US20160074092A1 - Electrosurgical system for communicating information embedded in an audio tone - Google Patents

Electrosurgical system for communicating information embedded in an audio tone Download PDF

Info

Publication number
US20160074092A1
US20160074092A1 US14/948,471 US201514948471A US2016074092A1 US 20160074092 A1 US20160074092 A1 US 20160074092A1 US 201514948471 A US201514948471 A US 201514948471A US 2016074092 A1 US2016074092 A1 US 2016074092A1
Authority
US
United States
Prior art keywords
electrosurgical
audio
electrosurgical generator
audio signal
audio output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/948,471
Inventor
Daniel A. Joseph
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US14/948,471 priority Critical patent/US20160074092A1/en
Assigned to TYCO HEALTHCARE GROUP LP reassignment TYCO HEALTHCARE GROUP LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JOSEPH, DANIEL A.
Assigned to COVIDIEN LP reassignment COVIDIEN LP CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: TYCO HEALTHCARE GROUP LP
Publication of US20160074092A1 publication Critical patent/US20160074092A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/1206Generators therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B18/1445Probes having pivoting end effectors, e.g. forceps at the distal end of a shaft, e.g. forceps or scissors at the end of a rigid rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • A61B2017/00123Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation and automatic shutdown
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00128Electrical control of surgical instruments with audible or visual output related to intensity or progress of surgical action
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00589Coagulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00601Cutting
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/0063Sealing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1442Probes having pivoting end effectors, e.g. forceps
    • A61B2018/1452Probes having pivoting end effectors, e.g. forceps including means for cutting
    • A61B2018/1455Probes having pivoting end effectors, e.g. forceps including means for cutting having a moving blade for cutting tissue grasped by the jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards

Definitions

  • the present disclosure relates to electrosurgical system. More particularly, the present disclosure relates to an electrosurgical system including an electrosurgical generator configured to communicate information embedded in an audible tone generated by the electrosurgical generator.
  • Electrosurgical systems that are configured to electrosurgically treat tissue are well known in the art. Electrosurgical systems, typically, include an electrosurgical generator that is configured to couple and provide electrosurgical energy, e.g., RF and/or microwave energy, to one or more suitable types of electrosurgical instruments, e.g., electrosurgical forceps.
  • electrosurgical energy e.g., RF and/or microwave energy
  • the electrosurgical generator and corresponding electrosurgical instrument may be configured to seal tissue.
  • the electrosurgical generators may be configured to provide electrosurgical energy to the electrosurgical instrument for specified time period and intensity level, commonly referred to as a “duty cycle.”
  • the electrosurgical generators may be configured to provide an audible indication to an end user, e.g., a surgeon.
  • the electrosurgical generators may be configured to provide an audible tone that represents the beginning of a duty cycle and an audible tone that represents an end of the duty cycle.
  • electrosurgical systems provide an effective method in electrosurgically treating tissue
  • electrosurgical generator that is configured to embed information pertaining to the electrosurgical generator, electrosurgical instrument coupled thereto and/or an electrosurgical procedure in an audible tone generated by the electrosurgical generator.
  • distal refers to the portion that is being described which is further from a user
  • proximal refers to the portion that is being described which is closer to a user
  • An aspect of the present disclosure provides an electrosurgical system configured for use in performing an electrosurgical procedure.
  • the electrosurgical system includes an electrosurgical generator including a computer having one or more microprocessors in operable communication with memory for storing information pertaining to the electrosurgical generator.
  • An audio output module is in operable communication with the computer and configured to generate an audio output having the information pertaining to the electrosurgical generator embedded therein. The embedded information may be encrypted.
  • a speaker is in operable communication with the audio output module for outputting the audio output.
  • An audio collector is configured to receive the audio output from the speaker and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use.
  • the audio collector may be components of the electrosurgical generator.
  • the deciphered information may be stored in memory of the electrosurgical generator.
  • the audio collector may include a computer system including a processor, memory, one or more storage devices, one or more input modules, one or more output modules and one or more communication ports configured to couple to the recording device.
  • the audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure.
  • the information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • the electrosurgical instrument includes a computer having one or more microprocessors that are in operable communication with memory for storing information pertaining to either the electrosurgical generator or the electrosurgical instrument.
  • An audio output module is configured to generate an audio output having the information pertaining to one of the electrosurgical generator and the electrosurgical instrument embedded therein. The embedded information may be encrypted.
  • One or more speakers are in operable communication with the audio output module for outputting the audio output received from the audio output module.
  • the electrosurgical generator is in operable communication with an audio collector configured to record the audio output from the speaker(s) and decipher the embedded audio so that the information pertaining to the electrosurgical generator and the electrosurgical instrument may be utilized for future use.
  • the audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure.
  • the information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • Another aspect of the present disclosure provides a method of transferring information pertaining to an electrosurgical generator and an electrosurgical instrument.
  • An audio output is generated and embedded with information pertaining to the electrosurgical generator and electrosurgical instrument.
  • the audio output is transmitted from the electrosurgical generator.
  • the audio output is recorded and, subsequently deciphered.
  • An audio output module may be provided to generate and, subsequently, embed the audio output with the information pertaining to one of the electrosurgical generator and the electrosurgical instrument.
  • a speaker may be provided to transmit the audio output.
  • An audio collector is provided to record and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use.
  • the audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure.
  • the method may include encrypting the embedded information prior to transmitting the audio output.
  • the information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • the method may also include regenerating the deciphered information into one of an audible and visual perceivable medium.
  • FIG. 1 is a block diagram of an electrosurgical system configured for use with an electrosurgical instrument according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a method for transferring information pertaining to an electrosurgical generator and an electrosurgical instrument configured for use with the electrosurgical system depicted in FIG. 1 .
  • an electrosurgical system 2 including an electrosurgical generator 4 and an electrosurgical device (e.g., an electrosurgical forceps, electrosurgical stapler, etc.) configured to electrosurgically treat tissue.
  • an electrosurgical device e.g., an electrosurgical forceps, electrosurgical stapler, etc.
  • the electrosurgical device is a bipolar endoscopic electrosurgical forceps 6 .
  • electrosurgical generator 4 includes electronic circuitry that generates radio frequency power for various electrosurgical procedures (e.g., sealing, cutting, coagulating, or ablating tissue).
  • the electrosurgical generator 4 may be configured to function in either monopolar or bipolar modes of operation.
  • a plurality of outputs may be configured for interfacing with the forceps 6 and/or other various electrosurgical instruments and or devices, e.g., a return pad, etc.
  • a duty cycle may include applying electrosurgical energy to tissue grasped between jaw members 8 , 10 of the forceps 6 for a predetermined amount of time to seal tissue. At the end of the duty cycle, the sealed tissue may be severed by either a cutting electrode or knife.
  • the electrosurgical generator 4 provides an audible tone (of suitable frequency) to indicate to a user when to begin applying electrosurgical energy to tissue and when to stop applying electrosurgical energy to tissue such that an effective tissue seal may be achieved.
  • the audio tone may be perceivable to a user.
  • the electrosurgical generator 4 may be configured to provide an audible tone that is not perceivable to a user, e.g., an audible tone in an ultrasonic frequency range. In either instance, the electrosurgical generator 4 is configured to embed the audible tone with information that is pertinent to the electrosurgical generator 4 , the forceps 6 and/or an electrosurgical procedure.
  • Electrosurgical generator 4 includes a computer 12 having one or more microprocessors 14 in operable communication with memory 16 (in embodiments, electrosurgical generator 4 may include flash memory 16 ) for storing information “I” pertaining to the electrosurgical generator 4 ( FIG. 1 ).
  • the information “I” pertaining to the electrosurgical generator 4 may include, but is not limited to date and time of an electrosurgical procedure, activation time of the electrosurgical generator 4 and/or the forceps 6 , type of electrosurgical instrument that is connected to the electrosurgical generator 4 , serial number of the electrosurgical generator 4 , amount of electrosurgical energy delivered to the forceps 6 , amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator 4 was shut off manually via a shut off button on the electrosurgical generator 4 or automatically as a result of an end of a duty cycle.
  • an embodiment of electrosurgical generator 4 may include a single-board computer 12 that includes the processor 14 and memory 16 . Such single-board computers are commercially available. Alternatively, the electrosurgical generator 4 may include a microcontroller that functions as the processor 14 .
  • electrosurgical generator 4 may include inputs (not shown) that allow a user to enter user input to the electrosurgical generator 4 .
  • the inputs may, for example, be a set of buttons, switches, sensors, etc. Those skilled in the art will appreciate the various kinds of inputs that can be used for a user to enter user input. Through the inputs the user may include specific information to be embedded on the audible tone that is generated by the electrosurgical generator 4 .
  • An audio output module 18 is in operable communication with the computer 12 and is configured to generate an audio output 20 that has information “I” embedded therein ( FIG. 1 ).
  • the audio output 20 is perceivable to a user, recorded, and decoded by an audio collector 22 , described in greater detail below.
  • audio output module 18 compiles relevant information stored in memory 16 that is to be embedded with the audio output 20 . That is, audio output module 18 translates the information “I” stored in memory 16 into a suitable audio output format such that the information “I” may be embedded with the audio output 20 .
  • the embedded audio output 20 may be encrypted to protect the embedded audio output 20 during transfer thereof.
  • Speaker 24 with supporting speaker components e.g., a driving circuit (not explicitly shown) is in operable communication with the audio output module 18 for outputting the embedded audio output 20 ( FIG. 1 ).
  • Speaker components may include one or more sound cards with a speaker jack to which a speaker 24 may be attached. Further, the speaker 24 and speaker components may be embodied in an integrated circuit capable of producing sound. Those skilled in the art will appreciate the commercially available speakers and sound components that may be utilized with the electrosurgical generator 4 to produce sound.
  • audio collector 22 may use a computer 26 to recognize the tones, the tone sequences, the tone frequencies, etc., and to receive and decode the embedded audio output 20 output by the speaker 24 .
  • the audio collector 22 may include computer 26 that is configured to listen for the embedded audio output 20 generated by the electrosurgical generator 4 and also configured to decode the embedded audio output 20 .
  • the decoded information is placed in memory 30 for future use thereof.
  • Typical components of a computer 26 may include a processor 28 , memory 30 , a storage device 32 , input devices 34 and output devices 36 .
  • one or more communication ports 38 may also be included in the audio controller 22 and/or computer 26 . It will be appreciated by those skilled in the art that many more components may be included in the audio collector 22 and/or computer 20 .
  • various output devices may include without limitation a monitor, speakers, a printer, etc.
  • Audio controller 22 includes a microphone 40 ( FIG. 1 ) including supporting components associated therewith.
  • Microphone 40 is used to detect the embedded audio output 20 and includes audio processing software (not shown) that used to decipher the embedded audio output 20 transmitted from the speaker 24 of the electrosurgical generator 4 .
  • Microphone 40 (and supporting components associated therewith) may be configured to communicate with one or more components of the computer 26 of the audio controller 22 .
  • the user may simply place the audio collector 22 in a vicinity of speaker 24 of the electrosurgical generator 4 .
  • the audio controller 22 may configured to function as part of an optional video-recording system 42 .
  • video-recording system 42 functions similar to conventional video-recording systems.
  • Audio output module 18 is utilized to generate an audio output, see FIG. 2 at step 200 .
  • the audio output is embedded with information pertaining to the electrosurgical generator 4 and electrosurgical instrument 6 , see FIG. 2 at step 202 .
  • the embedded audio output 20 is communicated to the speaker 24 that transmits the embedded audio output 20 , see FIG. 2 at step 204 .
  • the microphone 40 of the audio controller detects the embedded audio output 20 .
  • the audio controller 22 records the embedded audio output tone, deciphers the embedded audio output 20 and, subsequently, stores the deciphered information into memory 30 see FIG. 2 at steps 206 and 208 . Thereafter, the deciphered information “I” may be retrieved from memory 30 for future use thereof. For example, the deciphered information may be regenerated into either an audible and/or visual perceivable medium, e.g., monitor, speakers, a printer, etc.
  • the electrosurgical system 2 may be configured to include video recording system 42 .
  • This embodiment may be particularly useful in reviewing a surgical procedure, a training environment or for troubleshooting the electrosurgical generator 4 and/or forceps 6 .
  • a surgeon grasps tissue and activates the electrosurgical generator 4 .
  • the electrosurgical generator 4 emits an embedded audible tone 20 , but the surgeon does not hear the end of the embedded audible tone 20 and prematurely stops the transmission of electrosurgical energy to tissue to only partially treat the tissue, e.g., an ineffective tissue seal.
  • the surgeon utilizes a knife blade (or other suitable device) to sever the “partially” treated tissue.
  • a knife blade or other suitable device to sever the “partially” treated tissue.
  • the severed and “partially” treated tissue may bleed or burst, which, in turn, may cause patient concern.
  • the embedded audio output 20 can be reviewed to determine when the surgeon shut off the electrosurgical generator 4 . That is, to determine if the surgeon prematurely ended the duty-cycle or if the electrosurgical generator 4 was not functioning properly, thereby removing the guess-work as to who or what was at fault.

Abstract

An electrosurgical system is provided. The electrosurgical system includes an electrosurgical generator including a computer having one or more microprocessors in operable communication with memory for storing information pertaining to the electrosurgical generator. An audio output module is in operable communication with the computer and configured to generate an audio output having the information pertaining to the electrosurgical generator embedded therein. A speaker is in operable communication with the audio output module for outputting the audio output. A recording device is configured to record the audio output. An audio collector is configured to receive the audio output from the recording device and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use.

Description

    CROSS-REFERENCE TO RELATED APPLICATION
  • This application is a continuation of U.S. patent application Ser. No. 13/427,111, filed Mar. 22, 2012, now U.S. Pat. No. 9,198,711, the entire contents of which are hereby incorporated by reference herein.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to electrosurgical system. More particularly, the present disclosure relates to an electrosurgical system including an electrosurgical generator configured to communicate information embedded in an audible tone generated by the electrosurgical generator.
  • 2. Description of Related Art
  • Electrosurgical systems that are configured to electrosurgically treat tissue are well known in the art. Electrosurgical systems, typically, include an electrosurgical generator that is configured to couple and provide electrosurgical energy, e.g., RF and/or microwave energy, to one or more suitable types of electrosurgical instruments, e.g., electrosurgical forceps.
  • For example, and in one particular instance, the electrosurgical generator and corresponding electrosurgical instrument may be configured to seal tissue. In this instance, the electrosurgical generators may be configured to provide electrosurgical energy to the electrosurgical instrument for specified time period and intensity level, commonly referred to as a “duty cycle.” The electrosurgical generators may be configured to provide an audible indication to an end user, e.g., a surgeon. For example, and in certain instances, the electrosurgical generators may be configured to provide an audible tone that represents the beginning of a duty cycle and an audible tone that represents an end of the duty cycle.
  • SUMMARY
  • While the aforementioned electrosurgical systems provide an effective method in electrosurgically treating tissue, it may prove advantageous to provide an electrosurgical generator that is configured to embed information pertaining to the electrosurgical generator, electrosurgical instrument coupled thereto and/or an electrosurgical procedure in an audible tone generated by the electrosurgical generator.
  • Aspects of the present disclosure are described in detail with reference to the drawing figures wherein like reference numerals identify similar or identical elements. As used herein, the term “distal” refers to the portion that is being described which is further from a user, while the term “proximal” refers to the portion that is being described which is closer to a user.
  • An aspect of the present disclosure provides an electrosurgical system configured for use in performing an electrosurgical procedure. The electrosurgical system includes an electrosurgical generator including a computer having one or more microprocessors in operable communication with memory for storing information pertaining to the electrosurgical generator. An audio output module is in operable communication with the computer and configured to generate an audio output having the information pertaining to the electrosurgical generator embedded therein. The embedded information may be encrypted. A speaker is in operable communication with the audio output module for outputting the audio output. An audio collector is configured to receive the audio output from the speaker and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use.
  • The audio collector may be components of the electrosurgical generator. In this particular instance, the deciphered information may be stored in memory of the electrosurgical generator.
  • The audio collector may include a computer system including a processor, memory, one or more storage devices, one or more input modules, one or more output modules and one or more communication ports configured to couple to the recording device.
  • The audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure.
  • The information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • Another aspect of the present disclosure provides an electrosurgical generator configured to provide electrosurgical energy to an electrosurgical instrument. The electrosurgical instrument includes a computer having one or more microprocessors that are in operable communication with memory for storing information pertaining to either the electrosurgical generator or the electrosurgical instrument. An audio output module is configured to generate an audio output having the information pertaining to one of the electrosurgical generator and the electrosurgical instrument embedded therein. The embedded information may be encrypted. One or more speakers are in operable communication with the audio output module for outputting the audio output received from the audio output module.
  • In certain instances, the electrosurgical generator is in operable communication with an audio collector configured to record the audio output from the speaker(s) and decipher the embedded audio so that the information pertaining to the electrosurgical generator and the electrosurgical instrument may be utilized for future use.
  • In certain stances, the audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure. In other instances, the information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • Another aspect of the present disclosure provides a method of transferring information pertaining to an electrosurgical generator and an electrosurgical instrument. An audio output is generated and embedded with information pertaining to the electrosurgical generator and electrosurgical instrument. The audio output is transmitted from the electrosurgical generator. The audio output is recorded and, subsequently deciphered.
  • An audio output module may be provided to generate and, subsequently, embed the audio output with the information pertaining to one of the electrosurgical generator and the electrosurgical instrument. A speaker may be provided to transmit the audio output. An audio collector is provided to record and decipher the embedded audio so that the information pertaining to the electrosurgical generator may be utilized for future use. The audio collector may be a component of a video recording system configured to video-tape the electrosurgical procedure.
  • The method may include encrypting the embedded information prior to transmitting the audio output. The information pertaining to the electrosurgical generator may include, but is not limited to date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator and the electrosurgical instrument, type of electrosurgical instrument connected to the electrosurgical generator, electrosurgical generator serial number, amount of electrosurgical energy delivered to electrosurgical instrument, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator was shut off manually via a shut off button on the electrosurgical generator or automatically as a result of an end of a duty cycle.
  • The method may also include regenerating the deciphered information into one of an audible and visual perceivable medium.
  • BRIEF DESCRIPTION OF THE DRAWING
  • Various embodiments of the present disclosure are described hereinbelow with references to the drawings, wherein:
  • FIG. 1 is a block diagram of an electrosurgical system configured for use with an electrosurgical instrument according to an embodiment of the present disclosure; and
  • FIG. 2 is a flowchart of a method for transferring information pertaining to an electrosurgical generator and an electrosurgical instrument configured for use with the electrosurgical system depicted in FIG. 1.
  • DETAILED DESCRIPTION
  • Detailed embodiments of the present disclosure are disclosed herein; however, the disclosed embodiments are merely examples of the disclosure, which may be embodied in various forms. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a basis for the claims and as a representative basis for teaching one skilled in the art to variously employ the present disclosure in virtually any appropriately detailed structure.
  • Turning now to FIG. 1, an electrosurgical system 2 is illustrated including an electrosurgical generator 4 and an electrosurgical device (e.g., an electrosurgical forceps, electrosurgical stapler, etc.) configured to electrosurgically treat tissue. For the purposes herein, it is assumed that the electrosurgical device is a bipolar endoscopic electrosurgical forceps 6.
  • Continuing with reference to FIG. 1, electrosurgical generator 4 includes electronic circuitry that generates radio frequency power for various electrosurgical procedures (e.g., sealing, cutting, coagulating, or ablating tissue). The electrosurgical generator 4 may be configured to function in either monopolar or bipolar modes of operation. A plurality of outputs (not explicitly shown) may be configured for interfacing with the forceps 6 and/or other various electrosurgical instruments and or devices, e.g., a return pad, etc.
  • In accordance with the instant disclosure, and depending on the specific type of electrosurgical procedures that the electrosurgical generator 4 is set to provide electrosurgical energy for, the electrosurgical generator 4 utilizes one or more duty cycles to effect tissue. For example, and in one particular embodiment, a duty cycle may include applying electrosurgical energy to tissue grasped between jaw members 8, 10 of the forceps 6 for a predetermined amount of time to seal tissue. At the end of the duty cycle, the sealed tissue may be severed by either a cutting electrode or knife.
  • In accordance with the present disclosure, the electrosurgical generator 4 provides an audible tone (of suitable frequency) to indicate to a user when to begin applying electrosurgical energy to tissue and when to stop applying electrosurgical energy to tissue such that an effective tissue seal may be achieved. In embodiments, the audio tone may be perceivable to a user. Alternately, the electrosurgical generator 4 may be configured to provide an audible tone that is not perceivable to a user, e.g., an audible tone in an ultrasonic frequency range. In either instance, the electrosurgical generator 4 is configured to embed the audible tone with information that is pertinent to the electrosurgical generator 4, the forceps 6 and/or an electrosurgical procedure.
  • Electrosurgical generator 4 includes a computer 12 having one or more microprocessors 14 in operable communication with memory 16 (in embodiments, electrosurgical generator 4 may include flash memory 16) for storing information “I” pertaining to the electrosurgical generator 4 (FIG. 1). The information “I” pertaining to the electrosurgical generator 4 may include, but is not limited to date and time of an electrosurgical procedure, activation time of the electrosurgical generator 4 and/or the forceps 6, type of electrosurgical instrument that is connected to the electrosurgical generator 4, serial number of the electrosurgical generator 4, amount of electrosurgical energy delivered to the forceps 6, amount of electrosurgical energy delivered to tissue, and whether the electrosurgical generator 4 was shut off manually via a shut off button on the electrosurgical generator 4 or automatically as a result of an end of a duty cycle. Those skilled in the art will appreciate the various types of processors and memory that can be used for storing information “I.” For example, an embodiment of electrosurgical generator 4 may include a single-board computer 12 that includes the processor 14 and memory 16. Such single-board computers are commercially available. Alternatively, the electrosurgical generator 4 may include a microcontroller that functions as the processor 14.
  • In embodiments, electrosurgical generator 4 may include inputs (not shown) that allow a user to enter user input to the electrosurgical generator 4. The inputs may, for example, be a set of buttons, switches, sensors, etc. Those skilled in the art will appreciate the various kinds of inputs that can be used for a user to enter user input. Through the inputs the user may include specific information to be embedded on the audible tone that is generated by the electrosurgical generator 4.
  • An audio output module 18 is in operable communication with the computer 12 and is configured to generate an audio output 20 that has information “I” embedded therein (FIG. 1). In certain embodiments, the audio output 20 is perceivable to a user, recorded, and decoded by an audio collector 22, described in greater detail below. In operation, audio output module 18 compiles relevant information stored in memory 16 that is to be embedded with the audio output 20. That is, audio output module 18 translates the information “I” stored in memory 16 into a suitable audio output format such that the information “I” may be embedded with the audio output 20. Once the information “I” has been embedded with the audio output 20 it is output through a speaker 24 (FIG. 1). In certain embodiments, the embedded audio output 20 may be encrypted to protect the embedded audio output 20 during transfer thereof.
  • Speaker 24 with supporting speaker components, e.g., a driving circuit (not explicitly shown) is in operable communication with the audio output module 18 for outputting the embedded audio output 20 (FIG. 1). Speaker components may include one or more sound cards with a speaker jack to which a speaker 24 may be attached. Further, the speaker 24 and speaker components may be embodied in an integrated circuit capable of producing sound. Those skilled in the art will appreciate the commercially available speakers and sound components that may be utilized with the electrosurgical generator 4 to produce sound.
  • Continuing with reference to FIG. 1, audio collector 22 may use a computer 26 to recognize the tones, the tone sequences, the tone frequencies, etc., and to receive and decode the embedded audio output 20 output by the speaker 24. For example, and as illustrated in FIG. 1, the audio collector 22 may include computer 26 that is configured to listen for the embedded audio output 20 generated by the electrosurgical generator 4 and also configured to decode the embedded audio output 20. The decoded information is placed in memory 30 for future use thereof. Typical components of a computer 26 may include a processor 28, memory 30, a storage device 32, input devices 34 and output devices 36. In certain embodiments, one or more communication ports 38 may also be included in the audio controller 22 and/or computer 26. It will be appreciated by those skilled in the art that many more components may be included in the audio collector 22 and/or computer 20. For example, various output devices may include without limitation a monitor, speakers, a printer, etc.
  • Audio controller 22 includes a microphone 40 (FIG. 1) including supporting components associated therewith. Microphone 40 is used to detect the embedded audio output 20 and includes audio processing software (not shown) that used to decipher the embedded audio output 20 transmitted from the speaker 24 of the electrosurgical generator 4. Microphone 40 (and supporting components associated therewith) may be configured to communicate with one or more components of the computer 26 of the audio controller 22. To provide the embedded audio output 20 to the audio collector 22, the user may simply place the audio collector 22 in a vicinity of speaker 24 of the electrosurgical generator 4.
  • In certain instances, the audio controller 22 may configured to function as part of an optional video-recording system 42. Other than including the previously described capabilities of the audio controller 22, video-recording system 42 functions similar to conventional video-recording systems.
  • Operation of electrosurgical system 2 is described in terms of a method for transferring information pertaining to an electrosurgical generator 4 and an electrosurgical instrument 6. Audio output module 18 is utilized to generate an audio output, see FIG. 2 at step 200. The audio output is embedded with information pertaining to the electrosurgical generator 4 and electrosurgical instrument 6, see FIG. 2 at step 202. The embedded audio output 20 is communicated to the speaker 24 that transmits the embedded audio output 20, see FIG. 2 at step 204.
  • The microphone 40 of the audio controller detects the embedded audio output 20. The audio controller 22 records the embedded audio output tone, deciphers the embedded audio output 20 and, subsequently, stores the deciphered information into memory 30 see FIG. 2 at steps 206 and 208. Thereafter, the deciphered information “I” may be retrieved from memory 30 for future use thereof. For example, the deciphered information may be regenerated into either an audible and/or visual perceivable medium, e.g., monitor, speakers, a printer, etc.
  • From the foregoing and with reference to the various figure drawings, those skilled in the art will appreciate that certain modifications can also be made to the present disclosure without departing from the scope of the same. For example, and as noted above, the electrosurgical system 2 may be configured to include video recording system 42. This embodiment may be particularly useful in reviewing a surgical procedure, a training environment or for troubleshooting the electrosurgical generator 4 and/or forceps 6.
  • For example, in use, a surgeon grasps tissue and activates the electrosurgical generator 4. The electrosurgical generator 4 emits an embedded audible tone 20, but the surgeon does not hear the end of the embedded audible tone 20 and prematurely stops the transmission of electrosurgical energy to tissue to only partially treat the tissue, e.g., an ineffective tissue seal.
  • Subsequently, the surgeon utilizes a knife blade (or other suitable device) to sever the “partially” treated tissue. As can be appreciated, there exists a likelihood that the severed and “partially” treated tissue may bleed or burst, which, in turn, may cause patient concern.
  • With the presently disclosed disclosure, the embedded audio output 20 can be reviewed to determine when the surgeon shut off the electrosurgical generator 4. That is, to determine if the surgeon prematurely ended the duty-cycle or if the electrosurgical generator 4 was not functioning properly, thereby removing the guess-work as to who or what was at fault.
  • While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (12)

1-19. (canceled)
20. An electrosurgical generator comprising:
a memory configured to store data pertaining to the electrosurgical generator;
a processor in operable communication with the memory;
an audio output module coupled to the processor and configured to generate an audio signal encoding the data;
a speaker coupled to the audio output module and configured to output the audio signal; and
an audio collector configured to receive the audio signal and decode the data encoded in the audio signal.
21. The electrosurgical generator according to claim 20, wherein the audio output module is further configured to encrypt the audio signal.
22. The electrosurgical generator according to claim 21, the audio collector is configured to decrypt the encrypted audio signal.
23. The electrosurgical generator according to claim 20, wherein the data is selected from the group consisting of date and time of an electrosurgical procedure, activation time of the electrosurgical generator, type of an electrosurgical instrument connected to the electrosurgical generator, serial number of the electrosurgical generator, amount of electrosurgical energy delivered to an electrosurgical instrument, and shut off condition.
24. An electrosurgical system comprising:
an electrosurgical instrument;
an electrosurgical generator configured to supply electrosurgical energy to the electrosurgical instrument, the electrosurgical generator including:
a memory configured to store data pertaining to the electrosurgical generator;
a processor in operable communication with the memory;
an audio output module coupled to the processor and configured to generate an audio signal encoding the data;
a speaker coupled to the audio output module and configured to output the audio signal; and
an audio collector configured to receive the audio signal and decode the data encoded in the audio signal.
25. The electrosurgical system according to claim 24, wherein the audio output module is further configured to encrypt the audio signal.
26. The electrosurgical system according to claim 25, the audio collector is configured to decrypt the encrypted audio signal.
27. The electrosurgical system according to claim 24, wherein the data is selected from the group consisting of date and time of an electrosurgical procedure, activation time of one of the electrosurgical generator or the electrosurgical instrument, type of the electrosurgical instrument, serial number of at least one of the electrosurgical generator or the electrosurgical instrument, amount of electrosurgical energy delivered to the electrosurgical instrument, and shut off condition.
28. A method for transferring information pertaining to an electrosurgical generator, comprising:
encoding data in an audio signal at an audio output module, the data pertaining to an electrosurgical generator;
outputting the audio signal through a speaker coupled to the audio signal;
receiving the audio signal at an audio collector; and
decoding the data encoded in the audio signal at the audio collector.
29. The method according to claim 28, further comprising:
encrypting the audio signal prior to outputting the audio signal.
30. The method according to claim 29, further comprising:
decrypting the audio signal at the audio collector.
US14/948,471 2012-03-22 2015-11-23 Electrosurgical system for communicating information embedded in an audio tone Abandoned US20160074092A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/948,471 US20160074092A1 (en) 2012-03-22 2015-11-23 Electrosurgical system for communicating information embedded in an audio tone

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/427,111 US9198711B2 (en) 2012-03-22 2012-03-22 Electrosurgical system for communicating information embedded in an audio tone
US14/948,471 US20160074092A1 (en) 2012-03-22 2015-11-23 Electrosurgical system for communicating information embedded in an audio tone

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US13/427,111 Continuation US9198711B2 (en) 2012-03-22 2012-03-22 Electrosurgical system for communicating information embedded in an audio tone

Publications (1)

Publication Number Publication Date
US20160074092A1 true US20160074092A1 (en) 2016-03-17

Family

ID=49212486

Family Applications (2)

Application Number Title Priority Date Filing Date
US13/427,111 Active 2034-10-02 US9198711B2 (en) 2012-03-22 2012-03-22 Electrosurgical system for communicating information embedded in an audio tone
US14/948,471 Abandoned US20160074092A1 (en) 2012-03-22 2015-11-23 Electrosurgical system for communicating information embedded in an audio tone

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US13/427,111 Active 2034-10-02 US9198711B2 (en) 2012-03-22 2012-03-22 Electrosurgical system for communicating information embedded in an audio tone

Country Status (1)

Country Link
US (2) US9198711B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459479A1 (en) * 2017-09-25 2019-03-27 Covidien LP Systems and methods for providing sensory feedback with an ablation system

Families Citing this family (116)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9375250B2 (en) 2012-04-09 2016-06-28 Covidien Lp Method for employing single fault safe redundant signals
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9192425B2 (en) 2012-06-26 2015-11-24 Covidien Lp System and method for testing electrosurgical generators
US9456862B2 (en) 2013-02-19 2016-10-04 Covidien Lp Electrosurgical generator and system
US9519021B2 (en) 2013-03-11 2016-12-13 Covidien Lp Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9895186B2 (en) 2013-03-11 2018-02-20 Covidien Systems and methods for detecting abnormalities within a circuit of an electrosurgical generator
US9498276B2 (en) 2013-03-15 2016-11-22 Covidien Lp Systems and methods for narrowband real impedance control in electrosurgery
US9283028B2 (en) 2013-03-15 2016-03-15 Covidien Lp Crest-factor control of phase-shifted inverter
US10729484B2 (en) 2013-07-16 2020-08-04 Covidien Lp Electrosurgical generator with continuously and arbitrarily variable crest factor
US10610285B2 (en) 2013-07-19 2020-04-07 Covidien Lp Electrosurgical generators
US9872719B2 (en) 2013-07-24 2018-01-23 Covidien Lp Systems and methods for generating electrosurgical energy using a multistage power converter
US9636165B2 (en) 2013-07-29 2017-05-02 Covidien Lp Systems and methods for measuring tissue impedance through an electrosurgical cable
US9839469B2 (en) 2013-09-24 2017-12-12 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US9770283B2 (en) 2013-09-24 2017-09-26 Covidien Lp Systems and methods for improving efficiency of electrosurgical generators
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10292753B2 (en) 2014-12-02 2019-05-21 Covidien Lp Electrosurgical generators and sensors
US10278764B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US10281496B2 (en) 2014-12-02 2019-05-07 Covidien Lp Electrosurgical generators and sensors
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11026687B2 (en) 2017-10-30 2021-06-08 Cilag Gmbh International Clip applier comprising clip advancing systems
US11129636B2 (en) 2017-10-30 2021-09-28 Cilag Gmbh International Surgical instruments comprising an articulation drive that provides for high articulation angles
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US20190201039A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Situational awareness of electrosurgical systems
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US20190201146A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11612444B2 (en) 2017-12-28 2023-03-28 Cilag Gmbh International Adjustment of a surgical device function based on situational awareness
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11937769B2 (en) 2017-12-28 2024-03-26 Cilag Gmbh International Method of hub communication, processing, storage and display
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11026751B2 (en) 2017-12-28 2021-06-08 Cilag Gmbh International Display of alignment of staple cartridge to prior linear staple line
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US20190201139A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Communication arrangements for robot-assisted surgical platforms
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11589915B2 (en) 2018-03-08 2023-02-28 Cilag Gmbh International In-the-jaw classifier based on a model
US11389188B2 (en) 2018-03-08 2022-07-19 Cilag Gmbh International Start temperature of blade
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11213294B2 (en) 2018-03-28 2022-01-04 Cilag Gmbh International Surgical instrument comprising co-operating lockout features
US11259806B2 (en) 2018-03-28 2022-03-01 Cilag Gmbh International Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein
US11678925B2 (en) 2018-09-07 2023-06-20 Cilag Gmbh International Method for controlling an energy module output
US11804679B2 (en) 2018-09-07 2023-10-31 Cilag Gmbh International Flexible hand-switch circuit
US11923084B2 (en) 2018-09-07 2024-03-05 Cilag Gmbh International First and second communication protocol arrangement for driving primary and secondary devices through a single port
US20200078071A1 (en) 2018-09-07 2020-03-12 Ethicon Llc Instrument tracking arrangement based on real time clock information
US11291444B2 (en) 2019-02-19 2022-04-05 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
US11464511B2 (en) 2019-02-19 2022-10-11 Cilag Gmbh International Surgical staple cartridges with movable authentication key arrangements
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11218822B2 (en) 2019-03-29 2022-01-04 Cilag Gmbh International Audio tone construction for an energy module of a modular energy system
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD928726S1 (en) 2019-09-05 2021-08-24 Cilag Gmbh International Energy module monopolar port
USD939545S1 (en) 2019-09-05 2021-12-28 Cilag Gmbh International Display panel or portion thereof with graphical user interface for energy module
USD924139S1 (en) 2019-09-05 2021-07-06 Ethicon Llc Energy module with a backplane connector
USD928725S1 (en) 2019-09-05 2021-08-24 Cilag Gmbh International Energy module
US11857252B2 (en) 2021-03-30 2024-01-02 Cilag Gmbh International Bezel with light blocking features for modular energy system
US11950860B2 (en) 2021-03-30 2024-04-09 Cilag Gmbh International User interface mitigation techniques for modular energy systems

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617927A (en) * 1984-02-29 1986-10-21 Aspen Laboratories, Inc. Electrosurgical unit
US20030169862A1 (en) * 2002-03-05 2003-09-11 Howard Michael L. Audio status communication from an embedded device
US20070066971A1 (en) * 2005-09-21 2007-03-22 Podhajsky Ronald J Method and system for treating pain during an electrosurgical procedure
US20090157071A1 (en) * 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090248007A1 (en) * 2008-03-31 2009-10-01 Applied Medical Resources Corporation Electrosurgical system
US20100094271A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp Apparatus, System and Method for Monitoring Tissue During an Electrosurgical Procedure
US20100228249A1 (en) * 2009-03-09 2010-09-09 Intuitive Surgical, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US20110172659A1 (en) * 2010-01-13 2011-07-14 Vivant Medical, Inc. Ablation Device With User Interface at Device Handle, System Including Same, and Method of Ablating Tissue Using Same
US20120078139A1 (en) * 2009-10-09 2012-03-29 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE179607C (en) 1906-11-12
DE390937C (en) 1922-10-13 1924-03-03 Adolf Erb Device for internal heating of furnace furnaces for hardening, tempering, annealing, quenching and melting
DE1099658B (en) 1959-04-29 1961-02-16 Siemens Reiniger Werke Ag Automatic switch-on device for high-frequency surgical devices
FR1275415A (en) 1960-09-26 1961-11-10 Device for detecting disturbances for electrical installations, in particular electrosurgery
DE1139927B (en) 1961-01-03 1962-11-22 Friedrich Laber High-frequency surgical device
DE1149832C2 (en) 1961-02-25 1977-10-13 Siemens AG, 1000 Berlin und 8000 München HIGH FREQUENCY SURGICAL EQUIPMENT
FR1347865A (en) 1962-11-22 1964-01-04 Improvements to diathermo-coagulation devices
DE1439302B2 (en) 1963-10-26 1971-05-19 Siemens AG, 1000 Berlin u 8000 München High frequency surgical device
GB1480736A (en) 1973-08-23 1977-07-20 Matburn Ltd Electrodiathermy apparatus
DE2455174A1 (en) 1973-11-21 1975-05-22 Termiflex Corp INPUT / OUTPUT DEVICE FOR DATA EXCHANGE WITH DATA PROCESSING DEVICES
DE2407559C3 (en) 1974-02-16 1982-01-21 Dornier System Gmbh, 7990 Friedrichshafen Heat probe
US4237887A (en) 1975-01-23 1980-12-09 Valleylab, Inc. Electrosurgical device
DE2504280C3 (en) 1975-02-01 1980-08-28 Hans Heinrich Prof. Dr. 8035 Gauting Meinke Device for cutting and / or coagulating human tissue with high frequency current
CA1064581A (en) 1975-06-02 1979-10-16 Stephen W. Andrews Pulse control circuit and method for electrosurgical units
DE2540968C2 (en) 1975-09-13 1982-12-30 Erbe Elektromedizin GmbH, 7400 Tübingen Device for switching on the coagulation current of a bipolar coagulation forceps
US4094320A (en) 1976-09-09 1978-06-13 Valleylab, Inc. Electrosurgical safety circuit and method of using same
FR2390968A1 (en) 1977-05-16 1978-12-15 Skovajsa Joseph Local acupuncture treatment appts. - has oblong head with end aperture and contains laser diode unit (NL 20.11.78)
SU727201A2 (en) 1977-11-02 1980-04-15 Киевский Научно-Исследовательский Институт Нейрохирургии Electric surgical apparatus
DE2803275C3 (en) 1978-01-26 1980-09-25 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Remote switching device for switching a monopolar HF surgical device
DE2823291A1 (en) 1978-05-27 1979-11-29 Rainer Ing Grad Koch Coagulation instrument automatic HF switching circuit - has first lead to potentiometer and second to transistor base
DE2946728A1 (en) 1979-11-20 1981-05-27 Erbe Elektromedizin GmbH & Co KG, 7400 Tübingen HF surgical appts. for use with endoscope - provides cutting or coagulation current at preset intervals and of selected duration
JPS5778844A (en) 1980-11-04 1982-05-17 Kogyo Gijutsuin Lasre knife
DE3045996A1 (en) 1980-12-05 1982-07-08 Medic Eschmann Handelsgesellschaft für medizinische Instrumente mbH, 2000 Hamburg Electro-surgical scalpel instrument - has power supply remotely controlled by surgeon
FR2502935B1 (en) 1981-03-31 1985-10-04 Dolley Roger METHOD AND DEVICE FOR CONTROLLING THE COAGULATION OF TISSUES USING A HIGH FREQUENCY CURRENT
DE3120102A1 (en) 1981-05-20 1982-12-09 F.L. Fischer GmbH & Co, 7800 Freiburg ARRANGEMENT FOR HIGH-FREQUENCY COAGULATION OF EGG WHITE FOR SURGICAL PURPOSES
FR2517953A1 (en) 1981-12-10 1983-06-17 Alvar Electronic Diaphanometer for optical examination of breast tissue structure - measures tissue transparency using two plates and optical fibre bundle cooperating with photoelectric cells
FR2573301B3 (en) 1984-11-16 1987-04-30 Lamidey Gilles SURGICAL PLIERS AND ITS CONTROL AND CONTROL APPARATUS
DE3510586A1 (en) 1985-03-23 1986-10-02 Erbe Elektromedizin GmbH, 7400 Tübingen Control device for a high-frequency surgical instrument
DE3604823C2 (en) 1986-02-15 1995-06-01 Lindenmeier Heinz High frequency generator with automatic power control for high frequency surgery
EP0246350A1 (en) 1986-05-23 1987-11-25 Erbe Elektromedizin GmbH. Coagulation electrode
JPS635876A (en) 1986-06-27 1988-01-11 Hitachi Seiko Ltd Arc welding machine
DE3638748A1 (en) 1986-11-13 1988-06-01 Hirschmann Radiotechnik CAPACITIVE DISCONNECT
US5073167A (en) 1987-06-26 1991-12-17 M/A-Com, Inc. In-line microwave warming apparatus
US4931047A (en) 1987-09-30 1990-06-05 Cavitron, Inc. Method and apparatus for providing enhanced tissue fragmentation and/or hemostasis
DE68925215D1 (en) 1988-01-20 1996-02-08 G2 Design Ltd Diathermy unit
EP0336742A3 (en) 1988-04-08 1990-05-16 Bristol-Myers Company Method and apparatus for the calibration of electrosurgical apparatus
DE3904558C2 (en) 1989-02-15 1997-09-18 Lindenmeier Heinz Automatically power-controlled high-frequency generator for high-frequency surgery
DE58908600D1 (en) 1989-04-01 1994-12-08 Erbe Elektromedizin Device for monitoring the application of neutral electrodes in high-frequency surgery.
US5010568A (en) 1989-04-04 1991-04-23 Sparton Corporation Remote meter reading method and apparatus
DE3942998C2 (en) 1989-12-27 1998-11-26 Delma Elektro Med App High frequency electrosurgical unit
DE4205213A1 (en) 1992-02-20 1993-08-26 Delma Elektro Med App HIGH FREQUENCY SURGERY DEVICE
DE4206433A1 (en) 1992-02-29 1993-09-02 Bosch Gmbh Robert Capacity separator for inner and outer leads of HF coaxial cable to be coupled together - has electrically conductive casing in two coaxial parts, each coupled to outer conductor and leaving meandering air gap in-between
US5348554A (en) 1992-12-01 1994-09-20 Cardiac Pathways Corporation Catheter for RF ablation with cooled electrode
DE4339049C2 (en) 1993-11-16 2001-06-28 Erbe Elektromedizin Surgical system configuration facility
DE69432049T2 (en) 1994-03-28 2003-11-06 British Telecomm security system
US5774529A (en) 1994-09-28 1998-06-30 Johannsen; James Apparatus to provide a remote display of the operating condition of a water treatment system
DE19506363A1 (en) 1995-02-24 1996-08-29 Frost Lore Geb Haupt Non-invasive thermometry in organs under hyperthermia and coagulation conditions
US5837001A (en) 1995-12-08 1998-11-17 C. R. Bard Radio frequency energy delivery system for multipolar electrode catheters
DE19643127A1 (en) 1996-10-18 1998-04-23 Berchtold Gmbh & Co Geb High frequency surgical device and method for its operation
DE19717411A1 (en) 1997-04-25 1998-11-05 Aesculap Ag & Co Kg Monitoring of thermal loading of patient tissue in contact region of neutral electrode of HF treatment unit
US5838558A (en) 1997-05-19 1998-11-17 Trw Inc. Phase staggered full-bridge converter with soft-PWM switching
DE59712260D1 (en) 1997-06-06 2005-05-12 Endress & Hauser Gmbh & Co Kg Microwave level gauge
EP0887989A3 (en) 1997-06-25 2001-02-28 FISHER & PAYKEL LIMITED Appliance communication system
US6267761B1 (en) * 1997-09-09 2001-07-31 Sherwood Services Ag Apparatus and method for sealing and cutting tissue
US6327365B1 (en) 1997-10-31 2001-12-04 Ncr Corporation Acoustic coupling product label and method of using
US5997170A (en) 1997-11-03 1999-12-07 Ident, Inc. System and method for reporting vending status
DE19848540A1 (en) 1998-10-21 2000-05-25 Reinhard Kalfhaus Circuit layout and method for operating a single- or multiphase current inverter connects an AC voltage output to a primary winding and current and a working resistance to a transformer's secondary winding and current.
US6147601A (en) 1999-01-09 2000-11-14 Heat - Timer Corp. Electronic message delivery system utilizable in the monitoring of remote equipment and method of same
US6160477A (en) 1999-01-09 2000-12-12 Heat-Timer Corp. Electronic message delivery system utilizable in the monitoring of remote equipment and method of same
US6211782B1 (en) 1999-01-09 2001-04-03 Heat-Timer Corporation Electronic message delivery system utilizable in the monitoring of remote equipment and method of same
US6203541B1 (en) 1999-04-23 2001-03-20 Sherwood Services Ag Automatic activation of electrosurgical generator bipolar output
US7066933B2 (en) 2000-08-08 2006-06-27 Erbe Elektromedizin Gmbh High-frequency generator for performing high-frequency surgery having adjustable power limitation, and method for controlling the power limitation
JP4499893B2 (en) 2000-08-23 2010-07-07 オリンパス株式会社 Electrosurgical equipment
DE10061278B4 (en) 2000-12-08 2004-09-16 GFD-Gesellschaft für Diamantprodukte mbH Instrument for surgical purposes
DE10218895B4 (en) 2002-04-26 2006-12-21 Storz Endoskop Produktions Gmbh High-frequency surgical generator
GB0328708D0 (en) 2003-12-11 2004-01-14 Ncr Int Inc An acoustic coupling product label
DE102005011171A1 (en) 2004-03-11 2005-09-29 Werma Signaltechnik Gmbh + Co. Kg signaller
US8086425B2 (en) 2004-06-14 2011-12-27 Papadimitriou Wanda G Autonomous fitness for service assessment
US8050874B2 (en) 2004-06-14 2011-11-01 Papadimitriou Wanda G Autonomous remaining useful life estimation
US7240010B2 (en) 2004-06-14 2007-07-03 Papadimitriou Wanda G Voice interaction with and control of inspection equipment
US7231320B2 (en) 2004-11-22 2007-06-12 Papadimitriou Wanda G Extraction of imperfection features through spectral analysis
DE102004054575A1 (en) 2004-11-11 2006-05-24 Erbe Elektromedizin Gmbh Control for an electrosurgical unit
US8734438B2 (en) 2005-10-21 2014-05-27 Covidien Ag Circuit and method for reducing stored energy in an electrosurgical generator
US7845537B2 (en) * 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8204189B2 (en) 2006-08-11 2012-06-19 Fisher & Paykel Appliances Limited Data download system and method
US20080103495A1 (en) 2006-10-31 2008-05-01 Takashi Mihori High frequency cauterization power supply apparatus
USD574323S1 (en) 2007-02-12 2008-08-05 Tyco Healthcare Group Lp Generator
DE102008058737B4 (en) 2008-09-08 2019-12-12 Erbe Elektromedizin Gmbh Electrosurgical generator
US8397971B2 (en) * 2009-02-05 2013-03-19 Ethicon Endo-Surgery, Inc. Sterilizable surgical instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4617927A (en) * 1984-02-29 1986-10-21 Aspen Laboratories, Inc. Electrosurgical unit
US20030169862A1 (en) * 2002-03-05 2003-09-11 Howard Michael L. Audio status communication from an embedded device
US20070066971A1 (en) * 2005-09-21 2007-03-22 Podhajsky Ronald J Method and system for treating pain during an electrosurgical procedure
US20090157071A1 (en) * 2006-01-24 2009-06-18 Covidien Ag System and Method for Tissue Sealing
US20090248007A1 (en) * 2008-03-31 2009-10-01 Applied Medical Resources Corporation Electrosurgical system
US20100094271A1 (en) * 2008-10-10 2010-04-15 Tyco Healthcare Group Lp Apparatus, System and Method for Monitoring Tissue During an Electrosurgical Procedure
US20100228249A1 (en) * 2009-03-09 2010-09-09 Intuitive Surgical, Inc. User interfaces for electrosurgical tools in robotic surgical systems
US20120078139A1 (en) * 2009-10-09 2012-03-29 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US20110172659A1 (en) * 2010-01-13 2011-07-14 Vivant Medical, Inc. Ablation Device With User Interface at Device Handle, System Including Same, and Method of Ablating Tissue Using Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3459479A1 (en) * 2017-09-25 2019-03-27 Covidien LP Systems and methods for providing sensory feedback with an ablation system
US11259860B2 (en) 2017-09-25 2022-03-01 Covidien Lp Systems and methods for providing sensory feedback with an ablation system

Also Published As

Publication number Publication date
US9198711B2 (en) 2015-12-01
US20130253501A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
US20160074092A1 (en) Electrosurgical system for communicating information embedded in an audio tone
US11033322B2 (en) Circuit topologies for combined generator
EP3355809B1 (en) Circuits for supplying isolated direct current (dc) voltage to surgical instruments
US20210236195A1 (en) Surgical instrument with user adaptable algorithms
AU2012227304B2 (en) Surgical generator for ultrasonic and electrosurgical devices
US7744593B2 (en) High-frequency power supply device and electrosurgical device
JP2018531071A6 (en) Method and apparatus for selecting operation of a surgical instrument based on user intent
US20060047199A1 (en) Foot switch and output system having foot switch
US20110238063A1 (en) Method of Tracking Reposable Instrument Usage
JP2014500058A (en) Surgical instrument with modular end effector and detection mechanism
JP2004089684A (en) Surgery system
JP2021510555A (en) Bipolar combination device that automatically adjusts pressure based on energy modality
JP2016517760A (en) Electrosurgical instrument for excision of tissue mass from human body and animals
CN107684456A (en) A kind of operating robot ultrasound knife control system
KR20080079353A (en) Ultrasound system
Terris et al. Ultrasonic technology facilitates minimal access thyroid surgery
JP2022512106A (en) Modular electrosurgical system and modules about the system
WO2019186502A1 (en) Method for smoke evacuation for surgical hub
CN107334511A (en) A kind of gun-type ultrasound knife with Neural monitoring function in art
CN111462428A (en) Voice prompt method, device, equipment and storage medium
JP4040914B2 (en) Ultrasonic surgical device
CN208905676U (en) A kind of gun-type ultrasound knife with Neural monitoring function in art
JP2003037567A (en) Wireless underwater communication device
CN115227341B (en) Ultrasonic and plasma double-output surgical operation system
CN219207289U (en) Surgical electrode system based on electrode effectiveness identification

Legal Events

Date Code Title Description
AS Assignment

Owner name: TYCO HEALTHCARE GROUP LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JOSEPH, DANIEL A.;REEL/FRAME:037113/0896

Effective date: 20120321

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: CHANGE OF NAME;ASSIGNOR:TYCO HEALTHCARE GROUP LP;REEL/FRAME:037151/0883

Effective date: 20120928

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION