US20170290499A1 - Imaging system, method and distal attachment for multidirectional field of view endoscopy - Google Patents

Imaging system, method and distal attachment for multidirectional field of view endoscopy Download PDF

Info

Publication number
US20170290499A1
US20170290499A1 US15/494,021 US201715494021A US2017290499A1 US 20170290499 A1 US20170290499 A1 US 20170290499A1 US 201715494021 A US201715494021 A US 201715494021A US 2017290499 A1 US2017290499 A1 US 2017290499A1
Authority
US
United States
Prior art keywords
arrangement
radiation
radiations
exemplary
anatomical structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/494,021
Inventor
Kevin E. Woods
Brett Eugene Bouma
Guillermo J. Tearney
Dongkyun Kang
Tao Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to US15/494,021 priority Critical patent/US20170290499A1/en
Assigned to THE GENERAL HOSPITAL CORPORATION reassignment THE GENERAL HOSPITAL CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WOODS, Kevin E., BOUMA, BRETT EUGENE, KANG, DONGKYUN, TEARNEY, GUILLERMO J., WU, TAO
Publication of US20170290499A1 publication Critical patent/US20170290499A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00101Insertion part of the endoscope body characterised by distal tip features the distal tip features being detachable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00131Accessories for endoscopes
    • A61B1/00137End pieces at either end of the endoscope, e.g. caps, seals or forceps plugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00174Optical arrangements characterised by the viewing angles
    • A61B1/00181Optical arrangements characterised by the viewing angles for multiple fixed viewing angles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/018Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor for receiving instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/012Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor characterised by internal passages or accessories therefor
    • A61B1/015Control of fluid supply or evacuation

Definitions

  • Exemplary embodiments of the present disclosure relate to endoscopic imaging system and methods for multidirectional field of view endoscopy which can be used to improve the field of view, speed and efficiency of diagnostic and therapeutic endoscopic procedures.
  • Endoscopic imaging systems allow the evaluation of animal and human internal organs.
  • Endoscopes can consist of at least one of the following components, a rigid or flexible tube, a light delivery system, a fluid delivery and recovery system, an air delivery and recovery system, a lens system, an eyepiece, a high pixel-count color CCD or imaging transmission system, graphical display unit (monitor), and/or accessory channel(s) to allow use of devices for manipulation, sampling or imaging of target lesions.
  • the endoscope may be inserted into any natural orifice of the animal or human including the nares, ears, mouth, biliary tract, pancreatic duct, ostomy, urinary tract, vagina, uterus, fallopian tubes, anus and/or any opening produced by procedures employing an incision or puncture into an internal body cavity (craniotomy, thoracotomy, mediastinotomy, laparotomy or arthrotomy). While currently available endoscopes are capable of evaluating target structures by the obligatory forward or other directional field of view obtained by current light delivery and lens systems, in some medical applications this design increases the risk for missed detection of important areas of interest. As a result, there is a need for multi-directional visualization.
  • Colonoscopy is widely considered the gold standard for detecting mucosal abnormalities in the human colon, and the preferred technique for removal of many non-invasive lesions requires biopsy, polypectomy or endoscopic resection.
  • exemplary configurations for the acquisition of multidirectional viewing during endoscopic examination can be provided.
  • Exemplary applications can be utilized, in which increasing the field of view while using high resolution endoscopic systems can be improved with the exemplary embodiments of the system and method of continuous and simultaneous forward and multidirectional views during a baroscopic, laparoscopic, angioscopic, or endoscopic procedure.
  • Exemplary embodiments of the present disclosure can relate generally to exemplary configuration of optical elements, and to the application(s) thereof in exemplary endoscopic imaging systems which can be used with medical applications to improve the field of view, speed and efficiency of an endoscopic procedure.
  • Exemplary embodiments of the present disclosure can be applied to rigid, flexible, wireless or telescoping endoscope to provide, e.g., a continuous multi-directional view of animate and inanimate hollow spaces.
  • a distal imaging attachment and an imaging system can be used in combination with a rigid, flexible, wireless or telescoping endoscope to create a continuous multi-directional view of animate and inanimate hollow spaces.
  • the directions are forward and to the side.
  • the directions are forward and backward.
  • the directions cover approximately a 4 pi solid angle that is only obscured by the device itself.
  • This said distal imaging attachment and imaging system may be employed, but not limited to, with endoscopy of animal and human internal anatomical organs and borescopy of inanimate closed spaces. Due to its design, the integrated optical element within this imaging system, allowing both the forward and multidirectional fields of view.
  • optical elements in the exemplary device can be configured to facilitate a multidirectional viewing of target organs or spaces with exemplary endoscopes.
  • the exemplary device can be retrofitted to alter the native conventional high definition endoscopes currently used in endoscopic procedures.
  • the exemplary device/apparatus can be disposable.
  • exemplary embodiments according to the present disclosure as described herein can be provided as exemplary endoscopic lens system(s), and can be termed as “multidirectional”, “simulview” or “retroview”, and utilized as a basis for exemplary embodiments of endoscopic systems for a deployment.
  • an exemplary apparatus for imaging at least one anatomical structure can be provided, according to an exemplary embodiment of the present disclosure.
  • the apparatus can include an endoscopic first arrangement, a radiation source second arrangement which provides at least one electro-magnetic radiation, and a third arrangement attached to at least one portion of the endoscopic arrangement.
  • the third arrangement can contain an optical arrangement which, upon impact by the at least one electro-magnetic radiation and based thereon, may transmit a first radiation and reflects a second radiation.
  • the first radiation can impact at least one first portion of the anatomical structure(s), and the second radiation can impact at least one second portion of the anatomical structure(s).
  • the first and second portions can be at least partially different from one another. Further, the first and second radiations can have characteristics which are different from one another.
  • the characteristics can include or be wavelengths or polarizations.
  • a detector arrangement can be provided, whereas the endoscopic arrangement can be associated with the radiation source arrangement and the detector arrangement.
  • the first and second radiations can have spectral regions in red, green and blue band which do not substantially overlap with one another.
  • the first radiation can be directed in a forward direction, and the second radiation can be directed in a backward direction or a side direction.
  • the third arrangement can include a cap that can be connected to an end portion of the endoscopic first arrangement.
  • the second radiation can simultaneously illuminate between 270 and 360 degrees of a field of view.
  • the radiation source second arrangement can include a modulation arrangement which can be configured to modulate the first and second radiations.
  • An electronic arrangement can be provided which is configured to synchronize the second arrangement and the detector arrangement.
  • the electronic arrangement can be configured to (i) synchronize the modulation arrangement and the detector arrangement, and (ii) control the detector arrangement to detect signals from the anatomical structure(s) illuminated by the first and second radiation, and separate the signals based the synchronization with the modulation arrangement.
  • the anatomical structure(s) can be a luminal anatomical structure.
  • the third arrangement can include at least one opening which facilitates a passage of instrumentation, air gasses and/or fluids therethrough.
  • a tube can be provided that is associated with the third arrangement, and which provide a passage of instrumentation, air gasses and/or fluids therethrough.
  • the first and second radiations can have a specific polarization status.
  • FIG. 1 is a side cross-sectional block diagram of an imaging system/apparatus and optical elements thereof according to an exemplary embodiment of the present disclosure
  • FIG. 2 is a set of view of an exemplary optical element consists a 4-faceted pyramid dichroic mirror which can transmit and reflect radiations with different characteristics according to an exemplary embodiment of the present disclosure
  • FIG. 3 a block diagram of an endoscopic arrangement, a radiation source arrangement, and a detector arrangement according to exemplary embodiments of the present disclosure
  • FIGS. 4( a ) and 4( b ) are block diagrams of exemplary modulation arrangements according to an exemplary embodiment of the present disclosure
  • FIG. 5( a ) is a diagram of an exemplary electronic switch based on an optical chopper according to an exemplary embodiment of the present disclosure
  • FIG. 5( b ) is a diagram of the exemplary electronic switch based on a first switch position according to an exemplary embodiment of the present disclosure
  • FIG. 5( c ) is a diagram of the exemplary electronic switch based on a second switch position according to an exemplary embodiment of the present disclosure
  • FIG. 6( a ) a diagram of a further exemplary electronic switch based on a galvo scanner at a first switch position according to another exemplary embodiment of the present disclosure
  • FIG. 6( b ) a diagram of the exemplary electronic switch of FIG. 6( a ) based on the galvo scanner at a second switch position according to another exemplary embodiment of the present disclosure
  • FIG. 7 a front view of the optical elements provided within a distal imaging attachment cap of the exemplary imaging system/apparatus of FIG. 1 ;
  • FIG. 8 a side view of the imaging system/apparatus, optical elements and distal imaging attachment cap, as shown in FIG. 7 ;
  • FIG. 9 is a set of illustrations providing external distal image attachments and an overlapping field external display Diagram according to exemplary embodiments of the present disclosure.
  • FIG. 10 is a set of exemplary images providing exemplary testing results achieved using the exemplary system, method and/or computer-accessible medium according to the exemplary embodiments of the present disclosure.
  • an optical apparatus/system can be provided which can be partially reflective and/or may be a polarization or wavelength selective such that certain wavelengths or polarization states are directed to and/or received from different field angles and therefore illuminate and/or receive different fields of view.
  • the exemplary states may be altered by changing the characteristics of the optics or the optical characteristics of the light, such as the wavelengths or the polarization state.
  • such changes of wavelengths can be different bands of wavelengths in the RGB spectrum.
  • the different wavelengths may be comprised of different wavelength bands in the visible and NIR spectrum.
  • the characteristic(s) of the light is not changed by the optical apparatus, but the images are separated using software algorithms.
  • the optical apparatus contains a beam splitter.
  • the optical apparatus can be configured and/or structured to be within a cap that can be attached to the distal end of an endoscope, a catheter, a borescope, and/or a laparoscope device.
  • the cap can be disposable, and/or can contain one or more apertures or openings to allow the passage of devices, fluids, or tissue to effect a change in the anatomic structure.
  • the arrangement of optical elements coupled with or to certain endoscopes, and exemplary signal processing methods can facilitate an acquisition of continuous multi-directional views, without the need for additional auxiliary imaging devices deployed through the endoscope accessory channel.
  • FIG. 1 shows a side cross-sectional block diagram of an imaging system/apparatus and optical elements thereof according to an exemplary embodiment of the present disclosure.
  • a distal imaging attachment cap 1 of the exemplary imaging system of FIG. 1 can be facilitated in an endoscope 14 .
  • the attachment cap 1 can contain an optical element/arrangement 4 which can include certain multiple configurations, such as but not limited to a fiber optic bundle, a tapered fiber optic bundle, a cone mirror, a partial cone mirror, a pentagon mirror, an inverted pyramid mirror, a prism, and/or multiple mobile optical elements.
  • exemplary optical element/arrangement 4 can achieve, e.g., a side and retrograde endoscopic view while maintaining the endoscope's field of view 5 , such as the forward field of view.
  • the exemplary optical element 4 may also have or applied thereto a customized reflective material to facilitate a detailed and customized manipulation of the field of view or wavelengths.
  • Such exemplary arrangement can facilitate the user of the exemplary endoscopic system to view both the forward field of view 5 and fields of view located to the side and retrograde 6 to the endoscope's objective lens 2 and endoscope light 3 .
  • the exemplary optical element 4 can be, e.g., a 4-faceted pyramid dichroic mirror which can transmit and/or reflect radiations (e.g., electromagnetic radiations, including light, etc.) with different characteristics.
  • the exemplary characteristics can include and/or be wavelengths or polarizations.
  • the first and second radiations can have spectral regions in red, green and blue bands which likely do not substantially overlap with one another (at least for the most part).
  • the first and second radiations can have a specific polarization status.
  • the first radiation can be directed in a forward direction 21
  • the second radiation can be directed in a backward direction or side directions (e.g., directions 22 , 23 , 24 , 25 ).
  • a manual and/or electronic switch 8 which can include a modulation arrangement
  • a manual and/or electronic switch 8 which can include a modulation arrangement
  • the distal imaging attachment cap 1 can be placed at the distal tip of the endoscope 14 .
  • a system can be provided (which can include but not limited to one or more of, e.g., computer 31 , video capture device and synchronization signal generator 32 , and endoscope video processor 33 ).
  • the endoscopic arrangement 14 can be associated with the radiation source arrangement (which can include but not limited to one or more of, e.g., endoscopic light/radiation source 9 , an exemplary procedure to filter, polarize, bend and/or exclude predetermined wavelength(s) of the radiation(s) 7 , and manual and/or electronic switch 8 ) and a detector arrangement.
  • the radiation source arrangement can include the modulation arrangement (including, e.g., element 8 ) which can be configured to modulate the first and second radiations.
  • the computer 31 and/or the signal generator 32 can be configured to synchronize the radiation source arrangement (including, e.g., elements 8 , 9 ) and/or the entire system (including e.g., elements 31 , 32 , and 33 ).
  • the computer 31 and/or the signal generator 32 can be configured to (i) synchronize the modulation arrangement (including, e.g., element 8 ) and the detector arrangement, and/or (ii) control the system to detect signals from the anatomical structure(s) illuminated by the first and second radiation, and separate the signals based the synchronization with the modulation arrangement (e.g., element 8 ).
  • an exemplary modulation arrangement of another exemplary embodiment of the present disclosure can include a beam splitter 41 to divide the radiation (e.g., light and/or beam) into two beam paths.
  • a beam splitter 41 to divide the radiation (e.g., light and/or beam) into two beam paths.
  • one beam can pass a filter for predetermined wavelength(s) or polarization(s) 44 to provide the first radiation 45 .
  • the other beam can be reflected by a mirror 42 , and can pass another filter for another predetermined wavelength(s) or polarization 43 with different characteristics compared with the wavelength(s) or polarization 44 to provide the second radiation 46 .
  • another exemplary modulation arrangement can include a beam splitter for predetermined wavelength(s) or polarization 47 to provide the first radiation 45 and the second radiation 46 .
  • FIGS. 5( s )-5( c ) illustrate block diagrams of various exemplary electronic switches according to further exemplary embodiments of the present disclosure.
  • the exemplary electronic switches of FIGS. 5( a )-5( c ) can include an optical chopper 51 synchronized with the computer 31 and/or the signal generator 32 (shown in FIG. 3 ).
  • the first radiation 45 and second radiation 46 can be alternatively coupled into the endoscope 14 by exemplary optical components (e.g., a mirror 52 , a beam splitter 53 , and a lens 54 ).
  • Such exemplary optical components can be switched by the optical chopper's positions, as shown in FIGS. 5( b ) and 5( c ) .
  • FIGS. 6( a ) and 6( b ) show another exemplary electronic switch arrangement according to yet another exemplary embodiment of the present disclosure, provided in different switch position.
  • the exemplary switch arrangement of FIGS. 6( a ) and 6( b ) can include a galvo scanner 61 which can be synchronized with the computer 31 and/or the signal generator 32 (shown in FIG. 3 ).
  • the first radiation 45 and the second radiation 46 can be alternatively coupled into the endoscope 14 by exemplary optical components (e.g., lens 62 ) switched by the galvo scanner's positions as shown in FIGS. 6( a ) and 6( b ) .
  • the exemplary distal imaging attachment cap 1 can facilitate a use of a fluid delivery channel 76 and/or an accessory channel 72 to maintain its original use by providing a non-obstructive pathway for an endoscopic manipulation within the endoscope 14 via the accessory channel 72 .
  • a fluid delivery channel 76 and/or an accessory channel 72 can facilitate a use of a fluid delivery channel 76 and/or an accessory channel 72 to maintain its original use by providing a non-obstructive pathway for an endoscopic manipulation within the endoscope 14 via the accessory channel 72 .
  • the exemplary system/apparatus/method can be used for a simultaneous or controlled switching between the above described forward field of view 5 and the side/retrograde field of view 6 .
  • an exemplary procedure 12 (which can be used to program a processing hardware arrangement, such as, e.g., a computer) can be used to deconstruct a wavelength/polarization “profile” of each field of view 10 , 11 by electronically splitting native and multidirectional fields of view.
  • exemplary selective filtering of, e.g., white light to facilitate only the reflectance or transmission phase to be analyzed can be accomplished by placing applying a filter at the endoscope's connection to its processing arrangement (e.g., the processor). Toggling between the on and off phases, e.g., manually (such as with a manual foot pedal), automatically or via an electronic switch, the reflected or transmitted light/radiation can then be deconstructed via a further procedure which can program or configure the processing arrangement to continuously display the forward and multidirectional fields of view 13 .
  • another procedure can be provided which can program or configure the processing arrangement to deconstruct each pixel, and display the two profiles determined by the reflective transmission wavelengths, polarizations or characteristic properties established by a special arrangement 7 , the optical element(s) 4 and angles of observation of each field of view 5 , 6 .
  • the exemplary imaging system of FIG. 1 can also use of an alternative light source which can be deployed, e.g., via the cap irrigation channel 81 (shown in FIG. 8 ).
  • the use of such light source via the irrigation channel 81 can provide and/or facilitate, e.g., a further selective manipulation of the reflectance and transmission frequencies for an improved discretion between the phases for an exemplary image manipulation via a procedure which can program or configure the processing arrangement to perform such exemplary function.
  • a plastic, transparent, semi-flexible disposable cap 1 can be fitted over the distal tip of the endoscope 14 via a friction fit configuration 82 , as shown in FIG. 8 .
  • the exemplary design and/or configuration of this cap 1 can be provided in various ways, e.g., depending on the indication of the exemplary endoscopic procedure.
  • Shapes of the exemplary cap 1 can include, but are not limited to oblique or perpendicular angled shapes, in respect to the distal aspect of the endoscope 14 and a location of the objective lens 2 .
  • the distal imaging attachment is designed to be in a specific orientation so as to facilitate the native functions of the endoscope to continue to operate without an interruption.
  • the exemplary cap 1 can include a clearance chamber 83 (as shown in FIG. 8 ), which can seal the distal apparatus away from luminal liquid and contents, while continuing to facilitate the instillation of water for imaging and cleaning.
  • This above described exemplary clearance chamber 83 can contain a perforation located above the accessory chamber 86 to facilitate suctioning of contents of the clearance chamber 83 .
  • a water jet output channel e.g., the fluid delivery chamber
  • the distal imaging cap is also structured and/or designed with an irrigator port 81 which can facilitate the attachment of a lavage device or syringe to aid in a clearance of liquid and/or debris from the distal attachment cap 1 .
  • the exemplary cap 1 can be coupled with multiple optical elements 85 in the optical chamber 84 .
  • a plastic, transparent, semi-flexible and disposable cap which can facilitate a circular configuration and arrangement of multiple imaging detectors within a small collar 91 , as shown in FIG. 9 .
  • This exemplary collar 91 can facilitate overlapping, multidirectional and circumferential views of the desired target sample (e.g., organ) or space being inspected.
  • This exemplary configuration can facilitate the use of multiple light sources and independent optical sensors, e.g., bypassing a preference to alter the conventional endoscopes light source.
  • Exemplary image processing of images obtained using the system, apparatus and method according to the present disclosure can be accomplished using the exemplary procedures implemented on the exemplary processing arrangement, as described herein.
  • an exemplary procedure implemented on the exemplary processing arrangement can assist in an alignment of the signals to provide, e.g., a 360 degree, multidirectional field of view 92 , as shown in FIG. 9 .
  • FIG. 10 shows a set of exemplary images achieved using the exemplary system, method and/or computer-accessible medium according to the exemplary embodiments of the present disclosure.
  • Such exemplary images were based on exemplary testing result using an exemplary software separation via a simultaneously illumination and utilizing a 442/505/635 nm Yokogawa dichroic beamsplitter installed at the distal to a CCD camera with lens.
  • MGH Massachusetts General Hospital
  • HMS Harvard Medical School
  • the exemplary procedure 12 described herein above with respect to FIG. 1 (which may be used to program a processing hardware arrangement, such as, e.g., a computer) can be utilized to deconstruct the wavelength “profile” of each field of view by splitting the native and multidirectional fields of view with the two logos.
  • the exemplary procedure 12 can be one or more programs including, but not limited to, e.g., Neural Network and/or Independent Component Analysis, or other procedure/program which can configure the processing hardware arrangement to separate the two views from the captured combined image 101 .
  • the exemplary reconstructed images of each field of view are shown in FIG. 10 as images 104 , 105 , respectively.
  • the exemplary software based separation which splits the two views as described herein, can significantly reduce the complexity of various components/parts of the procedure, system and computer-accessible medium according to the exemplary embodiments of the present disclosure.

Abstract

An exemplary apparatus for imaging at least one anatomical structure can be provided. For example, the apparatus can include an endoscopic first arrangement, a radiation source second arrangement which provides at least one electro-magnetic radiation, and a third arrangement attached to at least one portion of the endoscopic arrangement. The third arrangement can contain an optical arrangement which, upon impact by the at least one electro-magnetic radiation and based thereon, may transmit a first radiation and reflects a second radiation. The first radiation can impact at least one first portion of the anatomical structure(s), and the second radiation can impact at least one second portion of the anatomical structure(s). The first and second portions can be at least partially different from one another. Further, the first and second radiations can have characteristics which are different from one another.

Description

    CROSS-REFERENCE TO RELATED APPLICATION(S)
  • This application is a continuation of U.S. National Phase patent application Ser. No. 14/389,631 filed Sep. 30, 2014, based upon and claims the benefit of priority from International Patent Application No. PCT/US2013/031948 filed on Mar. 15, 2013, which claims the benefit of priority from U.S. Provisional Patent Application Ser. No. 61/618,225, filed Mar. 30, 2012, the entire disclosures of which are incorporated herein by reference.
  • FIELD OF THE DISCLOSURE
  • Exemplary embodiments of the present disclosure relate to endoscopic imaging system and methods for multidirectional field of view endoscopy which can be used to improve the field of view, speed and efficiency of diagnostic and therapeutic endoscopic procedures.
  • BACKGROUND OF THE DISCLOSURE
  • In general, endoscopic imaging systems allow the evaluation of animal and human internal organs. Endoscopes can consist of at least one of the following components, a rigid or flexible tube, a light delivery system, a fluid delivery and recovery system, an air delivery and recovery system, a lens system, an eyepiece, a high pixel-count color CCD or imaging transmission system, graphical display unit (monitor), and/or accessory channel(s) to allow use of devices for manipulation, sampling or imaging of target lesions.
  • The endoscope may be inserted into any natural orifice of the animal or human including the nares, ears, mouth, biliary tract, pancreatic duct, ostomy, urinary tract, vagina, uterus, fallopian tubes, anus and/or any opening produced by procedures employing an incision or puncture into an internal body cavity (craniotomy, thoracotomy, mediastinotomy, laparotomy or arthrotomy). While currently available endoscopes are capable of evaluating target structures by the obligatory forward or other directional field of view obtained by current light delivery and lens systems, in some medical applications this design increases the risk for missed detection of important areas of interest. As a result, there is a need for multi-directional visualization.
  • Colonoscopy is widely considered the gold standard for detecting mucosal abnormalities in the human colon, and the preferred technique for removal of many non-invasive lesions requires biopsy, polypectomy or endoscopic resection. There have been well-documented limitations related to the practice of colonoscopy with traditional endoscopic instruments. Because most colon cancers are believed to arise from abnormal colon tissue, adenomas, the detection and removal of adenomatous polyps have been recommended for the prevention of future colon cancers. (See, e.g., ref 1). Missed polyps or cancers have been one of these unfortunate limitations. (See, e.g., refs. 2-4). Although there are additional factors associated with the risks of missing mucosal lesions such as, a patient's colonic anatomy, patient comfort during an endoscopic procedure and the quality of bowel preparation, it has been well established by other investigators, that the location of mucosal abnormalities is highly associated with failure of identification. (See, e.g., ref. 4).
  • Prior groups have investigated several approaches to attempt to demonstrate an improvement in the diagnostic yield of a colonoscopic procedure by altering or increasing the conventional forward fields of view. Unfortunately these studies did not demonstrate a significant increase in adenoma detection. (See, e.g., refs. 5-7). Nevertheless, the uses of a transparent cap that does not change or improve the field of view placed on the distal aspect of colonoscopes have demonstrated great promise in improving the effectiveness of colonoscopy (see, e.g., refs. 8-11) and adenoma detection (see, e.g., ref 12), however the use of these devices are still associated with a significant adenoma miss rate. (See, e.g., ref. 13).
  • Other researchers have attempted to improve the adenoma detection rate established with the use of a conventional endoscopic system by increasing the total field of view during a colonoscopy by coupling the traditional endoscope with an auxiliary imaging device, placed within the accessory channel, to provide a continuous retrograde view of the target organ via the accessory channel. (See, e.g., ref. 14). While this auxiliary imaging device provides a continuous retrograde field of view used in combination with traditional forward viewing endoscopes, it requires the use of an accessory channel of the endoscope. This becomes an important factor during colonoscopy, if used with a standard single channel colonoscope, due to the necessity to remove the auxiliary imaging device to allow for the use of an appropriate auxiliary sampling or retrieval instrument to biopsy, resect and retrieve specimens removed from the organ being investigated. This additional equipment has been shown in a prospective, multicenter, randomized, controlled trial to decrease the relative risk of missing polyps and adenomas but was also shown to have a statistically significant increase in the mean total procedure times.15 Auxiliary endoscopic devices placed within the auxiliary channel of the endoscope have the further disadvantage that they require an additional endoscope, which increases complexity, ease of use, and cost of the overall procedure.
  • Thus, there is a need to address at least some of the issues and/or deficiencies described herein above.
  • SUMMARY OF EXEMPLARY EMBODIMENTS
  • In various exemplary embodiments according to the present disclosure, exemplary configurations for the acquisition of multidirectional viewing during endoscopic examination can be provided. Exemplary applications can be utilized, in which increasing the field of view while using high resolution endoscopic systems can be improved with the exemplary embodiments of the system and method of continuous and simultaneous forward and multidirectional views during a baroscopic, laparoscopic, angioscopic, or endoscopic procedure.
  • Exemplary embodiments of the present disclosure can relate generally to exemplary configuration of optical elements, and to the application(s) thereof in exemplary endoscopic imaging systems which can be used with medical applications to improve the field of view, speed and efficiency of an endoscopic procedure. Exemplary embodiments of the present disclosure can be applied to rigid, flexible, wireless or telescoping endoscope to provide, e.g., a continuous multi-directional view of animate and inanimate hollow spaces.
  • In one further exemplary embodiment of the present disclosure, a distal imaging attachment and an imaging system can be used in combination with a rigid, flexible, wireless or telescoping endoscope to create a continuous multi-directional view of animate and inanimate hollow spaces. According to a further exemplary embodiment of the present disclosure, the directions are forward and to the side. In yet another preferred embodiment of the present disclosure, the directions are forward and backward. In still yet another further embodiment, the directions cover approximately a 4 pi solid angle that is only obscured by the device itself. This said distal imaging attachment and imaging system may be employed, but not limited to, with endoscopy of animal and human internal anatomical organs and borescopy of inanimate closed spaces. Due to its design, the integrated optical element within this imaging system, allowing both the forward and multidirectional fields of view.
  • In yet further exemplary embodiment of the present disclosure, it is also possible to accommodate the simultaneous passage of devices via the accessory channel of a video endoscope or applicable device of which the distal imaging attachment is applied. For example, optical elements in the exemplary device can be configured to facilitate a multidirectional viewing of target organs or spaces with exemplary endoscopes. In another exemplary embodiment of the present disclosure, the exemplary device can be retrofitted to alter the native conventional high definition endoscopes currently used in endoscopic procedures. In still further exemplary embodiment of the present disclosure, the exemplary device/apparatus can be disposable.
  • Indeed, exemplary embodiments according to the present disclosure as described herein, can be provided as exemplary endoscopic lens system(s), and can be termed as “multidirectional”, “simulview” or “retroview”, and utilized as a basis for exemplary embodiments of endoscopic systems for a deployment.
  • Further, an exemplary apparatus for imaging at least one anatomical structure can be provided, according to an exemplary embodiment of the present disclosure. For example, the apparatus can include an endoscopic first arrangement, a radiation source second arrangement which provides at least one electro-magnetic radiation, and a third arrangement attached to at least one portion of the endoscopic arrangement. The third arrangement can contain an optical arrangement which, upon impact by the at least one electro-magnetic radiation and based thereon, may transmit a first radiation and reflects a second radiation. The first radiation can impact at least one first portion of the anatomical structure(s), and the second radiation can impact at least one second portion of the anatomical structure(s). The first and second portions can be at least partially different from one another. Further, the first and second radiations can have characteristics which are different from one another.
  • For example, the characteristics can include or be wavelengths or polarizations. A detector arrangement can be provided, whereas the endoscopic arrangement can be associated with the radiation source arrangement and the detector arrangement. The first and second radiations can have spectral regions in red, green and blue band which do not substantially overlap with one another. The first radiation can be directed in a forward direction, and the second radiation can be directed in a backward direction or a side direction. The third arrangement can include a cap that can be connected to an end portion of the endoscopic first arrangement. The second radiation can simultaneously illuminate between 270 and 360 degrees of a field of view. Further, the radiation source second arrangement can include a modulation arrangement which can be configured to modulate the first and second radiations. An electronic arrangement can be provided which is configured to synchronize the second arrangement and the detector arrangement. As an alternative or in addition, the electronic arrangement can be configured to (i) synchronize the modulation arrangement and the detector arrangement, and (ii) control the detector arrangement to detect signals from the anatomical structure(s) illuminated by the first and second radiation, and separate the signals based the synchronization with the modulation arrangement.
  • According to further exemplary embodiments of the present disclosure, the anatomical structure(s) can be a luminal anatomical structure. The third arrangement can include at least one opening which facilitates a passage of instrumentation, air gasses and/or fluids therethrough. A tube can be provided that is associated with the third arrangement, and which provide a passage of instrumentation, air gasses and/or fluids therethrough. Further, the first and second radiations can have a specific polarization status.
  • Other features and advantages of the present invention will become apparent upon reading the following detailed description of exemplary embodiments of the present disclosure, when taken in conjunction with the appended claims.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Further objects, features and advantages of the present disclosure will become apparent from the following detailed description taken in conjunction with the accompanying Figures showing illustrative embodiments of the present disclosure, in which:
  • FIG. 1 is a side cross-sectional block diagram of an imaging system/apparatus and optical elements thereof according to an exemplary embodiment of the present disclosure;
  • FIG. 2 is a set of view of an exemplary optical element consists a 4-faceted pyramid dichroic mirror which can transmit and reflect radiations with different characteristics according to an exemplary embodiment of the present disclosure;
  • FIG. 3 a block diagram of an endoscopic arrangement, a radiation source arrangement, and a detector arrangement according to exemplary embodiments of the present disclosure;
  • FIGS. 4(a) and 4(b) are block diagrams of exemplary modulation arrangements according to an exemplary embodiment of the present disclosure;
  • FIG. 5(a) is a diagram of an exemplary electronic switch based on an optical chopper according to an exemplary embodiment of the present disclosure;
  • FIG. 5(b) is a diagram of the exemplary electronic switch based on a first switch position according to an exemplary embodiment of the present disclosure;
  • FIG. 5(c) is a diagram of the exemplary electronic switch based on a second switch position according to an exemplary embodiment of the present disclosure;
  • FIG. 6(a) a diagram of a further exemplary electronic switch based on a galvo scanner at a first switch position according to another exemplary embodiment of the present disclosure;
  • FIG. 6(b) a diagram of the exemplary electronic switch of FIG. 6(a) based on the galvo scanner at a second switch position according to another exemplary embodiment of the present disclosure;
  • FIG. 7 a front view of the optical elements provided within a distal imaging attachment cap of the exemplary imaging system/apparatus of FIG. 1;
  • FIG. 8 a side view of the imaging system/apparatus, optical elements and distal imaging attachment cap, as shown in FIG. 7;
  • FIG. 9 is a set of illustrations providing external distal image attachments and an overlapping field external display Diagram according to exemplary embodiments of the present disclosure; and
  • FIG. 10 is a set of exemplary images providing exemplary testing results achieved using the exemplary system, method and/or computer-accessible medium according to the exemplary embodiments of the present disclosure.
  • Throughout the drawings, the same reference numerals and characters, unless otherwise stated, are used to denote like features, elements, components, or portions of the illustrated embodiments. Moreover, while the present disclosure will now be described in detail with reference to the figures, it is done so in connection with the illustrative embodiments and is not limited by the particular embodiments illustrated in the figures, and/or the appended claims.
  • DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
  • Using the exemplary embodiments of the apparatus, system and method of the present disclosure, it is possible to facilitate a visualization of a plurality of fields of view, e.g., at a plurality of angles with respect to the long axis of the endoscope by multiplexing image fields of view using an optical apparatus. In one exemplary embodiment of the present disclosure, an optical apparatus/system can be provided which can be partially reflective and/or may be a polarization or wavelength selective such that certain wavelengths or polarization states are directed to and/or received from different field angles and therefore illuminate and/or receive different fields of view.
  • The exemplary states may be altered by changing the characteristics of the optics or the optical characteristics of the light, such as the wavelengths or the polarization state. For example, such changes of wavelengths can be different bands of wavelengths in the RGB spectrum. Alternatively, the different wavelengths may be comprised of different wavelength bands in the visible and NIR spectrum. Furthermore, e.g., the characteristic(s) of the light is not changed by the optical apparatus, but the images are separated using software algorithms. In yet another embodiment, the optical apparatus contains a beam splitter. In a further exemplary embodiment of the present disclosure, the optical apparatus can be configured and/or structured to be within a cap that can be attached to the distal end of an endoscope, a catheter, a borescope, and/or a laparoscope device. For example, the cap can be disposable, and/or can contain one or more apertures or openings to allow the passage of devices, fluids, or tissue to effect a change in the anatomic structure.
  • According to another exemplary embodiment of the present disclosure, the arrangement of optical elements coupled with or to certain endoscopes, and exemplary signal processing methods can facilitate an acquisition of continuous multi-directional views, without the need for additional auxiliary imaging devices deployed through the endoscope accessory channel.
  • FIG. 1 shows a side cross-sectional block diagram of an imaging system/apparatus and optical elements thereof according to an exemplary embodiment of the present disclosure. For example, a distal imaging attachment cap 1 of the exemplary imaging system of FIG. 1 can be facilitated in an endoscope 14. The attachment cap 1 can contain an optical element/arrangement 4 which can include certain multiple configurations, such as but not limited to a fiber optic bundle, a tapered fiber optic bundle, a cone mirror, a partial cone mirror, a pentagon mirror, an inverted pyramid mirror, a prism, and/or multiple mobile optical elements. The use of such exemplary optical element/arrangement 4 can achieve, e.g., a side and retrograde endoscopic view while maintaining the endoscope's field of view 5, such as the forward field of view. The exemplary optical element 4 may also have or applied thereto a customized reflective material to facilitate a detailed and customized manipulation of the field of view or wavelengths. Such exemplary arrangement can facilitate the user of the exemplary endoscopic system to view both the forward field of view 5 and fields of view located to the side and retrograde 6 to the endoscope's objective lens 2 and endoscope light 3.
  • According to another exemplary embodiment of the present disclosure, as shown in FIG. 2, the exemplary optical element 4 can be, e.g., a 4-faceted pyramid dichroic mirror which can transmit and/or reflect radiations (e.g., electromagnetic radiations, including light, etc.) with different characteristics. For example, the exemplary characteristics can include and/or be wavelengths or polarizations. The first and second radiations can have spectral regions in red, green and blue bands which likely do not substantially overlap with one another (at least for the most part). In addition or alternatively, the first and second radiations can have a specific polarization status. For example, the first radiation can be directed in a forward direction 21, and the second radiation can be directed in a backward direction or side directions (e.g., directions 22, 23, 24, 25).
  • Further, turning to FIG. 1, according to an exemplary embodiment of the present disclosure, it is possible to facilitate a toggling via a manual and/or electronic switch 8 (which can include a modulation arrangement), e.g., to apply an exemplary procedure to filter, polarize, bend and/or exclude predetermined wavelength(s) of one or more radiations (e.g., lights) 7 of an endoscopic light/radiation source 9. As indicated herein, the distal imaging attachment cap 1 can be placed at the distal tip of the endoscope 14.
  • According to another exemplary embodiment of the present disclosure, as shown in FIG. 3, a system can be provided (which can include but not limited to one or more of, e.g., computer 31, video capture device and synchronization signal generator 32, and endoscope video processor 33). The endoscopic arrangement 14 can be associated with the radiation source arrangement (which can include but not limited to one or more of, e.g., endoscopic light/radiation source 9, an exemplary procedure to filter, polarize, bend and/or exclude predetermined wavelength(s) of the radiation(s) 7, and manual and/or electronic switch 8) and a detector arrangement. Further, as indicated herein above, the radiation source arrangement can include the modulation arrangement (including, e.g., element 8) which can be configured to modulate the first and second radiations. The computer 31 and/or the signal generator 32 can be configured to synchronize the radiation source arrangement (including, e.g., elements 8, 9) and/or the entire system (including e.g., elements 31, 32, and 33). As an alternative or in addition, the computer 31 and/or the signal generator 32 can be configured to (i) synchronize the modulation arrangement (including, e.g., element 8) and the detector arrangement, and/or (ii) control the system to detect signals from the anatomical structure(s) illuminated by the first and second radiation, and separate the signals based the synchronization with the modulation arrangement (e.g., element 8).
  • According to yet another exemplary embodiment of the present disclosure, as shown in FIG. 4(a), an exemplary modulation arrangement of another exemplary embodiment of the present disclosure can include a beam splitter 41 to divide the radiation (e.g., light and/or beam) into two beam paths. For example, one beam can pass a filter for predetermined wavelength(s) or polarization(s) 44 to provide the first radiation 45. The other beam can be reflected by a mirror 42, and can pass another filter for another predetermined wavelength(s) or polarization 43 with different characteristics compared with the wavelength(s) or polarization 44 to provide the second radiation 46.
  • Further, as shown in FIG. 4(b), another exemplary modulation arrangement according to still another exemplary embodiment of the present disclosure can include a beam splitter for predetermined wavelength(s) or polarization 47 to provide the first radiation 45 and the second radiation 46.
  • FIGS. 5(s)-5(c) illustrate block diagrams of various exemplary electronic switches according to further exemplary embodiments of the present disclosure. The exemplary electronic switches of FIGS. 5(a)-5(c) can include an optical chopper 51 synchronized with the computer 31 and/or the signal generator 32 (shown in FIG. 3). The first radiation 45 and second radiation 46 can be alternatively coupled into the endoscope 14 by exemplary optical components (e.g., a mirror 52, a beam splitter 53, and a lens 54). Such exemplary optical components can be switched by the optical chopper's positions, as shown in FIGS. 5(b) and 5(c).
  • FIGS. 6(a) and 6(b) show another exemplary electronic switch arrangement according to yet another exemplary embodiment of the present disclosure, provided in different switch position. The exemplary switch arrangement of FIGS. 6(a) and 6(b) can include a galvo scanner 61 which can be synchronized with the computer 31 and/or the signal generator 32 (shown in FIG. 3). For example, the first radiation 45 and the second radiation 46 can be alternatively coupled into the endoscope 14 by exemplary optical components (e.g., lens 62) switched by the galvo scanner's positions as shown in FIGS. 6(a) and 6(b).
  • According to another exemplary embodiment of the present disclosure, as shown in FIG. 7, the exemplary distal imaging attachment cap 1 can facilitate a use of a fluid delivery channel 76 and/or an accessory channel 72 to maintain its original use by providing a non-obstructive pathway for an endoscopic manipulation within the endoscope 14 via the accessory channel 72. Other
  • Exemplary Image Processing
  • In one exemplary embodiment of the present disclosure, with reference to FIG. 1, the exemplary system/apparatus/method can be used for a simultaneous or controlled switching between the above described forward field of view 5 and the side/retrograde field of view 6. In order to facilitate accurate localization of target lesions obtained with the exemplary imaging system, an exemplary procedure 12 (which can be used to program a processing hardware arrangement, such as, e.g., a computer) can be used to deconstruct a wavelength/polarization “profile” of each field of view 10, 11 by electronically splitting native and multidirectional fields of view.
  • Using an a light/radiation source of the endoscope 14, exemplary selective filtering of, e.g., white light to facilitate only the reflectance or transmission phase to be analyzed can be accomplished by placing applying a filter at the endoscope's connection to its processing arrangement (e.g., the processor). Toggling between the on and off phases, e.g., manually (such as with a manual foot pedal), automatically or via an electronic switch, the reflected or transmitted light/radiation can then be deconstructed via a further procedure which can program or configure the processing arrangement to continuously display the forward and multidirectional fields of view 13.
  • According to yet further exemplary embodiment of the present disclosure, another procedure can be provided which can program or configure the processing arrangement to deconstruct each pixel, and display the two profiles determined by the reflective transmission wavelengths, polarizations or characteristic properties established by a special arrangement 7, the optical element(s) 4 and angles of observation of each field of view 5, 6.
  • The exemplary imaging system of FIG. 1 can also use of an alternative light source which can be deployed, e.g., via the cap irrigation channel 81 (shown in FIG. 8). The use of such light source via the irrigation channel 81 can provide and/or facilitate, e.g., a further selective manipulation of the reflectance and transmission frequencies for an improved discretion between the phases for an exemplary image manipulation via a procedure which can program or configure the processing arrangement to perform such exemplary function.
  • Exemplary Application of Exemplary Embodiment
  • Exemplary Cap Design
  • According to one exemplary embodiment of the present disclosure, a plastic, transparent, semi-flexible disposable cap 1 can be fitted over the distal tip of the endoscope 14 via a friction fit configuration 82, as shown in FIG. 8. The exemplary design and/or configuration of this cap 1 can be provided in various ways, e.g., depending on the indication of the exemplary endoscopic procedure. Shapes of the exemplary cap 1 can include, but are not limited to oblique or perpendicular angled shapes, in respect to the distal aspect of the endoscope 14 and a location of the objective lens 2.
  • In a further exemplary embodiment of the present disclosure, the distal imaging attachment is designed to be in a specific orientation so as to facilitate the native functions of the endoscope to continue to operate without an interruption. To facilitate the function of, e.g., cleaning the endoscopes objective lens 71, a light guide 74, an air nozzle 73, and a water nozzle 75 (as shown in FIG. 7), the exemplary cap 1 can include a clearance chamber 83 (as shown in FIG. 8), which can seal the distal apparatus away from luminal liquid and contents, while continuing to facilitate the instillation of water for imaging and cleaning. This above described exemplary clearance chamber 83 can contain a perforation located above the accessory chamber 86 to facilitate suctioning of contents of the clearance chamber 83. To facilitate the distal imaging cap to be cleaned, a water jet output channel (e.g., the fluid delivery chamber) 76 can be provided which is structured and/or designed to be unobstructed by the exemplary cap 1. Furthermore, to provide more aggressive cleansing, e.g., the distal imaging cap is also structured and/or designed with an irrigator port 81 which can facilitate the attachment of a lavage device or syringe to aid in a clearance of liquid and/or debris from the distal attachment cap 1.
  • Further, the exemplary cap 1 can be coupled with multiple optical elements 85 in the optical chamber 84.
  • Overlapping Field Cap Design
  • According to yet another exemplary embodiment of the present disclosure, it is possible to use a plastic, transparent, semi-flexible and disposable cap, which can facilitate a circular configuration and arrangement of multiple imaging detectors within a small collar 91, as shown in FIG. 9. This exemplary collar 91 can facilitate overlapping, multidirectional and circumferential views of the desired target sample (e.g., organ) or space being inspected. This exemplary configuration can facilitate the use of multiple light sources and independent optical sensors, e.g., bypassing a preference to alter the conventional endoscopes light source. Exemplary image processing of images obtained using the system, apparatus and method according to the present disclosure can be accomplished using the exemplary procedures implemented on the exemplary processing arrangement, as described herein. For example, depending on the number of optical elements placed within the exemplary imaging collar-cap design, an exemplary procedure implemented on the exemplary processing arrangement according to an exemplary embodiment of the present disclosure can assist in an alignment of the signals to provide, e.g., a 360 degree, multidirectional field of view 92, as shown in FIG. 9.
  • Exemplary Testing
  • Further exemplary testing was performed using the following: (1) Polka dot beam splitter, (2) 50:50 beam splitter AOI 45 degree, (3) long pass dichroic mirror, 50% Trans. Refl. At 567 nm, (4) cone mirror or (5) 395/495/610 nm Triple-edge dichroic beam splitter installed at multiple distances distal to the endoscopes objective leans. Preliminary testing with both a white light and infrared light source was successful in demonstrating that selective observation of the forward and retrograde views could be accomplished if the optical element was oriented at an angle such as a 45 degree, 30 degree, or 60 degree angle to the endoscopes objective lens.
  • FIG. 10 shows a set of exemplary images achieved using the exemplary system, method and/or computer-accessible medium according to the exemplary embodiments of the present disclosure. Such exemplary images were based on exemplary testing result using an exemplary software separation via a simultaneously illumination and utilizing a 442/505/635 nm Yokogawa dichroic beamsplitter installed at the distal to a CCD camera with lens. Massachusetts General Hospital (“MGH”) logo and Harvard Medical School (“HMS”) logo were used as the image targets, placed in front of, and at side of the dichroic beamsplitter, respectively. In this testing, the white light source was not modulated and illuminated on the two image targets simultaneously. The separately captured exemplary individual images of the logos are shown in FIG. 10 as MGH 102, and HMS 103. A captured exemplary combined image 101 with the two logos in positions at the same time was the image intended to be processed. The exemplary procedure 12 described herein above with respect to FIG. 1 (which may be used to program a processing hardware arrangement, such as, e.g., a computer) can be utilized to deconstruct the wavelength “profile” of each field of view by splitting the native and multidirectional fields of view with the two logos. For example, the exemplary procedure 12 can be one or more programs including, but not limited to, e.g., Neural Network and/or Independent Component Analysis, or other procedure/program which can configure the processing hardware arrangement to separate the two views from the captured combined image 101. The exemplary reconstructed images of each field of view are shown in FIG. 10 as images 104, 105, respectively. The exemplary software based separation, which splits the two views as described herein, can significantly reduce the complexity of various components/parts of the procedure, system and computer-accessible medium according to the exemplary embodiments of the present disclosure.
  • An exemplary integration of such exemplary configuration that is associated with a distal imaging cap which is is coupled with various optical elements has been described herein.
  • The foregoing merely illustrates the principles of the invention. Various modifications and alterations to the described embodiments will be apparent to those skilled in the art in view of the teachings herein. Indeed, the arrangements, systems and methods according to the exemplary embodiments of the present invention can be used with any OCT system, OFDI system, SD-OCT system or other imaging systems, and for example with those described in International Patent Application PCT/US2004/029148, filed Sep. 8, 2004, U.S. patent application Ser. No. 11/266,779, filed Nov. 2, 2005, and U.S. patent application Ser. No. 10/501,276, filed Jul. 9, 2004, the disclosures of which are incorporated by reference herein in their entireties. It will thus be appreciated that those skilled in the art will be able to devise numerous systems, arrangements and methods which, although not explicitly shown or described herein, embody the principles of the invention and are thus within the spirit and scope of the present invention. In addition, to the extent that the prior art knowledge has not been explicitly incorporated by reference herein above, it is explicitly being incorporated herein in its entirety. All publications referenced herein above are incorporated herein by reference in their entireties.
  • EXEMPLARY REFERENCES
    • 1. Winawer S J, Zauber A G, Ho M N, O'Brien M J, Gottlieb L S, Sternberg S S, Waye J D, Schapiro M, Bond J H, Panish J F, et al. Prevention of colorectal cancer by colonoscopic polypectomy. The National Polyp Study Workgroup. N Engl J Med 1993; 329:1977-81.
    • 2. Bressler B, Paszat L F, Vinden C, Li C, He J, Rabeneck L. Colonoscopic miss rates for right-sided colon cancer: a population-based analysis. Gastroenterology 2004; 127:452-6.
    • 3. Rex D K, Cutler C S, Lemmel G T, Rahmani E Y, Clark D W, Helper D J, Lehman G A, Mark D G. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 1997; 112:24-8.
    • 4. Haseman J H, Lemmel G T, Rahmani E Y, Rex D K. Failure of colonoscopy to detect colorectal cancer: evaluation of 47 cases in 20 hospitals. Gastrointest Endosc 1997; 45:451-5.
    • 5. Pellise M, Fernandez-Esparrach G, Cardenas A, Sendino O, Ricart E, Vaquero E, Gimeno-Garcia A Z, de Miguel C R, Zabalza M, Gines A, Pique J M, Llach J, Castells A. Impact of wide-angle, high-definition endoscopy in the diagnosis of colorectal neoplasia: a randomized controlled trial. Gastroenterology 2008; 135:1062-8.
    • 6. Rex D K, Chadalawada V, Helper D J. Wide angle colonoscopy with a prototype instrument: impact on miss rates and efficiency as determined by back-to-back colonoscopies. Am J Gastroenterol 2003; 98:2000-5.
    • 7. Deenadayalu V P, Chadalawada V, Rex D K. 170 degrees wide-angle colonoscope: effect on efficiency and miss rates. Am J Gastroenterol 2004; 99:2138-42.
    • 8. Matsushita M, Hajiro K, Okazaki K, Takakuwa H, Tominaga M. Efficacy of total colonoscopy with a transparent cap in comparison with colonoscopy without the cap. Endoscopy 1998; 30:444-7.
    • 9. Lee Y T, Hui A J, Wong V W, Hung L C, Sung J J. Improved colonoscopy success rate with a distally attached mucosectomy cap. Endoscopy 2006; 38:739-42.
    • 10. Kondo S, Yamaji Y, Watabe H, Yamada A, Sugimoto T, Ohta M, Ogura K, Okamoto M, Yoshida H, Kawabe T, Omata M. A randomized controlled trial evaluating the usefulness of a transparent hood attached to the tip of the colonoscope. Am J Gastroenterol 2007; 102:75-81.
    • 11. Harada Y, Hirasawa D, Fujita N, Noda Y, Kobayashi G, Ishida K, Yonechi M, Ito K, Suzuki T, Sugawara T, Horaguchi J, Takasawa O, Obana T, Oohira T, Onochi K, Kanno Y, Kuroha M, Iwai W. Impact of a transparent hood on the performance of total colonoscopy: a randomized controlled trial. Gastrointest Endosc 2009; 69:637-44.
    • 12. Horiuchi A, Nakayama Y. Improved colorectal adenoma detection with a transparent retractable extension device. Am J Gastroenterol 2008; 103:341-5.
    • 13. Hewett D G, Rex D K. Cap-fitted colonoscopy: a randomized, tandem colonoscopy study of adenoma miss rates. Gastrointest Endosc 2010; 72:775-81.
    • 14. Triadafilopoulos G, Watts H D, Higgins J, Van Dam J. A novel retrograde-viewing auxiliary imaging device (Third Eye Retroscope) improves the detection of simulated polyps in anatomic models of the colon. Gastrointest Endosc 2007; 65:139-44.
    • 15. Leufkens A M, DeMarco D C, Rastogi A, Akerman P A, Azzouzi K, Rothstein R I, Vleggaar F P, Repici A, Rando G, Okolo P I, Dewit O, Ignjatovic A, Odstrcil E, East J, Deprez P H, Saunders B P, Kalloo A N, Creel B, Singh V, Lennon A M, Siersema P D. Effect of a retrograde-viewing device on adenoma detection rate during colonoscopy: the TERRACE study. Gastrointest Endosc 2011; 73:480-9.

Claims (20)

1. An apparatus for imaging at least one anatomical structure, comprising:
a radiation source arrangement which provides at least one electro-magnetic radiation;
an optical arrangement which, upon impact by the at least one electro-magnetic radiation and based thereon, transmits a first radiation and at least partially reflects a second radiation, wherein the first radiation impacts at least one first portion of the at least one anatomical structure, and the second radiation impacts at least one second portion of the at least one anatomical structure, the first and second portions being at least partially different from one another;
a detector arrangement which is associated with the radiation source arrangement; and
an electronic arrangement which is configured to synchronize the radiation source arrangement and the detector arrangement,
wherein the optical arrangement causes the first and second radiations to have characteristics which are different from one another, and
wherein the radiation source arrangement includes a modulation arrangement which is configured to alternate the first and second radiations.
2. The apparatus according to claim 1, wherein the characteristics are wavelengths or polarizations.
3. (canceled)
4. The apparatus according to claim 1, wherein the optical arrangement causes the first and second radiations to have spectral regions in red, green and blue band which do not substantially overlap with one another.
5. The apparatus according to claim 1, wherein the first radiation is directed in a forward direction, and wherein the second radiation is directed in a backward direction or a side direction.
6. The apparatus according to claim 1, wherein the optical arrangement includes a cap that is connected to an end portion of the imaging probe first arrangement.
7. The apparatus according to claim 1, wherein the optical arrangement causes the second radiation to simultaneously illuminate between 270 and 360 degrees of a field of view.
8. The apparatus according to claim 5, wherein the radiation source arrangement includes a modulation arrangement which is configured to modulate the first and second radiations.
9. (canceled)
10. The apparatus according to claim 1, wherein the electronic arrangement is configured to control the detector arrangement to detect signals from the at least one anatomical structure illuminated by the first and second radiations, and separate the signals based the synchronization with the modulation arrangement.
11. The apparatus according to claim 1, wherein the at least one anatomical structure is a luminal anatomical structure.
12. The apparatus according to claim 1, wherein the optical third arrangement includes at least one opening which facilitates a passage of instrumentation, air gasses and fluids therethrough.
13. The apparatus according to claim 1, further comprising a tube associated with the optical arrangement, and provides a passage of instrumentation, air gasses and fluids therethrough.
14. The apparatus according to claim 1, wherein each of the first and second radiations has a specific polarization status.
15. A method for imaging at least one anatomical structure, comprising:
providing at least one electro-magnetic radiation using a radiation source arrangement;
synchronizing the radiation source arrangement and a detector arrangement which is associated with the radiation source arrangement;
transmitting a first radiation and at least partially reflects a second radiation upon an impact thereon by the at least one electro-magnetic radiation and based thereon using an optical arrangement;
alternating the first and second radiations, and causing the first and second radiations to have characteristics which are different from one another; and
causing an impact of (i) the first radiation on at least one first portion of the at least one anatomical structure, and (ii) the second radiation on at least one second portion of the at least one anatomical structure, the first and second portions being at least partially different from one another.
16. The method according to claim 15, wherein the first and second radiations are alternated by a modulator of the radiation source arrangement.
17. The method according to claim 16, further comprising detecting signals from the at least one anatomical structure illuminated by the first and second radiations with the detector arrangement, and separating the signals based the synchronization with the modulator.
18. The method according to claim 15, further comprising causing the first and second radiations to have spectral regions in red, green and blue band which do not substantially overlap with one another.
19. The method according to claim 15, further comprising directing the first radiation in a forward direction, and the second radiation is a backward direction or a side direction.
20. The method according to claim 15, further comprising causing the second radiation to simultaneously illuminate between 270 and 360 degrees of a field of view.
US15/494,021 2012-03-30 2017-04-21 Imaging system, method and distal attachment for multidirectional field of view endoscopy Abandoned US20170290499A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/494,021 US20170290499A1 (en) 2012-03-30 2017-04-21 Imaging system, method and distal attachment for multidirectional field of view endoscopy

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261618225P 2012-03-30 2012-03-30
PCT/US2013/031948 WO2013148306A1 (en) 2012-03-30 2013-03-15 Imaging system, method and distal attachment for multidirectional field of view endoscopy
US201414389631A 2014-09-30 2014-09-30
US15/494,021 US20170290499A1 (en) 2012-03-30 2017-04-21 Imaging system, method and distal attachment for multidirectional field of view endoscopy

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US14/389,631 Continuation US9629528B2 (en) 2012-03-30 2013-03-15 Imaging system, method and distal attachment for multidirectional field of view endoscopy
PCT/US2013/031948 Continuation WO2013148306A1 (en) 2012-03-30 2013-03-15 Imaging system, method and distal attachment for multidirectional field of view endoscopy

Publications (1)

Publication Number Publication Date
US20170290499A1 true US20170290499A1 (en) 2017-10-12

Family

ID=49261067

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/389,631 Active 2033-08-13 US9629528B2 (en) 2012-03-30 2013-03-15 Imaging system, method and distal attachment for multidirectional field of view endoscopy
US15/494,021 Abandoned US20170290499A1 (en) 2012-03-30 2017-04-21 Imaging system, method and distal attachment for multidirectional field of view endoscopy

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/389,631 Active 2033-08-13 US9629528B2 (en) 2012-03-30 2013-03-15 Imaging system, method and distal attachment for multidirectional field of view endoscopy

Country Status (3)

Country Link
US (2) US9629528B2 (en)
EP (1) EP2833776A4 (en)
WO (1) WO2013148306A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015164792A1 (en) * 2014-04-25 2015-10-29 The General Hospital Corporation Imaging system, method and distal attachment for multidirectional field of view endoscopy
US20170071456A1 (en) * 2015-06-10 2017-03-16 Nitesh Ratnakar Novel 360-degree panoramic view formed for endoscope adapted thereto with multiple cameras, and applications thereof to reduce polyp miss rate and facilitate targeted polyp removal
US10945706B2 (en) 2017-05-05 2021-03-16 Biim Ultrasound As Hand held ultrasound probe
CN113993468A (en) * 2018-07-09 2022-01-28 费姆塞尔克斯有限公司 Uterine lavage devices, systems, and methods

Family Cites Families (663)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2339754A (en) 1941-03-04 1944-01-25 Westinghouse Electric & Mfg Co Supervisory apparatus
US3090753A (en) 1960-08-02 1963-05-21 Exxon Research Engineering Co Ester oil compositions containing acid anhydride
GB1257778A (en) 1967-12-07 1971-12-22
US3601480A (en) 1968-07-10 1971-08-24 Physics Int Co Optical tunnel high-speed camera system
JPS4932484U (en) 1972-06-19 1974-03-20
US3872407A (en) 1972-09-01 1975-03-18 Us Navy Rapidly tunable laser
JPS584481Y2 (en) 1973-06-23 1983-01-26 オリンパス光学工業株式会社 Naishikiyoushiyahenkankogakkei
FR2253410A5 (en) 1973-12-03 1975-06-27 Inst Nat Sante Rech Med
US3941121A (en) 1974-12-20 1976-03-02 The University Of Cincinnati Focusing fiber-optic needle endoscope
US3983507A (en) 1975-01-06 1976-09-28 Research Corporation Tunable laser systems and method
US3973219A (en) 1975-04-24 1976-08-03 Cornell Research Foundation, Inc. Very rapidly tuned cw dye laser
US4030831A (en) 1976-03-22 1977-06-21 The United States Of America As Represented By The Secretary Of The Navy Phase detector for optical figure sensing
US4141362A (en) 1977-05-23 1979-02-27 Richard Wolf Gmbh Laser endoscope
US4224929A (en) 1977-11-08 1980-09-30 Olympus Optical Co., Ltd. Endoscope with expansible cuff member and operation section
DE2964775D1 (en) 1978-03-09 1983-03-24 Nat Res Dev Measurement of small movements
GB2030313A (en) 1978-06-29 1980-04-02 Wolf Gmbh Richard Endoscopes
FR2448728A1 (en) 1979-02-07 1980-09-05 Thomson Csf ROTATING JOINT DEVICE FOR OPTICAL CONDUCTOR CONNECTION AND SYSTEM COMPRISING SUCH A DEVICE
US4295738A (en) 1979-08-30 1981-10-20 United Technologies Corporation Fiber optic strain sensor
US4300816A (en) 1979-08-30 1981-11-17 United Technologies Corporation Wide band multicore optical fiber
JPS5675133A (en) 1979-11-22 1981-06-22 Olympus Optical Co Light source apparatus for endoscope
US4428643A (en) 1981-04-08 1984-01-31 Xerox Corporation Optical scanning system with wavelength shift correction
US5065331A (en) 1981-05-18 1991-11-12 Vachon Reginald I Apparatus and method for determining the stress and strain in pipes, pressure vessels, structural members and other deformable bodies
GB2106736B (en) 1981-09-03 1985-06-12 Standard Telephones Cables Ltd Optical transmission system
US4479499A (en) 1982-01-29 1984-10-30 Alfano Robert R Method and apparatus for detecting the presence of caries in teeth using visible light
US5302025A (en) 1982-08-06 1994-04-12 Kleinerman Marcos Y Optical systems for sensing temperature and other physical parameters
US4601036A (en) 1982-09-30 1986-07-15 Honeywell Inc. Rapidly tunable laser
HU187188B (en) 1982-11-25 1985-11-28 Koezponti Elelmiszeripari Device for generating radiation of controllable spectral structure
CH663466A5 (en) 1983-09-12 1987-12-15 Battelle Memorial Institute METHOD AND DEVICE FOR DETERMINING THE POSITION OF AN OBJECT IN RELATION TO A REFERENCE.
JPS6140633A (en) 1984-08-02 1986-02-26 Nec Corp Tablet device
US4639999A (en) 1984-11-02 1987-02-03 Xerox Corporation High resolution, high efficiency I.R. LED printing array fabrication method
US4763977A (en) 1985-01-09 1988-08-16 Canadian Patents And Development Limited-Societe Optical fiber coupler with tunable coupling ratio and method of making
US5318024A (en) 1985-03-22 1994-06-07 Massachusetts Institute Of Technology Laser endoscope for spectroscopic imaging
EP0590268B1 (en) 1985-03-22 1998-07-01 Massachusetts Institute Of Technology Fiber Optic Probe System for Spectrally Diagnosing Tissue
DE3610165A1 (en) 1985-03-27 1986-10-02 Olympus Optical Co., Ltd., Tokio/Tokyo OPTICAL SCAN MICROSCOPE
US4607622A (en) 1985-04-11 1986-08-26 Charles D. Fritch Fiber optic ocular endoscope
US4631498A (en) 1985-04-26 1986-12-23 Hewlett-Packard Company CW Laser wavemeter/frequency locking technique
US4650327A (en) 1985-10-28 1987-03-17 Oximetrix, Inc. Optical catheter calibrating assembly
JPH0664683B2 (en) 1986-02-13 1994-08-22 松下電器産業株式会社 Rotating magnetic head recorder
US5040889A (en) 1986-05-30 1991-08-20 Pacific Scientific Company Spectrometer with combined visible and ultraviolet sample illumination
CA1290019C (en) 1986-06-20 1991-10-01 Hideo Kuwahara Dual balanced optical signal receiver
US4770492A (en) 1986-10-28 1988-09-13 Spectran Corporation Pressure or strain sensitive optical fiber
JPH0824665B2 (en) 1986-11-28 1996-03-13 オリンパス光学工業株式会社 Endoscope device
US4744656A (en) 1986-12-08 1988-05-17 Spectramed, Inc. Disposable calibration boot for optical-type cardiovascular catheter
US4751706A (en) 1986-12-31 1988-06-14 The United States Of America As Represented By The Secretary Of The Army Laser for providing rapid sequence of different wavelengths
US4834111A (en) 1987-01-12 1989-05-30 The Trustees Of Columbia University In The City Of New York Heterodyne interferometer
GB2209221B (en) 1987-09-01 1991-10-23 Litton Systems Inc Hydrophone demodulator circuit and method
US5202931A (en) 1987-10-06 1993-04-13 Cell Analysis Systems, Inc. Methods and apparatus for the quantitation of nuclear protein
US4909631A (en) 1987-12-18 1990-03-20 Tan Raul Y Method for film thickness and refractive index determination
US4890901A (en) 1987-12-22 1990-01-02 Hughes Aircraft Company Color corrector for embedded prisms
US4892406A (en) 1988-01-11 1990-01-09 United Technologies Corporation Method of and arrangement for measuring vibrations
FR2626367B1 (en) 1988-01-25 1990-05-11 Thomson Csf MULTI-POINT FIBER OPTIC TEMPERATURE SENSOR
FR2626383B1 (en) 1988-01-27 1991-10-25 Commissariat Energie Atomique EXTENDED FIELD SCAN AND DEPTH CONFOCAL OPTICAL MICROSCOPY AND DEVICES FOR CARRYING OUT THE METHOD
US4925302A (en) 1988-04-13 1990-05-15 Hewlett-Packard Company Frequency locking device
US4998972A (en) 1988-04-28 1991-03-12 Thomas J. Fogarty Real time angioscopy imaging system
US5730731A (en) 1988-04-28 1998-03-24 Thomas J. Fogarty Pressure-based irrigation accumulator
US4905169A (en) 1988-06-02 1990-02-27 The United States Of America As Represented By The United States Department Of Energy Method and apparatus for simultaneously measuring a plurality of spectral wavelengths present in electromagnetic radiation
US5242437A (en) 1988-06-10 1993-09-07 Trimedyne Laser Systems, Inc. Medical device applying localized high intensity light and heat, particularly for destruction of the endometrium
EP1245987B1 (en) 1988-07-13 2008-01-23 Optiscan Pty Ltd Scanning confocal microscope
US5214538A (en) 1988-07-25 1993-05-25 Keymed (Medical And Industrial Equipment) Limited Optical apparatus
GB8817672D0 (en) 1988-07-25 1988-09-01 Sira Ltd Optical apparatus
US4868834A (en) 1988-09-14 1989-09-19 The United States Of America As Represented By The Secretary Of The Army System for rapidly tuning a low pressure pulsed laser
DE3833602A1 (en) 1988-10-03 1990-02-15 Krupp Gmbh SPECTROMETER FOR SIMULTANEOUS INTENSITY MEASUREMENT IN DIFFERENT SPECTRAL AREAS
US4940328A (en) 1988-11-04 1990-07-10 Georgia Tech Research Corporation Optical sensing apparatus and method
US4966589A (en) 1988-11-14 1990-10-30 Hemedix International, Inc. Intravenous catheter placement device
WO1990006718A1 (en) 1988-12-21 1990-06-28 Massachusetts Institute Of Technology A method for laser induced fluorescence of tissue
US5046501A (en) 1989-01-18 1991-09-10 Wayne State University Atherosclerotic identification
US5085496A (en) 1989-03-31 1992-02-04 Sharp Kabushiki Kaisha Optical element and optical pickup device comprising it
US5317389A (en) 1989-06-12 1994-05-31 California Institute Of Technology Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography
US4965599A (en) 1989-11-13 1990-10-23 Eastman Kodak Company Scanning apparatus for halftone image screen writing
US5133035A (en) 1989-11-14 1992-07-21 Hicks John W Multifiber endoscope with multiple scanning modes to produce an image free of fixed pattern noise
US4984888A (en) 1989-12-13 1991-01-15 Imo Industries, Inc. Two-dimensional spectrometer
KR930003307B1 (en) 1989-12-14 1993-04-24 주식회사 금성사 Three dimensional projector
US5257617A (en) * 1989-12-25 1993-11-02 Asahi Kogaku Kogyo Kabushiki Kaisha Sheathed endoscope and sheath therefor
US5251009A (en) 1990-01-22 1993-10-05 Ciba-Geigy Corporation Interferometric measuring arrangement for refractive index measurements in capillary tubes
DD293205B5 (en) 1990-03-05 1995-06-29 Zeiss Carl Jena Gmbh Optical fiber guide for a medical observation device
US5039193A (en) 1990-04-03 1991-08-13 Focal Technologies Incorporated Fibre optic single mode rotary joint
JPH0456907A (en) 1990-06-26 1992-02-24 Fujikura Ltd Optical fiber coupler
US5262644A (en) 1990-06-29 1993-11-16 Southwest Research Institute Remote spectroscopy for raman and brillouin scattering
US5197470A (en) 1990-07-16 1993-03-30 Eastman Kodak Company Near infrared diagnostic method and instrument
GB9015793D0 (en) 1990-07-18 1990-09-05 Medical Res Council Confocal scanning optical microscope
US5127730A (en) 1990-08-10 1992-07-07 Regents Of The University Of Minnesota Multi-color laser scanning confocal imaging system
US5845639A (en) 1990-08-10 1998-12-08 Board Of Regents Of The University Of Washington Optical imaging methods
US5305759A (en) 1990-09-26 1994-04-26 Olympus Optical Co., Ltd. Examined body interior information observing apparatus by using photo-pulses controlling gains for depths
JPH04135551A (en) 1990-09-27 1992-05-11 Olympus Optical Co Ltd Optical three-dimensional image observing device
JP3104984B2 (en) 1990-09-27 2000-10-30 オリンパス光学工業株式会社 Optical scanning device for tomographic image observation
US5241364A (en) 1990-10-19 1993-08-31 Fuji Photo Film Co., Ltd. Confocal scanning type of phase contrast microscope and scanning microscope
US5250186A (en) 1990-10-23 1993-10-05 Cetus Corporation HPLC light scattering detector for biopolymers
US5202745A (en) 1990-11-07 1993-04-13 Hewlett-Packard Company Polarization independent optical coherence-domain reflectometry
US5275594A (en) 1990-11-09 1994-01-04 C. R. Bard, Inc. Angioplasty system having means for identification of atherosclerotic plaque
JP3035336B2 (en) 1990-11-27 2000-04-24 興和株式会社 Blood flow measurement device
US5228001A (en) 1991-01-23 1993-07-13 Syracuse University Optical random access memory
US5784162A (en) 1993-08-18 1998-07-21 Applied Spectral Imaging Ltd. Spectral bio-imaging methods for biological research, medical diagnostics and therapy
US6198532B1 (en) 1991-02-22 2001-03-06 Applied Spectral Imaging Ltd. Spectral bio-imaging of the eye
US5293872A (en) 1991-04-03 1994-03-15 Alfano Robert R Method for distinguishing between calcified atherosclerotic tissue and fibrous atherosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy
US6485413B1 (en) 1991-04-29 2002-11-26 The General Hospital Corporation Methods and apparatus for forward-directed optical scanning instruments
US6111645A (en) 1991-04-29 2000-08-29 Massachusetts Institute Of Technology Grating based phase control optical delay line
US6501551B1 (en) 1991-04-29 2002-12-31 Massachusetts Institute Of Technology Fiber optic imaging endoscope interferometer with at least one faraday rotator
US6134003A (en) 1991-04-29 2000-10-17 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a fiber optic imaging guidewire, catheter or endoscope
US5956355A (en) 1991-04-29 1999-09-21 Massachusetts Institute Of Technology Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
US5465147A (en) 1991-04-29 1995-11-07 Massachusetts Institute Of Technology Method and apparatus for acquiring images using a ccd detector array and no transverse scanner
US6564087B1 (en) 1991-04-29 2003-05-13 Massachusetts Institute Of Technology Fiber optic needle probes for optical coherence tomography imaging
WO1992019930A1 (en) 1991-04-29 1992-11-12 Massachusetts Institute Of Technology Method and apparatus for optical imaging and measurement
US5748598A (en) 1995-12-22 1998-05-05 Massachusetts Institute Of Technology Apparatus and methods for reading multilayer storage media using short coherence length sources
US5441053A (en) 1991-05-03 1995-08-15 University Of Kentucky Research Foundation Apparatus and method for multiple wavelength of tissue
US5281811A (en) 1991-06-17 1994-01-25 Litton Systems, Inc. Digital wavelength division multiplex optical transducer having an improved decoder
US5208651A (en) 1991-07-16 1993-05-04 The Regents Of The University Of California Apparatus and method for measuring fluorescence intensities at a plurality of wavelengths and lifetimes
WO1993003672A1 (en) 1991-08-20 1993-03-04 Redd Douglas C B Optical histochemical analysis, in vivo detection and real-time guidance for ablation of abnormal tissues using a raman spectroscopic detection system
DE4128744C1 (en) 1991-08-29 1993-04-22 Siemens Ag, 8000 Muenchen, De
US5177488A (en) 1991-10-08 1993-01-05 Hughes Aircraft Company Programmable fiber optic delay line, and radar target simulation system incorporating the same
EP0550929B1 (en) 1991-12-30 1997-03-19 Koninklijke Philips Electronics N.V. Optical device and apparatus for scanning an information plane, comprising such an optical device
US5353790A (en) 1992-01-17 1994-10-11 Board Of Regents, The University Of Texas System Method and apparatus for optical measurement of bilirubin in tissue
US5212667A (en) 1992-02-03 1993-05-18 General Electric Company Light imaging in a scattering medium, using ultrasonic probing and speckle image differencing
US5217456A (en) 1992-02-24 1993-06-08 Pdt Cardiovascular, Inc. Device and method for intra-vascular optical radial imaging
US5248876A (en) 1992-04-21 1993-09-28 International Business Machines Corporation Tandem linear scanning confocal imaging system with focal volumes at different heights
US5283795A (en) 1992-04-21 1994-02-01 Hughes Aircraft Company Diffraction grating driven linear frequency chirped laser
US5486701A (en) 1992-06-16 1996-01-23 Prometrix Corporation Method and apparatus for measuring reflectance in two wavelength bands to enable determination of thin film thickness
US5411025A (en) 1992-06-30 1995-05-02 Cordis Webster, Inc. Cardiovascular catheter with laterally stable basket-shaped electrode array
US5716324A (en) 1992-08-25 1998-02-10 Fuji Photo Film Co., Ltd. Endoscope with surface and deep portion imaging systems
US5348003A (en) 1992-09-03 1994-09-20 Sirraya, Inc. Method and apparatus for chemical analysis
EP0587514A1 (en) 1992-09-11 1994-03-16 Welch Allyn, Inc. Processor module for video inspection probe
US5698397A (en) 1995-06-07 1997-12-16 Sri International Up-converting reporters for biological and other assays using laser excitation techniques
US5772597A (en) 1992-09-14 1998-06-30 Sextant Medical Corporation Surgical tool end effector
ATE265823T1 (en) 1992-09-21 2004-05-15 Inst Nat Sante Rech Med INTRACORPORAL PROBE FOR ACCURATE DETERMINATION OF THE VELOCITY OF A FLUID, IN PARTICULAR THE FLOW THROUGH THE AORTA
US5383467A (en) 1992-11-18 1995-01-24 Spectrascience, Inc. Guidewire catheter and apparatus for diagnostic imaging
US5439000A (en) 1992-11-18 1995-08-08 Spectrascience, Inc. Method of diagnosing tissue with guidewire
US5785663A (en) 1992-12-21 1998-07-28 Artann Corporation Method and device for mechanical imaging of prostate
US5400771A (en) 1993-01-21 1995-03-28 Pirak; Leon Endotracheal intubation assembly and related method
JPH06222242A (en) 1993-01-27 1994-08-12 Shin Etsu Chem Co Ltd Optical fiber coupler and its manufacture
US5987346A (en) 1993-02-26 1999-11-16 Benaron; David A. Device and method for classification of tissue
US5414509A (en) 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
JP3112595B2 (en) 1993-03-17 2000-11-27 安藤電気株式会社 Optical fiber strain position measuring device using optical frequency shifter
FI93781C (en) 1993-03-18 1995-05-26 Wallac Oy Biospecific multiparametric assay method
DE4309056B4 (en) 1993-03-20 2006-05-24 Häusler, Gerd, Prof. Dr. Method and device for determining the distance and scattering intensity of scattering points
DE4310209C2 (en) 1993-03-29 1996-05-30 Bruker Medizintech Optical stationary imaging in strongly scattering media
US5485079A (en) 1993-03-29 1996-01-16 Matsushita Electric Industrial Co., Ltd. Magneto-optical element and optical magnetic field sensor
US5424827A (en) 1993-04-30 1995-06-13 Litton Systems, Inc. Optical system and method for eliminating overlap of diffraction spectra
SE501932C2 (en) 1993-04-30 1995-06-26 Ericsson Telefon Ab L M Apparatus and method for dispersion compensation in a fiber optic transmission system
DE4314189C1 (en) 1993-04-30 1994-11-03 Bodenseewerk Geraetetech Device for the examination of optical fibres made of glass by means of heterodyne Brillouin spectroscopy
US5454807A (en) 1993-05-14 1995-10-03 Boston Scientific Corporation Medical treatment of deeply seated tissue using optical radiation
EP0627643B1 (en) 1993-06-03 1999-05-06 Hamamatsu Photonics K.K. Laser scanning optical system using axicon
JP3234353B2 (en) 1993-06-15 2001-12-04 富士写真フイルム株式会社 Tomographic information reader
US5840031A (en) 1993-07-01 1998-11-24 Boston Scientific Corporation Catheters for imaging, sensing electrical potentials and ablating tissue
US5995645A (en) 1993-08-18 1999-11-30 Applied Spectral Imaging Ltd. Method of cancer cell detection
US5803082A (en) 1993-11-09 1998-09-08 Staplevision Inc. Omnispectramammography
US5983125A (en) 1993-12-13 1999-11-09 The Research Foundation Of City College Of New York Method and apparatus for in vivo examination of subcutaneous tissues inside an organ of a body using optical spectroscopy
US5450203A (en) 1993-12-22 1995-09-12 Electroglas, Inc. Method and apparatus for determining an objects position, topography and for imaging
US5411016A (en) 1994-02-22 1995-05-02 Scimed Life Systems, Inc. Intravascular balloon catheter for use in combination with an angioscope
US5590660A (en) 1994-03-28 1997-01-07 Xillix Technologies Corp. Apparatus and method for imaging diseased tissue using integrated autofluorescence
DE4411017C2 (en) 1994-03-30 1995-06-08 Alexander Dr Knuettel Optical stationary spectroscopic imaging in strongly scattering objects through special light focusing and signal detection of light of different wavelengths
TW275570B (en) 1994-05-05 1996-05-11 Boehringer Mannheim Gmbh
DE69531118D1 (en) 1994-07-14 2003-07-24 Washington Res Foundation Seat DEVICE FOR DETECTING THE BARRETT METAPLASIA IN THE EYES
US5459325A (en) 1994-07-19 1995-10-17 Molecular Dynamics, Inc. High-speed fluorescence scanner
US6159445A (en) 1994-07-20 2000-12-12 Nycomed Imaging As Light imaging contrast agents
EP0722285A4 (en) 1994-08-08 1998-11-04 Computed Anatomy Inc Processing of keratoscopic images using local spatial phase
EP0697611B9 (en) 1994-08-18 2003-01-22 Carl Zeiss Optical coherence tomography assisted surgical apparatus
US5491524A (en) 1994-10-05 1996-02-13 Carl Zeiss, Inc. Optical coherence tomography corneal mapping apparatus
US5740808A (en) 1996-10-28 1998-04-21 Ep Technologies, Inc Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions
US5817144A (en) 1994-10-25 1998-10-06 Latis, Inc. Method for contemporaneous application OF laser energy and localized pharmacologic therapy
US6033721A (en) 1994-10-26 2000-03-07 Revise, Inc. Image-based three-axis positioner for laser direct write microchemical reaction
JPH08136345A (en) 1994-11-10 1996-05-31 Anritsu Corp Double monochromator
JPH08160129A (en) 1994-12-05 1996-06-21 Uniden Corp Speed detector
US5566267A (en) 1994-12-15 1996-10-15 Ceram Optec Industries Inc. Flat surfaced optical fibers and diode laser medical delivery devices
US5600486A (en) 1995-01-30 1997-02-04 Lockheed Missiles And Space Company, Inc. Color separation microlens
US5648848A (en) 1995-02-01 1997-07-15 Nikon Precision, Inc. Beam delivery apparatus and method for interferometry using rotatable polarization chucks
DE19506484C2 (en) 1995-02-24 1999-09-16 Stiftung Fuer Lasertechnologie Method and device for selective non-invasive laser myography (LMG)
RU2100787C1 (en) 1995-03-01 1997-12-27 Геликонов Валентин Михайлович Fibre-optical interferometer and fiber-optical piezoelectric transducer
WO1996028212A1 (en) 1995-03-09 1996-09-19 Innotech Usa, Inc. Laser surgical device and method of its use
US5868731A (en) 1996-03-04 1999-02-09 Innotech Usa, Inc. Laser surgical device and method of its use
US5526338A (en) 1995-03-10 1996-06-11 Yeda Research & Development Co. Ltd. Method and apparatus for storage and retrieval with multilayer optical disks
US5697373A (en) 1995-03-14 1997-12-16 Board Of Regents, The University Of Texas System Optical method and apparatus for the diagnosis of cervical precancers using raman and fluorescence spectroscopies
US5735276A (en) 1995-03-21 1998-04-07 Lemelson; Jerome Method and apparatus for scanning and evaluating matter
CA2215975A1 (en) 1995-03-24 1996-10-03 Optiscan Pty. Ltd. Optical fibre confocal imager with variable near-confocal control
US5565983A (en) 1995-05-26 1996-10-15 The Perkin-Elmer Corporation Optical spectrometer for detecting spectra in separate ranges
US5785651A (en) 1995-06-07 1998-07-28 Keravision, Inc. Distance measuring confocal microscope
US5621830A (en) 1995-06-07 1997-04-15 Smith & Nephew Dyonics Inc. Rotatable fiber optic joint
WO1997001167A1 (en) 1995-06-21 1997-01-09 Massachusetts Institute Of Technology Apparatus and method for accessing data on multilayered optical media
ATA107495A (en) 1995-06-23 1996-06-15 Fercher Adolf Friedrich Dr COHERENCE BIOMETRY AND TOMOGRAPHY WITH DYNAMIC COHERENT FOCUS
JP3654309B2 (en) 1995-06-28 2005-06-02 株式会社日立メディコ Acicular ultrasonic probe
US5829439A (en) 1995-06-28 1998-11-03 Hitachi Medical Corporation Needle-like ultrasonic probe for ultrasonic diagnosis apparatus, method of producing same, and ultrasonic diagnosis apparatus using same
US6104945A (en) 1995-08-01 2000-08-15 Medispectra, Inc. Spectral volume microprobe arrays
JP3819032B2 (en) 1995-08-24 2006-09-06 ザ・テキサス・エイ・アンド・エム・ユニバーシティ・システム Imaging and spectroscopic analysis based on fluorescence lifetime in tissues and other random media
US6016197A (en) 1995-08-25 2000-01-18 Ceramoptec Industries Inc. Compact, all-optical spectrum analyzer for chemical and biological fiber optic sensors
FR2738343B1 (en) 1995-08-30 1997-10-24 Cohen Sabban Joseph OPTICAL MICROSTRATIGRAPHY DEVICE
US6763261B2 (en) 1995-09-20 2004-07-13 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
US6615071B1 (en) 1995-09-20 2003-09-02 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
AU709432B2 (en) 1995-09-20 1999-08-26 California Institute Of Technology Detecting thermal discrepancies in vessel walls
US5742419A (en) 1995-11-07 1998-04-21 The Board Of Trustees Of The Leland Stanford Junior Universtiy Miniature scanning confocal microscope
DE19542955C2 (en) 1995-11-17 1999-02-18 Schwind Gmbh & Co Kg Herbert endoscope
US5719399A (en) 1995-12-18 1998-02-17 The Research Foundation Of City College Of New York Imaging and characterization of tissue based upon the preservation of polarized light transmitted therethrough
JP3699761B2 (en) 1995-12-26 2005-09-28 オリンパス株式会社 Epifluorescence microscope
US5748318A (en) 1996-01-23 1998-05-05 Brown University Research Foundation Optical stress generator and detector
US5840023A (en) 1996-01-31 1998-11-24 Oraevsky; Alexander A. Optoacoustic imaging for medical diagnosis
US5642194A (en) 1996-02-05 1997-06-24 The Regents Of The University Of California White light velocity interferometer
US5862273A (en) 1996-02-23 1999-01-19 Kaiser Optical Systems, Inc. Fiber optic probe with integral optical filtering
US5843000A (en) 1996-05-07 1998-12-01 The General Hospital Corporation Optical biopsy forceps and method of diagnosing tissue
ATA84696A (en) 1996-05-14 1998-03-15 Adolf Friedrich Dr Fercher METHOD AND ARRANGEMENTS FOR INCREASING CONTRAST IN OPTICAL COHERENCE TOMOGRAPHY
US6020963A (en) 1996-06-04 2000-02-01 Northeastern University Optical quadrature Interferometer
US5795295A (en) 1996-06-25 1998-08-18 Carl Zeiss, Inc. OCT-assisted surgical microscope with multi-coordinate manipulator
US5842995A (en) 1996-06-28 1998-12-01 Board Of Regents, The Univerisity Of Texas System Spectroscopic probe for in vivo measurement of raman signals
US6296608B1 (en) 1996-07-08 2001-10-02 Boston Scientific Corporation Diagnosing and performing interventional procedures on tissue in vivo
US6245026B1 (en) 1996-07-29 2001-06-12 Farallon Medsystems, Inc. Thermography catheter
US5840075A (en) 1996-08-23 1998-11-24 Eclipse Surgical Technologies, Inc. Dual laser device for transmyocardial revascularization procedures
US6396941B1 (en) 1996-08-23 2002-05-28 Bacus Research Laboratories, Inc. Method and apparatus for internet, intranet, and local viewing of virtual microscope slides
US6544193B2 (en) 1996-09-04 2003-04-08 Marcio Marc Abreu Noninvasive measurement of chemical substances
JPH1090603A (en) 1996-09-18 1998-04-10 Olympus Optical Co Ltd Endscopic optical system
US5801831A (en) 1996-09-20 1998-09-01 Institute For Space And Terrestrial Science Fabry-Perot spectrometer for detecting a spatially varying spectral signature of an extended source
RU2108122C1 (en) 1996-09-24 1998-04-10 Владимир Павлович Жаров Method and device for physiotherapeutic irradiation with light
US6249349B1 (en) 1996-09-27 2001-06-19 Vincent Lauer Microscope generating a three-dimensional representation of an object
DE19640495C2 (en) 1996-10-01 1999-12-16 Leica Microsystems Device for confocal surface measurement
US5843052A (en) 1996-10-04 1998-12-01 Benja-Athon; Anuthep Irrigation kit for application of fluids and chemicals for cleansing and sterilizing wounds
TW365001B (en) 1996-10-17 1999-07-21 Hitachi Ltd Non-volatile semiconductor memory apparatus and the operation method
US5904651A (en) 1996-10-28 1999-05-18 Ep Technologies, Inc. Systems and methods for visualizing tissue during diagnostic or therapeutic procedures
US5752518A (en) 1996-10-28 1998-05-19 Ep Technologies, Inc. Systems and methods for visualizing interior regions of the body
US6044288A (en) 1996-11-08 2000-03-28 Imaging Diagnostics Systems, Inc. Apparatus and method for determining the perimeter of the surface of an object being scanned
US5872879A (en) 1996-11-25 1999-02-16 Boston Scientific Corporation Rotatable connecting optical fibers
US6517532B1 (en) 1997-05-15 2003-02-11 Palomar Medical Technologies, Inc. Light energy delivery head
US6437867B2 (en) 1996-12-04 2002-08-20 The Research Foundation Of The City University Of New York Performing selected optical measurements with optical coherence domain reflectometry
US6249630B1 (en) 1996-12-13 2001-06-19 Imra America, Inc. Apparatus and method for delivery of dispersion-compensated ultrashort optical pulses with high peak power
US5906759A (en) 1996-12-26 1999-05-25 Medinol Ltd. Stent forming apparatus with stent deforming blades
US5871449A (en) 1996-12-27 1999-02-16 Brown; David Lloyd Device and method for locating inflamed plaque in an artery
US5991697A (en) 1996-12-31 1999-11-23 The Regents Of The University Of California Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media
JP2001508554A (en) 1996-12-31 2001-06-26 コーニング インコーポレイテッド Optical coupler with multilayer fiber
US5760901A (en) 1997-01-28 1998-06-02 Zetetic Institute Method and apparatus for confocal interference microscopy with background amplitude reduction and compensation
JP3213250B2 (en) 1997-01-29 2001-10-02 株式会社生体光情報研究所 Optical measurement device
US5801826A (en) 1997-02-18 1998-09-01 Williams Family Trust B Spectrometric device and method for recognizing atomic and molecular signatures
US5836877A (en) 1997-02-24 1998-11-17 Lucid Inc System for facilitating pathological examination of a lesion in tissue
US6010449A (en) 1997-02-28 2000-01-04 Lumend, Inc. Intravascular catheter system for treating a vascular occlusion
US6120516A (en) 1997-02-28 2000-09-19 Lumend, Inc. Method for treating vascular occlusion
US5968064A (en) 1997-02-28 1999-10-19 Lumend, Inc. Catheter system for treating a vascular occlusion
WO1998038907A1 (en) 1997-03-06 1998-09-11 Massachusetts Institute Of Technology Instrument for optically scanning of living tissue
US6201989B1 (en) 1997-03-13 2001-03-13 Biomax Technologies Inc. Methods and apparatus for detecting the rejection of transplanted tissue
US6078047A (en) 1997-03-14 2000-06-20 Lucent Technologies Inc. Method and apparatus for terahertz tomographic imaging
US5994690A (en) 1997-03-17 1999-11-30 Kulkarni; Manish D. Image enhancement in optical coherence tomography using deconvolution
JPH10267631A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring instrument
JPH10267830A (en) 1997-03-26 1998-10-09 Kowa Co Optical measuring device
AU7221698A (en) 1997-04-29 1998-11-24 Nycomed Imaging As Light imaging contrast agents
ES2213899T3 (en) 1997-04-29 2004-09-01 Amersham Health As CONTRAST AGENTS USED IN IMAGE FORMATION TECHNIQUES BASED ON LIGHT.
SE511285C2 (en) 1997-04-29 1999-09-06 Foersvarets Forskningsanstalt Melt-cast charges
US6117128A (en) 1997-04-30 2000-09-12 Kenton W. Gregory Energy delivery catheter and method for the use thereof
US5887009A (en) 1997-05-22 1999-03-23 Optical Biopsy Technologies, Inc. Confocal optical scanning system employing a fiber laser
JP4138027B2 (en) 1997-06-02 2008-08-20 イザット,ジョーゼフ,エイ. Imaging Doppler flow using optical coherence tomography
US6002480A (en) 1997-06-02 1999-12-14 Izatt; Joseph A. Depth-resolved spectroscopic optical coherence tomography
US6208415B1 (en) 1997-06-12 2001-03-27 The Regents Of The University Of California Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography
JP2002516586A (en) 1997-06-23 2002-06-04 ティーエイチエス インターナショナル,インコーポレイテッド Method and apparatus for providing acoustic hemostasis
US5920390A (en) 1997-06-26 1999-07-06 University Of North Carolina Fiberoptic interferometer and associated method for analyzing tissue
US6048349A (en) 1997-07-09 2000-04-11 Intraluminal Therapeutics, Inc. Systems and methods for guiding a medical instrument through a body
US6058352A (en) 1997-07-25 2000-05-02 Physical Optics Corporation Accurate tissue injury assessment using hybrid neural network analysis
US5921926A (en) 1997-07-28 1999-07-13 University Of Central Florida Three dimensional optical imaging colposcopy
US5892583A (en) 1997-08-21 1999-04-06 Li; Ming-Chiang High speed inspection of a sample using superbroad radiation coherent interferometer
US6014214A (en) 1997-08-21 2000-01-11 Li; Ming-Chiang High speed inspection of a sample using coherence processing of scattered superbroad radiation
US6069698A (en) 1997-08-28 2000-05-30 Olympus Optical Co., Ltd. Optical imaging apparatus which radiates a low coherence light beam onto a test object, receives optical information from light scattered by the object, and constructs therefrom a cross-sectional image of the object
US6297018B1 (en) 1998-04-17 2001-10-02 Ljl Biosystems, Inc. Methods and apparatus for detecting nucleic acid polymorphisms
US5920373A (en) 1997-09-24 1999-07-06 Heidelberg Engineering Optische Messysteme Gmbh Method and apparatus for determining optical characteristics of a cornea
US6193676B1 (en) 1997-10-03 2001-02-27 Intraluminal Therapeutics, Inc. Guide wire assembly
US5951482A (en) 1997-10-03 1999-09-14 Intraluminal Therapeutics, Inc. Assemblies and methods for advancing a guide wire through body tissue
US6091984A (en) 1997-10-10 2000-07-18 Massachusetts Institute Of Technology Measuring tissue morphology
US5955737A (en) 1997-10-27 1999-09-21 Systems & Processes Engineering Corporation Chemometric analysis for extraction of individual fluorescence spectrum and lifetimes from a target mixture
US6052186A (en) 1997-11-05 2000-04-18 Excel Precision, Inc. Dual laser system for extended heterodyne interferometry
US6134010A (en) 1997-11-07 2000-10-17 Lucid, Inc. Imaging system using polarization effects to enhance image quality
US6037579A (en) 1997-11-13 2000-03-14 Biophotonics Information Laboratories, Ltd. Optical interferometer employing multiple detectors to detect spatially distorted wavefront in imaging of scattering media
US6107048A (en) 1997-11-20 2000-08-22 Medical College Of Georgia Research Institute, Inc. Method of detecting and grading dysplasia in epithelial tissue
EP1103041B1 (en) 1998-01-28 2016-03-23 Immersion Medical, Inc. Interface device and method for interfacing instruments to medical procedure simulation system
US6165170A (en) 1998-01-29 2000-12-26 International Business Machines Corporation Laser dermablator and dermablation
US6831781B2 (en) 1998-02-26 2004-12-14 The General Hospital Corporation Confocal microscopy with multi-spectral encoding and system and apparatus for spectroscopically encoded confocal microscopy
US6048742A (en) 1998-02-26 2000-04-11 The United States Of America As Represented By The Secretary Of The Air Force Process for measuring the thickness and composition of thin semiconductor films deposited on semiconductor wafers
US6134033A (en) 1998-02-26 2000-10-17 Tyco Submarine Systems Ltd. Method and apparatus for improving spectral efficiency in wavelength division multiplexed transmission systems
WO1999044089A1 (en) 1998-02-26 1999-09-02 The General Hospital Corporation Confocal microscopy with multi-spectral encoding
RU2148378C1 (en) 1998-03-06 2000-05-10 Геликонов Валентин Михайлович Device for performing optic coherent tomography, optic fiber scanning device and method for diagnosing biological tissue in vivo
US6174291B1 (en) 1998-03-09 2001-01-16 Spectrascience, Inc. Optical biopsy system and methods for tissue diagnosis
US6066102A (en) 1998-03-09 2000-05-23 Spectrascience, Inc. Optical biopsy forceps system and method of diagnosing tissue
US6151522A (en) 1998-03-16 2000-11-21 The Research Foundation Of Cuny Method and system for examining biological materials using low power CW excitation raman spectroscopy
US6384915B1 (en) 1998-03-30 2002-05-07 The Regents Of The University Of California Catheter guided by optical coherence domain reflectometry
US6175669B1 (en) 1998-03-30 2001-01-16 The Regents Of The Universtiy Of California Optical coherence domain reflectometry guidewire
DE19814057B4 (en) 1998-03-30 2009-01-02 Carl Zeiss Meditec Ag Arrangement for optical coherence tomography and coherence topography
AU3781799A (en) 1998-05-01 1999-11-23 Board Of Regents, The University Of Texas System Method and apparatus for subsurface imaging
US6996549B2 (en) 1998-05-01 2006-02-07 Health Discovery Corporation Computer-aided image analysis
JPH11326826A (en) 1998-05-13 1999-11-26 Sony Corp Illuminating method and illuminator
US6053613A (en) 1998-05-15 2000-04-25 Carl Zeiss, Inc. Optical coherence tomography with new interferometer
FR2778838A1 (en) 1998-05-19 1999-11-26 Koninkl Philips Electronics Nv METHOD FOR DETECTING VARIATIONS IN ELASTICITY AND ECHOGRAPHIC APPARATUS FOR CARRYING OUT THIS METHOD
US5995223A (en) 1998-06-01 1999-11-30 Power; Joan Fleurette Apparatus for rapid phase imaging interferometry and method therefor
JPH11352409A (en) 1998-06-05 1999-12-24 Olympus Optical Co Ltd Fluorescence detector
US6549801B1 (en) 1998-06-11 2003-04-15 The Regents Of The University Of California Phase-resolved optical coherence tomography and optical doppler tomography for imaging fluid flow in tissue with fast scanning speed and high velocity sensitivity
CA2337113C (en) 1998-07-15 2009-06-23 Corazon Technologies, Inc. Methods and devices for reducing the mineral content of vascular calcified lesions
US6166373A (en) 1998-07-21 2000-12-26 The Institute For Technology Development Focal plane scanner with reciprocating spatial window
JP2000046729A (en) 1998-07-31 2000-02-18 Takahisa Mitsui Apparatus and method for high-speed measurement of optical topographic image by using wavelength dispersion
US20040140130A1 (en) 1998-08-31 2004-07-22 Halliburton Energy Services, Inc., A Delaware Corporation Roller-cone bits, systems, drilling methods, and design methods with optimization of tooth orientation
US6741884B1 (en) 1998-09-03 2004-05-25 Hypermed, Inc. Infrared endoscopic balloon probes
US8024027B2 (en) 1998-09-03 2011-09-20 Hyperspectral Imaging, Inc. Infrared endoscopic balloon probes
EP1112022A4 (en) 1998-09-11 2004-08-04 Spectrx Inc Multi-modal optical tissue diagnostic system
JP2000131222A (en) 1998-10-22 2000-05-12 Olympus Optical Co Ltd Optical tomographic image device
AU6417599A (en) 1998-10-08 2000-04-26 University Of Kentucky Research Foundation, The Methods and apparatus for (in vivo) identification and characterization of vulnerable atherosclerotic plaques
JP2000121961A (en) 1998-10-13 2000-04-28 Olympus Optical Co Ltd Confocal optical scanning probe system
US6274871B1 (en) 1998-10-22 2001-08-14 Vysis, Inc. Method and system for performing infrared study on a biological sample
US6324419B1 (en) 1998-10-27 2001-11-27 Nejat Guzelsu Apparatus and method for non-invasive measurement of stretch
JP2000126116A (en) 1998-10-28 2000-05-09 Olympus Optical Co Ltd Photo-diagnosis system
US6524249B2 (en) 1998-11-11 2003-02-25 Spentech, Inc. Doppler ultrasound method and apparatus for monitoring blood flow and detecting emboli
US6516014B1 (en) 1998-11-13 2003-02-04 The Research And Development Institute, Inc. Programmable frequency reference for laser frequency stabilization, and arbitrary optical clock generator, using persistent spectral hole burning
DE69932485T2 (en) 1998-11-20 2007-01-11 Fuji Photo Film Co. Ltd., Minamiashigara Blood vessel imaging system
US5975697A (en) 1998-11-25 1999-11-02 Oti Ophthalmic Technologies, Inc. Optical mapping apparatus with adjustable depth resolution
US6352502B1 (en) 1998-12-03 2002-03-05 Lightouch Medical, Inc. Methods for obtaining enhanced spectroscopic information from living tissue, noninvasive assessment of skin condition and detection of skin abnormalities
RU2149464C1 (en) 1999-01-19 2000-05-20 Таганрогский государственный радиотехнический университет Dynamic memory unit for storage of radio signals
US6191862B1 (en) 1999-01-20 2001-02-20 Lightlab Imaging, Llc Methods and apparatus for high speed longitudinal scanning in imaging systems
US6272376B1 (en) 1999-01-22 2001-08-07 Cedars-Sinai Medical Center Time-resolved, laser-induced fluorescence for the characterization of organic material
US6445944B1 (en) 1999-02-01 2002-09-03 Scimed Life Systems Medical scanning system and related method of scanning
US6615072B1 (en) 1999-02-04 2003-09-02 Olympus Optical Co., Ltd. Optical imaging device
US6185271B1 (en) 1999-02-16 2001-02-06 Richard Estyn Kinsinger Helical computed tomography with feedback scan control
DE19908883A1 (en) 1999-03-02 2000-09-07 Rainer Heintzmann Process for increasing the resolution of optical imaging
US20070048818A1 (en) 1999-03-12 2007-03-01 Human Genome Sciences, Inc. Human secreted proteins
US6263133B1 (en) 1999-03-29 2001-07-17 Scimed Life Systems, Inc. Optical focusing, collimating and coupling systems for use with single mode optical fiber
US6859275B2 (en) 1999-04-09 2005-02-22 Plain Sight Systems, Inc. System and method for encoded spatio-spectral information processing
US6264610B1 (en) 1999-05-05 2001-07-24 The University Of Connecticut Combined ultrasound and near infrared diffused light imaging system
US6353693B1 (en) 1999-05-31 2002-03-05 Sanyo Electric Co., Ltd. Optical communication device and slip ring unit for an electronic component-mounting apparatus
JP2001004447A (en) 1999-06-23 2001-01-12 Yokogawa Electric Corp Spectrometer
US6993170B2 (en) 1999-06-23 2006-01-31 Icoria, Inc. Method for quantitative analysis of blood vessel structure
US6611833B1 (en) 1999-06-23 2003-08-26 Tissueinformatics, Inc. Methods for profiling and classifying tissue using a database that includes indices representative of a tissue population
US6208887B1 (en) 1999-06-24 2001-03-27 Richard H. Clarke Catheter-delivered low resolution Raman scattering analyzing system for detecting lesions
US7426409B2 (en) 1999-06-25 2008-09-16 Board Of Regents, The University Of Texas System Method and apparatus for detecting vulnerable atherosclerotic plaque
GB9915082D0 (en) 1999-06-28 1999-08-25 Univ London Optical fibre probe
US6359692B1 (en) 1999-07-09 2002-03-19 Zygo Corporation Method and system for profiling objects having multiple reflective surfaces using wavelength-tuning phase-shifting interferometry
AU6093400A (en) 1999-07-13 2001-01-30 Chromavision Medical Systems, Inc. Automated detection of objects in a biological sample
EP1199986B1 (en) 1999-07-30 2005-06-01 Boston Scientific Limited Rotational and translational drive coupling for catheter assembly
WO2001008579A1 (en) 1999-07-30 2001-02-08 Ceramoptec Industries, Inc. Dual wavelength medical diode laser system
US6445939B1 (en) 1999-08-09 2002-09-03 Lightlab Imaging, Llc Ultra-small optical probes, imaging optics, and methods for using same
JP2001046321A (en) 1999-08-09 2001-02-20 Asahi Optical Co Ltd Endoscope device
US6725073B1 (en) 1999-08-17 2004-04-20 Board Of Regents, The University Of Texas System Methods for noninvasive analyte sensing
JP3869589B2 (en) 1999-09-02 2007-01-17 ペンタックス株式会社 Fiber bundle and endoscope apparatus
US6687010B1 (en) 1999-09-09 2004-02-03 Olympus Corporation Rapid depth scanning optical imaging device
JP4464519B2 (en) 2000-03-21 2010-05-19 オリンパス株式会社 Optical imaging device
US6198956B1 (en) 1999-09-30 2001-03-06 Oti Ophthalmic Technologies Inc. High speed sector scanning apparatus having digital electronic control
JP2001174744A (en) 1999-10-06 2001-06-29 Olympus Optical Co Ltd Optical scanning probe device
JP4363719B2 (en) 1999-10-08 2009-11-11 オリンパス株式会社 Ultrasound-guided puncture system device
US6393312B1 (en) 1999-10-13 2002-05-21 C. R. Bard, Inc. Connector for coupling an optical fiber tissue localization device to a light source
US6308092B1 (en) 1999-10-13 2001-10-23 C. R. Bard Inc. Optical fiber tissue localization device
AU1182401A (en) 1999-10-15 2001-04-23 Cellavision Ab Microscope and method for manufacturing a composite image with a high resolution
US6538817B1 (en) 1999-10-25 2003-03-25 Aculight Corporation Method and apparatus for optical coherence tomography with a multispectral laser source
JP2001125009A (en) 1999-10-28 2001-05-11 Asahi Optical Co Ltd Endoscope
IL132687A0 (en) 1999-11-01 2001-03-19 Keren Mechkarim Ichilov Pnimit System and method for evaluating body fluid samples
JP2003515129A (en) 1999-11-19 2003-04-22 ジョビン イヴォン、インコーポレーテッド Compact spectrofluorometer
US7236637B2 (en) 1999-11-24 2007-06-26 Ge Medical Systems Information Technologies, Inc. Method and apparatus for transmission and display of a compressed digitized image
AU1377601A (en) 1999-11-24 2001-06-04 Haag-Streit Ag Method and device for measuring the optical properties of at least two regions located at a distance from one another in a transparent and/or diffuse object
WO2001042735A1 (en) 1999-12-09 2001-06-14 Oti Ophthalmic Technologies Inc. Optical mapping apparatus with adjustable depth resolution
JP2001174404A (en) 1999-12-15 2001-06-29 Takahisa Mitsui Apparatus and method for measuring optical tomographic image
US6738144B1 (en) 1999-12-17 2004-05-18 University Of Central Florida Non-invasive method and low-coherence apparatus system analysis and process control
US6680780B1 (en) 1999-12-23 2004-01-20 Agere Systems, Inc. Interferometric probe stabilization relative to subject movement
US6445485B1 (en) 2000-01-21 2002-09-03 At&T Corp. Micro-machine polarization-state controller
CA2398278C (en) 2000-01-27 2012-05-15 National Research Council Of Canada Visible-near infrared spectroscopy in burn injury assessment
JP3660185B2 (en) 2000-02-07 2005-06-15 独立行政法人科学技術振興機構 Tomographic image forming method and apparatus therefor
US6475210B1 (en) 2000-02-11 2002-11-05 Medventure Technology Corp Light treatment of vulnerable atherosclerosis plaque
US6556305B1 (en) 2000-02-17 2003-04-29 Veeco Instruments, Inc. Pulsed source scanning interferometer
US6618143B2 (en) 2000-02-18 2003-09-09 Idexx Laboratories, Inc. High numerical aperture flow cytometer and method of using same
US6751490B2 (en) 2000-03-01 2004-06-15 The Board Of Regents Of The University Of Texas System Continuous optoacoustic monitoring of hemoglobin concentration and hematocrit
AU2001251114A1 (en) 2000-03-28 2001-10-08 Board Of Regents, The University Of Texas System Enhancing contrast in biological imaging
US6687013B2 (en) 2000-03-28 2004-02-03 Hitachi, Ltd. Laser interferometer displacement measuring system, exposure apparatus, and electron beam lithography apparatus
US6567585B2 (en) 2000-04-04 2003-05-20 Optiscan Pty Ltd Z sharpening for fibre confocal microscopes
US6692430B2 (en) 2000-04-10 2004-02-17 C2Cure Inc. Intra vascular imaging apparatus
US6540391B2 (en) 2000-04-27 2003-04-01 Iridex Corporation Method and apparatus for real-time detection, control and recording of sub-clinical therapeutic laser lesions during ocular laser photocoagulation
WO2001082786A2 (en) 2000-05-03 2001-11-08 Flock Stephen T Optical imaging of subsurface anatomical structures and biomolecules
US6711283B1 (en) 2000-05-03 2004-03-23 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US6301048B1 (en) 2000-05-19 2001-10-09 Avanex Corporation Tunable chromatic dispersion and dispersion slope compensator utilizing a virtually imaged phased array
US6441959B1 (en) 2000-05-19 2002-08-27 Avanex Corporation Method and system for testing a tunable chromatic dispersion, dispersion slope, and polarization mode dispersion compensator utilizing a virtually imaged phased array
US6560259B1 (en) 2000-05-31 2003-05-06 Applied Optoelectronics, Inc. Spatially coherent surface-emitting, grating coupled quantum cascade laser with unstable resonance cavity
US6975898B2 (en) 2000-06-19 2005-12-13 University Of Washington Medical imaging, diagnosis, and therapy using a scanning single optical fiber system
JP4460117B2 (en) 2000-06-29 2010-05-12 独立行政法人理化学研究所 Grism
JP2002035005A (en) 2000-07-21 2002-02-05 Olympus Optical Co Ltd Therapeutic device
US6757467B1 (en) 2000-07-25 2004-06-29 Optical Air Data Systems, Lp Optical fiber system
US6441356B1 (en) 2000-07-28 2002-08-27 Optical Biopsy Technologies Fiber-coupled, high-speed, angled-dual-axis optical coherence scanning microscopes
US6882432B2 (en) 2000-08-08 2005-04-19 Zygo Corporation Frequency transform phase shifting interferometry
US6972894B2 (en) 2000-08-11 2005-12-06 Crystal Fibre A/S Optical wavelength converter
US7625335B2 (en) 2000-08-25 2009-12-01 3Shape Aps Method and apparatus for three-dimensional optical scanning of interior surfaces
DE10042840A1 (en) 2000-08-30 2002-03-14 Leica Microsystems Device and method for exciting fluorescence microscope markers in multiphoton scanning microscopy
US6459487B1 (en) 2000-09-05 2002-10-01 Gang Paul Chen System and method for fabricating components of precise optical path length
JP2002095663A (en) 2000-09-26 2002-04-02 Fuji Photo Film Co Ltd Method of acquiring optical tomographic image of sentinel lymph node and its device
JP2002113017A (en) 2000-10-05 2002-04-16 Fuji Photo Film Co Ltd Laser treatment device
JP4241038B2 (en) 2000-10-30 2009-03-18 ザ ジェネラル ホスピタル コーポレーション Optical method and system for tissue analysis
CA2426714C (en) 2000-10-31 2010-02-09 Forskningscenter Riso Optical amplification in coherent optical frequency modulated continuous wave reflectometry
JP3842101B2 (en) 2000-10-31 2006-11-08 富士写真フイルム株式会社 Endoscope device
US6687036B2 (en) 2000-11-03 2004-02-03 Nuonics, Inc. Multiplexed optical scanner technology
JP2002148185A (en) 2000-11-08 2002-05-22 Fuji Photo Film Co Ltd Oct apparatus
US9295391B1 (en) 2000-11-10 2016-03-29 The General Hospital Corporation Spectrally encoded miniature endoscopic imaging probe
EP1409721A2 (en) 2000-11-13 2004-04-21 Gnothis Holding SA Detection of nucleic acid polymorphisms
US6665075B2 (en) 2000-11-14 2003-12-16 Wm. Marshurice University Interferometric imaging system and method
DE10057539B4 (en) 2000-11-20 2008-06-12 Robert Bosch Gmbh Interferometric measuring device
US6558324B1 (en) 2000-11-22 2003-05-06 Siemens Medical Solutions, Inc., Usa System and method for strain image display
US6856712B2 (en) 2000-11-27 2005-02-15 University Of Washington Micro-fabricated optical waveguide for use in scanning fiber displays and scanned fiber image acquisition
US7027633B2 (en) 2000-11-30 2006-04-11 Foran David J Collaborative diagnostic systems
JP4786027B2 (en) 2000-12-08 2011-10-05 オリンパス株式会社 Optical system and optical apparatus
US6501878B2 (en) 2000-12-14 2002-12-31 Nortel Networks Limited Optical fiber termination
US6687007B1 (en) 2000-12-14 2004-02-03 Kestrel Corporation Common path interferometer for spectral image generation
DE60124585T2 (en) 2000-12-28 2007-10-04 Palomar Medical Technologies, Inc., Burlington Apparatus for therapeutic electromagnetic radiation therapy of the skin
US7230708B2 (en) 2000-12-28 2007-06-12 Dmitri Olegovich Lapotko Method and device for photothermal examination of microinhomogeneities
US6515752B2 (en) 2000-12-28 2003-02-04 Coretek, Inc. Wavelength monitoring system
EP1221581A1 (en) 2001-01-04 2002-07-10 Universität Stuttgart Interferometer
JP2002205434A (en) 2001-01-10 2002-07-23 Seiko Epson Corp Image output unit and printing system
CA2433797A1 (en) 2001-01-11 2002-07-18 The Johns Hopkins University Assessment of tooth structure using laser based ultrasonics
US7177491B2 (en) 2001-01-12 2007-02-13 Board Of Regents The University Of Texas System Fiber-based optical low coherence tomography
JP3628615B2 (en) 2001-01-16 2005-03-16 独立行政法人科学技術振興機構 Heterodyne beat image synchronous measurement device
US6697652B2 (en) 2001-01-19 2004-02-24 Massachusetts Institute Of Technology Fluorescence, reflectance and light scattering spectroscopy for measuring tissue
US7826059B2 (en) 2001-01-22 2010-11-02 Roth Jonathan E Method and apparatus for polarization-sensitive optical coherence tomography
US7973936B2 (en) 2001-01-30 2011-07-05 Board Of Trustees Of Michigan State University Control system and apparatus for use with ultra-fast laser
US20020140942A1 (en) 2001-02-17 2002-10-03 Fee Michale Sean Acousto-optic monitoring and imaging in a depth sensitive manner
GB0104378D0 (en) 2001-02-22 2001-04-11 Expro North Sea Ltd Improved tubing coupling
US6654127B2 (en) 2001-03-01 2003-11-25 Carl Zeiss Ophthalmic Systems, Inc. Optical delay line
US6721094B1 (en) 2001-03-05 2004-04-13 Sandia Corporation Long working distance interference microscope
US7244232B2 (en) 2001-03-07 2007-07-17 Biomed Solutions, Llc Process for identifying cancerous and/or metastatic cells of a living organism
IL142773A (en) 2001-03-08 2007-10-31 Xtellus Inc Fiber optical attenuator
JP2002263055A (en) 2001-03-12 2002-09-17 Olympus Optical Co Ltd Tip hood for endoscope
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US6552796B2 (en) 2001-04-06 2003-04-22 Lightlab Imaging, Llc Apparatus and method for selective data collection and signal to noise ratio enhancement using optical coherence tomography
US7139598B2 (en) 2002-04-04 2006-11-21 Veralight, Inc. Determination of a measure of a glycation end-product or disease state using tissue fluorescence
WO2002083003A1 (en) 2001-04-11 2002-10-24 Clarke Dana S Tissue structure identification in advance of instrument
US20020158211A1 (en) 2001-04-16 2002-10-31 Dakota Technologies, Inc. Multi-dimensional fluorescence apparatus and method for rapid and highly sensitive quantitative analysis of mixtures
DE10118760A1 (en) 2001-04-17 2002-10-31 Med Laserzentrum Luebeck Gmbh Procedure for determining the runtime distribution and arrangement
EP2333523B1 (en) 2001-04-30 2020-04-08 The General Hospital Corporation Method and apparatus for improving image clarity and sensitivity in optical coherence tomography using dynamic feedback to control focal properties and coherence gating
US7616986B2 (en) 2001-05-07 2009-11-10 University Of Washington Optical fiber scanner for performing multimodal optical imaging
US6701181B2 (en) 2001-05-31 2004-03-02 Infraredx, Inc. Multi-path optical catheter
US6615062B2 (en) 2001-05-31 2003-09-02 Infraredx, Inc. Referencing optical catheters
DE60219627T2 (en) 2001-06-04 2008-02-07 The General Hospital Corp., Boston IDENTIFICATION AND THERAPY OF SENSITIVE PLAQUE WITH PHOTODYNAMIC COMPOUNDS
US6879851B2 (en) 2001-06-07 2005-04-12 Lightlab Imaging, Llc Fiber optic endoscopic gastrointestinal probe
EP1191321B1 (en) 2001-06-07 2002-12-11 Agilent Technologies, Inc. (a Delaware corporation) Determination of properties of an optical device
DE10129651B4 (en) 2001-06-15 2010-07-08 Carl Zeiss Jena Gmbh Method for compensation of the dispersion in signals of short-coherence and / or OCT interferometers
US6702744B2 (en) 2001-06-20 2004-03-09 Advanced Cardiovascular Systems, Inc. Agents that stimulate therapeutic angiogenesis and techniques and devices that enable their delivery
US6685885B2 (en) 2001-06-22 2004-02-03 Purdue Research Foundation Bio-optical compact dist system
US20040166593A1 (en) 2001-06-22 2004-08-26 Nolte David D. Adaptive interferometric multi-analyte high-speed biosensor
US6723090B2 (en) 2001-07-02 2004-04-20 Palomar Medical Technologies, Inc. Fiber laser device for medical/cosmetic procedures
US6795199B2 (en) 2001-07-18 2004-09-21 Avraham Suhami Method and apparatus for dispersion compensated reflected time-of-flight tomography
DE10137530A1 (en) 2001-08-01 2003-02-13 Presens Prec Sensing Gmbh Arrangement and method for multiple fluorescence measurement
US7061622B2 (en) 2001-08-03 2006-06-13 Case Western Reserve University Aspects of basic OCT engine technologies for high speed optical coherence tomography and light source and other improvements in optical coherence tomography
US20030103212A1 (en) 2001-08-03 2003-06-05 Volker Westphal Real-time imaging system and method
US20030030816A1 (en) 2001-08-11 2003-02-13 Eom Tae Bong Nonlinearity error correcting method and phase angle measuring method for displacement measurement in two-freqency laser interferometer and displacement measurement system using the same
US6900899B2 (en) 2001-08-20 2005-05-31 Agilent Technologies, Inc. Interferometers with coated polarizing beam splitters that are rotated to optimize extinction ratios
US20030045798A1 (en) 2001-09-04 2003-03-06 Richard Hular Multisensor probe for tissue identification
EP1293925A1 (en) 2001-09-18 2003-03-19 Agfa-Gevaert Radiographic scoring method
US6961123B1 (en) 2001-09-28 2005-11-01 The Texas A&M University System Method and apparatus for obtaining information from polarization-sensitive optical coherence tomography
JP2003102672A (en) 2001-10-01 2003-04-08 Japan Science & Technology Corp Method and device for automatically detecting, treating, and collecting objective site of lesion or the like
DE10150934A1 (en) 2001-10-09 2003-04-10 Zeiss Carl Jena Gmbh Depth resolved measurement and imaging of biological samples using laser scanning microscopy, whereby heterodyne detection and optical modulation is used to allow imaging of deep sample regions
US7822470B2 (en) 2001-10-11 2010-10-26 Osypka Medical Gmbh Method for determining the left-ventricular ejection time TLVE of a heart of a subject
US6980299B1 (en) 2001-10-16 2005-12-27 General Hospital Corporation Systems and methods for imaging a sample
US6658278B2 (en) 2001-10-17 2003-12-02 Terumo Cardiovascular Systems Corporation Steerable infrared imaging catheter having steering fins
US7006231B2 (en) 2001-10-18 2006-02-28 Scimed Life Systems, Inc. Diffraction grating based interferometric systems and methods
US6749344B2 (en) 2001-10-24 2004-06-15 Scimed Life Systems, Inc. Connection apparatus for optical coherence tomography catheters
EP1441215B1 (en) * 2001-10-31 2012-08-01 Olympus Corporation Optical scanning type observation device
US6661513B1 (en) 2001-11-21 2003-12-09 Roygbiv, Llc Refractive-diffractive spectrometer
US7588535B2 (en) 2001-12-11 2009-09-15 C2Cure Inc. Apparatus, method and system for intravascular photographic imaging
US20030216719A1 (en) 2001-12-12 2003-11-20 Len Debenedictis Method and apparatus for treating skin using patterns of optical energy
EP1459111B1 (en) 2001-12-14 2007-06-06 Agilent Technologies, Inc. External cavity with retro-reflecting device in particular for tunable lasers
US7365858B2 (en) 2001-12-18 2008-04-29 Massachusetts Institute Of Technology Systems and methods for phase measurements
US7736301B1 (en) 2001-12-18 2010-06-15 Advanced Cardiovascular Systems, Inc. Rotatable ferrules and interfaces for use with an optical guidewire
US6947787B2 (en) 2001-12-21 2005-09-20 Advanced Cardiovascular Systems, Inc. System and methods for imaging within a body lumen
US6975891B2 (en) 2001-12-21 2005-12-13 Nir Diagnostics Inc. Raman spectroscopic system with integrating cavity
EP1324051A1 (en) 2001-12-26 2003-07-02 Kevin R. Forrester Motion measuring device
US20080154090A1 (en) 2005-01-04 2008-06-26 Dune Medical Devices Ltd. Endoscopic System for In-Vivo Procedures
WO2003060423A2 (en) 2002-01-11 2003-07-24 The General Hospital Corporation Apparatus for low coherence ranging
US7072045B2 (en) 2002-01-16 2006-07-04 The Regents Of The University Of California High resolution optical coherence tomography with an improved depth range using an axicon lens
US7355716B2 (en) 2002-01-24 2008-04-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
JP2005516187A (en) 2002-01-24 2005-06-02 ザ ジェネラル ホスピタル コーポレーション Apparatus and method for ranging with parallel detection of spectral bands and noise reduction of low coherence interferometry (LCI) and optical coherence tomography (OCT) signals
JP4472991B2 (en) 2002-02-14 2010-06-02 イマラックス・コーポレーション Target research method and optical interferometer (variant)
US20030165263A1 (en) 2002-02-19 2003-09-04 Hamer Michael J. Histological assessment
US7116887B2 (en) 2002-03-19 2006-10-03 Nufern Optical fiber
US7006232B2 (en) 2002-04-05 2006-02-28 Case Western Reserve University Phase-referenced doppler optical coherence tomography
US6704590B2 (en) 2002-04-05 2004-03-09 Cardiac Pacemakers, Inc. Doppler guiding catheter using sensed blood turbulence levels
US7113818B2 (en) 2002-04-08 2006-09-26 Oti Ophthalmic Technologies Inc. Apparatus for high resolution imaging of moving organs
US7016048B2 (en) 2002-04-09 2006-03-21 The Regents Of The University Of California Phase-resolved functional optical coherence tomography: simultaneous imaging of the stokes vectors, structure, blood flow velocity, standard deviation and birefringence in biological samples
US20030236443A1 (en) 2002-04-19 2003-12-25 Cespedes Eduardo Ignacio Methods and apparatus for the identification and stabilization of vulnerable plaque
US7503904B2 (en) 2002-04-25 2009-03-17 Cardiac Pacemakers, Inc. Dual balloon telescoping guiding catheter
JP4135551B2 (en) 2002-05-07 2008-08-20 松下電工株式会社 Position sensor
JP3834789B2 (en) 2002-05-17 2006-10-18 独立行政法人科学技術振興機構 Autonomous ultra-short optical pulse compression, phase compensation, waveform shaping device
RU2242710C2 (en) 2002-06-07 2004-12-20 Геликонов Григорий Валентинович Method and device for building object image and device for delivering low coherence optical radiation
AU2003245458A1 (en) 2002-06-12 2003-12-31 Advanced Research And Technology Institute, Inc. Method and apparatus for improving both lateral and axial resolution in ophthalmoscopy
US7272252B2 (en) 2002-06-12 2007-09-18 Clarient, Inc. Automated system for combining bright field and fluorescent microscopy
RU2213421C1 (en) 2002-06-21 2003-09-27 Южно-Российский государственный университет экономики и сервиса Dynamic radio-signal memory device
JP4045140B2 (en) 2002-06-21 2008-02-13 国立大学法人 筑波大学 Polarization-sensitive optical spectral interference coherence tomography apparatus and method for measuring polarization information inside a sample using the apparatus
US20040039252A1 (en) 2002-06-27 2004-02-26 Koch Kenneth Elmon Self-navigating endotracheal tube
JP3621693B2 (en) 2002-07-01 2005-02-16 フジノン株式会社 Interferometer device
US7072047B2 (en) 2002-07-12 2006-07-04 Case Western Reserve University Method and system for quantitative image correction for optical coherence tomography
JP3950378B2 (en) 2002-07-19 2007-08-01 新日本製鐵株式会社 Synchronous machine
JP4258015B2 (en) 2002-07-31 2009-04-30 毅 椎名 Ultrasonic diagnostic system, strain distribution display method, and elastic modulus distribution display method
JP4373651B2 (en) 2002-09-03 2009-11-25 Hoya株式会社 Diagnostic light irradiation device
JP2004113780A (en) 2002-09-06 2004-04-15 Pentax Corp Endoscope and optical tomographic endoscope system
US7283247B2 (en) 2002-09-25 2007-10-16 Olympus Corporation Optical probe system
AU2003272667A1 (en) 2002-09-26 2004-04-19 Bio Techplex Corporation Method and apparatus for screening using a waveform modulated led
US6842254B2 (en) 2002-10-16 2005-01-11 Fiso Technologies Inc. System and method for measuring an optical path difference in a sensing interferometer
US7734332B2 (en) 2002-10-18 2010-06-08 Ariomedica Ltd. Atherectomy system with imaging guidewire
US20040092829A1 (en) 2002-11-07 2004-05-13 Simon Furnish Spectroscope with modified field-of-view
JP4246986B2 (en) 2002-11-18 2009-04-02 株式会社町田製作所 Vibration object observation system and vocal cord observation processing apparatus
US6847449B2 (en) 2002-11-27 2005-01-25 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for reducing speckle in optical coherence tomography images
EP1426799A3 (en) 2002-11-29 2005-05-18 Matsushita Electric Industrial Co., Ltd. Optical demultiplexer, optical multi-/demultiplexer, and optical device
DE10260256B9 (en) 2002-12-20 2007-03-01 Carl Zeiss Interferometer system and measuring / machining tool
GB0229734D0 (en) 2002-12-23 2003-01-29 Qinetiq Ltd Grading oestrogen and progesterone receptors expression
JP4148771B2 (en) 2002-12-27 2008-09-10 株式会社トプコン Laser device for medical machine
US7123363B2 (en) 2003-01-03 2006-10-17 Rose-Hulman Institute Of Technology Speckle pattern analysis method and system
WO2004088361A2 (en) 2003-03-31 2004-10-14 The General Hospital Corporation Speckle reduction in optical coherence tomography by path length encoded angular compounding
US8054468B2 (en) 2003-01-24 2011-11-08 The General Hospital Corporation Apparatus and method for ranging and noise reduction of low coherence interferometry LCI and optical coherence tomography OCT signals by parallel detection of spectral bands
EP2319405B1 (en) 2003-01-24 2013-09-18 The General Hospital Corporation System and method for identifying tissue using low-coherence interferometry
US7075658B2 (en) 2003-01-24 2006-07-11 Duke University Method for optical coherence tomography imaging with molecular contrast
US6943892B2 (en) 2003-01-29 2005-09-13 Sarnoff Corporation Instrument having a multi-mode optical element and method
WO2004073501A2 (en) 2003-02-20 2004-09-02 Gutin Mikhail Optical coherence tomography with 3d coherence scanning
JP4338412B2 (en) 2003-02-24 2009-10-07 Hoya株式会社 Confocal probe and confocal microscope
US7271918B2 (en) 2003-03-06 2007-09-18 Zygo Corporation Profiling complex surface structures using scanning interferometry
JP4135550B2 (en) 2003-04-18 2008-08-20 日立電線株式会社 Semiconductor light emitting device
US7110109B2 (en) 2003-04-18 2006-09-19 Ahura Corporation Raman spectroscopy system and method and specimen holder therefor
JP2004317437A (en) 2003-04-18 2004-11-11 Olympus Corp Optical imaging apparatus
US7347548B2 (en) 2003-05-01 2008-03-25 The Cleveland Clinic Foundation Method and apparatus for measuring a retinal sublayer characteristic
EP1620007A4 (en) 2003-05-05 2009-07-01 D4D Technologies Llc Optical coherence tomography imaging
CN101785656B (en) 2003-05-12 2012-08-15 富士胶片株式会社 Balloon controller for a balloon type endoscope
SE527164C2 (en) 2003-05-14 2006-01-10 Spectracure Ab Interactive therapy/diagnosis system for tumor, has operation mode selector to optically direct non-ionizing electromagnetic therapeutic and/or diagnostic radiation to tumor site, through radiation conductor
US7376455B2 (en) 2003-05-22 2008-05-20 Scimed Life Systems, Inc. Systems and methods for dynamic optical imaging
WO2004111929A2 (en) 2003-05-28 2004-12-23 Duke University Improved system for fourier domain optical coherence tomography
CN1795405A (en) 2003-05-29 2006-06-28 密歇根大学董事会 Double-clad fiber scanning microscope
EP1644697A4 (en) 2003-05-30 2006-11-29 Univ Duke System and method for low coherence broadband quadrature interferometry
US6943881B2 (en) 2003-06-04 2005-09-13 Tomophase Corporation Measurements of optical inhomogeneity and other properties in substances using propagation modes of light
US7263394B2 (en) 2003-06-04 2007-08-28 Tomophase Corporation Coherence-gated optical glucose monitor
KR101386971B1 (en) 2003-06-06 2014-04-18 더 제너럴 하스피탈 코포레이션 Process and apparatus for a wavelength tunning source
US7458683B2 (en) 2003-06-16 2008-12-02 Amo Manufacturing Usa, Llc Methods and devices for registering optical measurement datasets of an optical system
US7170913B2 (en) 2003-06-19 2007-01-30 Multiwave Photonics, Sa Laser source with configurable output beam characteristics
US20040260182A1 (en) 2003-06-23 2004-12-23 Zuluaga Andres F. Intraluminal spectroscope with wall contacting probe
JP4677208B2 (en) 2003-07-29 2011-04-27 オリンパス株式会社 Confocal microscope
US20050038322A1 (en) 2003-08-11 2005-02-17 Scimed Life Systems Imaging endoscope
US7307734B2 (en) 2003-08-14 2007-12-11 University Of Central Florida Interferometric sensor for characterizing materials
US7539530B2 (en) 2003-08-22 2009-05-26 Infraredx, Inc. Method and system for spectral examination of vascular walls through blood during cardiac motion
US20050083534A1 (en) 2003-08-28 2005-04-21 Riza Nabeel A. Agile high sensitivity optical sensor
JP4590171B2 (en) 2003-08-29 2010-12-01 オリンパス株式会社 Capsule type medical device and medical device equipped with the capsule type medical device
JP2005077964A (en) 2003-09-03 2005-03-24 Fujitsu Ltd Spectroscope apparatus
US20050057680A1 (en) 2003-09-16 2005-03-17 Agan Martin J. Method and apparatus for controlling integration time in imagers
US20050059894A1 (en) 2003-09-16 2005-03-17 Haishan Zeng Automated endoscopy device, diagnostic method, and uses
US7935055B2 (en) 2003-09-19 2011-05-03 Siemens Medical Solutions Usa, Inc. System and method of measuring disease severity of a patient before, during and after treatment
US6949072B2 (en) 2003-09-22 2005-09-27 Infraredx, Inc. Devices for vulnerable plaque detection
US8172747B2 (en) 2003-09-25 2012-05-08 Hansen Medical, Inc. Balloon visualization for traversing a tissue wall
JP3796550B2 (en) 2003-09-26 2006-07-12 日本電信電話株式会社 Optical interference tomography device
EP1677095A1 (en) 2003-09-26 2006-07-05 The Kitasato Gakuen Foundation Variable-wavelength light generator and light interference tomograph
US7142835B2 (en) 2003-09-29 2006-11-28 Silicon Laboratories, Inc. Apparatus and method for digital image correction in a receiver
US7292792B2 (en) 2003-09-30 2007-11-06 Lucent Technologies Inc. High speed modulation of optical subcarriers
DE10349230A1 (en) 2003-10-23 2005-07-07 Carl Zeiss Meditec Ag Apparatus for interferometric eye length measurement with increased sensitivity
US7733497B2 (en) 2003-10-27 2010-06-08 The General Hospital Corporation Method and apparatus for performing optical imaging using frequency-domain interferometry
DE10351319B4 (en) 2003-10-31 2005-10-20 Med Laserzentrum Luebeck Gmbh Interferometer for optical coherence tomography
US7130320B2 (en) 2003-11-13 2006-10-31 Mitutoyo Corporation External cavity laser with rotary tuning element
EP1687587B1 (en) 2003-11-28 2020-01-08 The General Hospital Corporation Method and apparatus for three-dimensional spectrally encoded imaging
US7359062B2 (en) 2003-12-09 2008-04-15 The Regents Of The University Of California High speed spectral domain functional optical coherence tomography and optical doppler tomography for in vivo blood flow dynamics and tissue structure
DE10358735B4 (en) 2003-12-15 2011-04-21 Siemens Ag Catheter device comprising a catheter, in particular an intravascular catheter
US7145661B2 (en) 2003-12-31 2006-12-05 Carl Zeiss Meditec, Inc. Efficient optical coherence tomography (OCT) system and method for rapid imaging in three dimensions
JP4414771B2 (en) 2004-01-08 2010-02-10 オリンパス株式会社 Confocal microspectroscope
RU2255426C1 (en) 2004-02-19 2005-06-27 Южно-Российский государственный университет экономики и сервиса Radio-signal dynamic memory device having series binary fiber- optic system
JP4462959B2 (en) 2004-02-25 2010-05-12 富士通株式会社 Microscope image photographing system and method
US20110178409A1 (en) 2004-02-27 2011-07-21 Optiscan Pty Ltd Optical Element
US7190464B2 (en) 2004-05-14 2007-03-13 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US7242480B2 (en) 2004-05-14 2007-07-10 Medeikon Corporation Low coherence interferometry for detecting and characterizing plaques
US20050254059A1 (en) 2004-05-14 2005-11-17 Alphonse Gerard A Low coherence interferometric system for optical metrology
AU2004320269B2 (en) 2004-05-29 2011-07-21 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
WO2006014392A1 (en) 2004-07-02 2006-02-09 The General Hospital Corporation Endoscopic imaging probe comprising dual clad fibre
DE102004035269A1 (en) 2004-07-21 2006-02-16 Rowiak Gmbh Laryngoscope with OCT
US8081316B2 (en) 2004-08-06 2011-12-20 The General Hospital Corporation Process, system and software arrangement for determining at least one location in a sample using an optical coherence tomography
WO2006020605A2 (en) 2004-08-10 2006-02-23 The Regents Of The University Of California Device and method for the delivery and/or elimination of compounds in tissue
US7218822B2 (en) 2004-09-03 2007-05-15 Chemimage Corporation Method and apparatus for fiberscope
US7365859B2 (en) 2004-09-10 2008-04-29 The General Hospital Corporation System and method for optical coherence imaging
EP2329759B1 (en) 2004-09-29 2014-03-12 The General Hospital Corporation System and method for optical coherence imaging
US7113625B2 (en) 2004-10-01 2006-09-26 U.S. Pathology Labs, Inc. System and method for image analysis of slides
SE0402435L (en) 2004-10-08 2006-04-09 Trajan Badju Process and system for generating three-dimensional images
KR20070099547A (en) 2004-10-22 2007-10-09 퍼미스캔 오스트레일리아 피티와이 리미티드 Analytical method and apparatus
JP5175101B2 (en) 2004-10-29 2013-04-03 ザ ジェネラル ホスピタル コーポレイション System and method for performing Jones matrix based analysis to measure unpolarized polarization parameters using polarization sensitive optical coherence tomography
JP5623692B2 (en) 2004-11-02 2014-11-12 ザ ジェネラル ホスピタル コーポレイション Optical fiber rotator, optical system and method for sample imaging
US7417740B2 (en) 2004-11-12 2008-08-26 Medeikon Corporation Single trace multi-channel low coherence interferometric sensor
US8617152B2 (en) 2004-11-15 2013-12-31 Medtronic Ablation Frontiers Llc Ablation system with feedback
DE102005045071A1 (en) 2005-09-21 2007-04-12 Siemens Ag Catheter device with a position sensor system for the treatment of a partial and / or complete vascular occlusion under image monitoring
GB0425419D0 (en) 2004-11-18 2004-12-22 Sira Ltd Interference apparatus and method and probe
WO2006058187A2 (en) 2004-11-23 2006-06-01 Robert Eric Betzig Optical lattice microscopy
GB0426609D0 (en) 2004-12-03 2005-01-05 Ic Innovations Ltd Analysis
JP2006162366A (en) 2004-12-06 2006-06-22 Fujinon Corp Optical tomographic imaging system
US7450242B2 (en) 2004-12-10 2008-11-11 Fujifilm Corporation Optical tomography apparatus
US8315282B2 (en) 2005-01-20 2012-11-20 Massachusetts Institute Of Technology Fourier domain mode locking: method and apparatus for control and improved performance
US7336366B2 (en) 2005-01-20 2008-02-26 Duke University Methods and systems for reducing complex conjugate ambiguity in interferometric data
US7330270B2 (en) 2005-01-21 2008-02-12 Carl Zeiss Meditec, Inc. Method to suppress artifacts in frequency-domain optical coherence tomography
US7342659B2 (en) 2005-01-21 2008-03-11 Carl Zeiss Meditec, Inc. Cross-dispersed spectrometer in a spectral domain optical coherence tomography system
HU227859B1 (en) 2005-01-27 2012-05-02 E Szilveszter Vizi Real-time 3d nonlinear microscope measuring system and its application
US7267494B2 (en) 2005-02-01 2007-09-11 Finisar Corporation Fiber stub for cladding mode coupling reduction
US7860555B2 (en) 2005-02-02 2010-12-28 Voyage Medical, Inc. Tissue visualization and manipulation system
US7664300B2 (en) 2005-02-03 2010-02-16 Sti Medical Systems, Llc Uterine cervical cancer computer-aided-diagnosis (CAD)
DE102005007574B3 (en) 2005-02-18 2006-08-31 Siemens Ag catheter device
US7649160B2 (en) 2005-02-23 2010-01-19 Lyncee Tec S.A. Wave front sensing method and apparatus
JP4628820B2 (en) 2005-02-25 2011-02-09 サンテック株式会社 Wavelength scanning fiber laser light source
US7530948B2 (en) 2005-02-28 2009-05-12 University Of Washington Tethered capsule endoscope for Barrett's Esophagus screening
DE102005010790A1 (en) 2005-03-09 2006-09-14 Basf Ag Photovoltaic cell with a photovoltaically active semiconductor material contained therein
US20060224053A1 (en) 2005-03-30 2006-10-05 Skyline Biomedical, Inc. Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels
JP2008538612A (en) 2005-04-22 2008-10-30 ザ ジェネラル ホスピタル コーポレイション Configuration, system, and method capable of providing spectral domain polarization sensitive optical coherence tomography
WO2006116362A2 (en) 2005-04-25 2006-11-02 The Trustees Of Boston University Structured substrates for optical surface profiling
EP1886121A1 (en) 2005-05-13 2008-02-13 The General Hospital Corporation Arrangements, systems and methods capable of providing spectral-domain optical coherence reflectometry for a sensitive detection of chemical and biological sample
EP3203235A1 (en) 2005-05-23 2017-08-09 Harald F. Hess Optical microscopy with phototransformable optical labels
EP1887926B1 (en) 2005-05-31 2014-07-30 The General Hospital Corporation System and method which use spectral encoding heterodyne interferometry techniques for imaging
US9060689B2 (en) 2005-06-01 2015-06-23 The General Hospital Corporation Apparatus, method and system for performing phase-resolved optical frequency domain imaging
US20080208022A1 (en) 2005-06-07 2008-08-28 Koninklijke Philips Electronics, N.V. Laser Optical Feedback Tomography Sensor and Method
WO2007005913A2 (en) 2005-07-01 2007-01-11 Infotonics Technology Center, Inc. Non-invasive monitoring system
US7391520B2 (en) 2005-07-01 2008-06-24 Carl Zeiss Meditec, Inc. Fourier domain optical coherence tomography employing a swept multi-wavelength laser and a multi-channel receiver
DE102005034443A1 (en) 2005-07-22 2007-02-22 Carl Zeiss Jena Gmbh Sample e.g. cell particle, luminescence microscopy method, involves prevailing one of sample regions for image of sample, so that image has local resolution which is enhanced in relation to excitation radiation distribution
US7292347B2 (en) 2005-08-01 2007-11-06 Mitutoyo Corporation Dual laser high precision interferometer
JP4376837B2 (en) 2005-08-05 2009-12-02 サンテック株式会社 Wavelength scanning laser light source
ES2354287T3 (en) 2005-08-09 2011-03-11 The General Hospital Corporation APPARATUS AND METHOD FOR PERFORMING A DEMODULATION IN QUADRATURE BY POLARIZATION IN OPTICAL COHERENCE TOMOGRAPHY.
US7668342B2 (en) 2005-09-09 2010-02-23 Carl Zeiss Meditec, Inc. Method of bioimage data processing for revealing more meaningful anatomic features of diseased tissues
US8357917B2 (en) 2005-09-10 2013-01-22 Baer Stephen C High resolution microscopy using an optically switchable fluorophore
JP4708937B2 (en) 2005-09-15 2011-06-22 Hoya株式会社 OCT observation instrument, fixing instrument, and OCT system
WO2007035553A2 (en) 2005-09-15 2007-03-29 The Regents Of The University Of California Methods and compositions for detecting neoplastic cells
KR100743591B1 (en) 2005-09-23 2007-07-27 한국과학기술원 Confocal Self-Interference Microscopy Which Excluding Side Lobes
CN101365375B (en) 2005-09-29 2013-09-11 通用医疗公司 Method and apparatus for optical imaging via spectral encoding
US7450241B2 (en) 2005-09-30 2008-11-11 Infraredx, Inc. Detecting vulnerable plaque
US7400410B2 (en) 2005-10-05 2008-07-15 Carl Zeiss Meditec, Inc. Optical coherence tomography for eye-length measurement
US7545504B2 (en) 2005-10-07 2009-06-09 Biotigen, Inc. Imaging systems using unpolarized light and related methods and controllers
EP2444783B1 (en) 2005-10-11 2015-03-04 Duke University Systems and method for fiber-based endoscopic angle-resolved low coherence interferometry
WO2007044786A2 (en) 2005-10-11 2007-04-19 Zygo Corporation Interferometry method and system including spectral decomposition
US7408649B2 (en) 2005-10-26 2008-08-05 Kla-Tencor Technologies Corporation Method and apparatus for optically analyzing a surface
JP2009523574A (en) * 2006-01-18 2009-06-25 ザ ジェネラル ホスピタル コーポレイション System and method for generating data using one or more endoscopic microscopy methods
PL1973466T3 (en) 2006-01-19 2021-07-05 The General Hospital Corporation Ballon imaging catheter
US8145018B2 (en) 2006-01-19 2012-03-27 The General Hospital Corporation Apparatus for obtaining information for a structure using spectrally-encoded endoscopy techniques and methods for producing one or more optical arrangements
US20070223006A1 (en) 2006-01-19 2007-09-27 The General Hospital Corporation Systems and methods for performing rapid fluorescence lifetime, excitation and emission spectral measurements
GB0601183D0 (en) 2006-01-20 2006-03-01 Perkinelmer Ltd Improvements in and relating to imaging
US7787129B2 (en) 2006-01-31 2010-08-31 The Board Of Trustees Of The University Of Illinois Method and apparatus for measurement of optical properties in tissue
JP5519152B2 (en) 2006-02-08 2014-06-11 ザ ジェネラル ホスピタル コーポレイション Device for acquiring information about anatomical samples using optical microscopy
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
DE102006008990B4 (en) 2006-02-23 2008-05-21 Atmos Medizintechnik Gmbh & Co. Kg Method and arrangement for generating a signal corresponding to the opening state of the vocal folds of the larynx
TWI414543B (en) 2006-02-24 2013-11-11 Toray Industries Fiber reinforced thermoplastic resin molded body, molding material, and process for manufacturing the same
JP2007271761A (en) 2006-03-30 2007-10-18 Fujitsu Ltd Spectrometer and wavelength dispersion controller
JP5135324B2 (en) 2006-04-05 2013-02-06 ザ ジェネラル ホスピタル コーポレイション Method, arrangement and system for polarization sensitive optical frequency domain imaging of samples
US20070253901A1 (en) 2006-04-27 2007-11-01 David Deng Atherosclerosis genes and related reagents and methods of use thereof
US7719692B2 (en) 2006-04-28 2010-05-18 Bioptigen, Inc. Methods, systems and computer program products for optical coherence tomography (OCT) using automatic dispersion compensation
WO2007133964A2 (en) 2006-05-12 2007-11-22 The General Hospital Corporation Processes, arrangements and systems for providing a fiber layer thickness map based on optical coherence tomography images
US7460248B2 (en) 2006-05-15 2008-12-02 Carestream Health, Inc. Tissue imaging system
EP1859727A1 (en) 2006-05-26 2007-11-28 Stichting voor de Technische Wetenschappen optical triggering system for stroboscopy and a stroboscopic system
US7599074B2 (en) 2006-06-19 2009-10-06 The Board Of Trustees Of The Leland Stanford Junior University Grating angle magnification enhanced angular sensor and scanner
US20070291277A1 (en) 2006-06-20 2007-12-20 Everett Matthew J Spectral domain optical coherence tomography system
US7496220B2 (en) 2006-08-28 2009-02-24 Thermo Electron Scientific Instruments Llc Spectroscopic microscopy with image-driven analysis
WO2008049118A2 (en) 2006-10-19 2008-04-24 The General Hospital Corporation Apparatus and method for obtaining and providing imaging information associated with at least one portion of a sample and effecting such portion(s)
US7817354B2 (en) * 2006-10-25 2010-10-19 Capsovision Inc. Panoramic imaging system
EP2087400B1 (en) 2006-10-26 2019-10-16 Cornell Research Foundation, Inc. Production of optical pulses at a desired wavelength using soliton self-frequency shift in higher-order-mode fiber
EP2079363B1 (en) 2006-10-30 2020-06-10 Elfi-Tech Ltd Method for in vivo measurement of biological parameters
DE102006054556A1 (en) 2006-11-20 2008-05-21 Zimmer Medizinsysteme Gmbh Apparatus and method for non-invasive, optical detection of chemical and physical blood values and body constituents
JP5226533B2 (en) * 2006-11-28 2013-07-03 オリンパス株式会社 Endoscope device
US20080204762A1 (en) 2007-01-17 2008-08-28 Duke University Methods, systems, and computer program products for removing undesired artifacts in fourier domain optical coherence tomography (FDOCT) systems using integrating buckets
US7911621B2 (en) 2007-01-19 2011-03-22 The General Hospital Corporation Apparatus and method for controlling ranging depth in optical frequency domain imaging
US20080226029A1 (en) 2007-03-12 2008-09-18 Weir Michael P Medical device including scanned beam unit for imaging and therapy
JP5227525B2 (en) 2007-03-23 2013-07-03 株式会社日立製作所 Biological light measurement device
KR20100014457A (en) 2007-03-26 2010-02-10 고쿠리츠 다이가쿠 호우징 도쿄 가이요우 다이가쿠 Germ cell marker using fish vasa gene
BRPI0810177A2 (en) 2007-04-10 2014-12-30 Univ Southern California METHODS AND SYSTEMS FOR BLOOD FLOW MEASUREMENT USING DOPPLER COHERENCE TOMOGRAPHY
US7706646B2 (en) 2007-04-24 2010-04-27 Tomophase Corporation Delivering light via optical waveguide and multi-view optical probe head
US8115919B2 (en) 2007-05-04 2012-02-14 The General Hospital Corporation Methods, arrangements and systems for obtaining information associated with a sample using optical microscopy
US7799558B1 (en) 2007-05-22 2010-09-21 Dultz Shane C Ligand binding assays on microarrays in closed multiwell plates
US7835074B2 (en) 2007-06-05 2010-11-16 Sterling Lc Mini-scope for multi-directional imaging
US8166967B2 (en) 2007-08-15 2012-05-01 Chunyuan Qiu Systems and methods for intubation
US20090219544A1 (en) 2007-09-05 2009-09-03 The General Hospital Corporation Systems, methods and computer-accessible medium for providing spectral-domain optical coherence phase microscopy for cell and deep tissue imaging
US20090131801A1 (en) 2007-10-12 2009-05-21 The General Hospital Corporation Systems and processes for optical imaging of luminal anatomic structures
US9332942B2 (en) 2008-01-28 2016-05-10 The General Hospital Corporation Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
JP5192247B2 (en) 2008-01-29 2013-05-08 並木精密宝石株式会社 OCT probe
US7898656B2 (en) 2008-04-30 2011-03-01 The General Hospital Corporation Apparatus and method for cross axis parallel spectroscopy
US8184298B2 (en) 2008-05-21 2012-05-22 The Board Of Trustees Of The University Of Illinois Spatial light interference microscopy and fourier transform light scattering for cell and tissue characterization
EP2293714B1 (en) 2008-06-02 2014-08-13 Lightlab Imaging, Inc. Quantitative methods for obtaining tissue characteristics from optical coherence tomography images
JP5324839B2 (en) 2008-06-19 2013-10-23 株式会社トプコン Optical image measuring device
JP5546112B2 (en) 2008-07-07 2014-07-09 キヤノン株式会社 Ophthalmic imaging apparatus and ophthalmic imaging method
US8133127B1 (en) 2008-07-21 2012-03-13 Synder Terrance W Sports training device and methods of use
JP5371315B2 (en) 2008-07-30 2013-12-18 キヤノン株式会社 Optical coherence tomography method and optical coherence tomography apparatus
US20100081873A1 (en) * 2008-09-30 2010-04-01 AiHeart Medical Technologies, Inc. Systems and methods for optical viewing and therapeutic intervention in blood vessels
US20110160681A1 (en) 2008-12-04 2011-06-30 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices, and methods including catheters having light removable coatings based on a sensed condition
CN101744601B (en) 2008-12-05 2013-04-24 德昌电机(深圳)有限公司 Capsule type imaging device and internal image capturing system
US8864669B2 (en) 2008-12-29 2014-10-21 Perseus-Biomed Inc. Method and system for tissue imaging and analysis
US8457715B2 (en) 2009-04-08 2013-06-04 Covidien Lp System and method for determining placement of a tracheal tube
US9089331B2 (en) 2009-07-31 2015-07-28 Case Western Reserve University Characterizing ablation lesions using optical coherence tomography (OCT)
US20120228523A1 (en) 2009-11-09 2012-09-13 Tata Institute Of Fundamental Research Biological laser plasma x-ray point source
KR101522850B1 (en) 2010-01-14 2015-05-26 삼성전자주식회사 Method and apparatus for encoding/decoding motion vector
ES2831223T3 (en) 2010-03-05 2021-06-07 Massachusetts Gen Hospital Apparatus for providing electromagnetic radiation to a sample

Also Published As

Publication number Publication date
US20150073210A1 (en) 2015-03-12
EP2833776A4 (en) 2015-12-09
EP2833776A1 (en) 2015-02-11
US9629528B2 (en) 2017-04-25
WO2013148306A1 (en) 2013-10-03

Similar Documents

Publication Publication Date Title
US11653816B2 (en) Next generation endoscope
US10799095B2 (en) Multi-viewing element endoscope
CN107713968B (en) Secondary imaging endoscopic device
JP6599317B2 (en) Imaging probe
US7621869B2 (en) Next generation colonoscope
US20170290499A1 (en) Imaging system, method and distal attachment for multidirectional field of view endoscopy
US8734334B2 (en) Method and device for imaging an interior surface of a corporeal cavity
US8602971B2 (en) Opto-Electronic illumination and vision module for endoscopy
US20140187859A1 (en) Endoluminal introducer
Kurniawan et al. Flexible gastro-intestinal endoscopy—clinical challenges and technical achievements
JP2015533300A (en) Multi-camera endoscope
JP2014524819A (en) Multi-camera endoscope
US20110263938A1 (en) Multi-camera endoscope
JP2001521806A (en) Video rectoscope
US20080045791A1 (en) Compact gynecological observation system for examination, imaging analysis and treatment
Kohli et al. How endoscopes work
US20170055815A1 (en) Imaging system, method and distal attachment for multidirectional field of view endoscopy
WO2023024701A1 (en) Panoramic endoscope and image processing method thereof
US20220160216A1 (en) Multi-viewing element endoscope
Perri et al. The intelligent, painless,“germ-free” colonoscopy: A Columbus’ egg for increasing population adherence to colorectal cancer screening?
EP3133976A1 (en) Imaging system, method and distal attachment for multidirectional field of view endoscopy
KR102172603B1 (en) Endoscopic instrument and polyp retrieving instrument of attached to endoscopic instrument
Kim et al. The role of cap-assisted endoscopy and its future implications
WO2022156872A2 (en) Flexible endoscopes
Gaur et al. Esophageal Anatomy as Seen During Endoscopy and Basic Endoscopic Orientation

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE GENERAL HOSPITAL CORPORATION, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WOODS, KEVIN E.;BOUMA, BRETT EUGENE;TEARNEY, GUILLERMO J.;AND OTHERS;SIGNING DATES FROM 20150421 TO 20170307;REEL/FRAME:042210/0389

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION