US20160286798A1 - Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods - Google Patents

Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods Download PDF

Info

Publication number
US20160286798A1
US20160286798A1 US14/674,465 US201514674465A US2016286798A1 US 20160286798 A1 US20160286798 A1 US 20160286798A1 US 201514674465 A US201514674465 A US 201514674465A US 2016286798 A1 US2016286798 A1 US 2016286798A1
Authority
US
United States
Prior art keywords
amine oxide
solution
buffered
carbon length
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/674,465
Inventor
Hans A. Ward, Jr.
Ronald Walton Clawson, Jr.
Kenneth Allen Cutler
Cameron R. Scott
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kop Coat Inc
Original Assignee
Kop Coat Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kop Coat Inc filed Critical Kop Coat Inc
Priority to US14/674,465 priority Critical patent/US20160286798A1/en
Assigned to KOP-COAT, INC. reassignment KOP-COAT, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SCOTT, Cameron R., CUTLER, KENNETH ALLEN, CLAWSON, RONALD WALTON, JR, WARD, HANS A.
Priority to PCT/US2015/052562 priority patent/WO2016160055A1/en
Priority to BR112017020875-0A priority patent/BR112017020875B1/en
Priority to EP21162412.7A priority patent/EP3895536A1/en
Priority to CA2979304A priority patent/CA2979304A1/en
Priority to HUE15888052A priority patent/HUE056873T2/en
Priority to HRP20220035TT priority patent/HRP20220035T1/en
Priority to BR122021013481-2A priority patent/BR122021013481B1/en
Priority to NZ734615A priority patent/NZ734615B2/en
Priority to AU2015390102A priority patent/AU2015390102A1/en
Priority to DK15888052.6T priority patent/DK3285580T3/en
Priority to LTEPPCT/US2015/052562T priority patent/LT3285580T/en
Priority to EP15888052.6A priority patent/EP3285580B1/en
Priority to US15/079,478 priority patent/US10278386B2/en
Publication of US20160286798A1 publication Critical patent/US20160286798A1/en
Priority to CL2017002466A priority patent/CL2017002466A1/en
Priority to US16/208,976 priority patent/US10952433B2/en
Priority to AU2019202599A priority patent/AU2019202599C1/en
Priority to US17/311,204 priority patent/US11779016B2/en
Priority to AU2020294285A priority patent/AU2020294285B2/en
Priority to CL2021002980A priority patent/CL2021002980A1/en
Priority to CY20211101093T priority patent/CY1125074T1/en
Priority to AU2023222986A priority patent/AU2023222986A1/en
Priority to US18/464,352 priority patent/US20240057594A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/30Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests characterised by the surfactants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/16Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds
    • A01N33/24Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds only one oxygen atom attached to the nitrogen atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P3/00Fungicides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01PBIOCIDAL, PEST REPELLANT, PEST ATTRACTANT OR PLANT GROWTH REGULATORY ACTIVITY OF CHEMICAL COMPOUNDS OR PREPARATIONS
    • A01P7/00Arthropodicides

Definitions

  • the present invention relates to an improved solution for enhancing protection of living plants through synergistic effects between buffered amine oxides and insecticides and fungicides and related methods.
  • fungicide and insecticides have been employed in a wide variety of locations and types of uses to inhibit plant destruction due to fungus and insect pests. Problems created by insects and fungi have long existed in many environments including, but not limited to agriculture, parks, golf courses, residential environments, highways, vegetable gardens, railroad tracks, recreational facilities, floral gardens, forests, pastures, waterways and in many other environments. This can interfere with desired functionality, the health of plants, as well as the aesthetics of an area containing vegetation.
  • Ward, U.S. Pat. No. 7,896,960 discloses a method and solution for providing enhanced penetration of wood preservatives into wood to a greater depth through synergism between a buffering agent and an amine oxide. It contemplates the use of various types of wood preservatives on wood which has been severed from a living tree. Green lumber is also said to be treatable by the system.
  • This patent which relates to wood as distinguished from living plants does include within the definition of wood preservatives, a number of chemical compounds including specific reference to fungicidal, insecticidal, water resistant, termite resistant materials.
  • U.S. Pat. No. 6,811,731 is directed toward a fire-retardant wood-based composite created by treating a green wood furnish with a phosphate/borate fire-retardant material.
  • the fire-retardant treated green wood furnish is blended with a binder and then bound by applying pressure to form a non-leaching fire retardant wood based composite.
  • U.S. Pat. No. 6,508,869 discloses the use of amine oxides to enhance the performance of boron compounds as wood preservatives. There is mention of the amine oxides improving the effectiveness of boron compounds as insecticides or biocides and plant growth regulating agents. They are also said to provide better dispersion of boron compounds when applied to plants and fungi. It also makes reference to the seeds of plants and the area on which the plants or fungi grow.
  • the present invention provides a solution and method of obtaining synergistic action between a fungicide and a buffered amine oxide and/or an insecticide and a buffered amine oxide in order to provide enhanced resistance of a living plant to undesired deterioration due to fungi and insects.
  • the solution and related method provides for greater plant protection than would be obtained through use of the fungicide alone or the insecticide alone.
  • living plant is used in its ordinary sense, and is to be distinguished from both (a) plants which have died and (b) products or items which once were, but are no longer living or part of a living plant such as, for example, lumber. This definition will include living plant food products such as fruits or vegetables which have been removed from a plant.
  • a “buffer system” is an aqueous solution consisting of a mixture of a weak acid and its conjugate base or a weak base with its conjugate acid.
  • a buffer system may also be obtained by adding a weak acid/conjugate base or a weak base/conjugate acid or by adding the weak acid/weak base and a strong acid/strong base in sufficient amount to form the conjugate acid/conjugate base.
  • the present invention involves creating a synergistic effect by applying to the plant a solution which includes of either an insecticide or a fungicide or both which will achieve a synergistically created improvement in the result through combining the same with a buffered amine oxide.
  • the amine oxides may be mixed with buffers in a solvent to create a buffered amine oxide solution and then mixed with a herbicide solution.
  • the preferred amine oxides are selected from the group consisting of (a) the 12 carbon length amine oxides such as that sold under the trade designation Barlox 12 and (b) a mixture of the 12 and 18 carbon lengths sold under the trade designation Barlox 1218.
  • the buffer system has the property that the pH of the solution changes very little when a small amount of a strong acid or strong base is added to it. Buffer solutions are employed as a means of keeping pH at a nearly constant value within a wide range of chemical operations. In the present invention, the buffer system helps to maintain a substantially constant pH when in contact with biological systems, such as living plants.
  • the buffer system concepts can be extended to polyprotic species in which one or more protons may be removed to form different buffer systems, i.e., phosphate systems.
  • buffer systems i.e., phosphate systems.
  • preferred buffers are ammonium salt/ammonia, Deprotonated Lysine/Doubly Deprotonated Lysine, Phosphate Dibasic, Potassium Bicarbonate/Potassium Carbonate.
  • the buffered amine oxides do not significantly alter the pH of the insecticide or fungicide products but, rather, make the pH much less likely to change based on the buffer capacity of the buffer additives.
  • TABLES 1-3 describe, respectively, describe the buffer systems employed in the North American experiments reported in TABLES 4 and 5, with TABLE 2 referring to the experimental method and TABLE 4 showing a group of buffer systems pH and total Ion strengths.
  • TABLE 1 recites the composition of buffer systems 3-4 that were used in the studies.
  • Buffer systems 3-4 were prepared by dissolving the appropriate reagents into one liter of deionized water until a homogenous solution was obtained.
  • TABLE 4 shows, in the left hand column, the number assigned to a particular buffer with column 2 containing the abbreviated name or full name of the buffers. The amount of acidic chemical per liter and basic chemical per liter appear in the next two pairs of columns.
  • TABLE 2 is directed toward the experimental method in preparation of the pre-blended amine oxide and buffer systems.
  • the compositions of buffer system identifies the buffer system name in the first column with the next two columns providing identification of the acidic chemical and weight percent amount followed by the amount of basic chemical and the name. The last two columns provide the water weight percent and Barlox 12 (30% by weight amine oxide donor.)
  • Buffer system 3 was prepared by dissolving the appropriate reagent salts in water and then adding the amine oxide donor in sufficient amount to make one liter of solution.
  • TABLE 3 shows the pH and buffer total Ion strengths (Molar) for buffer system 3.
  • amine oxides were mixed with buffers and then added to insecticide or fungicide formulations.
  • preferred amine oxides were those of 12 carbon length such as that sold under the trade designation Barlox 12 and a mixture of the 12 and 18 carbon lengths sold under the trade designation Barlox 1218.
  • the buffer solution serves to stabilize the pH at a nearly constant value in a wide variety of chemical operations.
  • the buffer system maintains a substantially constant pH when in contact with biological systems.
  • the buffer system is an aqueous system consisting of a mixture of a weak acid in its conjugate or a weak base in its conjugate acid.
  • One may obtain the desired buffer system by directly adding the weak acid/conjugate base or weak base/conjugate acid salts or by adding the weak acid/weak base and a strong acid/strong base in sufficient amount to form the conjugate acid/conjugate base.
  • the amine oxide additives may be mixed as tank blends with the insecticides or fungicides or may be incorporated into the insecticides or fungicide formulas.
  • TABLE 1 shows 2 different buffers, while TABLE 3 shows an amine oxide blend.
  • TABLE 4 discloses systems wherein the appropriate reagents were dissolved in deionized water until a homogenous solution was obtained.
  • TABLE 3 deals with the pre-blending of the amine oxide and buffer systems with the appropriate reagents salts dissolved in water and subsequently, adding the amine oxide donor.
  • PROPICONAZOLE was employed in tests in the amount of 50:200 PPM (parts per million) employed with and without buffered amine oxides systems 3 and 4 with some of the tests employing the 12 carbon length and others, the 1218 carbon mixture.
  • the 12 carbon length will be present in an amount of about 1.3 to 2.0 times the amount of 18 carbon length and in the preferred range about 1.5 to 1.8 times the amount of 18 carbon length.
  • the tests were performed on white oak seedlings which were provided with a stem wound in which was introduced staining fungi which was of the ceratocystis variety. Staining indicates that the fungicide or other treatment did not resist growth of the fungi with the number 100 representing 100% with no inhibitions of fungi growth and the number 0 indicating 0% or 0 indicating no fungi growth.
  • TABLE 4 shows that both the 12 and 1218 length of buffered amine oxide system No. 3 used alone at concentrations of 200:1 and 400:1 produced no fungal growth inhibition as both showed 100% staining fungi.
  • buffered amine oxide system No. 4 when the 12 length is used in combination with 50 ppm of the fungicide, in concentration of 400:1, 20% fungal growth was experienced and in 200:1, no fungal growth was experienced. With regard to the fungicide being in 50 ppm and the 1218 carbon length, a buffered amine oxide system No. 4, as to both 200:1 and 400: 1 concentration, there was 0 fungal growth.
  • the method of testing the materials was to spray the trunk of the seedling with the particular solution being tested and 7 days after such application, creating a wound of approximately 2 millimeters by 10 millimeters on each seedling stem. Fourteen days after the wounding, the wounds were examined for the presence of staining fungi.
  • buffered amine oxide system No. 4 in combination with 10 ppm of the insecticide, reduce the gypsy moth caterpillar damage to 10% when using a concentration of 400:1 and to 0 when using a concentration of 200:1.
  • a single solution may contain both an insecticide and a fungicide.

Abstract

The present invention relates to a solution for resisting destruction of living plants and a related method. A solution including a buffered amine oxide admixed with at least one material selected from the group consisting of insecticides and fungicides is applied to the living plant and provides a synergistically effective greater resistance to living plant deterioration than any of the individual buffered amine oxide, insecticides and fungicide achieve considered individually. A related method is disclosed.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to an improved solution for enhancing protection of living plants through synergistic effects between buffered amine oxides and insecticides and fungicides and related methods.
  • 2. Description of the Prior Art
  • Fungi, insects and other pests cause significant economic losses in food crop production as well as losses in forestry, tree plantations, pastures, flowers and other agricultural products. In addition, fungicide and insecticides have been employed in a wide variety of locations and types of uses to inhibit plant destruction due to fungus and insect pests. Problems created by insects and fungi have long existed in many environments including, but not limited to agriculture, parks, golf courses, residential environments, highways, vegetable gardens, railroad tracks, recreational facilities, floral gardens, forests, pastures, waterways and in many other environments. This can interfere with desired functionality, the health of plants, as well as the aesthetics of an area containing vegetation.
  • It has been known to use a wide variety of materials to protect living plants from insects and fungi. A wide variety of insecticides and fungicides have been employed in order to enhance the health of living plants and resist attack thereon by insects, fungi and other destructive organisms.
  • It has been known to introduce wood preservatives into lumber in order to resist deterioration of the same.
  • Ward, U.S. Pat. No. 7,896,960 discloses a method and solution for providing enhanced penetration of wood preservatives into wood to a greater depth through synergism between a buffering agent and an amine oxide. It contemplates the use of various types of wood preservatives on wood which has been severed from a living tree. Green lumber is also said to be treatable by the system.
  • This patent, which relates to wood as distinguished from living plants does include within the definition of wood preservatives, a number of chemical compounds including specific reference to fungicidal, insecticidal, water resistant, termite resistant materials.
  • U.S. Pat. No. 6,811,731 is directed toward a fire-retardant wood-based composite created by treating a green wood furnish with a phosphate/borate fire-retardant material. The fire-retardant treated green wood furnish is blended with a binder and then bound by applying pressure to form a non-leaching fire retardant wood based composite.
  • Walker, U.S. Pat. No. 6,572,788 discloses the use of amine oxides as wood preservatives. It states that the amine oxides inhibit microbial growth in wood. This patent relates to wood which has been severed from growing trees and discloses the use of wood preservatives which are said to inhibit destructive organisms such as fungi and sapstain, for example. It is directed toward preserving structural integrity of wood after the tree has been killed and resisting destruction of the resultant lumber as the prime objective.
  • Tseng, U.S. Pat. No. 6,508,869 discloses the use of amine oxides to enhance the performance of boron compounds as wood preservatives. There is mention of the amine oxides improving the effectiveness of boron compounds as insecticides or biocides and plant growth regulating agents. They are also said to provide better dispersion of boron compounds when applied to plants and fungi. It also makes reference to the seeds of plants and the area on which the plants or fungi grow.
  • There remains, therefore, a very real and substantial need for an improved system for resisting attacks on and destruction of living plants by insects and fungi.
  • SUMMARY OF THE INVENTION
  • The present invention provides a solution and method of obtaining synergistic action between a fungicide and a buffered amine oxide and/or an insecticide and a buffered amine oxide in order to provide enhanced resistance of a living plant to undesired deterioration due to fungi and insects.
  • The solution and related method provides for greater plant protection than would be obtained through use of the fungicide alone or the insecticide alone.
  • It is an object of the present invention to provide effective economical means for enhancing the performance of insecticides and fungicides on living plants.
  • It is another object of the present invention to provide a solution and related method which will enhance the performance of fungicides and insecticides on living plants.
  • It is another object of the present invention which, through synergism with a buffered amine oxide, enhances the performance of conventional insecticides and fungicides.
  • It is yet another object of the present invention to employ a synergistic combination of insecticides or fungicides with a buffered amine oxide system to produce improved insect and fungi resistance while employing a smaller quantity of the insecticide or fungicide.
  • These and other objects of the invention will be more fully understood from the following description of the invention.
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • As employed herein, the term “living plant” is used in its ordinary sense, and is to be distinguished from both (a) plants which have died and (b) products or items which once were, but are no longer living or part of a living plant such as, for example, lumber. This definition will include living plant food products such as fruits or vegetables which have been removed from a plant.
  • As employed herein, a “buffer system” is an aqueous solution consisting of a mixture of a weak acid and its conjugate base or a weak base with its conjugate acid. A buffer system may also be obtained by adding a weak acid/conjugate base or a weak base/conjugate acid or by adding the weak acid/weak base and a strong acid/strong base in sufficient amount to form the conjugate acid/conjugate base.
  • The present invention involves creating a synergistic effect by applying to the plant a solution which includes of either an insecticide or a fungicide or both which will achieve a synergistically created improvement in the result through combining the same with a buffered amine oxide.
  • The amine oxides may be mixed with buffers in a solvent to create a buffered amine oxide solution and then mixed with a herbicide solution. The preferred amine oxides are selected from the group consisting of (a) the 12 carbon length amine oxides such as that sold under the trade designation Barlox 12 and (b) a mixture of the 12 and 18 carbon lengths sold under the trade designation Barlox 1218. The buffer system has the property that the pH of the solution changes very little when a small amount of a strong acid or strong base is added to it. Buffer solutions are employed as a means of keeping pH at a nearly constant value within a wide range of chemical operations. In the present invention, the buffer system helps to maintain a substantially constant pH when in contact with biological systems, such as living plants.
  • The buffer system concepts can be extended to polyprotic species in which one or more protons may be removed to form different buffer systems, i.e., phosphate systems. Among the preferred buffers are ammonium salt/ammonia, Deprotonated Lysine/Doubly Deprotonated Lysine, Phosphate Dibasic, Potassium Bicarbonate/Potassium Carbonate.
  • Boric Acid/Borax, Potassium Phosphate Dibasic/Potassium Phosphate Tribasic, Ammonium Citrate Tribasic, and Potassium Phosphate Monobasic/Potassium Phosphate Dibasic.
  • It will be appreciated that the buffered amine oxides do not significantly alter the pH of the insecticide or fungicide products but, rather, make the pH much less likely to change based on the buffer capacity of the buffer additives.
  • A series of tests were performed in the United States in order to determine the effectiveness of a solution of the present invention combining an insecticide with a buffered amine oxide and the effectiveness of a solution of the present invention combining a fungicide with a buffered amine oxide.
  • TABLES 1-3 describe, respectively, describe the buffer systems employed in the North American experiments reported in TABLES 4 and 5, with TABLE 2 referring to the experimental method and TABLE 4 showing a group of buffer systems pH and total Ion strengths.
  • TABLE 1 recites the composition of buffer systems 3-4 that were used in the studies. Buffer systems 3-4 were prepared by dissolving the appropriate reagents into one liter of deionized water until a homogenous solution was obtained. TABLE 4 shows, in the left hand column, the number assigned to a particular buffer with column 2 containing the abbreviated name or full name of the buffers. The amount of acidic chemical per liter and basic chemical per liter appear in the next two pairs of columns.
  • TABLE 1
    Buffer Systems 3, 4 Composition
    Acidic Chemical (per Basic Chemical (per
    Buffer Buffer System Name liter) liter)
    No. (Abbreviated Name) Amount Name Amount Name
    3 Potassium Phosphate 0.5 mol Potassium 0.5 mol Potassium
    Monobasic/ Phosphate Phosphate
    Potassium Phosphate Dibasic Monobasic Dibasic
    (Phosphate Buffer 1)
    4 Potassium Bicarbonate/ 0.5 mol Potassium 0.5 mol Potassium
    Potassium Carbonate Bicarbonate Carbonate
    (Carbonate Buffer)
  • TABLE 2 is directed toward the experimental method in preparation of the pre-blended amine oxide and buffer systems. The compositions of buffer system identifies the buffer system name in the first column with the next two columns providing identification of the acidic chemical and weight percent amount followed by the amount of basic chemical and the name. The last two columns provide the water weight percent and Barlox 12 (30% by weight amine oxide donor.)
  • TABLE 2 discloses the composition of pre-blended Amine Oxide and Buffer System 3 that was used in the studies. Buffer system 3 was prepared by dissolving the appropriate reagent salts in water and then adding the amine oxide donor in sufficient amount to make one liter of solution.
  • TABLE 2
    Pre-blended Buffer System 3 Composition
    Barlox 12
    (30% by
    weight
    amine
    oxide)
    Amine
    Acidic Chemical Basic Chemical Water oxide
    Buffer Buffer System Name Amount Amount Amount Donor
    Letter (Abbreviated Name) (wt %) Name (wt %) Name (wt %) (wt %)
    3 Potassium Phosphate Monobasic/ 4.36 Potassium 3.13 Potassium 12.51 80.00
    Potassium Phosphate Dibasic Phosphate Phosphate
    (Phosphate Buffer 3) Monobasic Dibasic
  • TABLE 3 shows the pH and buffer total Ion strengths (Molar) for buffer system 3.
  • TABLE 3
    Buffer System pH and Total Ion Strengths
    Buffer Total
    Buffer Buffer System Name pH (Buffer Ion Strength
    No. (Abbreviated Name) System) (Molar)
    3 Potassium Phosphate Monobasic/ 6.8 1.05M
    Potassium Phosphate Dibasic
    (Phosphate Buffer 1)
    4 Potassium Bicarbonate/ 10.2 0.995M
    Potassium Carbonate
    (Carbonate Buffer)
  • Referring to TABLES 4 and 5, the columns under the heading Buffered Amine Oxide System correspond to the identification provided in TABLES 1 through 3.
  • In general, in the present invention, amine oxides were mixed with buffers and then added to insecticide or fungicide formulations. Among the preferred amine oxides were those of 12 carbon length such as that sold under the trade designation Barlox 12 and a mixture of the 12 and 18 carbon lengths sold under the trade designation Barlox 1218. The buffer solution serves to stabilize the pH at a nearly constant value in a wide variety of chemical operations.
  • In the present invention, the buffer system maintains a substantially constant pH when in contact with biological systems. The buffer system is an aqueous system consisting of a mixture of a weak acid in its conjugate or a weak base in its conjugate acid. One may obtain the desired buffer system by directly adding the weak acid/conjugate base or weak base/conjugate acid salts or by adding the weak acid/weak base and a strong acid/strong base in sufficient amount to form the conjugate acid/conjugate base.
  • The amine oxide additives may be mixed as tank blends with the insecticides or fungicides or may be incorporated into the insecticides or fungicide formulas.
  • TABLE 1 shows 2 different buffers, while TABLE 3 shows an amine oxide blend. TABLE 4 discloses systems wherein the appropriate reagents were dissolved in deionized water until a homogenous solution was obtained. TABLE 3 deals with the pre-blending of the amine oxide and buffer systems with the appropriate reagents salts dissolved in water and subsequently, adding the amine oxide donor.
  • American Field Tests of Buffered Amine Oxide Additives to Fungicide and Insecticide (Tables 4 and 5)
  • TABLE 4
    May to June 2013
    Buffered Amine Oxide
    Fungicide Type System Buffer Percent of Seedlings with Staining
    Product Concentration Number & Amine Oxide Fungi in Stem Wound of
    PPM No Buffer Donor or Letter(7) White Oak (3, 4, 5, 8, 9)
    Propiconazole(6) 3 4
    12 1218 12 1218 12 1218
      100(1)(2)
    200:1 100
    400:1 100
    200:1 100
    400:1 100
    200 PPM   20
    100 PPM   80
    50 PPM 100
    50 PPM 200:1  0
    50 PPM 400:1  20
    50 PPM 200:1  0
    50 PPM 400:1  0
    200:1 100
    400:1 100
    200:1 100
    400:1 100
    50 PPM 200:1  0
    50 PPM 400:1  20
    50 PPM 200:1  0
    50 PPM 400:1  0
    200:1 100
    400:1 100
    200:1 100
    400:1 100
    (1)Water control
    (2)20 seedlings
    3) 20 milliliters per seedling; low volume hand spray
    4) Quercus alba -(white oak)
    5) May to June, Pennsylvania, USA
    (6)Technical Material registered by United States EPA dissolved in 10% propylene glycol and 90% distilled water
    (7)See Tables 1, 2 and 3 for buffers and amine oxides
    8) 7 days after application, a sterile razor blade wound of 2 millimeter by 10 millimeter on each seedling stem
    9) 14 days after wounding, wounds were examined for presence of staining fungi
    10) Buffers and amine oxides were added to dilute solution of fungicide
  • Referring to TABLE 4 wherein a commonly used fungicide, PROPICONAZOLE was employed in tests in the amount of 50:200 PPM (parts per million) employed with and without buffered amine oxides systems 3 and 4 with some of the tests employing the 12 carbon length and others, the 1218 carbon mixture. In a preferred embodiment in 1218 on a weight basis, the 12 carbon length will be present in an amount of about 1.3 to 2.0 times the amount of 18 carbon length and in the preferred range about 1.5 to 1.8 times the amount of 18 carbon length. The tests were performed on white oak seedlings which were provided with a stem wound in which was introduced staining fungi which was of the ceratocystis variety. Staining indicates that the fungicide or other treatment did not resist growth of the fungi with the number 100 representing 100% with no inhibitions of fungi growth and the number 0 indicating 0% or 0 indicating no fungi growth.
  • Referring in TABLE 4 to the heading under No Buffer, it is seen that the amine oxides of both the 12 and 1218 length in concentrations of 200:1 and 400:1 did not in any way inhibit growth of the staining fungi. Considering the Propiconazole employed alone, it is seen that with 50 ppm, 100 ppm and 200 ppm, the inhibition at 50 ppm did not exist as there was 100% growth and that at 100 ppm, 80% growth was experienced, while at 200 ppm, 20% growth existed.
  • With continued reference to TABLE 4, the combination of the fungicide with the buffered amine oxide system No. 3, employing 50 ppm in the 12 carbon length combined with 50 ppm propiconazole, at 200:1 concentration, there was 0 fungal growth, and at 400:1, there was 20% growth. The same 50 ppm of the fungicide employed with 200:1 and 400:1, 1218 buffered amine oxide system No. 3, produced 0 fungal growth.
  • TABLE 4 shows that both the 12 and 1218 length of buffered amine oxide system No. 3 used alone at concentrations of 200:1 and 400:1 produced no fungal growth inhibition as both showed 100% staining fungi.
  • Considering buffered amine oxide system No. 4 when the 12 length is used in combination with 50 ppm of the fungicide, in concentration of 400:1, 20% fungal growth was experienced and in 200:1, no fungal growth was experienced. With regard to the fungicide being in 50 ppm and the 1218 carbon length, a buffered amine oxide system No. 4, as to both 200:1 and 400: 1 concentration, there was 0 fungal growth.
  • Considering both the 12 length and 1218 length employed without the fungicide in both concentrations, 200:1 and 400:1, there was a 100% fungal growth.
  • The test results in TABLE 4, therefore, support the conclusion that, in the absence of a buffer, there was 100% fungal growth. In the use of 12 length amine oxide or 1218 length amine oxide alone with both buffered amine systems No. 3 and 4, there was 100% fungal growth. When, however, the combination of fungicide and the buffered amine oxide systems were employed, whether length 12 or 1218 was considered, when the concentration was 200:1, there was no fungal growth and when the concentration was 400:1, there was 20% fungal growth.
  • The method of testing the materials was to spray the trunk of the seedling with the particular solution being tested and 7 days after such application, creating a wound of approximately 2 millimeters by 10 millimeters on each seedling stem. Fourteen days after the wounding, the wounds were examined for the presence of staining fungi.
  • TABLE 5
    May to June 2013
    Insecticide Type Buffered Amine Oxide System Percent Gypsy Moth Catepillar
    Product Concentration Buffer Number & Amine Oxide Damage(5)(8) to White Oak(4)
    PPM No Buffer Donor or Letter(7)(9) 1 Month After Application(3)
    Permethrin(6) 3 4
    12 12 12
      100(1)(2)
    200:1 100
    400:1 100
    100 PPM   0
    50 PPM  30
    10 PPM  80
    10 PPM 200:1  0
    10 PPM 400:1  10
    200:1 100
    400:1 100
    10 PPM 200:1  0
    10 PPM 400:1  10
    200:1 100
    400:1 100
    (1)Water control
    (2)20 seedlings
    (3)20 milliliters per seedling; low volume hand spray
    (4) Quercus alba
    (5)May-June, Pennsylvania, USA
    (6)Commercial concentrate containing 38.4 percent Permethrin
    (7)See Tables 1, 2 and 3 for buffers and amine oxides
    (8)Greater than 50% of leaf mass eaten
    (9)Buffers and amine oxides were added to dilute solution of insecticide
  • Referring to TABLE 5, there is shown the results of testing of an insecticide which, in this case, was permethrin, which was presented in various tests in quantities of 10 ppm to 50 ppm and 100 ppm concentrations were tested against a control with no buffer as well as buffer amine oxide systems employing 12 length carbon.
  • The particular solutions tested were applied to a stem of the white oak seedling using a low volume hand spray and spraying 20 milliliters per seedling. A total of 20 seedlings were tested. The use of permethrin alone in concentration of 10 ppm resulted in 80% gypsy moth caterpillar damage. At permethrin concentration of 50 ppm, the damage after one month was 30% and with 100 ppm used alone, the damage was 0. When buffered amine oxide system No. 3 was employed in concentrations of 400:1 with 10 ppm of the insecticide, the gypsy moth caterpillar damage was 10% and when a concentration of 200:1 was employed with 10 ppm insecticide, the damage was 0, This shows that a much smaller amount of insecticide was needed to achieve 0 damage when was used in combination with the buffered amine oxide system which created a desired synergistic effect. If less than 50 percent of the leaf mass was eaten, this shows successful inhibition of gypsy moth damage.
  • Using buffered amine oxide system No. 3 alone in concentrations of 400:1 and 200:1 resulted in 100% gypsy moth caterpillar damage after one month.
  • Using buffered amine oxide system No. 4 in combination with 10 ppm of the insecticide, reduce the gypsy moth caterpillar damage to 10% when using a concentration of 400:1 and to 0 when using a concentration of 200:1.
  • Using buffered amine oxide system No. 4 without the insecticide resulted in 100% gypsy moth caterpillar damage.
  • The foregoing tests show that neither buffered amine oxide system 3 nor 4 in concentrations of 200:1 and 400:1 produced any measurable difference in gypsy moth caterpillar damage over the control which had neither insecticide nor buffered amine oxide systems. When, however, the buffered amine oxide systems 3 and 4 were employed with insecticide concentrations of 10 ppm, at 400:1 concentration of the 12 length carbon buffered amine oxide systems, there was only 10% gypsy moth caterpillar damage and with 200:1 concentration, there was 0 damage.
  • If desired, a single solution may contain both an insecticide and a fungicide.
  • It will be appreciated, therefore, that both in connection with fungicide tests and insecticide tests, neither the insecticide nor fungicide employed alone achieved any meaningful reduction in staining fungi or gypsy moth caterpillar in the lower concentrations of the material. Similarly, the buffered amine oxide system, when used alone, produced no significant reduction in staining fungi or gypsy moth caterpillar damage. When, however, the fungicide was used at lower parts per million in combination with the buffered amine oxide systems, there was, due to synergism, a substantial reduction or elimination of staining fungi. Similarly, when the insecticide was used in lower concentrations in combination with buffered amine oxide systems, there was substantial reduction or elimination of gypsy moth caterpillar damage.
  • While particular embodiments of this invention have been described herein for purposes of illustration, it will be evident to those skilled in the art that numerous variations of the details of the present invention may be made without departing from the invention as defined in the appended claims.

Claims (32)

1. A solution for resisting destruction of living plants comprising
a buffered amine oxide admixed with at least one material selected from the group consisting of insecticides and fungicides, said solution being characterized by the property of synergistically effecting greater resistance to plant destruction than said buffered amine oxide and either said insecticides or said fungicides employed alone.
2. The solution of claim 1 including
said buffered amine oxide being provided in a concentration of at least about 400:1 on a total solution volume basis.
3. The solution of claim 2 including
said buffered amine oxide being present in a concentration of about 200:1 to 400:1 on a total solution volume basis.
4. The solution of claim 3 including
said solution having a fungicide present in an amount of at least about 50 ppm on a total solution weight basis.
5. The solution of claim 3 including
said solution having an insecticide present in an amount of at least about 10 ppm on a total solution weight basis.
6. The solution of claim 5 including
said solution having said insecticide present in an amount of about 10 to 100 ppm.
7. The solution of claim 4 including
said buffered amine oxide having a carbon length selected from the group consisting of (a) 12 carbon length amine oxide and (b) a mixture of 12 and 18 carbon length amine oxide.
8. The solution of claim 7 including
said buffered amine oxide having a carbon length of a mixture of 12 and 18 carbon length amine oxides.
9. The solution of claim 8 including
said 12 carbon length amine oxide on a weight basis being present in an amount of about 1.3 to 2.0 times the amount of 18 carbon length amine oxide.
10. The solution of claim 8 including
said 12 carbon length amine oxide on a weight basis being present in an amount of about 1.5 to 1.8 times the amount of 18 carbon length amine oxide.
11. The solution of claim 1 including
said buffered amine oxide having a pH of about 6.5 to 10.5.
12. The solution of claim 11 including
said buffered amine oxide having a pH of about 7 to 9.
13. The solution of claim 2 including
said buffered amine oxide being 12 carbon length amine oxide and said buffer system selected from the group consisting of (a) Potassium Phosphate Monobasic/Potassium Phosphate Dibasic and (b) Potassium Bicarbonate/Potassium Carbonate.
14. The solution of claim 2 including
said buffered amine oxide having a mixture of 12 carbon length amine oxide and 18 carbon length amine oxide and said buffer selected from the group consisting of (a) Potassium Phosphate Monobasic/Potassium Phosphate Dibasic and (b) Potassium Bicarbonate/Potassium Carbonate.
15. The solution of claim 2 including
said buffered amine oxide is Potassium Phosphate Monobasic/Potassium Phosphate Dibasic.
16. The solution of claim 2 including
said buffered amine oxide is Potassium Bicarbonate/Potassium Carbonate.
17. A method of resisting destruction of living plants comprising
providing a solution having a buffered amine oxide admixed with at least one material selected from the group consisting of insecticides and fungicides, and
applying said solution to effect synergistic protection of said living plants against insects and fungi.
18. The method of claim 17 including
through said application of said solution synergistically effecting greater resistance to said plant deterioration than said buffered amine oxide and either said insecticides and said fungicides employed alone would achieve.
19. The method of claim 17 including
employing said solution having a buffered amine oxide concentration of at least about 400:1 on a volume to volume basis based on total solution volume.
20. The method of claim 19 including
said solution with said buffered amine oxide being present in an amount of about 400:1 to 200:1 on a volume to volume basis based on total solution.
21. The method of claim 17 including
said solution having a fungicide present in an amount of at least about 50 ppm on a total solution weight basis.
22. The method of claim 17 including
said solution having an insecticide present in an amount of at least about 10 ppm on a total solution weight basis.
23. The method of claim 22 including
said solution having insecticide in an amount of about 10 to 100 ppm on a solution total weight basis.
24. The method of claim 17 including
said buffered amine oxide having a carbon length selected from the group consisting of (a) 12 carbon length amine oxide and (b) a mixture of 12 and 18 carbon length amine oxides.
25. The method of claim 24 including
said 12 carbon length amine oxide on a weight basis being present in an amount of about 1.3 to 2.0 times the amount of 18 carbon length amine oxide.
26. The method of claim 24 including
said 12 carbon length amine oxide on a weight basis being present in an amount of about 1.5 to 1.8 times the amount of 18 carbon length amine oxide.
27. The method of claim 17 including
said solution containing a buffered amine oxide having a pH of about 6.5 to 10.5.
28. The method of claim 27 including said solution containing a buffered amine oxide having a pH of about 7 to 9
29. The method of claim 18 including
said buffered amine oxide being 12 carbon length amine oxide, and a buffer amine oxide selected from the group consisting of (a) Potassium Phosphate Monobasic/Potassium Phosphate Dibasic and (b) Potassium Bicarbonate/Potassium Carbonate.
30. The method of claim 17 including
said buffered amine oxide is Potassium Phosphate Monobasic/Potassium Phosphate Dibasic.
31. The method of claim 17 including
said buffered amine oxide is Potassium Bicarbonate/Potassium Carbonate.
32. The method of claim 18 including
said buffered amine oxide having a mixture of 12 carbon length amine oxide and 18 carbon length amine oxide and said buffers selected from the group consisting of (a) Potassium Phosphate Monobasic/Potassium Phosphate Dibasic and (b) Potassium Bicarbonate/Potassium Carbonate, and said buffered amine oxide having a concentration of about 200:1 to 400:1 on a volume to volume basis.
US14/674,465 2015-03-31 2015-03-31 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods Abandoned US20160286798A1 (en)

Priority Applications (23)

Application Number Priority Date Filing Date Title
US14/674,465 US20160286798A1 (en) 2015-03-31 2015-03-31 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
BR112017020875-0A BR112017020875B1 (en) 2015-03-31 2015-09-28 SOLUTION FOR RESISTANCE TO LIVE PLANTS DESTRUCTION AND RELATED METHOD
DK15888052.6T DK3285580T3 (en) 2015-03-31 2015-09-28 Solutions to improve the effectiveness of insecticides and fungicides on living plants and related methods
EP15888052.6A EP3285580B1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of propiconazole on living plants and related methods
EP21162412.7A EP3895536A1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
CA2979304A CA2979304A1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
HUE15888052A HUE056873T2 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of propiconazole on living plants and related methods
HRP20220035TT HRP20220035T1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of propiconazole on living plants and related methods
BR122021013481-2A BR122021013481B1 (en) 2015-03-31 2015-09-28 SOLUTION AND METHOD FOR RESISTANCE TO DESTRUCTION OF LIVE PLANTS
NZ734615A NZ734615B2 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
AU2015390102A AU2015390102A1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
PCT/US2015/052562 WO2016160055A1 (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
LTEPPCT/US2015/052562T LT3285580T (en) 2015-03-31 2015-09-28 Solutions for enhancing the effectiveness of propiconazole on living plants and related methods
US15/079,478 US10278386B2 (en) 2015-03-31 2016-03-24 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
CL2017002466A CL2017002466A1 (en) 2015-03-31 2017-09-29 Solutions to improve the effectiveness of insecticides and fungicides in living plants and related methods
US16/208,976 US10952433B2 (en) 2015-03-31 2018-12-04 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
AU2019202599A AU2019202599C1 (en) 2015-03-31 2019-04-15 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US17/311,204 US11779016B2 (en) 2015-03-31 2019-06-19 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
AU2020294285A AU2020294285B2 (en) 2015-03-31 2020-12-23 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
CL2021002980A CL2021002980A1 (en) 2015-03-31 2021-11-11 Solutions to improve the efficacy of insecticides and fungicides on live plants and related methods. (divisional application no. 201702466)
CY20211101093T CY1125074T1 (en) 2015-03-31 2021-12-13 SOLUTIONS FOR ENHANCING THE EFFECTIVENESS OF PROPICONAZOLE IN LIVING PLANTS AND RELATED METHODS
AU2023222986A AU2023222986A1 (en) 2015-03-31 2023-09-01 Solutions for enhancing the effectiveless of insecticides and fungicides on living plants and related methods
US18/464,352 US20240057594A1 (en) 2015-03-31 2023-09-11 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/674,465 US20160286798A1 (en) 2015-03-31 2015-03-31 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/079,478 Division US10278386B2 (en) 2015-03-31 2016-03-24 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US16/208,976 Continuation-In-Part US10952433B2 (en) 2015-03-31 2018-12-04 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Publications (1)

Publication Number Publication Date
US20160286798A1 true US20160286798A1 (en) 2016-10-06

Family

ID=57004852

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/674,465 Abandoned US20160286798A1 (en) 2015-03-31 2015-03-31 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US15/079,478 Active US10278386B2 (en) 2015-03-31 2016-03-24 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Family Applications After (1)

Application Number Title Priority Date Filing Date
US15/079,478 Active US10278386B2 (en) 2015-03-31 2016-03-24 Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Country Status (12)

Country Link
US (2) US20160286798A1 (en)
EP (2) EP3895536A1 (en)
AU (4) AU2015390102A1 (en)
BR (2) BR112017020875B1 (en)
CA (1) CA2979304A1 (en)
CL (2) CL2017002466A1 (en)
CY (1) CY1125074T1 (en)
DK (1) DK3285580T3 (en)
HR (1) HRP20220035T1 (en)
HU (1) HUE056873T2 (en)
LT (1) LT3285580T (en)
WO (1) WO2016160055A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020117315A1 (en) * 2018-12-04 2020-06-11 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US10952433B2 (en) 2015-03-31 2021-03-23 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US11779016B2 (en) 2015-03-31 2023-10-10 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11432546B2 (en) 2018-10-04 2022-09-06 Kop-Coat, Inc. Wood treatment solutions containing fungicides and tertiary alkanolamines and related methods, wood products and composition for protection against fungal organisms
US11678663B2 (en) 2020-12-09 2023-06-20 Gregory E. Robinson Multi-purpose disinfectant, degreaser, cleaner and herbicide

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375727B1 (en) * 1999-05-24 2002-04-23 Lonza Inc. Amine oxide/iodine containing blends for wood preservation
US6508869B2 (en) * 2000-06-30 2003-01-21 Lonza Inc. Boron compound/amine oxide compositions
US20120258248A1 (en) * 2011-04-05 2012-10-11 Ross Alan S Method of employing enhanced penetration of wood preservatives to protect wood and a related solution

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3205400A1 (en) * 1982-02-16 1983-08-25 Bayer Ag, 5090 Leverkusen MEANS FOR SELECTIVE WEED CONTROL IN RICE
US5846305A (en) 1996-01-16 1998-12-08 Michael Wall & Sons Enterprises Ltd. Liquid wood preservative solution
US5710103A (en) 1996-04-03 1998-01-20 Albemarle Corporation Glyphosate compositions comprising hydrocarbyl dimethyl amine oxide and quaternary ammonium halide
US5833741A (en) 1997-01-16 1998-11-10 Lonza Inc. Waterproofing and preservative compositons for wood
DE19716257A1 (en) * 1997-04-18 1998-10-22 Bayer Ag Fungicidal active ingredient combination
US6165483A (en) * 1998-04-06 2000-12-26 Ecolab Inc. Peroxy acid treatment to control pathogenic organisms on growing plants
US6274199B1 (en) 1999-01-19 2001-08-14 Chemical Specialties, Inc. Wood treatment process
CA2374884C (en) * 1999-05-24 2009-10-27 Chuen-Ing Tseng Azole/amine oxide wood preservatives
WO2000071313A1 (en) 1999-05-24 2000-11-30 Lonza Inc. Isothiazolone/amine oxide wood preservatives
ATE315988T1 (en) 1999-05-24 2006-02-15 Lonza Ag COPPER/AMINO OXIDE WOOD Preservative
US6811731B2 (en) 2000-10-23 2004-11-02 Chemical Specialties, Inc. Methods of incorporating phosphate/borate fire retardant formulations into wood based composite products
NZ541553A (en) 2000-05-24 2007-01-26 Lonza Ag Use of a composition comprising amine oxide as fungicidally effective wood preservatives
US6416789B1 (en) * 2001-01-05 2002-07-09 Kop-Coat, Inc. Synergistic combination of fungicides to protect wood and wood-based products from fungal decay, mold and mildew damage
US20050008576A1 (en) 2002-04-01 2005-01-13 Munzer Makansi Carrier foam to enhance liquid functional performance
DE60306715T2 (en) * 2002-05-31 2007-07-12 Kao Corp. Enhancer for agricultural chemicals
EP1273234A1 (en) * 2002-07-03 2003-01-08 Janssen Pharmaceutica N.V. Preservative formulations comprising an oxathiazine and amine oxides
US7056919B2 (en) * 2003-01-24 2006-06-06 Kopcoat, Inc. Synergistic combination of fungicides to protect wood and wood-based products and wood treated by such combination as well as methods of making the same
US7655281B2 (en) 2005-05-24 2010-02-02 Kop-Coat, Inc. Method of protecting wood through enhanced penetration of wood preservatives and related solution
GB2438404A (en) * 2006-05-24 2007-11-28 Arch Timber Protection Ltd Preserving wood with an amine oxide, an azole and a specified amine or quaternary ammonium compound, in synergistic proportions
WO2009032481A2 (en) 2007-08-30 2009-03-12 Dow Agrosciences Llc Stable emulsion formulation hindering interaction across the water-oil interface
US20090143334A1 (en) * 2009-02-05 2009-06-04 Ward Hans A Method of Protecting Wood Through Enhanced Penetration of Wood Preservatives and a Related Solution
US7655597B1 (en) 2009-08-03 2010-02-02 Specialty Fertilizer Products, Llc Pesticide compositions including polymeric adjuvants
SG10201405301VA (en) 2009-09-02 2014-09-26 Akzo Nobel Chemicals Int Bv Nitrogen- containing surfactants for agricultural use
WO2012027325A1 (en) 2010-08-27 2012-03-01 Gowan Comercio Internacional E Servicos Limitada Plant treatment compositions and methods for their use
EP3111764B1 (en) 2010-09-15 2019-10-23 Dow AgroSciences LLC Amine surfactants for controlling herbicide spray drift
AU2013279603B2 (en) 2012-06-21 2016-05-19 Basf Se Adjuvant comprising a 2-propylheptylamine alkoxylate, sugar-based surfactant, and drift-control agent and/or humectant
US20160106099A1 (en) * 2013-05-28 2016-04-21 Thor Gmbh Microbicidal composition comprising isothiazolone and an amine oxide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375727B1 (en) * 1999-05-24 2002-04-23 Lonza Inc. Amine oxide/iodine containing blends for wood preservation
US6508869B2 (en) * 2000-06-30 2003-01-21 Lonza Inc. Boron compound/amine oxide compositions
US20120258248A1 (en) * 2011-04-05 2012-10-11 Ross Alan S Method of employing enhanced penetration of wood preservatives to protect wood and a related solution
US9125398B2 (en) * 2011-04-05 2015-09-08 Kop-Coat, Inc. Method of employing enhanced penetration of wood preservatives to protect wood and a related solution

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Berg, ACS Symposium Series; American Chemical Society: Washington, DC, 1986. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10952433B2 (en) 2015-03-31 2021-03-23 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US11779016B2 (en) 2015-03-31 2023-10-10 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
WO2020117315A1 (en) * 2018-12-04 2020-06-11 Kop-Coat, Inc. Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods

Also Published As

Publication number Publication date
LT3285580T (en) 2022-02-10
NZ734615A (en) 2020-12-18
BR112017020875B1 (en) 2022-10-04
CA2979304A1 (en) 2016-10-06
CY1125074T1 (en) 2023-03-24
AU2019202599A1 (en) 2019-05-02
AU2020294285B2 (en) 2023-06-15
EP3895536A1 (en) 2021-10-20
HUE056873T2 (en) 2022-04-28
EP3285580A4 (en) 2018-08-15
BR122021013481B1 (en) 2022-10-04
DK3285580T3 (en) 2022-01-24
WO2016160055A1 (en) 2016-10-06
AU2019202599B2 (en) 2020-10-15
BR112017020875A2 (en) 2018-07-17
EP3285580A1 (en) 2018-02-28
HRP20220035T1 (en) 2022-04-01
CL2017002466A1 (en) 2018-05-11
CL2021002980A1 (en) 2022-09-02
EP3285580B1 (en) 2021-10-20
US10278386B2 (en) 2019-05-07
AU2020294285A1 (en) 2021-01-28
US20160286795A1 (en) 2016-10-06
AU2019202599C1 (en) 2021-07-08
AU2015390102A1 (en) 2017-08-31
AU2023222986A1 (en) 2023-09-21

Similar Documents

Publication Publication Date Title
AU2020294285B2 (en) Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
US20240057594A1 (en) Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
AU2022202568C1 (en) Solutions employing herbicides and buffered amine oxides to kill weeds and related methods
US11779016B2 (en) Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
Löf et al. Herbivory by the pine weevil (Hylobius abietis L.) and short-snouted weevils (Strophosoma melanogrammum Forst. and Otiorhynchus scaber L.) during the conversion of a wind-thrown Norway spruce forest into a mixed-species plantation
EP3890485A1 (en) Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
Pandey et al. Effect of different insecticides along with silica and non-silica based surfactant for management of thrips in onion
NZ734615B2 (en) Solutions for enhancing the effectiveness of insecticides and fungicides on living plants and related methods
JPS58216107A (en) Miticide

Legal Events

Date Code Title Description
AS Assignment

Owner name: KOP-COAT, INC., PENNSYLVANIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WARD, HANS A.;CLAWSON, RONALD WALTON, JR;CUTLER, KENNETH ALLEN;AND OTHERS;SIGNING DATES FROM 20150408 TO 20150414;REEL/FRAME:035533/0726

STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION