic murmurs at base left. Aortic systolic murmurs are best heard at base right, and aortic diastolic murmurs at Erb's point, the third intercostal space to the left of the sternum.
  • 2) Frequency (pitch). Low, medium, or high.
  • 3) Intensity.
  • 4) Quality.
  • 5) Timing. (Occurring during systole, diastole, or both).
  • 6) Areas where the sound is audible in addition to the area over which it is heard best.
  • Systolic murmurs are sustained noises that are audible during the time period of systole, or the period between S1 and S2. Forward flow across the aortic or pulmonic valves, or regurgitant flow from the mitral or tricuspid valve may produce a systolic murmur. Systolic murmurs may be normal, and can represent normal blood flow, i.e., thin chest, babies and children, or increased blood flow, i.e., pregnant women. Early systolic murmurs begin with or shortly after the first sound and peak in the first third of systole. Early murmurs have the greatest intensity in the early part of the cycle. The commonest cause is the innocent murmur of childhood (to be discussed later). A small ventricular septal defect (VSD) occasionally causes an early systolic murmur. The early systolic murmur of a small VSD begins with S1 and stops in mid systole, because as ejection continues and the ventricular size decreases, the small defect is sealed shut, causing the murmur to soften or cease. This murmur is characteristic of the type of children's VSD located in the muscular portion of the ventricular septum. This defect may disappear with age. A mid-systolic murmur begins shortly after the first sound, peaks in the middle of systole, and does not quite extend to the second sound. It is the crescendo decrescendo murmur which builds up and decrease symmetrically. It is also known as an ejection murmur. It most commonly is due to forward blood flow through a normal, narrow or irregular valve, i.e., aortic or pulmonic stenosis. The murmur begins when the pressure in the respective ventricle exceeds the aortic or pulmonary arterial pressure. The most characteristic feature of this murmur is its cessation before the second sound, thus leaving this latter sound identifiable as a discrete entity. This type of murmur is commonly heard in normal individuals, particularly in the young, who usually have increased blood volumes flowing over normal valves. In this setting the murmur is usually short, with its peak intensity early in systole, and is soft, seldom over 2 over 6 in intensity. It is then designated as an innocent murmur. In order for a murmur to be classified as innocent (i.e. normal), the following are present:
  • 1) Normal splitting of the second sound together with absence of abnormal sounds or murmurs, such as ejection sounds, diastolic murmurs, etc.
  • 2) Normal jugular venus and carotid pulses
  • 3) Normal precordial pulsations or palpation, and
  • 4) Normal chest x-ray and ECG
  • Obstruction or stenosis across the aortic or pulmonic valves also may give rise to a murmur of this type. These murmurs are usually longer and louder than the innocent murmur, and reach a peak intensity in mid-systole. The murmur of aortic stenosis is harsh in quality and is heard equally well with either the bell or the diaphragm. It is heard best at base right, and radiates to the apex and to the neck bilaterally.
  • An early diastolic murmur begins with a second sound, and peaks in the first third of diastole. Common causes are aortic regurgitation and pulmonic regurgitation. The early diastolic murmur of aortic regurgitation usually has a high frequency blowing quality, is heard best with a diaphragm at Erb's point, and radiates downward along the left sternal border. Aortic regurgitation tends to be of short duration, and heard best on inspiration. This respiratory variation is helpful in differentiating pulmonic regurgitation from aortic regurgitation. A mid-diastolic murmur begins after the second sound and peaks in mid-diastole. Common causes are mitral stenosis, and tricuspid stenosis. The murmur of mitral stenosis is a low frequency, crescendo de crescendo rumble, heard at the apex with the bell lightly held. If it radiates, it does so minimally to the axilla. Mitral stenosis normally produces three distinct abnormalities which can be heard: 1) A loud first sound 2) An opening snap, and 3) A mid-diastolic rumble with a late diastolic accentuation.
  • A late diastolic murmur occurs in the latter half of diastole, synchronous with atrial contraction, and extends to the first sound. Although occasionally occurring alone, it is usually a component of the longer diastolic murmur of mitral stenosis or tricuspid stenosis. This murmur is low in frequency, and rumbling in quality. A continuous murmur usually begins during systole and extends through the second sound and throughout the diastolic period. It is usually produced as a result of one of four mechanisms: 1) An abnormal communication between an artery and vein; 2) An abnormal communication between the aorta and the right side of the heart or with the left atrium; 3) An abnormal increase in flow, or constriction in an artery; and 4) Increased or turbulent blood flow through veins. Patent Ductus Arteriosus (PDA) is the classical example of this murmur. This condition is usually corrected in childhood. It is heard best at base left, and is usually easily audible with the bell or diaphragm. Another example of a continuous murmur is the so-called venous hum, but in this instance one hears a constant roaring sound which changes little with the cardiac cycle. A late systolic murmur begins in the latter half of systole, peaks in the later third of systole, and extends to the second sound. It is a modified regurgitant murmur with a backward flow through an incompetent valve, usually the mitral valve. It is commonly heard in mitral valve prolapse, and is usually high in frequency (blowing in quality), and heard best with a diaphragm at the apex. It may radiate to the axilla or left sternal border. A pansystolic or holosystolic murmur is heard continuously throughout systole. It begins with the first heart sound, and ends with the second heart sound. It is commonly heard in mitral regurgitation, tricuspid regurgitation, and ventricular septal defect. This type of murmur is caused by backward blood flow. Since the pressure remains higher throughout systole in the ejecting chamber than in the receiving chamber, the murmur is continuous throughout systole. Diastolic murmurs are sustained noises that are audible between S2 and the next S. Unlike systolic murmurs, diastolic murmurs should usually be considered pathological, and not normal. Typical abnormalities causing diastolic murmurs are aortic regurgitation, pulmonic regurgitation, mitral stenosis, and tricuspid stenosis. The timing of diastolic murmurs is the primary concern of this program. These murmurs can be early, mid, late and pan in nature. In a pericardial friction rub, there are three sounds, one systolic, and two diastolic. The systolic sound may occur anywhere in systole, and the two diastolic sounds occur at the times the ventricles are stretched. This stretching occurs in early diastole, and at the end of diastole. The pericardial friction rub has a scratching, grating, or squeaking leathery quality. It tends to be high in frequency and best heard with a diaphragm. A pericardial friction rub is a sign of pericardial inflammation and may be heard in infective pericarditis, in myocardial infarction, following cardiac surgery, trauma, and in autoimmune problems such as rheumatic fever.
  • In addition to heart sound analysis, the timing between the onset and offset of particular features of the ECG (referred to as an interval) provides a measure of the state of the heart and can indicate the presence of certain cardiological conditions. An EKG analyzer is provided to interpret EKG/ECG data and generate warnings if needed. The analyzer examines intervals in the ECG waveform such as the QT interval and the PR interval. The QT interval is defined as the time from the start of the QRS complex to the end of the T wave and corresponds to the total duration of electrical activity (both depolarization and repolarization) in the ventricles. Similarly, the PR interval is defined as the time from the start of the P wave to the start of the QRS complex and corresponds to the time from the onset of atrial depolarization to the onset of ventricular depolarization. In one embodiment, hidden Markov and hidden semi-Markov models are used for automatically segmenting an electrocardiogram waveform into its constituent waveform features. An undecimated wavelet transform is used to generate an overcomplete representation of the signal that is more appropriate for subsequent modelling. By examining the ECG signal in detail it is possible to derive a number of informative measurements from the characteristic ECG waveform. These can then be used to assess the medical well-being of the patient or wearer. The wavelet methods such as the undecimated wavelet transform, can be used instead of raw time series data to generate an encoding of the ECG which is tuned to the unique spectral characteristics of the ECG waveform features. The segmentation process can use of explicit state duration modelling with hidden semi-Markov models. Using a labelled data set of ECG waveforms, a hidden Markov model is trained in a supervised manner. The model was comprised of the following states: P wave, QRS complex, T wave, U wave, and Baseline. The parameters of the transition matrix aij were computed using the maximum likelihood estimates. The ECG data is encoded with wavelets from the Daubechies, Symlet, Coiflet or Biorthogonal wavelet families, among others. In the frequency domain, a wavelet at a given scale is associated with a bandpass filter of a particular centre frequency. Thus the optimal wavelet basis will correspond to the set of bandpass filters that are tuned to the unique spectral characteristics of the ECG. In another implementation, a hidden semi-Markov model (HSMM) is used. HSMM differs from a standard HMM in that each of the self-transition coefficients aii are set to zero, and an explicit probability density is specified for the duration of each state. In this way, the individual state duration densities govern the amount of time the model spends in a given state, and the transition matrix governs the probability of the next state once this time has elapsed. Thus the underlying stochastic process is now a “semi-Markov” process. To model the durations of the various waveform features of the ECG, a Gamma density is used since this is a positive distribution which is able to capture the skewness of the ECG state durations. For each state i, maximum likelihood estimates of the shape and scale parameters were computed directly from the set of labelled ECG signals.
  • In addition to providing beat-to-beat timing information for other sensors to use, the patterns of the constituent waveform features determined by the HMM or neural networks, among other classifiers, can be used for detecting heart attacks or stroke attacks, among others. For example, the detection and classification of ventricular complexes from the ECG data is can be used for rhythm and various types of arrhythmia to be recognized. The system analyzes pattern recognition parameters for classification of normal QRS complexes and premature ventricular contractions (PVC). Exemplary parameters include the width of the QRS complex, vectorcardiogram parameters, amplitudes of positive and negative peaks, area of positive and negative waves, various time-interval durations, amplitude and angle of the QRS vector, among others. The EKG analyzer can analyze EKG/ECG patterns for Hypertrophy, Enlargement of the Heart, Atrial Enlargement, Ventricular Hypertrophy, Arrhythmias, Ectopic Supraventricular Arrhythmias, Ventricular Tachycardia (VT), Paroxysmal Supraventricular Tachycardia (PSVT), Conduction Blocks, AV Block, Bundle Branch Block, Hemiblocks, Bifascicular Block, Preexcitation Syndromes, Wolff-Parkinson-White Syndrome, Lown-Ganong-Levine Syndrome, Myocardial Ischemia, Infarction, Non-Q Wave Myocardial Infarction, Angina, Electrolyte Disturbances, Heart Attack, Stroke Attack, Hypothermia, Pulmonary Disorder, Central Nervous System Disease, or Athlete's Heart, for example.
  • FIG. 16C shows an exemplary process to detect stroke attack. In this embodiment, 3D accelerometer sensing is used. First, the process looks for weakness (hemiparesis) in either the left half or the right half of the body, for example the left/right arms, legs, or face (3000). Next, the system analyzes walking pattern to see if the patient or wearer has a loss of balance or coordination (3002). The system then asks the user to move hands/feet in a predetermined pattern (3004) and reads accelerometer output in accordance with predetermined pattern movement (3006). For example, the system can ask the user to point his/her right or left hand to the nose. The accelerometer outputs are tested to check if the correct hand did reach the nose. In another example, the user can be prompted to extend his or her hands on both side and wiggle the hands or to kick the legs. Again, the outputs of the accelerometers are used to confirm that the user is able to follow direction. The accelerometer outputs are provided to a pattern classifier, which can be an HMM, a neural network, a Bayesian network, fuzzy logic, or any suitable classifiers (3008). The system also checks whether patient or wearer is experiencing dizziness or sudden, severe headache with no known cause (3010). Next, the system displays a text image and asks the patient or wearer to read back the text image, one eye at a time (3012). Using a speech recognizer module, the user speech is converted into text to compare against the text image. The speech recognizer also detects if the user exhibits signs of confusion, trouble speaking or understanding (3014). The system also asks the patient or wearer if they feel numbness in the body-arms, legs, face (3016). Next the system asks the patient or wearer to squeeze gauge/force sensor to determine force applied during squeeze (3018). If any of the above tests indicate a possible stroke, the system displays a warning to the patient or wearer and also connects the patient or wearer to the appropriate emergency response authority, family member, or physician.
  • In one implementation, an HMM is used to track patient or wearer motor skills or patient or wearer movement patterns. Human movement involves a periodic motion of the legs. Regular walking involves the coordination of motion at the hip, knee and ankle, which consist of complex joints. The muscular groups attached at various locations along the skeletal structure often have multiple functions. The majority of energy expended during walking is for vertical motion of the body. When a body is in contact with the ground, the downward force due to gravity is reflected back to the body as a reaction to the force. When a person stands still, this ground reaction force is equal to the person's weight multiplied by gravitational acceleration. Forces can act in other directions. For example, when we walk, we also produce friction forces on the ground. When the foot hits the ground at a heel strike, the friction between the heel and the ground causes a friction force in the horizontal plane to act backwards against the foot. This force therefore causes a breaking action on the body and slows it down. Not only do people accelerate and brake while walking, they also climb and dive. Since reaction force is mass times acceleration, any such acceleration of the body will be reflected in a reaction when at least one foot is on the ground. An upwards acceleration will be reflected in an increase in the vertical load recorded, while a downwards acceleration will be reduce the effective body weight. Zigbee wireless sensors with tri-axial accelerometers are mounted to the patient or wearer on different body locations for recording, for example the tree structure as shown in FIG. 16D. As shown therein, sensors can be placed on the four branches of the links connect to the root node (torso) with the connected joint, left shoulder (LS), right shoulder (RS), left hip (LH), and right hip (RH). Furthermore, the left elbow (LE), right elbow (RE), left knee (LK), and right knee (RK) connect the upper and the lower extremities. The wireless monitoring devices can also be placed on upper back body near the neck, mid back near the waist, and at the front of the right leg near the ankle, among others.
  • The sequence of human motions can be classified into several groups of similar postures and represented by mathematical models called model-states. A model-state contains the extracted features of body signatures and other associated characteristics of body signatures. Moreover, a posture graph is used to depict the inter-relationships among all the model-states, defined as PG(ND,LK), where ND is a finite set of nodes and LK is a set of directional connections between every two nodes. The directional connection links are called posture links. Each node represents one model-state, and each link indicates a transition between two model-states. In the posture graph, each node may have posture links pointing to itself or the other nodes.
  • In the pre-processing phase, the system obtains the human body profile and the body signatures to produce feature vectors. In the model construction phase, the system generate a posture graph, examine features from body signatures to construct the model parameters of HMM, and analyze human body contours to generate the model parameters of ASMs. In the motion analysis phase, the system uses features extracted from the body signature sequence and then applies the pre-trained HMM to find the posture transition path, which can be used to recognize the motion type. Then, a motion characteristic curve generation procedure computes the motion parameters and produces the motion characteristic curves. These motion parameters and curves are stored over time, and if differences for the motion parameters and curves over time is detected, the system then runs the patient or wearer through additional tests to confirm a stroke attack, and if a stroke attack is suspected, the system prompts the user to seek medical attention immediately and preferably within the 3 hour for receiving TPA.
  • FIG. 16E shows one exemplary process for determining weakness in the left or right half of the body. The process compares historical left shoulder (LS) strength against current LS strength (3200). The process also compares historical right shoulder (RS) strength against current RS strength (3202). The process can compare historical left hip (LH) strength against current LH strength (3204). The process can also compare historical right hip (RH) strength against current RH strength (3206). If the variance between historical and current strength exceeds threshold, the process generates warnings (3208). Furthermore, similar comparisons can be made for sensors attached to the left elbow (LE), right elbow (RE), left knee (LK), and right knee (RK) connect the upper and the lower extremities, among others.
  • The system can ask the patient or wearer to squeeze a strength gauge, piezoelectric sensor, or force sensor to determine force applied during squeeze. The user holds the sensor or otherwise engages the sensor. The user then applies and holds a force (e.g., compression, torque, etc.) to the sensor, which starts a timer clock and triggers a sampling start indicator to notify the user to continue to apply (maximum) force to the sensor. Strength measurements are then sampled periodically during the sampling period until the expiration of time. From the sampled strength data, certain strength measurement values are selected, such as the maximum value, average value(s), or values obtained during the sampling period. The user can test both hands at the same time, or alternatively he may test one hand at a time. A similar approach is used to sense leg strength, except that the user is asked to pushed down on a scale to determine the foot force generated by the user.
  • The system can detect hemiparesis, a very common symptom of stroke, by detecting muscular weakness or partial paralysis to one side of the body. Additionally, the accelerometers can detect ataxia, which is an impaired ability to perform smooth coordinated voluntary movements. Additionally, the system can detect aphasia, including receptive aphasia and expressive aphasia. Aphasia is a cognitive disorder marked by an impaired ability to comprehend (receptive aphasia) or express (expressive aphasia) language. Exemplary embodiments are disclosed for detecting receptive aphasia by displaying text or playing verbal instructions to the user, followed by measuring the correctness and/or time delay of the response from the user. Exemplary embodiments are also disclosed for detecting expressive aphasia by positing sound made by an animal to the user, prompting the user to identify or name the animal, and measuring the correctness and/or time delay of the response from the user. The system can also detect dysarthria, a disorder of speech articulation (e.g., slurred speech), by prompting the user to say a word or phrase that is recorded for subsequent comparison by voice pattern recognition or evaluation by medical personnel.
  • In the above manner, the system automatically reminds the user to get help if he feels a sudden numbness or weakness of the face, arm or leg, especially on one side of the body, sudden confusion, trouble speaking or understanding, sudden trouble seeing in one or both eyes, or sudden trouble walking, dizziness, loss of balance or coordination.
  • In one embodiment, the accelerometers distinguish between lying down and each upright position of sitting and standing based on the continuous output of the 3D accelerometer. The system can detect (a) extended time in a single position; (b) extended time sitting in a slouching posture (kyphosis) as opposed to sitting in an erect posture (lordosis); and (c) repetitive stressful movements, such as may be found on some manufacturing lines, while typing for an extended period of time without proper wrist support, or while working all day at a job lifting boxes, among others. In one alternative embodiment, angular position sensors, one on each side of the hip joint, can be used to distinguish lying down, sitting, and standing positions. In another embodiment, the present invention repeatedly records position and/or posture data over time. In one embodiment, magnetometers can be attached to a thigh and the torso to provide absolute rotational position about an axis coincident with Earth's gravity vector (compass heading, or yaw). In another embodiment, the rotational position can be determined through the in-door positioning system as discussed above.
  • Depending on the severity of the stroke, patient or wearers can experience a loss of consciousness, cognitive deficits, speech dysfunction, limb weakness, hemiplegia, vertigo, diplopia, lower cranial nerve dysfunction, gaze deviation, ataxia, hemianopia, and aphasia, among others. Four classic syndromes that are characteristically caused by lacunar-type stroke are: pure motor hemiparesis, pure sensory syndrome, ataxic hemiparesis syndrome, and clumsy-hand dysarthria syndrome. Patient or wearers with pure motor hemiparesis present with face, arm, and leg weakness. This condition usually affects the extremities equally, but in some cases it affects one extremity more than the other. The most common stroke location in affected patient or wearers is the posterior limb of the internal capsule, which carries the descending corticospinal and corticobulbar fibers. Other stroke locations include the pons, midbrain, and medulla. Pure sensory syndrome is characterized by hemibody sensory symptoms that involve the face, arm, leg, and trunk. It is usually the result of an infarct in the thalamus. Ataxic hemiparesis syndrome features a combination of cerebellar and motor symptoms on the same side of the body. The leg is typically more affected than the arm. This syndrome can occur as a result of a stroke in the pons, the internal capsule, or the midbrain, or in the anterior cerebral artery distribution. Patient or wearers with clumsy-hand dysarthria syndrome experience unilateral hand weakness and dysarthria. The dysarthria is often severe, whereas the hand involvement is more subtle, and patient or wearers may describe their hand movements as “awkward.” This syndrome is usually caused by an infarct in the pons.
  • Different patterns of signs can provide clues as to both the location and the mechanism of a particular stroke. The system can detect symptoms suggestive of a brainstem stroke include vertigo, diplopia, bilateral abnormalities, lower cranial nerve dysfunction, gaze deviation (toward the side of weakness), and ataxia. Indications of higher cortical dysfunction-such as neglect, hemianopsia, aphasia, and gaze preference (opposite the side of weakness)-suggest hemispheric dysfunction with involvement of a superficial territory from an atherothrombotic or embolic occlusion of a mainstem vessel or peripheral branch.
  • The system can detect a pattern of motor weakness. Ischemia of the cortex supplied by the middle cerebral artery typically causes weakness that (1) is more prominent in the arm than in the leg and (2) involves the distal muscles more than the proximal muscles. Conversely, involvement of an area supplied by the superficial anterior cerebral artery results in weakness that (1) is more prominent in the leg than the arm and (2) involves proximal upper extremity (shoulder) muscles more than distal upper extremity muscles. Flaccid paralysis of both the arm and leg (unilateral) suggests ischemia of the descending motor tracts in the basal ganglia or brainstem. This is often caused by an occlusion of a penetrating artery as a result of small-vessel disease. Once the stroke is detected, intravenous (IV) tissue plasminogen activator (t-PA) needs to be given within 3 hours of symptom onset. An accurate assessment of the timing of the stroke is also crucial. The system keeps track of the timing off the onset of the stroke for this purpose.
  • One major symptom of a stroke is unexplained weakness or numbness in the muscle. To detect muscle weakness or numbness, in one embodiment, the system applies a pattern recognizer such as a neural network or a Hidden Markov Model (HMM) to analyze accelerometer output. In another embodiment, electromyography (EMG) is used to detect muscle weakness. In another embodiment, EMG and a pattern analyzer is used to detect muscle weakness. In yet another embodiment, a pattern analyzer analyzes both accelerometer and EMG data to determine muscle weakness. In a further embodiment, historical ambulatory information (time and place) is used to further detect changes in muscle strength. In yet other embodiments, accelerometer data is used to confirm that the patient or wearer is at rest so that EMG data can be accurately captured or to compensate for motion artifacts in the EMG data in accordance with a linear or non-linear compensation table. In yet another embodiment, the EMG data is used to detect muscle fatigue and to generate a warning to the patient or wearer to get to a resting place or a notification to a nurse or caregiver to render timely assistance.
  • The amplitude of the EMG signal is stochastic (random) in nature and can be reasonably represented by a Gausian distribution function. The amplitude of the signal can range from 0 to 10 mV (peak-to-peak) or 0 to 1.5 mV (rms). The usable energy of the signal is limited to the 0 to 500 Hz frequency range, with the dominant energy being in the 50-150 Hz range. Usable signals are those with energy above the electrical noise level. The dominant concern for the ambient noise arises from the 60 Hz (or 50 Hz) radiation from power sources. The ambient noise signal may have an amplitude that is one to three orders of magnitude greater than the EMG signal. There are two main sources of motion artifact: one from the interface between the detection surface of the electrode and the skin, the other from movement of the cable connecting the electrode to the amplifier. The electrical signals of both noise sources have most of their energy in the frequency range from 0 to 20 Hz and can be reduced.
  • As shown in FIG. 17A, to eliminate the potentially much greater noise signal from power line sources, a differential instrumentation amplifier is employed. Any signal that originates far away from the detection sites will appear as a common signal, whereas signals in the immediate vicinity of the detection surfaces will be different and consequently will be amplified. Thus, relatively distant power lines noise signals will be removed and relatively local EMG signals will be amplified. The source impedance at the junction of the skin and detection surface may range from several thousand ohms to several megohms for dry skin. In order to prevent attenuation and distortion of the detected signal due to the effects of input loading, the input impedance of the differential amplifier is as large as possible, without causing ancillary complications to the workings of the differential amplifier. The signal to noise ratio is increased by filtering between 20-500 Hz with a roll-off of 12 dB/octave.
  • In one embodiment, direct EMG pre-amplification at the skin surface provides the best myoelectric signal quality for accurate, reliable EMG signal detection and eliminates cable motion artifact. The double-differential instrumentation pre-amplifier design attenuates unwanted common-mode bioelectric signals to reduce cross-talk from adjacent muscle groups. Internal RFI and ESD protection prevents radio frequency interference and static damage. The constant low-impedance output of the pre-amplifier completely eliminates cable noise and cable motion artifacts without requiring any additional signal processing within the pre-amplifier. An integral ground reference plane provides immunity to electromagnetic environmental noise. All signal and power conductors in the pre-amplifier cable are enclosed inside an independent, isolated shield to eliminate interference from AC power-lines and other sources. The contacts are corrosion-free, medical grade stainless steel for maximal signal flow. The system uses biocompatible housing and sensor materials to prevent allergic reactions.
  • In one implementation, MA-311 EMG pre-amplifiers from Motion Lab Systems, Inc., Baton Rouge, La., can be used. The pre-amplifiers incorporate both radio frequency interference (RFI) filters and electrostatic discharge (ESD) protection circuitry resulting in an extraordinarily reliable EMG pre-amplifier that can be used in almost any environment. Featuring a double-differential input, the unique design of the Motion Lab Systems EMG pre-amplifiers enables researchers to produce high-quality, low-noise EMG data from subjects under the most adverse conditions (e.g. on treadmills, using mobile phones etc.) without any skin preparation or subsequent signal processing.
  • In another implementation, a micro-powered EMG embodiment includes an instrumentation amplifier and an AC coupling that maintains a high CMRR with a gain of about 1000. The electronic circuits are mounted on a flexible circuit board (FPC) with slidable electrode settings that allows differential recording at various distances between the electrodes. The high gain amplifier is placed next to the recording electrodes to achieve high SNR. Battery power provides isolation and low noise at various frequencies that would likely not be fully attenuated by the PSRR and causing alias errors.
  • The system can detect dominant symptoms of stroke can include weakness or paralysis of the arms and/or legs, incoordination (ataxia), numbness in the arms/legs using accelerometers or EMG sensors. The EMG sensors can detect muscle fatigue and can warn the patient or wearer to get to a resting area if necessary to prevent a fall. The system can detect partial/total loss of vision by asking the patient or wearer to read a predetermined phrase and detect slur using speech recognizer. The system can detect loss of consciousness/coma by detecting lack of movement. Voice/speech disturbances are not initially the dominant symptoms in stroke, and the disturbances can be detected by a speech recognizer. In one implementation, the system uses PNL (probabilistic networks library) to detect unusual patient or wearer movement/ambulatory activities that will lead to a more extensive check for stroke occurrence. PNL supports dynamic Bayes nets, and factor graphs; influence diagrams. For inference, PNL supports exact inference using the junction tree algorithm, and approximate inference using loopy belief propagation or Gibbs sampling. Learning can be divided along many axes: parameter or structure, directed or undirected, fully observed or partially observed, batch or online, discriminative or maximum likelihood, among others. First, the system performs data normalization and filtering for the accelerometers and EMG sensors that detect patient or wearer movements and muscle strength. The data can include in-door positioning information, 3D acceleration information, or EMG/EKG/EEG data, for example. The data can be processed using wavelet as discussed above or using any suitable normalization/filtering techniques. Next, the system performs parameterization and discretization. The Bayesian network is adapted in accordance with a predefined network topology. The system also defines conditional probability distributions. The system then generates the probability of event P(y), under various scenarios. Training data is acquired and a training method is built for the Bayesian network engine. Next, the system tunes model parameters and performs testing on the thus formed Bayesian network.
  • In one embodiment, a housing (such as a strap, a wrist-band, or a patch) provides a plurality of sensor contacts for EKG and/or EMG. The same contacts can be used for detecting EKG or EMG and can be placed as two parallel contacts (linear or spot shape) on opposite sides of the band, two adjacent parallel contacts on the inner surface of the band, two parallel adjacent contacts on the back of the wrist-watch, or alternatively one contact on the back of the watch and one contact on the wrist-band. The outputs of the differential contacts are filtered to remove motion artifacts. The differential signal is captured, and suitably filtered using high pass/low pass filters to remove noise, and digitized for signal processing. In one embodiment, separate amplifiers are used to detect EKG (between 50 mHz and 200 Hz) and for EMG (between 10 Hz and 500 Hz). In another embodiment, one common amp is used for both EKG/EMG, and software filter is applied to the digitized signal to extract EKG and EMG signals, respectively. The unit can apply Wavelet processing to convert the signal into the frequency domain and apply recognizers such as Bayesian, NN or HMM to pull the EMG or EKG signals from noise. The system uses a plurality of wireless nodes to transmit position and to triangulate with the mobile node to determine position. 3D accelerometer outputs can be integrated to provide movement vectors and positioning information. Both radio triangulation and accelerometer data can confirm the position of the patient or wearer. The RF signature of a plurality of nodes with known position can be used to detect proximity to a particular node with a known position and the patient or wearer's position can be extrapolated therefrom.
  • In one embodiment, Analog Device's AD627, a micro-power instrumentation amplifier, is used for differential recordings while consuming low power. In dual supply mode, the power rails Vs can be as low as ±1.1 Volt, which is ideal for battery-powered applications. With a maximum quiescent current of 85 μA (60 μA typical), the unit can operate continuously for several hundred hours before requiring battery replacement. The batteries are lithium cells providing 3.0V to be capable of recording signals up to +1 mV to provide sufficient margin to deal with various artifacts such as offsets and temperature drifts. The amplifier's reference is connected to the analog ground to avoid additional power consumption and provide a low impedance connection to maintain the high CMRR. To generate virtual ground while providing low impedance at the amplifier's reference, an additional amplifier can be used. In one implementation, the high-pass filtering does not require additional components since it is achieved by the limits of the gain versus frequency characteristics of the instrumentation amplifier. The amplifier has been selected such that with a gain of 60 dB, a flat response could be observed up to a maximum of 100 Hz with gain attenuation above 100 Hz in one implementation. In another implementation, a high pass filter is used so that the cut-off frequency becomes dependent upon the gain value of the unit. The bootstrap AC-coupling maintains a much higher CMRR so critical in differential measurements. Assuming that the skin-electrode impedance may vary between 5 K- and 10 K-ohms, 1 M-ohm input impedance is used to maintain loading errors below acceptable thresholds between 0.5% and 1%.
  • When an electrode is placed on the skin, the detection surfaces come in contact with the electrolytes in the skin. A chemical reaction takes place which requires some time to stabilize, typically in the order of a few seconds. The chemical reaction should remain stable during the recording session and should not change significantly if the electrical characteristics of the skin change from sweating or humidity changes. The active electrodes do not require any abrasive skin preparation and removal of hair. The electrode geometry can be circular or can be elongated such as bars. The bar configuration intersects more fibers. The inter detection-surface distance affects the bandwidth and amplitude of the EMG signal; a smaller distance shifts the bandwidth to higher frequencies and lowers the amplitude of the signal. An inter detection-surface of 1.0 cm provides one configuration that detects representative electrical activity of the muscle during a contraction. The electrode can be placed between a motor point and the tendon insertion or between two motor points, and along the longitudinal midline of the muscle. The longitudinal axis of the electrode (which passes through both detection surfaces) should be aligned parallel to the length of the muscle fibers. The electrode location is positioned between the motor point (or innervation zone) and the tendinous insertion, with the detection surfaces arranged so that they intersect as many muscle fibers as possible.
  • In one embodiment, a multi-functional bio-data acquisition provides programmable multiplexing of the same differential amplifiers for extracting EEG (electroencephalogram), ECG (electrocardiogram), or EMG (electromyogram) waves. The system includes an AC-coupled chopped instrumentation amplifier, a spike filtering stage, a constant gain stage, and a continuous-time variable gain stage, whose gain is defined by the ratio of the capacitors. The system consumes microamps from 3V. The gain of the channel can be digitally set to 400, 800, 1600 or 2600. Additionally, the bandwidth of the circuit can be adjusted via the bandwidth select switches for different biopotentials. The high cut-off frequency of the circuit can be digitally selected for different applications of EEG acquisition.
  • In another embodiment, a high-resolution, rectangular, surface array electrode-amplifier and associated signal conditioning circuitry captures electromyogram (EMG) signals. The embodiment has a rectangular array electrode-amplifier followed by a signal conditioning circuit. The signal conditioning circuit is generic, i.e., capable of receiving inputs from a number of different/interchangeable EMG/EKG/EEG electrode-amplifier sources (including from both monopolar and bipolar electrode configurations). The electrode-amplifier is cascaded with a separate signal conditioner minimizes noise and motion artifact by buffering the EMG signal near the source (the amplifier presents a very high impedance input to the EMG source, and a very low output impedance); minimizes noise by amplifying the EMG signal early in the processing chain (assuming the electrode-amplifier includes signal gain) and minimizes the physical size of this embodiment by only including a first amplification stage near the body. The signals are digitized and transmitted over a wireless network such as WiFI, Zigbee, or Bluetooth transceivers and processed by the base station that is remote from the patient or wearer. For either high-resolution monopolar arrays or classical bipolar surface electrode-amplifiers, the output of the electrode-amplifier is a single-ended signal (referenced to the isolated reference). The electrode-amplifier transduces and buffers the EMG signal, providing high gain without causing saturation due to either offset potentials or motion artifact. The signal conditioning circuit provides selectable gain (to magnify the signal up to the range of the data recording/monitoring instrumentation, high-pass filtering (to attenuate motion artifact and any offset potentials), electrical isolation (to prevent injurious current from entering the subject) and low-pass filtering (for anti-aliasing and to attenuate noise out of the physiologic frequency range).
  • FIGS. 17B and 17C shows exemplary sEMG outputs from a differential amplifier to detect muscle strength. FIG. 17B shows the left and right body EMG signals for the patient or wearer in a normal state, while FIG. 17C illustrates a patient or wearer with degraded muscle capability. In general, muscle fire in a smooth fashion in normal individuals, with little irritability or fasiculation. Muscles fire symmetrically in healthy state when comparing left and right sides in motion. In general, healthy patient or wearers show a greater consistency in muscle patterns than injured patient or wearers, with the injured showing a greater increase in variability. Such variations are detected by EMG analyzers.
  • The EMG signal can be rectified, integrated a specified interval of and subsequently forming a time series of the integrated values. The system can calculate the root-mean-squared (rms) and the average rectified (avr) value of the EMG signal. The system can also determine muscle fatigue through the analysis of the frequency spectrum of the signal. The system can also assess neurological diseases which affect the fiber typing or the fiber cross-sectional area of the muscle. Various mathematical techniques and Artificial Intelligence (AI) analyzer can be applied. Mathematical models include wavelet transform, time-frequency approaches, Fourier transform, Wigner-Ville Distribution (WVD), statistical measures, and higher-order statistics. AI approaches towards signal recognition include Artificial Neural Networks (ANN), dynamic recurrent neural networks (DRNN), fuzzy logic system, Genetic Algorithm (GA), and Hidden Markov Model (HMM).
  • A single-threshold method or alternatively a double threshold method can be used which compares the EMG signal with one or more fixed thresholds. The embodiment is based on the comparison of the rectified raw signals and one or more amplitude thresholds whose value depends on the mean power of the background noise. Alternatively, the system can perform spectrum matching instead of waveform matching techniques when the interference is induced by low frequency baseline drift or by high frequency noise.
  • EMG signals are the superposition of activities of multiple motor units. The EMG signal can be decomposed to reveal the mechanisms pertaining to muscle and nerve control. Decomposition of EMG signal can be done by wavelet spectrum matching and principle component analysis of wavelet coefficients where the signal is de-noised and then EMG spikes are detected, classified and separated. In another embodiment, principle components analysis (PAC) for wavelet coefficients is used with the following stages: segmentation, wavelet transform, PCA, and clustering. EMG signal decomposition can also be done using non-linear least mean square (LMS) optimization of higher-order cumulants.
  • Time and frequency domain approaches can be used. The wavelet transform (WT) is an efficient mathematical tool for local analysis of non-stationary and fast transient signals. One of the main properties of WT is that it can be implemented by means of a discrete time filter bank. The Fourier transforms of the wavelets are referred as WT filters. The WT represents a very suitable method for the classification of EMG signals. The system can also apply Cohen class transformation, Wigner-Ville distribution (WVD), and Choi-Williams distribution or other time-frequency approaches for EMG signal processing.
  • In Cohen class transformation, the class time-frequency representation is particularly suitable to analyze surface myoelectric signals recorded during dynamic contractions, which can be modeled as realizations of nonstationary stochastic process. The WVD is a time-frequency that can display the frequency as a function of time, thus utilizing all available information contained in the EMG signal. Although the EMG signal can often be considered as quasi-stationary there is still important information that is transited and may be distinguished by WVD. Implementing the WVD with digital computer requires a discrete form. This allows the use of fast Fourier transform (FFT), which produces a discrete-time, discrete-frequency representation. The common type of time frequency distribution is the Short-time Fourier Transform (STFT). The Choi-Williams method is a reduced interference distribution. The STFT can be used to show the compression of the spectrum as the muscle fatigue. The WVD has cross-terms and therefore is not a precise representation of the changing of the frequency components with fatigue. When walls appear in the Choi-William distribution, there is a spike in the original signal. It will decide if the walls contain any significant information for the study of muscle fatigue. In another embodiment, the autoregressive (AR) time series model can be used to study EMG signal. In one embodiment, neural networks can process EMG signal where EMG features are first extracted through Fourier analysis and clustered using fuzzy c-means algorithm. Fuzzy c-means (FCM) is a method of clustering which allows data to belong to two or more clusters. The neural network output represents a degree of desired muscle stimulation over a synergic, but enervated muscle. Error-back propagation method is used as a learning procedure for multilayred, feedforward neural network. In one implementation, the network topology can be the feedforward variety with one input layer containing 256 input neurodes, one hidden layer with two neurodes and one output neurode. Fuzzy logic systems are advantageous in biomedical signal processing and classification. Biomedical signals such as EMG signals are not always strictly repeatable and may sometimes even be contradictory. The experience of medical experts can be incorporated. It is possible to integrate this incomplete but valuable knowledge into the fuzzy logic system, due to the system's reasoning style, which is similar to that of a human being. The kernel of a fuzzy system is the fuzzy inference engine. The knowledge of an expert or well-classified examples are expressed as or transferred to a set of “fuzzy production rules” in the form of IF-THEN, leading to algorithms describing what action or selection should be taken based on the currently observed information. In one embodiment, higher-order statistics (HOS) is used for analyzing and interpreting the characteristics and nature of a random process. The subject of HOS is based on the theory of expectation (probability theory).
  • In addition to stroke detection, EMG can be used to sense isometric muscular activity (type of muscular activity that does not translate into movement). This feature makes it possible to define a class of subtle motionless gestures to control interface without being noticed and without disrupting the surrounding environment. Using EMG, the user can react to the cues in a subtle way, without disrupting their environment and without using their hands on the interface. The EMG controller does not occupy the user's hands, and does not require them to operate it; hence it is “hands free”. The system can be used in interactive computer gaming which would have access to heart rate, galvanic skin response, and eye movement signals, so the game could respond to a player's emotional state or guess his or her level of situation awareness by monitoring eye movements. EMG/EEG signal can be used for man-machine interfaces by directly connecting a person to a computer via the human electrical nervous system. Based on EMG and EEG signals, the system applies pattern recognition system to interpret these signals as computer control commands. The system can also be used for Mime Speech Recognition which recognizes speech by observing the muscle associated with speech and is not based on voice signals but EMG. The MSR realizes unvoiced communication and because voice signals are not used, MSR can be applied in noisy environments; it can support people without vocal cords and aphasics. In another embodiment, EMG and/or electroencephalogram (EEG) features are used for predicting behavioral alertness levels. EMG and EEG features were derived from temporal, frequency spectral, and statistical analyses. Behavioral alertness levels were quantified by correct rates of performance on an auditory and a visual vigilance task, separately. A subset of three EEG features, the relative spectral amplitudes in the alpha (alpha %, 8-13 Hz) and theta (theta %, 4-8 Hz) bands, and the mean frequency of the EEG spectrum (MF) can be used for predicting the auditory alertness level.
  • In yet a further embodiment for performing motor motion analysis, an HMM is used to determine the physical activities of a patient or wearer, to monitor overall activity levels and assess compliance with a prescribed exercise regimen and/or efficacy of a treatment program. The HMM may also measure the quality of movement of the monitored activities. For example, the system may be calibrated or trained in the manner previously described, to recognize movements of a prescribed exercise program. Motor function information associated with the recognized movements may be sent to the server for subsequent review. A physician, clinician, or physical therapist with access to patient or wearer data may remotely monitor compliance with the prescribed program or a standardized test on motor skill. For example, patient or wearers can take the Wolf Motor Function test and acceleration data is captured on the following tasks:
      • placing the forearm on a table from the side
      • moving the forearm from the table to a box on the table from the side
      • extending the elbow to the side
      • extending the elbow to the side against a light weight
      • placing the hand on a table from the front
      • moving the hand from table to box
      • flexing the elbow to retrieve a light weight
      • lifting a can of water
      • lifting a pencil, lifting a paper clip
      • stacking checkers, flipping cards
      • turning a key in a lock
      • folding a towel
      • lifting a basket from the table to a shelf above the table.
  • All references including patent applications and publications cited herein are incorporated herein by reference in their entirety and for all purposes to the same extent as if each individual publication or patent or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes. Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.
  • While this invention has been particularly shown and described with references to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (20)

What is claimed is:
1. A system comprising:
a processor;
a vibration motor configured to communicate with the processor;
an accelerometer configured to communicate with the processor, the accelerometer to capture data regarding movement;
one or more light emitting diodes;
a memory to store a plurality of data captured by the accelerometer; and
a wireless transmitter configured to communicate with a remote device via Wi-FI or Bluetooth.
2. The system of claim further comprising computer code, executable by the processor, to generate sleep data.
3. The system of claim 2 wherein the computer code to generate sleep data is configured to use the data regarding movement captured by the accelerometer to generate sleep data.
4. The system of claim 1 further comprising computer code, executable by the processor, to cause the vibration motor to vibrate.
5. The system of claim 4, wherein the computer code to cause the vibration motor to vibrate includes instructions to, when executed by the processor, cause the vibration motor to vibrate at a predetermined time.
6. The system of claim 1 further comprising a health application configured to:
a. receive the data regarding movement; and
b. generate one or more displays using the data regarding movement.
7. The system of claim 6 wherein the health application is configured to receive the data regarding movement via the wireless transmitter.
8. The system of claim 1 further comprising computer code, executable by the processor, to activate the one or more light emitting diodes.
9. The system of claim 8, wherein the computer code to activate the one or more light emitting diodes includes instructions to, when executed by the processor, activate the one or more light emitting diodes based on at least the data regarding movement captured by the accelerometer.
10. The system of claim 1, further comprising computer code, executable by the processor, to determine an amount of calories burned using at least the data regarding movement.
11. The system of claim 10 further comprising computer code, executable by the processor, to activate the one or more light emitting diodes based on at least the determined amount of calories burned.
12. The system of claim 1, further comprising computer code, executable by the processor, to determine an amount of steps taken using at least the data regarding movement.
13. The system of claim 12 further comprising computer code, executable by the processor, to activate the one or more light emitting diodes based on at least the determined amount of steps taken.
14. A system comprising:
a processor;
a heart sensor, configured to communicate with the processor, to capture data regarding heart rate;
a vibration motor configured to communicate with the processor;
an accelerometer configured to communicate with the processor, the accelerometer to capture data regarding movement;
a touch screen display configured to communicate with the processor; and
a wireless transceiver configured to communicate with the processor and configured to communicate with a remote device via Wi-FI or Bluetooth.
15. The system of claim 14 further comprising a GPS sensor to capture location data.
16. The system of claim 15 further comprising computer code, executable by the processor, to generate display data regarding a plurality of visited locations using at least the location data captured by the GPS sensor.
17. The system of claim 16 wherein the touch screen is configured to display the display data regarding the plurality of visited locations.
18. The system of claim 14 further comprising computer code, executable by the processor, to generate display data regarding at least two of calories burned, steps taken, and distance traveled, using at least the data regarding movement.
19. The system of claim 18, wherein the touch screen is configured to display one or more of the display data regarding calories burned, steps taken, and distance traveled.
20. The system of claim 14 wherein the wireless transceiver is configured to receive text messaging data from a remote device, and wherein the touch screen is configured to display the received text messaging data.
US14/747,710 2006-05-24 2015-06-23 Fitness Monitoring Abandoned US20150359467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/747,710 US20150359467A1 (en) 2006-05-24 2015-06-23 Fitness Monitoring

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US11/439,631 US7558622B2 (en) 2006-05-24 2006-05-24 Mesh network stroke monitoring appliance
US12/486,810 US8108036B2 (en) 2006-05-24 2009-06-18 Mesh network stroke monitoring appliance
US13/337,219 US8449471B2 (en) 2006-05-24 2011-12-26 Health monitoring appliance
US13/858,855 US8764651B2 (en) 2006-05-24 2013-04-08 Fitness monitoring
US14/279,319 US9107586B2 (en) 2006-05-24 2014-05-16 Fitness monitoring
US14/747,710 US20150359467A1 (en) 2006-05-24 2015-06-23 Fitness Monitoring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/279,319 Continuation US9107586B2 (en) 2006-05-24 2014-05-16 Fitness monitoring

Publications (1)

Publication Number Publication Date
US20150359467A1 true US20150359467A1 (en) 2015-12-17

Family

ID=38750410

Family Applications (6)

Application Number Title Priority Date Filing Date
US11/439,631 Active - Reinstated 2027-08-07 US7558622B2 (en) 2006-05-12 2006-05-24 Mesh network stroke monitoring appliance
US12/486,810 Active 2027-09-14 US8108036B2 (en) 2006-05-12 2009-06-18 Mesh network stroke monitoring appliance
US13/337,219 Active US8449471B2 (en) 2006-05-12 2011-12-26 Health monitoring appliance
US13/858,855 Active US8764651B2 (en) 2006-05-12 2013-04-08 Fitness monitoring
US14/279,319 Active US9107586B2 (en) 2006-05-24 2014-05-16 Fitness monitoring
US14/747,710 Abandoned US20150359467A1 (en) 2006-05-24 2015-06-23 Fitness Monitoring

Family Applications Before (5)

Application Number Title Priority Date Filing Date
US11/439,631 Active - Reinstated 2027-08-07 US7558622B2 (en) 2006-05-12 2006-05-24 Mesh network stroke monitoring appliance
US12/486,810 Active 2027-09-14 US8108036B2 (en) 2006-05-12 2009-06-18 Mesh network stroke monitoring appliance
US13/337,219 Active US8449471B2 (en) 2006-05-12 2011-12-26 Health monitoring appliance
US13/858,855 Active US8764651B2 (en) 2006-05-12 2013-04-08 Fitness monitoring
US14/279,319 Active US9107586B2 (en) 2006-05-24 2014-05-16 Fitness monitoring

Country Status (1)

Country Link
US (6) US7558622B2 (en)

Cited By (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150065839A1 (en) * 2013-08-31 2015-03-05 Alpha Omega Neuro Technologies Ltd. Surgical drape, evoked response probes and their methods of use
KR20170074039A (en) * 2015-12-21 2017-06-29 삼성전자주식회사 Bio-processor for measuring each of biological signals and wearable device having the same
US9820657B2 (en) 2006-05-12 2017-11-21 Koninklijke Philips N.V. Mobile wireless appliance
US9942051B1 (en) 2013-03-15 2018-04-10 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
CN108606776A (en) * 2018-03-27 2018-10-02 复旦大学附属华山医院 A kind of balance test system
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
WO2018185550A3 (en) * 2017-04-04 2018-11-15 Borut Baricevic Method and device for determining the hydration, fitness and nutrition status of a human body
WO2019006473A1 (en) * 2017-06-30 2019-01-03 The Johns Hopkins University Systems and method for action recognition using micro-doppler signatures and recurrent neural networks
WO2019050738A1 (en) * 2017-09-05 2019-03-14 Purdue Research Foundation Diagnostic and therapeutic device for compromised vascular hemodynamics analysis
US20190140517A1 (en) * 2018-10-07 2019-05-09 Rising Star Pathway, a California Corporation Processor controlled energy harvester system
JP2019512329A (en) * 2016-03-23 2019-05-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Blood pressure monitor
WO2019164585A1 (en) * 2018-02-20 2019-08-29 SameDay Security, Inc. Connected kiosk for the real-time assessment of falls risk
US20190302949A1 (en) * 2018-04-02 2019-10-03 Maxlinear, Inc. Methods and systems for enhanced force-touch based gesture solutions
US20190339649A1 (en) * 2018-10-07 2019-11-07 Rising Star Pathway, a California Corporation Processor controlled energy harvester system optimized for mobile platforms
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US10813572B2 (en) 2015-12-11 2020-10-27 Electronic Caregiver, Inc. Intelligent system for multi-function electronic caregiving to facilitate advanced health diagnosis, health monitoring, fall and injury prediction, health maintenance and support, and emergency response
US10830545B2 (en) 2016-07-12 2020-11-10 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a heat sink
US10842416B2 (en) 2018-08-20 2020-11-24 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US20210055369A1 (en) * 2015-09-23 2021-02-25 Intel Corporation Apparatus and method for high accuracy distance and orientation measurement
WO2021067487A1 (en) * 2019-10-01 2021-04-08 SekureTrak, Inc. Remotely-monitored personal safety devices
US11000191B2 (en) 2018-08-20 2021-05-11 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
WO2021127207A1 (en) * 2019-12-20 2021-06-24 EmpNia Inc. Wearable health monitoring device
CN113067830A (en) * 2021-03-26 2021-07-02 中国第一汽车股份有限公司 Vehicle-mounted bus signal detection method and device, vehicle and storage medium
US11064911B2 (en) 2018-12-12 2021-07-20 Vitaltech Properties, Llc Standing desk biometrics
WO2021165861A1 (en) * 2020-02-22 2021-08-26 Madnani Akash Nanikram A system for analysing physical activities and bio-markers
US11113943B2 (en) 2019-05-07 2021-09-07 Electronic Caregiver, Inc. Systems and methods for predictive environmental fall risk identification
USD933497S1 (en) 2019-10-18 2021-10-19 Vitaltech Properties, Llc Watch
USD934164S1 (en) 2019-10-18 2021-10-26 Vitaltech Properties, Llc On-body wearable charger
US11164105B2 (en) * 2017-11-13 2021-11-02 International Business Machines Corporation Intelligent recommendations implemented by modelling user profile through deep learning of multimodal user data
USD936650S1 (en) 2019-10-18 2021-11-23 Vitaltech Properties, Llc Smartwatch
US20210383929A1 (en) * 2020-06-04 2021-12-09 Syntiant Systems and Methods for Generating Early Health-Based Alerts from Continuously Detected Data
US11213224B2 (en) 2018-03-19 2022-01-04 Electronic Caregiver, Inc. Consumer application for mobile assessment of functional capacity and falls risk
US11213225B2 (en) 2018-08-20 2022-01-04 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11381903B2 (en) 2014-02-14 2022-07-05 Sonic Blocks Inc. Modular quick-connect A/V system and methods thereof
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US11488724B2 (en) 2018-06-18 2022-11-01 Electronic Caregiver, Inc. Systems and methods for a virtual, intelligent and customizable personal medical assistant
US11504038B2 (en) * 2016-02-12 2022-11-22 Newton Howard Early detection of neurodegenerative disease
US11540095B2 (en) * 2020-05-27 2022-12-27 Goldman Sachs & Co. LLC Projecting content from exercise equipment
US20230028230A1 (en) * 2021-07-26 2023-01-26 Rfxlabs India Pvt Ltd System and method for bio-medical samples identification and resource optimization
US11598593B2 (en) 2010-05-04 2023-03-07 Fractal Heatsink Technologies LLC Fractal heat transfer device
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11791050B2 (en) 2019-02-05 2023-10-17 Electronic Caregiver, Inc. 3D environment risks identification utilizing reinforced learning
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
US11923058B2 (en) 2018-04-10 2024-03-05 Electronic Caregiver, Inc. Mobile system for the assessment of consumer medication compliance and provision of mobile caregiving

Families Citing this family (1360)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6344745B1 (en) * 1998-11-25 2002-02-05 Medrad, Inc. Tapered birdcage resonator for improved homogeneity in MRI
US7156809B2 (en) 1999-12-17 2007-01-02 Q-Tec Systems Llc Method and apparatus for health and disease management combining patient data monitoring with wireless internet connectivity
US7249036B2 (en) * 2000-07-06 2007-07-24 Cary Gresham Bayne Method for clinician house calls utilizing portable computing and communications equipment
US7873589B2 (en) 2001-04-02 2011-01-18 Invivodata, Inc. Operation and method for prediction and management of the validity of subject reported data
US7233933B2 (en) * 2001-06-28 2007-06-19 Microsoft Corporation Methods and architecture for cross-device activity monitoring, reasoning, and visualization for providing status and forecasts of a users' presence and availability
US7689521B2 (en) * 2001-06-28 2010-03-30 Microsoft Corporation Continuous time bayesian network models for predicting users' presence, activities, and component usage
US7153286B2 (en) 2002-05-24 2006-12-26 Baxter International Inc. Automated dialysis system
US7231393B1 (en) 2003-09-30 2007-06-12 Google, Inc. Method and apparatus for learning a probabilistic generative model for text
US7383258B2 (en) 2002-10-03 2008-06-03 Google, Inc. Method and apparatus for characterizing documents based on clusters of related words
US7182738B2 (en) 2003-04-23 2007-02-27 Marctec, Llc Patient monitoring apparatus and method for orthosis and other devices
US20070061041A1 (en) * 2003-09-02 2007-03-15 Zweig Stephen E Mobile robot with wireless location sensing apparatus
US7640046B2 (en) * 2004-06-18 2009-12-29 Cardiac Pacemakers, Inc. Methods and apparatuses for localizing myocardial infarction during catheterization
FR2872695B1 (en) * 2004-07-09 2007-10-05 Hartmann Thierry ALARM DEVICE FOR PREVENTING SUDDEN INFANT DEATH
US7390857B2 (en) * 2004-08-27 2008-06-24 General Electric Company Crosslinkable and crosslinked polymers
US8252321B2 (en) 2004-09-13 2012-08-28 Chrono Therapeutics, Inc. Biosynchronous transdermal drug delivery for longevity, anti-aging, fatigue management, obesity, weight loss, weight management, delivery of nutraceuticals, and the treatment of hyperglycemia, alzheimer's disease, sleep disorders, parkinson's disease, aids, epilepsy, attention deficit disorder, nicotine addiction, cancer, headache and pain control, asthma, angina, hypertension, depression, cold, flu and the like
US7323982B2 (en) 2004-11-05 2008-01-29 Wirelesswerx International, Inc. Method and system to control movable entities
US8023441B2 (en) * 2004-12-20 2011-09-20 Sensicast Systems Method for reporting and accumulating data in a wireless communication network
US7680752B1 (en) * 2005-01-06 2010-03-16 Parasoft Corporation System and method for predictive process management
EP1860993B1 (en) 2005-03-01 2019-01-23 Masimo Laboratories, Inc. Noninvasive multi-parameter patient monitor
EP1877990A4 (en) 2005-04-06 2009-11-04 Omnilink Systems Inc System and method for tracking monitoring, collecting, reporting and communicating with the movement of individuals
US8802183B2 (en) 2005-04-28 2014-08-12 Proteus Digital Health, Inc. Communication system with enhanced partial power source and method of manufacturing same
US9198608B2 (en) 2005-04-28 2015-12-01 Proteus Digital Health, Inc. Communication system incorporated in a container
CA2789262C (en) 2005-04-28 2016-10-04 Proteus Digital Health, Inc. Pharma-informatics system
US8912908B2 (en) 2005-04-28 2014-12-16 Proteus Digital Health, Inc. Communication system with remote activation
US8730031B2 (en) 2005-04-28 2014-05-20 Proteus Digital Health, Inc. Communication system using an implantable device
US8836513B2 (en) 2006-04-28 2014-09-16 Proteus Digital Health, Inc. Communication system incorporated in an ingestible product
WO2006122004A1 (en) 2005-05-06 2006-11-16 Omnilink Systems, Inc. System and method of tracking the movement of individuals and assets
US8862243B2 (en) * 2005-07-25 2014-10-14 Rainbow Medical Ltd. Electrical stimulation of blood vessels
WO2007028035A2 (en) 2005-09-01 2007-03-08 Proteus Biomedical, Inc. Implantable zero-wire communications system
JP4694930B2 (en) * 2005-09-21 2011-06-08 富士フイルム株式会社 Ultrasonic diagnostic equipment
US9724012B2 (en) 2005-10-11 2017-08-08 Impedimed Limited Hydration status monitoring
US7733224B2 (en) 2006-06-30 2010-06-08 Bao Tran Mesh network personal emergency response appliance
WO2007060560A1 (en) * 2005-11-23 2007-05-31 Koninklijke Philips Electronics N.V. Enhanced functionality and accuracy for a wrist-based multi-parameter monitor
US8311623B2 (en) * 2006-04-15 2012-11-13 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for estimating surface electromyography
KR101568660B1 (en) 2006-05-02 2015-11-12 프로테우스 디지털 헬스, 인코포레이티드 Patient customized therapeutic regimens
US8968195B2 (en) 2006-05-12 2015-03-03 Bao Tran Health monitoring appliance
US9814425B2 (en) * 2006-05-12 2017-11-14 Koninklijke Philips N.V. Health monitoring appliance
US8323189B2 (en) 2006-05-12 2012-12-04 Bao Tran Health monitoring appliance
US7539532B2 (en) * 2006-05-12 2009-05-26 Bao Tran Cuffless blood pressure monitoring appliance
US7539533B2 (en) 2006-05-16 2009-05-26 Bao Tran Mesh network monitoring appliance
JP4819887B2 (en) * 2006-05-29 2011-11-24 シャープ株式会社 Fatigue estimation device and electronic device equipped with the same
US7796769B2 (en) 2006-05-30 2010-09-14 Sonitus Medical, Inc. Methods and apparatus for processing audio signals
US7849115B2 (en) 2006-06-05 2010-12-07 Bruce Reiner Method and apparatus for adapting computer-based systems to end-user profiles
US8437843B1 (en) * 2006-06-16 2013-05-07 Cleveland Medical Devices Inc. EEG data acquisition system with novel features
DE102006028232A1 (en) * 2006-06-20 2007-12-27 Bayer Technology Services Gmbh Apparatus and method for calculating and providing a dose of medicament
US9820658B2 (en) 2006-06-30 2017-11-21 Bao Q. Tran Systems and methods for providing interoperability among healthcare devices
CN101489469B (en) * 2006-07-10 2012-12-12 埃森哲环球服务有限公司 Mobile personal services platform for providing feedback
US7572232B2 (en) * 2006-07-24 2009-08-11 Cardiac Pacemakers, Inc. Cardiac signal display and event detection using multiresolution Z-score transform
GB0615463D0 (en) * 2006-08-03 2006-09-13 Imp College Innovations Ltd Apparatus and method for obtaining EEG data
US8291912B2 (en) 2006-08-22 2012-10-23 Sonitus Medical, Inc. Systems for manufacturing oral-based hearing aid appliances
JP4779168B2 (en) * 2006-08-25 2011-09-28 学校法人 日本歯科大学 Medical training device
CN101512372B (en) * 2006-08-30 2014-09-24 皇家飞利浦电子股份有限公司 Data encoding having digitized MR signal with variable bit rate
US20080057865A1 (en) * 2006-09-05 2008-03-06 Broadcom Corporation, A California Corporation Wireless terminal making attachment decisions based upon mobility
US8805759B1 (en) 2006-09-06 2014-08-12 Healthcare Interactive, Inc. System and method for psychographic profiling of targeted populations of individuals
US20080077020A1 (en) * 2006-09-22 2008-03-27 Bam Labs, Inc. Method and apparatus for monitoring vital signs remotely
US8924248B2 (en) 2006-09-26 2014-12-30 Fitbit, Inc. System and method for activating a device based on a record of physical activity
US20090048869A1 (en) * 2006-10-04 2009-02-19 Tripractix, Llc Automated healthcare management functions
US8054140B2 (en) 2006-10-17 2011-11-08 Proteus Biomedical, Inc. Low voltage oscillator for medical devices
MY158019A (en) 2006-10-25 2016-08-30 Proteus Digital Health Inc Controlled activation ingestible identifier
US7869867B2 (en) * 2006-10-27 2011-01-11 Cyberonics, Inc. Implantable neurostimulator with refractory stimulation
US8718193B2 (en) 2006-11-20 2014-05-06 Proteus Digital Health, Inc. Active signal processing personal health signal receivers
US20080124065A1 (en) * 2006-11-29 2008-05-29 Ahamefula Chukwu Automatic picture and text alerting camera, with inbuilt smoke and motion detectors
KR100889747B1 (en) * 2006-12-05 2009-03-24 한국전자통신연구원 Method for controlling MAC and allocating resources in wireless Ad hoc network and computer-readable medium having embodied thereon a frame structure for the method
US20100073202A1 (en) * 2008-09-25 2010-03-25 Mazed Mohammad A Portable internet appliance
KR100848129B1 (en) * 2006-12-07 2008-07-24 한국전자통신연구원 Method for providing a personalization service in ubiquitous environment and intelligent gadget therefor
US8979755B2 (en) * 2006-12-08 2015-03-17 The Boeing Company Devices and systems for remote physiological monitoring
US8652040B2 (en) 2006-12-19 2014-02-18 Valencell, Inc. Telemetric apparatus for health and environmental monitoring
CA2674779A1 (en) * 2006-12-21 2008-07-03 24Eight Llc Apparatus and method for wireless autonomous infant mobility detection, monitoring, analysis and alarm event generation
US7676953B2 (en) * 2006-12-29 2010-03-16 Signature Control Systems, Inc. Calibration and metering methods for wood kiln moisture measurement
US8149818B2 (en) * 2006-12-30 2012-04-03 Broadcom Corporation Mesh network within a device
US8253547B2 (en) * 2007-01-10 2012-08-28 Halo Monitoring, Inc. Wireless sensor network data management system and method
US9591994B2 (en) 2007-01-23 2017-03-14 Dtherapeutics, Llc Systems and methods to obtain a myocardial mass index indicative of an at-risk myocardial region
WO2009094046A1 (en) * 2008-01-22 2009-07-30 Dtherapeutics, Llc Systems and methods for applying scaling laws of tree structures
US8903472B2 (en) * 2007-01-23 2014-12-02 Dtherapeutics, Llc Applications of scaling laws of tree structures
JP5524626B2 (en) 2007-02-01 2014-06-18 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible event marker system
CN103066226B (en) 2007-02-14 2016-09-14 普罗透斯数字保健公司 There is the in-body power source of high surface area electrode
WO2008103915A1 (en) * 2007-02-23 2008-08-28 Tia Gao Multiprotocol wireless medical monitors and systems
FR2912893B1 (en) 2007-02-23 2009-12-11 Philippe Brunswick ELECTROPHYSIOLOGICAL ANALYSIS SYSTEM
ES2612559T3 (en) 2007-03-07 2017-05-17 Wirelesswerx International, Inc. Method and system to provide specific area messages
US9270025B2 (en) 2007-03-09 2016-02-23 Proteus Digital Health, Inc. In-body device having deployable antenna
US8932221B2 (en) 2007-03-09 2015-01-13 Proteus Digital Health, Inc. In-body device having a multi-directional transmitter
JP2010524094A (en) * 2007-04-04 2010-07-15 マグネットー・イナーシャル・センシング・テクノロジー・インコーポレイテッド Dynamically configurable wireless sensor network
US8196809B2 (en) * 2007-04-20 2012-06-12 Sca Hygiene Products Ab System and method for associating an absorbent article with a user
JP4952356B2 (en) * 2007-04-23 2012-06-13 セイコーエプソン株式会社 Liquid detection device, liquid ejection device, and liquid detection method
US8115621B2 (en) 2007-05-01 2012-02-14 Yoganand Rajala Device for tracking the movement of individuals or objects
WO2008148040A1 (en) 2007-05-24 2008-12-04 Lifewave, Inc. System and method for non-invasive instantaneous and continuous measurement of cardiac chamber volume
US8115618B2 (en) 2007-05-24 2012-02-14 Proteus Biomedical, Inc. RFID antenna for in-body device
US8270638B2 (en) 2007-05-29 2012-09-18 Sonitus Medical, Inc. Systems and methods to provide communication, positioning and monitoring of user status
EP2156348B1 (en) * 2007-05-30 2018-08-01 Ascensia Diabetes Care Holdings AG System and method for managing health data
US8369944B2 (en) 2007-06-06 2013-02-05 Zoll Medical Corporation Wearable defibrillator with audio input/output
US8271082B2 (en) 2007-06-07 2012-09-18 Zoll Medical Corporation Medical device configured to test for user responsiveness
WO2008148782A1 (en) * 2007-06-07 2008-12-11 Qualcomm Incorporated 3d maps rendering device and method
US8602997B2 (en) 2007-06-12 2013-12-10 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US11607152B2 (en) 2007-06-12 2023-03-21 Sotera Wireless, Inc. Optical sensors for use in vital sign monitoring
EP2162059B1 (en) 2007-06-12 2021-01-13 Sotera Wireless, Inc. Vital sign monitor and method for measuring blood pressure using optical, electrical, and pressure waveforms
US11330988B2 (en) 2007-06-12 2022-05-17 Sotera Wireless, Inc. Body-worn system for measuring continuous non-invasive blood pressure (cNIBP)
US7996056B2 (en) 2007-06-15 2011-08-09 The General Electric Company Method and apparatus for acquiring physiological data
US8060175B2 (en) * 2007-06-15 2011-11-15 General Electric Company System and apparatus for collecting physiological signals from a plurality of electrodes
EP2170430A2 (en) * 2007-06-29 2010-04-07 Roche Diagnostics GmbH Method and apparatus for determining and delivering a drug bolus
ITTV20070123A1 (en) * 2007-07-10 2009-01-11 Consulting Engineering Srl APPARATUS FOR THE AUTOMATION OF THE OPERATIONAL FUNCTIONALITIES OF ONE OR MORE LOADS OF AN ENVIRONMENTAL SPACE.
EP2017756A1 (en) * 2007-07-20 2009-01-21 BrainLAB AG Method for displaying and/or processing or manipulating image data for medical purposes with gesture recognition
CN101108125B (en) * 2007-08-02 2010-06-16 无锡微感科技有限公司 Dynamic monitoring system of body sign
EP2175941B1 (en) * 2007-08-08 2012-05-30 Koninklijke Philips Electronics N.V. Process and system for monitoring exercise motions of a person
US8046058B2 (en) * 2007-08-10 2011-10-25 Salutron, Inc. Heart beat signal recognition
US9179864B2 (en) * 2007-08-15 2015-11-10 Integrity Tracking, Llc Wearable health monitoring device and methods for fall detection
US8433080B2 (en) 2007-08-22 2013-04-30 Sonitus Medical, Inc. Bone conduction hearing device with open-ear microphone
TW200910810A (en) * 2007-08-27 2009-03-01 Univ Nat Yang Ming Multiple receiver radio frequency system
US8224013B2 (en) 2007-08-27 2012-07-17 Sonitus Medical, Inc. Headset systems and methods
US8315203B2 (en) 2007-08-30 2012-11-20 Wirelesswerx International, Inc. Mapping in a multi-dimensional space
US8285245B2 (en) * 2007-08-30 2012-10-09 Wirelesswerx International, Inc. Messaging in a multi-dimensional space
US8200186B2 (en) * 2007-08-30 2012-06-12 Wirelesswerx International, Inc. Emergency control in a multi-dimensional space
US8428867B2 (en) 2007-08-30 2013-04-23 Wirelesswerx International, Inc. Configuring and using multi-dimensional zones
US8612278B1 (en) 2013-03-06 2013-12-17 Wirelesswerx International, Inc. Controlling queuing in a defined location
US7978062B2 (en) 2007-08-31 2011-07-12 Cardiac Pacemakers, Inc. Medical data transport over wireless life critical network
US9848058B2 (en) 2007-08-31 2017-12-19 Cardiac Pacemakers, Inc. Medical data transport over wireless life critical network employing dynamic communication link mapping
EP2034782A1 (en) * 2007-09-06 2009-03-11 Siemens Aktiengesellschaft A method for misbehaviour detection in secure wireless mesh networks
FI2192946T3 (en) 2007-09-25 2022-11-30 In-body device with virtual dipole signal amplification
US7682303B2 (en) 2007-10-02 2010-03-23 Sonitus Medical, Inc. Methods and apparatus for transmitting vibrations
WO2009049104A1 (en) * 2007-10-09 2009-04-16 Sleep Improvement Center P.C. Infant/child monitor
US8343079B2 (en) 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural monitoring sensor
US9084550B1 (en) 2007-10-18 2015-07-21 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US20090105788A1 (en) * 2007-10-18 2009-04-23 Innovative Surgical Solutions, Llc Minimally invasive nerve monitoring device and method
US8942797B2 (en) * 2007-10-18 2015-01-27 Innovative Surgical Solutions, Llc Neural monitoring system
US8343065B2 (en) * 2007-10-18 2013-01-01 Innovative Surgical Solutions, Llc Neural event detection
US8134459B2 (en) * 2007-10-19 2012-03-13 Smiths Medical Asd, Inc. Wireless telecommunications system adaptable for patient monitoring
US9949641B2 (en) * 2007-10-19 2018-04-24 Smiths Medical Asd, Inc. Method for establishing a telecommunications system for patient monitoring
US8082160B2 (en) 2007-10-26 2011-12-20 Hill-Rom Services, Inc. System and method for collection and communication of data from multiple patient care devices
US20090113335A1 (en) * 2007-10-30 2009-04-30 Baxter International Inc. Dialysis system user interface
US9144404B2 (en) 2007-11-30 2015-09-29 John Thomas Barnett Managing body composition
US7788042B2 (en) * 2007-11-30 2010-08-31 John Thomas Barnett Managing body composition
US8795172B2 (en) * 2007-12-07 2014-08-05 Sonitus Medical, Inc. Systems and methods to provide two-way communications
IL188033A0 (en) * 2007-12-10 2008-12-29 Hadasit Med Res Service Method and system for detection of pre-fainting conditions
EP2229101B1 (en) * 2007-12-12 2013-02-20 Koninklijke Philips Electronics N.V. Sleep position detection
US8112281B2 (en) * 2007-12-19 2012-02-07 Enbiomedic Accelerometer-based control of wearable audio recorders
WO2009080040A1 (en) * 2007-12-20 2009-07-02 Coloplast A/S An adhesive patch for monitoring acoustic signals
US8392591B2 (en) 2007-12-28 2013-03-05 Cellspinsoft Inc. Automatic multimedia upload for publishing data and multimedia content
US8571643B2 (en) 2010-09-16 2013-10-29 Flint Hills Scientific, Llc Detecting or validating a detection of a state change from a template of heart rate derivative shape or heart beat wave complex
US8382667B2 (en) 2010-10-01 2013-02-26 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8337404B2 (en) 2010-10-01 2012-12-25 Flint Hills Scientific, Llc Detecting, quantifying, and/or classifying seizures using multimodal data
US8538535B2 (en) 2010-08-05 2013-09-17 Rainbow Medical Ltd. Enhancing perfusion by contraction
US8626299B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Thoracic aorta and vagus nerve stimulation
US8626290B2 (en) 2008-01-31 2014-01-07 Enopace Biomedical Ltd. Acute myocardial infarction treatment by electrical stimulation of the thoracic aorta
US9005106B2 (en) * 2008-01-31 2015-04-14 Enopace Biomedical Ltd Intra-aortic electrical counterpulsation
US20090198271A1 (en) * 2008-01-31 2009-08-06 Rainbow Medical Ltd. Electrode based filter
US8270637B2 (en) 2008-02-15 2012-09-18 Sonitus Medical, Inc. Headset systems and methods
US7974845B2 (en) 2008-02-15 2011-07-05 Sonitus Medical, Inc. Stuttering treatment methods and apparatus
WO2009107040A1 (en) * 2008-02-28 2009-09-03 Philips Intellectual Property & Standards Gmbh Wireless patient monitoring using streaming of medical data with body-coupled communication
US8023676B2 (en) 2008-03-03 2011-09-20 Sonitus Medical, Inc. Systems and methods to provide communication and monitoring of user status
US8150075B2 (en) 2008-03-04 2012-04-03 Sonitus Medical, Inc. Dental bone conduction hearing appliance
US20090226020A1 (en) 2008-03-04 2009-09-10 Sonitus Medical, Inc. Dental bone conduction hearing appliance
CN104376659B (en) 2008-03-05 2019-10-25 普罗透斯数字保健公司 The ingestible event flag of multi-modal communications and system, and the method using it
US20090231129A1 (en) * 2008-03-14 2009-09-17 Honeywell International, Inc. Wireless janitorial supply/emergency monitoring system
US20140156559A1 (en) * 2008-03-21 2014-06-05 iJoin Solutions, LLC Transactional decision making device and method
US20090247850A1 (en) * 2008-03-28 2009-10-01 Nellcor Puritan Bennett Llc Manually Powered Oximeter
US7826395B2 (en) * 2008-04-22 2010-11-02 Samsung Electronics Co., Ltd. Communication system using zigbee and method of controlling the same
FR2930421A1 (en) * 2008-04-28 2009-10-30 Univ Sud Toulon Var Etablissem DEVICE FOR ACQUIRING AND PROCESSING PHYSIOLOGICAL DATA OF AN ANIMAL OR A HUMAN DURING PHYSICAL ACTIVITY
SE0801267A0 (en) * 2008-05-29 2009-03-12 Cunctus Ab Method of a user unit, a user unit and a system comprising said user unit
US8971565B2 (en) * 2008-05-29 2015-03-03 Hie-D Technologies, Llc Human interface electronic device
KR100952078B1 (en) * 2008-06-25 2010-04-13 주식회사 메디슨 Portable ultrasonic diagnostic apparatus
US8577431B2 (en) 2008-07-03 2013-11-05 Cercacor Laboratories, Inc. Noise shielding for a noninvasive device
US20100030040A1 (en) 2008-08-04 2010-02-04 Masimo Laboratories, Inc. Multi-stream data collection system for noninvasive measurement of blood constituents
ES2696984T3 (en) 2008-07-08 2019-01-21 Proteus Digital Health Inc Ingestion event marker data infrastructure
WO2010006047A2 (en) * 2008-07-10 2010-01-14 Ethicon Endo-Surgery, Inc. Medical system which controls delivery of a drug and which includes a backpack pouch
US9226530B1 (en) * 2008-07-22 2016-01-05 Buoy Unlimited Inc. Breast shaping and lifting support garment
US8380531B2 (en) 2008-07-25 2013-02-19 Invivodata, Inc. Clinical trial endpoint development process
US8348847B2 (en) * 2008-08-05 2013-01-08 Guardsman Scientific, Inc. System and method for managing a patient
US8876720B2 (en) * 2008-08-05 2014-11-04 Guardsman Scientific, Inc. Peripheral ultrasound device providing pivotal adjustment of an imaging mechanism about two axes
US8255225B2 (en) 2008-08-07 2012-08-28 Vocollect Healthcare Systems, Inc. Voice assistant system
CN104382598A (en) 2008-08-13 2015-03-04 普罗透斯数字保健公司 Method of producing a recognizer
US8332072B1 (en) 2008-08-22 2012-12-11 Titan Medical Inc. Robotic hand controller
US10532466B2 (en) * 2008-08-22 2020-01-14 Titan Medical Inc. Robotic hand controller
US8451101B2 (en) * 2008-08-28 2013-05-28 Vocollect, Inc. Speech-driven patient care system with wearable devices
EP2158838A1 (en) * 2008-08-29 2010-03-03 Gerinova AG Non-invasive method for estimating of the variation of the clucose level in the blood of a person and apparatur for carrying out the method
CN102149323B (en) * 2008-09-12 2012-12-05 皇家飞利浦电子股份有限公司 Fall detection system
US20100069112A1 (en) * 2008-09-15 2010-03-18 Texas Instruments Incorporated Scheduling transmissions in coexisting wireless networks
US8323187B2 (en) * 2008-09-19 2012-12-04 Black Mountain Ventures Noninvasive medical device and method operable in a limited amount of time through a deliberate human motion
WO2010033928A1 (en) * 2008-09-22 2010-03-25 Cardiac Pacemakers, Inc. Congestive heart failure decompensation detection
CA2733268A1 (en) 2008-09-25 2010-04-01 Fisher-Rosemount Systems, Inc. Wireless mesh network with pinch point and low battery alerts
US8848974B2 (en) * 2008-09-29 2014-09-30 Restoration Robotics, Inc. Object-tracking systems and methods
AU2009302272B2 (en) * 2008-10-10 2013-02-07 Cardiac Pacemakers, Inc. Multi-sensor strategy for heart failure patient management
US8548607B1 (en) * 2008-11-03 2013-10-01 Autani Corp. Automation system network management, architectures, and methods and applications thereof
US8036748B2 (en) 2008-11-13 2011-10-11 Proteus Biomedical, Inc. Ingestible therapy activator system and method
US8538966B2 (en) * 2008-11-21 2013-09-17 Randall Reese Machine, program product, and computer-implemented method for file management, storage, and access utilizing a user-selected trigger event
FI20086107A (en) * 2008-11-21 2010-05-22 Seppo Juhani Saeynaejaekangas Method and apparatus for measuring vital functions of the human body
US8647287B2 (en) * 2008-12-07 2014-02-11 Andrew Greenberg Wireless synchronized movement monitoring apparatus and system
CA2746650A1 (en) 2008-12-11 2010-06-17 Proteus Biomedical, Inc. Evaluation of gastrointestinal function using portable electroviscerography systems and methods of using the same
BRPI0917755A2 (en) * 2008-12-15 2016-02-23 Koninkl Philips Electronics Nv method for calibrating a drop detector, method for setting a drop detector, apparatus for calibrating a drop detector, and drop detector
US9439566B2 (en) 2008-12-15 2016-09-13 Proteus Digital Health, Inc. Re-wearable wireless device
US9659423B2 (en) 2008-12-15 2017-05-23 Proteus Digital Health, Inc. Personal authentication apparatus system and method
TWI424832B (en) 2008-12-15 2014-02-01 Proteus Digital Health Inc Body-associated receiver and method
CN102341031A (en) 2009-01-06 2012-02-01 普罗秋斯生物医学公司 Ingestion-related biofeedback and personalized medical therapy method and system
JP5785097B2 (en) 2009-01-06 2015-09-24 プロテウス デジタル ヘルス, インコーポレイテッド Pharmaceutical dosage delivery system
US20100177599A1 (en) * 2009-01-11 2010-07-15 Yang Pan Determining location and survivability of a trapped person under a disaster situation by use of a wirst wearable device
US9144388B2 (en) 2009-01-20 2015-09-29 Alfred Salazar Portable system and method for monitoring of a heart and other body functions
US8467860B2 (en) * 2009-01-20 2013-06-18 Alexandria Salazar Portable system and method for monitoring of a heart and other body functions
US9072463B2 (en) * 2009-01-27 2015-07-07 University Of Washington Prosthetic limb monitoring system
DE102009007236A1 (en) * 2009-02-03 2010-08-05 Siemens Aktiengesellschaft CT image reconstruction of a moving examination object
US8708923B2 (en) * 2009-02-04 2014-04-29 Massachusetts Institute Of Technology Wearable system for monitoring physiological signals
US8241221B2 (en) * 2009-02-05 2012-08-14 Pacesetter, Inc. Systems and methods for use with an implantable medical device for detecting stroke based on electrocardiac signals
US20100201526A1 (en) * 2009-02-06 2010-08-12 Marjan Hafezi Pregnancy Belt
US8300783B2 (en) 2009-02-09 2012-10-30 Applied Minds, Llc Method and apparatus for establishing data link based on audio connection
US8542807B2 (en) * 2009-02-09 2013-09-24 Applied Minds, Llc Method and apparatus for establishing a data link based on a pots connection
US8588880B2 (en) 2009-02-16 2013-11-19 Masimo Corporation Ear sensor
EP3127476A1 (en) 2009-02-25 2017-02-08 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
US8788002B2 (en) 2009-02-25 2014-07-22 Valencell, Inc. Light-guiding devices and monitoring devices incorporating same
JP6078230B2 (en) 2009-03-02 2017-02-08 セブンス センス バイオシステムズ,インコーポレーテッド Techniques and devices related to blood sampling
US9041541B2 (en) 2010-01-28 2015-05-26 Seventh Sense Biosystems, Inc. Monitoring or feedback systems and methods
US9295417B2 (en) 2011-04-29 2016-03-29 Seventh Sense Biosystems, Inc. Systems and methods for collecting fluid from a subject
US9033898B2 (en) 2010-06-23 2015-05-19 Seventh Sense Biosystems, Inc. Sampling devices and methods involving relatively little pain
US9119578B2 (en) 2011-04-29 2015-09-01 Seventh Sense Biosystems, Inc. Plasma or serum production and removal of fluids under reduced pressure
US8319631B2 (en) 2009-03-04 2012-11-27 Cardiac Pacemakers, Inc. Modular patient portable communicator for use in life critical network
US8812841B2 (en) 2009-03-04 2014-08-19 Cardiac Pacemakers, Inc. Communications hub for use in life critical network
EP2228009B1 (en) * 2009-03-09 2018-05-16 Drägerwerk AG & Co. KGaA Apparatus and method to determine functional lung characteristics
DE102009001398A1 (en) * 2009-03-09 2010-09-16 Robert Bosch Gmbh Patches for detecting movements of a body
WO2012058652A2 (en) 2010-10-29 2012-05-03 Drexel University Tunable electro-optic filter stack
US9596989B2 (en) 2009-03-12 2017-03-21 Raytheon Company Networked symbiotic edge user infrastructure
WO2010111403A2 (en) 2009-03-25 2010-09-30 Proteus Biomedical, Inc. Probablistic pharmacokinetic and pharmacodynamic modeling
US9655518B2 (en) 2009-03-27 2017-05-23 Braemar Manufacturing, Llc Ambulatory and centralized processing of a physiological signal
US9002427B2 (en) 2009-03-30 2015-04-07 Lifewave Biomedical, Inc. Apparatus and method for continuous noninvasive measurement of respiratory function and events
US8776264B2 (en) * 2009-04-03 2014-07-15 Ware Llc Garments for providing access for sensors to contact skin
EP2420184B1 (en) * 2009-04-17 2016-05-11 ARKRAY, Inc. Data provision method, program and server device
WO2010124117A2 (en) 2009-04-22 2010-10-28 Lifewave, Inc. Fetal monitoring device and methods
US8898041B2 (en) * 2009-04-24 2014-11-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives System and method for determining the activity of a person lying down
NZ619375A (en) 2009-04-28 2015-03-27 Proteus Digital Health Inc Highly reliable ingestible event markers and methods for using the same
WO2010132331A2 (en) 2009-05-12 2010-11-18 Proteus Biomedical, Inc. Ingestible event markers comprising an ingestible component
US10973414B2 (en) 2009-05-20 2021-04-13 Sotera Wireless, Inc. Vital sign monitoring system featuring 3 accelerometers
US8956294B2 (en) 2009-05-20 2015-02-17 Sotera Wireless, Inc. Body-worn system for continuously monitoring a patients BP, HR, SpO2, RR, temperature, and motion; also describes specific monitors for apnea, ASY, VTAC, VFIB, and ‘bed sore’ index
US11896350B2 (en) 2009-05-20 2024-02-13 Sotera Wireless, Inc. Cable system for generating signals for detecting motion and measuring vital signs
US20180289443A1 (en) * 2009-05-29 2018-10-11 Jack Wade System and method for enhanced data analysis with specialized video enabled software tools for medical environments
US10687914B2 (en) * 2009-05-29 2020-06-23 Jack Wade System and method for enhanced data analysis with specialized video enabled software tools for medical environments
US10507065B2 (en) * 2009-05-29 2019-12-17 Jack Wade System and method for enhanced data analysis with video enabled software tools for medical environments
US11744668B2 (en) * 2009-05-29 2023-09-05 Jack Wade System and method for enhanced data analysis with specialized video enabled software tools for medical environments
US9480789B2 (en) * 2009-06-01 2016-11-01 Ethicon Endo-Surgery, Inc. Method and sedation delivery system including a pump assembly and a co-formulation of first and second drugs
US9596999B2 (en) 2009-06-17 2017-03-21 Sotera Wireless, Inc. Body-worn pulse oximeter
CA2765782C (en) * 2009-06-24 2018-11-27 The Medical Research, Infrastructure, And Health Services Fund Of The Tel Aviv Medical Center Automated near-fall detector
EP2445395B1 (en) 2009-06-26 2017-01-11 Gambro Lundia AB Devices and method for data extraction
US20120184862A1 (en) * 2009-07-17 2012-07-19 Agency For Science, Technology And Research System and method for patient monitoring
US20110013762A1 (en) * 2009-07-18 2011-01-20 Gregg Bieser Notification apparatus & method
US20110172550A1 (en) 2009-07-21 2011-07-14 Michael Scott Martin Uspa: systems and methods for ems device communication interface
US9242042B2 (en) * 2009-07-21 2016-01-26 Ethicon Endo-Surgery, Inc. Drug delivery system including a drug-container holder and a pump assembly
WO2011127459A1 (en) 2010-04-09 2011-10-13 Zoll Medical Corporation Systems and methods for ems device communications interface
US9161711B2 (en) * 2009-08-19 2015-10-20 Movea System and method for detecting an epileptic seizure in a prone epileptic person
US8558563B2 (en) 2009-08-21 2013-10-15 Proteus Digital Health, Inc. Apparatus and method for measuring biochemical parameters
JP5243375B2 (en) * 2009-09-09 2013-07-24 日本光電工業株式会社 Biological signal processing device and medical device control method
US8172777B2 (en) * 2009-09-14 2012-05-08 Empire Technology Development Llc Sensor-based health monitoring system
US11253169B2 (en) 2009-09-14 2022-02-22 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US10123722B2 (en) * 2009-09-14 2018-11-13 Sotera Wireless, Inc. Body-worn monitor for measuring respiration rate
US10420476B2 (en) 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US10806351B2 (en) 2009-09-15 2020-10-20 Sotera Wireless, Inc. Body-worn vital sign monitor
US8364250B2 (en) 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US8527038B2 (en) 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
US8207651B2 (en) 2009-09-16 2012-06-26 Tyco Healthcare Group Lp Low energy or minimum disturbance method for measuring frequency response functions of ultrasonic surgical devices in determining optimum operating point
US9554739B2 (en) 2009-09-29 2017-01-31 Covidien Lp Smart cable for coupling a medical sensor to an electronic patient monitor
WO2011041078A1 (en) 2009-10-02 2011-04-07 Sonitus Medical, Inc. Intraoral appliance for sound transmission via bone conduction
US8707758B2 (en) * 2009-10-02 2014-04-29 Soberlink, Inc. Sobriety monitoring system
US20110082711A1 (en) * 2009-10-06 2011-04-07 Masimo Laboratories, Inc. Personal digital assistant or organizer for monitoring glucose levels
US20110106200A1 (en) * 2009-10-29 2011-05-05 Medtronic, Inc. Stroke risk monitoring system including implantable medical device
TWI517050B (en) 2009-11-04 2016-01-11 普羅托斯數位健康公司 System for supply chain management
FI122052B (en) * 2009-11-06 2011-08-15 Domuset Oy A method and arrangement for tracking the path of a pet pet at home
US8838217B2 (en) 2009-11-10 2014-09-16 Makor Issues And Rights Ltd. System and apparatus for providing diagnosis and personalized abnormalities alerts and for providing adaptive responses in clinical trials
US20110115605A1 (en) * 2009-11-17 2011-05-19 Strattec Security Corporation Energy harvesting system
US9293060B2 (en) 2010-05-06 2016-03-22 Ai Cure Technologies Llc Apparatus and method for recognition of patient activities when obtaining protocol adherence data
US8325032B2 (en) * 2009-11-29 2012-12-04 Yang Pan Miniature life-saving device
UA109424C2 (en) 2009-12-02 2015-08-25 PHARMACEUTICAL PRODUCT, PHARMACEUTICAL TABLE WITH ELECTRONIC MARKER AND METHOD OF MANUFACTURING PHARMACEUTICAL TABLETS
BR112012013294A2 (en) * 2009-12-08 2019-09-24 Maarek Albert medical device system, use of a medical device system, system to evaluate an individual's homeostasis and an individual's homeostasis classification
US8460220B2 (en) * 2009-12-18 2013-06-11 General Electric Company System and method for monitoring the gait characteristics of a group of individuals
EP2513826A2 (en) * 2009-12-19 2012-10-24 Koninklijke Philips Electronics N.V. Copd exacerbation prediction system and method
US8976763B2 (en) * 2009-12-21 2015-03-10 Telecommunications Research Laboratories Method and system for allocation guaranteed time slots for efficient transmission of time-critical data in IEEE 802.15.4 wireless personal area networks
ES2551099T3 (en) * 2009-12-22 2015-11-16 9Solutions Oy Position Tracking System
US8451117B2 (en) * 2009-12-23 2013-05-28 Empire Technology Development Llc Content processing system capable of event detection and content management
US8998096B2 (en) 2010-04-01 2015-04-07 Coin, Inc. Magnetic emissive use of preloaded payment card account numbers
US8874186B2 (en) * 2009-12-30 2014-10-28 Avery Dennison Corporation Apparatus and method for monitoring physiological parameters using electrical measurements
US9585589B2 (en) * 2009-12-31 2017-03-07 Cerner Innovation, Inc. Computerized systems and methods for stability-theoretic prediction and prevention of sudden cardiac death
WO2011083453A1 (en) * 2010-01-11 2011-07-14 Card Guard Scientific Survival Ltd. An adhesive bandage and a method for controlling patient information
WO2011142840A2 (en) * 2010-01-13 2011-11-17 Shawn Hershey Design and implementation of factor graphs
EP2642371A1 (en) 2010-01-14 2013-09-25 BrainLAB AG Controlling a surgical navigation system
EP2528550A2 (en) * 2010-01-25 2012-12-05 The Board of Governors for Higher Education, State of Rhode Island and Providence Plantations Systems and methods for providing a neural-machine interface for artificial legs
US8565109B1 (en) 2010-01-29 2013-10-22 University Of Washington Through Its Center Of Commercialization Optimization of polling protocols in sensor networks
EP2531099B1 (en) 2010-02-01 2018-12-12 Proteus Digital Health, Inc. Data gathering system
US8489113B2 (en) 2010-02-09 2013-07-16 Omnilink Systems, Inc. Method and system for tracking, monitoring and/or charging tracking devices including wireless energy transfer features
US9078610B2 (en) * 2010-02-22 2015-07-14 Covidien Lp Motion energy harvesting with wireless sensors
US20110213217A1 (en) * 2010-02-28 2011-09-01 Nellcor Puritan Bennett Llc Energy optimized sensing techniques
US10206570B2 (en) * 2010-02-28 2019-02-19 Covidien Lp Adaptive wireless body networks
US10645628B2 (en) 2010-03-04 2020-05-05 Rosemount Inc. Apparatus for interconnecting wireless networks separated by a barrier
JP5961116B2 (en) * 2010-03-08 2016-08-02 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. System and method for obtaining an objective measure of dyspnea
US20110224564A1 (en) 2010-03-10 2011-09-15 Sotera Wireless, Inc. Body-worn vital sign monitor
US8467864B2 (en) * 2010-03-11 2013-06-18 Pacesetter, Inc. Systems and methods for use by an implantable medical device for detecting and discriminating stroke and cardiac ischemia using electrocardiac signals and hemodynamic parameters
US20110224505A1 (en) * 2010-03-12 2011-09-15 Rajendra Padma Sadhu User wearable portable communicative device
US9000914B2 (en) * 2010-03-15 2015-04-07 Welch Allyn, Inc. Personal area network pairing
RU2012143791A (en) 2010-04-07 2014-05-20 Проутьюс Диджитал Хэлс, Инк. MINIATURE INGESTED DEVICE
US9173594B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9339209B2 (en) 2010-04-19 2016-05-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8888700B2 (en) 2010-04-19 2014-11-18 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8979765B2 (en) 2010-04-19 2015-03-17 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9173593B2 (en) 2010-04-19 2015-11-03 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US8747330B2 (en) 2010-04-19 2014-06-10 Sotera Wireless, Inc. Body-worn monitor for measuring respiratory rate
US9655405B2 (en) 2010-04-22 2017-05-23 Kristan Lisa Hamill Insoles for tracking, data transfer systems and methods involving the insoles, and methods of manufacture
US8797146B2 (en) * 2010-04-27 2014-08-05 Apple Inc. Autonomous battery-free microwave frequency communication system
US8649871B2 (en) 2010-04-29 2014-02-11 Cyberonics, Inc. Validity test adaptive constraint modification for cardiac data used for detection of state changes
US8562536B2 (en) 2010-04-29 2013-10-22 Flint Hills Scientific, Llc Algorithm for detecting a seizure from cardiac data
US8831732B2 (en) 2010-04-29 2014-09-09 Cyberonics, Inc. Method, apparatus and system for validating and quantifying cardiac beat data quality
US10116903B2 (en) * 2010-05-06 2018-10-30 Aic Innovations Group, Inc. Apparatus and method for recognition of suspicious activities
US8549905B2 (en) * 2010-05-06 2013-10-08 Halliburton Energy Services, Inc. Simulating downhole flow through a perforation
US9883786B2 (en) 2010-05-06 2018-02-06 Aic Innovations Group, Inc. Method and apparatus for recognition of inhaler actuation
US9875666B2 (en) 2010-05-06 2018-01-23 Aic Innovations Group, Inc. Apparatus and method for recognition of patient activities
DK2568878T3 (en) 2010-05-12 2018-10-29 Irhythm Tech Inc Interior features and design elements for long-term adhesion
US20110282168A1 (en) * 2010-05-14 2011-11-17 Waldo Networks Health monitoring device and methods thereof
WO2011143631A2 (en) * 2010-05-14 2011-11-17 Kai Medical, Inc. Systems and methods for non-contact multiparameter vital signs monitoring, apnea therapy, sway cancellation, patient identification, and subject monitoring sensors
TWI557672B (en) 2010-05-19 2016-11-11 波提亞斯數位康健公司 Computer system and computer-implemented method to track medication from manufacturer to a patient, apparatus and method for confirming delivery of medication to a patient, patient interface device
CA2973994C (en) 2010-05-21 2019-05-21 Medicomp, Inc. Method of determining optimum electrode vector length between two sensing connectors of a cardiac monitor
US9585584B2 (en) 2010-05-21 2017-03-07 Medicomp, Inc. Physiological signal monitor with retractable wires
TW201143712A (en) * 2010-06-03 2011-12-16 Tyson Biores Inc Methods, devices, and systems for health management
CN102933859A (en) 2010-06-07 2013-02-13 英派尔科技开发有限公司 Inductively removable assecmbly bonding
US8509882B2 (en) 2010-06-08 2013-08-13 Alivecor, Inc. Heart monitoring system usable with a smartphone or computer
US9351654B2 (en) 2010-06-08 2016-05-31 Alivecor, Inc. Two electrode apparatus and methods for twelve lead ECG
JP5464072B2 (en) * 2010-06-16 2014-04-09 ソニー株式会社 Muscle activity diagnosis apparatus and method, and program
US8463288B2 (en) 2010-06-18 2013-06-11 The Invention Science Fund I, Llc Irradiation self-protection from user telecommunication device
US8462002B2 (en) 2010-06-18 2013-06-11 The Invention Science Fund I, Llc Personal telecommunication device with target-based exposure control
US8519856B2 (en) * 2010-06-18 2013-08-27 The Invention Science Fund I, Llc Mapping system for irradiation protection
US8686865B2 (en) 2010-06-18 2014-04-01 The Invention Science Fund I, Llc Interactive technique to reduce irradiation from external source
US20120106103A1 (en) * 2010-06-23 2012-05-03 Tanios Nohra Radio frequency energy harvesting enclosure for radio frequency connected devices
US10867701B1 (en) * 2010-06-28 2020-12-15 Heinrich Anhold System and method for optimizing patient-specific intervention strategies using point of care diagnostics
US10867254B2 (en) * 2010-06-29 2020-12-15 Orange Adapting the operation of an appliance
US20130158482A1 (en) 2010-07-26 2013-06-20 Seventh Sense Biosystems, Inc. Rapid delivery and/or receiving of fluids
US8641646B2 (en) 2010-07-30 2014-02-04 Cyberonics, Inc. Seizure detection using coordinate data
DE102010033985B4 (en) * 2010-08-06 2014-08-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Procedure for unobtrusive surveillance of a person and system for carrying out the procedure
WO2012021801A2 (en) 2010-08-13 2012-02-16 Seventh Sense Biosystems, Inc. Systems and techniques for monitoring subjects
WO2012022276A2 (en) * 2010-08-19 2012-02-23 Vladimir Kranz The localization and activation of alarm of persons in danger
US20120056741A1 (en) * 2010-09-07 2012-03-08 Liping Julia Zhu System to track one or more indoor persons, outdoor persons and vehicles
CA2714857A1 (en) * 2010-09-15 2012-03-15 Evan B. Friedman Electromyographic (emg) device for the diagnosis and treatment of muscle injuries
US9576694B2 (en) 2010-09-17 2017-02-21 Drexel University Applications for alliform carbon
US8849610B2 (en) 2010-09-30 2014-09-30 Fitbit, Inc. Tracking user physical activity with multiple devices
US8751194B2 (en) 2010-09-30 2014-06-10 Fitbit, Inc. Power consumption management of display in portable device based on prediction of user input
US8805646B2 (en) 2010-09-30 2014-08-12 Fitbit, Inc. Methods, systems and devices for linking user devices to activity tracking devices
US8744803B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for activity tracking device data synchronization with computing devices
US8762101B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for identification of event data having combined activity and location information of portable monitoring devices
US10983945B2 (en) 2010-09-30 2021-04-20 Fitbit, Inc. Method of data synthesis
US8954290B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Motion-activated display of messages on an activity monitoring device
US8775120B2 (en) 2010-09-30 2014-07-08 Fitbit, Inc. Method of data synthesis
US8954291B2 (en) 2010-09-30 2015-02-10 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8738323B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for metrics analysis and interactive rendering, including events having combined activity and location information
US9310909B2 (en) 2010-09-30 2016-04-12 Fitbit, Inc. Methods, systems and devices for physical contact activated display and navigation
US8768648B2 (en) 2010-09-30 2014-07-01 Fitbit, Inc. Selection of display power mode based on sensor data
US8712724B2 (en) 2010-09-30 2014-04-29 Fitbit, Inc. Calendar integration methods and systems for presentation of events having combined activity and location information
US9390427B2 (en) 2010-09-30 2016-07-12 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US9188460B2 (en) 2010-09-30 2015-11-17 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US8620617B2 (en) 2010-09-30 2013-12-31 Fitbit, Inc. Methods and systems for interactive goal setting and recommender using events having combined activity and location information
US8762102B2 (en) 2010-09-30 2014-06-24 Fitbit, Inc. Methods and systems for generation and rendering interactive events having combined activity and location information
US8694282B2 (en) 2010-09-30 2014-04-08 Fitbit, Inc. Methods and systems for geo-location optimized tracking and updating for events having combined activity and location information
US11243093B2 (en) 2010-09-30 2022-02-08 Fitbit, Inc. Methods, systems and devices for generating real-time activity data updates to display devices
US10216893B2 (en) * 2010-09-30 2019-02-26 Fitbit, Inc. Multimode sensor devices
US8781791B2 (en) 2010-09-30 2014-07-15 Fitbit, Inc. Touchscreen with dynamically-defined areas having different scanning modes
US9241635B2 (en) 2010-09-30 2016-01-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US8812259B2 (en) 2010-09-30 2014-08-19 Fitbit, Inc. Alarm setting and interfacing with gesture contact interfacing controls
US8615377B1 (en) 2010-09-30 2013-12-24 Fitbit, Inc. Methods and systems for processing social interactive data and sharing of tracked activity associated with locations
US10004406B2 (en) 2010-09-30 2018-06-26 Fitbit, Inc. Portable monitoring devices for processing applications and processing analysis of physiological conditions of a user associated with the portable monitoring device
US9148483B1 (en) 2010-09-30 2015-09-29 Fitbit, Inc. Tracking user physical activity with multiple devices
US8738321B2 (en) 2010-09-30 2014-05-27 Fitbit, Inc. Methods and systems for classification of geographic locations for tracked activity
US9167991B2 (en) 2010-09-30 2015-10-27 Fitbit, Inc. Portable monitoring devices and methods of operating same
US9253168B2 (en) 2012-04-26 2016-02-02 Fitbit, Inc. Secure pairing of devices via pairing facilitator-intermediary device
US8744804B2 (en) 2010-09-30 2014-06-03 Fitbit, Inc. Methods, systems and devices for automatic linking of activity tracking devices to user devices
US8684921B2 (en) 2010-10-01 2014-04-01 Flint Hills Scientific Llc Detecting, assessing and managing epilepsy using a multi-variate, metric-based classification analysis
KR20120036244A (en) * 2010-10-07 2012-04-17 삼성전자주식회사 Implantable medical device(imd) and method for controlling of the imd
US9037477B2 (en) 2010-10-08 2015-05-19 Cardiac Science Corporation Computer-implemented system and method for evaluating ambulatory electrocardiographic monitoring of cardiac rhythm disorders
US20120089000A1 (en) 2010-10-08 2012-04-12 Jon Mikalson Bishay Ambulatory Electrocardiographic Monitor For Providing Ease Of Use In Women And Method Of Use
US8613708B2 (en) 2010-10-08 2013-12-24 Cardiac Science Corporation Ambulatory electrocardiographic monitor with jumpered sensing electrode
US8239012B2 (en) 2010-10-08 2012-08-07 Cardiac Science Corporation Microcontrolled electrocardiographic monitoring circuit with differential voltage encoding
US9824334B2 (en) 2011-07-11 2017-11-21 ClearCare, Inc. System for updating a calendar or task status in home care scheduling via telephony
US9474482B2 (en) 2010-11-01 2016-10-25 G-Tech Medical, Inc. Method for diagnosis and treatment of disorders of the gastrointestinal tract, and apparatus for use therewith
US9937355B2 (en) 2010-11-08 2018-04-10 Zoll Medical Corporation Remote medical device alarm
RU2469643C2 (en) * 2010-11-10 2012-12-20 Федеральное государственное бюджетное учреждение "Федеральный Центр сердца, крови и эндокринологии имени В.А.Алмазова" Министерства здравоохранения и социального развития Российской Федерации Method for evaluating risk of transformation of paroxysmal atrial fibrillation into its permanent form in patient with ischemic heart disease
CN103313650B (en) 2010-11-11 2016-09-14 卓尔医学产品公司 Emergency treatment system information panel
US20120130200A1 (en) * 2010-11-18 2012-05-24 General Electric Company System and method for automated infant assessment
US8446255B2 (en) * 2010-11-19 2013-05-21 Callaway Golf Company Circuit for transmitting a RFID signal
JP2014504902A (en) 2010-11-22 2014-02-27 プロテウス デジタル ヘルス, インコーポレイテッド Ingestible device with medicinal product
US20120130203A1 (en) * 2010-11-24 2012-05-24 Fujitsu Limited Inductively-Powered Ring-Based Sensor
US8928671B2 (en) 2010-11-24 2015-01-06 Fujitsu Limited Recording and analyzing data on a 3D avatar
FI122921B (en) * 2010-11-26 2012-08-31 Spektikor Oy Disposable Heart Pulse Detector
US8737244B2 (en) 2010-11-29 2014-05-27 Rosemount Inc. Wireless sensor network access point and device RF spectrum analysis system and method
AU2011343589B2 (en) 2010-12-16 2017-02-23 Scion NeuroStim, Inc. Systems, methods and apparatus for delivering nerve stimulation to a patient with physician oversight
US20120157793A1 (en) * 2010-12-20 2012-06-21 General Electric Company Medication intake analyzer
US8649863B2 (en) 2010-12-20 2014-02-11 Rainbow Medical Ltd. Pacemaker with no production
US20120165703A1 (en) * 2010-12-22 2012-06-28 Paul William Bottum Preempt Muscle Map Screen
US20140249432A1 (en) 2010-12-28 2014-09-04 Matt Banet Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure
IL210358A (en) * 2010-12-29 2016-09-29 Israel Aerospace Ind Ltd Computerized system for monitoring and controlling physical data-producing apparatus
CN102551685B (en) * 2010-12-30 2015-04-01 世意法(北京)半导体研发有限责任公司 Object monitor
TWI507171B (en) * 2010-12-31 2015-11-11 Wistron Corp Measurement device, measurement system and data processing method for physiological signals
US8818260B2 (en) 2011-01-14 2014-08-26 Covidien, LP Wireless relay module for remote monitoring systems
US8811888B2 (en) 2011-01-14 2014-08-19 Covidien Lp Wireless relay module for monitoring network status
US9495511B2 (en) 2011-03-01 2016-11-15 Covidien Lp Remote monitoring systems and methods for medical devices
US8855550B2 (en) 2011-01-14 2014-10-07 Covidien Lp Wireless relay module having emergency call functionality
US8694600B2 (en) * 2011-03-01 2014-04-08 Covidien Lp Remote monitoring systems for monitoring medical devices via wireless communication networks
US9020419B2 (en) 2011-01-14 2015-04-28 Covidien, LP Wireless relay module for remote monitoring systems having power and medical device proximity monitoring functionality
US8798527B2 (en) 2011-01-14 2014-08-05 Covidien Lp Wireless relay module for remote monitoring systems
US8897198B2 (en) 2011-01-14 2014-11-25 Covidien Lp Medical device wireless network architectures
US8903308B2 (en) 2011-01-14 2014-12-02 Covidien Lp System and method for patient identification in a remote monitoring system
GB201101858D0 (en) * 2011-02-03 2011-03-23 Isansys Lifecare Ltd Health monitoring
US8784340B2 (en) 2011-02-07 2014-07-22 University Of Washington Through Its Center For Commercialization Limb volume accommodation in people with limb amputation
US9140590B2 (en) * 2011-02-09 2015-09-22 Texas Instruments Incorporated System and method of power-saving in MEMS sensor applications
FR2971418B1 (en) * 2011-02-14 2014-02-14 Univ Paris Curie ASSISTANCE TERMINAL FOR REMOTE MONITORING OF A PERSON CONNECTED TO A MEDICAL ASSISTANCE AND MONITORING DEVICE
WO2012112891A1 (en) 2011-02-18 2012-08-23 Sotera Wireless, Inc. Modular wrist-worn processor for patient monitoring
US10357187B2 (en) 2011-02-18 2019-07-23 Sotera Wireless, Inc. Optical sensor for measuring physiological properties
US9504390B2 (en) 2011-03-04 2016-11-29 Globalfoundries Inc. Detecting, assessing and managing a risk of death in epilepsy
CN103119415B (en) * 2011-03-08 2015-11-25 株式会社Ntt都科摩 Body-worn device, biosome gas measurement device and method
US8727980B2 (en) * 2011-03-10 2014-05-20 Medicalcue, Inc. Umbilical probe system
US8641614B2 (en) 2011-03-10 2014-02-04 Medicalcue, Inc. Umbilical probe measurement systems
US8641613B2 (en) * 2011-03-10 2014-02-04 Medicalcue, Inc. Umbilical probe system
US9439599B2 (en) 2011-03-11 2016-09-13 Proteus Digital Health, Inc. Wearable personal body associated device with various physical configurations
JP5803169B2 (en) * 2011-03-14 2015-11-04 オムロンヘルスケア株式会社 Sleep evaluation apparatus and sleep evaluation method
US9107639B2 (en) * 2011-03-15 2015-08-18 Medicinsk Bildteknik Sverige Ab System for synchronously visualizing a representation of first and second input data
US20120245435A1 (en) * 2011-03-24 2012-09-27 Corpier Greg L Automated healthcare integration system
WO2012135028A1 (en) 2011-03-25 2012-10-04 Zoll Medical Corporation Method of detecting signal clipping in a wearable ambulatory medical device
WO2012135062A1 (en) 2011-03-25 2012-10-04 Zoll Medical Corporation Selection of optimal channel for rate determination
KR101629981B1 (en) * 2011-04-04 2016-06-13 엘에스산전 주식회사 Rtls tag device and real time location system
US20120259233A1 (en) * 2011-04-08 2012-10-11 Chan Eric K Y Ambulatory physiological monitoring with remote analysis
WO2012154362A1 (en) * 2011-04-11 2012-11-15 Seventh Sense Biosysems, Inc. Devices and methods for delivery and/or withdrawal of fluids and preservation of withdrawn fluids
US9307914B2 (en) 2011-04-15 2016-04-12 Infobionic, Inc Remote data monitoring and collection system with multi-tiered analysis
KR101239103B1 (en) * 2011-04-19 2013-03-06 주식회사 동부하이텍 Touch screen controller using differential signal manipulation
US9498162B2 (en) 2011-04-25 2016-11-22 Cyberonics, Inc. Identifying seizures using heart data from two or more windows
US20130158468A1 (en) 2011-12-19 2013-06-20 Seventh Sense Biosystems, Inc. Delivering and/or receiving material with respect to a subject surface
US9456755B2 (en) 2011-04-29 2016-10-04 Medtronic, Inc. Method and device to monitor patients with kidney disease
US8951219B2 (en) 2011-04-29 2015-02-10 Medtronic, Inc. Fluid volume monitoring for patients with renal disease
EP2701600B1 (en) 2011-04-29 2016-06-08 Seventh Sense Biosystems, Inc. Delivering and/or receiving fluids
US9848778B2 (en) 2011-04-29 2017-12-26 Medtronic, Inc. Method and device to monitor patients with kidney disease
US9402550B2 (en) 2011-04-29 2016-08-02 Cybertronics, Inc. Dynamic heart rate threshold for neurological event detection
US9075900B2 (en) * 2011-05-18 2015-07-07 Exco Intouch Systems, methods and computer program products for providing compliant delivery of content, applications and/or solutions
WO2012159019A2 (en) * 2011-05-19 2012-11-22 Arrhythmia Research Technology, Inc. Triggering recharing and wireless transmission of remote patient monitoring device
US9271665B2 (en) * 2011-05-20 2016-03-01 The Regents Of The University Of California Fabric-based pressure sensor arrays and methods for data analysis
US8738925B1 (en) 2013-01-07 2014-05-27 Fitbit, Inc. Wireless portable biometric device syncing
US20120316456A1 (en) * 2011-06-10 2012-12-13 Aliphcom Sensory user interface
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
US20130194066A1 (en) * 2011-06-10 2013-08-01 Aliphcom Motion profile templates and movement languages for wearable devices
US20120316458A1 (en) * 2011-06-11 2012-12-13 Aliphcom, Inc. Data-capable band for medical diagnosis, monitoring, and treatment
US9460262B2 (en) 2011-06-17 2016-10-04 The Research Foundation Of State University Of New York Detecting and responding to sentinel events
US20130127620A1 (en) 2011-06-20 2013-05-23 Cerner Innovation, Inc. Management of patient fall risk
KR101110639B1 (en) 2011-06-22 2012-06-12 팅크웨어(주) Safe service system and method thereof
TWI448927B (en) * 2011-06-24 2014-08-11 Ind Tech Res Inst Control system and control method for identifying corresponding position
US8976218B2 (en) 2011-06-27 2015-03-10 Google Technology Holdings LLC Apparatus for providing feedback on nonverbal cues of video conference participants
US20130005372A1 (en) 2011-06-29 2013-01-03 Rosemount Inc. Integral thermoelectric generator for wireless devices
US8693452B1 (en) * 2011-06-29 2014-04-08 The United States Of America As Represented By The Secretary Of The Navy Self-charging individual life evaluator network
US20130172774A1 (en) * 2011-07-01 2013-07-04 Neuropace, Inc. Systems and Methods for Assessing the Effectiveness of a Therapy Including a Drug Regimen Using an Implantable Medical Device
EP2729063A4 (en) * 2011-07-05 2015-03-18 Lgch Inc Method and apparatus for detecting seizures
US20130017259A1 (en) 2011-07-06 2013-01-17 The Parkinson's Institute Compositions and Methods for Treatment of Symptoms in Parkinson's Disease Patients
US8868616B1 (en) 2011-07-07 2014-10-21 Integrity Tracking, Llc Event data monitoring systems and methods
US9756874B2 (en) 2011-07-11 2017-09-12 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
WO2015112603A1 (en) 2014-01-21 2015-07-30 Proteus Digital Health, Inc. Masticable ingestible product and communication system therefor
US10546481B2 (en) 2011-07-12 2020-01-28 Cerner Innovation, Inc. Method for determining whether an individual leaves a prescribed virtual perimeter
US20150130613A1 (en) * 2011-07-12 2015-05-14 Aliphcom Selectively available information storage and communications system
US9741227B1 (en) 2011-07-12 2017-08-22 Cerner Innovation, Inc. Method and process for determining whether an individual suffers a fall requiring assistance
US8428970B1 (en) * 2011-07-13 2013-04-23 Jeffrey Fiferlick Information record management system
US9077848B2 (en) 2011-07-15 2015-07-07 Google Technology Holdings LLC Side channel for employing descriptive audio commentary about a video conference
DE102011107795A1 (en) 2011-07-15 2013-01-17 Fresenius Medical Care Deutschland Gmbh Method and device for remote monitoring and control of medical fluid management devices
US20130023751A1 (en) * 2011-07-18 2013-01-24 Samuel Victor Lichtenstein Water retention monitoring
US20130023798A1 (en) * 2011-07-20 2013-01-24 Intel-Ge Care Innovations Llc Method for body-worn sensor based prospective evaluation of falls risk in community-dwelling elderly adults
IN2014MN00183A (en) 2011-07-21 2015-06-19 Proteus Digital Health Inc
AU2011204946C1 (en) * 2011-07-22 2012-07-26 Microsoft Technology Licensing, Llc Automatic text scrolling on a head-mounted display
EP2739587B1 (en) 2011-08-01 2020-05-27 Denovo Sciences Cell capture system
US20130035579A1 (en) 2011-08-02 2013-02-07 Tan Le Methods for modeling neurological development and diagnosing a neurological impairment of a patient
EP2739217B1 (en) 2011-08-05 2022-07-20 Route 92 Medical, Inc. Systems for treatment of acute ischemic stroke
US8599009B2 (en) * 2011-08-16 2013-12-03 Elwha Llc Systematic distillation of status data relating to regimen compliance
US20130044488A1 (en) * 2011-08-17 2013-02-21 G. Albert Hreish Combination Lamp and Wireless Network Access System
US8934954B2 (en) 2011-08-23 2015-01-13 Impeto Medical Assessment of sudomor function for peripheral diabetic neuropathy evaluation
US9402597B1 (en) 2012-08-29 2016-08-02 Alexander Francis Castellanos 2002 Trust Mobile vascular health evaluation processes
US10925580B2 (en) 2011-08-29 2021-02-23 Alexander Francis Castellanos 2002 Trust Mobile vascular health evaluation devices using doppler ultrasound and correlation of parameters to output recommendations to a wrist-mounted display
US9367770B2 (en) 2011-08-30 2016-06-14 Digimarc Corporation Methods and arrangements for identifying objects
US9524424B2 (en) 2011-09-01 2016-12-20 Care Innovations, Llc Calculation of minimum ground clearance using body worn sensors
US10631760B2 (en) * 2011-09-02 2020-04-28 Jeffrey Albert Dracup Method for prediction, detection, monitoring, analysis and alerting of seizures and other potentially injurious or life-threatening states
US9526637B2 (en) 2011-09-09 2016-12-27 Enopace Biomedical Ltd. Wireless endovascular stent-based electrodes
US8855783B2 (en) 2011-09-09 2014-10-07 Enopace Biomedical Ltd. Detector-based arterial stimulation
US9826934B2 (en) 2011-09-19 2017-11-28 Braincare Desenvolvimento E Inovação Tecnológica Ltda Non-invasive intracranial pressure system
ES2415579B1 (en) * 2011-09-28 2014-11-17 Instituto Tecnológico De Castilla Y León PROCEDURE AND MULTIAGENT ELECTRONIC DEVICE WITH DIFFUSIVE CONTROL FOR THE DETECTION OF THE SIDE CEREBRAL ICTUS.
US9128520B2 (en) 2011-09-30 2015-09-08 Microsoft Technology Licensing, Llc Service provision using personal audio/visual system
US9824184B2 (en) 2011-10-06 2017-11-21 Nant Holdings Ip, Llc Healthcare object recognition systems and methods
US9549677B2 (en) 2011-10-14 2017-01-24 Flint Hills Scientific, L.L.C. Seizure detection methods, apparatus, and systems using a wavelet transform maximum modulus algorithm
WO2013066642A1 (en) * 2011-10-19 2013-05-10 Scanadu Incorporated Automated personal medical diagnostic system, method, and arrangement
US9504386B2 (en) * 2011-10-20 2016-11-29 International Business Machines Corporation Controlling devices based on physiological measurements
US20130108995A1 (en) * 2011-10-31 2013-05-02 C&D Research Group LLC. System and method for monitoring and influencing body position
US20170344726A1 (en) * 2011-11-03 2017-11-30 Omada Health, Inc. Method and system for supporting a health regimen
US9235683B2 (en) 2011-11-09 2016-01-12 Proteus Digital Health, Inc. Apparatus, system, and method for managing adherence to a regimen
US8983593B2 (en) 2011-11-10 2015-03-17 Innovative Surgical Solutions, Llc Method of assessing neural function
US9301711B2 (en) 2011-11-10 2016-04-05 Innovative Surgical Solutions, Llc System and method for assessing neural health
DE102011118998A1 (en) * 2011-11-14 2013-05-16 Seca Ag Method and device for determining the body weight of a person
US9098069B2 (en) * 2011-11-16 2015-08-04 Google Technology Holdings LLC Display device, corresponding systems, and methods for orienting output on a display
FR2982758B1 (en) 2011-11-21 2013-11-15 Impeto Medical PHYSIOLOGICAL ANALYSIS METHOD OF INCREASED RELIABILITY
US10276054B2 (en) 2011-11-29 2019-04-30 Eresearchtechnology, Inc. Methods and systems for data analysis
US20150049798A1 (en) * 2011-12-06 2015-02-19 Rambus Inc. Receiver with enhanced isi mitigation
US20130150686A1 (en) * 2011-12-07 2013-06-13 PnP INNOVATIONS, INC Human Care Sentry System
US20130146117A1 (en) * 2011-12-09 2013-06-13 Patrick K. Brady System and Method for Converting Electromagnetic Radiation to Electrical Energy
US9311825B2 (en) * 2011-12-22 2016-04-12 Senstream, Inc. Biometric sensing and processing apparatus for mobile gaming, education, and wellness applications
US8669863B2 (en) * 2012-01-03 2014-03-11 Fahad M. F. S. Alhuwaishel Medical information band
US9339691B2 (en) 2012-01-05 2016-05-17 Icon Health & Fitness, Inc. System and method for controlling an exercise device
CN104160325B (en) * 2012-01-06 2017-05-10 E-视觉智能光学公司 Eyewear docking station and electronic module
US9186071B2 (en) 2012-01-27 2015-11-17 Qualcomm Incorporated Unlocking a body area network
US9215578B2 (en) 2012-01-27 2015-12-15 Omnilink Systems, Inc. Monitoring systems and methods
US10420486B1 (en) * 2012-01-27 2019-09-24 Cerner Innovation, Inc. Promoting positive activity patterns
US20130197369A1 (en) * 2012-01-30 2013-08-01 Jiannan Xiang Remote health monitoring and tracking system
US9386991B2 (en) 2012-02-02 2016-07-12 Rainbow Medical Ltd. Pressure-enhanced blood flow treatment
US9282897B2 (en) 2012-02-13 2016-03-15 MedHab, LLC Belt-mounted movement sensor system
JP6159346B2 (en) * 2012-02-17 2017-07-05 ユニバーシティ オブ ヴァージニア パテント ファウンデーション Energy harvesting and sensor node control
DE102012003509B4 (en) * 2012-02-22 2020-06-10 Drägerwerk AG & Co. KGaA Respiratory system
US8947382B2 (en) 2012-02-28 2015-02-03 Motorola Mobility Llc Wearable display device, corresponding systems, and method for presenting output on the same
US8988349B2 (en) 2012-02-28 2015-03-24 Google Technology Holdings LLC Methods and apparatuses for operating a display in an electronic device
KR101980263B1 (en) 2012-02-28 2019-05-21 삼성전자주식회사 Apparatus and method for providing health data according to handover of health sensor
US8868106B2 (en) 2012-02-29 2014-10-21 Aeris Communications, Inc. System and method for large-scale and near-real-time search of mobile device locations in arbitrary geographical boundaries
US9878171B2 (en) 2012-03-02 2018-01-30 Zoll Medical Corporation Systems and methods for configuring a wearable medical monitoring and/or treatment device
BR102012005038A2 (en) * 2012-03-06 2015-10-06 Corcam Tecnologia S A method, system and apparatus for continuous cardiac monitoring in an individual
US20170065247A9 (en) * 2012-03-09 2017-03-09 Neurochaos Solutions, Inc. Method and system for detecting and assessing brain injuries using variability analysis of cerebral blood flow velocity
WO2013142379A1 (en) * 2012-03-22 2013-09-26 The Regents Of The University Of California Devices, systems, and methods for monitoring, classifying, and encouraging activity
US8855822B2 (en) 2012-03-23 2014-10-07 Innovative Surgical Solutions, Llc Robotic surgical system with mechanomyography feedback
US9252612B2 (en) * 2012-04-02 2016-02-02 Mark Regan Baluha Personal mobile charging device
AU2013243234A1 (en) * 2012-04-04 2014-10-23 Ollo Mobile Pty Ltd Call processing system
WO2013155503A1 (en) 2012-04-13 2013-10-17 Langer Alois A Outpatient health emergency warning system
US20130279724A1 (en) * 2012-04-19 2013-10-24 Sony Computer Entertainment Inc. Auto detection of headphone orientation
US9681836B2 (en) 2012-04-23 2017-06-20 Cyberonics, Inc. Methods, systems and apparatuses for detecting seizure and non-seizure states
US10448839B2 (en) 2012-04-23 2019-10-22 Livanova Usa, Inc. Methods, systems and apparatuses for detecting increased risk of sudden death
EP2842491A4 (en) * 2012-04-27 2015-05-27 Toyota Motor Co Ltd Device for calculating amount of retained physical activity, method for calculating amount of retained physical activity and system for calculating amount of retained physical activity
TWI602545B (en) * 2012-04-30 2017-10-21 國立交通大學 Electromyography measuring method
TWI497347B (en) * 2012-05-09 2015-08-21 Hung Ta Liu Control system using gestures as inputs
US8994409B2 (en) * 2012-05-22 2015-03-31 Agency For Science, Technology And Research Stimulator and method for processing a stimulation signal
WO2013177592A2 (en) 2012-05-25 2013-11-28 Emotiv Lifesciences, Inc. System and method for providing and aggregating biosignals and action data
US9763592B2 (en) 2012-05-25 2017-09-19 Emotiv, Inc. System and method for instructing a behavior change in a user
US9622660B2 (en) 2012-05-25 2017-04-18 Emotiv Lifesciences Inc. System and method for enabling collaborative analysis of a biosignal
WO2013181607A1 (en) 2012-05-31 2013-12-05 Zoll Medical Corporation Systems and methods for detecting health disorders
US9442100B2 (en) 2013-12-18 2016-09-13 Medibotics Llc Caloric intake measuring system using spectroscopic and 3D imaging analysis
US9588582B2 (en) 2013-09-17 2017-03-07 Medibotics Llc Motion recognition clothing (TM) with two different sets of tubes spanning a body joint
US9582072B2 (en) 2013-09-17 2017-02-28 Medibotics Llc Motion recognition clothing [TM] with flexible electromagnetic, light, or sonic energy pathways
US9254099B2 (en) 2013-05-23 2016-02-09 Medibotics Llc Smart watch and food-imaging member for monitoring food consumption
US9536449B2 (en) 2013-05-23 2017-01-03 Medibotics Llc Smart watch and food utensil for monitoring food consumption
US10772559B2 (en) 2012-06-14 2020-09-15 Medibotics Llc Wearable food consumption monitor
US10321873B2 (en) 2013-09-17 2019-06-18 Medibotics Llc Smart clothing for ambulatory human motion capture
WO2013188891A2 (en) * 2012-06-14 2013-12-19 Shockatoo Inc. Systems and methods for self expression using a readily alterable device
US10716510B2 (en) 2013-09-17 2020-07-21 Medibotics Smart clothing with converging/diverging bend or stretch sensors for measuring body motion or configuration
US10314492B2 (en) 2013-05-23 2019-06-11 Medibotics Llc Wearable spectroscopic sensor to measure food consumption based on interaction between light and the human body
US9042596B2 (en) 2012-06-14 2015-05-26 Medibotics Llc Willpower watch (TM)—a wearable food consumption monitor
US20170135633A1 (en) * 2013-05-23 2017-05-18 Medibotics Llc Integrated System for Managing Cardiac Rhythm Including Wearable and Implanted Devices
US10602965B2 (en) 2013-09-17 2020-03-31 Medibotics Wearable deformable conductive sensors for human motion capture including trans-joint pitch, yaw, and roll
US9597014B2 (en) 2012-06-22 2017-03-21 Fitbit, Inc. GPS accuracy refinement using external sensors
US9044149B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. Heart rate data collection
US11029199B2 (en) 2012-06-22 2021-06-08 Fitbit, Inc. Ambient light determination using physiological metric sensor data
US9005129B2 (en) 2012-06-22 2015-04-14 Fitbit, Inc. Wearable heart rate monitor
US9641239B2 (en) 2012-06-22 2017-05-02 Fitbit, Inc. Adaptive data transfer using bluetooth
US8948832B2 (en) 2012-06-22 2015-02-03 Fitbit, Inc. Wearable heart rate monitor
US9044171B2 (en) 2012-06-22 2015-06-02 Fitbit, Inc. GPS power conservation using environmental data
PT106424A (en) * 2012-07-02 2014-01-02 Univ Aveiro SYSTEM AND METHOD FOR PROPRIOCEPTIVE STIMULATION, MONITORING AND MOVEMENT CHARACTERIZATION
US9953137B2 (en) 2012-07-06 2018-04-24 Nant Holdings Ip, Llc Healthcare analysis stream management
WO2014011915A2 (en) * 2012-07-11 2014-01-16 Robert Bosch Gmbh Self-powered pressure sensor assembly
WO2014011106A2 (en) * 2012-07-13 2014-01-16 Qure Ab Emergency notification within an alarm community
KR20150038038A (en) 2012-07-23 2015-04-08 프로테우스 디지털 헬스, 인코포레이티드 Techniques for manufacturing ingestible event markers comprising an ingestible component
US20140028547A1 (en) * 2012-07-26 2014-01-30 Stmicroelectronics, Inc. Simple user interface device and chipset implementation combination for consumer interaction with any screen based interface
US8930028B2 (en) * 2012-07-27 2015-01-06 Roche Diagnostics Operations, Inc. Handheld medical device functionality without battery
US20140039913A1 (en) * 2012-07-31 2014-02-06 Tuomas W. Sandholm Medical treatment planning via sequential games
GB2497617B (en) * 2012-08-03 2015-06-10 Polar Electro Oy Transfer of measurement data related to physical exercise
US9833141B2 (en) * 2012-08-03 2017-12-05 Polar Electro Oy Transfer of measurement data related to physical exercise
US8900338B2 (en) 2012-08-07 2014-12-02 Honeywell International Inc. Accessory cap for a respiratory filter cartridge
WO2014027962A1 (en) * 2012-08-14 2014-02-20 Nanyang Technological University Device, system and method for detection of fluid accumulation
US20140159637A1 (en) * 2012-08-19 2014-06-12 EnergyBionics, LLC Portable energy harvesting, storing, and charging device
US9039630B2 (en) 2012-08-22 2015-05-26 Innovative Surgical Solutions, Llc Method of detecting a sacral nerve
US9549682B2 (en) 2012-08-24 2017-01-24 Life Detection Technologies, Inc. Systems and methods for monitoring vital signs based on sensed changes in a target
US9035778B2 (en) 2012-08-24 2015-05-19 Life Detection Systems, Inc. Monitoring vital signs based on sensed changes to an electrical field
US8978166B2 (en) * 2012-08-27 2015-03-17 Well & David Corp. Multi-function garment
FR2994821B1 (en) 2012-08-28 2014-08-29 Impeto Medical IMPROVED ELECTROPHYSIOLOGICAL ANALYSIS SYSTEM
US9081542B2 (en) * 2012-08-28 2015-07-14 Google Technology Holdings LLC Systems and methods for a wearable touch-sensitive device
AU2013308871B2 (en) 2012-08-28 2017-04-13 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments
US11185241B2 (en) 2014-03-05 2021-11-30 Whoop, Inc. Continuous heart rate monitoring and interpretation
CA2883852A1 (en) * 2012-09-04 2014-03-13 Whoop, Inc. Systems, devices and methods for continuous heart rate monitoring and interpretation
JP2015532841A (en) * 2012-09-07 2015-11-16 ザ リージェンツ オブ ザ ユニヴァーシティー オブ カリフォルニアThe Regents Of The University Of California Multi-sensor wireless abdominal monitoring device, system and method
CN104768455B (en) 2012-09-11 2018-01-02 L.I.F.E.公司 Wearable communications platform
US11246213B2 (en) 2012-09-11 2022-02-08 L.I.F.E. Corporation S.A. Physiological monitoring garments
US10201310B2 (en) 2012-09-11 2019-02-12 L.I.F.E. Corporation S.A. Calibration packaging apparatuses for physiological monitoring garments
US10462898B2 (en) 2012-09-11 2019-10-29 L.I.F.E. Corporation S.A. Physiological monitoring garments
US9817440B2 (en) 2012-09-11 2017-11-14 L.I.F.E. Corporation S.A. Garments having stretchable and conductive ink
US10159440B2 (en) 2014-03-10 2018-12-25 L.I.F.E. Corporation S.A. Physiological monitoring garments
US8948839B1 (en) 2013-08-06 2015-02-03 L.I.F.E. Corporation S.A. Compression garments having stretchable and conductive ink
US8945328B2 (en) 2012-09-11 2015-02-03 L.I.F.E. Corporation S.A. Methods of making garments having stretchable and conductive ink
US9877667B2 (en) 2012-09-12 2018-01-30 Care Innovations, Llc Method for quantifying the risk of falling of an elderly adult using an instrumented version of the FTSS test
WO2014043499A1 (en) 2012-09-13 2014-03-20 Covidien Lp Docking station for enteral feeding pump
US9351900B2 (en) 2012-09-17 2016-05-31 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
CN102880880B (en) * 2012-09-24 2015-09-02 河海大学常州校区 Based on drug sensitive reaction automatic identifying method and the equipment of fuzzy neural network
US8892259B2 (en) 2012-09-26 2014-11-18 Innovative Surgical Solutions, LLC. Robotic surgical system with mechanomyography feedback
FR2996111B1 (en) * 2012-10-03 2015-08-21 Visiomed Group MEDICAL APPARATUS FOR NON-INVASIVE MEASUREMENT AND COLLECTION OF AT LEAST ONE PHYSIOLOGICAL PARAMETER OF AN INDIVIDUAL
US11826170B2 (en) 2012-10-10 2023-11-28 G-Tech Medical, Inc. Artificial intelligence models for wireless patch data acquisition for gastrointestinal electrodiagnostics
DK2910013T3 (en) 2012-10-18 2018-08-06 Proteus Digital Health Inc Apparatus, system and method for adaptive optimization for power output and transmit power in a power source for a communication device
US20140114142A1 (en) * 2012-10-19 2014-04-24 Emanuel Shaoulian Intelligent patient monitor pendant
US20140128757A1 (en) * 2012-11-06 2014-05-08 Perminova Inc. System for electrophysiology that includes software module and body-worn monitor
US20140125481A1 (en) * 2012-11-06 2014-05-08 Aliphcom General health and wellness management method and apparatus for a wellness application using data associated with a data-capable band
KR20150082401A (en) * 2012-11-08 2015-07-15 르 타이 Improved blood pressure monitor and method
US9254095B2 (en) 2012-11-08 2016-02-09 Alivecor Electrocardiogram signal detection
US8818296B2 (en) 2012-11-14 2014-08-26 Power Integrations, Inc. Noise cancellation for a magnetically coupled communication link utilizing a lead frame
US9035435B2 (en) 2012-11-14 2015-05-19 Power Integrations, Inc. Magnetically coupled galvanically isolated communication using lead frame
US8976561B2 (en) * 2012-11-14 2015-03-10 Power Integrations, Inc. Switch mode power converters using magnetically coupled galvanically isolated lead frame communication
US9477313B2 (en) * 2012-11-20 2016-10-25 Samsung Electronics Co., Ltd. User gesture input to wearable electronic device involving outward-facing sensor of device
US8994827B2 (en) * 2012-11-20 2015-03-31 Samsung Electronics Co., Ltd Wearable electronic device
US11372536B2 (en) 2012-11-20 2022-06-28 Samsung Electronics Company, Ltd. Transition and interaction model for wearable electronic device
US10551928B2 (en) 2012-11-20 2020-02-04 Samsung Electronics Company, Ltd. GUI transitions on wearable electronic device
US9030446B2 (en) * 2012-11-20 2015-05-12 Samsung Electronics Co., Ltd. Placement of optical sensor on wearable electronic device
US11157436B2 (en) 2012-11-20 2021-10-26 Samsung Electronics Company, Ltd. Services associated with wearable electronic device
US11237719B2 (en) 2012-11-20 2022-02-01 Samsung Electronics Company, Ltd. Controlling remote electronic device with wearable electronic device
US10423214B2 (en) 2012-11-20 2019-09-24 Samsung Electronics Company, Ltd Delegating processing from wearable electronic device
US10185416B2 (en) * 2012-11-20 2019-01-22 Samsung Electronics Co., Ltd. User gesture input to wearable electronic device involving movement of device
US9526437B2 (en) 2012-11-21 2016-12-27 i4c Innovations Inc. Animal health and wellness monitoring using UWB radar
CN102945675A (en) * 2012-11-26 2013-02-27 江苏物联网研究发展中心 Intelligent sensing network system for detecting outdoor sound of calling for help
US9445768B2 (en) * 2012-11-29 2016-09-20 Neurosky, Inc. Personal biosensor accessory attachment
US9865176B2 (en) 2012-12-07 2018-01-09 Koninklijke Philips N.V. Health monitoring system
CN104379055B (en) * 2012-12-14 2018-05-15 皇家飞利浦有限公司 Equipment for the physiological parameter for measuring user
CN103908241B (en) * 2012-12-31 2016-03-02 中国移动通信集团公司 Sleep and respiration detection method, device
US10660526B2 (en) 2012-12-31 2020-05-26 Omni Medsci, Inc. Near-infrared time-of-flight imaging using laser diodes with Bragg reflectors
WO2014143276A2 (en) 2012-12-31 2014-09-18 Omni Medsci, Inc. Short-wave infrared super-continuum lasers for natural gas leak detection, exploration, and other active remote sensing applications
US9993159B2 (en) 2012-12-31 2018-06-12 Omni Medsci, Inc. Near-infrared super-continuum lasers for early detection of breast and other cancers
EP2938259A4 (en) 2012-12-31 2016-08-17 Omni Medsci Inc Near-infrared lasers for non-invasive monitoring of glucose, ketones, hba1c, and other blood constituents
US20140305210A1 (en) * 2013-01-04 2014-10-16 Fitbug Ltd. Method and system for an exercise apparatus with electronic connectors
WO2014107700A1 (en) 2013-01-07 2014-07-10 Alivecor, Inc. Methods and systems for electrode placement
US20140198034A1 (en) 2013-01-14 2014-07-17 Thalmic Labs Inc. Muscle interface device and method for interacting with content displayed on wearable head mounted displays
US8827906B2 (en) 2013-01-15 2014-09-09 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9039614B2 (en) 2013-01-15 2015-05-26 Fitbit, Inc. Methods, systems and devices for measuring fingertip heart rate
US9728059B2 (en) 2013-01-15 2017-08-08 Fitbit, Inc. Sedentary period detection utilizing a wearable electronic device
US10220211B2 (en) 2013-01-22 2019-03-05 Livanova Usa, Inc. Methods and systems to diagnose depression
JP6203292B2 (en) * 2013-01-23 2017-09-27 ザ・リージェンツ・オブ・ザ・ユニバーシティ・オブ・ミシガンThe Regents Of The University Of Michigan Piezoelectric vibration energy harvester
US10244986B2 (en) 2013-01-23 2019-04-02 Avery Dennison Corporation Wireless sensor patches and methods of manufacturing
AU2014209376B2 (en) 2013-01-24 2017-03-16 Irhythm Technologies, Inc. Physiological monitoring device
WO2014120669A1 (en) 2013-01-29 2014-08-07 Proteus Digital Health, Inc. Highly-swellable polymeric films and compositions comprising the same
WO2014120927A1 (en) * 2013-01-30 2014-08-07 Quality Assured Services, Inc. System for outpatient monitoring of ventricular assistance device patients
US10463273B2 (en) * 2013-02-01 2019-11-05 Halo Wearables, Llc Hydration monitor
US9439567B2 (en) * 2013-02-06 2016-09-13 Abraham Carter Updating firmware to customize the performance of a wearable sensor device for a particular use
CN110448299A (en) 2013-02-09 2019-11-15 斯拜尔公司 The system and method for monitoring breathing
EP2959394B1 (en) * 2013-02-22 2021-05-12 Facebook Technologies, LLC. Methods and devices that combine muscle activity sensor signals and inertial sensor signals for gesture-based control
US9553486B2 (en) 2013-03-04 2017-01-24 Hello Inc. Monitoring system and device with sensors that is remotely powered
WO2014137916A1 (en) * 2013-03-04 2014-09-12 Hello Inc Wearable device made with silicone rubber and including electronic components
US9298882B2 (en) 2013-03-04 2016-03-29 Hello Inc. Methods using patient monitoring devices with unique patient IDs and a telemetry system
US9462856B2 (en) 2013-03-04 2016-10-11 Hello Inc. Wearable device with magnets sealed in a wearable device structure
US9737214B2 (en) 2013-03-04 2017-08-22 Hello Inc. Wireless monitoring of patient exercise and lifestyle
US9445651B2 (en) 2013-03-04 2016-09-20 Hello Inc. Wearable device with overlapping ends coupled by magnets
US9530089B2 (en) 2013-03-04 2016-12-27 Hello Inc. Wearable device with overlapping ends coupled by magnets of a selected width, length and depth
US9704209B2 (en) 2013-03-04 2017-07-11 Hello Inc. Monitoring system and device with sensors and user profiles based on biometric user information
US9427189B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring system and device with sensors that are responsive to skin pigmentation
US9367793B2 (en) 2013-03-04 2016-06-14 Hello Inc. Wearable device with magnets distanced from exterior surfaces of the wearable device
US9345403B2 (en) 2013-03-04 2016-05-24 Hello Inc. Wireless monitoring system with activity manager for monitoring user activity
US9430938B2 (en) 2013-03-04 2016-08-30 Hello Inc. Monitoring device with selectable wireless communication
US9848776B2 (en) 2013-03-04 2017-12-26 Hello Inc. Methods using activity manager for monitoring user activity
US9406220B2 (en) 2013-03-04 2016-08-02 Hello Inc. Telemetry system with tracking receiver devices
US9345404B2 (en) 2013-03-04 2016-05-24 Hello Inc. Mobile device that monitors an individuals activities, behaviors, habits or health parameters
US9427160B2 (en) 2013-03-04 2016-08-30 Hello Inc. Wearable device with overlapping ends coupled by magnets positioned in the wearable device by an undercut
US9432091B2 (en) 2013-03-04 2016-08-30 Hello Inc. Telemetry system with wireless power receiver and monitoring devices
US9330561B2 (en) 2013-03-04 2016-05-03 Hello Inc. Remote communication systems and methods for communicating with a building gateway control to control building systems and elements
US9436903B2 (en) 2013-03-04 2016-09-06 Hello Inc. Wearable device with magnets with a defined distance between adjacent magnets
US9357922B2 (en) 2013-03-04 2016-06-07 Hello Inc. User or patient monitoring systems with one or more analysis tools
US9532716B2 (en) 2013-03-04 2017-01-03 Hello Inc. Systems using lifestyle database analysis to provide feedback
US9398854B2 (en) 2013-03-04 2016-07-26 Hello Inc. System with a monitoring device that monitors individual activities, behaviors or habit information and communicates with a database with corresponding individual base information for comparison
US20140249994A1 (en) 2013-03-04 2014-09-04 Hello Inc. Wearable device with unique user ID and telemetry system for payments
US9424508B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with magnets having first and second polarities
US9320434B2 (en) 2013-03-04 2016-04-26 Hello Inc. Patient monitoring systems and messages that send alerts to patients only when the patient is awake
US9662015B2 (en) 2013-03-04 2017-05-30 Hello Inc. System or device with wearable devices having one or more sensors with assignment of a wearable device user identifier to a wearable device user
US9204798B2 (en) 2013-03-04 2015-12-08 Hello, Inc. System for monitoring health, wellness and fitness with feedback
US9392939B2 (en) 2013-03-04 2016-07-19 Hello Inc. Methods using a monitoring device to monitor individual activities, behaviors or habit information and communicate with a database with corresponding individual base information for comparison
US9159223B2 (en) 2013-03-04 2015-10-13 Hello, Inc. User monitoring device configured to be in communication with an emergency response system or team
US9582748B2 (en) 2013-03-04 2017-02-28 Hello Inc. Base charging station for monitoring device
US9420857B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with interior frame
US9339188B2 (en) 2013-03-04 2016-05-17 James Proud Methods from monitoring health, wellness and fitness with feedback
US9420856B2 (en) 2013-03-04 2016-08-23 Hello Inc. Wearable device with adjacent magnets magnetized in different directions
CN105210067B (en) * 2013-03-04 2021-04-30 博能电子公司 Computing a physiological state of a user related to physical exercise
US9149189B2 (en) 2013-03-04 2015-10-06 Hello, Inc. User or patient monitoring methods using one or more analysis tools
US9361572B2 (en) 2013-03-04 2016-06-07 Hello Inc. Wearable device with magnets positioned at opposing ends and overlapped from one side to another
US9634921B2 (en) 2013-03-04 2017-04-25 Hello Inc. Wearable device coupled by magnets positioned in a frame in an interior of the wearable device with at least one electronic circuit
US9526422B2 (en) 2013-03-04 2016-12-27 Hello Inc. System for monitoring individuals with a monitoring device, telemetry system, activity manager and a feedback system
US9653784B2 (en) * 2013-03-06 2017-05-16 Lawrence Livermore National Security, Llc Conformal, wearable, thin microwave antenna for sub-skin and skin surface monitoring
WO2014138435A1 (en) 2013-03-07 2014-09-12 The Regents Of The University Of California System for health monitoring on prosthetic and fixation devices
EP2969058B1 (en) 2013-03-14 2020-05-13 Icon Health & Fitness, Inc. Strength training apparatus with flywheel and related methods
US20150182113A1 (en) * 2013-12-31 2015-07-02 Aliphcom Real-time fatigue, personal effectiveness, injury risk device(s)
US9236046B2 (en) * 2013-03-14 2016-01-12 Covidien Lp Systems and methods for identifying patient distress based on a sound signal
US20140266592A1 (en) * 2013-03-15 2014-09-18 Digi International Inc. Network gateway system and method
US9254092B2 (en) 2013-03-15 2016-02-09 Alivecor, Inc. Systems and methods for processing and analyzing medical data
US20140278830A1 (en) * 2013-03-15 2014-09-18 U.S. Physical Therapy, Inc. Method for injury prevention and job-specific rehabilitation
US10175376B2 (en) 2013-03-15 2019-01-08 Proteus Digital Health, Inc. Metal detector apparatus, system, and method
US10149617B2 (en) * 2013-03-15 2018-12-11 i4c Innovations Inc. Multiple sensors for monitoring health and wellness of an animal
WO2014151929A1 (en) 2013-03-15 2014-09-25 Proteus Digital Health, Inc. Personal authentication apparatus system and method
US20140276238A1 (en) * 2013-03-15 2014-09-18 Ivan Osorio Method, system and apparatus for fall detection
WO2014153265A1 (en) * 2013-03-18 2014-09-25 PhonoFlow Medical, LLC Spectrum analysis of coronary artery turbulent blood flow
US20150265903A1 (en) * 2013-03-26 2015-09-24 Paul T. Kolen Social web interactive fitness training
DE102013205403A1 (en) * 2013-03-27 2014-10-16 Robert Bosch Gmbh Method and device for detecting the state of hydration of a human or animal body
US8976062B2 (en) 2013-04-01 2015-03-10 Fitbit, Inc. Portable biometric monitoring devices having location sensors
BE1022003B1 (en) * 2013-04-23 2016-02-03 Vrije Universiteit Brussel REMOTE DIAGNOSIS SYSTEM
US9541604B2 (en) 2013-04-29 2017-01-10 Ge Intelligent Platforms, Inc. Loop powered isolated contact input circuit and method for operating the same
US20140330132A1 (en) * 2013-05-02 2014-11-06 Aza Raskin Physiological characteristic detection based on reflected components of light
US9936902B2 (en) 2013-05-06 2018-04-10 The Boeing Company Ergonomic data collection and analysis
JP2014217704A (en) * 2013-05-10 2014-11-20 ソニー株式会社 Image display apparatus and image display method
WO2014186370A1 (en) 2013-05-13 2014-11-20 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices that accommodate different user forms
US9529385B2 (en) 2013-05-23 2016-12-27 Medibotics Llc Smart watch and human-to-computer interface for monitoring food consumption
CN105263448B (en) 2013-05-31 2018-05-04 哈佛大学校长及研究员协会 For aiding in the soft machine armor of human motion
JP6511439B2 (en) 2013-06-04 2019-05-15 プロテウス デジタル ヘルス, インコーポレイテッド Systems, devices, and methods for data collection and outcome assessment
USD787684S1 (en) 2013-06-07 2017-05-23 Guardsman Scientific, Inc. Securing mechanism with a probe for a peripheral ultrasound device
USD764064S1 (en) 2013-06-07 2016-08-16 Guardsman Scientific, Inc. Securing mechanism for a peripheral ultrasound device
USD787685S1 (en) 2013-06-07 2017-05-23 Guardsman Scientific, Inc. Probe for a peripheral ultrasound device
US20150102925A1 (en) * 2013-06-11 2015-04-16 Aegis Industries, Inc. Systems and methods for detection of biological conditions in humans
US9993166B1 (en) 2013-06-21 2018-06-12 Fitbit, Inc. Monitoring device using radar and measuring motion with a non-contact device
US10004451B1 (en) 2013-06-21 2018-06-26 Fitbit, Inc. User monitoring system
US10058290B1 (en) 2013-06-21 2018-08-28 Fitbit, Inc. Monitoring device with voice interaction
US10512407B2 (en) 2013-06-24 2019-12-24 Fitbit, Inc. Heart rate data collection
WO2014210510A1 (en) 2013-06-28 2014-12-31 Zoll Medical Corporation Systems and methods of delivering therapy using an ambulatory medical device
US20150018723A1 (en) * 2013-07-09 2015-01-15 Industry-Academic Cooperation Foundation, Kyungpook National University Apparatus for early detection of paralysis based on motion sensing
US9247911B2 (en) 2013-07-10 2016-02-02 Alivecor, Inc. Devices and methods for real-time denoising of electrocardiograms
CA2917635A1 (en) 2013-07-10 2015-01-15 Koninklijke Philips N.V. System for screening of the state of oxygenation of a subject
US8725842B1 (en) * 2013-07-11 2014-05-13 Khalid Al-Nasser Smart watch
US9393692B1 (en) * 2013-07-29 2016-07-19 Daniel Theobald Apparatus and method of assisting an unattended robot
US10028703B2 (en) 2013-07-30 2018-07-24 Emotiv, Inc. Wearable system for detecting and measuring biosignals
CN104376642A (en) * 2013-08-12 2015-02-25 鸿富锦精密工业(武汉)有限公司 Vandal resistant warning system and method
US10478097B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions Neural event detection
US10478096B2 (en) 2013-08-13 2019-11-19 Innovative Surgical Solutions. Neural event detection
GB2517179A (en) * 2013-08-14 2015-02-18 Imonsys Monitoring device and system
US11426123B2 (en) 2013-08-16 2022-08-30 Meta Platforms Technologies, Llc Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US10042422B2 (en) 2013-11-12 2018-08-07 Thalmic Labs Inc. Systems, articles, and methods for capacitive electromyography sensors
US10257287B2 (en) * 2013-08-28 2019-04-09 Physio-Control, Inc. Real-time data distribution system for patient monitoring devices, cardiac defibrillators and associated information delivery systems
US11147499B2 (en) 2013-08-30 2021-10-19 Joseph Wiesel Method and apparatus for detecting atrial fibrillation
US9788789B2 (en) 2013-08-30 2017-10-17 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
US20170245773A1 (en) * 2013-08-30 2017-08-31 Joseph Wiesel Method and Apparatus for Detecting Atrial Fibrilation
US9796576B2 (en) 2013-08-30 2017-10-24 Proteus Digital Health, Inc. Container with electronically controlled interlock
US9681819B2 (en) * 2013-08-30 2017-06-20 Joseph Wiesel Method and apparatus for detecting atrial fibrillation
EP3042329A2 (en) * 2013-09-04 2016-07-13 Zero360, Inc. Processing system and method
US9572521B2 (en) 2013-09-10 2017-02-21 PNI Sensor Corporation Monitoring biometric characteristics of a user of a user monitoring apparatus
WO2015036245A1 (en) * 2013-09-11 2015-03-19 Koninklijke Philips N.V. Fall detection system and method
USD746441S1 (en) 2013-09-13 2015-12-29 Covidien Lp Pump
RU2628404C1 (en) 2013-09-20 2017-08-16 Протеус Диджитал Хелс, Инк. Methods, devices and systems of signals receiving and decoding in the presence of noise using the shears and deformation
US9622684B2 (en) 2013-09-20 2017-04-18 Innovative Surgical Solutions, Llc Neural locating system
US10664795B1 (en) 2013-09-20 2020-05-26 Amazon Technologies, Inc. Weight based item tracking
US10515309B1 (en) * 2013-09-20 2019-12-24 Amazon Technologies, Inc. Weight based assistance determination
US20170340254A1 (en) * 2013-09-23 2017-11-30 Alice McKinstry Davis Real-time blood detection system
JP2016537924A (en) 2013-09-24 2016-12-01 プロテウス デジタル ヘルス, インコーポレイテッド Method and apparatus for use with electromagnetic signals received at frequencies that are not accurately known in advance
US9615763B2 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitor recorder optimized for capturing low amplitude cardiac action potential propagation
US10667711B1 (en) 2013-09-25 2020-06-02 Bardy Diagnostics, Inc. Contact-activated extended wear electrocardiography and physiological sensor monitor recorder
US9433367B2 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Remote interfacing of extended wear electrocardiography and physiological sensor monitor
US10736531B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable cardiac monitor optimized for long term, low amplitude electrocardiographic data collection
US20190167139A1 (en) 2017-12-05 2019-06-06 Gust H. Bardy Subcutaneous P-Wave Centric Insertable Cardiac Monitor For Long Term Electrocardiographic Monitoring
WO2015048194A1 (en) 2013-09-25 2015-04-02 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9655538B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Self-authenticating electrocardiography monitoring circuit
US11723575B2 (en) 2013-09-25 2023-08-15 Bardy Diagnostics, Inc. Electrocardiography patch
US9364155B2 (en) 2013-09-25 2016-06-14 Bardy Diagnostics, Inc. Self-contained personal air flow sensing monitor
US9737224B2 (en) 2013-09-25 2017-08-22 Bardy Diagnostics, Inc. Event alerting through actigraphy embedded within electrocardiographic data
US9619660B1 (en) 2013-09-25 2017-04-11 Bardy Diagnostics, Inc. Computer-implemented system for secure physiological data collection and processing
US9504423B1 (en) 2015-10-05 2016-11-29 Bardy Diagnostics, Inc. Method for addressing medical conditions through a wearable health monitor with the aid of a digital computer
US10251576B2 (en) 2013-09-25 2019-04-09 Bardy Diagnostics, Inc. System and method for ECG data classification for use in facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9655537B2 (en) 2013-09-25 2017-05-23 Bardy Diagnostics, Inc. Wearable electrocardiography and physiology monitoring ensemble
US10433751B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis based on subcutaneous cardiac monitoring data
US10165946B2 (en) 2013-09-25 2019-01-01 Bardy Diagnostics, Inc. Computer-implemented system and method for providing a personal mobile device-triggered medical intervention
US11213237B2 (en) 2013-09-25 2022-01-04 Bardy Diagnostics, Inc. System and method for secure cloud-based physiological data processing and delivery
US10820801B2 (en) 2013-09-25 2020-11-03 Bardy Diagnostics, Inc. Electrocardiography monitor configured for self-optimizing ECG data compression
US10806360B2 (en) 2013-09-25 2020-10-20 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9408545B2 (en) 2013-09-25 2016-08-09 Bardy Diagnostics, Inc. Method for efficiently encoding and compressing ECG data optimized for use in an ambulatory ECG monitor
US9717432B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrocardiography patch using interlaced wire electrodes
US10624551B2 (en) 2013-09-25 2020-04-21 Bardy Diagnostics, Inc. Insertable cardiac monitor for use in performing long term electrocardiographic monitoring
US9775536B2 (en) 2013-09-25 2017-10-03 Bardy Diagnostics, Inc. Method for constructing a stress-pliant physiological electrode assembly
US10888239B2 (en) 2013-09-25 2021-01-12 Bardy Diagnostics, Inc. Remote interfacing electrocardiography patch
US9700227B2 (en) 2013-09-25 2017-07-11 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US9408551B2 (en) 2013-11-14 2016-08-09 Bardy Diagnostics, Inc. System and method for facilitating diagnosis of cardiac rhythm disorders with the aid of a digital computer
US9433380B1 (en) 2013-09-25 2016-09-06 Bardy Diagnostics, Inc. Extended wear electrocardiography patch
US10463269B2 (en) 2013-09-25 2019-11-05 Bardy Diagnostics, Inc. System and method for machine-learning-based atrial fibrillation detection
US9717433B2 (en) 2013-09-25 2017-08-01 Bardy Diagnostics, Inc. Ambulatory electrocardiography monitoring patch optimized for capturing low amplitude cardiac action potential propagation
US10433748B2 (en) 2013-09-25 2019-10-08 Bardy Diagnostics, Inc. Extended wear electrocardiography and physiological sensor monitor
US10736529B2 (en) 2013-09-25 2020-08-11 Bardy Diagnostics, Inc. Subcutaneous insertable electrocardiography monitor
US9730593B2 (en) 2013-09-25 2017-08-15 Bardy Diagnostics, Inc. Extended wear ambulatory electrocardiography and physiological sensor monitor
US9345414B1 (en) 2013-09-25 2016-05-24 Bardy Diagnostics, Inc. Method for providing dynamic gain over electrocardiographic data with the aid of a digital computer
US10799137B2 (en) 2013-09-25 2020-10-13 Bardy Diagnostics, Inc. System and method for facilitating a cardiac rhythm disorder diagnosis with the aid of a digital computer
US10761566B2 (en) 2013-09-27 2020-09-01 Beijing Lenovo Software Ltd. Electronic apparatus and method for processing information
CN103869976A (en) * 2014-02-19 2014-06-18 联想(北京)有限公司 Electronic equipment and information processing method
US9063164B1 (en) 2013-10-02 2015-06-23 Fitbit, Inc. Collaborative activity-data acquisition
US10546510B1 (en) 2013-10-04 2020-01-28 Cerner Innovation, Inc. Cadence spectra for health and fitness promotion
US9311686B2 (en) 2013-10-14 2016-04-12 Garmin Switzerland Gmbh Fitness monitor
US20150112159A1 (en) 2013-10-23 2015-04-23 Quanttus, Inc. Alertness Detection
CN104545801A (en) * 2013-10-28 2015-04-29 江苏康朋医疗科技有限公司 Household medical monitoring platform based on wifi (wireless fidelity)
US20150115041A1 (en) * 2013-10-28 2015-04-30 TianJin Orient Navigation Science Develope Ltd,. self-power generation RFID tag
US9913587B2 (en) * 2013-11-01 2018-03-13 Cardiio, Inc. Method and system for screening of atrial fibrillation
US10084880B2 (en) 2013-11-04 2018-09-25 Proteus Digital Health, Inc. Social media networking based on physiologic information
EP3102107A4 (en) 2013-11-04 2018-02-07 Medtronic, Inc. Method and device to manage fluid volumes in the body
CN105899166B (en) 2013-11-06 2018-07-06 伊诺佩斯生医有限公司 The intravascular electrode based on stent of radio-type
USD744659S1 (en) 2013-11-07 2015-12-01 Bardy Diagnostics, Inc. Extended wear electrode patch
USD831833S1 (en) 2013-11-07 2018-10-23 Bardy Diagnostics, Inc. Extended wear electrode patch
USD793566S1 (en) 2015-09-10 2017-08-01 Bardy Diagnostics, Inc. Extended wear electrode patch
USD892340S1 (en) 2013-11-07 2020-08-04 Bardy Diagnostics, Inc. Extended wear electrode patch
USD717955S1 (en) 2013-11-07 2014-11-18 Bardy Diagnostics, Inc. Electrocardiography monitor
USD801528S1 (en) 2013-11-07 2017-10-31 Bardy Diagnostics, Inc. Electrocardiography monitor
US9535505B2 (en) * 2013-11-08 2017-01-03 Polar Electro Oy User interface control in portable system
US20150145671A1 (en) * 2013-11-22 2015-05-28 Roy Cohen Smart clothing system
US10064566B2 (en) * 2013-11-25 2018-09-04 Koninklijke Philips N.V. Electrocardiography monitoring system and method
WO2015081221A1 (en) 2013-11-27 2015-06-04 Medtronic, Inc. Precision dialysis monitoring and synchonization system
WO2015081113A1 (en) 2013-11-27 2015-06-04 Cezar Morun Systems, articles, and methods for electromyography sensors
CN105992554A (en) 2013-12-09 2016-10-05 哈佛大学校长及研究员协会 Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
US9420956B2 (en) 2013-12-12 2016-08-23 Alivecor, Inc. Methods and systems for arrhythmia tracking and scoring
US20150166059A1 (en) * 2013-12-18 2015-06-18 Automotive Research & Testing Center Autonomous vehicle driving support system and autonomous driving method performed by the same
US10096223B1 (en) 2013-12-18 2018-10-09 Cerner Innovication, Inc. Method and process for determining whether an individual suffers a fall requiring assistance
US9295403B1 (en) 2013-12-19 2016-03-29 Verily Life Sciences Llc Multipurpose wearable electrical contact
US9265512B2 (en) 2013-12-23 2016-02-23 Silk Road Medical, Inc. Transcarotid neurovascular catheter
FR3015757B1 (en) * 2013-12-23 2019-05-31 Electricite De France METHOD FOR QUANTITATIVE ESTIMATING OF THE PLATE COATING OF A STEAM GENERATOR
EP3974036A1 (en) 2013-12-26 2022-03-30 iFIT Inc. Magnetic resistance mechanism in a cable machine
US20150181840A1 (en) * 2013-12-31 2015-07-02 i4c Innovations Inc. Ultra-Wideband Radar System for Animals
EP3091864B8 (en) 2014-01-06 2018-12-19 L.I.F.E. Corporation S.A. Systems and methods to automatically determine garment fit
WO2015108700A1 (en) 2014-01-14 2015-07-23 Zsolutionz, LLC Sensor-based evaluation and feedback of exercise performance
WO2015108702A1 (en) * 2014-01-14 2015-07-23 Zsolutionz, LLC Cloud-based initiation of customized exercise routine
WO2015108701A1 (en) 2014-01-14 2015-07-23 Zsolutionz, LLC Fuzzy logic-based evaluation and feedback of exercise performance
US10225522B1 (en) 2014-01-17 2019-03-05 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections
US9729833B1 (en) 2014-01-17 2017-08-08 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections along with centralized monitoring
US10078956B1 (en) 2014-01-17 2018-09-18 Cerner Innovation, Inc. Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections
US9880711B2 (en) 2014-01-22 2018-01-30 Google Llc Adaptive alert duration
US10064439B2 (en) * 2014-01-25 2018-09-04 It's Kool, Llc Temperature regulatory fabrics, systems and applications
CA2939644A1 (en) 2014-02-14 2015-08-20 Thalmic Labs Inc. Systems, articles, and methods for elastic electrical cables and wearable electronic devices employing same
US10123813B2 (en) 2014-02-17 2018-11-13 Smith & Nephew, Inc. Drill guide
US9901308B2 (en) * 2014-02-20 2018-02-27 Covidien Lp Systems and methods for filtering autocorrelation peaks and detecting harmonics
US9031812B2 (en) 2014-02-27 2015-05-12 Fitbit, Inc. Notifications on a user device based on activity detected by an activity monitoring device
US10691332B2 (en) 2014-02-28 2020-06-23 Samsung Electronics Company, Ltd. Text input on an interactive display
MX2016011107A (en) * 2014-02-28 2017-02-17 Delos Living Llc Systems, methods and articles for enhancing wellness associated with habitable environments.
US20150253736A1 (en) * 2014-03-10 2015-09-10 Icon Health & Fitness, Inc. Watch with Multiple Sections for Tracking Multiple Parameters
WO2015138339A1 (en) 2014-03-10 2015-09-17 Icon Health & Fitness, Inc. Pressure sensor to quantify work
US9639231B2 (en) * 2014-03-17 2017-05-02 Google Inc. Adjusting information depth based on user's attention
US20150265209A1 (en) * 2014-03-18 2015-09-24 Jack Ke Zhang Techniques for monitoring prescription compliance using a body-worn device
US9293023B2 (en) 2014-03-18 2016-03-22 Jack Ke Zhang Techniques for emergency detection and emergency alert messaging
US8952818B1 (en) 2014-03-18 2015-02-10 Jack Ke Zhang Fall detection apparatus with floor and surface elevation learning capabilites
US20150271226A1 (en) * 2014-03-18 2015-09-24 Qualcomm Incorporated Transport accelerator implementing a multiple interface architecture
US10713614B1 (en) 2014-03-25 2020-07-14 Amazon Technologies, Inc. Weight and vision based item tracking
US10657411B1 (en) 2014-03-25 2020-05-19 Amazon Technologies, Inc. Item identification
US10199008B2 (en) 2014-03-27 2019-02-05 North Inc. Systems, devices, and methods for wearable electronic devices as state machines
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
WO2015157670A1 (en) 2014-04-10 2015-10-15 Medelius Pedro J Wearable environmental interaction unit
US9449409B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Graphical indicators in analog clock format
US9449365B2 (en) 2014-04-11 2016-09-20 Fitbit, Inc. Personalized scaling of graphical indicators
US10531977B2 (en) 2014-04-17 2020-01-14 Coloplast A/S Thermoresponsive skin barrier appliances
US20150297308A1 (en) * 2014-04-18 2015-10-22 Enterogauge, Llc Enteroscope measuring device
US20150301606A1 (en) * 2014-04-18 2015-10-22 Valentin Andrei Techniques for improved wearable computing device gesture based interactions
US9675296B1 (en) 2014-04-24 2017-06-13 Verily Life Sciences Llc Pulsatile venous blood stoppage for analyte detection
US10898075B2 (en) * 2014-04-25 2021-01-26 Halo Wearables, Llc Wearable stress-testing device
US9288298B2 (en) 2014-05-06 2016-03-15 Fitbit, Inc. Notifications regarding interesting or unusual activity detected from an activity monitoring device
US9763049B2 (en) 2014-05-15 2017-09-12 Pebble Technology Corp. Contextual information usage in systems that include accessory devices
KR20170007451A (en) * 2014-05-20 2017-01-18 부가톤 엘티디. Aural measurements from earphone output speakers
US11189376B1 (en) * 2014-05-21 2021-11-30 Intrado Corporation Patient tracking and dynamic updating of patient profile
US9575560B2 (en) 2014-06-03 2017-02-21 Google Inc. Radar-based gesture-recognition through a wearable device
US10061389B2 (en) * 2014-06-03 2018-08-28 Beijing TransBorder Information Technology Co., Ltd. Gesture recognition system and gesture recognition method
US9545203B2 (en) * 2014-06-05 2017-01-17 Guangren Chen Systems and methods for cardiomyocyte conduction speed mapping
CN106456032B (en) * 2014-06-05 2019-11-05 陈光人 System and method for detecting ECG sub-waveform
US9538930B2 (en) * 2014-06-05 2017-01-10 Guangren CHEN Linear multi-domain electrocardiogram
JP6306216B2 (en) * 2014-06-06 2018-04-04 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. An unobtrusive advisor for patient monitors
US10426989B2 (en) 2014-06-09 2019-10-01 Icon Health & Fitness, Inc. Cable system incorporated into a treadmill
US9955672B2 (en) * 2014-06-16 2018-05-01 Nigel Cook Infrared thermography and behaviour information for identification of biologically important states in animals
CN104052643A (en) * 2014-06-19 2014-09-17 安徽建筑大学 Intelligent home-based elderly care service system
US9880632B2 (en) 2014-06-19 2018-01-30 Thalmic Labs Inc. Systems, devices, and methods for gesture identification
WO2015195965A1 (en) 2014-06-20 2015-12-23 Icon Health & Fitness, Inc. Post workout massage device
US10478127B2 (en) * 2014-06-23 2019-11-19 Sherlock Solutions, LLC Apparatuses, methods, processes, and systems related to significant detrimental changes in health parameters and activating lifesaving measures
US10039491B2 (en) 2014-06-30 2018-08-07 Verily Life Sciences Llc Methods for reducing noise in optical biological sensors
US20160004831A1 (en) * 2014-07-07 2016-01-07 Zoll Medical Corporation Medical device with natural language processor
US9713453B2 (en) * 2014-07-16 2017-07-25 Neocoil, Llc Method and apparatus for high reliability wireless communications
US9308417B2 (en) 2014-07-16 2016-04-12 Flomio Method and system for identification of concurrently moving bodies and objects
WO2016018297A1 (en) * 2014-07-30 2016-02-04 Hewlett-Packard Development Company, L. P. Detecting vascular conditions in animal bodies
US9921660B2 (en) 2014-08-07 2018-03-20 Google Llc Radar-based gesture recognition
US9811164B2 (en) 2014-08-07 2017-11-07 Google Inc. Radar-based gesture sensing and data transmission
US10268321B2 (en) 2014-08-15 2019-04-23 Google Llc Interactive textiles within hard objects
US9588625B2 (en) 2014-08-15 2017-03-07 Google Inc. Interactive textiles
US9778749B2 (en) 2014-08-22 2017-10-03 Google Inc. Occluded gesture recognition
US11169988B2 (en) 2014-08-22 2021-11-09 Google Llc Radar recognition-aided search
CN104146695A (en) * 2014-08-25 2014-11-19 蒋和平 Internet-of-Things-based elderly person health monitoring system and method for nursing home
DE212015000214U1 (en) 2014-09-02 2017-05-12 Apple Inc. Wearable electronic device
US10617342B2 (en) 2014-09-05 2020-04-14 Vision Service Plan Systems, apparatus, and methods for using a wearable device to monitor operator alertness
US11918375B2 (en) 2014-09-05 2024-03-05 Beijing Zitiao Network Technology Co., Ltd. Wearable environmental pollution monitor computer apparatus, systems, and related methods
US10448867B2 (en) 2014-09-05 2019-10-22 Vision Service Plan Wearable gait monitoring apparatus, systems, and related methods
US10593186B2 (en) * 2014-09-09 2020-03-17 Apple Inc. Care event detection and alerts
CN105455784A (en) * 2014-09-10 2016-04-06 中国科学院上海高等研究院 Remote real-time monitoring device and method for individual life support based on intelligent terminal
US11013451B2 (en) * 2014-09-19 2021-05-25 Brigham Young University Marker-less monitoring of movement disorders
US10258267B2 (en) 2014-09-22 2019-04-16 Capsule Technologies, Inc. Pulse oximeter with an accelerometer
US20160081627A1 (en) * 2014-09-23 2016-03-24 Qualcomm Incorporated System method for assessing fitness state via a mobile device
US9952675B2 (en) 2014-09-23 2018-04-24 Fitbit, Inc. Methods, systems, and apparatuses to display visibility changes responsive to user gestures
US9808185B2 (en) 2014-09-23 2017-11-07 Fitbit, Inc. Movement measure generation in a wearable electronic device
CN104287746B (en) * 2014-09-24 2017-09-19 潘卫江 Finger pulp formula oximetry sensor and its measuring system
US20160092562A1 (en) * 2014-09-25 2016-03-31 Marty McGinley Apparatus and method for active acquisition of key information and providing related information
TW201612843A (en) * 2014-09-25 2016-04-01 Fluiditech Ip Ltd Wearable device, physiological care system and physiological care method for use in active feedback of physiological care
US9600080B2 (en) 2014-10-02 2017-03-21 Google Inc. Non-line-of-sight radar-based gesture recognition
WO2016058866A1 (en) * 2014-10-13 2016-04-21 Koninklijke Philips N.V. Patient monitoring system and method
US10485444B2 (en) 2014-10-17 2019-11-26 G-Tech Medical, Inc. Systems and methods for processing electromyographic signals of the gastrointestinal tract
CN104398244A (en) * 2014-10-20 2015-03-11 西北工业大学 Tele medicine real time monitoring and positioning system based on Internet of things
US20170235918A1 (en) * 2014-10-25 2017-08-17 Sumner Bluffs, Llc. Systems and methods for determining compliance and efficacy of a dosing regimen for a pharmaceutical agent
US9875638B2 (en) * 2014-10-28 2018-01-23 Numerex Corp. Method and system for generating geofences for managing offender movement
CN105616000A (en) * 2014-10-30 2016-06-01 新谊整合科技股份有限公司 Personal safety caring method, device and system
WO2016070128A1 (en) 2014-10-31 2016-05-06 Irhythm Technologies, Inc. Wireless physiological monitoring device and systems
CN104287722A (en) * 2014-11-07 2015-01-21 桂林电子科技大学 Wireless remote multi-user electrocardiograph monitoring system and method
KR102335769B1 (en) * 2014-11-07 2021-12-06 삼성전자주식회사 Apparatus for measuring a body composition and method for measuring a body composition using the same
US9572503B2 (en) * 2014-11-14 2017-02-21 Eric DeForest Personal safety and security mobile application responsive to changes in heart rate
EP3217875A1 (en) 2014-11-14 2017-09-20 Koninklijke Philips N.V. Cardio-respiratory fitness assessment
US11301771B2 (en) * 2014-11-21 2022-04-12 C3.Ai, Inc. Systems and methods for determining disaggregated energy consumption based on limited energy billing data
US10143423B2 (en) 2014-11-21 2018-12-04 Elwha Llc Systems to monitor body portions for injury after impact
US10512420B2 (en) 2014-11-21 2019-12-24 Elwha Llc Systems to monitor body portions for injury after impact
WO2016081984A1 (en) * 2014-11-25 2016-06-02 Mport Pty Ltd Frameworks and methodologies configured to enable generation and utilisation of three-dimensional body scan data
FR3028744A1 (en) 2014-11-25 2016-05-27 Impeto Medical ELECTROPHYSIOLOGICAL DATA COLLECTION DEVICE WITH INCREASED RELIABILITY
EP3224815A4 (en) * 2014-11-25 2018-10-31 Fynd Technologies, Inc Geolocation bracelet, systems, and methods
US10716517B1 (en) 2014-11-26 2020-07-21 Cerner Innovation, Inc. Biomechanics abnormality identification
US9536309B2 (en) * 2014-11-27 2017-01-03 Synaptive Medical (Barbados) Inc. Method, system and apparatus for displaying surgical engagement paths
US9807221B2 (en) 2014-11-28 2017-10-31 Thalmic Labs Inc. Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link
WO2016094390A1 (en) * 2014-12-08 2016-06-16 Coats Andrew Justin Stewarts Magnetic induction anti-snoring device
US9197082B1 (en) 2014-12-09 2015-11-24 Jack Ke Zhang Techniques for power source management using a wrist-worn device
US9704266B2 (en) 2014-12-11 2017-07-11 Rdi, Llc Non-contacting monitor for bridges and civil structures
US10062411B2 (en) 2014-12-11 2018-08-28 Jeffrey R. Hay Apparatus and method for visualizing periodic motions in mechanical components
EP3234731B1 (en) 2014-12-16 2020-07-01 Somatix Inc. Methods and systems for monitoring and influencing gesture-based behaviors
WO2016100906A1 (en) 2014-12-18 2016-06-23 Zoll Medical Corporation Pacing device with acoustic sensor
RU2714102C2 (en) * 2014-12-22 2020-02-11 Конинклейке Филипс Н.В. Portable first aid kit
US10090068B2 (en) 2014-12-23 2018-10-02 Cerner Innovation, Inc. Method and system for determining whether a monitored individual's hand(s) have entered a virtual safety zone
US10524722B2 (en) 2014-12-26 2020-01-07 Cerner Innovation, Inc. Method and system for determining whether a caregiver takes appropriate measures to prevent patient bedsores
US9875732B2 (en) * 2015-01-05 2018-01-23 Stephen Suitor Handheld electronic musical percussion instrument
WO2016110847A1 (en) 2015-01-08 2016-07-14 Medasense Biometrics Ltd. An electrode array for physiological monitoring and device including or utilizing same
US9616292B2 (en) 2015-01-09 2017-04-11 Nolan Orfield Exercise tracker
KR20160086715A (en) * 2015-01-12 2016-07-20 삼성전자주식회사 Wearable apparatus for measuring biological information and method for measuring biological information using the same
CN104504855B (en) * 2015-01-13 2017-11-24 广东乐源数字技术有限公司 A kind of intelligent waistband and intelligent tumble emergency warning system
CN104522949B (en) * 2015-01-15 2016-01-06 中国科学院苏州生物医学工程技术研究所 A kind of Intelligent bracelet for qualitative assessment disturbances in patients with Parkinson disease motor function
US10064582B2 (en) 2015-01-19 2018-09-04 Google Llc Noninvasive determination of cardiac health and other functional states and trends for human physiological systems
CN104523254A (en) * 2015-01-22 2015-04-22 安徽理工大学 Medical monitoring system for ZigBee-based wearable sensor
US10213586B2 (en) 2015-01-28 2019-02-26 Chrono Therapeutics Inc. Drug delivery methods and systems
US9338627B1 (en) * 2015-01-28 2016-05-10 Arati P Singh Portable device for indicating emergency events
US10215568B2 (en) 2015-01-30 2019-02-26 Vision Service Plan Systems and methods for tracking motion, performance, and other data for an individual such as a winter sports athlete
ES2770321T3 (en) 2015-02-04 2020-07-01 Route 92 Medical Inc Rapid Aspiration Thrombectomy System
US9577992B2 (en) * 2015-02-04 2017-02-21 Aerendir Mobile Inc. Data encryption/decryption using neuro and neuro-mechanical fingerprints
US11065019B1 (en) 2015-02-04 2021-07-20 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
WO2016130890A1 (en) 2015-02-13 2016-08-18 Ansarullah Ridwan Mohammed Positional analysis for prayer recognition
US10091463B1 (en) 2015-02-16 2018-10-02 Cerner Innovation, Inc. Method for determining whether an individual enters a prescribed virtual zone using 3D blob detection
EP3231132A4 (en) * 2015-02-20 2018-06-27 Hewlett-Packard Development Company, L.P. User authentication device
CN104720771A (en) * 2015-02-27 2015-06-24 泰山医学院 Intelligent physical activity monitoring system
US10391361B2 (en) 2015-02-27 2019-08-27 Icon Health & Fitness, Inc. Simulating real-world terrain on an exercise device
US10108264B2 (en) 2015-03-02 2018-10-23 Emotiv, Inc. System and method for embedded cognitive state metric system
US9800663B2 (en) * 2015-03-06 2017-10-24 Fresenius Medical Care Holdings, Inc. Associating dialysis accessories using near field communication
US20160262664A1 (en) * 2015-03-10 2016-09-15 Michael Linderman Detection Of Disease Using Gesture Writing Bio-Markers
CA2977814A1 (en) 2015-03-12 2016-09-15 Chrono Therapeutics Inc. Craving input and support system
KR20160110847A (en) * 2015-03-13 2016-09-22 주식회사 소소 Alarm systme of health-abnormal condition using multi bio-signal
US10321877B2 (en) 2015-03-18 2019-06-18 Zoll Medical Corporation Medical device with acoustic sensor
US10016162B1 (en) 2015-03-23 2018-07-10 Google Llc In-ear health monitoring
EP3273852B1 (en) * 2015-03-23 2021-06-30 Repono Pty Ltd Muscle activity monitoring
US10115319B2 (en) * 2015-03-26 2018-10-30 President And Fellows Of Harvard College Systems and methods for detecting overstriding in runners
US9983747B2 (en) 2015-03-26 2018-05-29 Google Llc Two-layer interactive textiles
CN107408151B (en) * 2015-03-27 2022-02-18 英特尔公司 Motion tracking using electronic devices
US10803157B2 (en) 2015-03-28 2020-10-13 Intel Corporation Gesture matching mechanism
US9836069B1 (en) 2015-03-31 2017-12-05 Google Inc. Devices and methods for protecting unattended children in the home
US9734720B2 (en) 2015-04-01 2017-08-15 Zoll Medical Corporation Response mode verification in vehicle dispatch
US10456059B2 (en) * 2015-04-06 2019-10-29 Forest Devices, Inc. Neuorological condition detection unit and method of using the same
US9848780B1 (en) 2015-04-08 2017-12-26 Google Inc. Assessing cardiovascular function using an optical sensor
US10506961B1 (en) 2015-04-15 2019-12-17 Eden Medical, Inc. Diagnostic transducer and method
US9973561B2 (en) * 2015-04-17 2018-05-15 International Business Machines Corporation Conferencing based on portable multifunction devices
US10078435B2 (en) 2015-04-24 2018-09-18 Thalmic Labs Inc. Systems, methods, and computer program products for interacting with electronically displayed presentation materials
KR101848417B1 (en) * 2015-04-27 2018-04-12 주식회사 아모그린텍 Wearable apparatus
CN104900006B (en) * 2015-04-28 2017-10-27 中国科学技术大学先进技术研究院 A kind of intelligent personal security system and its implementation based on wearable device
CN107430443B (en) 2015-04-30 2020-07-10 谷歌有限责任公司 Gesture recognition based on wide field radar
KR102229658B1 (en) 2015-04-30 2021-03-17 구글 엘엘씨 Type-agnostic rf signal representations
CN107430444B (en) 2015-04-30 2020-03-03 谷歌有限责任公司 RF-based micro-motion tracking for gesture tracking and recognition
US9300925B1 (en) 2015-05-04 2016-03-29 Jack Ke Zhang Managing multi-user access to controlled locations in a facility
US10342478B2 (en) 2015-05-07 2019-07-09 Cerner Innovation, Inc. Method and system for determining whether a caretaker takes appropriate measures to prevent patient bedsores
ES2820923T3 (en) 2015-05-13 2021-04-22 Alivecor Inc Mismatch monitoring
US10537262B2 (en) 2015-05-14 2020-01-21 Elwha Llc Systems and methods for detecting strokes
US10080528B2 (en) 2015-05-19 2018-09-25 Google Llc Optical central venous pressure measurement
US9693592B2 (en) 2015-05-27 2017-07-04 Google Inc. Attaching electronic components to interactive textiles
US10088908B1 (en) 2015-05-27 2018-10-02 Google Llc Gesture detection and interactions
US9392946B1 (en) 2015-05-28 2016-07-19 Fitbit, Inc. Heart rate sensor with high-aspect-ratio photodetector element
US9892611B1 (en) 2015-06-01 2018-02-13 Cerner Innovation, Inc. Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection
US10849513B2 (en) 2015-06-02 2020-12-01 CardiacSense Ltd. Sensing at least one biological parameter, e.g., heart rate or heart rate variability of a subject
WO2016194007A1 (en) * 2015-06-03 2016-12-08 Laboratori Di Informatica Applicata Di Giuseppe Capasso System for the detection and the early prediction of the approaching of exacerbations in patients suffering from chronic obstructive broncopneumaty
US10376195B1 (en) 2015-06-04 2019-08-13 Google Llc Automated nursing assessment
CN104921721A (en) * 2015-06-08 2015-09-23 中国电子科技集团公司第三十八研究所 Dynamic electrocardiographic monitoring system with local and remote monitoring functions
TWM507000U (en) * 2015-06-10 2015-08-11 廣達電腦股份有限公司 Wearable electronic device
WO2016205365A1 (en) * 2015-06-15 2016-12-22 Cvr Global, Inc. Non-invasive method for measuring sound frequencies created by vortices in a carotid artery
US10446054B2 (en) 2015-06-15 2019-10-15 Mark Lamoncha System and method for tracking the weight and food consumption of a user
EP3307144A4 (en) * 2015-06-15 2019-02-20 CVR Global, Inc. Yoke for sensing carotid stenosis
US9836118B2 (en) 2015-06-16 2017-12-05 Wilson Steele Method and system for analyzing a movement of a person
CN107921207B (en) 2015-06-19 2021-04-02 豪夫迈·罗氏有限公司 Control apparatus and method for controlling a medical system, portable device, apparatus and computer program product
CA2990367C (en) 2015-06-25 2019-12-24 Timothy Burton Methods and systems using mathematical analysis and machine learning to diagnose disease
EP3314487A1 (en) * 2015-06-25 2018-05-02 Koninklijke Philips N.V. Medical interventional imaging device
WO2016205872A1 (en) * 2015-06-26 2016-12-29 Impedimed Limited Impedance methods and apparatuses using arrays of bipolar electrodes
US10555686B1 (en) 2015-07-01 2020-02-11 Richard C. Kimoto Removing parasitic effects from body impedance measurements with wrist-worn and/or other devices
US11471109B2 (en) 2015-07-09 2022-10-18 Capsuletech, Inc. Methods and devices for recovering data from an amplitude-modulated signal
EP3324831A1 (en) 2015-07-20 2018-05-30 L.I.F.E. Corporation S.A. Flexible fabric ribbon connectors for garments with sensors and electronics
US11051543B2 (en) 2015-07-21 2021-07-06 Otsuka Pharmaceutical Co. Ltd. Alginate on adhesive bilayer laminate film
JP6660110B2 (en) * 2015-07-23 2020-03-04 原田電子工業株式会社 Gait analysis method and gait analysis system
WO2017019563A1 (en) 2015-07-24 2017-02-02 Route 92 Medical, Inc. Anchoring delivery system and methods
US9693711B2 (en) 2015-08-07 2017-07-04 Fitbit, Inc. User identification via motion and heartbeat waveform data
US20180233017A1 (en) * 2015-08-10 2018-08-16 Konica Minolta, Inc. System for monitoring person to be monitored, monitoring information screen display device, and monitoring information screen display method
US10537264B2 (en) 2015-08-13 2020-01-21 Republic Of Korea (Rok Air Force Chief Of Staff) G-LOC warning method and system using G-LOC warning algorithm
RU2633347C2 (en) * 2015-08-24 2017-10-11 Федеральное бюджетное учреждение "Государственный региональный центр стандартизации, метрологии и испытаний в Красноярском крае" Method for registration of latent electrocardiogram of all sections of four-chamber heart and device for its implementation
US10212165B1 (en) * 2015-08-25 2019-02-19 Vital Connect, Inc. Secured vital sign data group streams
US9642580B2 (en) 2015-08-26 2017-05-09 General Electric Company Monitoring device including compliant variable capacitor for respiration and cardiac sensing applications
CN106485192B (en) * 2015-09-02 2019-12-06 富士通株式会社 Training method and device of neural network for image recognition
US20170065190A1 (en) * 2015-09-09 2017-03-09 Eric M. Green Sensor for ventricular and outflow tract obstruction
USD766447S1 (en) 2015-09-10 2016-09-13 Bardy Diagnostics, Inc. Extended wear electrode patch
JP6775343B2 (en) 2015-09-11 2020-10-28 キヤノン株式会社 Information processing device and its control method and program
EP3142040A1 (en) * 2015-09-11 2017-03-15 Canon Kabushiki Kaisha Information processing apparatus, method of controlling the same, and program
US11096629B2 (en) * 2015-09-14 2021-08-24 Stichting Imec Nederland Bio-impedance spectroscopy system and method for bio-impedance measurement
EP3352846B1 (en) * 2015-09-21 2020-07-22 Ziv Healthcare Ltd. Monitoring and stimulation module
WO2017053728A1 (en) 2015-09-23 2017-03-30 Emfit, Corp. Heart rate monitoring device, system, and method for increasing performance improvement efficiency
US10532139B2 (en) 2015-09-25 2020-01-14 Fresenius Medical Care Holdings, Inc. Short-range wireless communication for a dialysis system
US10420175B2 (en) * 2015-09-25 2019-09-17 Intel Corporation Wireless warmers
US10285645B2 (en) 2015-09-28 2019-05-14 Apple Inc. Sensing contact force related to user wearing an electronic device
US10444850B2 (en) * 2015-09-28 2019-10-15 Elwha Llc Systems and methods for providing gesture indicative data via a head wearable computing device
US10206623B2 (en) 2015-09-28 2019-02-19 Apple Inc. Band tightness sensor of a wearable device
US10817065B1 (en) 2015-10-06 2020-10-27 Google Llc Gesture recognition using multiple antenna
BR112018007040A2 (en) * 2015-10-08 2018-10-16 Brain Sentinel, Inc. method and apparatus for detecting and classifying convulsive activity
KR102045366B1 (en) * 2015-10-28 2019-12-05 경북대학교 산학협력단 Apparatus and method for determining stroke during the sleep
WO2017079484A1 (en) 2015-11-04 2017-05-11 Google Inc. Connectors for connecting electronics embedded in garments to external devices
US10335534B2 (en) 2015-11-06 2019-07-02 Medtronic, Inc. Dialysis prescription optimization for decreased arrhythmias
CN106667457B (en) * 2015-11-06 2021-05-04 飞捷科技股份有限公司 Physiological monitoring system using low power bluetooth mesh network
US10417648B2 (en) * 2015-11-09 2019-09-17 Industrial Technology Research Institute System and computer readable medium for finding crowd movements
CN105411557A (en) * 2015-11-11 2016-03-23 于华 Automatic emergency monitor
US20170147765A1 (en) * 2015-11-19 2017-05-25 Penumbra, Inc. Systems and methods for treatment of stroke
US11137820B2 (en) 2015-12-01 2021-10-05 Amer Sports Digital Services Oy Apparatus and method for presenting thematic maps
US11144107B2 (en) 2015-12-01 2021-10-12 Amer Sports Digital Services Oy Apparatus and method for presenting thematic maps
US11215457B2 (en) 2015-12-01 2022-01-04 Amer Sports Digital Services Oy Thematic map based route optimization
US11210299B2 (en) 2015-12-01 2021-12-28 Amer Sports Digital Services Oy Apparatus and method for presenting thematic maps
US10646144B2 (en) 2015-12-07 2020-05-12 Marcelo Malini Lamego Wireless, disposable, extended use pulse oximeter apparatus and methods
US11206989B2 (en) 2015-12-10 2021-12-28 Fitbit, Inc. Light field management in an optical biological parameter sensor
US10568525B1 (en) 2015-12-14 2020-02-25 Fitbit, Inc. Multi-wavelength pulse oximetry
US10204213B2 (en) * 2015-12-14 2019-02-12 Jayfus T. Doswell Methods and apparatus for monitoring and/or regulating medicament and medicament dispensation
US11284807B2 (en) 2015-12-21 2022-03-29 Amer Sports Digital Services Oy Engaging exercising devices with a mobile device
DE102016015695A1 (en) * 2015-12-21 2017-06-22 Suunto Oy Activity intensity level determination
US11587484B2 (en) 2015-12-21 2023-02-21 Suunto Oy Method for controlling a display
US11541280B2 (en) 2015-12-21 2023-01-03 Suunto Oy Apparatus and exercising device
US11838990B2 (en) 2015-12-21 2023-12-05 Suunto Oy Communicating sensor data in wireless communication systems
FI127926B (en) 2015-12-21 2019-05-31 Suunto Oy Sensor based context management
KR101839751B1 (en) * 2015-12-28 2018-03-19 전문석 Wearable smart watch, system and method for digital electrocardiogram preventing sudden cardiac death
US9426292B1 (en) * 2015-12-29 2016-08-23 International Business Machines Corporation Call center anxiety feedback processor (CAFP) for biomarker based case assignment
US10716478B2 (en) * 2015-12-29 2020-07-21 Motorola Mobility Llc Wearable device heart monitor systems
US10614288B2 (en) * 2015-12-31 2020-04-07 Cerner Innovation, Inc. Methods and systems for detecting stroke symptoms
US10368756B2 (en) 2015-12-31 2019-08-06 BioPause LLC Sensing circuit with cascaded reference
US9901302B2 (en) * 2016-01-05 2018-02-27 Tosense, Inc. Physiological monitoring system featuring floormat and wired handheld sensor
US20180242863A1 (en) * 2016-01-08 2018-08-30 Heartisans Limited Wearable device for assessing the likelihood of the onset of cardiac arrest and a method thereo
US9621678B1 (en) * 2016-01-13 2017-04-11 Linkedin Corporation Delivering and displaying content feeds on smartwatch devices
AU2017206444B2 (en) * 2016-01-13 2021-08-12 Specialbandager.Dk A/S Oedema treatment and monitoring same
US10692011B2 (en) 2016-01-21 2020-06-23 Verily Life Sciences Llc Adaptive model-based system to automatically quantify fall risk
US10631752B2 (en) 2016-01-27 2020-04-28 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
EP3407778B1 (en) 2016-01-27 2021-01-06 Life Detection Technologies, Inc. Systems and methods for detecting physical changes without physical contact
US10181021B2 (en) 2016-02-01 2019-01-15 Fitbit, Inc. Method and apparatus for off-body detection for wearable device
US10188345B2 (en) 2016-02-12 2019-01-29 Fitbit, Inc. Method and apparatus for providing biofeedback during meditation exercise
US20170258390A1 (en) * 2016-02-12 2017-09-14 Newton Howard Early Detection Of Neurodegenerative Disease
JP6694727B2 (en) * 2016-02-15 2020-05-20 日本光電工業株式会社 Subject management system
US10080530B2 (en) 2016-02-19 2018-09-25 Fitbit, Inc. Periodic inactivity alerts and achievement messages
CN113350658B (en) 2016-02-24 2024-03-29 禾木(中国)生物工程有限公司 Nerve vascular catheter with enhanced flexibility
US10806381B2 (en) * 2016-03-01 2020-10-20 Mayo Foundation For Medical Education And Research Audiology testing techniques
CN105796058A (en) * 2016-03-08 2016-07-27 北京航空航天大学 Old people monitoring system based on multiple sensors
US11590046B2 (en) 2016-03-13 2023-02-28 President And Fellows Of Harvard College Flexible members for anchoring to the body
US11617538B2 (en) 2016-03-14 2023-04-04 Zoll Medical Corporation Proximity based processing systems and methods
US11810032B2 (en) 2016-03-16 2023-11-07 Triax Technologies, Inc. Systems and methods for low-energy wireless applications using networked wearable sensors
US11170616B2 (en) 2016-03-16 2021-11-09 Triax Technologies, Inc. System and interfaces for managing workplace events
US10769562B2 (en) 2016-03-16 2020-09-08 Triax Technologies, Inc. Sensor based system and method for authorizing operation of worksite equipment using a locally stored access control list
US10878352B2 (en) * 2016-03-16 2020-12-29 Triax Technologies, Inc. Mesh based system and method for tracking worksite events experienced by workers via a wearable sensor
US10493349B2 (en) 2016-03-18 2019-12-03 Icon Health & Fitness, Inc. Display on exercise device
US10625137B2 (en) 2016-03-18 2020-04-21 Icon Health & Fitness, Inc. Coordinated displays in an exercise device
US10272317B2 (en) 2016-03-18 2019-04-30 Icon Health & Fitness, Inc. Lighted pace feature in a treadmill
US20170277849A1 (en) * 2016-03-22 2017-09-28 General Electric Company Systems and methods for displaying waveforms based on physiological data
US10701210B2 (en) * 2016-03-23 2020-06-30 Koninklijke Philips N.V. Systems and methods for matching subjects with care consultants in telenursing call centers
US10736570B2 (en) 2016-03-24 2020-08-11 CardiacSense Ltd. Methods circuits assemblies devices systems facets and associated machine executable code for detecting vital signs
CN109068987B (en) * 2016-04-01 2022-03-22 心脏起搏器股份公司 Alarm management for physiological event detection
US10874790B2 (en) 2016-08-10 2020-12-29 Medtronic, Inc. Peritoneal dialysis intracycle osmotic agent adjustment
US10994064B2 (en) 2016-08-10 2021-05-04 Medtronic, Inc. Peritoneal dialysate flow path sensing
US10646138B2 (en) 2016-04-19 2020-05-12 The Boeing Company Systems and methods for assessing ergonomics utilizing visual sensing
US10065065B2 (en) * 2016-04-22 2018-09-04 Derrick Herron Exercise suit with integrated weights
USD794805S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device with a button
CN109195510A (en) 2016-04-29 2019-01-11 飞比特公司 Multi-channel optical Power Capacity pulse wave sensor
US9968274B2 (en) 2016-04-29 2018-05-15 Infobionic, Inc. Systems and methods for processing ECG data
USD794806S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device
USD794807S1 (en) 2016-04-29 2017-08-15 Infobionic, Inc. Health monitoring device with a display
WO2017190085A1 (en) 2016-04-29 2017-11-02 Fitbit, Inc. Sleep monitoring system with optional alarm functionality
WO2017192562A1 (en) * 2016-05-02 2017-11-09 University Of Virginia Patent Foundation Method, system, and computer readable medium for generating pulse oximetry predictive scores (pops) for adverse preterm infants
US10492302B2 (en) 2016-05-03 2019-11-26 Google Llc Connecting an electronic component to an interactive textile
US10360787B2 (en) 2016-05-05 2019-07-23 Hill-Rom Services, Inc. Discriminating patient care communications system
CN107529339A (en) * 2016-05-09 2017-12-29 深圳市欸阿技术有限公司 The method of wearable device and its indoor navigation
US10175781B2 (en) 2016-05-16 2019-01-08 Google Llc Interactive object with multiple electronics modules
US9730027B2 (en) 2016-05-19 2017-08-08 Fitbit, Inc. Back-filling of geolocation-based exercise routes
US10488527B2 (en) 2016-05-19 2019-11-26 Fitbit, Inc. Automatic tracking of geolocation data for exercises
US20190282127A1 (en) * 2016-05-23 2019-09-19 Koninklijke Philips N.V. System and method for early detection of transient ischemic attack
US10325514B2 (en) 2016-06-02 2019-06-18 Fitbit, Inc. Systems and techniques for tracking sleep consistency and sleep goals
US10319209B2 (en) 2016-06-03 2019-06-11 John Carlton-Foss Method and system for motion analysis and fall prevention
US11462301B2 (en) * 2016-06-07 2022-10-04 BlyncSync Technologies, LLC System and method for fleet driver biometric tracking
US11583256B2 (en) * 2016-06-27 2023-02-21 Koninklijke Philips N.V. Fat layer dependent sensor adaptation
US9899038B2 (en) * 2016-06-30 2018-02-20 Karen Elaine Khaleghi Electronic notebook system
JP2019524204A (en) 2016-07-01 2019-09-05 エル.アイ.エフ.イー. コーポレーション エス.エー.L.I.F.E. Corporation S.A. Biometric identification by clothing with multiple sensors
JP2018004431A (en) * 2016-07-01 2018-01-11 セイコーエプソン株式会社 List apparatus
BR112019000861B1 (en) 2016-07-22 2020-10-27 Proteus Digital Health, Inc electronic device
WO2018017436A1 (en) 2016-07-22 2018-01-25 President And Fellows Of Harvard College Controls optimization for wearable systems
US20190121306A1 (en) 2017-10-19 2019-04-25 Ctrl-Labs Corporation Systems and methods for identifying biological structures associated with neuromuscular source signals
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
WO2018025199A1 (en) * 2016-08-02 2018-02-08 CardiacSense Ltd. Methods circuits assemblies devices systems facets and associated machine executable code for detecting vital signs
WO2018032363A1 (en) * 2016-08-16 2018-02-22 赵矗 Smart wearable apparatus
EP3504942A4 (en) 2016-08-24 2020-07-15 Delos Living LLC Systems, methods and articles for enhancing wellness associated with habitable environments
CN107198508B (en) * 2016-08-26 2021-01-22 常州市钱璟康复股份有限公司 Recovery degree sequencing method and combined interactive training system
CN106370180B (en) * 2016-08-29 2019-06-04 常州市钱璟康复股份有限公司 Inertial sensor initial position recognition methods based on dynamic time warping algorithm
CN109922723A (en) * 2016-08-31 2019-06-21 阿利弗克公司 Devices, systems, and methods for physiology monitoring
US10796715B1 (en) * 2016-09-01 2020-10-06 Arizona Board Of Regents On Behalf Of Arizona State University Speech analysis algorithmic system and method for objective evaluation and/or disease detection
US11207021B2 (en) 2016-09-06 2021-12-28 Fitbit, Inc Methods and systems for labeling sleep states
US11013843B2 (en) 2016-09-09 2021-05-25 Medtronic, Inc. Peritoneal dialysis fluid testing system
US9810686B1 (en) * 2016-09-14 2017-11-07 David R. Hall Urinalysis cassette and system
US10628573B2 (en) 2016-09-20 2020-04-21 Walmart Apollo, Llc Systems and methods for tracking users of wearable devices
GB2569070B (en) * 2016-09-20 2022-01-12 Walmart Apollo Llc Systems and methods for tracking users of wearable devices
US10671705B2 (en) 2016-09-28 2020-06-02 Icon Health & Fitness, Inc. Customizing recipe recommendations
CN107908303B (en) * 2016-10-04 2021-02-12 禾瑞亚科技股份有限公司 Touch processing device, electronic system and touch processing method thereof
US10321833B2 (en) 2016-10-05 2019-06-18 Innovative Surgical Solutions. Neural locating method
KR102035642B1 (en) 2016-10-06 2019-10-23 주식회사 인바디 Body composition mesurement using clamp electrode
GB2554894B (en) * 2016-10-12 2020-06-03 Dst Innovations Ltd Electronic Biometric Devices and Methods of Construction
US10539549B2 (en) * 2016-10-13 2020-01-21 Worcester Polytechnic Institute Mobile blood alcohol content and impairment sensing device
DE102017009171A1 (en) 2016-10-17 2018-04-19 Amer Sports Digital Services Oy EMBEDDED APPENDIX
US11703938B2 (en) 2016-10-17 2023-07-18 Suunto Oy Embedded computing device
US11250958B2 (en) 2016-10-21 2022-02-15 International Business Machines Corporation Systems and techniques for recommending personalized health care based on demographics
US10786171B2 (en) 2016-10-25 2020-09-29 Hewlett-Packard Development Company, L.P. Memristor code comparator to compare sensor signals to reference signals
TWI735689B (en) 2016-10-26 2021-08-11 日商大塚製藥股份有限公司 Methods for manufacturing capsules with ingestible event markers
WO2018101886A1 (en) * 2016-11-30 2018-06-07 Agency For Science, Technology And Research A computer system for alerting emergency services
US10579150B2 (en) 2016-12-05 2020-03-03 Google Llc Concurrent detection of absolute distance and relative movement for sensing action gestures
US10835205B2 (en) * 2016-12-06 2020-11-17 Gerardo Rodriquez Stand-alone continuous cardiac doppler pulse monitoring patch with integral visual and auditory alerts, and patch-display system and method
US11106809B2 (en) 2016-12-28 2021-08-31 Samsung Electronics Co., Ltd. Privacy-preserving transformation of continuous data
US11051707B2 (en) 2016-12-30 2021-07-06 BioPause LLC Low noise subsurface spectrogram with cascaded reference circuit
US10147184B2 (en) 2016-12-30 2018-12-04 Cerner Innovation, Inc. Seizure detection
EP3565511B1 (en) 2017-01-06 2023-10-18 Incept, LLC Thromboresistant coatings for aneurysm treatment devices
CA3049529A1 (en) 2017-01-06 2018-07-12 Chrono Therapeutics Inc. Transdermal drug delivery devices and methods
EP3566233A1 (en) * 2017-01-08 2019-11-13 The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Systems and methods for using supervised learning to predict subject-specific pneumonia outcomes
WO2018132387A1 (en) 2017-01-10 2018-07-19 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
US11574715B2 (en) 2017-05-17 2023-02-07 Blue Storm Media Inc System and method for a health status display
US20180206722A1 (en) * 2017-01-23 2018-07-26 Melissa Gamez Medical data bracelet
US11450433B2 (en) * 2017-02-02 2022-09-20 Becare Link, Llc System and method for remote diagnosis of disease progression
US10993660B2 (en) 2017-02-07 2021-05-04 Spire, Inc. System for physiological monitoring
US11445982B2 (en) * 2017-02-08 2022-09-20 Wayne State University Method and apparatus for determining blood pressure on measured heart sounds
US20190272725A1 (en) * 2017-02-15 2019-09-05 New Sun Technologies, Inc. Pharmacovigilance systems and methods
JP6836158B2 (en) * 2017-02-15 2021-02-24 ブラザー工業株式会社 Image forming device and information notification method
US11139079B2 (en) 2017-03-06 2021-10-05 International Business Machines Corporation Cognitive stroke detection and notification
WO2018169684A1 (en) * 2017-03-13 2018-09-20 Brunswick Corporation Systems and methods for improving advertising in fitness centers based on traffic
WO2018170170A1 (en) 2017-03-14 2018-09-20 President And Fellows Of Harvard College Systems and methods for fabricating 3d soft microstructures
EP3313092A1 (en) * 2017-03-17 2018-04-25 Oticon A/s A hearing system for monitoring a health related parameter
CN107049251A (en) * 2017-03-28 2017-08-18 浙江大学台州研究院 Upper extremity exercise control ability assessment system
WO2018187559A1 (en) * 2017-04-05 2018-10-11 The United States Of America As Represented By The Secretary Of The Navy Radiograph stand with weigh scale
US11051706B1 (en) 2017-04-07 2021-07-06 Fitbit, Inc. Multiple source-detector pair photoplethysmography (PPG) sensor
US10624561B2 (en) 2017-04-12 2020-04-21 Fitbit, Inc. User identification by biometric monitoring device
US9910298B1 (en) 2017-04-17 2018-03-06 Vision Service Plan Systems and methods for a computerized temple for use with eyewear
US10623188B2 (en) 2017-04-26 2020-04-14 Fresenius Medical Care Holdings, Inc. Securely distributing medical prescriptions
TR201706244A2 (en) * 2017-04-27 2017-09-21 9La1Arasi Elektronik Ticaret Reklam Arastirma Ve Gelistirme San Tic Ltd Sti BRACELET WITH INSTANT HEALTH NOTIFICATION
DE102017207607A1 (en) * 2017-05-05 2018-11-08 Conti Temic Microelectronic Gmbh Radar system with monitoring of the frequency position of a sequence of similar transmission signals
US11228613B2 (en) 2017-05-22 2022-01-18 International Business Machines Corporation Adaptive adjustment using sensor data and distributed data
WO2018226809A1 (en) * 2017-06-07 2018-12-13 Covidien Lp Systems and methods for detecting strokes
US10842924B2 (en) * 2017-06-29 2020-11-24 Fresenius Medical Care Deutschland Gmbh Therapy control by comprehensive feedback
US10709339B1 (en) * 2017-07-03 2020-07-14 Senstream, Inc. Biometric wearable for continuous heart rate and blood pressure monitoring
CA3068723A1 (en) * 2017-07-06 2019-01-10 Caretaker Medical, Llc Self-calibrating systems and methods for blood pressure wave form analysis and diagnostic support
AU2018302130B2 (en) 2017-07-18 2020-12-24 Becton, Dickinson And Company Administration system, delivery device, and notification device for communicating status of a medical device
CN107374614A (en) * 2017-07-25 2017-11-24 海南聚能科技创新研究院有限公司 The automatic classification storage control method of electrocardiogram and system
CN109303565B (en) * 2017-07-26 2021-08-17 中移(杭州)信息技术有限公司 Sleep state prediction method and device
US20190304283A1 (en) 2017-08-03 2019-10-03 Tidi Products, Llc Integrated Belt And Sensor For Alarm For Patient Furniture
US20210254644A1 (en) 2017-08-03 2021-08-19 Tidi Products, Llc Integrated Belt and Sensor for Alarm for Patient Furniture
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
US11134877B2 (en) 2017-08-09 2021-10-05 Genetesis, Inc. Biomagnetic detection
US11668481B2 (en) 2017-08-30 2023-06-06 Delos Living Llc Systems, methods and articles for assessing and/or improving health and well-being
US10727956B2 (en) * 2017-09-06 2020-07-28 Hill-Rom Services, Inc. Wireless sensors in medical environments
EP3684467A4 (en) * 2017-09-18 2021-06-16 Lim, Lew System and method for automated personalized brain modulation with photobiomodulation
US10516421B1 (en) 2017-09-19 2019-12-24 Landis+Gyr Technologies, Llc Apparatuses and methods involving radio configurability for adapting to radio-frequency systems
US11170484B2 (en) 2017-09-19 2021-11-09 Aic Innovations Group, Inc. Recognition of suspicious activities in medication administration
US20200327889A1 (en) * 2017-10-16 2020-10-15 Nec Corporation Nurse operation assistance terminal, nurse operation assistance system, nurse operation assistance method, and nurse operation assistance program recording medium
US11284827B2 (en) 2017-10-21 2022-03-29 Ausculsciences, Inc. Medical decision support system
EP3703807B1 (en) 2017-11-02 2022-08-17 Cardiac Pacemakers, Inc. Systems for his-bundle pacing
US11153156B2 (en) 2017-11-03 2021-10-19 Vignet Incorporated Achieving personalized outcomes with digital therapeutic applications
US11177691B2 (en) * 2017-11-06 2021-11-16 Mark J. Henry Wristwatch band and charging system
CN110019994A (en) 2017-11-13 2019-07-16 阿里巴巴集团控股有限公司 Data encryption, decryption and querying method, data ciphering and deciphering and inquiry unit
GB2579923B (en) 2017-11-30 2020-12-30 Bruin Biometrics Llc Implant evaluation using acoustic emissions
AU2018380000A1 (en) 2017-12-04 2020-06-11 Caretaker Medical, Llc Butterfly cuff
LT3727242T (en) 2017-12-22 2022-04-11 Coloplast A/S Monitor device of an ostomy system having a connector for coupling to both a base plate and an accessory device
US10799385B2 (en) 2017-12-22 2020-10-13 Coloplast A/S Ostomy appliance with layered base plate
EP3727229A1 (en) 2017-12-22 2020-10-28 Coloplast A/S Coupling part with a hinge for an ostomy base plate and sensor assembly part
US10849781B2 (en) 2017-12-22 2020-12-01 Coloplast A/S Base plate for an ostomy appliance
LT3727227T (en) 2017-12-22 2023-07-25 Coloplast A/S Base plate for an ostomy appliance and a sensor assembly part for a base plate and a method for manufacturing a base plate and sensor assembly part
EP3727220B1 (en) 2017-12-22 2023-07-12 Coloplast A/S Ostomy appliance system, monitor device, and method of monitoring an ostomy appliance
US10500084B2 (en) 2017-12-22 2019-12-10 Coloplast A/S Accessory devices of an ostomy system, and related methods for communicating leakage state
US11607334B2 (en) 2017-12-22 2023-03-21 Coloplast A/S Base plate for a medical appliance, a monitor device and a system for a medical appliance
US11534323B2 (en) 2017-12-22 2022-12-27 Coloplast A/S Tools and methods for placing a medical appliance on a user
EP4032511A1 (en) 2017-12-22 2022-07-27 Coloplast A/S Ostomy appliance with sensing zones
US11819443B2 (en) 2017-12-22 2023-11-21 Coloplast A/S Moisture detecting base plate for a medical appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
AU2018391316A1 (en) 2017-12-22 2020-07-02 Coloplast A/S Ostomy appliance with selective sensor points and related methods
WO2019120443A1 (en) 2017-12-22 2019-06-27 Coloplast A/S Sensor assembly part and a base plate for an ostomy appliance and a method for manufacturing a base plate or a sensor assembly part
DK3727243T3 (en) 2017-12-22 2023-10-02 Coloplast As BASE PLATE AND SENSOR UNIT FOR A STOMA SYSTEM WITH A LEAK SENSOR
EP3996106A1 (en) 2017-12-22 2022-05-11 Coloplast A/S Monitor device of an ostomy system and associated method for operating a monitor device
EP3727237A1 (en) 2017-12-22 2020-10-28 Coloplast A/S Sensor assembly part and a base plate for an ostomy appliance and a device for connecting to a base plate or a sensor assembly part
EP3727222A1 (en) 2017-12-22 2020-10-28 Coloplast A/S Sensor assembly part for an ostomy appliance and a method for manufacturing a sensor assembly part
US11590015B2 (en) 2017-12-22 2023-02-28 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a method for manufacturing a sensor assembly part and a base plate
US11627891B2 (en) 2017-12-22 2023-04-18 Coloplast A/S Calibration methods for medical appliance tools
WO2019120429A1 (en) 2017-12-22 2019-06-27 Coloplast A/S Data collection schemes for an ostomy appliance and related methods
US10643446B2 (en) 2017-12-28 2020-05-05 Cerner Innovation, Inc. Utilizing artificial intelligence to detect objects or patient safety events in a patient room
US10482321B2 (en) 2017-12-29 2019-11-19 Cerner Innovation, Inc. Methods and systems for identifying the crossing of a virtual barrier
US20190214127A1 (en) * 2018-01-10 2019-07-11 International Business Machines Corporation Sub-optimal health detection and alert generation using a time series of images
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11150730B1 (en) 2019-04-30 2021-10-19 Facebook Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US10659963B1 (en) 2018-02-12 2020-05-19 True Wearables, Inc. Single use medical device apparatus and methods
US11931285B2 (en) 2018-02-20 2024-03-19 Coloplast A/S Sensor assembly part and a base plate for a medical appliance and a device for connecting to a base plate and/or a sensor assembly part
US10235998B1 (en) 2018-02-28 2019-03-19 Karen Elaine Khaleghi Health monitoring system and appliance
TWI712432B (en) * 2018-03-05 2020-12-11 鄭惇方 Bio-energy signal capture and conversion device
GB201803506D0 (en) * 2018-03-05 2018-04-18 Univ Oxford Innovation Ltd Method and apparatus for monitoring a human or animal subject
GB201803805D0 (en) * 2018-03-09 2018-04-25 Cambridge Entpr Ltd Smart Stethoscopes
US10271753B1 (en) * 2018-03-14 2019-04-30 Medical Wearable Solutions Ltd. Electrocardiographic signal monitoring device and method
US10517536B1 (en) * 2018-03-28 2019-12-31 Senstream, Inc. Biometric wearable and EDA method for acquiring biomarkers in perspiration
US20190333640A1 (en) * 2018-04-26 2019-10-31 Vektor Medical, Inc. User interface for presenting simulated anatomies of an electromagnetic source
US11259871B2 (en) 2018-04-26 2022-03-01 Vektor Medical, Inc. Identify ablation pattern for use in an ablation
US11534615B2 (en) * 2018-04-26 2022-12-27 West Affum Holdings Dac Wearable Cardioverter Defibrillator (WCD) system logging events and broadcasting state changes and system status information to external clients
WO2019207346A1 (en) * 2018-04-27 2019-10-31 Neuroanalytics Pty Ltd System and method for rehabilitation program management in post stroke subjects
CN112203593A (en) 2018-05-01 2021-01-08 因赛普特有限责任公司 Device and method for removing occlusive material from an intravascular site
US11395665B2 (en) 2018-05-01 2022-07-26 Incept, Llc Devices and methods for removing obstructive material, from an intravascular site
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
CN108543221A (en) * 2018-05-14 2018-09-18 上海掌门科技有限公司 It is a kind of for the stethoscope system of electric defibrillation, electric defibrillation method, equipment and medium
US11607523B2 (en) 2018-05-17 2023-03-21 Route 92 Medical, Inc. Aspiration catheter systems and methods of use
CN108769224A (en) * 2018-05-23 2018-11-06 厦门波耐模型设计有限责任公司 Si Qin robots Internet of things system
CA3101966A1 (en) 2018-05-29 2019-12-05 Morningside Venture Investments Limited Drug delivery methods and systems
US11631497B2 (en) 2018-05-30 2023-04-18 International Business Machines Corporation Personalized device recommendations for proactive health monitoring and management
US10869616B2 (en) 2018-06-01 2020-12-22 DePuy Synthes Products, Inc. Neural event detection
US10666067B2 (en) 2018-06-19 2020-05-26 Starkey Laboratories, Inc. Portable charging unit with accelerated charging for hearing assistance devices
US11473761B2 (en) 2018-06-21 2022-10-18 Biolite Inc. Headlamp integrated into a flexible composite headband
JP7107017B2 (en) * 2018-06-21 2022-07-27 カシオ計算機株式会社 Robot, robot control method and program
US10911013B2 (en) 2018-07-05 2021-02-02 Comcast Cable Communications, Llc Dynamic audio normalization process
US11517335B2 (en) 2018-07-06 2022-12-06 Incept, Llc Sealed neurovascular extendable catheter
CN108985366A (en) * 2018-07-06 2018-12-11 武汉兰丁医学高科技有限公司 B ultrasound image recognition algorithm and system based on convolution depth network
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US10751003B2 (en) * 2018-07-12 2020-08-25 Analog Devices Global Unlimited Company Reducing motion-related artifacts in optical measurements for vital signs monitoring
CN109087706B (en) * 2018-07-13 2022-12-02 浙江清华长三角研究院 Human health assessment method and system based on sleep big data
US11756691B2 (en) * 2018-08-01 2023-09-12 Martin Reimann Brain health comparison system
US10722128B2 (en) 2018-08-01 2020-07-28 Vision Service Plan Heart rate detection system and method
CN109146265B (en) * 2018-08-03 2021-04-27 福州大学 Three-phase unbalanced source tracing method based on dynamic programming time sequence similarity
CN109276258B (en) * 2018-08-10 2021-08-03 北京大学深圳研究生院 DTW-based blood glucose trend prediction method and system and medical equipment
EP3840642B1 (en) * 2018-08-21 2024-02-21 Eko Devices, Inc. Systems for determining a physiological or biological state or condition of a subject
WO2020041715A1 (en) * 2018-08-24 2020-02-27 Vitaltech Properties, Llc System, method, and smartwatch for fall detection, prediction, and risk assessment
WO2020047429A1 (en) 2018-08-31 2020-03-05 Ctrl-Labs Corporation Camera-guided interpretation of neuromuscular signals
SG11202102079SA (en) * 2018-09-06 2021-03-30 Nec Solution Innovators Ltd Biological information management apparatus, biological information management method, program, and recording medium
LU100922B1 (en) * 2018-09-10 2020-03-10 Hella Saturnus Slovenija D O O A system and a method for entertaining players outside of a vehicle
US11426122B2 (en) 2018-09-13 2022-08-30 The Aga Khan University Glove
US11649977B2 (en) 2018-09-14 2023-05-16 Delos Living Llc Systems and methods for air remediation
EP3853698A4 (en) 2018-09-20 2021-11-17 Facebook Technologies, LLC Neuromuscular text entry, writing and drawing in augmented reality systems
US11568984B2 (en) 2018-09-28 2023-01-31 Zoll Medical Corporation Systems and methods for device inventory management and tracking
US10870002B2 (en) 2018-10-12 2020-12-22 DePuy Synthes Products, Inc. Neuromuscular sensing device with multi-sensor array
US11423551B1 (en) 2018-10-17 2022-08-23 Rdi Technologies, Inc. Enhanced presentation methods for visualizing motion of physical structures and machinery
EP3871205A1 (en) 2018-10-25 2021-09-01 Carrier Corporation Artificial intelligence based motion detection
JP7126256B2 (en) * 2018-10-30 2022-08-26 国立研究開発法人宇宙航空研究開発機構 Abnormality diagnosis device, abnormality diagnosis method, and program
TWI697912B (en) * 2018-10-30 2020-07-01 宏碁股份有限公司 System and method for evaluating the risk of physiological status and electronic device
US10922936B2 (en) 2018-11-06 2021-02-16 Cerner Innovation, Inc. Methods and systems for detecting prohibited objects
CN109674445B (en) * 2018-11-06 2021-10-08 杭州电子科技大学 Inter-muscle coupling analysis method combining non-negative matrix factorization and complex network
US20200143657A1 (en) * 2018-11-07 2020-05-07 Patrick Humphrey Medical Alert System
CN109394187B (en) * 2018-11-08 2021-10-22 重庆医科大学 Wearable cardiovascular health monitoring system based on monomer side signal detection
US11806457B2 (en) 2018-11-16 2023-11-07 Mozarc Medical Us Llc Peritoneal dialysis adequacy meaurements
CN111195189A (en) * 2018-11-17 2020-05-26 中国科学院宁波工业技术研究院慈溪生物医学工程研究所 Gait freezing symptom rehabilitation training method and system for Parkinson patient
US10602940B1 (en) 2018-11-20 2020-03-31 Genetesis, Inc. Systems, devices, software, and methods for diagnosis of cardiac ischemia and coronary artery disease
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11806456B2 (en) 2018-12-10 2023-11-07 Mozarc Medical Us Llc Precision peritoneal dialysis therapy based on dialysis adequacy measurements
AU2019395260A1 (en) * 2018-12-13 2021-07-15 Liminal Sciences, Inc. Systems and methods for a wearable device including stimulation and monitoring components
KR20210104692A (en) * 2018-12-20 2021-08-25 유맨 센스 에이비 Apparatus and method for detecting stroke in a patient
JP7102334B2 (en) * 2018-12-27 2022-07-19 オムロンヘルスケア株式会社 Blood pressure measuring device charging connector
US11133026B2 (en) 2019-01-04 2021-09-28 International Business Machines Corporation Natural language processor for using speech to cognitively detect and analyze deviations from a baseline
WO2020148280A2 (en) * 2019-01-14 2020-07-23 Analog Devices International Unlimited Company Multi-sensor device for monitoring health
WO2020152537A1 (en) * 2019-01-27 2020-07-30 Gaurav Dubey Systems and methods for intention detection
CN109645967B (en) * 2019-01-28 2021-04-30 杭州电子科技大学 Long-term and position self-checking pulse detector and pulse detection method thereof
US11612512B2 (en) 2019-01-31 2023-03-28 Coloplast A/S Moisture detecting base plate for an ostomy appliance and a system for determining moisture propagation in a base plate and/or a sensor assembly part
RU193501U1 (en) * 2019-02-05 2019-10-30 Раиса Юрьевна Будко Device for replacing lost human functions using feedback
US11585869B2 (en) 2019-02-08 2023-02-21 Genetesis, Inc. Biomagnetic field sensor systems and methods for diagnostic evaluation of cardiac conditions
US10559307B1 (en) 2019-02-13 2020-02-11 Karen Elaine Khaleghi Impaired operator detection and interlock apparatus
US10568570B1 (en) * 2019-02-14 2020-02-25 Trungram Gyaltrul Sherpa Methods and systems for providing a preferred fitness state of a user
WO2020176503A1 (en) 2019-02-26 2020-09-03 Delos Living Llc Method and apparatus for lighting in an office environment
WO2021002893A1 (en) 2019-03-07 2021-01-07 Roar for Good Emergency button
US11751813B2 (en) 2019-03-11 2023-09-12 Celloscope Ltd. System, method and computer program product for detecting a mobile phone user's risky medical condition
US11443136B2 (en) 2019-03-20 2022-09-13 Tata Consultancy Services Limited System and method for signal pre-processing based on data driven models and data dependent model transformation
WO2020198183A1 (en) 2019-03-25 2020-10-01 Delos Living Llc Systems and methods for acoustic monitoring
US11766539B2 (en) 2019-03-29 2023-09-26 Incept, Llc Enhanced flexibility neurovascular catheter
US11908576B2 (en) 2019-03-31 2024-02-20 Emfit Oy Wearable sensor and healthcare management system using a wearable sensor
CN109966700B (en) * 2019-04-08 2020-11-24 浙江程诚文化用品有限公司 Dizzy trainer of preventing that sports dance was used
JP2022527875A (en) 2019-04-08 2022-06-07 スリープ ナンバー コーポレイション A system for sensing and controlling the bed environment
US10966643B1 (en) * 2019-06-12 2021-04-06 Fitbit, Inc. Wearable non-invasive carbon monoxide inhalation tracking
US11620389B2 (en) 2019-06-24 2023-04-04 University Of Maryland Baltimore County Method and system for reducing false positives in static source code analysis reports using machine learning and classification techniques
US11696681B2 (en) 2019-07-03 2023-07-11 Bardy Diagnostics Inc. Configurable hardware platform for physiological monitoring of a living body
US11096579B2 (en) 2019-07-03 2021-08-24 Bardy Diagnostics, Inc. System and method for remote ECG data streaming in real-time
US11116451B2 (en) 2019-07-03 2021-09-14 Bardy Diagnostics, Inc. Subcutaneous P-wave centric insertable cardiac monitor with energy harvesting capabilities
CN110169767B (en) * 2019-07-08 2021-09-21 河北大学 Retrieval method of electrocardiosignals
TWI696354B (en) 2019-07-11 2020-06-11 國立中正大學 Optical nanobiosensing system and method thereof
DE102019118965A1 (en) * 2019-07-12 2021-01-14 Workaround Gmbh Ancillary device for a sensor and / or information system and sensor and / or information system
US10735191B1 (en) 2019-07-25 2020-08-04 The Notebook, Llc Apparatus and methods for secure distributed communications and data access
CN112294270A (en) * 2019-07-30 2021-02-02 亘冠智能技术(杭州)有限公司 Health monitoring system based on RFID technology
CN112294273A (en) * 2019-08-02 2021-02-02 四川华友企业管理服务有限公司 Health monitoring system and method for gymnasium bracelet
CN110507294B (en) * 2019-08-07 2022-02-08 北京安龙脉德医学科技有限公司 First-aid system based on internet information transmission
CN110464319A (en) * 2019-08-22 2019-11-19 合肥学院 A kind of bracelet health monitoring systems
CN110464349A (en) * 2019-08-30 2019-11-19 南京邮电大学 A kind of upper extremity exercise function score method based on hidden Semi-Markov Process
US11399777B2 (en) 2019-09-27 2022-08-02 DePuy Synthes Products, Inc. Intraoperative neural monitoring system and method
EP4044906A4 (en) 2019-10-15 2023-05-24 Imperative Care, Inc. Systems and methods for multivariate stroke detection
EP4048151A4 (en) * 2019-10-23 2023-04-05 The Johns Hopkins University Offset illumination capillaroscope
US11883146B1 (en) * 2019-10-30 2024-01-30 Brigham Young University Methods and devices for selecting miniaturized impedance electrodes of miniaturized impedance sensors
EP4052478A1 (en) 2019-10-31 2022-09-07 Starkey Laboratories, Inc. Ear-worn electronic system employing cooperative operation between in-ear device and at-ear device
CN110806802A (en) * 2019-10-31 2020-02-18 维沃移动通信有限公司 Wearable device, state detection method and state detection device
AU2019101396A4 (en) * 2019-11-14 2020-01-02 Pulse Link Pty Ltd Smart Personal Monitoring Systems and Methods thereof
US20210181303A1 (en) * 2019-12-16 2021-06-17 Semiconductor Components Industries, Llc Calibrating array antennas based on signal energy distribution as a function of angle
WO2021127004A1 (en) 2019-12-18 2021-06-24 Imperative Care, Inc. Methods and systems for treating venous thromboembolic disease
US11457936B2 (en) 2019-12-18 2022-10-04 Imperative Care, Inc. Catheter system for treating thromboembolic disease
US11553935B2 (en) 2019-12-18 2023-01-17 Imperative Care, Inc. Sterile field clot capture module for use in thrombectomy system
EP4078617A1 (en) 2019-12-20 2022-10-26 Tc1 Llc Systems and methods for personalized cardiovascular analyses
US11416874B1 (en) * 2019-12-26 2022-08-16 StratoKey Pty Ltd. Compliance management system
CN111131507A (en) * 2019-12-31 2020-05-08 秒针信息技术有限公司 Cluster type audio processing method and system
EP4085654A1 (en) 2019-12-31 2022-11-09 Starkey Laboratories, Inc. Methods and systems for assessing insertion position of an in-ear assembly of a hearing instrument
CN111214236A (en) * 2020-01-14 2020-06-02 珠海格力电器股份有限公司 Monitoring method, device, equipment and storage medium
US11373317B1 (en) 2020-01-24 2022-06-28 Rdi Technologies, Inc. Measuring the speed of rotation or reciprocation of a mechanical component using one or more cameras
US11587562B2 (en) * 2020-01-27 2023-02-21 John Lemme Conversational artificial intelligence driven methods and system for delivering personalized therapy and training sessions
KR102563372B1 (en) 2020-02-12 2023-08-03 아이리듬 테크놀로지스, 아이엔씨 Method for Inferring Patient Physiological Characteristics Using Non-Invasive Cardiac Monitors and Recorded Cardiac Data
CN111281358A (en) * 2020-02-24 2020-06-16 湘潭大学 Real-time monitoring system of baby robot
JP2021132729A (en) * 2020-02-25 2021-09-13 株式会社壮健 Biological information detector
CA3173752A1 (en) 2020-03-06 2021-09-10 The Access Technologies A smart wristband for multiparameter physiological monitoring
WO2021183444A1 (en) 2020-03-10 2021-09-16 Imperative Care, Inc. Enhanced flexibility neurovascular catheter
US11857311B2 (en) * 2020-03-17 2024-01-02 Prime Dragon Limited Multi-purpose video monitoring camera
US11947722B2 (en) * 2020-03-24 2024-04-02 Arm Limited Devices and headsets
CN111476135B (en) * 2020-03-31 2023-07-14 旺捷智能感知股份有限公司 Human body abnormal activity recognition system using wearable electronic equipment
TWI725803B (en) * 2020-03-31 2021-04-21 林閔瑩 System for recognizing abnormal activity of human body using wearable electronic device and mixed reality technology
US20210308004A1 (en) * 2020-04-06 2021-10-07 Physio-Control, Inc. Determining chest compression depth using impedance
US20210364599A1 (en) * 2020-05-20 2021-11-25 Infineon Technologies Ag Radar receiving system and method for compensating a phase error between radar receiving circuits
US11282213B1 (en) 2020-06-24 2022-03-22 Rdi Technologies, Inc. Enhanced analysis techniques using composite frequency spectrum data
WO2021262318A1 (en) 2020-06-25 2021-12-30 Starkey Laboratories, Inc. User-actuatable touch control for an ear-worn electronic device
US11602283B2 (en) 2020-07-17 2023-03-14 Khai S. CHANG Patient monitoring system for congestive heart failure detection and related methods
US11173315B1 (en) 2020-07-24 2021-11-16 Defibrio AS Mobile defibrillator
US20230300542A1 (en) 2020-07-31 2023-09-21 Starkey Laboratories, Inc. Sensor based ear-worn electronic device fit assessment
US11456080B1 (en) 2020-08-05 2022-09-27 Vignet Incorporated Adjusting disease data collection to provide high-quality health data to meet needs of different communities
US11504011B1 (en) 2020-08-05 2022-11-22 Vignet Incorporated Early detection and prevention of infectious disease transmission using location data and geofencing
US11056242B1 (en) 2020-08-05 2021-07-06 Vignet Incorporated Predictive analysis and interventions to limit disease exposure
US11127506B1 (en) 2020-08-05 2021-09-21 Vignet Incorporated Digital health tools to predict and prevent disease transmission
CN116322497A (en) 2020-08-06 2023-06-23 意锐瑟科技公司 Viscous physiological monitoring device
KR20230047456A (en) 2020-08-06 2023-04-07 아이리듬 테크놀로지스, 아이엔씨 Electrical Components for Physiological Monitoring Devices
US20220044771A1 (en) * 2020-08-07 2022-02-10 HCL Technologies Italy S.p.A. Method, system, and device for providing assistance to patients with communication and memory impairment
CN111950450A (en) * 2020-08-11 2020-11-17 李国安 Intelligent medical care management system based on block chain and image processing
US11207497B1 (en) 2020-08-11 2021-12-28 Imperative Care, Inc. Catheter with enhanced tensile strength
CN111933272B (en) * 2020-08-11 2021-06-04 西康软件股份有限公司 Intelligent medical care management system based on block chain and Internet of things
WO2022067182A1 (en) * 2020-09-25 2022-03-31 Cornell University System implementing generative adversarial network adapted to prediction in behavioral and/or physiological contexts
US11322182B1 (en) 2020-09-28 2022-05-03 Rdi Technologies, Inc. Enhanced visualization techniques using reconstructed time waveforms
WO2022066307A2 (en) 2020-09-28 2022-03-31 Starkey Laboratories, Inc. Temperature sensor based ear-worn electronic device fit assessment
EP4222574A1 (en) * 2020-09-30 2023-08-09 Becton, Dickinson and Company System, method, and computer program product for vascular access device placement
US20220125382A1 (en) * 2020-10-28 2022-04-28 Impact Ip, Llc Processing generated sensor data associated with ambulation during deep vein thrombosis (dvt) device usage
WO2022103954A1 (en) * 2020-11-16 2022-05-19 Starkey Laboratories, Inc. Passive safety monitoring with ear-wearable devices
US20240114282A1 (en) 2020-12-15 2024-04-04 Starkey Laboratories Inc. Ear-worn electronic device incorporating skin contact and physiologic sensors
CN112861098B (en) * 2021-01-21 2022-03-22 南昌大学 Mobile phone identity verification method based on DTW algorithm and walking gait data
US11586524B1 (en) 2021-04-16 2023-02-21 Vignet Incorporated Assisting researchers to identify opportunities for new sub-studies in digital health research and decentralized clinical trials
US11789837B1 (en) 2021-02-03 2023-10-17 Vignet Incorporated Adaptive data collection in clinical trials to increase the likelihood of on-time completion of a trial
US11281553B1 (en) 2021-04-16 2022-03-22 Vignet Incorporated Digital systems for enrolling participants in health research and decentralized clinical trials
WO2022170150A1 (en) * 2021-02-05 2022-08-11 The Regents Of The University Of California Diagnosing and tracking stroke with sensor-based assessments of neurological deficits
US11633112B2 (en) * 2021-03-08 2023-04-25 Medtronic, Inc. Automatic alert control for acute health event
US11660500B2 (en) 2021-03-09 2023-05-30 Skillteck Inc. System and method for a sports-coaching platform
EP4307994A1 (en) * 2021-03-18 2024-01-24 Washington University Hemodilution detector
US20220319694A1 (en) * 2021-04-02 2022-10-06 Koko It, Llc Systems and methods for telemetric health monitoring utilizing a data and communications hub
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
ES2926354A1 (en) * 2021-04-14 2022-10-25 Valero Jose Gimeno SYSTEM AND A REMOTE CERTIFICATION METHOD OF ANALYSIS RESULTS OF BIOLOGICAL SAMPLES THROUGH ARTIFICIAL VISION (Machine-translation by Google Translate, not legally binding)
WO2022231589A1 (en) * 2021-04-29 2022-11-03 Hewlett-Packard Development Company, L.P. Predicting mental state characteristics of users of wearable devices
WO2022231590A1 (en) * 2021-04-29 2022-11-03 Hewlett-Packard Development Company, L.P. Predicting mental state characteristics of users of wearable devices
US11593428B2 (en) 2021-07-08 2023-02-28 Bank Of America Corporation System and method for detecting errors in a task workflow from a video stream
WO2023009828A1 (en) * 2021-07-29 2023-02-02 Trustees Of Dartmouth College Flexible piezoelectric array for wearable blood pressure sensing
US11399762B1 (en) 2021-08-05 2022-08-02 Starcat LLC Modular electroencephalograph (EEG) system
US11850344B2 (en) 2021-08-11 2023-12-26 Mozarc Medical Us Llc Gas bubble sensor
US11400299B1 (en) 2021-09-14 2022-08-02 Rainbow Medical Ltd. Flexible antenna for stimulator
EP4162976A1 (en) * 2021-10-06 2023-04-12 BIOTRONIK SE & Co. KG System comprising a plurality implantable medical devices and a remote computer facility
CN113925476A (en) * 2021-10-18 2022-01-14 谢俊 Intelligent system for detecting human heart rate and detection method thereof
US11944733B2 (en) 2021-11-18 2024-04-02 Mozarc Medical Us Llc Sodium and bicarbonate control
US11901083B1 (en) 2021-11-30 2024-02-13 Vignet Incorporated Using genetic and phenotypic data sets for drug discovery clinical trials
US11705230B1 (en) 2021-11-30 2023-07-18 Vignet Incorporated Assessing health risks using genetic, epigenetic, and phenotypic data sources
US11888673B2 (en) * 2021-12-02 2024-01-30 Vehere Interactive Private Limited System and computer-implemented method for moving object detection and location determination using delay rate spectrum
WO2023133449A1 (en) * 2022-01-05 2023-07-13 Ohio State Innovation Foundation Automated systems for diagnosis and monitoring of stroke and related methods
US11944508B1 (en) 2022-01-13 2024-04-02 Altair Innovations, LLC Augmented reality surgical assistance system
KR20230113165A (en) * 2022-01-21 2023-07-28 주식회사 테디메디 Sleep inducing system using photobiomodulation by transcranial near-infrared Light irradiation
US11656926B1 (en) 2022-01-26 2023-05-23 Bank Of America Corporation Systems and methods for automatically applying configuration changes to computing clusters
US11799971B2 (en) 2022-02-17 2023-10-24 Bank Of America Corporation Systems and methods for session migration between devices
CN114298616B (en) * 2022-03-11 2022-05-06 西南石油大学 Equipment health state evaluation method and device and computer equipment
WO2023182994A1 (en) * 2022-03-24 2023-09-28 Organic Robotics Corporation Flexible transducers for biometric data acquisition
WO2023239418A1 (en) 2022-06-10 2023-12-14 Playback Health Inc. Multi-party controlled transient user credentialing for interaction with patient health data
USD1008841S1 (en) 2022-07-08 2023-12-26 Venus by Maria Tash, Inc. Jewelry item with faceted spikes
USD1009683S1 (en) 2022-07-08 2024-01-02 Venus by Maria Tash, Inc. Jewelry item with spike
TWI819720B (en) * 2022-07-26 2023-10-21 和碩聯合科技股份有限公司 Wearable member and manufacturing method thereof
CN115036034B (en) * 2022-08-11 2022-11-08 之江实验室 Similar patient identification method and system based on patient characterization map
CN115063752B (en) * 2022-08-15 2022-11-18 杭州中芯微电子有限公司 Video tracking early warning method and system based on UWB positioning

Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129125A (en) * 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4205672A (en) * 1977-11-28 1980-06-03 Karel Dvorak Conductivity sensing device for diapers
US4566461A (en) * 1983-02-15 1986-01-28 Michael Lubell Health fitness monitor
US5479932A (en) * 1993-08-16 1996-01-02 Higgins; Joseph Infant health monitoring system
US5573012A (en) * 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US5964720A (en) * 1996-11-29 1999-10-12 Adaptivity Devices Ltd. Method and system for monitoring the physiological condition of a patient
US6073046A (en) * 1998-04-27 2000-06-06 Patel; Bharat Heart monitor system
US20010044588A1 (en) * 1996-02-22 2001-11-22 Mault James R. Monitoring system
US6356203B1 (en) * 2000-04-04 2002-03-12 Ilife Systems, Inc. Apparatus and method for detecting a rotational movement of a body
US20020151810A1 (en) * 2001-04-16 2002-10-17 Acumen, Inc. Wrist-based fitness monitoring devices
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6687523B1 (en) * 1997-09-22 2004-02-03 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure for monitoring vital signs of infants
US6847892B2 (en) * 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US20060047217A1 (en) * 2004-08-06 2006-03-02 Mohsen Mirtalebi Method and Apparatus for Infant Sleep Apnea Monitoring and Data Analysis
US7037272B2 (en) * 2004-07-26 2006-05-02 Ohlan Silpachai Infant respiratory monitoring system
US20060097879A1 (en) * 2004-10-26 2006-05-11 Lippincott Kathy J SIDS and apnea monitoring system
US7215991B2 (en) * 1993-09-04 2007-05-08 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
WO2007051889A1 (en) * 2005-11-04 2007-05-10 Nokia Corporation Apparatus for detecting body condition
US20090069724A1 (en) * 2007-08-15 2009-03-12 Otto Chris A Wearable Health Monitoring Device and Methods for Step Detection
US7616110B2 (en) * 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
US8421636B2 (en) * 2003-04-30 2013-04-16 Daniel R. Collette Patient monitoring system
US20140121473A1 (en) * 2012-10-31 2014-05-01 Matt Banet Vital sign monitoring system featuring electronic diaper
US8752106B2 (en) * 2004-09-23 2014-06-10 Smartvue Corporation Mesh networked video and sensor surveillance system and method for wireless mesh networked sensors

Family Cites Families (261)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2425231A1 (en) * 1978-05-12 1979-12-07 Cm Ind PROCESS AND DEVICE FOR PROCESSING AND DISPLAYING A READING SIGNAL OF AN ELECTROCARDIOGRAM RECORDING READ AT A SPEED HIGHER THAN THE RECORDING SPEED
US4258719A (en) * 1978-12-04 1981-03-31 Hughes Aircraft Company Heart rate measurement system
US4234926A (en) 1978-12-05 1980-11-18 Sealand Service Inc. System & method for monitoring & diagnosing faults in environmentally controlled containers, such system and method being especially adapted for remote computer controlled monitoring of numerous transportable containers over existing on-site power wiring
US4320767A (en) * 1980-04-07 1982-03-23 Villa Real Antony Euclid C Pocket-size electronic cuffless blood pressure and pulse rate calculator with optional temperature indicator, timer and memory
JPS5927566B2 (en) 1980-07-02 1984-07-06 日本光電工業株式会社 electromagnetic blood flow meter
USRE34015E (en) 1981-05-15 1992-08-04 The Children's Medical Center Corporation Brain electrical activity mapping
IT1144647B (en) 1981-09-02 1986-10-29 Remco Italia PERIODIC AND SYNCHRONIZABLE ELECTRIC SIGNAL DISPLAY DEVICE
US4420000A (en) 1981-09-28 1983-12-13 Camino Laboratories, Inc. Method and apparatus for measuring heartbeat rate
FI73878C (en) * 1983-06-10 1987-12-10 Instrumentarium Oy FOERFARANDE FOER VIDAREUTVECKLING AV NERVMUSKELANSLUTNINGS MAETNING.
US5135479A (en) * 1983-08-18 1992-08-04 Drug Delivery Systems, Inc. Programmable control and mounting system for transdermal drug applicator
US4557270A (en) 1983-08-23 1985-12-10 New York University Electroencephalographic system for intra-operative open-heart surgery
US4679144A (en) 1984-08-21 1987-07-07 Q-Med, Inc. Cardiac signal real time monitor and method of analysis
US4862359A (en) 1984-08-31 1989-08-29 Bio-Logic Systems Corporation Topographical mapping of brain functionality from neuropsychological test results
US4656319A (en) * 1985-05-21 1987-04-07 Lifeline Systems, Inc. Alarm system tester
US5331969A (en) 1985-07-30 1994-07-26 Swinburne Limited Equipment for testing or measuring brain activity
EP0233258A1 (en) * 1985-08-16 1987-08-26 BROWN, David Electromyographic repetitive strain injury monitor
US4819648A (en) * 1985-10-28 1989-04-11 The Johns Hopkins University Non-invasive electromagnetic technique for monitoring time-trends of physiological changes at a particular location in the brain
FR2593951B1 (en) 1986-02-03 1989-01-06 Bertin & Cie METHOD AND SYSTEM FOR REMOTE CONTROL OF AT LEAST ONE INFUSION STATION
US5365426A (en) 1987-03-13 1994-11-15 The University Of Maryland Advanced signal processing methodology for the detection, localization and quantification of acute myocardial ischemia
CS272057B1 (en) 1987-03-27 1991-01-15 Jan Doc Mudr Csc Penaz Blood pressure automatic non-invasive meter
US4907597A (en) * 1987-10-09 1990-03-13 Biometrak Corporation Cerebral biopotential analysis system and method
US4880013A (en) 1988-03-24 1989-11-14 Chio Shiu Shin Method and apparatus for determining blood pressure and cardiovascular condition
US4928690A (en) * 1988-04-25 1990-05-29 Lifecor, Inc. Portable device for sensing cardiac function and automatically delivering electrical therapy
US5161529A (en) 1988-12-02 1992-11-10 Intermedics, Inc. Cardiac pacemaker with capture verification
US4922229A (en) * 1989-05-11 1990-05-01 Gary Guenst System for retrieving and preventing the loss or theft of keys
US4964411A (en) 1989-07-13 1990-10-23 Empi, Inc. Evoked EMG signal processing
US5929782A (en) * 1990-02-21 1999-07-27 Stark; John G. Communication system for an instrumented orthopedic restraining device and method therefor
EP0467853B1 (en) * 1990-07-18 1996-01-10 AVL Medical Instruments AG Device and method for the measurement of blood pressure
US5140990A (en) 1990-09-06 1992-08-25 Spacelabs, Inc. Method of measuring blood pressure with a photoplethysmograph
US5271411A (en) 1990-09-21 1993-12-21 Colin Electronics Co., Ltd. Method and apparatus for ECG signal analysis and cardiac arrhythmia detection
US6246894B1 (en) * 1993-02-01 2001-06-12 In-Line Diagnostics Corporation System and method for measuring blood urea nitrogen, blood osmolarity, plasma free hemoglobin and tissue water content
US5090418A (en) * 1990-11-09 1992-02-25 Del Mar Avionics Method and apparatus for screening electrocardiographic (ECG) data
US5353793A (en) * 1991-11-25 1994-10-11 Oishi-Kogyo Company Sensor apparatus
US5370126A (en) 1992-01-22 1994-12-06 Neurotech, Inc. Method and apparatus for three-dimensional mapping of evoked potentials
US5458620A (en) 1992-02-20 1995-10-17 Angeion Corporation Cardiac arrhythmia detection using interdependent multiple parameter settings
US5544649A (en) 1992-03-25 1996-08-13 Cardiomedix, Inc. Ambulatory patient health monitoring techniques utilizing interactive visual communication
US5441047A (en) * 1992-03-25 1995-08-15 David; Daniel Ambulatory patient health monitoring techniques utilizing interactive visual communication
US5375610A (en) 1992-04-28 1994-12-27 University Of New Hampshire Apparatus for the functional assessment of human activity
US5285793A (en) * 1992-05-21 1994-02-15 Regents Of The Univeristy Of Minnesota Noninvasive detection of rejection in heart transplant patients
US5287859A (en) * 1992-09-25 1994-02-22 New York University Electroencephalograph instrument for mass screening
US5497781A (en) * 1992-10-30 1996-03-12 Chen; Yunquan Recording biological signals using Hilbert transforms
US5438607A (en) 1992-11-25 1995-08-01 U.S. Monitors, Ltd. Programmable monitoring system and method
FR2699672B1 (en) 1992-12-22 1995-02-03 Jean Decupper Method and device for controlling electromagnetic radiation emission devices.
CN1273077C (en) * 1993-01-07 2006-09-06 精工爱普生株式会社 Pulse wave analyser and diagnostic device using the same
DE69413585T2 (en) 1993-03-31 1999-04-29 Siemens Medical Systems Inc Apparatus and method for providing dual output signals in a telemetry transmitter
US5361775A (en) 1993-04-06 1994-11-08 Mega Elektroniikka Oy Pl. Method for determining muscle endurance and sensitivity to fatigue
SE9302432D0 (en) * 1993-07-16 1993-07-16 Siemens-Elema Ab DEVICE FOR FILTERING ECG SIGNALS
US5368039A (en) 1993-07-26 1994-11-29 Moses; John A. Method and apparatus for determining blood pressure
US5435316A (en) 1993-10-07 1995-07-25 Medtronic, Inc. Low amplitude pacing artifact detection amplifier circuit with driven right leg for filtering high frequency noise caused by multiple noise sources
US5743268A (en) * 1993-10-25 1998-04-28 Kabal; John Noninvasive hemodynamic analyzer alterable to a continuous invasive hemodynamic monitor
US5584298A (en) 1993-10-25 1996-12-17 Kabal; John Noninvasive hemodynamic analyzer alterable to a continuous invasive hemodynamic monitor
US5505208A (en) * 1993-12-10 1996-04-09 Toomin Research Group Method for determining muscle dysfunction
US6175308B1 (en) * 1993-12-16 2001-01-16 Actall Corporation Personal duress security system
US5708417A (en) * 1993-12-16 1998-01-13 Phone Alert Corp. Monitoring system for remote units
US6206829B1 (en) * 1996-07-12 2001-03-27 First Opinion Corporation Computerized medical diagnostic and treatment advice system including network access
US5544661A (en) 1994-01-13 1996-08-13 Charles L. Davis Real time ambulatory patient monitor
US5623939A (en) * 1994-05-19 1997-04-29 Board Of Regents, University Of Texas System Method and apparatus for analyzing uterine electrical activity from surface measurements for obstetrical diagnosis
US5546953A (en) 1994-05-19 1996-08-20 Board Of Regents, The University Of Texas System Method and apparatus for the recording and analysis of uterine electrical activity from the abdominal surface
US5776073A (en) 1994-05-19 1998-07-07 Board Of Regents, University Of Texas System Method and apparatus for analyzing uterine electrical activity from surface measurements for obstetrical diagnosis
US5652570A (en) 1994-05-19 1997-07-29 Lepkofker; Robert Individual location system
US6230056B1 (en) * 1994-05-31 2001-05-08 Galvani, Ltd. Method and apparatus for preventing clotting during a trial fibrillation
US5513651A (en) * 1994-08-17 1996-05-07 Cusimano; Maryrose Integrated movement analyzing system
US5462065A (en) 1994-08-17 1995-10-31 Cusimano; Maryrose Integrated movement analyziing system
US5633910A (en) * 1994-09-13 1997-05-27 Cohen; Kopel H. Outpatient monitoring system
US6014626A (en) * 1994-09-13 2000-01-11 Cohen; Kopel H. Patient monitoring system including speech recognition capability
US6038469A (en) * 1994-10-07 2000-03-14 Ortivus Ab Myocardial ischemia and infarction analysis and monitoring method and apparatus
US5579001A (en) 1994-10-20 1996-11-26 Hewlett-Packard Co. Paging-based backchannel in a medical telemetry system
US5579775A (en) 1994-10-20 1996-12-03 Hewlett-Packard Company Dynamic control of a patient monitoring system
DE4444144A1 (en) 1994-12-12 1996-06-13 Pacesetter Ab Pacemaker with improved detection of electrical signals
US7937461B2 (en) 2000-11-09 2011-05-03 Intel-Ge Care Innovations Llc Method for controlling a daily living activity monitoring system from a remote location
US5692215A (en) 1994-12-23 1997-11-25 Gerotech, Inc. System for generating periodic reports, generating trend analysis, and intervention in accordance with trend analysis from a detection subsystem for monitoring daily living activity
US6515593B1 (en) * 1995-02-15 2003-02-04 Izex Technologies, Inc. Communication system for an instrumented orthopedic restraining device and method therefor
US5551435A (en) 1995-05-26 1996-09-03 Sramek; Bohumir Method and system for managing hemodynamic state and oxygen transport
US5662118A (en) 1995-06-01 1997-09-02 Skubick; Daniel Lewis System for diagnosing musculoskeletal disorders
US6070140A (en) * 1995-06-05 2000-05-30 Tran; Bao Q. Speech recognizer
US5710551A (en) * 1995-07-26 1998-01-20 Ridgeway; Donald G. Self-medication monitoring system
US5720771A (en) * 1995-08-02 1998-02-24 Pacesetter, Inc. Method and apparatus for monitoring physiological data from an implantable medical device
US5671741A (en) 1995-08-04 1997-09-30 The Regents Of The University Of California Magnetic resonance imaging technique for tissue characterization
US5709215A (en) * 1995-09-06 1998-01-20 Angeion Corporation R-wave detection method for implantable cardioverter defibrillators
US5738105A (en) * 1995-10-24 1998-04-14 Angeion Corporation Method and apparatus for sensing R-waves using both near field and far field sensing simultaneously
US5785666A (en) 1995-10-31 1998-07-28 Ergonomic Technologies Corporation Portable electronic data collection apparatus for monitoring musculoskeletal stresses
US5738104A (en) * 1995-11-08 1998-04-14 Salutron, Inc. EKG based heart rate monitor
US5722420A (en) * 1995-11-28 1998-03-03 National Science Council EMG biofeedback traction modality for rehabilitation
EP0809965B1 (en) * 1995-12-18 2005-01-26 Seiko Epson Corporation Health care device and exercise supporting device
US5733230A (en) * 1996-02-21 1998-03-31 Sawchuck; Diane J. Perineometer for domestic use in prevention of urinary incontinence and method of using the same
US5685316A (en) * 1996-04-08 1997-11-11 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
DE19614719C2 (en) 1996-04-15 1998-02-19 Aesculap Ag & Co Kg Method and device for monitoring and controlling the material flow in a hospital
US6050940A (en) * 1996-06-17 2000-04-18 Cybernet Systems Corporation General-purpose medical instrumentation
US5775330A (en) 1996-07-22 1998-07-07 Battelle Memorial Institute Neurometric assessment of intraoperative anesthetic
US5987519A (en) 1996-09-20 1999-11-16 Georgia Tech Research Corporation Telemedicine system using voice video and data encapsulation and de-encapsulation for communicating medical information between central monitoring stations and remote patient monitoring stations
US5865755A (en) * 1996-10-11 1999-02-02 Dxtek, Inc. Method and apparatus for non-invasive, cuffless, continuous blood pressure determination
US6364834B1 (en) * 1996-11-13 2002-04-02 Criticare Systems, Inc. Method and system for remotely monitoring multiple medical parameters in an integrated medical monitoring system
US5785960A (en) 1997-03-19 1998-07-28 Elizabeth Arden Co., Division Of Conopco, Inc. Method and system for customizing dermatological foundation products
US6004312A (en) 1997-04-15 1999-12-21 Paraspinal Diagnostic Corporation Computerized EMG diagnostic system
US6002957A (en) 1997-04-15 1999-12-14 Paraspinal Diagnostic Corporation EMG electrode array support belt
US6047202A (en) * 1997-04-15 2000-04-04 Paraspinal Diagnostic Corporation EMG electrode
US5788643A (en) 1997-04-22 1998-08-04 Zymed Medical Instrumentation, Inc. Process for monitoring patients with chronic congestive heart failure
US6032035A (en) * 1997-05-21 2000-02-29 Elcombe Systems Limited Emergency response system
US6010454A (en) * 1997-05-29 2000-01-04 Aquintel, Inc. Fluid and electrolyte balance monitoring system for surgical and critically ill patients
US5976083A (en) * 1997-07-30 1999-11-02 Living Systems, Inc. Portable aerobic fitness monitor for walking and running
US6052619A (en) * 1997-08-07 2000-04-18 New York University Brain function scan system
US5935077A (en) 1997-08-14 1999-08-10 Ogle; John Seldon Noninvasive blood flow sensor using magnetic field parallel to skin
US5891042A (en) * 1997-09-09 1999-04-06 Acumen, Inc. Fitness monitoring device having an electronic pedometer and a wireless heart rate monitor
US6063051A (en) * 1997-11-06 2000-05-16 Aquintel, Inc. Photometry system for analyzing fluids
US5967975A (en) 1997-11-13 1999-10-19 Ridgeway; Donald G. Home health parameter monitoring system
US6056671A (en) * 1997-12-19 2000-05-02 Marmer; Keith S. Functional capacity assessment system and method
US20060105357A1 (en) * 1998-02-18 2006-05-18 Myomics, Inc. Tissue sensor and uses thereof
US6299583B1 (en) 1998-03-17 2001-10-09 Cardiox Corporation Monitoring total circulating blood volume and cardiac output
US6013007A (en) * 1998-03-26 2000-01-11 Liquid Spark, Llc Athlete's GPS-based performance monitor
US6579231B1 (en) * 1998-03-27 2003-06-17 Mci Communications Corporation Personal medical monitoring unit and system
US6171237B1 (en) * 1998-03-30 2001-01-09 Boaz Avitall Remote health monitoring system
DE69910007T2 (en) * 1998-05-13 2004-04-22 Cygnus, Inc., Redwood City DEVICE FOR PREDICTING PHYSIOLOGICAL MEASUREMENTS
US6228034B1 (en) * 1998-07-20 2001-05-08 Tensys Medical, Inc. Apparatus and method for non-invasively monitoring a subjects arterial blood pressure
US6176831B1 (en) * 1998-07-20 2001-01-23 Tensys Medical, Inc. Apparatus and method for non-invasively monitoring a subject's arterial blood pressure
JP2002522103A (en) 1998-08-07 2002-07-23 インフィニット バイオメディカル テクノロジーズ インコーポレイテッド Method for detecting, indicating and operating implantable myocardial ischemia
US6745062B1 (en) 1998-10-05 2004-06-01 Advanced Imaging Systems, Inc. Emg electrode apparatus and positioning system
US6160478A (en) 1998-10-27 2000-12-12 Sarcos Lc Wireless health monitoring system
US6842877B2 (en) * 1998-12-18 2005-01-11 Tangis Corporation Contextual responses based on automated learning techniques
US6615074B2 (en) 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
US6398727B1 (en) 1998-12-23 2002-06-04 Baxter International Inc. Method and apparatus for providing patient care
US6473640B1 (en) 1999-01-25 2002-10-29 Jay Erlebacher Implantable device and method for long-term detection and monitoring of congestive heart failure
US6076011A (en) * 1999-02-02 2000-06-13 J&J Engineering Electromyographic feedback monitor system
IL128815A0 (en) 1999-03-03 2000-01-31 S L P Ltd A nocturnal muscle activity monitoring system
US6416480B1 (en) 1999-03-29 2002-07-09 Valeriy Nenov Method and apparatus for automated acquisition of the glasgow coma score (AGCS)
US6336900B1 (en) * 1999-04-12 2002-01-08 Agilent Technologies, Inc. Home hub for reporting patient health parameters
US6223743B1 (en) * 1999-05-18 2001-05-01 Melvin L. Prueitt Solar power generation and energy storage system
JP4571317B2 (en) 1999-06-01 2010-10-27 マサチューセッツ インスティテュート オブ テクノロジー Pressureless continuous blood pressure monitoring device
US6804656B1 (en) 1999-06-23 2004-10-12 Visicu, Inc. System and method for providing continuous, expert network critical care services from a remote location(s)
US6471655B1 (en) * 1999-06-29 2002-10-29 Vitalwave Corporation Method and apparatus for the noninvasive determination of arterial blood pressure
US6287252B1 (en) 1999-06-30 2001-09-11 Monitrak Patient monitor
US6997852B2 (en) * 1999-07-08 2006-02-14 Icon Ip, Inc. Methods and systems for controlling an exercise apparatus using a portable remote device
US6676600B1 (en) * 1999-09-03 2004-01-13 Tensys Medical, Inc. Smart physiologic parameter sensor and method
US6492904B2 (en) * 1999-09-27 2002-12-10 Time Domain Corporation Method and system for coordinating timing among ultrawideband transmissions
US6832251B1 (en) 1999-10-06 2004-12-14 Sensoria Corporation Method and apparatus for distributed signal processing among internetworked wireless integrated network sensors (WINS)
US6571200B1 (en) * 1999-10-08 2003-05-27 Healthetech, Inc. Monitoring caloric expenditure resulting from body activity
US6406426B1 (en) 1999-11-03 2002-06-18 Criticare Systems Medical monitoring and alert system for use with therapeutic devices
US6280393B1 (en) 1999-12-02 2001-08-28 Thuris Corporation Method and apparatus for assessing susceptibility to stroke
US6612984B1 (en) 1999-12-03 2003-09-02 Kerr, Ii Robert A. System and method for collecting and transmitting medical data
US6280395B1 (en) 2000-01-19 2001-08-28 Mpr Health Systems, Inc. System and method for determining muscle dysfunction
US6816266B2 (en) 2000-02-08 2004-11-09 Deepak Varshneya Fiber optic interferometric vital sign monitor for use in magnetic resonance imaging, confined care facilities and in-hospital
US6440067B1 (en) 2000-02-28 2002-08-27 Altec, Inc. System and method for remotely monitoring functional activities
US8052600B2 (en) 2000-02-28 2011-11-08 Alcatel Lucent Method and system for non-invasive measurement of prescribed characteristics of a subject
US6556860B1 (en) * 2000-03-15 2003-04-29 The Regents Of The University Of California System and method for developing a database of body surface ECG flutter wave data maps for classification of atrial flutter
US6615075B2 (en) 2000-03-15 2003-09-02 The Regents Of The University Of California QRST subtraction using an adaptive template for analysis of TU wave obscured atrial activity
WO2001067954A1 (en) 2000-03-15 2001-09-20 Cardiac Focus, Inc. Non-invasive localization and treatment of focal atrial fibrillation
US6554774B1 (en) * 2000-03-23 2003-04-29 Tensys Medical, Inc. Method and apparatus for assessing hemodynamic properties within the circulatory system of a living subject
US6871211B2 (en) * 2000-03-28 2005-03-22 Ge Medical Systems Information Technologies, Inc. Intranet-based medical data distribution system
AU5359901A (en) 2000-04-17 2001-10-30 Vivometrics Inc Systems and methods for ambulatory monitoring of physiological signs
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US6487442B1 (en) 2000-04-28 2002-11-26 Nicholas Wood Detection of abnormal and induction of normal heat rate variability
US6533729B1 (en) * 2000-05-10 2003-03-18 Motorola Inc. Optical noninvasive blood pressure sensor and method
US6475153B1 (en) 2000-05-10 2002-11-05 Motorola Inc. Method for obtaining blood pressure data from optical sensor
EP1404213B1 (en) * 2000-05-19 2011-03-23 Welch Allyn Protocol Inc Patient monitoring system
JP2001344352A (en) * 2000-05-31 2001-12-14 Toshiba Corp Life assisting device, life assisting method and advertisement information providing method
AU6501201A (en) * 2000-06-01 2001-12-11 Science Applic Int Corp Systems and methods for monitoring health and delivering drugs transdermally
US7278734B2 (en) 2000-06-02 2007-10-09 Oakley, Inc. Wireless interactive headset
US6720984B1 (en) * 2000-06-13 2004-04-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Characterization of bioelectric potentials
US6605038B1 (en) 2000-06-16 2003-08-12 Bodymedia, Inc. System for monitoring health, wellness and fitness
US6747561B1 (en) 2000-06-20 2004-06-08 Med-Datanet, Llc Bodily worn device for digital storage and retrieval of medical records and personal identification
IL137045A0 (en) * 2000-06-27 2001-06-14 Gorenberg Nora Viviana A non-invasive method and apparatus for measuring the mechanical performance of the heart
US6961285B2 (en) 2000-07-07 2005-11-01 Ddms Holdings L.L.C. Drug delivery management system
US6705990B1 (en) * 2000-07-25 2004-03-16 Tensys Medical, Inc. Method and apparatus for monitoring physiologic parameters of a living subject
US6368283B1 (en) * 2000-09-08 2002-04-09 Institut De Recherches Cliniques De Montreal Method and apparatus for estimating systolic and mean pulmonary artery pressures of a patient
US6882128B1 (en) * 2000-09-27 2005-04-19 Science Applications International Corporation Method and system for energy reclamation and reuse
SG94349A1 (en) 2000-10-09 2003-02-18 Healthstats Int Pte Ltd Method and device for monitoring blood pressure
US6918879B2 (en) * 2000-10-09 2005-07-19 Healthstats International Pte. Ltd. Method and device for monitoring blood pressure
US7011410B2 (en) * 2000-11-22 2006-03-14 Eyetect, L.L.C. Method and apparatus for monitoring eye tremor
US6445299B1 (en) 2001-01-29 2002-09-03 Antonio Rojas, Jr. Retrofit for patient call system and method therefor
US6660042B1 (en) 2001-02-02 2003-12-09 Rutgers, The State University Of New Jersey Methods of biomimetic finger control by filtering of distributed forelimib pressures
US6834436B2 (en) 2001-02-23 2004-12-28 Microstrain, Inc. Posture and body movement measuring system
US7315767B2 (en) * 2001-03-06 2008-01-01 Solianis Holding Ag Impedance spectroscopy based systems and methods
US6678549B2 (en) * 2001-03-26 2004-01-13 Cusimano Maryrose Combined physiological monitoring system
US6475161B2 (en) * 2001-03-29 2002-11-05 The Mclean Hospital Corporation Methods for diagnosing Alzheimer's disease and other forms of dementia
US6595929B2 (en) * 2001-03-30 2003-07-22 Bodymedia, Inc. System for monitoring health, wellness and fitness having a method and apparatus for improved measurement of heat flow
US6907288B2 (en) 2001-04-10 2005-06-14 Cardiac Pacemakers, Inc. Cardiac rhythm management system adjusting rate response factor for treating hypotension
US6912420B2 (en) 2001-04-10 2005-06-28 Cardiac Pacemakers, Inc. Cardiac rhythm management system for hypotension
GR1003802B (en) * 2001-04-17 2002-02-08 Micrel �.�.�. ������� ��������� ��������������� ��������� Tele-medicine system
US6740045B2 (en) * 2001-04-19 2004-05-25 Seiko Epson Corporation Central blood pressure waveform estimation device and peripheral blood pressure waveform detection device
CA2443819C (en) * 2001-05-04 2011-07-19 Board Of Regents, The University Of Texas System Apparatus and methods for delivery of transcranial magnetic stimulation
US7011629B2 (en) * 2001-05-14 2006-03-14 American Doctors On-Line, Inc. System and method for delivering medical examination, treatment and assistance over a network
EP2465419B1 (en) * 2001-06-22 2015-08-05 Nellcor Puritan Bennett Ireland Wavelet-based analysis of pulse oximetry signals
US6783492B2 (en) 2001-06-26 2004-08-31 Steven Dominguez System and method for monitoring body functions
US6605044B2 (en) * 2001-06-28 2003-08-12 Polar Electro Oy Caloric exercise monitor
US6595316B2 (en) 2001-07-18 2003-07-22 Andromed, Inc. Tension-adjustable mechanism for stethoscope earpieces
US6475146B1 (en) 2001-09-24 2002-11-05 Siemens Medical Solutions Usa, Inc. Method and system for using personal digital assistants with diagnostic medical ultrasound systems
US6965794B2 (en) 2001-10-05 2005-11-15 Fasstech, Inc. Apparatus for routing electromyography signals
US6865409B2 (en) * 2001-11-07 2005-03-08 Kinesense, Inc. Surface electromyographic electrode assembly
US6829501B2 (en) * 2001-12-20 2004-12-07 Ge Medical Systems Information Technologies, Inc. Patient monitor and method with non-invasive cardiac output monitoring
US6678551B2 (en) * 2001-12-27 2004-01-13 General Electric Company Method and apparatus for noise reduction of electromyogram signals
KR100426309B1 (en) 2001-12-27 2004-04-08 한국전자통신연구원 Apparatus for positioning and marking the location of the emg electrode
US6898460B2 (en) * 2002-01-15 2005-05-24 General Electric Company Method and apparatus for uterine contraction monitoring using linear predictive modeling of abdominal surface EMG signals
US7169107B2 (en) 2002-01-25 2007-01-30 Karen Jersey-Willuhn Conductivity reconstruction based on inverse finite element measurements in a tissue monitoring system
US6730038B2 (en) * 2002-02-05 2004-05-04 Tensys Medical, Inc. Method and apparatus for non-invasively measuring hemodynamic parameters using parametrics
US20040122487A1 (en) 2002-12-18 2004-06-24 John Hatlestad Advanced patient management with composite parameter indices
US7486194B2 (en) 2002-03-12 2009-02-03 Sydney Devlin Stanners Personal alarm system for obtaining assistance from remote recipients
US6957107B2 (en) * 2002-03-13 2005-10-18 Cardionet, Inc. Method and apparatus for monitoring and communicating with an implanted medical device
DE10212832A1 (en) 2002-03-19 2003-10-02 Juergen Morgenstern Vaginal probe, especially for the treatment of incontinence disorders
CA2482859C (en) * 2002-04-16 2010-02-09 Carematix, Inc. Method and apparatus for remotely monitoring the condition of a patient
FI20025029A0 (en) 2002-05-29 2002-05-29 Joni Kettunen A method for obtaining reliable respiratory activity information from heart rate measurement
US6661161B1 (en) 2002-06-27 2003-12-09 Andromed Inc. Piezoelectric biological sound monitor with printed circuit board
US6974419B1 (en) 2002-08-01 2005-12-13 Tensys Medical, Inc. Method and apparatus for control of non-invasive parameter measurements
US6856291B2 (en) * 2002-08-15 2005-02-15 University Of Pittsburgh- Of The Commonwealth System Of Higher Education Energy harvesting circuits and associated methods
US6975206B2 (en) 2002-08-30 2005-12-13 Intellectual Property, Llc Method for communication between central terminal and multiple transponders
US7115103B2 (en) * 2002-08-31 2006-10-03 Peter Trexler Keith Stroke symptom recognition devices and methods
US6609023B1 (en) 2002-09-20 2003-08-19 Angel Medical Systems, Inc. System for the detection of cardiac events
CA2501732C (en) * 2002-10-09 2013-07-30 Bodymedia, Inc. Method and apparatus for auto journaling of continuous or discrete body states utilizing physiological and/or contextual parameters
US7043293B1 (en) * 2002-12-24 2006-05-09 Cardiodynamics International Corporation Method and apparatus for waveform assessment
US20050148882A1 (en) 2004-01-06 2005-07-07 Triage Wireless, Incc. Vital signs monitor used for conditioning a patient's response
US6843771B2 (en) 2003-01-15 2005-01-18 Salutron, Inc. Ultrasonic monitor for measuring heart rate and blood flow rate
US6869404B2 (en) 2003-02-26 2005-03-22 Medtronic, Inc. Apparatus and method for chronically monitoring heart sounds for deriving estimated blood pressure
AU2004224345B2 (en) * 2003-03-21 2010-02-18 Welch Allyn, Inc. Personal status physiologic monitor system and architecture and related monitoring methods
CN1774201A (en) * 2003-04-16 2006-05-17 布鲁塞尔自由大学 Non-invasive sensor to analyze visually the level of muscle activity
US7190995B2 (en) 2003-06-13 2007-03-13 The Regents Of The University Of Michigan System and method for analysis of respiratory cycle-related EEG changes in sleep-disordered breathing
US20040260188A1 (en) 2003-06-17 2004-12-23 The General Hospital Corporation Automated auscultation system
US7096060B2 (en) 2003-06-27 2006-08-22 Innovise Medical, Inc. Method and system for detection of heart sounds
US7887493B2 (en) * 2003-09-18 2011-02-15 Cardiac Pacemakers, Inc. Implantable device employing movement sensing for detecting sleep-related disorders
US7787946B2 (en) 2003-08-18 2010-08-31 Cardiac Pacemakers, Inc. Patient monitoring, diagnosis, and/or therapy systems and methods
CA2538710A1 (en) * 2003-09-12 2005-03-31 Bodymedia, Inc. Method and apparatus for measuring heart related parameters
US7383911B2 (en) * 2003-09-19 2008-06-10 Ford Global Technologies Llc Wireless seatbelt buckle switch harvesting energy and method therefor
US20050064902A1 (en) * 2003-09-24 2005-03-24 Agere Systems, Incorporated Mobile telephone having a vital sign measuring capability
EP1524619A2 (en) * 2003-10-14 2005-04-20 Rf Monolithics, Inc. System and method for wireless data communication
US20090131759A1 (en) * 2003-11-04 2009-05-21 Nathaniel Sims Life sign detection and health state assessment system
JP4220355B2 (en) * 2003-11-10 2009-02-04 アルプス電気株式会社 Haptic input device
KR100624509B1 (en) 2003-12-26 2006-09-18 학교법인 한국정보통신학원 Wireless detection system and method of heart rates
US7278966B2 (en) * 2004-01-31 2007-10-09 Nokia Corporation System, method and computer program product for managing physiological information relating to a terminal user
US20050222515A1 (en) 2004-02-23 2005-10-06 Biosignetics Corporation Cardiovascular sound signature: method, process and format
US7288918B2 (en) 2004-03-02 2007-10-30 Distefano Michael Vincent Wireless battery charger via carrier frequency signal
US7981058B2 (en) 2004-03-12 2011-07-19 The Trustees Of Dartmouth College Intelligent wearable monitor systems and methods
US7004907B2 (en) * 2004-04-07 2006-02-28 Triage Wireless, Inc. Blood-pressure monitoring device featuring a calibration-based analysis
US7179228B2 (en) 2004-04-07 2007-02-20 Triage Wireless, Inc. Cuffless system for measuring blood pressure
US20060009698A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Hand-held monitor for measuring vital signs
US20050261598A1 (en) 2004-04-07 2005-11-24 Triage Wireless, Inc. Patch sensor system for measuring vital signs
US20050228244A1 (en) 2004-04-07 2005-10-13 Triage Wireless, Inc. Small-scale, vital-signs monitoring device, system and method
US20060009697A1 (en) * 2004-04-07 2006-01-12 Triage Wireless, Inc. Wireless, internet-based system for measuring vital signs from a plurality of patients in a hospital or medical clinic
US20050240523A1 (en) 2004-04-26 2005-10-27 Mddc, Inc. Method of remotely filling a prescription for a patient
US7126467B2 (en) * 2004-07-23 2006-10-24 Innovalarm Corporation Enhanced fire, safety, security, and health monitoring and alarm response method, system and device
US20060047215A1 (en) * 2004-09-01 2006-03-02 Welch Allyn, Inc. Combined sensor assembly
US20060079801A1 (en) * 2004-09-16 2006-04-13 Deluca Carlo J Sensor system for detecting and processing EMG signals
US20060084878A1 (en) * 2004-10-18 2006-04-20 Triage Wireless, Inc. Personal computer-based vital signs monitor
US20070004969A1 (en) * 2005-06-29 2007-01-04 Microsoft Corporation Health monitor
US7534206B1 (en) * 2005-09-19 2009-05-19 Garmin Ltd. Navigation-assisted fitness and dieting device
US7539487B2 (en) * 2006-01-09 2009-05-26 Microsoft Corporation Interfacing I/O devices with a mobile server
US7787857B2 (en) * 2006-06-12 2010-08-31 Garmin Ltd. Method and apparatus for providing an alert utilizing geographic locations
US8325030B2 (en) * 2006-09-07 2012-12-04 Lord Corporation Heat stress, plant stress and plant health monitor system
US20090054751A1 (en) * 2007-08-22 2009-02-26 Bruce Babashan Touchless Sensor for Physiological Monitor Device
WO2009036150A2 (en) * 2007-09-11 2009-03-19 Aid Networks, Llc Wearable wireless electronic patient data communications and physiological monitoring device
US20100081946A1 (en) * 2008-09-26 2010-04-01 Qualcomm Incorporated Method and apparatus for non-invasive cuff-less blood pressure estimation using pulse arrival time and heart rate with adaptive calibration
US20100246651A1 (en) * 2009-03-31 2010-09-30 Qualcomm Incorporated Packet loss mitigation in transmission of biomedical signals for healthcare and fitness applications
WO2010126825A1 (en) * 2009-04-26 2010-11-04 Nike International, Ltd. Athletic watch
US8718980B2 (en) * 2009-09-11 2014-05-06 Qualcomm Incorporated Method and apparatus for artifacts mitigation with multiple wireless sensors
US8527038B2 (en) * 2009-09-15 2013-09-03 Sotera Wireless, Inc. Body-worn vital sign monitor
US10420476B2 (en) * 2009-09-15 2019-09-24 Sotera Wireless, Inc. Body-worn vital sign monitor
US8364250B2 (en) * 2009-09-15 2013-01-29 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110066044A1 (en) * 2009-09-15 2011-03-17 Jim Moon Body-worn vital sign monitor
US8321004B2 (en) * 2009-09-15 2012-11-27 Sotera Wireless, Inc. Body-worn vital sign monitor
US10806351B2 (en) * 2009-09-15 2020-10-20 Sotera Wireless, Inc. Body-worn vital sign monitor
US20110124978A1 (en) * 2009-11-24 2011-05-26 Williams Michael C Health and fitness system
US8974349B2 (en) * 2010-11-01 2015-03-10 Nike, Inc. Wearable device assembly having athletic functionality
US8460001B1 (en) * 2011-04-14 2013-06-11 Thomas C. Chuang Athletic performance monitoring with overstride detection
US9042971B2 (en) * 2012-06-22 2015-05-26 Fitbit, Inc. Biometric monitoring device with heart rate measurement activated by a single user-gesture
US20140221854A1 (en) * 2013-01-08 2014-08-07 National Electronics and Watch Company Measuring device, including a heart rate sensor, configured to be worn on the wrist of a user

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4129125A (en) * 1976-12-27 1978-12-12 Camin Research Corp. Patient monitoring system
US4205672A (en) * 1977-11-28 1980-06-03 Karel Dvorak Conductivity sensing device for diapers
US4566461A (en) * 1983-02-15 1986-01-28 Michael Lubell Health fitness monitor
US5479932A (en) * 1993-08-16 1996-01-02 Higgins; Joseph Infant health monitoring system
US7215991B2 (en) * 1993-09-04 2007-05-08 Motorola, Inc. Wireless medical diagnosis and monitoring equipment
US5573012A (en) * 1994-08-09 1996-11-12 The Regents Of The University Of California Body monitoring and imaging apparatus and method
US20010044588A1 (en) * 1996-02-22 2001-11-22 Mault James R. Monitoring system
US5964720A (en) * 1996-11-29 1999-10-12 Adaptivity Devices Ltd. Method and system for monitoring the physiological condition of a patient
US6687523B1 (en) * 1997-09-22 2004-02-03 Georgia Tech Research Corp. Fabric or garment with integrated flexible information infrastructure for monitoring vital signs of infants
US6073046A (en) * 1998-04-27 2000-06-06 Patel; Bharat Heart monitor system
US6513532B2 (en) * 2000-01-19 2003-02-04 Healthetech, Inc. Diet and activity-monitoring device
US6356203B1 (en) * 2000-04-04 2002-03-12 Ilife Systems, Inc. Apparatus and method for detecting a rotational movement of a body
US20020151810A1 (en) * 2001-04-16 2002-10-17 Acumen, Inc. Wrist-based fitness monitoring devices
US6847892B2 (en) * 2001-10-29 2005-01-25 Digital Angel Corporation System for localizing and sensing objects and providing alerts
US8421636B2 (en) * 2003-04-30 2013-04-16 Daniel R. Collette Patient monitoring system
US7037272B2 (en) * 2004-07-26 2006-05-02 Ohlan Silpachai Infant respiratory monitoring system
US20060047217A1 (en) * 2004-08-06 2006-03-02 Mohsen Mirtalebi Method and Apparatus for Infant Sleep Apnea Monitoring and Data Analysis
US8752106B2 (en) * 2004-09-23 2014-06-10 Smartvue Corporation Mesh networked video and sensor surveillance system and method for wireless mesh networked sensors
US20060097879A1 (en) * 2004-10-26 2006-05-11 Lippincott Kathy J SIDS and apnea monitoring system
US7616110B2 (en) * 2005-03-11 2009-11-10 Aframe Digital, Inc. Mobile wireless customizable health and condition monitor
WO2007051889A1 (en) * 2005-11-04 2007-05-10 Nokia Corporation Apparatus for detecting body condition
US20090069724A1 (en) * 2007-08-15 2009-03-12 Otto Chris A Wearable Health Monitoring Device and Methods for Step Detection
US20140121473A1 (en) * 2012-10-31 2014-05-01 Matt Banet Vital sign monitoring system featuring electronic diaper

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9820657B2 (en) 2006-05-12 2017-11-21 Koninklijke Philips N.V. Mobile wireless appliance
US11598593B2 (en) 2010-05-04 2023-03-07 Fractal Heatsink Technologies LLC Fractal heat transfer device
US11588650B2 (en) 2013-03-15 2023-02-21 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US10841104B2 (en) 2013-03-15 2020-11-17 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US9942051B1 (en) 2013-03-15 2018-04-10 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US10305695B1 (en) 2013-03-15 2019-05-28 Poltorak Technologies Llc System and method for secure relayed communications from an implantable medical device
US11930126B2 (en) 2013-03-15 2024-03-12 Piltorak Technologies LLC System and method for secure relayed communications from an implantable medical device
US10327663B2 (en) * 2013-08-31 2019-06-25 Alpha Omega Neuro Technologies Ltd. Evoked response probe and method of use
US20150065839A1 (en) * 2013-08-31 2015-03-05 Alpha Omega Neuro Technologies Ltd. Surgical drape, evoked response probes and their methods of use
US11381903B2 (en) 2014-02-14 2022-07-05 Sonic Blocks Inc. Modular quick-connect A/V system and methods thereof
US11478215B2 (en) 2015-06-15 2022-10-25 The Research Foundation for the State University o System and method for infrasonic cardiac monitoring
US10542961B2 (en) 2015-06-15 2020-01-28 The Research Foundation For The State University Of New York System and method for infrasonic cardiac monitoring
US20210055369A1 (en) * 2015-09-23 2021-02-25 Intel Corporation Apparatus and method for high accuracy distance and orientation measurement
US11719798B2 (en) * 2015-09-23 2023-08-08 Intel Corporation Apparatus and method for high accuracy distance and orientation measurement
US10813572B2 (en) 2015-12-11 2020-10-27 Electronic Caregiver, Inc. Intelligent system for multi-function electronic caregiving to facilitate advanced health diagnosis, health monitoring, fall and injury prediction, health maintenance and support, and emergency response
KR102420853B1 (en) * 2015-12-21 2022-07-15 삼성전자주식회사 Bio-processor for measuring each of biological signals and wearable device having the same
KR20170074039A (en) * 2015-12-21 2017-06-29 삼성전자주식회사 Bio-processor for measuring each of biological signals and wearable device having the same
US11504038B2 (en) * 2016-02-12 2022-11-22 Newton Howard Early detection of neurodegenerative disease
US20230190158A1 (en) * 2016-02-12 2023-06-22 Newton Howard Early detection of neurodegenerative disease
JP2019512329A (en) * 2016-03-23 2019-05-16 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Blood pressure monitor
US11230375B1 (en) 2016-03-31 2022-01-25 Steven M. Hoffberg Steerable rotating projectile
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US11346620B2 (en) 2016-07-12 2022-05-31 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a heat sink
US11913737B2 (en) 2016-07-12 2024-02-27 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a heat sink
US10830545B2 (en) 2016-07-12 2020-11-10 Fractal Heatsink Technologies, LLC System and method for maintaining efficiency of a heat sink
US11609053B2 (en) 2016-07-12 2023-03-21 Fractal Heatsink Technologies LLC System and method for maintaining efficiency of a heat sink
US11363963B2 (en) 2017-04-04 2022-06-21 Borut BARICEVIC Method and device for determining the hydration, fitness and nutrition status of a human body
WO2018185550A3 (en) * 2017-04-04 2018-11-15 Borut Baricevic Method and device for determining the hydration, fitness and nutrition status of a human body
WO2019006473A1 (en) * 2017-06-30 2019-01-03 The Johns Hopkins University Systems and method for action recognition using micro-doppler signatures and recurrent neural networks
US11295119B2 (en) * 2017-06-30 2022-04-05 The Johns Hopkins University Systems and method for action recognition using micro-doppler signatures and recurrent neural networks
WO2019050738A1 (en) * 2017-09-05 2019-03-14 Purdue Research Foundation Diagnostic and therapeutic device for compromised vascular hemodynamics analysis
US11723579B2 (en) 2017-09-19 2023-08-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11164105B2 (en) * 2017-11-13 2021-11-02 International Business Machines Corporation Intelligent recommendations implemented by modelling user profile through deep learning of multimodal user data
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11273283B2 (en) 2017-12-31 2022-03-15 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
KR102556139B1 (en) * 2018-02-20 2023-07-18 일렉트로닉 케어기버, 아이앤씨. Connected kiosk for real-time assessment of fall risk
WO2019164585A1 (en) * 2018-02-20 2019-08-29 SameDay Security, Inc. Connected kiosk for the real-time assessment of falls risk
KR20200121832A (en) * 2018-02-20 2020-10-26 일렉트로닉 케어기버, 아이앤씨. Connected kiosk for real-time assessment of fall risk
CN111801939A (en) * 2018-02-20 2020-10-20 电子护理公司 Connected self-service terminal for real-time fall risk assessment
US11213224B2 (en) 2018-03-19 2022-01-04 Electronic Caregiver, Inc. Consumer application for mobile assessment of functional capacity and falls risk
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
CN108606776A (en) * 2018-03-27 2018-10-02 复旦大学附属华山医院 A kind of balance test system
US20190302949A1 (en) * 2018-04-02 2019-10-03 Maxlinear, Inc. Methods and systems for enhanced force-touch based gesture solutions
US11923058B2 (en) 2018-04-10 2024-03-05 Electronic Caregiver, Inc. Mobile system for the assessment of consumer medication compliance and provision of mobile caregiving
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11488724B2 (en) 2018-06-18 2022-11-01 Electronic Caregiver, Inc. Systems and methods for a virtual, intelligent and customizable personal medical assistant
US11071476B2 (en) 2018-08-20 2021-07-27 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11000212B2 (en) 2018-08-20 2021-05-11 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11000191B2 (en) 2018-08-20 2021-05-11 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11213225B2 (en) 2018-08-20 2022-01-04 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US10881330B2 (en) 2018-08-20 2021-01-05 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11529076B2 (en) 2018-08-20 2022-12-20 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US10842416B2 (en) 2018-08-20 2020-11-24 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11006863B2 (en) 2018-08-20 2021-05-18 Thomas Jefferson University Acoustic sensor and ventilation monitoring system
US11452839B2 (en) 2018-09-14 2022-09-27 Neuroenhancement Lab, LLC System and method of improving sleep
US10579017B2 (en) * 2018-10-07 2020-03-03 Rising Star Pathway, a California Corporation Processor controlled energy harvester system optimized for mobile platforms
US20190339649A1 (en) * 2018-10-07 2019-11-07 Rising Star Pathway, a California Corporation Processor controlled energy harvester system optimized for mobile platforms
US10355558B2 (en) * 2018-10-07 2019-07-16 Rising Star Pathway, a California Corporation Processor controlled energy harvester system
US20190140517A1 (en) * 2018-10-07 2019-05-09 Rising Star Pathway, a California Corporation Processor controlled energy harvester system
US11064911B2 (en) 2018-12-12 2021-07-20 Vitaltech Properties, Llc Standing desk biometrics
US11791050B2 (en) 2019-02-05 2023-10-17 Electronic Caregiver, Inc. 3D environment risks identification utilizing reinforced learning
US11113943B2 (en) 2019-05-07 2021-09-07 Electronic Caregiver, Inc. Systems and methods for predictive environmental fall risk identification
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
WO2021067487A1 (en) * 2019-10-01 2021-04-08 SekureTrak, Inc. Remotely-monitored personal safety devices
USD976816S1 (en) 2019-10-18 2023-01-31 Vitaltech Properties, Llc On-body wearable charger
USD933497S1 (en) 2019-10-18 2021-10-19 Vitaltech Properties, Llc Watch
USD934164S1 (en) 2019-10-18 2021-10-26 Vitaltech Properties, Llc On-body wearable charger
USD936650S1 (en) 2019-10-18 2021-11-23 Vitaltech Properties, Llc Smartwatch
WO2021127207A1 (en) * 2019-12-20 2021-06-24 EmpNia Inc. Wearable health monitoring device
US11504010B2 (en) 2019-12-20 2022-11-22 EmpNia Inc. Wearable health monitoring device
WO2021165861A1 (en) * 2020-02-22 2021-08-26 Madnani Akash Nanikram A system for analysing physical activities and bio-markers
US11540095B2 (en) * 2020-05-27 2022-12-27 Goldman Sachs & Co. LLC Projecting content from exercise equipment
US20210383929A1 (en) * 2020-06-04 2021-12-09 Syntiant Systems and Methods for Generating Early Health-Based Alerts from Continuously Detected Data
WO2021247983A1 (en) * 2020-06-04 2021-12-09 Syntiant Systems and methods for generating early health-based alerts from continuously detected data
CN113067830A (en) * 2021-03-26 2021-07-02 中国第一汽车股份有限公司 Vehicle-mounted bus signal detection method and device, vehicle and storage medium
US20230028230A1 (en) * 2021-07-26 2023-01-26 Rfxlabs India Pvt Ltd System and method for bio-medical samples identification and resource optimization

Also Published As

Publication number Publication date
US8764651B2 (en) 2014-07-01
US20090318779A1 (en) 2009-12-24
US20120330109A1 (en) 2012-12-27
US8108036B2 (en) 2012-01-31
US20070276270A1 (en) 2007-11-29
US20140249429A1 (en) 2014-09-04
US8449471B2 (en) 2013-05-28
US7558622B2 (en) 2009-07-07
US20130231574A1 (en) 2013-09-05
US9107586B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
US11696682B2 (en) Mesh network personal emergency response appliance
US20240108286A1 (en) Wearable Appliance
US9107586B2 (en) Fitness monitoring
US20240115202A1 (en) Smart watch

Legal Events

Date Code Title Description
AS Assignment

Owner name: WEST 74TH STREET, SERIES 75 OF ALLIED SECURITY TRU

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:EMPIRE IP LLC;REEL/FRAME:037332/0414

Effective date: 20151215

AS Assignment

Owner name: KONINKLIJKE PHILIPS N.V., NETHERLANDS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WEST 74TH STREET, SERIES 75 OF ALLIED SECURITY TRUST I;REEL/FRAME:038337/0970

Effective date: 20160316

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION