US20160206209A1 - Instrument for optically detecting tissue attributes - Google Patents

Instrument for optically detecting tissue attributes Download PDF

Info

Publication number
US20160206209A1
US20160206209A1 US15/082,197 US201615082197A US2016206209A1 US 20160206209 A1 US20160206209 A1 US 20160206209A1 US 201615082197 A US201615082197 A US 201615082197A US 2016206209 A1 US2016206209 A1 US 2016206209A1
Authority
US
United States
Prior art keywords
light
tissue
jaw
jaw member
clamped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/082,197
Inventor
Elizabeth Hufnagel
Xingrui Chen
Matthew Chowaniec
Peter T. Collings
Paul D. Richard
Michael A. Zemlok
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covidien LP
Original Assignee
Covidien LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covidien LP filed Critical Covidien LP
Priority to US15/082,197 priority Critical patent/US20160206209A1/en
Assigned to COVIDIEN LP reassignment COVIDIEN LP ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HUFNAGEL, ELIZABETH, COLLINGS, PETER T., CHEN, XINGRUI, CHOWANIEC, MATTHEW, RICHARD, PAUL D., ZEMLOK, MICHAEL
Publication of US20160206209A1 publication Critical patent/US20160206209A1/en
Priority to US15/370,236 priority patent/US10660724B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00055Operational features of endoscopes provided with output arrangements for alerting the user
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00087Tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1079Measuring physical dimensions, e.g. size of the entire body or parts thereof using optical or photographic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/486Bio-feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00057Light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • A61B2017/00123Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation and automatic shutdown
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • A61B2017/00473Distal part, e.g. tip or head
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • A61B2017/00734Aspects not otherwise provided for battery operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2926Details of heads or jaws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00779Power or energy
    • A61B2018/00785Reflected power
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/061Measuring instruments not otherwise provided for for measuring dimensions, e.g. length
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/304Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using chemi-luminescent materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/309Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using white LEDs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care

Definitions

  • the present disclosure relates to surgical instruments and, more specifically, to a surgical instrument for detecting attributes of tissue with optical technology.
  • endoscopic surgical procedures surgery is performed in any hollow viscus of the body through a small incision or through narrow endoscopic tubes (cannulas) inserted through a small entrance wound in the skin or through a naturally occurring orifice.
  • Endoscopic surgical procedures performed within the interior of the abdomen are referred to as laparoscopic procedures.
  • laparoscopic procedures both laparoscopic and endoscopic procedures will be collectively referred to as endoscopic procedures. Endoscopic procedures often require the clinician to act on organs, tissues and vessels far removed from the incision
  • a surgeon may benefit from knowing attributes of tissue being manipulated to increase the effectiveness of the procedure. For example, knowing the thickness of tissue may aid a surgeon in selecting the proper size staple for the tissue. In addition, identifying the vascular properties within the surgical site the surgeon may identify the red blood cell concentration to determine whether the tissue is diseased or cancerous.
  • the present disclosure relates to an endoscopic surgical instrument configured to provide intraopertive feedback of tissue properties within a surgical site.
  • a jaw assembly in an aspect of the present disclosure, includes first and second jaw members moveable relative to one another between an open configuration and a clamped configuration. In the clamped configuration, the first and second jaw members are configured to clamp tissue therebetween.
  • the first jaw member includes a surface opposing a surface of the second jaw member.
  • the first jaw member further includes an opening defined in the surface of the first jaw member.
  • the first jaw member also includes a light source configured to emit light from the opening and a light detector disposed within the opening. The light detector is configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light.
  • the jaw assembly further includes a processor operatively associated with the light detector.
  • the processor is configured to receive signals indicative of properties of light from the light detector, to analyze the signals to determine an attribute of tissue clamped between the first and second jaw members, and to provide auditory, haptic, or visual feedback to a user of the attribute of the tissue.
  • the processor may be configured to determine a thickness of tissue clamped between the first and second jaw members.
  • the light source may be configured to generate light by one of electron-stimulation, incandescent lamps, light emitting diodes, electroluminescence, gas discharge, high-intensity discharge, laser, chemoluminescence, fluorescence, or phosphorescence.
  • the second jaw member includes a second light detector disposed within a second opening defined in the surface of the second jaw member.
  • the second light detector is configured to sense properties of light transmitted through tissue clamped between the first and second jaw members from the light source of the first jaw member and transmitted and to generate signals indicative of the sensed properties of light.
  • the second light detector may transmit the signals to the processor.
  • the second jaw member includes a second light source configured to emit light through a second opening defined in the surface of the second jaw member.
  • the second jaw member further includes a second light detector disposed within the second opening configured to sense properties of light emitted from the second light source and reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light.
  • the first jaw member includes an anvil and the second jaw member includes a staple cartridge.
  • the staple cartridge includes a plurality of staples configured to be driven through tissue clamped between the first and second jaw members.
  • a surgical instrument in aspects of the present disclosure, includes a handle, an elongated shaft extending from the handle, and a jaw assembly.
  • the jaw assembly includes first and second jaw members moveable relative to one another between an open configuration and a clamped configuration. In the clamped configuration, the first and second jaw members are configured to clamp tissue therebetween.
  • the first jaw member includes a surface opposing a surface of the second jaw member.
  • the first jaw member further includes an opening defined in the surface of the first jaw member.
  • the first jaw member also includes a light source configured to emit light from the opening and a light detector disposed within the opening. The light detector is configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light.
  • the jaw assembly further includes a processor operatively associated with the light detector.
  • the processor is configured to receive signals indicative of properties of light from the light detector, to analyze the signals to determine an attribute of tissue clamped between the first and second jaw members, and to provide auditory, haptic, or visual feedback to a user of the attribute of the tissue.
  • the surgical instrument may include a control interface disposed on the handle that is operatively associated with the jaw assembly.
  • the control interface is configured to actuate the first and second jaw members between the open and clamped configurations.
  • the control interface is operatively associated with the light source to activate the light source to emit light from the opening.
  • the surgical instrument includes a display panel disposed on the handle.
  • the display panel operatively associated with the processor and configured to display feedback of the attribute of the tissue.
  • the processor is disposed within the elongated shaft. In other embodiments, the processor is disposed within the handle.
  • one of jaw members includes a staple cartridge having a plurality of staples configured to fire through tissue clamped between the first and second jaw members.
  • the processor may be configured to control the firing of staples from the surgical instrument.
  • a method for detecting tissue attributes includes providing a jaw assembly, clamping tissue between first and second jaw members of the jaw assembly, emitting light from an opening in a surface of the first jaw member, sensing properties of light reflected of the tissue, transmitting signals indicative of properties of light to a processor, determining tissue attributes from the signals with the processor, and providing feedback of the tissue attributes to a user.
  • the first and second jaw members are moveable relative to one another between an open configuration and a clamped configuration. The surface of the first jaw member opposes the second jaw member.
  • the method may include sensing properties of light transmitted through the tissue clamped between the first and second jaw members of the jaw assembly.
  • the first jaw member including a light source and the second jaw member including a second light detector.
  • Emitting light from the opening may include activating a light source of the first jaw member.
  • the method may include firing staples from a staple cartridge coupled to one of the first and second jaw members through tissue clamped between the first and second jaw members.
  • Determining tissue attributes may include determining tissue thickness of tissue clamped between the jaw members and the method may include comparing the determined tissue thickness to a predetermined tissue thickness value and preventing additional functions of the surgical instrument when the determined tissue thickness is greater than the predetermined value.
  • the method may further include inputting the predetermined tissue thickness value into a control interface operatively associated with the processor.
  • the method may further include coupling the staple cartridge to one of the first and second jaw members.
  • the staple cartridge may transmit the predetermined value to the processor.
  • FIG. 1 is a perspective view of a surgical instrument in accordance with the present disclosure including an end effector configured to optically detect properties of tissue;
  • FIG. 2 is an enlargement of the detail area “2” of FIG. 1 showing the jaw members of the surgical instrument of FIG. 1 in an open configuration;
  • FIG. 3 is a perspective view of the jaw members of FIG. 2 in a clamped configuration
  • FIG. 4 is a side cross-sectional view taken along the line 4 - 4 of FIG. 3 , illustrating the components of a detection assembly
  • FIG. 5 is a perspective view of a surgical instrument in accordance with the present disclosure including an end effector configured to optically detect properties of tissue and to fire staples through tissue clamped within the end effector;
  • FIG. 6 is a perspective view of the jaw members of the end effector shown in FIG. 5 ;
  • FIG. 7 is a side cross-sectional view taken along the line 7 - 7 of FIG. 6 , illustrating the components of the jaw member assembly.
  • FIG. 8 is an enlargement of the detail area “8” of FIG. 7 showing a portion of a detection assembly disposed within an opening defined by the upper jaw member.
  • the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel.
  • proximal refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is furthest from the clinician.
  • a surgical instrument 10 is provided in accordance with the present disclosure including a handle 20 , an elongated shaft 30 extending from the handle 20 , and a jaw assembly 40 coupled to a distal end 34 of the elongated shaft 30 .
  • the handle 20 includes a control interface 22 and a display panel 28 .
  • the control interface 22 is operatively associated with the jaw assembly 40 as detailed below.
  • the display panel 28 is configured to display tissue properties of tissue clamped within the jaw assembly 40 as detailed below.
  • the display panel 28 is not present on the handle 20 but rather is or functions as a screen remote to the surgical instrument 10 (e.g., a surgical monitor (not shown) inside or outside an operating theater). It is contemplated that the control interface 22 may be integrated into the display panel 28 (e.g., a touch screen display panel whether the display panel 28 is on the handle 20 or remote).
  • the handle 20 is a powered handle and the control interface 22 includes a plurality of buttons or switches to manipulate the jaw assembly 40 .
  • the handle 20 is a manual handle and the control interface 22 includes triggers and levers (not shown) to manipulate the jaw assembly 40 .
  • An exemplary example of such a handle is disclosed in commonly owned and co-pending U.S. patent application Ser. No. 13/484,975, filed May 31, 2012, published as U.S. Patent Publication No. 2012/0253329 on Oct. 4, 2012, the contents of which is hereby incorporated by reference in its entirety.
  • the elongated shaft 30 operatively associates the jaw assembly 40 with the handle 20 .
  • a proximal end 32 of the elongated shaft 30 may be integrally formed with the handle 20 .
  • the proximal end 32 releasably couples the elongated shaft 30 to the handle 20 .
  • the distal end 34 of the elongated shaft 30 includes a detachable end effector assembly 36 including the jaw assembly 40 .
  • the elongated shaft 30 may rotate relative to the handle 20 .
  • the jaw assembly 40 articulates relative to the elongated shaft 20 .
  • the jaw assembly 40 includes an upper jaw member 42 , a lower jaw member 44 , and a detection assembly 50 .
  • the upper jaw member 42 defines a plurality of openings 43 in a surface opposing the lower jaw member 44 .
  • the lower jaw member 44 may define a plurality of openings 45 in a surface 43 opposing the upper jaw member 42 .
  • the jaw members 42 , 44 are moveable relative to one another between an open configuration ( FIG. 2 ), wherein the jaw members 42 , 44 are spaced-apart from one another, and a clamped configuration ( FIG. 3 ), wherein the jaw members 42 , 44 are approximated.
  • the control interface 22 FIG. 1
  • the control interface 22 may be used to command a transition of the jaw members 42 , 44 between the open and clamped configurations.
  • the detection assembly 50 is disposed within the jaw assembly 40 and includes light sources 52 a , 52 b , light detectors 54 a , 54 b , and a processor 58 .
  • the upper jaw member 42 includes a single light source 52 a and a light detector 54 a disposed within each opening 43 defined by the upper jaw member 42 . Light from the light source 52 a is guided to each opening 43 through fiber optic cables or light pipes 53 such that light from light source 52 a is emitted from each of the openings 43 .
  • having the light sources and the light detectors in a single jaw member simplifies the routing of wiring and cables to the light sources and the light detectors.
  • the single jaw member may be fixed relative to the elongated shaft to further simplify the routing of wiring and cables to the light sources and the light detectors.
  • the lower jaw member 44 includes a plurality of light sources 52 b and light detectors 54 b disposed within each opening 45 defined by the lower jaw member 44 .
  • the light sources 52 b are direct light sources configured to emit light through openings 45 .
  • the light source 52 a , 52 b may generate light by a variety of means including but not limited to electron-stimulation, incandescent lamps, electroluminescent, gas discharge, high-intensity discharge, lasers, chemoluminescence, fluorescence, and/or phosphorescence.
  • the lower jaw member 44 may include a single light source 52 b guided through fiber optic cables or light pipes (not shown), to openings 45 , similar to the fiber optic cables or light pipes 53 extending through the upper jaw member 42 to the openings 43 .
  • the light source 52 a may be a plurality of light sources 52 a disposed within openings 43 of the upper jaw member 42 , similar to light sources 52 b disposed within the openings 45 of the lower jaw member 44 .
  • Each light detector 54 a , 54 b is operatively associated with the processor 58 .
  • Each light detector 54 a , 54 b is a sensor configured to optically sense properties of light contacting the light detector 54 a , 54 b .
  • Each light detector 54 a , 54 b is operatively associated with the processor 58 . It is contemplated that each light detector 54 a , 54 b may be wired directly to or wirelessly connected to the processor 58 . It is within the scope of this disclosure that light detectors 54 a , 54 b are tuned to one another to enhance the detection of light attributes.
  • each light source, each light pipe, or each a group of light sources or light pipes may be associated with a specific light detector such that the light detector is configured to only detect light from the associated light source, light pipe, or group of light sources or light pipes. Further, it is within the scope of this disclosure that the light sources or light pipes may be operated sequentially to produce a clearer image of the tissue properties.
  • the wireless connection may be via radio frequency, optical, WIFI, Bluetooth (an open wireless protocol for exchanging data over short distances (using short length radio waves) from fixed and mobile devices, creating personal area networks (PANs)), ZigBee® (a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area networks (WPANs)), etc.
  • PANs personal area networks
  • ZigBee® a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area networks (WPANs)
  • the processor 58 may be disposed within the surgical instrument 10 (e.g., within the handle 20 , the elongate shaft 30 , or the jaw assembly 40 ) or external to the surgical instrument 10 .
  • the processor 58 is configured to receive one or more signal(s) including properties of light from the light detectors 54 a , 54 b and is configured to analyze the signal(s) to determine an attribute of tissue clamped between the first and second jaw members.
  • the processor 58 is operatively associated with the display panel 28 to display the attribute of tissue clamped within the jaw assembly 40 as detailed below.
  • Each light detector 54 a , 54 b may be configured to detect a specific chemical or agent injected into the blood stream of a patient including but not limited to chemicals or agents cable of bioluminescence, radioluminescence, chemoluminescence, fluorescence, and/or phosphorescence. It is contemplated that each light detector 54 a , 54 b may be configured to detect the same or different chemicals or agents than each other light detector 54 a , 54 b . It is also contemplated that each opening 43 , 45 in a respective one of the jaw members 42 , 44 may include more than one light detector 54 a , 54 b with each light detector 54 a , 54 b configured to sense a different or the same attribute of light.
  • the detection assembly 50 is used to determine the attributes of tissue clamped within the jaw assembly 40 in accordance with the present disclosure.
  • tissue is clamped between the upper and lower jaw members 42 , 44 of the jaw assembly 40 one or more of the light sources 52 a , 52 b is activated to emit light from respective openings 43 , 45 in the jaw members 42 , 44 .
  • the control assembly 22 FIG. 1
  • the light emitted from the openings 43 , 45 is reflected off the surface of the tissue clamped within the jaw assembly 40 , backscattering some light back into respective openings 43 , 45 (e.g., light emitted from the light source 52 a through an opening 43 reflects off the surface of tissue, travels back into the opening 43 and is sensed by the light detector 54 a disposed within the opening 43 ).
  • the light may also be transmitted through the tissue and into an opposing opening 43 , 45 (e.g., light emitted from the light source 52 a through an opening 43 may be transmitted through the tissue into an opening 45 opposing the opening 43 and sensed by the light detector 54 b disposed within the opening 45 ).
  • the light sources 52 b or the end of the fiber optic cables 53 may be positioned within opening 45 so as to be in direct contact with the surface of tissue to achieve a short photon path length.
  • the properties of the light sensed by the light detectors 54 a , 54 b are converted to electrical signals and transmitted to the processor 58 .
  • the processor 58 analyzes the signals indicative of the properties of the sensed light to determine attributes of the tissue clamped between the jaw members 42 , 44 and displays the tissue attributes on the display panel 28 .
  • the intensity of the light may be used to calculate the thickness of known tissue type (i.e., lung, stomach, intestinal, muscular, etc.) clamped within the jaw assembly 40 and the display panel 28 displays the calculated thickness of the tissue.
  • the light detectors 54 a , 54 b may be configured to sense properties of light associated with a specific chemical or agent injected into the blood stream of a patient. Further, the light detectors 54 a , 54 b may be configured to sense properties of light indicating foreign bodies, diseased tissue, or non-tissue within tissue clamped within the jaw assembly 40 .
  • the processor 58 may compare the tissue thickness of tissue clamped within the jaw assembly 40 to a predetermined value and provide the clinician with indicia that the tissue thickness is greater than or less than the predetermined value. When the tissue thickness is greater than the predetermined value the processor 58 may provide audible, haptic, or visual indicia to the clinician to alert the clinician that the tissue thickness is greater than the predetermined value (e.g., a red light, a failure tone, a stop icon, an alert light pattern, an audible alert pattern, etc.).
  • the processor 58 may provide audible, haptic, or visual indicia to the clinician to alert the clinician that the tissue thickness is less than or equal to the predetermined value (e.g., a green light, a go ahead tone, a go icon, a go light pattern, an audible go pattern, etc.).
  • a clinician may select an appropriately configured surgical instrument to complete a particular surgical task (e.g., a surgical stapler loaded with an appropriately sized plurality of surgical staples).
  • a surgical instrument 100 including a handle 20 , an elongated shaft 30 extending from the handle 20 , a detachable end effector assembly 36 including a jaw assembly 140 .
  • the jaw assembly 140 includes an upper jaw member 142 , a lower jaw member 144 , and a detection assembly 150 .
  • the upper jaw member 142 includes an anvil 162 having a plurality of staple pockets 164 .
  • the anvil 162 may be releasably coupled to the upper jaw member 142 .
  • An opening 143 is defined in the anvil 162 between each of the staple pockets 164 .
  • the lower jaw member 144 includes a staple cartridge 166 having a plurality of staples 168 configured to be fired through tissue clamped between the upper and lower jaw members 142 , 144 .
  • Each staple 168 is associated with a staple pusher 169 that is configured to urge the staple 168 from the staple cartridge 166 , through tissue clamped between the jaw members 142 , 144 , and towards the anvil 162 .
  • legs of each staple 168 are formed to secure the staple 168 within the tissue clamped between the jaw members 142 , 144 .
  • the staple cartridge 166 may be releasably coupled to the lower jaw member 144 .
  • the detection assembly 150 includes a plurality of light sources 52 a , a plurality of light detectors 54 a , and a processor 158 .
  • the light sources 52 a and light detectors 54 a are disposed within the openings 143 defined in the anvil 162 of the upper jaw member 142 .
  • the processor 158 is disposed within the handle 20 and is operatively associated with the light detectors 54 a .
  • the light sources 52 a , the light detectors 54 a , and the processor 158 of surgical instrument 100 operate substantially similar to the light sources 52 a , the light detectors 54 a , and the processor 58 of surgical instrument 10 detailed above, as such only the differences are detailed below.
  • the processor 158 may be configured to lock out additional functions of the jaw assembly 140 when the tissue thickness of tissue clamped within the jaw assembly 140 is greater than a predetermined value (e.g., prevents the staples 168 from firing from the staple cartridge 166 ).
  • the clinician may input the predetermined value into a control assembly 22 .
  • the control assembly 22 may be disposed on the handle 20 or remote to the surgical instrument 100 .
  • the staple cartridge 166 may be replaceable with a plurality of staple cartridges having varying sized staples 168 .
  • the size of the staples 168 within the staple cartridge 166 coupled to the lower jaw member 144 may determine the predetermined value.
  • the staple cartridge 166 may be operatively associated with the processor 158 such that when the staple cartridge 166 is coupled to the lower jaw member 144 the predetermined value associated with the staple cartridge 166 is transmitted to the processor 158 .
  • the predetermined value includes an upper limit and a lower limit associated with a suitable thicknesses of tissue for the staple cartridge 166 and the processor 158 is configured to prevent the staples 168 from firing if the tissue thickness is not between the upper and lower limits.
  • the tissue thickness may be determined by the red blood cell density within the tissue. For example, if there is too much blood occlusion the reduced density of the red blood cells indicates that the staples 168 within the staple cartridge 166 are too small for the tissue clamped within the jaw assembly 140 .
  • the attributes of tissue clamped within the jaw member assembly 40 , 140 may also be detected by detecting abnormal blood flow.
  • abnormal blood flow may indicate that cancerous or tumorous tissue is clamped within the jaw assembly 40 , 140 informing the clinician that a resection margin (i.e., the amount of tissue being removed containing cancerous or tumorous tissue) should be increased.
  • the detection assembly 50 may be provided as a standalone instrument or as part of a multifunction surgical instrument including but not limited to a surgical stapler, a grasper, or an electrosurgical device.
  • the various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery”.
  • Such systems employ various robotic elements to assist the surgeon in the operating theatre and allow remote operation (or partial remote operation) of surgical instrumentation.
  • Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment.
  • Such robotic systems may include, remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
  • the robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location.
  • one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein (e.g., the jaw assembly 40 ) while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system.
  • a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
  • the robotic arms of the surgical system are typically coupled to a pair of master handles by a controller.
  • the handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein.
  • the movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon.
  • the scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
  • the master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions (e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc.). As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions.
  • the master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.

Abstract

A jaw assembly including first and second jaw members configured to clamp tissue therebetween. The first jaw member includes a surface opposing a surface of the second jaw member, a light source, and a light detector. The light source is configured to emit light from an opening defined in the surface of the first jaw member. The light detector is disposed within the opening and is configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light. A processor is operatively associated with the light detector and is configured to receive the signals from the light detector. The processor is also configured to analyze the signals to determine an attribute of tissue clamped between the first and second jaw members and to provide feedback to a user of the attribute of the tissue.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application is a Continuation Application claiming the benefit of and priority to U.S. patent application Ser. No. 14/516,812, filed Dec. 17, 2014, which claims the benefit of and priority to U.S. Provisional Patent Application No. 61/942,937, filed Feb. 21, 2014. The entire contents of each of the above applications is hereby incorporated by reference.
  • BACKGROUND
  • 1. Technical Field
  • The present disclosure relates to surgical instruments and, more specifically, to a surgical instrument for detecting attributes of tissue with optical technology.
  • 2. Discussion of Related Art
  • In endoscopic surgical procedures, surgery is performed in any hollow viscus of the body through a small incision or through narrow endoscopic tubes (cannulas) inserted through a small entrance wound in the skin or through a naturally occurring orifice. Endoscopic surgical procedures performed within the interior of the abdomen are referred to as laparoscopic procedures. As used herein both laparoscopic and endoscopic procedures will be collectively referred to as endoscopic procedures. Endoscopic procedures often require the clinician to act on organs, tissues and vessels far removed from the incision
  • During endoscopic procedures, a surgeon may benefit from knowing attributes of tissue being manipulated to increase the effectiveness of the procedure. For example, knowing the thickness of tissue may aid a surgeon in selecting the proper size staple for the tissue. In addition, identifying the vascular properties within the surgical site the surgeon may identify the red blood cell concentration to determine whether the tissue is diseased or cancerous.
  • SUMMARY
  • Accordingly, the present disclosure relates to an endoscopic surgical instrument configured to provide intraopertive feedback of tissue properties within a surgical site.
  • In an aspect of the present disclosure, a jaw assembly includes first and second jaw members moveable relative to one another between an open configuration and a clamped configuration. In the clamped configuration, the first and second jaw members are configured to clamp tissue therebetween. The first jaw member includes a surface opposing a surface of the second jaw member. The first jaw member further includes an opening defined in the surface of the first jaw member. The first jaw member also includes a light source configured to emit light from the opening and a light detector disposed within the opening. The light detector is configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light. The jaw assembly further includes a processor operatively associated with the light detector. The processor is configured to receive signals indicative of properties of light from the light detector, to analyze the signals to determine an attribute of tissue clamped between the first and second jaw members, and to provide auditory, haptic, or visual feedback to a user of the attribute of the tissue. The processor may be configured to determine a thickness of tissue clamped between the first and second jaw members. The light source may be configured to generate light by one of electron-stimulation, incandescent lamps, light emitting diodes, electroluminescence, gas discharge, high-intensity discharge, laser, chemoluminescence, fluorescence, or phosphorescence.
  • In embodiments, the second jaw member includes a second light detector disposed within a second opening defined in the surface of the second jaw member. The second light detector is configured to sense properties of light transmitted through tissue clamped between the first and second jaw members from the light source of the first jaw member and transmitted and to generate signals indicative of the sensed properties of light. The second light detector may transmit the signals to the processor.
  • In some embodiments, the second jaw member includes a second light source configured to emit light through a second opening defined in the surface of the second jaw member. The second jaw member further includes a second light detector disposed within the second opening configured to sense properties of light emitted from the second light source and reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light.
  • In certain embodiments, the first jaw member includes an anvil and the second jaw member includes a staple cartridge. The staple cartridge includes a plurality of staples configured to be driven through tissue clamped between the first and second jaw members.
  • In aspects of the present disclosure, a surgical instrument includes a handle, an elongated shaft extending from the handle, and a jaw assembly. The jaw assembly includes first and second jaw members moveable relative to one another between an open configuration and a clamped configuration. In the clamped configuration, the first and second jaw members are configured to clamp tissue therebetween. The first jaw member includes a surface opposing a surface of the second jaw member. The first jaw member further includes an opening defined in the surface of the first jaw member. The first jaw member also includes a light source configured to emit light from the opening and a light detector disposed within the opening. The light detector is configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light. The jaw assembly further includes a processor operatively associated with the light detector. The processor is configured to receive signals indicative of properties of light from the light detector, to analyze the signals to determine an attribute of tissue clamped between the first and second jaw members, and to provide auditory, haptic, or visual feedback to a user of the attribute of the tissue.
  • In embodiments, the surgical instrument may include a control interface disposed on the handle that is operatively associated with the jaw assembly. The control interface is configured to actuate the first and second jaw members between the open and clamped configurations. The control interface is operatively associated with the light source to activate the light source to emit light from the opening.
  • In some embodiments, the surgical instrument includes a display panel disposed on the handle. The display panel operatively associated with the processor and configured to display feedback of the attribute of the tissue.
  • In certain embodiments, the processor is disposed within the elongated shaft. In other embodiments, the processor is disposed within the handle.
  • In particular embodiments, one of jaw members includes a staple cartridge having a plurality of staples configured to fire through tissue clamped between the first and second jaw members. The processor may be configured to control the firing of staples from the surgical instrument.
  • In some aspects of the present disclosure, a method for detecting tissue attributes includes providing a jaw assembly, clamping tissue between first and second jaw members of the jaw assembly, emitting light from an opening in a surface of the first jaw member, sensing properties of light reflected of the tissue, transmitting signals indicative of properties of light to a processor, determining tissue attributes from the signals with the processor, and providing feedback of the tissue attributes to a user. The first and second jaw members are moveable relative to one another between an open configuration and a clamped configuration. The surface of the first jaw member opposes the second jaw member.
  • The method may include sensing properties of light transmitted through the tissue clamped between the first and second jaw members of the jaw assembly. The first jaw member including a light source and the second jaw member including a second light detector. Emitting light from the opening may include activating a light source of the first jaw member.
  • The method may include firing staples from a staple cartridge coupled to one of the first and second jaw members through tissue clamped between the first and second jaw members. Determining tissue attributes may include determining tissue thickness of tissue clamped between the jaw members and the method may include comparing the determined tissue thickness to a predetermined tissue thickness value and preventing additional functions of the surgical instrument when the determined tissue thickness is greater than the predetermined value. The method may further include inputting the predetermined tissue thickness value into a control interface operatively associated with the processor. The method may further include coupling the staple cartridge to one of the first and second jaw members. The staple cartridge may transmit the predetermined value to the processor.
  • Further, to the extent consistent, any of the aspects described herein may be used in conjunction with any or all of the other aspects described herein.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Various aspects of the present disclosure are described hereinbelow with reference to the drawings, wherein:
  • FIG. 1 is a perspective view of a surgical instrument in accordance with the present disclosure including an end effector configured to optically detect properties of tissue;
  • FIG. 2 is an enlargement of the detail area “2” of FIG. 1 showing the jaw members of the surgical instrument of FIG. 1 in an open configuration;
  • FIG. 3 is a perspective view of the jaw members of FIG. 2 in a clamped configuration;
  • FIG. 4 is a side cross-sectional view taken along the line 4-4 of FIG. 3, illustrating the components of a detection assembly;
  • FIG. 5 is a perspective view of a surgical instrument in accordance with the present disclosure including an end effector configured to optically detect properties of tissue and to fire staples through tissue clamped within the end effector;
  • FIG. 6 is a perspective view of the jaw members of the end effector shown in FIG. 5;
  • FIG. 7 is a side cross-sectional view taken along the line 7-7 of FIG. 6, illustrating the components of the jaw member assembly; and
  • FIG. 8 is an enlargement of the detail area “8” of FIG. 7 showing a portion of a detection assembly disposed within an opening defined by the upper jaw member.
  • DETAILED DESCRIPTION
  • Embodiments of the present disclosure are now described in detail with reference to the drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “clinician” refers to a doctor, a nurse, or any other care provider and may include support personnel. Throughout this description, the term “proximal” refers to the portion of the device or component thereof that is closest to the clinician and the term “distal” refers to the portion of the device or component thereof that is furthest from the clinician.
  • Referring to FIG. 1, a surgical instrument 10 is provided in accordance with the present disclosure including a handle 20, an elongated shaft 30 extending from the handle 20, and a jaw assembly 40 coupled to a distal end 34 of the elongated shaft 30. The handle 20 includes a control interface 22 and a display panel 28. The control interface 22 is operatively associated with the jaw assembly 40 as detailed below. The display panel 28 is configured to display tissue properties of tissue clamped within the jaw assembly 40 as detailed below.
  • In alternate embodiments, the display panel 28 is not present on the handle 20 but rather is or functions as a screen remote to the surgical instrument 10 (e.g., a surgical monitor (not shown) inside or outside an operating theater). It is contemplated that the control interface 22 may be integrated into the display panel 28 (e.g., a touch screen display panel whether the display panel 28 is on the handle 20 or remote).
  • In embodiments, the handle 20 is a powered handle and the control interface 22 includes a plurality of buttons or switches to manipulate the jaw assembly 40. In some embodiments, the handle 20 is a manual handle and the control interface 22 includes triggers and levers (not shown) to manipulate the jaw assembly 40. An exemplary example of such a handle is disclosed in commonly owned and co-pending U.S. patent application Ser. No. 13/484,975, filed May 31, 2012, published as U.S. Patent Publication No. 2012/0253329 on Oct. 4, 2012, the contents of which is hereby incorporated by reference in its entirety.
  • The elongated shaft 30 operatively associates the jaw assembly 40 with the handle 20. A proximal end 32 of the elongated shaft 30 may be integrally formed with the handle 20. In embodiments, the proximal end 32 releasably couples the elongated shaft 30 to the handle 20. In some embodiments, the distal end 34 of the elongated shaft 30 includes a detachable end effector assembly 36 including the jaw assembly 40. In embodiments, the elongated shaft 30 may rotate relative to the handle 20. In some embodiments, the jaw assembly 40 articulates relative to the elongated shaft 20.
  • With reference to FIGS. 2-4, the jaw assembly 40 includes an upper jaw member 42, a lower jaw member 44, and a detection assembly 50. The upper jaw member 42 defines a plurality of openings 43 in a surface opposing the lower jaw member 44. The lower jaw member 44 may define a plurality of openings 45 in a surface 43 opposing the upper jaw member 42.
  • The jaw members 42, 44 are moveable relative to one another between an open configuration (FIG. 2), wherein the jaw members 42, 44 are spaced-apart from one another, and a clamped configuration (FIG. 3), wherein the jaw members 42, 44 are approximated. The control interface 22 (FIG. 1) may be used to command a transition of the jaw members 42, 44 between the open and clamped configurations.
  • With particular reference to FIG. 4, the detection assembly 50 is disposed within the jaw assembly 40 and includes light sources 52 a, 52 b, light detectors 54 a, 54 b, and a processor 58. The upper jaw member 42 includes a single light source 52 a and a light detector 54 a disposed within each opening 43 defined by the upper jaw member 42. Light from the light source 52 a is guided to each opening 43 through fiber optic cables or light pipes 53 such that light from light source 52 a is emitted from each of the openings 43. It will be appreciated that having the light sources and the light detectors in a single jaw member (e.g., upper jaw member 42) simplifies the routing of wiring and cables to the light sources and the light detectors. In addition, it will be appreciated that the single jaw member may be fixed relative to the elongated shaft to further simplify the routing of wiring and cables to the light sources and the light detectors.
  • In embodiments, the lower jaw member 44 includes a plurality of light sources 52 b and light detectors 54 b disposed within each opening 45 defined by the lower jaw member 44. The light sources 52 b are direct light sources configured to emit light through openings 45.
  • The light source 52 a, 52 b may generate light by a variety of means including but not limited to electron-stimulation, incandescent lamps, electroluminescent, gas discharge, high-intensity discharge, lasers, chemoluminescence, fluorescence, and/or phosphorescence. It is contemplated that the lower jaw member 44 may include a single light source 52 b guided through fiber optic cables or light pipes (not shown), to openings 45, similar to the fiber optic cables or light pipes 53 extending through the upper jaw member 42 to the openings 43. It is further contemplated that the light source 52 a may be a plurality of light sources 52 a disposed within openings 43 of the upper jaw member 42, similar to light sources 52 b disposed within the openings 45 of the lower jaw member 44.
  • Each light detector 54 a, 54 b is operatively associated with the processor 58. Each light detector 54 a, 54 b is a sensor configured to optically sense properties of light contacting the light detector 54 a, 54 b. Each light detector 54 a, 54 b is operatively associated with the processor 58. It is contemplated that each light detector 54 a, 54 b may be wired directly to or wirelessly connected to the processor 58. It is within the scope of this disclosure that light detectors 54 a, 54 b are tuned to one another to enhance the detection of light attributes. It is also within the scope of this disclosure that each light source, each light pipe, or each a group of light sources or light pipes may be associated with a specific light detector such that the light detector is configured to only detect light from the associated light source, light pipe, or group of light sources or light pipes. Further, it is within the scope of this disclosure that the light sources or light pipes may be operated sequentially to produce a clearer image of the tissue properties.
  • The wireless connection may be via radio frequency, optical, WIFI, Bluetooth (an open wireless protocol for exchanging data over short distances (using short length radio waves) from fixed and mobile devices, creating personal area networks (PANs)), ZigBee® (a specification for a suite of high level communication protocols using small, low-power digital radios based on the IEEE 802.15.4-2003 standard for wireless personal area networks (WPANs)), etc.
  • The processor 58 may be disposed within the surgical instrument 10 (e.g., within the handle 20, the elongate shaft 30, or the jaw assembly 40) or external to the surgical instrument 10. The processor 58 is configured to receive one or more signal(s) including properties of light from the light detectors 54 a, 54 b and is configured to analyze the signal(s) to determine an attribute of tissue clamped between the first and second jaw members. The processor 58 is operatively associated with the display panel 28 to display the attribute of tissue clamped within the jaw assembly 40 as detailed below.
  • Each light detector 54 a, 54 b may be configured to detect a specific chemical or agent injected into the blood stream of a patient including but not limited to chemicals or agents cable of bioluminescence, radioluminescence, chemoluminescence, fluorescence, and/or phosphorescence. It is contemplated that each light detector 54 a, 54 b may be configured to detect the same or different chemicals or agents than each other light detector 54 a, 54 b. It is also contemplated that each opening 43, 45 in a respective one of the jaw members 42, 44 may include more than one light detector 54 a, 54 b with each light detector 54 a, 54 b configured to sense a different or the same attribute of light.
  • With reference to FIGS. 3 and 4, the detection assembly 50 is used to determine the attributes of tissue clamped within the jaw assembly 40 in accordance with the present disclosure. When tissue is clamped between the upper and lower jaw members 42, 44 of the jaw assembly 40 one or more of the light sources 52 a, 52 b is activated to emit light from respective openings 43, 45 in the jaw members 42, 44. The control assembly 22 (FIG. 1) may be used to activate the light sources 52 a, 52 b. The light emitted from the openings 43, 45 is reflected off the surface of the tissue clamped within the jaw assembly 40, backscattering some light back into respective openings 43, 45 (e.g., light emitted from the light source 52 a through an opening 43 reflects off the surface of tissue, travels back into the opening 43 and is sensed by the light detector 54 a disposed within the opening 43). The light may also be transmitted through the tissue and into an opposing opening 43, 45 (e.g., light emitted from the light source 52 a through an opening 43 may be transmitted through the tissue into an opening 45 opposing the opening 43 and sensed by the light detector 54 b disposed within the opening 45).
  • In embodiments, the light sources 52 b or the end of the fiber optic cables 53, may be positioned within opening 45 so as to be in direct contact with the surface of tissue to achieve a short photon path length.
  • The properties of the light sensed by the light detectors 54 a, 54 b are converted to electrical signals and transmitted to the processor 58. The processor 58 analyzes the signals indicative of the properties of the sensed light to determine attributes of the tissue clamped between the jaw members 42, 44 and displays the tissue attributes on the display panel 28. For example, the intensity of the light may be used to calculate the thickness of known tissue type (i.e., lung, stomach, intestinal, muscular, etc.) clamped within the jaw assembly 40 and the display panel 28 displays the calculated thickness of the tissue.
  • In addition, the light detectors 54 a, 54 b may be configured to sense properties of light associated with a specific chemical or agent injected into the blood stream of a patient. Further, the light detectors 54 a, 54 b may be configured to sense properties of light indicating foreign bodies, diseased tissue, or non-tissue within tissue clamped within the jaw assembly 40.
  • In embodiments, the processor 58 may compare the tissue thickness of tissue clamped within the jaw assembly 40 to a predetermined value and provide the clinician with indicia that the tissue thickness is greater than or less than the predetermined value. When the tissue thickness is greater than the predetermined value the processor 58 may provide audible, haptic, or visual indicia to the clinician to alert the clinician that the tissue thickness is greater than the predetermined value (e.g., a red light, a failure tone, a stop icon, an alert light pattern, an audible alert pattern, etc.). When the tissue thickness is less than or equal to the predetermined value, the processor 58 may provide audible, haptic, or visual indicia to the clinician to alert the clinician that the tissue thickness is less than or equal to the predetermined value (e.g., a green light, a go ahead tone, a go icon, a go light pattern, an audible go pattern, etc.). With a thickness of the tissue determined, a clinician may select an appropriately configured surgical instrument to complete a particular surgical task (e.g., a surgical stapler loaded with an appropriately sized plurality of surgical staples).
  • Referring to FIGS. 5-8, a surgical instrument 100 is provided in accordance with the present disclosure including a handle 20, an elongated shaft 30 extending from the handle 20, a detachable end effector assembly 36 including a jaw assembly 140. The jaw assembly 140 includes an upper jaw member 142, a lower jaw member 144, and a detection assembly 150. The upper jaw member 142 includes an anvil 162 having a plurality of staple pockets 164. The anvil 162 may be releasably coupled to the upper jaw member 142. An opening 143 is defined in the anvil 162 between each of the staple pockets 164.
  • The lower jaw member 144 includes a staple cartridge 166 having a plurality of staples 168 configured to be fired through tissue clamped between the upper and lower jaw members 142, 144. Each staple 168 is associated with a staple pusher 169 that is configured to urge the staple 168 from the staple cartridge 166, through tissue clamped between the jaw members 142, 144, and towards the anvil 162. When each staple 168 contacts the anvil 162, legs of each staple 168 are formed to secure the staple 168 within the tissue clamped between the jaw members 142, 144. The staple cartridge 166 may be releasably coupled to the lower jaw member 144.
  • The detection assembly 150 includes a plurality of light sources 52 a, a plurality of light detectors 54 a, and a processor 158. The light sources 52 a and light detectors 54 a are disposed within the openings 143 defined in the anvil 162 of the upper jaw member 142. The processor 158 is disposed within the handle 20 and is operatively associated with the light detectors 54 a. The light sources 52 a, the light detectors 54 a, and the processor 158 of surgical instrument 100 operate substantially similar to the light sources 52 a, the light detectors 54 a, and the processor 58 of surgical instrument 10 detailed above, as such only the differences are detailed below.
  • The processor 158 may be configured to lock out additional functions of the jaw assembly 140 when the tissue thickness of tissue clamped within the jaw assembly 140 is greater than a predetermined value (e.g., prevents the staples 168 from firing from the staple cartridge 166).
  • The clinician may input the predetermined value into a control assembly 22. The control assembly 22 may be disposed on the handle 20 or remote to the surgical instrument 100. The staple cartridge 166 may be replaceable with a plurality of staple cartridges having varying sized staples 168. The size of the staples 168 within the staple cartridge 166 coupled to the lower jaw member 144 may determine the predetermined value. The staple cartridge 166 may be operatively associated with the processor 158 such that when the staple cartridge 166 is coupled to the lower jaw member 144 the predetermined value associated with the staple cartridge 166 is transmitted to the processor 158. It is also contemplated that the predetermined value includes an upper limit and a lower limit associated with a suitable thicknesses of tissue for the staple cartridge 166 and the processor 158 is configured to prevent the staples 168 from firing if the tissue thickness is not between the upper and lower limits.
  • The tissue thickness may be determined by the red blood cell density within the tissue. For example, if there is too much blood occlusion the reduced density of the red blood cells indicates that the staples 168 within the staple cartridge 166 are too small for the tissue clamped within the jaw assembly 140.
  • The attributes of tissue clamped within the jaw member assembly 40, 140 may also be detected by detecting abnormal blood flow. For example, abnormal blood flow may indicate that cancerous or tumorous tissue is clamped within the jaw assembly 40, 140 informing the clinician that a resection margin (i.e., the amount of tissue being removed containing cancerous or tumorous tissue) should be increased.
  • As mentioned above, the detection assembly 50 may be provided as a standalone instrument or as part of a multifunction surgical instrument including but not limited to a surgical stapler, a grasper, or an electrosurgical device.
  • The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery”. Such systems employ various robotic elements to assist the surgeon in the operating theatre and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors, etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include, remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.
  • The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein (e.g., the jaw assembly 40) while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.
  • The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).
  • The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions (e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc.). As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.
  • While several embodiments of the disclosure have been shown in the drawings, it is not intended that the disclosure be limited thereto, as it is intended that the disclosure be as broad in scope as the art will allow and that the specification be read likewise. Any combination of the above embodiments is also envisioned and is within the scope of the appended claims. Therefore, the above description should not be construed as limiting, but merely as exemplifications of particular embodiments. Those skilled in the art will envision other modifications within the scope and spirit of the claims appended hereto.

Claims (1)

What is claimed:
1. A jaw assembly comprising:
first and second jaw members moveable relative to one another between an open configuration and a clamped configuration, the first and second jaw members configured to clamp tissue therebetween in the clamped configuration, the first jaw member including:
a surface opposing a surface of the second jaw member;
an opening defined in the surface of the first jaw member;
a light source configured to emit light from the opening; and
a light detector disposed within the opening, the light detector configured to sense properties of light reflected off tissue clamped between the first and second jaw members and to generate signals indicative of the sensed properties of light; and
a processor operatively associated with the light detector, the processor configured to:
receive signals indicative of properties of light from the light detector;
analyze the signals to determine an attribute of tissue clamped between the first and second jaw members; and
provide feedback to a user of the attribute of tissue clamped between the first and second jaw member.
US15/082,197 2014-02-21 2016-03-28 Instrument for optically detecting tissue attributes Abandoned US20160206209A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/082,197 US20160206209A1 (en) 2014-02-21 2016-03-28 Instrument for optically detecting tissue attributes
US15/370,236 US10660724B2 (en) 2014-02-21 2016-12-06 Instrument for optically detecting tissue attributes

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461942937P 2014-02-21 2014-02-21
US14/516,812 US9301691B2 (en) 2014-02-21 2014-10-17 Instrument for optically detecting tissue attributes
US15/082,197 US20160206209A1 (en) 2014-02-21 2016-03-28 Instrument for optically detecting tissue attributes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US14/516,812 Continuation US9301691B2 (en) 2014-02-21 2014-10-17 Instrument for optically detecting tissue attributes

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/370,236 Continuation US10660724B2 (en) 2014-02-21 2016-12-06 Instrument for optically detecting tissue attributes

Publications (1)

Publication Number Publication Date
US20160206209A1 true US20160206209A1 (en) 2016-07-21

Family

ID=52272905

Family Applications (3)

Application Number Title Priority Date Filing Date
US14/516,812 Active 2034-11-15 US9301691B2 (en) 2014-02-21 2014-10-17 Instrument for optically detecting tissue attributes
US15/082,197 Abandoned US20160206209A1 (en) 2014-02-21 2016-03-28 Instrument for optically detecting tissue attributes
US15/370,236 Active 2036-09-30 US10660724B2 (en) 2014-02-21 2016-12-06 Instrument for optically detecting tissue attributes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/516,812 Active 2034-11-15 US9301691B2 (en) 2014-02-21 2014-10-17 Instrument for optically detecting tissue attributes

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/370,236 Active 2036-09-30 US10660724B2 (en) 2014-02-21 2016-12-06 Instrument for optically detecting tissue attributes

Country Status (6)

Country Link
US (3) US9301691B2 (en)
EP (1) EP2913019B1 (en)
JP (1) JP6457806B2 (en)
CN (1) CN104856646B (en)
AU (1) AU2014262255B2 (en)
CA (1) CA2873257A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660724B2 (en) 2014-02-21 2020-05-26 Covidien Lp Instrument for optically detecting tissue attributes
US11903635B2 (en) 2020-02-28 2024-02-20 Covidien Lp Electrosurgical forceps including tissue indication

Families Citing this family (542)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US20090001130A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical procedure using a cutting and stapling instrument having releasable staple-forming pockets
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
JP5410110B2 (en) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8777004B2 (en) 2010-09-30 2014-07-15 Ethicon Endo-Surgery, Inc. Compressible staple cartridge comprising alignment members
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9241714B2 (en) 2011-04-29 2016-01-26 Ethicon Endo-Surgery, Inc. Tissue thickness compensator and method for making the same
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9788834B2 (en) 2010-09-30 2017-10-17 Ethicon Llc Layer comprising deployable attachment members
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
BR112013027794B1 (en) 2011-04-29 2020-12-15 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE SET
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
CN104334098B (en) 2012-03-28 2017-03-22 伊西康内外科公司 Tissue thickness compensator comprising capsules defining a low pressure environment
RU2014143258A (en) 2012-03-28 2016-05-20 Этикон Эндо-Серджери, Инк. FABRIC THICKNESS COMPENSATOR CONTAINING MANY LAYERS
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
US11871901B2 (en) 2012-05-20 2024-01-16 Cilag Gmbh International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9408606B2 (en) 2012-06-28 2016-08-09 Ethicon Endo-Surgery, Llc Robotically powered surgical device with manually-actuatable reversing system
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US20140005718A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Multi-functional powered surgical device with external dissection features
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
GB201317746D0 (en) 2013-10-08 2013-11-20 Smith & Nephew PH indicator
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9687230B2 (en) 2013-03-14 2017-06-27 Ethicon Llc Articulatable surgical instrument comprising a firing drive
CA3169888A1 (en) 2013-04-01 2014-10-09 Vinod V. Pathy Lighting device
USD938095S1 (en) 2013-04-01 2021-12-07 Pathy Medical, Llc Lighting device
US9649110B2 (en) 2013-04-16 2017-05-16 Ethicon Llc Surgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en) 2013-08-23 2019-11-06 Ethicon Endo Surgery Llc Firing member retraction devices for powered surgical instruments.
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
JP6462004B2 (en) 2014-02-24 2019-01-30 エシコン エルエルシー Fastening system with launcher lockout
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
US20150272571A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Surgical instrument utilizing sensor adaptation
US10013049B2 (en) 2014-03-26 2018-07-03 Ethicon Llc Power management through sleep options of segmented circuit and wake up control
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
MX2017003960A (en) 2014-09-26 2017-12-04 Ethicon Llc Surgical stapling buttresses and adjunct materials.
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US11504192B2 (en) 2014-10-30 2022-11-22 Cilag Gmbh International Method of hub communication with surgical instrument systems
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
AU2016200084B2 (en) * 2015-01-16 2020-01-16 Covidien Lp Powered surgical stapling device
US20160249910A1 (en) 2015-02-27 2016-09-01 Ethicon Endo-Surgery, Llc Surgical charging system that charges and/or conditions one or more batteries
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10835249B2 (en) 2015-08-17 2020-11-17 Ethicon Llc Implantable layers for a surgical instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10624616B2 (en) * 2015-12-18 2020-04-21 Covidien Lp Surgical instruments including sensors
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10973456B1 (en) * 2015-12-30 2021-04-13 Banpil Photonics Inc. System for screening and diagnosis of skin cancer
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
JP6911054B2 (en) 2016-02-09 2021-07-28 エシコン エルエルシーEthicon LLC Surgical instruments with asymmetric joint composition
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10433840B2 (en) 2016-04-18 2019-10-08 Ethicon Llc Surgical instrument comprising a replaceable cartridge jaw
AU2017264907A1 (en) 2016-05-13 2018-12-20 Smith & Nephew Plc Sensor enabled wound monitoring and therapy apparatus
WO2018102541A1 (en) * 2016-11-30 2018-06-07 John Loewen Lighted bougie
US10588632B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical end effectors and firing members thereof
JP6983893B2 (en) 2016-12-21 2021-12-17 エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US20180168608A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical instrument system comprising an end effector lockout and a firing assembly lockout
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10485543B2 (en) 2016-12-21 2019-11-26 Ethicon Llc Anvil having a knife slot width
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10835246B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Staple cartridges and arrangements of staples and staple cavities therein
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10980536B2 (en) 2016-12-21 2021-04-20 Ethicon Llc No-cartridge and spent cartridge lockout arrangements for surgical staplers
US10524789B2 (en) 2016-12-21 2020-01-07 Ethicon Llc Laterally actuatable articulation lock arrangements for locking an end effector of a surgical instrument in an articulated configuration
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
JP2020501779A (en) 2016-12-21 2020-01-23 エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168598A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Staple forming pocket arrangements comprising zoned forming surface grooves
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10638944B2 (en) * 2017-02-22 2020-05-05 Covidien Lp Methods of determining tissue viability
EP3592212A1 (en) 2017-03-09 2020-01-15 Smith & Nephew PLC Wound dressing, patch member and method of sensing one or more wound parameters
WO2018162732A1 (en) 2017-03-09 2018-09-13 Smith & Nephew Plc Apparatus and method for imaging blood in a target region of tissue
AU2018253383A1 (en) 2017-04-11 2019-10-31 Smith & Nephew Plc Component positioning and stress relief for sensor enabled wound dressings
US11791030B2 (en) 2017-05-15 2023-10-17 Smith & Nephew Plc Wound analysis device and method
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
EP3641631B1 (en) * 2017-06-20 2023-04-19 Boston Scientific Scimed, Inc. Devices and methods for determining blood flow around a body lumen
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
JP7189159B2 (en) 2017-06-23 2022-12-13 スミス アンド ネフュー ピーエルシー Sensor placement for sensor-enabled wound monitoring or therapy
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US20190000461A1 (en) 2017-06-28 2019-01-03 Ethicon Llc Surgical cutting and fastening devices with pivotable anvil with a tissue locating arrangement in close proximity to an anvil pivot axis
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
GB201804502D0 (en) 2018-03-21 2018-05-02 Smith & Nephew Biocompatible encapsulation and component stress relief for sensor enabled negative pressure wound therapy dressings
GB201809007D0 (en) 2018-06-01 2018-07-18 Smith & Nephew Restriction of sensor-monitored region for sensor-enabled wound dressings
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
EP3664859A2 (en) 2017-08-10 2020-06-17 Smith & Nephew plc Positioning of sensors for sensor enabled wound monitoring or therapy
GB201718870D0 (en) 2017-11-15 2017-12-27 Smith & Nephew Inc Sensor enabled wound therapy dressings and systems
JP2020533093A (en) 2017-09-10 2020-11-19 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Systems and methods for inspecting encapsulation, as well as components within wound dressings equipped with sensors
WO2019063481A1 (en) 2017-09-27 2019-04-04 Smith & Nephew Plc Ph sensing for sensor enabled negative pressure wound monitoring and therapy apparatuses
WO2019072531A1 (en) 2017-09-28 2019-04-18 Smith & Nephew Plc Neurostimulation and monitoring using sensor enabled wound monitoring and therapy apparatus
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11510741B2 (en) 2017-10-30 2022-11-29 Cilag Gmbh International Method for producing a surgical instrument comprising a smart electrical system
US11291510B2 (en) 2017-10-30 2022-04-05 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11311342B2 (en) 2017-10-30 2022-04-26 Cilag Gmbh International Method for communicating with surgical instrument systems
US11229436B2 (en) 2017-10-30 2022-01-25 Cilag Gmbh International Surgical system comprising a surgical tool and a surgical hub
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US20190125320A1 (en) 2017-10-30 2019-05-02 Ethicon Llc Control system arrangements for a modular surgical instrument
US11123070B2 (en) 2017-10-30 2021-09-21 Cilag Gmbh International Clip applier comprising a rotatable clip magazine
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11317919B2 (en) 2017-10-30 2022-05-03 Cilag Gmbh International Clip applier comprising a clip crimping system
US11911045B2 (en) 2017-10-30 2024-02-27 Cllag GmbH International Method for operating a powered articulating multi-clip applier
US11564756B2 (en) 2017-10-30 2023-01-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US11801098B2 (en) 2017-10-30 2023-10-31 Cilag Gmbh International Method of hub communication with surgical instrument systems
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
JP2021502845A (en) 2017-11-15 2021-02-04 スミス アンド ネフュー ピーエルシーSmith & Nephew Public Limited Company Integrated sensor-enabled wound monitoring and / or treatment coverings and systems
US20190175171A1 (en) 2017-12-08 2019-06-13 Covidien Lp Chisel cut staples for use in surgical staplers and a method for manufacturing surgical staples
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US10682134B2 (en) * 2017-12-21 2020-06-16 Ethicon Llc Continuous use self-propelled stapling instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
WO2019126633A1 (en) * 2017-12-22 2019-06-27 Briteseed, Llc A compact system used to determine tissue or artifact characteristics
US11304699B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11166772B2 (en) 2017-12-28 2021-11-09 Cilag Gmbh International Surgical hub coordination of control and communication of operating room devices
US11317937B2 (en) 2018-03-08 2022-05-03 Cilag Gmbh International Determining the state of an ultrasonic end effector
US11529187B2 (en) 2017-12-28 2022-12-20 Cilag Gmbh International Surgical evacuation sensor arrangements
US11234756B2 (en) 2017-12-28 2022-02-01 Cilag Gmbh International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
US11903601B2 (en) 2017-12-28 2024-02-20 Cilag Gmbh International Surgical instrument comprising a plurality of drive systems
CN111512388B (en) * 2017-12-28 2024-01-30 爱惜康有限责任公司 Safety system for intelligent electric surgical suture
US11308075B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
US11013563B2 (en) 2017-12-28 2021-05-25 Ethicon Llc Drive arrangements for robot-assisted surgical platforms
US11818052B2 (en) 2017-12-28 2023-11-14 Cilag Gmbh International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11540855B2 (en) 2017-12-28 2023-01-03 Cilag Gmbh International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
US11576677B2 (en) 2017-12-28 2023-02-14 Cilag Gmbh International Method of hub communication, processing, display, and cloud analytics
US11096693B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing
US11744604B2 (en) 2017-12-28 2023-09-05 Cilag Gmbh International Surgical instrument with a hardware-only control circuit
US11559308B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method for smart energy device infrastructure
US11304745B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Surgical evacuation sensing and display
BR112020013095A2 (en) * 2017-12-28 2020-12-01 Ethicon Llc safety systems for intelligent surgical stapling equipped with motor
US11559307B2 (en) 2017-12-28 2023-01-24 Cilag Gmbh International Method of robotic hub communication, detection, and control
US11832840B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical instrument having a flexible circuit
US11896443B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Control of a surgical system through a surgical barrier
US11666331B2 (en) 2017-12-28 2023-06-06 Cilag Gmbh International Systems for detecting proximity of surgical end effector to cancerous tissue
US11324557B2 (en) 2017-12-28 2022-05-10 Cilag Gmbh International Surgical instrument with a sensing array
US11446052B2 (en) 2017-12-28 2022-09-20 Cilag Gmbh International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
US10966791B2 (en) 2017-12-28 2021-04-06 Ethicon Llc Cloud-based medical analytics for medical facility segmented individualization of instrument function
US11100631B2 (en) 2017-12-28 2021-08-24 Cilag Gmbh International Use of laser light and red-green-blue coloration to determine properties of back scattered light
US11202570B2 (en) 2017-12-28 2021-12-21 Cilag Gmbh International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US10944728B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Interactive surgical systems with encrypted communication capabilities
US11410259B2 (en) 2017-12-28 2022-08-09 Cilag Gmbh International Adaptive control program updates for surgical devices
US11266468B2 (en) 2017-12-28 2022-03-08 Cilag Gmbh International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
US20190200981A1 (en) 2017-12-28 2019-07-04 Ethicon Llc Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US10943454B2 (en) 2017-12-28 2021-03-09 Ethicon Llc Detection and escalation of security responses of surgical instruments to increasing severity threats
US10892899B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Self describing data packets generated at an issuing instrument
US11659023B2 (en) 2017-12-28 2023-05-23 Cilag Gmbh International Method of hub communication
US11423007B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Adjustment of device control programs based on stratified contextual data in addition to the data
US10987178B2 (en) 2017-12-28 2021-04-27 Ethicon Llc Surgical hub control arrangements
US11389164B2 (en) 2017-12-28 2022-07-19 Cilag Gmbh International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US10932872B2 (en) 2017-12-28 2021-03-02 Ethicon Llc Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set
US11304763B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
US11278281B2 (en) 2017-12-28 2022-03-22 Cilag Gmbh International Interactive surgical system
US11432885B2 (en) 2017-12-28 2022-09-06 Cilag Gmbh International Sensing arrangements for robot-assisted surgical platforms
US11864728B2 (en) 2017-12-28 2024-01-09 Cilag Gmbh International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
US11419667B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
US11571234B2 (en) 2017-12-28 2023-02-07 Cilag Gmbh International Temperature control of ultrasonic end effector and control system therefor
US11464535B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Detection of end effector emersion in liquid
US20190201146A1 (en) * 2017-12-28 2019-07-04 Ethicon Llc Safety systems for smart powered surgical stapling
US11364075B2 (en) 2017-12-28 2022-06-21 Cilag Gmbh International Radio frequency energy device for delivering combined electrical signals
US11179175B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Controlling an ultrasonic surgical instrument according to tissue location
US11253315B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Increasing radio frequency to create pad-less monopolar loop
US10892995B2 (en) 2017-12-28 2021-01-12 Ethicon Llc Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11160605B2 (en) 2017-12-28 2021-11-02 Cilag Gmbh International Surgical evacuation sensing and motor control
US11311306B2 (en) 2017-12-28 2022-04-26 Cilag Gmbh International Surgical systems for detecting end effector tissue distribution irregularities
US10758310B2 (en) 2017-12-28 2020-09-01 Ethicon Llc Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11832899B2 (en) 2017-12-28 2023-12-05 Cilag Gmbh International Surgical systems with autonomously adjustable control programs
US11633237B2 (en) 2017-12-28 2023-04-25 Cilag Gmbh International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11056244B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks
US11051876B2 (en) 2017-12-28 2021-07-06 Cilag Gmbh International Surgical evacuation flow paths
US11132462B2 (en) 2017-12-28 2021-09-28 Cilag Gmbh International Data stripping method to interrogate patient records and create anonymized record
US10898622B2 (en) 2017-12-28 2021-01-26 Ethicon Llc Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device
US11069012B2 (en) 2017-12-28 2021-07-20 Cilag Gmbh International Interactive surgical systems with condition handling of devices and data capabilities
US11844579B2 (en) 2017-12-28 2023-12-19 Cilag Gmbh International Adjustments based on airborne particle properties
US11786245B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Surgical systems with prioritized data transmission capabilities
US11376002B2 (en) 2017-12-28 2022-07-05 Cilag Gmbh International Surgical instrument cartridge sensor assemblies
US11273001B2 (en) 2017-12-28 2022-03-15 Cilag Gmbh International Surgical hub and modular device response adjustment based on situational awareness
US11678881B2 (en) 2017-12-28 2023-06-20 Cilag Gmbh International Spatial awareness of surgical hubs in operating rooms
US10755813B2 (en) 2017-12-28 2020-08-25 Ethicon Llc Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform
US11589888B2 (en) 2017-12-28 2023-02-28 Cilag Gmbh International Method for controlling smart energy devices
US11857152B2 (en) 2017-12-28 2024-01-02 Cilag Gmbh International Surgical hub spatial awareness to determine devices in operating theater
US11179208B2 (en) 2017-12-28 2021-11-23 Cilag Gmbh International Cloud-based medical analytics for security and authentication trends and reactive measures
US11896322B2 (en) 2017-12-28 2024-02-13 Cilag Gmbh International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11786251B2 (en) 2017-12-28 2023-10-17 Cilag Gmbh International Method for adaptive control schemes for surgical network control and interaction
US11424027B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Method for operating surgical instrument systems
US11602393B2 (en) 2017-12-28 2023-03-14 Cilag Gmbh International Surgical evacuation sensing and generator control
US11464559B2 (en) 2017-12-28 2022-10-11 Cilag Gmbh International Estimating state of ultrasonic end effector and control system therefor
US11147607B2 (en) 2017-12-28 2021-10-19 Cilag Gmbh International Bipolar combination device that automatically adjusts pressure based on energy modality
US11076921B2 (en) 2017-12-28 2021-08-03 Cilag Gmbh International Adaptive control program updates for surgical hubs
US11419630B2 (en) 2017-12-28 2022-08-23 Cilag Gmbh International Surgical system distributed processing
US11257589B2 (en) 2017-12-28 2022-02-22 Cilag Gmbh International Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US11304720B2 (en) 2017-12-28 2022-04-19 Cilag Gmbh International Activation of energy devices
US10695081B2 (en) 2017-12-28 2020-06-30 Ethicon Llc Controlling a surgical instrument according to sensed closure parameters
US11213359B2 (en) 2017-12-28 2022-01-04 Cilag Gmbh International Controllers for robot-assisted surgical platforms
US11284936B2 (en) 2017-12-28 2022-03-29 Cilag Gmbh International Surgical instrument having a flexible electrode
US11291495B2 (en) 2017-12-28 2022-04-05 Cilag Gmbh International Interruption of energy due to inadvertent capacitive coupling
US11672605B2 (en) 2017-12-28 2023-06-13 Cilag Gmbh International Sterile field interactive control displays
US10849697B2 (en) 2017-12-28 2020-12-01 Ethicon Llc Cloud interface for coupled surgical devices
US11109866B2 (en) 2017-12-28 2021-09-07 Cilag Gmbh International Method for circular stapler control algorithm adjustment based on situational awareness
US11771487B2 (en) 2017-12-28 2023-10-03 Cilag Gmbh International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11337746B2 (en) 2018-03-08 2022-05-24 Cilag Gmbh International Smart blade and power pulsing
US11259830B2 (en) 2018-03-08 2022-03-01 Cilag Gmbh International Methods for controlling temperature in ultrasonic device
US11534196B2 (en) 2018-03-08 2022-12-27 Cilag Gmbh International Using spectroscopy to determine device use state in combo instrument
US11471156B2 (en) 2018-03-28 2022-10-18 Cilag Gmbh International Surgical stapling devices with improved rotary driven closure systems
US11589865B2 (en) 2018-03-28 2023-02-28 Cilag Gmbh International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
US11207067B2 (en) 2018-03-28 2021-12-28 Cilag Gmbh International Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing
US11166716B2 (en) 2018-03-28 2021-11-09 Cilag Gmbh International Stapling instrument comprising a deactivatable lockout
US11278280B2 (en) 2018-03-28 2022-03-22 Cilag Gmbh International Surgical instrument comprising a jaw closure lockout
US11090047B2 (en) 2018-03-28 2021-08-17 Cilag Gmbh International Surgical instrument comprising an adaptive control system
US11096688B2 (en) 2018-03-28 2021-08-24 Cilag Gmbh International Rotary driven firing members with different anvil and channel engagement features
US11219453B2 (en) 2018-03-28 2022-01-11 Cilag Gmbh International Surgical stapling devices with cartridge compatible closure and firing lockout arrangements
US10973520B2 (en) 2018-03-28 2021-04-13 Ethicon Llc Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature
KR102143104B1 (en) * 2018-05-18 2020-08-10 비앤알(주) Device for detection of blood vessel and surgical instrument for laparoscopy comprising the same
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11259807B2 (en) 2019-02-19 2022-03-01 Cilag Gmbh International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
US11317915B2 (en) 2019-02-19 2022-05-03 Cilag Gmbh International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
US11751872B2 (en) 2019-02-19 2023-09-12 Cilag Gmbh International Insertable deactivator element for surgical stapler lockouts
US11369377B2 (en) 2019-02-19 2022-06-28 Cilag Gmbh International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
US11357503B2 (en) 2019-02-19 2022-06-14 Cilag Gmbh International Staple cartridge retainers with frangible retention features and methods of using same
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
USD950728S1 (en) 2019-06-25 2022-05-03 Cilag Gmbh International Surgical staple cartridge
USD952144S1 (en) 2019-06-25 2022-05-17 Cilag Gmbh International Surgical staple cartridge retainer with firing system authentication key
USD964564S1 (en) 2019-06-25 2022-09-20 Cilag Gmbh International Surgical staple cartridge retainer with a closure system authentication key
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
KR102159207B1 (en) * 2019-08-07 2020-09-23 비앤알(주) Device for detection of blood vessel and surgical instrument for laparoscopy comprising the same
US11806038B2 (en) 2019-10-11 2023-11-07 Covidien Lp Surgical instrument and method facilitating testing jaw force of the surgical instrument
EP4048134A4 (en) * 2019-10-21 2023-11-15 New View Surgical, Inc. Thermal control of imaging system
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11832916B2 (en) 2020-01-29 2023-12-05 Covidien Lp System and methods for identifying vessels within tissue
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
US20220031351A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with differential articulation joint arrangements for accommodating flexible actuators
US11602342B2 (en) * 2020-08-27 2023-03-14 Covidien Lp Surgical stapling device with laser probe
CN112154951B (en) * 2020-10-19 2022-06-07 江苏农牧科技职业学院 Shrimp health physical examination appearance
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11844583B2 (en) 2021-03-31 2023-12-19 Moon Surgical Sas Co-manipulation surgical system having an instrument centering mode for automatic scope movements
US11832909B2 (en) 2021-03-31 2023-12-05 Moon Surgical Sas Co-manipulation surgical system having actuatable setup joints
AU2022247392A1 (en) 2021-03-31 2023-09-28 Moon Surgical Sas Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery
US11819302B2 (en) 2021-03-31 2023-11-21 Moon Surgical Sas Co-manipulation surgical system having user guided stage control
US11812938B2 (en) 2021-03-31 2023-11-14 Moon Surgical Sas Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments
US20220378424A1 (en) 2021-05-28 2022-12-01 Cilag Gmbh International Stapling instrument comprising a firing lockout
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11832910B1 (en) 2023-01-09 2023-12-05 Moon Surgical Sas Co-manipulation surgical system having adaptive gravity compensation

Family Cites Families (305)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2777340A (en) 1955-09-28 1957-01-15 Leonard J Hettwer Offset drilling attachment
US2957353A (en) 1958-08-26 1960-10-25 Teleflex Inc Connector
US3111328A (en) 1961-07-03 1963-11-19 Rito Vincent L J Di Multiuse adapter for manipulators
US3734515A (en) 1971-01-29 1973-05-22 Thor Power Tool Co Power wrench with interchangeable adapters
US3695058A (en) 1971-05-26 1972-10-03 Marvin W Keith Jr Flexible link rotatable drive coupling
US3759336A (en) 1972-01-21 1973-09-18 D Marcovitz Interchangeable power operated tools
US4162399A (en) 1977-09-16 1979-07-24 Bei Electronics, Inc. Optical encoder with fiber optics
US4606343A (en) 1980-08-18 1986-08-19 United States Surgical Corporation Self-powered surgical fastening instrument
US4705038A (en) 1985-01-23 1987-11-10 Dyonics, Inc. Surgical system for powered instruments
US4722685A (en) 1985-05-30 1988-02-02 Estrada Juan M De Tool for adapting a portable lathe to treat the back molar teeth of horses
US4823807A (en) 1988-02-11 1989-04-25 Board Of Regents, Univ. Of Texas System Device for non-invasive diagnosis and monitoring of articular and periarticular pathology
US4874181A (en) 1988-05-31 1989-10-17 Hsu Shing Wang Coupling member for securing a drilling head to the rotatable rod of a pneumatic tool body
US5301061A (en) 1989-07-27 1994-04-05 Olympus Optical Co., Ltd. Endoscope system
US5152744A (en) 1990-02-07 1992-10-06 Smith & Nephew Dyonics Surgical instrument
JP3034019B2 (en) 1990-11-26 2000-04-17 旭光学工業株式会社 Endoscope tip
US5129570A (en) 1990-11-30 1992-07-14 Ethicon, Inc. Surgical stapler
US5280788A (en) 1991-02-26 1994-01-25 Massachusetts Institute Of Technology Devices and methods for optical diagnosis of tissue
US5413267A (en) 1991-05-14 1995-05-09 United States Surgical Corporation Surgical stapler with spent cartridge sensing and lockout means
US5129118A (en) 1991-07-29 1992-07-14 Walmesley Mark W Accessory tool apparatus for use on power drills
US5326013A (en) 1991-10-18 1994-07-05 United States Surgical Corporation Self contained gas powered surgical apparatus
US5478003A (en) 1991-10-18 1995-12-26 United States Surgical Corporation Surgical apparatus
US5312023A (en) 1991-10-18 1994-05-17 United States Surgical Corporation Self contained gas powered surgical apparatus
US5197649A (en) 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
US5383874A (en) 1991-11-08 1995-01-24 Ep Technologies, Inc. Systems for identifying catheters and monitoring their use
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
US5383880A (en) 1992-01-17 1995-01-24 Ethicon, Inc. Endoscopic surgical system with sensing means
US5350355A (en) 1992-02-14 1994-09-27 Automated Medical Instruments, Inc. Automated surgical instrument
US5389098A (en) 1992-05-19 1995-02-14 Olympus Optical Co., Ltd. Surgical device for stapling and/or fastening body tissues
US5658300A (en) 1992-06-04 1997-08-19 Olympus Optical Co., Ltd. Tissue fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5772597A (en) * 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
US5626587A (en) 1992-10-09 1997-05-06 Ethicon Endo-Surgery, Inc. Method for operating a surgical instrument
US5400267A (en) 1992-12-08 1995-03-21 Hemostatix Corporation Local in-device memory feature for electrically powered medical equipment
US5540706A (en) 1993-01-25 1996-07-30 Aust; Gilbert M. Surgical instrument
US5540375A (en) 1993-04-20 1996-07-30 United States Surgical Corporation Endoscopic stapler
US5467911A (en) 1993-04-27 1995-11-21 Olympus Optical Co., Ltd. Surgical device for stapling and fastening body tissues
CA2124109A1 (en) 1993-05-24 1994-11-25 Mark T. Byrne Endoscopic surgical instrument with electromagnetic sensor
US5542594A (en) 1993-10-06 1996-08-06 United States Surgical Corporation Surgical stapling apparatus with biocompatible surgical fabric
US5487499A (en) 1993-10-08 1996-01-30 United States Surgical Corporation Surgical apparatus for applying surgical fasteners including a counter
US5476379A (en) 1993-11-04 1995-12-19 Disel; Jimmy D. Illumination system and connector assembly for a dental handpiece
WO1995018572A1 (en) 1994-01-04 1995-07-13 Alpha Surgical Technologies, Inc. Stapling device
US5526822A (en) 1994-03-24 1996-06-18 Biopsys Medical, Inc. Method and apparatus for automated biopsy and collection of soft tissue
CA2145723A1 (en) 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5529235A (en) 1994-04-28 1996-06-25 Ethicon Endo-Surgery, Inc. Identification device for surgical instrument
EP0699418A1 (en) 1994-08-05 1996-03-06 United States Surgical Corporation Self-contained powered surgical apparatus
US5779130A (en) 1994-08-05 1998-07-14 United States Surgical Corporation Self-contained powered surgical apparatus
EP0705571A1 (en) 1994-10-07 1996-04-10 United States Surgical Corporation Self-contained powered surgical apparatus
US5868760A (en) 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
US5713505A (en) 1996-05-13 1998-02-03 Ethicon Endo-Surgery, Inc. Articulation transmission mechanism for surgical instruments
US5632432A (en) 1994-12-19 1997-05-27 Ethicon Endo-Surgery, Inc. Surgical instrument
US5704534A (en) 1994-12-19 1998-01-06 Ethicon Endo-Surgery, Inc. Articulation assembly for surgical instruments
US6321855B1 (en) 1994-12-29 2001-11-27 George Edward Barnes Anti-vibration adaptor
US5649956A (en) 1995-06-07 1997-07-22 Sri International System and method for releasably holding a surgical instrument
US5782396A (en) 1995-08-28 1998-07-21 United States Surgical Corporation Surgical stapler
US5762256A (en) 1995-08-28 1998-06-09 United States Surgical Corporation Surgical stapler
US6032849A (en) 1995-08-28 2000-03-07 United States Surgical Surgical stapler
EP0792119A4 (en) 1995-09-15 1999-01-13 Pinotage Llc Thompson Robert L Surgical/diagnostic imaging device
US7141049B2 (en) 1999-03-09 2006-11-28 Thermage, Inc. Handpiece for treatment of tissue
US5820009A (en) 1996-02-20 1998-10-13 Richard-Allan Medical Industries, Inc. Articulated surgical instrument with improved jaw closure mechanism
US6010054A (en) 1996-02-20 2000-01-04 Imagyn Medical Technologies Linear stapling instrument with improved staple cartridge
US6699177B1 (en) 1996-02-20 2004-03-02 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6119913A (en) 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
US6017354A (en) 1996-08-15 2000-01-25 Stryker Corporation Integrated system for powered surgical tools
US6129547A (en) 1997-05-06 2000-10-10 Ballard Medical Products Oral care system
WO1999007441A1 (en) 1997-08-11 1999-02-18 Mayer Paul W Motorized motion-canceling suture tool holder
US6434507B1 (en) 1997-09-05 2002-08-13 Surgical Navigation Technologies, Inc. Medical instrument and method for use with computer-assisted image guided surgery
US5865361A (en) 1997-09-23 1999-02-02 United States Surgical Corporation Surgical stapling apparatus
US5863159A (en) 1997-12-12 1999-01-26 Lasko; Leonard J. Drill angle attachment coupling
DE69922791T2 (en) 1998-02-19 2005-12-08 California Institute Of Technology, Pasadena DEVICE FOR PROVIDING A SPHERICAL SEA FIELD DURING ENDOSCOPIC INTERVENTION
US6239732B1 (en) 1998-04-13 2001-05-29 Dallas Semiconductor Corporation One-wire device with A-to-D converter
US6126058A (en) 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6256859B1 (en) 1998-09-25 2001-07-10 Sherwood Services Ag Method of manufacturing an aspiring tool
US5993454A (en) 1998-09-29 1999-11-30 Stryker Corporation Drill attachment for a surgical drill
US7238021B1 (en) 1998-12-03 2007-07-03 Johnson Gary E Powered cutting surface with protective guard for equine teeth
US6860892B1 (en) 1999-05-28 2005-03-01 General Surgical Innovations, Inc. Specially shaped balloon device for use in surgery and method of use
US6793652B1 (en) 1999-06-02 2004-09-21 Power Medical Interventions, Inc. Electro-mechanical surgical device
US6264087B1 (en) 1999-07-12 2001-07-24 Powermed, Inc. Expanding parallel jaw device for use with an electromechanical driver device
US6491201B1 (en) 2000-02-22 2002-12-10 Power Medical Interventions, Inc. Fluid delivery mechanism for use with anastomosing, stapling, and resecting instruments
US6981941B2 (en) 1999-06-02 2006-01-03 Power Medical Interventions Electro-mechanical surgical device
US6315184B1 (en) 1999-06-02 2001-11-13 Powermed, Inc. Stapling device for use with an electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US6443973B1 (en) 1999-06-02 2002-09-03 Power Medical Interventions, Inc. Electromechanical driver device for use with anastomosing, stapling, and resecting instruments
US8241322B2 (en) 2005-07-27 2012-08-14 Tyco Healthcare Group Lp Surgical device
US7032798B2 (en) 1999-06-02 2006-04-25 Power Medical Interventions, Inc. Electro-mechanical surgical device
US7951071B2 (en) 1999-06-02 2011-05-31 Tyco Healthcare Group Lp Moisture-detecting shaft for use with an electro-mechanical surgical device
US6716233B1 (en) 1999-06-02 2004-04-06 Power Medical Interventions, Inc. Electromechanical driver and remote surgical instrument attachment having computer assisted control capabilities
US8025199B2 (en) 2004-02-23 2011-09-27 Tyco Healthcare Group Lp Surgical cutting and stapling device
US6451007B1 (en) 1999-07-29 2002-09-17 Dale E. Koop Thermal quenching of tissue
US6611793B1 (en) 1999-09-07 2003-08-26 Scimed Life Systems, Inc. Systems and methods to identify and disable re-use single use devices based on detecting environmental changes
US6368324B1 (en) 1999-09-24 2002-04-09 Medtronic Xomed, Inc. Powered surgical handpiece assemblies and handpiece adapter assemblies
US6488197B1 (en) 2000-02-22 2002-12-03 Power Medical Interventions, Inc. Fluid delivery device for use with anastomosing resecting and stapling instruments
US8016855B2 (en) 2002-01-08 2011-09-13 Tyco Healthcare Group Lp Surgical device
US6533157B1 (en) 2000-02-22 2003-03-18 Power Medical Interventions, Inc. Tissue stapling attachment for use with an electromechanical driver device
US7770773B2 (en) 2005-07-27 2010-08-10 Power Medical Interventions, Llc Surgical device
US6348061B1 (en) 2000-02-22 2002-02-19 Powermed, Inc. Vessel and lumen expander attachment for use with an electromechanical driver device
WO2002017799A1 (en) 2000-08-30 2002-03-07 Cerebral Vascular Applications Inc. Medical instrument
US6817508B1 (en) 2000-10-13 2004-11-16 Tyco Healthcare Group, Lp Surgical stapling device
US20050004559A1 (en) 2003-06-03 2005-01-06 Senorx, Inc. Universal medical device control console
US7699835B2 (en) 2001-02-15 2010-04-20 Hansen Medical, Inc. Robotically controlled surgical instruments
US7905897B2 (en) 2001-03-14 2011-03-15 Tyco Healthcare Group Lp Trocar device
WO2002085218A2 (en) 2001-04-20 2002-10-31 Power Medical Interventions, Inc. Bipolar or ultrasonic surgical device
CN1554061A (en) 2001-06-20 2004-12-08 ͨ��ҽ�ƹ�˾ A method and system for integrated medical tracking
CN100337596C (en) 2001-06-22 2007-09-19 机能医疗干预公司 Electro-mechanical surgical device
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
DE10147145C2 (en) 2001-09-25 2003-12-18 Kunz Reiner Multi-function instrument for micro-invasive surgery
EP2347722B1 (en) 2001-10-05 2014-09-17 Covidien LP Surgical stapling device
US10285694B2 (en) 2001-10-20 2019-05-14 Covidien Lp Surgical stapler with timer and feedback display
US7464847B2 (en) 2005-06-03 2008-12-16 Tyco Healthcare Group Lp Surgical stapler with timer and feedback display
US6783533B2 (en) 2001-11-21 2004-08-31 Sythes Ag Chur Attachable/detachable reaming head for surgical reamer
IL148702A (en) 2002-03-14 2008-04-13 Innoventions Inc Insertion and retrieval system for inflatable devices
AU2003245246B2 (en) 2002-04-25 2009-01-08 Covidien Lp Surgical instruments including micro-electromechanical systems (MEMS)
WO2003105702A2 (en) 2002-06-14 2003-12-24 Power Medical Interventions, Inc. Surgical device
US20030038938A1 (en) 2002-06-20 2003-02-27 Jung Wayne D. Apparatus and method for measuring optical characteristics of an object or material
US8182494B1 (en) 2002-07-31 2012-05-22 Cardica, Inc. Minimally-invasive surgical system
US6645218B1 (en) 2002-08-05 2003-11-11 Endius Incorporated Surgical instrument
US20040176751A1 (en) 2002-08-14 2004-09-09 Endovia Medical, Inc. Robotic medical instrument system
EP1545289B1 (en) 2002-09-30 2010-04-28 Power Medical Interventions, LLC Self-contained sterilizable surgical system
CA2500785C (en) 2002-10-04 2011-04-26 Philip C. Roy Pneumatic powered surgical stapling device
US7559927B2 (en) 2002-12-20 2009-07-14 Medtronic Xomed, Inc. Surgical instrument with telescoping attachment
JP2004208922A (en) 2002-12-27 2004-07-29 Olympus Corp Medical apparatus, medical manipulator and control process for medical apparatus
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7380695B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7380696B2 (en) 2003-05-20 2008-06-03 Ethicon Endo-Surgery, Inc. Articulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7140528B2 (en) 2003-05-20 2006-11-28 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated single lockout mechanism for prevention of firing
US7044352B2 (en) 2003-05-20 2006-05-16 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a single lockout mechanism for prevention of firing
US7143923B2 (en) 2003-05-20 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a firing lockout for an unclosed anvil
US6988649B2 (en) 2003-05-20 2006-01-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a spent cartridge lockout
JP4791967B2 (en) 2003-05-21 2011-10-12 ザ・ジョンズ・ホプキンス・ユニバーシティー Devices, systems and methods for minimally invasive surgery of mammalian throat and other parts of body
US7168604B2 (en) 2003-06-20 2007-01-30 Tyco Healthcare Group Lp Surgical stapling device
US6964363B2 (en) 2003-07-09 2005-11-15 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having articulation joint support plates for supporting a firing bar
US7055731B2 (en) 2003-07-09 2006-06-06 Ethicon Endo-Surgery Inc. Surgical stapling instrument incorporating a tapered firing bar for increased flexibility around the articulation joint
US6981628B2 (en) 2003-07-09 2006-01-03 Ethicon Endo-Surgery, Inc. Surgical instrument with a lateral-moving articulation control
US7111769B2 (en) 2003-07-09 2006-09-26 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating an articulation mechanism having rotation about the longitudinal axis
JP4398813B2 (en) 2003-07-18 2010-01-13 ヤーマン株式会社 Skin care equipment
US6905057B2 (en) 2003-09-29 2005-06-14 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a firing mechanism having a linked rack transmission
US7364061B2 (en) 2003-09-29 2008-04-29 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multistroke firing position indicator and retraction mechanism
US6959852B2 (en) 2003-09-29 2005-11-01 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with multistroke firing incorporating an anti-backup mechanism
US9055943B2 (en) 2007-09-21 2015-06-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10105140B2 (en) 2009-11-20 2018-10-23 Covidien Lp Surgical console and hand-held surgical device
US9113880B2 (en) 2007-10-05 2015-08-25 Covidien Lp Internal backbone structural chassis for a surgical device
US8968276B2 (en) 2007-09-21 2015-03-03 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US8806973B2 (en) 2009-12-02 2014-08-19 Covidien Lp Adapters for use between surgical handle assembly and surgical end effector
US10588629B2 (en) 2009-11-20 2020-03-17 Covidien Lp Surgical console and hand-held surgical device
US20090090763A1 (en) 2007-10-05 2009-04-09 Tyco Healthcare Group Lp Powered surgical stapling device
CA2542532C (en) 2003-10-17 2012-08-14 Tyco Healthcare Group, Lp Surgical stapling device with independent tip rotation
US10022123B2 (en) 2012-07-09 2018-07-17 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US7172415B2 (en) 2003-11-22 2007-02-06 Flexi-Float, Llc Equine dental grinding apparatus
DE10357105B3 (en) 2003-12-06 2005-04-07 Richard Wolf Gmbh Medical instrument for medical applications comprises an insert and a handle detachedly connected to each other
SE0400145D0 (en) 2004-01-27 2004-01-27 Anders Johansson An arrangement and method for assessing joints
DE602005001328T2 (en) 2004-02-17 2008-02-14 Tyco Healthcare Group Lp, Norwalk Surgical stapler
EP1723913A1 (en) 2004-03-10 2006-11-22 Olympus Corporation Treatment tool for surgery
US7059508B2 (en) 2004-06-30 2006-06-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating an uneven multistroke firing mechanism having a rotary transmission
US7147138B2 (en) 2004-07-28 2006-12-12 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having an electroactive polymer actuated buttress deployment mechanism
US7143925B2 (en) 2004-07-28 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP blocking lockout mechanism
US7487899B2 (en) 2004-07-28 2009-02-10 Ethicon Endo-Surgery, Inc. Surgical instrument incorporating EAP complete firing system lockout mechanism
US7143926B2 (en) 2005-02-07 2006-12-05 Ethicon Endo-Surgery, Inc. Surgical stapling instrument incorporating a multi-stroke firing mechanism with return spring rotary manual retraction system
WO2006015319A2 (en) 2004-07-30 2006-02-09 Power Medical Interventions, Inc. Flexible shaft extender and method of using same
US7922719B2 (en) 2004-10-06 2011-04-12 Biodynamics, Llc Adjustable angle pawl handle for surgical instruments
BRPI0518171B8 (en) 2004-10-08 2021-06-22 Ethicon Endo Surgery Inc ultrasonic forceps coagulator apparatus
WO2006063156A1 (en) 2004-12-09 2006-06-15 Stryker Corporation Wireless system for providing instrument and implant data to a surgical navigation unit
CA2604563C (en) * 2005-04-15 2020-07-28 Surgisense Corporation Surgical instruments with sensors for detecting tissue properties, and systems using such instruments
US7822458B2 (en) 2005-05-19 2010-10-26 The Johns Hopkins University Distal bevel-tip needle control device and algorithm
EP1736112B1 (en) 2005-06-20 2011-08-17 Heribert Schmid Medical device
US8627995B2 (en) 2006-05-19 2014-01-14 Ethicon Endo-Sugery, Inc. Electrically self-powered surgical instrument with cryptographic identification of interchangeable part
US8579176B2 (en) 2005-07-26 2013-11-12 Ethicon Endo-Surgery, Inc. Surgical stapling and cutting device and method for using the device
CN102988087B (en) 2005-07-27 2015-09-09 柯惠Lp公司 Such as the axle of electro-mechanical surgical device
US20070029363A1 (en) 2005-08-07 2007-02-08 Sergey Popov Surgical apparatus with remote drive
US8348855B2 (en) 2005-08-29 2013-01-08 Galil Medical Ltd. Multiple sensor device for measuring tissue temperature during thermal treatment
JP4125311B2 (en) 2005-08-30 2008-07-30 株式会社東芝 Robots and manipulators
US7407078B2 (en) 2005-09-21 2008-08-05 Ehthicon Endo-Surgery, Inc. Surgical stapling instrument having force controlled spacing end effector
AU2006222756B2 (en) 2005-09-30 2012-09-27 Ethicon Endo-Surgery, Inc. Electroactive polymer-based articulation mechanism for linear surgical stapler
US7641091B2 (en) 2005-10-04 2010-01-05 Tyco Healthcare Group Lp Staple drive assembly
US20070102472A1 (en) 2005-11-04 2007-05-10 Ethicon Endo-Surgery, Inc. Electrosurgical stapling instrument with disposable severing / stapling unit
US7328828B2 (en) 2005-11-04 2008-02-12 Ethicon Endo-Surgery, Inc, Lockout mechanisms and surgical instruments including same
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7799039B2 (en) 2005-11-09 2010-09-21 Ethicon Endo-Surgery, Inc. Surgical instrument having a hydraulically actuated end effector
US7673780B2 (en) 2005-11-09 2010-03-09 Ethicon Endo-Surgery, Inc. Articulation joint with improved moment arm extension for articulating an end effector of a surgical instrument
US7246734B2 (en) 2005-12-05 2007-07-24 Ethicon Endo-Surgery, Inc. Rotary hydraulic pump actuated multi-stroke surgical instrument
US7481824B2 (en) 2005-12-30 2009-01-27 Ethicon Endo-Surgery, Inc. Surgical instrument with bending articulation controlled articulation pivot joint
US7670334B2 (en) 2006-01-10 2010-03-02 Ethicon Endo-Surgery, Inc. Surgical instrument having an articulating end effector
US7416101B2 (en) 2006-01-31 2008-08-26 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with loading force feedback
US7766210B2 (en) 2006-01-31 2010-08-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with user feedback system
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7464846B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Surgical instrument having a removable battery
US20070175951A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Gearing selector for a powered surgical cutting and fastening instrument
US20070175950A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Disposable staple cartridge having an anvil with tissue locator for use with a surgical cutting and fastening instrument and modular end effector system therefor
US7575144B2 (en) 2006-01-31 2009-08-18 Ethicon Endo-Surgery, Inc. Surgical fastener and cutter with single cable actuator
US7644848B2 (en) 2006-01-31 2010-01-12 Ethicon Endo-Surgery, Inc. Electronic lockouts and surgical instrument including same
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US7422139B2 (en) 2006-01-31 2008-09-09 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting fastening instrument with tactile position feedback
US7568603B2 (en) 2006-01-31 2009-08-04 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with articulatable end effector
US7464849B2 (en) 2006-01-31 2008-12-16 Ethicon Endo-Surgery, Inc. Electro-mechanical surgical instrument with closure system and anvil alignment components
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
WO2007090147A2 (en) 2006-01-31 2007-08-09 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
US20070175955A1 (en) 2006-01-31 2007-08-02 Shelton Frederick E Iv Surgical cutting and fastening instrument with closure trigger locking mechanism
US7770775B2 (en) 2006-01-31 2010-08-10 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with adaptive user feedback
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
EP2486868A3 (en) 2006-05-19 2014-04-02 Ethicon Endo-Surgery, Inc. Method of creating a mechanical force switch for a medical device
US8551076B2 (en) 2006-06-13 2013-10-08 Intuitive Surgical Operations, Inc. Retrograde instrument
US8114121B2 (en) * 2006-06-22 2012-02-14 Tyco Healthcare Group Lp Tissue vitality comparator with light pipe with fiber optic imaging bundle
US7431189B2 (en) 2006-08-02 2008-10-07 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with mechanical linkage coupling end effector and trigger motion
US7740159B2 (en) 2006-08-02 2010-06-22 Ethicon Endo-Surgery, Inc. Pneumatically powered surgical cutting and fastening instrument with a variable control of the actuating rate of firing with mechanical power assist
US20080029574A1 (en) 2006-08-02 2008-02-07 Shelton Frederick E Pneumatically powered surgical cutting and fastening instrument with actuator at distal end
US9554843B2 (en) 2006-09-01 2017-01-31 Conmed Corporation Adapter and method for converting gas-enhanced electrosurgical coagulation instrument for cutting
US7967178B2 (en) 2006-10-06 2011-06-28 Tyco Healthcare Group Lp Grasping jaw mechanism
JP5085996B2 (en) 2006-10-25 2012-11-28 テルモ株式会社 Manipulator system
US20080109012A1 (en) 2006-11-03 2008-05-08 General Electric Company System, method and apparatus for tableside remote connections of medical instruments and systems using wireless communications
US7721930B2 (en) 2006-11-10 2010-05-25 Thicon Endo-Surgery, Inc. Disposable cartridge with adhesive for use with a stapling device
WO2008061313A1 (en) 2006-11-24 2008-05-29 Mems-Id Pty Ltd Tagging methods and apparatus
US7954682B2 (en) 2007-01-10 2011-06-07 Ethicon Endo-Surgery, Inc. Surgical instrument with elements to communicate between control unit and end effector
US7738971B2 (en) 2007-01-10 2010-06-15 Ethicon Endo-Surgery, Inc. Post-sterilization programming of surgical instruments
US7900805B2 (en) 2007-01-10 2011-03-08 Ethicon Endo-Surgery, Inc. Surgical instrument with enhanced battery performance
US7721931B2 (en) 2007-01-10 2010-05-25 Ethicon Endo-Surgery, Inc. Prevention of cartridge reuse in a surgical instrument
CA2677302C (en) 2007-02-05 2016-12-06 Novian Health, Inc. Interstitial laser therapy kits and interstitial laser therapy control system
WO2008109125A1 (en) 2007-03-06 2008-09-12 Tyco Healthcare Group Lp Surgical stapling apparatus
US8011550B2 (en) 2009-03-31 2011-09-06 Tyco Healthcare Group Lp Surgical stapling apparatus
US8690864B2 (en) 2007-03-09 2014-04-08 Covidien Lp System and method for controlling tissue treatment
US7422136B1 (en) 2007-03-15 2008-09-09 Tyco Healthcare Group Lp Powered surgical stapling device
EP2139422B1 (en) 2007-03-26 2016-10-26 Hansen Medical, Inc. Robotic catheter systems and methods
US20080255413A1 (en) 2007-04-13 2008-10-16 Michael Zemlok Powered surgical instrument
US20080251561A1 (en) 2007-04-13 2008-10-16 Chad Eades Quick connect base plate for powder actuated tool
US8800837B2 (en) 2007-04-13 2014-08-12 Covidien Lp Powered surgical instrument
US20080281301A1 (en) 2007-04-20 2008-11-13 Deboer Charles Personal Surgical Center
JP2010524593A (en) 2007-04-20 2010-07-22 ドヘニー アイ インスティテュート Independent Surgery Center
WO2008133956A2 (en) 2007-04-23 2008-11-06 Hansen Medical, Inc. Robotic instrument control system
US8649849B2 (en) 2007-05-21 2014-02-11 Board Of Regents, The University Of Texas System Optical methods to intraoperatively detect positive prostate and kidney cancer margins
US7549564B2 (en) 2007-06-22 2009-06-23 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulating end effector
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US7510107B2 (en) 2007-06-18 2009-03-31 Ethicon Endo-Surgery, Inc. Cable driven surgical stapling and cutting instrument with apparatus for preventing inadvertent cable disengagement
CA2691582A1 (en) 2007-06-29 2009-01-08 Tyco Healthcare Group Lp Method and system for monitoring tissue during an electrosurgical procedure
US9023014B2 (en) 2007-09-21 2015-05-05 Covidien Lp Quick connect assembly for use between surgical handle assembly and surgical accessories
AU2008302039B2 (en) 2007-09-21 2013-07-18 Covidien Lp Surgical device
EP3097869B1 (en) 2007-09-21 2020-03-11 Covidien LP Surgical device
US8967443B2 (en) 2007-10-05 2015-03-03 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US8960520B2 (en) 2007-10-05 2015-02-24 Covidien Lp Method and apparatus for determining parameters of linear motion in a surgical instrument
US20130214025A1 (en) 2007-10-05 2013-08-22 Covidien Lp Powered surgical stapling device
CA2640345C (en) 2007-10-05 2017-11-07 Tyco Healthcare Group Lp Surgical stapler having an articulation mechanism
US8517241B2 (en) 2010-04-16 2013-08-27 Covidien Lp Hand-held surgical devices
US7922063B2 (en) 2007-10-31 2011-04-12 Tyco Healthcare Group, Lp Powered surgical instrument
US8758342B2 (en) 2007-11-28 2014-06-24 Covidien Ag Cordless power-assisted medical cauterization and cutting device
US20090171147A1 (en) 2007-12-31 2009-07-02 Woojin Lee Surgical instrument
JP5535084B2 (en) 2008-01-10 2014-07-02 コヴィディエン リミテッド パートナーシップ Imaging system for a surgical device
US8647258B2 (en) 2008-01-10 2014-02-11 Covidien Lp Apparatus for endoscopic procedures
TW200934621A (en) 2008-02-01 2009-08-16 Mobiletron Electronics Co Ltd Extended transmission rod for power tool
US8752749B2 (en) 2008-02-14 2014-06-17 Ethicon Endo-Surgery, Inc. Robotically-controlled disposable motor-driven loading unit
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US7857185B2 (en) 2008-02-14 2010-12-28 Ethicon Endo-Surgery, Inc. Disposable loading unit for surgical stapling apparatus
US7793812B2 (en) 2008-02-14 2010-09-14 Ethicon Endo-Surgery, Inc. Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US7959051B2 (en) 2008-02-15 2011-06-14 Ethicon Endo-Surgery, Inc. Closure systems for a surgical cutting and stapling instrument
US8733611B2 (en) 2008-03-12 2014-05-27 Covidien Lp Ratcheting mechanism for surgical stapling device
US20090254094A1 (en) 2008-04-08 2009-10-08 Knapp Troy D Ratcheting mechanical driver for cannulated surgical systems
EP2278927A2 (en) 2008-04-25 2011-02-02 Downey, Earl C. Laparoscopic surgical instrument
US7922061B2 (en) 2008-05-21 2011-04-12 Ethicon Endo-Surgery, Inc. Surgical instrument with automatically reconfigurable articulating end effector
US8403926B2 (en) 2008-06-05 2013-03-26 Ethicon Endo-Surgery, Inc. Manually articulating devices
US20100069942A1 (en) 2008-09-18 2010-03-18 Ethicon Endo-Surgery, Inc. Surgical instrument with apparatus for measuring elapsed time between actions
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8372057B2 (en) 2008-10-10 2013-02-12 Coeur, Inc. Luer lock adapter
US8020743B2 (en) 2008-10-15 2011-09-20 Ethicon Endo-Surgery, Inc. Powered articulatable surgical cutting and fastening instrument with flexible drive member
DE102008053842B4 (en) 2008-10-30 2010-08-26 Kirchner, Hilmar O. Surgical cutting device
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
EP2403671A1 (en) 2009-03-03 2012-01-11 Westport Medical, Inc. Bit holders
US8016178B2 (en) 2009-03-31 2011-09-13 Tyco Healthcare Group Lp Surgical stapling apparatus
US8365972B2 (en) 2009-03-31 2013-02-05 Covidien Lp Surgical stapling apparatus
US7967179B2 (en) 2009-03-31 2011-06-28 Tyco Healthcare Group Lp Center cinch and release of buttress material
US8827134B2 (en) 2009-06-19 2014-09-09 Covidien Lp Flexible surgical stapler with motor in the head
US8146790B2 (en) 2009-07-11 2012-04-03 Tyco Healthcare Group Lp Surgical instrument with safety mechanism
US20110077673A1 (en) 2009-09-29 2011-03-31 Cardiovascular Systems, Inc. Rotational atherectomy device with frictional clutch having magnetic normal force
ES2333509B2 (en) 2009-10-07 2011-01-03 Universidad De Cantabria INSTRUMENT FOR ENDOSCOPIC SURGERY.
US8157151B2 (en) 2009-10-15 2012-04-17 Tyco Healthcare Group Lp Staple line reinforcement for anvil and cartridge
EP2333509A1 (en) 2009-12-08 2011-06-15 Dingens BG bvba Precision Anaeroid barometer with a capillary tube as a pressure indicator.
US8561871B2 (en) 2009-12-31 2013-10-22 Covidien Lp Indicators for surgical staplers
WO2011108840A2 (en) 2010-03-05 2011-09-09 주식회사 이턴 Surgical instrument, coupling structure of the surgical instrument, and method for adjusting origin point
JP5658896B2 (en) * 2010-03-19 2015-01-28 オリンパス株式会社 Therapeutic treatment system
CN101966093B (en) 2010-09-28 2012-01-11 常州市康迪医用吻合器有限公司 Cavity mirror surgical incision anastomat with replaceable nail bin
US8292150B2 (en) 2010-11-02 2012-10-23 Tyco Healthcare Group Lp Adapter for powered surgical devices
US8523043B2 (en) 2010-12-07 2013-09-03 Immersion Corporation Surgical stapler having haptic feedback
US8348130B2 (en) 2010-12-10 2013-01-08 Covidien Lp Surgical apparatus including surgical buttress
US8936614B2 (en) 2010-12-30 2015-01-20 Covidien Lp Combined unilateral/bilateral jaws on a surgical instrument
AU2012207357B2 (en) 2011-01-19 2016-07-28 Fractyl Health, Inc. Devices and methods for the treatment of tissue
US9186153B2 (en) * 2011-01-31 2015-11-17 Covidien Lp Locking cam driver and jaw assembly for clip applier
US20120211542A1 (en) 2011-02-23 2012-08-23 Tyco Healthcare Group I.P Controlled tissue compression systems and methods
CN102247182A (en) 2011-04-29 2011-11-23 常州市康迪医用吻合器有限公司 Electric anastomat for surgical department
US9017314B2 (en) 2011-06-01 2015-04-28 Covidien Lp Surgical articulation assembly
US9480492B2 (en) 2011-10-25 2016-11-01 Covidien Lp Apparatus for endoscopic procedures
US8672206B2 (en) 2011-10-25 2014-03-18 Covidien Lp Apparatus for endoscopic procedures
US8899462B2 (en) 2011-10-25 2014-12-02 Covidien Lp Apparatus for endoscopic procedures
US9492146B2 (en) 2011-10-25 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US8657177B2 (en) 2011-10-25 2014-02-25 Covidien Lp Surgical apparatus and method for endoscopic surgery
JP2013192775A (en) * 2012-03-21 2013-09-30 Konica Minolta Inc Forceps, diagnosis assisting system and endoscope system
US9375282B2 (en) 2012-03-26 2016-06-28 Covidien Lp Light energy sealing, cutting and sensing surgical device
US9868198B2 (en) 2012-06-01 2018-01-16 Covidien Lp Hand held surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical loading units, and methods of use
US9597104B2 (en) 2012-06-01 2017-03-21 Covidien Lp Handheld surgical handle assembly, surgical adapters for use between surgical handle assembly and surgical end effectors, and methods of use
US10080563B2 (en) 2012-06-01 2018-09-25 Covidien Lp Loading unit detection assembly and surgical device for use therewith
US9364220B2 (en) 2012-06-19 2016-06-14 Covidien Lp Apparatus for endoscopic procedures
US9839480B2 (en) 2012-07-09 2017-12-12 Covidien Lp Surgical adapter assemblies for use between surgical handle assembly and surgical end effectors
US10492814B2 (en) 2012-07-09 2019-12-03 Covidien Lp Apparatus for endoscopic procedures
US9402604B2 (en) 2012-07-20 2016-08-02 Covidien Lp Apparatus for endoscopic procedures
US9421014B2 (en) 2012-10-18 2016-08-23 Covidien Lp Loading unit velocity and position feedback
US9782187B2 (en) 2013-01-18 2017-10-10 Covidien Lp Adapter load button lockout
US9421003B2 (en) 2013-02-18 2016-08-23 Covidien Lp Apparatus for endoscopic procedures
US9216013B2 (en) 2013-02-18 2015-12-22 Covidien Lp Apparatus for endoscopic procedures
US9839421B2 (en) * 2013-02-28 2017-12-12 Ethicon Llc Jaw closure feature for end effector of surgical instrument
US9492189B2 (en) 2013-03-13 2016-11-15 Covidien Lp Apparatus for endoscopic procedures
US9301691B2 (en) 2014-02-21 2016-04-05 Covidien Lp Instrument for optically detecting tissue attributes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10660724B2 (en) 2014-02-21 2020-05-26 Covidien Lp Instrument for optically detecting tissue attributes
US11903635B2 (en) 2020-02-28 2024-02-20 Covidien Lp Electrosurgical forceps including tissue indication

Also Published As

Publication number Publication date
EP2913019B1 (en) 2019-02-06
JP6457806B2 (en) 2019-01-23
US9301691B2 (en) 2016-04-05
CA2873257A1 (en) 2015-08-21
JP2015157066A (en) 2015-09-03
US20150238088A1 (en) 2015-08-27
CN104856646B (en) 2019-06-18
US10660724B2 (en) 2020-05-26
EP2913019A1 (en) 2015-09-02
AU2014262255B2 (en) 2019-02-21
CN104856646A (en) 2015-08-26
AU2014262255A1 (en) 2015-09-10
US20170079740A1 (en) 2017-03-23

Similar Documents

Publication Publication Date Title
US10660724B2 (en) Instrument for optically detecting tissue attributes
US20210263179A1 (en) Surgical adapter assemblies and wireless detection of surgical loading units
US11559307B2 (en) Method of robotic hub communication, detection, and control
US11471206B2 (en) Method for controlling a modular energy system user interface
US10772688B2 (en) Input handles for robotic surgical systems having visual feedback
US20190205001A1 (en) Sterile field interactive control displays
US20230171304A1 (en) Method of robotic hub communication, detection, and control
JP4999912B2 (en) Telesurgical instrument attachment with electromechanical driver and computer control capability
US5772597A (en) Surgical tool end effector
JP2023544593A (en) collaborative surgical display
EP3205289B1 (en) Adapter assemblies for interconnecting electromechanical handle assemblies and surgical loading units
JP2023545392A (en) Smart energy combo control options
AU2016247965A1 (en) Methods for exchanging instruments using a surgical port assembly
JP2000139947A (en) Medical system
US20230094266A1 (en) Methods and Systems for Controlling Cooperative Surgical Instruments
US11723642B2 (en) Cooperative access hybrid procedures
WO2023052932A1 (en) Surgical sealing devices for a natural body orifice
EP4216846A1 (en) Surgical systems with port devices for instrument control

Legal Events

Date Code Title Description
AS Assignment

Owner name: COVIDIEN LP, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HUFNAGEL, ELIZABETH;CHEN, XINGRUI;CHOWANIEC, MATTHEW;AND OTHERS;SIGNING DATES FROM 20141014 TO 20141016;REEL/FRAME:038111/0616

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION