US20160058456A1 - Arthroscopic bone transplanting procedure, and medical instruments useful therein - Google Patents

Arthroscopic bone transplanting procedure, and medical instruments useful therein Download PDF

Info

Publication number
US20160058456A1
US20160058456A1 US14/937,908 US201514937908A US2016058456A1 US 20160058456 A1 US20160058456 A1 US 20160058456A1 US 201514937908 A US201514937908 A US 201514937908A US 2016058456 A1 US2016058456 A1 US 2016058456A1
Authority
US
United States
Prior art keywords
bone
drill
shaft
bore
distal end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/937,908
Inventor
Ran Oren
Laurent LaFosse
Shai Nahmias
Dan Moor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAG Medical Devices ACAL
Original Assignee
TAG Medical Devices ACAL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAG Medical Devices ACAL filed Critical TAG Medical Devices ACAL
Priority to US14/937,908 priority Critical patent/US20160058456A1/en
Assigned to T.A.G. MEDICAL PRODUCTS A LIMITED PARTNERSHIP reassignment T.A.G. MEDICAL PRODUCTS A LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LAFOSSE, LAURENT, NACHMIAS, SHAI
Assigned to T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. reassignment T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: T.A.G. MEDICAL PRODUCTS A LIMITED PARTNERSHIP
Assigned to T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. reassignment T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: OREN, RAN
Assigned to T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. reassignment T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MOOR, DAN
Publication of US20160058456A1 publication Critical patent/US20160058456A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1714Guides or aligning means for drills, mills, pins or wires for applying tendons or ligaments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/1662Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body
    • A61B17/1684Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans for particular parts of the body for the shoulder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans
    • A61B17/17Guides or aligning means for drills, mills, pins or wires
    • A61B17/1739Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body
    • A61B17/1778Guides or aligning means for drills, mills, pins or wires specially adapted for particular parts of the body for the shoulder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/8866Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices for gripping or pushing bones, e.g. approximators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/88Osteosynthesis instruments; Methods or means for implanting or extracting internal or external fixation devices
    • A61B17/90Guides therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/34Trocars; Puncturing needles
    • A61B17/3417Details of tips or shafts, e.g. grooves, expandable, bendable; Multiple coaxial sliding cannulas, e.g. for dilating
    • A61B17/3421Cannulas
    • A61B2017/3445Cannulas used as instrument channel for multiple instruments
    • A61B2017/3447Linked multiple cannulas
    • A61B2017/90

Definitions

  • the present invention relates to an arthroscopic bone transplanting procedure and to medical instruments useful in such a procedure as may be supplied in the form of a kit.
  • the invention is particularly useful in the treatment of an anterior shoulder instability, where a section of the coracoid is transplanted to the glenoid, and is therefore described below with respect to said transplant.
  • the shoulder joint is a ball and socket joint, similar to the hip; however, the socket of the shoulder joint is extremely shallow, and thus inherently unstable. Muscles and tendons serve to keep the bones in approximation.
  • the shoulder joint has a cuff of fibrous cartilage called a labrum that forms a cup for the head of the arm bone (humerus) to move within. This cuff of cartilage makes the shoulder joint much more stable, yet allows for a very wide range of movement.
  • the labrum of the shoulder joint is damaged, the stability of the shoulder joint is compromised, leading to subluxation and dislocation of the joint.
  • Recurrent dislocations may cause damage to the bones of the joint—the humeral head and the glenoid.
  • damage to the anterior-inferior part of the glenoid will cause a decrease in the area of contact with the humeral head.
  • An object of the present invention is to provide an arthroscopic bone transplanting procedure which is particularly useful in the treatment of anterior shoulder instability, but may be used in other procedures involving implanting of a section of a first bone to a second bone.
  • a further object of the invention is to provide instruments, which may be supplied in kit form, particularly useful in such an arthroscopic procedure.
  • an arthroscopic procedure for transplanting a section of a first bone to a second bone comprising the following steps: (a) making small incisions to open portals for the introduction of medical instruments; (b) drilling a threaded bore in said section of said first bone; (c) attaching a first cannula to said section of said first bone; (d) separating said section from said first bone; (e) positioning said separated section of said first bone on said second bone; (f) replacing said first cannula by a second cannula attached to said separated bone section by a cannulated device; (g) introducing a guide wire through the cannulated device; (h) removing the cannulated device; (i) drilling a bore into the second bone by a cannulated drill guided by said guide wire; (j) removing the guide wire; (k) and applying a bone screw through said bore in said separated section of the first bone and said bore in said second bone.
  • step (b) two threaded bores at a fixed distance from each other are drilled in said section of the first bone; in step (c), the first cannula is a T-handle cannula and is attached in said first bore by sutures or flexible wires; in step (f), the second cannula is a double cannula and is attached to said section of the first bone by two cannulated devices; in step (g), two guide wires are introduced through the two cannulated devices, which cannulated devices are then removed in step (h); in step (i), two bores are drilled into the second bone by a cannulated drill guided by said guide wires; in step (j), the two guide wires are removed; and in step (k), two bone screws are applied through the two bones in
  • kits which may be supplied in a kit, particularly useful for the above-described bone transplanting procedures.
  • FIG. 1 a is a schematic drawing of the gleno-humeral joint in the shoulder
  • FIG. 1 b is a schematic lateral view illustrating damage to the glenoid fossa
  • FIG. 2 a is a schematic anterior view of the bone reconstruction
  • FIG. 2 b is a transverse section through the reconstructed joint.
  • FIGS. 3-20 illustrate various medical instruments, which may be supplied in kit form, particularly useful in an arthroscopic bone transplanting procedure for reconstructing the shoulder joint in accordance with the present invention, in which:
  • FIG. 3 shows a standard Kirschner wire
  • FIG. 4 is a cannulated bone drill
  • FIG. 5 shows a drill guide for drilling a second bore at a pre-determined distance from a first bore
  • FIG. 6 is a thread tapping tool
  • FIG. 7 a is a suture loader
  • FIG. 7 b is a suture retriever
  • FIG. 8 shows a flexible wire
  • FIG. 9 is a cannula with a T-handle
  • FIG. 10 shows osteotomes, straight and curved
  • FIG. 11 is a cannulator for a double cannula
  • FIG. 12 is a double cannula
  • FIG. 13 shows a suture hook
  • FIG. 14 shows a cannulated device
  • FIG. 15 is a cannulated device driver
  • FIG. 16 is a cannulated spike
  • FIGS. 17 a and 17 b are side and top views, respectively, of a clamping device for holding a transplanted bone section to the receiving site;
  • FIG. 18 shows cannulated bone drills
  • FIG. 19 is a cannulated bone screw
  • FIG. 20 is a screwdriver with a long cannulated shaft for the bone screws ;
  • FIG. 21 is a flow diagram illustrating a preferred arthroscopic procedure in accordance with the present invention.
  • FIG. 1 a illustrates the bones of the shoulder joint.
  • the head 1 of the upper arm bone, the humerus 2 forms a ball-and-socket joint with the shallow glenoid cavity 3 .
  • the glenoid is the lateral part of the shoulder blade scapula 4 .
  • Two hook-like projections of the scapula seen overhanging the glenoid are the acromion 5 and the coracoid process 6 .
  • a group of muscles collectively known as the Rotator Cuff originate on the scapula and insert on the humerus. These serve to stabilize the joint by keeping the humeral head in contact with the glenoid cavity.
  • the clavicle 7 connects the acromion to the breastbone sternum.
  • the glenoid labrum 8 which is a flexible fibrous ligament, surrounds the glenoid rim enlarging its area of contact with the humerus.
  • FIG. 1 b illustrates the type of damage to the glenoid socket caused by such dislocations.
  • the pear-shape of the intact glenoid is shown at “A”; while bone loss at the inferior, wider section “A”, caused by a dislocation, is shown at “B” and results in an inverted pear shape narrower lower section as shown at “C”. This causes a partial loss of contact with the humeral head.
  • FIGS. 2 a and 2 b illustrate a bone reconstruction in accordance with the present invention.
  • the description below describes a kit of instruments, and the method of their use, for performing coracoid transfer (Latarjet procedure) arthroscopically.
  • the kit consists of various instruments, including drills, drill guides, osteotomes, cannulae, suture manipulators, screws, screwdrivers and others, specific for the purpose of the method disclosed by the invention.
  • the procedure consists of the following main steps:
  • FIG. 21 shows the above described procedure divided into the following main building blocks, including:
  • FIGS. 3-20 illustrate the various medical instruments, preferably supplied in kit form, for performing an arthroscopic bone transplanting procedure in accordance with the present invention.
  • Portals small incisions are first made for introducing the arthroscope and instruments and for preparing the coracoid and glenoid surfaces, leaving the conjoined tendon (shown in FIG. 2 b ) attached to the coracoid.
  • Two threaded holes are drilled in the coracoid process, using the bone drill shown at 32 in FIG. 4 with a diameter of about 3 mm.
  • a Kirschner wire 31 ( FIG. 3 ) is inserted at a safe distance from the lateral tip of the process for guiding the bone drill, and the first hole is drilled.
  • the drill is inserted through the drill guide shown at 33 in FIG. 5 .
  • a guide pin 33 a fixed at distance “d” from the center of the drill nut 33 b ensures a predetermined distance of about 9 mm from the first hole. Both holes are threaded now with the elongated tap shown at 34 in FIG. 6 . For safeguarding the integrity of the transplant, inserts may be implanted in the holes.
  • a suture loader 35 , FIG. 7 a , and a suture retriever 36 , in FIG. 7 b are provided in the kit for manipulating the sutures.
  • An alternative flexible wire 37 is shown in FIG. 8 .
  • the sutures/wires are drawn out through the shaft of a T-handle cannula shown at 38 in FIG. 9 and are fixed at the proximal, handle section of the cannula for holding the coracoid graft during separation and transfer to the receiving site.
  • Osteotomes such as those shown at 39 a , 39 b in FIG. 10 , serve to separate the lateral section of the coracoid. At least one osteotome is provided in the kit.
  • the subscapularis muscle is dissected and split to allow for transferring the T-handle cannula 38 with the coracoid transplant to the anterior-inferior, damaged section of the glenoid.
  • the cannulator shown at 40 in FIG. 11 is used to dissect tissue and to free a passage to the receiving site.
  • a double cannula shown at 41 in FIG. 12 is inserted through the passage freed by the cannulator.
  • the two tubes “t” of the double cannula 41 are fixed, so that the distance of their centerlines “d” is identical to that of the drill guide 33 in FIG. 5 .
  • Handle “h” attached to the tube is offset at an angle “a” relative to the axis of the tubes and is formed to provide a firm grip.
  • Angle “a” should be of an order of 40 to 65 degrees to allow maneuvering without obstructing the field of vision, and the length of the tubes measured from the handle should be about 150 mm.
  • a window “w” is cut in each of the tubes near the distal end to enable observation of the interior of the two tubes, and the position of an instrument introduced into the tubes.
  • the T-handle cannula 38 is released from the sutures/wires attached to the graft and is withdrawn.
  • a suture hook shown at 42 in FIG. 13 the sutures/wires are drawn through the tubes of the double cannula and an elongated cannulated holding device such as screws 43 shown in FIG. 14 are inserted over them into the tubes of the cannula.
  • the screws are driven into the coracoid using a suitable instrument, such as the screw driver shown at 44 in FIG. 15 until the coracoid is firmly attached to the cannula.
  • An alternative device for holding the separated coracoid bone transplant to the double cannula is shown at 45 in FIG. 16 .
  • the distal section of the spike in FIG. 16 is expandable to hold the device to the walls of the bores of the graft.
  • the sutures/wires holding the coracoid can now be removed.
  • the exact positioning on the glenoid may be assisted by using a suitable instrument, such as the clamping device shown at 46 in FIGS. 17 a and 17 b .
  • Kirschner wires 31 , FIG. 3
  • the devices are now removed using the screwdriver 44 , FIG. 15 , or by releasing the spike 45 .
  • the double cannula serves as a drill guide.
  • a cannulated drill 47 a FIG. 18
  • a first hole is drilled into the glenoid.
  • the other drill 47 b in FIG. 18 is used to drill a second hole over the second Kirschner wire.
  • cannulated bone screws 48 FIG. 19
  • cannulated bone screws 48 FIG. 19
  • cannulated device driver with a long shaft 49 , FIG. 20 , for use with the cannulated bone screws.
  • the K-wires can now be pulled out and the optional bone clamping device is removed.
  • the bone screws 48 are drawn tight and the double cannula is withdrawn to conclude the procedure.

Abstract

Described is an arthroscopic bone transplanting procedure for transplanting a section of a first bone to a second bone. The described procedure is particularly useful for the treatment an anterior shoulder instability, where the first bone is the coracoid and the second bone is the glenoid. Also described is a kit of medical instruments particularly useful in such a procedure.

Description

    RELATED APPLICATIONS
  • This application is a continuation of U.S. patent application Ser. No. 14/142,971 filed on Dec. 30, 2013, which is a division of U.S. patent application Ser. No. 12/375,422 filed on Nov. 6, 2009, now U.S. Pat. No. 8,617,219, which is a National Phase of PCT Patent Application No. PCT/IL2007/000952 having International filing date of Jul. 30, 2007, which claims the benefit of priority of U.S. Provisional Patent Application No. 60/834,173 filed on Jul. 31, 2006. The contents of the above Applications are all incorporated herein by reference.
  • FIELD AND BACKGROUND OF THE INVENTION
  • The present invention relates to an arthroscopic bone transplanting procedure and to medical instruments useful in such a procedure as may be supplied in the form of a kit. The invention is particularly useful in the treatment of an anterior shoulder instability, where a section of the coracoid is transplanted to the glenoid, and is therefore described below with respect to said transplant.
  • The range of movements the human shoulder can make far exceeds any other joint in the body. The shoulder joint is a ball and socket joint, similar to the hip; however, the socket of the shoulder joint is extremely shallow, and thus inherently unstable. Muscles and tendons serve to keep the bones in approximation. In addition, in order to compensate for the shallow socket, the shoulder joint has a cuff of fibrous cartilage called a labrum that forms a cup for the head of the arm bone (humerus) to move within. This cuff of cartilage makes the shoulder joint much more stable, yet allows for a very wide range of movement. When the labrum of the shoulder joint is damaged, the stability of the shoulder joint is compromised, leading to subluxation and dislocation of the joint. Recurrent dislocations may cause damage to the bones of the joint—the humeral head and the glenoid. In particular, damage to the anterior-inferior part of the glenoid will cause a decrease in the area of contact with the humeral head.
  • When bone deficiencies associated with anterior shoulder instability are present, the prognostic factors for the success of soft tissue repair are poor. Current standards of success are predicated on the restoration of motion and strength and the return to full functional activities, including competitive athletics. Reestablishment of anterior shoulder stability requires the recognition and the treatment of osseous defects.
  • Several surgical procedures have been described for the management of osseous deficiencies in association with anterior shoulder instability, involving the transplantation of a portion of the coracoid process to the anterior-inferior section of the glenoid. The procedure described by Latarjet in 1954 involves the transplantation of a large section of the coracoid together with the conjoined tendon attached to it to reinforce the glenoid fossa and create an antero-inferior musculotendinous sling. The procedure has been performed since its disclosure with positive results as an open surgical intervention.
  • However, up to the present, no minimally invasive technique for performing it has been developed.
  • OBJECTS AND BRIEF SUMMARY OF THE PRESENT INVENTION
  • An object of the present invention is to provide an arthroscopic bone transplanting procedure which is particularly useful in the treatment of anterior shoulder instability, but may be used in other procedures involving implanting of a section of a first bone to a second bone. A further object of the invention is to provide instruments, which may be supplied in kit form, particularly useful in such an arthroscopic procedure.
  • According to one aspect of the present invention, there is provided an arthroscopic procedure for transplanting a section of a first bone to a second bone, comprising the following steps: (a) making small incisions to open portals for the introduction of medical instruments; (b) drilling a threaded bore in said section of said first bone; (c) attaching a first cannula to said section of said first bone; (d) separating said section from said first bone; (e) positioning said separated section of said first bone on said second bone; (f) replacing said first cannula by a second cannula attached to said separated bone section by a cannulated device; (g) introducing a guide wire through the cannulated device; (h) removing the cannulated device; (i) drilling a bore into the second bone by a cannulated drill guided by said guide wire; (j) removing the guide wire; (k) and applying a bone screw through said bore in said separated section of the first bone and said bore in said second bone.
  • The preferred embodiment of the invention described below is particularly useful for the treatment of anterior shoulder instability, or other disorders where it is desired to use at least two bone screws for attaching a section of a first bone to a second bone. When such a procedure is used, in step (b), two threaded bores at a fixed distance from each other are drilled in said section of the first bone; in step (c), the first cannula is a T-handle cannula and is attached in said first bore by sutures or flexible wires; in step (f), the second cannula is a double cannula and is attached to said section of the first bone by two cannulated devices; in step (g), two guide wires are introduced through the two cannulated devices, which cannulated devices are then removed in step (h); in step (i), two bores are drilled into the second bone by a cannulated drill guided by said guide wires; in step (j), the two guide wires are removed; and in step (k), two bone screws are applied through the two bones in the separated section of the first bone, and the two bores in the second bone.
  • Other aspects of the invention involve the construction of medical instruments, which may be supplied in a kit, particularly useful for the above-described bone transplanting procedures.
  • Further features of the invention will be apparent from the description below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention is herein described below, the reference to the accompanying drawings, wherein:
  • FIG. 1 a is a schematic drawing of the gleno-humeral joint in the shoulder;
  • FIG. 1 b is a schematic lateral view illustrating damage to the glenoid fossa;
  • FIG. 2 a is a schematic anterior view of the bone reconstruction;
  • FIG. 2 b is a transverse section through the reconstructed joint. and
  • FIGS. 3-20 illustrate various medical instruments, which may be supplied in kit form, particularly useful in an arthroscopic bone transplanting procedure for reconstructing the shoulder joint in accordance with the present invention, in which:
  • FIG. 3 shows a standard Kirschner wire;
  • FIG. 4 is a cannulated bone drill;
  • FIG. 5 shows a drill guide for drilling a second bore at a pre-determined distance from a first bore;
  • FIG. 6 is a thread tapping tool;
  • FIG. 7 a is a suture loader;
  • FIG. 7 b is a suture retriever;
  • FIG. 8 shows a flexible wire;
  • FIG. 9 is a cannula with a T-handle;
  • FIG. 10 shows osteotomes, straight and curved;
  • FIG. 11 is a cannulator for a double cannula;
  • FIG. 12 is a double cannula;
  • FIG. 13 shows a suture hook;
  • FIG. 14 shows a cannulated device
  • FIG. 15 is a cannulated device driver;
  • FIG. 16 is a cannulated spike;
  • FIGS. 17 a and 17 b are side and top views, respectively, of a clamping device for holding a transplanted bone section to the receiving site;
  • FIG. 18 shows cannulated bone drills;
  • FIG. 19 is a cannulated bone screw;
  • FIG. 20 is a screwdriver with a long cannulated shaft for the bone screws ; and
  • FIG. 21 is a flow diagram illustrating a preferred arthroscopic procedure in accordance with the present invention.
  • THE CONSTRUCTION OF THE SHOULDER JOINT
  • FIG. 1 a illustrates the bones of the shoulder joint. The head 1 of the upper arm bone, the humerus 2, forms a ball-and-socket joint with the shallow glenoid cavity 3.
  • The glenoid is the lateral part of the shoulder blade scapula 4. Two hook-like projections of the scapula seen overhanging the glenoid are the acromion 5 and the coracoid process 6. A group of muscles collectively known as the Rotator Cuff originate on the scapula and insert on the humerus. These serve to stabilize the joint by keeping the humeral head in contact with the glenoid cavity. The clavicle 7 connects the acromion to the breastbone sternum. The glenoid labrum 8, which is a flexible fibrous ligament, surrounds the glenoid rim enlarging its area of contact with the humerus. When dislocations in the direction shown by the arrow occur, the anterior-inferior part of the labrum is torn away from the glenoid, causing instability of the joint. Recurring dislocations may lead to osseous lesions.
  • FIG. 1 b illustrates the type of damage to the glenoid socket caused by such dislocations. The pear-shape of the intact glenoid is shown at “A”; while bone loss at the inferior, wider section “A”, caused by a dislocation, is shown at “B” and results in an inverted pear shape narrower lower section as shown at “C”. This causes a partial loss of contact with the humeral head.
  • FIGS. 2 a and 2 b illustrate a bone reconstruction in accordance with the present invention.
  • DESCRIPTION OF A PREFERRED EMBODIMENT
  • The description below describes a kit of instruments, and the method of their use, for performing coracoid transfer (Latarjet procedure) arthroscopically. The kit consists of various instruments, including drills, drill guides, osteotomes, cannulae, suture manipulators, screws, screwdrivers and others, specific for the purpose of the method disclosed by the invention.
  • A Bone Transplantation Procedure and the Medical Instruments Used Therein
  • The procedure consists of the following main steps:
      • Opening portals (small incisions); introducing the arthroscope and instruments
      • Preparation of the coracoid and glenoid surfaces
      • Drilling and threading two holes in the coracoid at a fixed distance
      • Passing sutures or flexible wires through the holes
      • Attaching the coracoid by sutures or flexible wires to a cannula
      • Separating the section of the coracoid to be transferred
      • Positioning the graft on the glenoid
      • Attaching a double cannula to the coracoid with a cannulated device
      • Introducing K-wires through the cannulated device
      • Removing the cannulated device
      • Drilling into the glenoid with a cannulated drill over the K-wires
      • Attaching the transplanted coracoid onto the glenoid with bone screws
      • Removing the K-wires
      • Final fixing of the transplant (tightening the screws)
      • Removing the cannula.
  • In the reconstruction of the shoulder joint according to the present invention illustrated in FIGS. 2 a and 2 b, 20 indicates the glenoid, 21 illustrates the coracoid graft implanted thereto by a pair of cannulated devices 22 and 23, 24 indicates the humeral head, and 25 indicates the conjoined tendon. FIG. 21 shows the above described procedure divided into the following main building blocks, including:
      • preparing the surfaces of the first and second bones (211),
      • separating a section of the first bone (212),
      • maneuvering the separated section of the first bone onto the second bone (213), and
      • attaching the section of the first bone to the second bone (215).
    A Bone Transplantation Procedure and the Medical Instruments Used Therein
  • FIGS. 3-20 illustrate the various medical instruments, preferably supplied in kit form, for performing an arthroscopic bone transplanting procedure in accordance with the present invention.
  • Portals (small incisions) are first made for introducing the arthroscope and instruments and for preparing the coracoid and glenoid surfaces, leaving the conjoined tendon (shown in FIG. 2 b) attached to the coracoid. Two threaded holes are drilled in the coracoid process, using the bone drill shown at 32 in FIG. 4 with a diameter of about 3 mm. A Kirschner wire 31 (FIG. 3) is inserted at a safe distance from the lateral tip of the process for guiding the bone drill, and the first hole is drilled. For placing the second hole, the drill is inserted through the drill guide shown at 33 in FIG. 5. A guide pin 33 a fixed at distance “d” from the center of the drill nut 33 b ensures a predetermined distance of about 9 mm from the first hole. Both holes are threaded now with the elongated tap shown at 34 in FIG. 6. For safeguarding the integrity of the transplant, inserts may be implanted in the holes.
  • Suture strands or flexible wires are now attached to the coracoid process for securing during separation by threading them through the holes. A suture loader 35, FIG. 7 a, and a suture retriever 36, in FIG. 7 b are provided in the kit for manipulating the sutures. An alternative flexible wire 37 is shown in FIG. 8. The sutures/wires are drawn out through the shaft of a T-handle cannula shown at 38 in FIG. 9 and are fixed at the proximal, handle section of the cannula for holding the coracoid graft during separation and transfer to the receiving site. Osteotomes, such as those shown at 39 a, 39 b in FIG. 10, serve to separate the lateral section of the coracoid. At least one osteotome is provided in the kit.
  • Preparing for the transfer of the separated section of the coracoid, the subscapularis muscle is dissected and split to allow for transferring the T-handle cannula 38 with the coracoid transplant to the anterior-inferior, damaged section of the glenoid. The cannulator shown at 40 in FIG. 11 is used to dissect tissue and to free a passage to the receiving site. A double cannula shown at 41 in FIG. 12 is inserted through the passage freed by the cannulator.
  • The two tubes “t” of the double cannula 41 are fixed, so that the distance of their centerlines “d” is identical to that of the drill guide 33 in FIG. 5. Handle “h” attached to the tube is offset at an angle “a” relative to the axis of the tubes and is formed to provide a firm grip. Angle “a” should be of an order of 40 to 65 degrees to allow maneuvering without obstructing the field of vision, and the length of the tubes measured from the handle should be about 150 mm. A window “w” is cut in each of the tubes near the distal end to enable observation of the interior of the two tubes, and the position of an instrument introduced into the tubes.
  • When the double cannula has been inserted to face the coracoid transplant, the T-handle cannula 38 is released from the sutures/wires attached to the graft and is withdrawn. Using a suture hook shown at 42 in FIG. 13, the sutures/wires are drawn through the tubes of the double cannula and an elongated cannulated holding device such as screws 43 shown in FIG. 14 are inserted over them into the tubes of the cannula. The screws are driven into the coracoid using a suitable instrument, such as the screw driver shown at 44 in FIG. 15 until the coracoid is firmly attached to the cannula. An alternative device for holding the separated coracoid bone transplant to the double cannula is shown at 45 in FIG. 16. The distal section of the spike in FIG. 16 is expandable to hold the device to the walls of the bores of the graft.
  • The sutures/wires holding the coracoid can now be removed. The exact positioning on the glenoid may be assisted by using a suitable instrument, such as the clamping device shown at 46 in FIGS. 17 a and 17 b. Once the transplant is in the correct position on the glenoid, Kirschner wires (31, FIG. 3) are driven into the glenoid through the cannulated devices holding the coracoid. The devices are now removed using the screwdriver 44, FIG. 15, or by releasing the spike 45.
  • The double cannula serves as a drill guide. With a cannulated drill 47 a, FIG. 18, inserted over one of the Kirschner wires, a first hole is drilled into the glenoid. Leaving the first drill in position, the other drill 47 b in FIG. 18, with the longer shaft, is used to drill a second hole over the second Kirschner wire.
  • After removing the drills, cannulated bone screws 48, FIG. 19, are inserted over the K-wires into the coracoid graft and are screwed part-way into the glenoid using the cannulated device driver with a long shaft 49, FIG. 20, for use with the cannulated bone screws.
  • The K-wires can now be pulled out and the optional bone clamping device is removed. The bone screws 48 are drawn tight and the double cannula is withdrawn to conclude the procedure.
  • While the invention has been described with respect to a preferred embodiment, it will be appreciated that this is set forth merely for purposes of example, and that many other variations, modifications and applications of the invention may be made.

Claims (18)

What is claimed is:
1. An arthroscopic drill guide for drilling a second bore in a bone section intended for transplanting over to a second bone, said second bore drilled a predetermined distance from a first bore formed in said bone section, comprising:
a handle;
an elongated shaft comprising a proximal end and a distal end, said proximal end coupled to said handle, said shaft configured to receive a bone drill;
a drill nut extending distally from said distal end of said shaft and configured to allow a bone drill received within said shaft to pass through;
an arm extending from said distal end of said shaft and at an angle with respect to a longitudinal axis of said shaft, said arm comprising a guide pin mounted on a distal end of said arm and extending parallel to said drill nut, said guide pin positioned a fixed predetermined distance from said drill nut; said guide pin configured to fit within said first bore formed in said bone section.
2. The drill guide according to claim 1, wherein said predetermined distance is 9 mm.
3. The drill guide according to claim 1, wherein said handle is a T-handle.
4. The drill guide according to claim 1, wherein said shaft is cylindrical.
5. The drill guide according to claim 1, wherein said shaft is configured to receive a bone drill of 3 mm in diameter.
6. The drill guide according to claim 1, wherein said drill guide is configured for insertion through an incision formed in an arthroscopic anterior shoulder instability procedure.
7. A method for drilling a bore in a bone at a predetermined distance from a first bore formed in said bone using a drill guide comprising a handle;
an elongated shaft comprising a proximal end and a distal end, said proximal end coupled to said handle, said shaft configured to receive a bone drill;
a drill nut extending distally from said distal end of said shaft and configured to allow a bone drill received within said shaft to pass through;
an arm extending from said distal end of said shaft and at an angle with respect to a longitudinal axis of said shaft, said arm comprising a guide pin mounted on a distal end of said arm and extending parallel to said drill nut, said guide pin positioned a fixed predetermined distance from said drill nut; said guide pin configured to fit within said first bore formed in said bone section;
said method comprising
drilling a first bore in said bone;
positioning said guide pin in said first bore;
passing a bone drill via said drill nut, and drilling a second bore in said
bone at a fixed, predetermined distance from said first bore.
8. The method according to claim 7, wherein said method is performed in the treatment of anterior shoulder instability, and wherein said bone is the coracoid.
9. The method according to claim 7, further comprising implanting inserts in said bores.
10. The method according to claim 7, further comprising tapping a thread in said bores.
11. The method according to claim 10, further comprising attaching suture strands or flexible wires to said bores by threading said suture strands or flexible wires into said bores.
12. The method according to claim 11, further comprising attaching said bone to a double cannula via said suture strands or flexible wires.
13. The method according to claim 12, further comprising separating a section of said bone in which said bores were formed to transfer said section using said double cannula.
14. A kit comprising:
a drill guide for drilling a second bore in a bone at a predetermined distance from a first bore formed in said bone, said drill guide comprising:
an elongated shaft;
a drill nut extending distally from a distal end of said shaft;
an arm extending from said distal end of said shaft and at an angle to a longitudinal axis of said shaft, said arm comprising a guide pin mounted on a distal end of said arm and extending parallel to said drill nut, said guide pin positioned a fixed predetermined distance from said drill nut;
a bone drill configured to be inserted through said elongated shaft of said drill guide; and
an elongated tap configured to thread one or more bores formed in a bone by said drill.
15. A kit according to claim 14, further comprising one or more inserts for implanting in said one or more bores.
16. A kit according to claim 14, further comprising suture strands or flexible wires threadable into said bores.
17. A kit according to claim 14, further comprising an osteotome for separating a section of said bone in which said one or more bores are formed.
18. A kit according to claim 17, further comprising a double cannula configured to attach to said bone section via said suture strands or flexible wires.
US14/937,908 2006-07-31 2015-11-11 Arthroscopic bone transplanting procedure, and medical instruments useful therein Abandoned US20160058456A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/937,908 US20160058456A1 (en) 2006-07-31 2015-11-11 Arthroscopic bone transplanting procedure, and medical instruments useful therein

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US83417306P 2006-07-31 2006-07-31
PCT/IL2007/000952 WO2008015670A2 (en) 2006-07-31 2007-07-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein
US37542209A 2009-11-06 2009-11-06
US14/142,971 US9220513B2 (en) 2006-07-31 2013-12-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein
US14/937,908 US20160058456A1 (en) 2006-07-31 2015-11-11 Arthroscopic bone transplanting procedure, and medical instruments useful therein

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/142,971 Continuation US9220513B2 (en) 2006-07-31 2013-12-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein

Publications (1)

Publication Number Publication Date
US20160058456A1 true US20160058456A1 (en) 2016-03-03

Family

ID=38705113

Family Applications (3)

Application Number Title Priority Date Filing Date
US12/375,422 Active 2029-10-13 US8617219B2 (en) 2006-07-31 2007-07-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein
US14/142,971 Active 2028-01-03 US9220513B2 (en) 2006-07-31 2013-12-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein
US14/937,908 Abandoned US20160058456A1 (en) 2006-07-31 2015-11-11 Arthroscopic bone transplanting procedure, and medical instruments useful therein

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US12/375,422 Active 2029-10-13 US8617219B2 (en) 2006-07-31 2007-07-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein
US14/142,971 Active 2028-01-03 US9220513B2 (en) 2006-07-31 2013-12-30 Arthroscopic bone transplanting procedure, and medical instruments useful therein

Country Status (6)

Country Link
US (3) US8617219B2 (en)
EP (2) EP3195817B1 (en)
JP (1) JP5129816B2 (en)
AU (1) AU2007280012B2 (en)
CA (2) CA2916476C (en)
WO (1) WO2008015670A2 (en)

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU5984099A (en) 1999-09-20 2001-04-24 Fractus, S.A. Multilevel antennae
BR9917541A (en) 1999-10-26 2002-08-13 Fractus Sa Arrangement of elements in an antenna with different frequency bands
ATE302473T1 (en) 2000-01-19 2005-09-15 Fractus Sa ROOM-FILLING MINIATURE ANTENNA
US9755314B2 (en) 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
EP1942551A1 (en) 2001-10-16 2008-07-09 Fractus, S.A. Multiband antenna
US6791500B2 (en) 2002-12-12 2004-09-14 Research In Motion Limited Antenna with near-field radiation control
US8738103B2 (en) 2006-07-18 2014-05-27 Fractus, S.A. Multiple-body-configuration multimedia and smartphone multifunction wireless devices
EP3195817B1 (en) 2006-07-31 2023-09-06 T.A.G. Medical Products Corporation Ltd. Drill guide useful in arthroscopic bone transplanting procedure
WO2008146291A2 (en) 2007-05-30 2008-12-04 T.A.G. Medical Products A Limited Partnership Piercing implement particularly useful as a medical implement for piercing body tissue, and method of using such implement for applying a suture to the body tissue
AU2008351859B2 (en) 2008-02-28 2013-12-05 T.A.G. Medical Devices - Agriculture Cooperative Ltd. Medical apparatus and method for attaching a suture to a bone
EP2135566B1 (en) * 2008-06-20 2011-03-09 Arthrex, Inc. Latarjet instrumentation
US9119644B2 (en) * 2010-08-21 2015-09-01 New York Society For The Ruptured And Crippled Maintaining The Hospital For Special Surgery Instruments for use in femoroacetabular impingement procedures
BE1019467A4 (en) * 2010-09-02 2012-07-03 Ceuster Marcel De SURGICAL APPLICATION SYSTEM TO ENLARGE THE GLENOID WEAR SURFACE.
US9445857B2 (en) 2011-07-21 2016-09-20 Smith & Nephew, Inc. Bone graft placement device
US9320557B2 (en) 2011-07-21 2016-04-26 Smith & Nephew, Inc. Implant retaining loop and guide wire extension
BE1020248A4 (en) * 2011-09-13 2013-07-02 Ceuster Marcel De SURGICAL APPLICATION SYSTEM TO ENLARGE THE GLENOID WEAR SURFACE: BLOCK.
US9782165B2 (en) 2011-11-11 2017-10-10 VentureMD Innovations, LLC Transosseous attachment
US10675014B2 (en) 2011-11-16 2020-06-09 Crossroads Extremity Systems, Llc Knotless soft tissue attachment
US10136883B2 (en) 2011-11-16 2018-11-27 VentureMD Innovations, LLC Method of anchoring a suture
US10470756B2 (en) 2011-11-16 2019-11-12 VentureMD Innovations, LLC Suture anchor and method
US10548585B2 (en) 2011-11-16 2020-02-04 VentureMD Innovations, LLC Soft tissue attachment
US20130158610A1 (en) 2011-12-16 2013-06-20 Depuy Mitek, Inc. Bone graft fixation systems and methods
EP2630935B1 (en) 2012-02-27 2014-12-31 Arthrex, Inc. Glenoid extension block
US10350078B2 (en) * 2012-06-27 2019-07-16 Arthrosurface, Inc. Devices, apparatuses, kits, and methods for repair of articular surface and/or articular rim
US9668757B2 (en) 2012-06-27 2017-06-06 Arthrosurface, Inc. Devices, apparatuses, kits, and methods for repair of articular surface and/or articular rim
US9687221B2 (en) 2013-02-13 2017-06-27 Venture MD Innovations, LLC Method of anchoring a suture
US10751161B2 (en) 2014-10-23 2020-08-25 Medos International Sárl Biceps tenodesis anchor implants
US10076374B2 (en) 2014-10-23 2018-09-18 Medos International Sárl Biceps tenodesis delivery tools
US10729419B2 (en) 2014-10-23 2020-08-04 Medos International Sarl Biceps tenodesis implants and delivery tools
US10856966B2 (en) 2014-10-23 2020-12-08 Medos International Sarl Biceps tenodesis implants and delivery tools
US10034742B2 (en) 2014-10-23 2018-07-31 Medos International Sarl Biceps tenodesis implants and delivery tools
US10806472B2 (en) * 2015-03-10 2020-10-20 Smith & Nephew, Inc. Open Latarjet for correction of anterior-inferior glenoid bone loss
US9693856B2 (en) 2015-04-22 2017-07-04 DePuy Synthes Products, LLC Biceps repair device
US9962174B2 (en) 2015-07-17 2018-05-08 Kator, Llc Transosseous method
US10820918B2 (en) 2015-07-17 2020-11-03 Crossroads Extremity Systems, Llc Transosseous guide and method
US10258401B2 (en) 2015-07-17 2019-04-16 Kator, Llc Transosseous guide
US10143462B2 (en) 2015-08-04 2018-12-04 Kator, Llc Transosseous suture anchor method
US9918769B2 (en) 2015-08-28 2018-03-20 Arthrex, Inc. Instrumentation and technique for sizing a bone reconstruction graft
US10327789B2 (en) 2015-12-29 2019-06-25 Medos International Sarl Methods and systems for preparing bone for a surgical procedure
US10231823B2 (en) 2016-04-08 2019-03-19 Medos International Sarl Tenodesis implants and tools
US10231824B2 (en) 2016-04-08 2019-03-19 Medos International Sárl Tenodesis anchoring systems and tools
US11331091B2 (en) * 2017-11-14 2022-05-17 Endovision Co., Ltd. Surgical instrument set for use during unilateral biportal endoscopy
US11213406B2 (en) 2019-07-10 2022-01-04 Arthrex, Inc. Graft preparation station for repairing bone defects
US20230301697A1 (en) * 2020-07-08 2023-09-28 National University Corporation Shiga University Of Medical Science Surgical instrument, medical tool set, and movement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320626A (en) * 1992-02-19 1994-06-14 Arthrex Inc. Endoscopic drill guide
US20030009173A1 (en) * 1992-02-19 2003-01-09 Mcguire David A. Femoral guide and methods of precisely forming bone tunnels in cruciate ligament reconstruction of the knee

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4381770A (en) * 1981-10-26 1983-05-03 Neufeld Alonzo J Method and apparatus for performing percutaneous bone surgery and new pin implant
FR2560764B1 (en) 1984-03-09 1988-05-13 Matco DAVIER FOR FRACTURE REDUCTION
US4860735A (en) * 1988-08-08 1989-08-29 The General Hospital Corporation Drill alignment guide for osteoplastic surgery
US5030219A (en) * 1990-01-22 1991-07-09 Boehringer Mannheim Corporation Glenoid component installation tools
GB9016205D0 (en) * 1990-07-24 1990-09-05 Chadwick Christopher J Interlocking intramedullary nails
US5395317A (en) * 1991-10-30 1995-03-07 Smith & Nephew Dyonics, Inc. Unilateral biportal percutaneous surgical procedure
US5637112A (en) 1992-06-08 1997-06-10 Orthopedic Systems, Inc. Apparatus for attaching suture to bone
IL109929A (en) 1994-06-08 1998-04-05 Gotfried Yehiel Surgical instrument for use during connection of a fractured bone
JP3532622B2 (en) * 1993-03-28 2004-05-31 ゴットフリード イェチエル Surgical instruments for percutaneous connection
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
WO1995020362A1 (en) * 1994-01-26 1995-08-03 Reiley Mark A Improved inflatable device for use in surgical protocol relating to fixation of bone
US5697932A (en) 1994-11-09 1997-12-16 Osteonics Corp. Bone graft delivery system and method
SE506404C2 (en) 1994-11-22 1997-12-15 Lars Johan Henrik Hansson Control instruments intended for fixing bone fragments in case of bone fracture
US5584839A (en) * 1994-12-12 1996-12-17 Gieringer; Robert E. Intraarticular drill guide and arthroscopic methods
US5562686A (en) 1995-04-19 1996-10-08 United States Surgical Corporation Apparaus and method for suturing body tissue
JPH0975366A (en) 1995-09-12 1997-03-25 M Ii Syst:Kk Guide for drilling collum femoris part
RU2087133C1 (en) 1996-01-11 1997-08-20 Гуськов Игорь Алексеевич Method for treating femoral neck fractures
JP3611934B2 (en) * 1996-10-23 2005-01-19 メイラ株式会社 Bone drilling device for ligament reconstruction
US5993466A (en) 1997-06-17 1999-11-30 Yoon; Inbae Suturing instrument with multiple rotatably mounted spreadable needle holders
CA2238117C (en) * 1997-05-30 2006-01-10 United States Surgical Corporation Method and instrumentation for implant insertion
DE29805703U1 (en) 1998-03-28 1998-08-27 Brehm Peter Bone grasping forceps
US6197033B1 (en) * 1998-04-09 2001-03-06 Sdgi Holdings, Inc. Guide sleeve for offset vertebrae
DE69919857T2 (en) * 1998-04-09 2005-09-01 SDGI Holdings, Inc., Wilmington Vertebral distractor
US6635739B2 (en) * 1999-10-15 2003-10-21 Theresa Siler-Khodr Non-mammalian GnRH analogs and uses thereof in regulation of fertility and pregnancy
US6656189B1 (en) * 2000-05-25 2003-12-02 Synthes (Usa) Radiolucent aiming guide
JP2002102236A (en) 2000-10-02 2002-04-09 Koseki Ika Kk Drill guide for patella
KR100893989B1 (en) * 2000-10-25 2009-04-20 키폰 에스에이알엘 Apparatus for compacting cancellous bone
US6511487B1 (en) 2000-11-28 2003-01-28 T. A. G. Medical Products Ltd. Suturing instrument and method
US6679888B2 (en) * 2001-05-29 2004-01-20 Synthes Femur lever
DE10261813B4 (en) * 2002-12-19 2004-10-28 Eska Implants Gmbh & Co. Centering aid for a joint head cap implant of an artificial hip joint
US7326216B2 (en) * 2003-04-02 2008-02-05 Warsaw Orthopedic, Inc. Methods and instrumentation for positioning implants in spinal disc space in an anterior lateral approach
WO2005053548A1 (en) 2003-12-03 2005-06-16 Synthes Ag Chur Device for repositioning bone fractures
JP2006006817A (en) * 2004-06-29 2006-01-12 Canon Star Kk Intraocular lens insertion instrument
US7927335B2 (en) * 2004-09-27 2011-04-19 Depuy Products, Inc. Instrument for preparing an implant support surface and associated method
ATE387146T1 (en) 2005-01-24 2008-03-15 Ami Gmbh DEVICE FOR SURGICAL CLOSURE OF A TROCARDIAL THROUGH
US20070005067A1 (en) 2005-06-21 2007-01-04 Brian Dross Arthoscopic method and apparatus for tissue attachment to bone
US20070073342A1 (en) 2005-09-27 2007-03-29 Innovative Spinal Technologies Annular access device using t-anchors
US8574239B2 (en) * 2005-09-28 2013-11-05 Hoya Corporation Intraocular lens insertion device
EP3195817B1 (en) 2006-07-31 2023-09-06 T.A.G. Medical Products Corporation Ltd. Drill guide useful in arthroscopic bone transplanting procedure
WO2008146291A2 (en) 2007-05-30 2008-12-04 T.A.G. Medical Products A Limited Partnership Piercing implement particularly useful as a medical implement for piercing body tissue, and method of using such implement for applying a suture to the body tissue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5320626A (en) * 1992-02-19 1994-06-14 Arthrex Inc. Endoscopic drill guide
US20030009173A1 (en) * 1992-02-19 2003-01-09 Mcguire David A. Femoral guide and methods of precisely forming bone tunnels in cruciate ligament reconstruction of the knee

Also Published As

Publication number Publication date
US20100069974A1 (en) 2010-03-18
US9220513B2 (en) 2015-12-29
JP5129816B2 (en) 2013-01-30
US8617219B2 (en) 2013-12-31
EP2051642A2 (en) 2009-04-29
US20140114317A1 (en) 2014-04-24
JP2009545364A (en) 2009-12-24
WO2008015670A9 (en) 2008-10-16
WO2008015670A2 (en) 2008-02-07
CA2660292A1 (en) 2008-02-07
EP3195817B1 (en) 2023-09-06
WO2008015670A3 (en) 2008-06-19
CA2916476A1 (en) 2008-02-07
EP2051642B1 (en) 2016-11-16
AU2007280012A1 (en) 2008-02-07
AU2007280012B2 (en) 2013-01-31
CA2660292C (en) 2016-03-08
CA2916476C (en) 2018-11-13
EP3195817A1 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
US9220513B2 (en) Arthroscopic bone transplanting procedure, and medical instruments useful therein
US20220280170A1 (en) Methods and systems for preparing bone for a surgical procedure
US7201756B2 (en) Device and method to assist in arthroscopic repair of detached connective tissue
US8840619B2 (en) Dovetail method of allograft transplantation
US20110282350A1 (en) Tibial cross-pin fixation techniques and instrumentation
US8795293B2 (en) Flipp tack pusher
CN110115611A (en) A kind of operation tool for caput femoris necrosis bone grafting
AU2013205475B2 (en) Arthroscopic Bone Transplanting Procedure, and Medical Instruments Useful Therein
AU2019286808B2 (en) Hip or shoulder prosthesis and positioning instrument
AU2017202188B2 (en) Arthroscopic Bone Transplanting Procedure, and Medical Instruments Useful Therein
JP2021517009A (en) Arthroscopic shoulder joint formation, its components, its instruments, and its methods
EP3395297B1 (en) Osteochondral local prosthetic insert
Lajtai et al. Arthroscopic Reconstruction of Glenoid Fractures
Cofield CHAPTER AT A GLANCE INTRODUCTION 131 SURGICAL ANATOMY 132 EVALUATION 132 SURGICAL INDICATIONS 132
Do et al. I AM DOING AN ACETABULAR REVISION

Legal Events

Date Code Title Description
AS Assignment

Owner name: T.A.G. MEDICAL PRODUCTS A LIMITED PARTNERSHIP, ISR

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LAFOSSE, LAURENT;NACHMIAS, SHAI;SIGNING DATES FROM 20090214 TO 20090215;REEL/FRAME:037819/0937

AS Assignment

Owner name: T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE L

Free format text: CHANGE OF NAME;ASSIGNOR:T.A.G. MEDICAL PRODUCTS A LIMITED PARTNERSHIP;REEL/FRAME:037731/0720

Effective date: 20110426

AS Assignment

Owner name: T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:OREN, RAN;REEL/FRAME:037781/0982

Effective date: 20110426

Owner name: T.A.G. MEDICAL DEVICES - AGRICULTURE COOPERATIVE L

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MOOR, DAN;REEL/FRAME:037781/0993

Effective date: 20110426

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION