US2120987A - Process of producing orthopedic shoes and product thereof - Google Patents

Process of producing orthopedic shoes and product thereof Download PDF

Info

Publication number
US2120987A
US2120987A US34888A US3488835A US2120987A US 2120987 A US2120987 A US 2120987A US 34888 A US34888 A US 34888A US 3488835 A US3488835 A US 3488835A US 2120987 A US2120987 A US 2120987A
Authority
US
United States
Prior art keywords
foot
slipper
shoe
heel
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US34888A
Inventor
Alan E Murray
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US34888A priority Critical patent/US2120987A/en
Application granted granted Critical
Publication of US2120987A publication Critical patent/US2120987A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • A43D1/022Foot-measuring devices involving making footprints or permanent moulds of the foot
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/16Skating boots
    • A43B5/1666Skating boots characterised by the upper
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/28Adapting the inner sole or the side of the upper of the shoe to the sole of the foot
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/30Use of anatomy in making a mold or using said mold

Definitions

  • My invention relates particularly to a process of producing a shoe adapted to lit and support the foot or some part thereof, as well as the product thereof.
  • the object of my invention is to provide a process of obtaining a shoe or slipper or some portion thereof, which has a shape and size conforming substantially to the contours of the foot so as to form an effective support for the same, and it relates to the products which may be obtained thereby. More particularly, the'obiect is to provide a method whereby a, shoe or slipper or some portion thereof may be provided having a surface which is the approximately exact complement of the surface of the foot or some portion thereof, in form or size, or both. Further objects of my invention will appear from the detailed description of the same hereinafter.
  • Fig. 1 is an elevation showing the marking of the foot in the first step of the process for making the shoe, etc.;
  • Fig. 2 is a perspective view showing the position of the foot and leg while suspended as hereinafter described during the molding operation;
  • Fig. 2a is an elevation of a foot showing the casings in which the different castings are made;
  • Fig. 3 is an elevation showing the positive of the foot made in the molding process
  • Fig. 4 is a perspective view of an all-rigid slipper made therefrom and mounted on front and rear supports or stilts;
  • Fig. 5 is a view of the same slipper shown as applied to a roller-skate without the stilts;
  • Fig. 6 is an underneath view of the heel-piece adapted to be used in a shoe as a corrective arch support
  • Fig. '1 is an elevation 01 a toe-piece adapted to be used in shoes for toe dancers;
  • Fig. 8 is a side elevation of a slipper madeof a heel-piece and toe-piece hinged together with a flat spring and flexible joint;
  • Fig. 9 is a similar view showing an interposed hard section opposite the ball of the foot, to which the heel-piece and toe-piece are each independently hinged;
  • Fig. 10 is an underneath view of the same;
  • Fig. 11 is a fragmental plane view showing the socket form of hinge of Figs. 9 and 10;
  • Fig. 12 is a plan view of a shoe made with the slipper of Fig. 8 incorporated therein;
  • Fig. 13 is a perspective view of a shoe made similarly but with a considerable number of separable hard parts joined together by flexible parts;
  • Fig. 14 is a side elevation of an all-hard slipper comprised of a metal skate with a vuicanite slipper vulcanized thereto and having a plurality of .lackets around the same and laced over the oo
  • Fig. 15 is a similar side elevation but showing a dlfierent way of attaching the upper to the slipper; a
  • Fig. 16 is a vertical section showing another method of attaching the slipper to the upper;
  • Fig. 17 is a cross-section of the type of construction such as is shown, for example, in any one of the Figs. 14, 15, and 16, with the lining materials present therein, which, of course, are entirely optional.
  • Fig. 1 the patient I is made to stand erect on the floor near a table or chair on which he rests his two hands. He then stands with his. weight on the foot, ot which the impression is to be made, the other foot touching the floor lightly but carrying very little weight. The operator may make any adjustment of the arch of the foot by inserting a small amount of molding clay under the arch. The sensationin the 'foot is now considered as an aid in obtaining a normal placement of the arch and at its natural height. The appearance of the body and leg can be taken into consideration in bringing this about.
  • the slipper or shoe made therefrom can be placed at exactly the right angle under the foot with regard to the supports of ti e shoe or slipper under the heel and sole.
  • the sole and heel will be at right angles to the vertical line 3.
  • lifting or correction of a flat arch can be secured by pressing the arch higher with the molding clay before the vertical line 3 is drawn.
  • the patient, with the heel so marked, will now sit on a stool 4 which is provided with an adjustable U-shaped leg cradle 5 swiveled to the top of a screw 6 which has at its lower end an operating handle 1, the said screw being threaded in a screw socket 8 carried on an arm 9 attached to the side of the stool.
  • a pan I is placed beneath the foot, said pan Ill having two transversely removable straight stiff wires II and I2 which extend through holes in the sides of the pan III at such a difference in height from the floor, respectively, as to allow for the inclination of the bottom of the foot to the horizontal when in a shoe having a sole and heel.
  • the leg is then lowered by the screw handle I until the heel of the foot just touches the wire ll without resting thereon, and the foot will rest lightly against the wire l2.
  • the front part of the pan I0 Prior to 'the first pouring operation the front part of the pan I0 is filled in with a mass 13 of plastic molding clay so as to occupy the front part of the pan II) forwardly of the ball of the foot.
  • the cradle can now be readjusted in case there has been found to be an error in the initial placing of the foot so that the patient feels that his foot just lightly touches the wire II and rests lightly against the wire ii.
  • a liquid or plastic material comprised of plaster of Paris mixed with water to a consistency of a fiowable material, or which. instead, may be comprised of any liquid that will set under ordinary temperatures, will then flow around the foot to the level of the highest part of the under-cut line, that is, theirregular line around the side of the foot where the downward and inward curvatures of the foot meet the upward and inward curvatures of the foot. The foot is then removed when the plaster has partly set and after the molding material is cut down to the undercut line.
  • the wires ii and I2 can now be withdrawn and if the wires have left any marks, these can be eliminated to make the contours exactly correct where the wires were located.
  • the inner edge of the molded material can be beveled by dishing downwardly and inwardly within the pan Ill.
  • the second pouring operation can now take place.
  • the foot is re-inserted in the same position in the mold and at this time the body of molding clay l3 from the ball of the foot forward is removed and instead a.
  • the second body of the thin liquid plaster of Paris made as 'above is now poured into the pan l0 between the wall l3a of the molding clay and the first body of plaster of Paris which has set.
  • This second body of plaster of Paris which'extends up to the new wall of molding material I311 is then allowed to set and the patient again removes his foot, a sloping plane or beveling being made in the second body of plaster of Paris as was madedn the case of the first body of plaster of Paris, the same sloping down to the undercut line, above referred to, on the foot, from the edge of the pan.
  • the third pouring is now in order.
  • the body of molding material He added to form the wall opposite the toes is removed.
  • the third body of thin liquid plaster of Paris is now poured in opposite the toes with the foot in the mold,
  • a positive can now be obtained from this by pouring any suitable material into the same.
  • the shape of this positive can be altered to slightly enlarge the toe section, where desired, by coating with a layer of wax or any other suitable material. Also, any excessive detail between the toes can be obliterated in this manner. It has been found, by experience, that a slight enlargement with respect to the length.
  • Such thin forms when made in the form of a slipper in one or a plurality of parts, will preferably have the upper edge extending to a height slightly above but preferably, paralleling, the undercut line, and when so made the slipper will stay on the foot securely without any other securing means whatever.
  • the outer forms of the complete shoe can be built up outside of the one or more thin negative forms obtained as above, as to the whole or different-parts of the foot formed, by molding the shoe with said thin negative foot form parts of hard material molded into plastic and flexible material, as shown, for example, in Fig. 13.
  • the positive foot forms could be taken as the core on which to mold the shoe and the plastic material to make the shoe form might be any synthetic composition containing, for example, cotton linters and rubber, or any other composition used in making flexible shoe materials.
  • I may make of hard vulcanite a single piece slipper H to which the usual skate fixture
  • These slippers will stay securely on the feet without any other securing means than that their edge is slightly above the undercut foot-line.
  • I may apply thereto stanchions l9 and 20, thus making a set of mules, which will be found useful in correcting abnormal conditions of the foot, and useful in many other ways, as the patient can exercise or walk while the slipper fully supports every portion of the foot to the best advantage.
  • I may make, also, if desired, a metal heel plate support 2
  • This height and margin tends to hold it in place against the foot.
  • may be provided on the under-surface thereof with a ring-shaped body of vulcanite 22 having varying thicknesses at the two sides thereof, chosen so as to support the heel of the foot on the heel plate 2
  • this body 22 may be omitted and then the plate 2
  • I may make a toe-piece 23 similarly on said positive which encloses the toes of the foot and which, if desired, may have a small flat circular supporting plate 24 welded to the metal of the toe-piece 23 so that when used for toe dancing the flat piece 24 will be parallel with the floor when the toe dancer's foot is in its normal position in toe dancing.
  • I may make a slipper 25, as shown in Fig. 8, comprising the two parts 2
  • a zone of flexible material 28 such, for instance, as soft rubber or rubber containing cotton linters, -et c.
  • I may make the same kind of a slipper, except in this instance having the ball of the foot resting on a third section 29 of the same hard material, as
  • the slipper constructed as indicated in Fig. 8 may be embodied in a shoe 36 having an enclosing upper 31 molded of any desired flexible material around the heel and toe supports 2
  • , 42, 43, 44, 45, and 46 may be molded into the shoe together with an upper 41 of the same flexible material as the material 28, 32, 33, and 31.
  • a flat sole 48, having ventilating holes .4811 leading to the inside of the shoe, and a fiat heel 49 are provided perpendicular to the line 3 so as to obtain the exact required balance of the foot.
  • the hard vulcanite slipper l1 may be vulcanized by any suitable wellknown attaching method within a metal slipper 50, also made to conform to the outside of the slipper by any method above described, and whichis welded to an ice skate 5
  • Fig. 15 I have shown the vulcanized slipper I! having attached thereto an upper 56 of leather or other suitable material, having eyelets 51 into which lacings may extend and thence into angular holes 58 in a shoulder 59 on the slipper [1 at successive points around the slipper l1.
  • Fig. 15 I have shown the vulcanized slipper I! having attached thereto an upper 56 of leather or other suitable material, having eyelets 51 into which lacings may extend and thence into angular holes 58 in a shoulder 59 on the slipper [1 at successive points around the slipper l1.
  • eyelets 51 into which lacings may extend and thence into angular holes 58 in a shoulder 59 on the slipper [1 at successive points around the slipper l1.
  • the upper 56 may have a bead 60 around its edge adapted to fit within a channel 6
  • any suitable lining which, in this figure, is shown as applied to the skate having the metal slipper 50 welded thereto, here shown without the vulcanite slipper I! which may not be present and on either side of which there may be located felt layers 63 and 64, the felt layer 63 being overlaid inside the slipper with a cloth layer 65 and the layer 64 being overlaid on the outside with a leather layer 66.
  • the slipper or shoe can be adapted to the making of either custom or ready-made shoes. For instance, once a set of dies is made for a person, any number of duplicates can be made of the shoe or slipper and at an extraordinarily low cost.
  • the range of materials used in the construction could be very extensive.
  • the hard parts in many instances, could be made of stainless steel or cast chromium cobalt composition, which would be especially useful in connection with the toe-pieces for toe-dancers, the
  • any hard materials could be used for the hard parts and any flexible soft materials with suflicient wear and which could be joined effectively to the hard parts, could be used.
  • the uppers could be of leather or any other shoe material.
  • the entire slipper if desired, could be made out of any suitable semi-hard yet flexible substance or composition capable of being set or molded into the desired form, as, for instance, a steam-hose fabric impregnated with vulcanizible rubber or any other form-holding substance. Any other usual fastening means could, of course, be used instead of the eyelaces, wherever they appear above.
  • An orthopedic shoe constructed about a rigid slipper having its walls conforming exactly to the shape of the foot when in normal position and unsupported from below at the heel.
  • a combined orthopedic shoe and skate comprising a shoe constructed about a .rigid slipper having its walls conforming exactly to the shape of the foot when in normal position and unsupported from below at the heel and a skate fastened directly .to. said rigid slipper.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Description

June 21, 1938- A. E. MURRAY- I I 2,120,987
' PRGCE'SS 0F imonucme ORTHOPEDIC suon AND PRODUCT THEREOF Filed Aug.) 6, 1935 5 Sheets-Shet 1- INVIENTVOR I ATTOz EY V June 21, 1938. A. E. MURRAY rhocss's OF rnonucme ORTHOPEDIG' SHOE AND raonucw THEREOF- Filed Aug. 6, 1935 s Sheets-Sheet La N R O T T A June 21,1938. A. El MURRAY PROCESS OF, rnonpcme ORTHOPEDIC .saon 1mm rnonucq: THEREOF Filed Aug. e, 1955 3 Sheets-Sheet 3 INVENTOR AfiORNE! PatentedJune 21, 1938 UNITED STATES PROCESS OF PRODUCING ORTHOPEDIO SHOES AND PRODUCT THEREOF 'Alan E. Murray, New York, N. Y. Application August a, 1935. Serial no; 34,888
4 Claims.
My invention relates particularly to a process of producing a shoe adapted to lit and support the foot or some part thereof, as well as the product thereof.
The object of my invention is to provide a process of obtaining a shoe or slipper or some portion thereof, which has a shape and size conforming substantially to the contours of the foot so as to form an effective support for the same, and it relates to the products which may be obtained thereby. More particularly, the'obiect is to provide a method whereby a, shoe or slipper or some portion thereof may be provided having a surface which is the approximately exact complement of the surface of the foot or some portion thereof, in form or size, or both. Further objects of my invention will appear from the detailed description of the same hereinafter.
While my invention is capable of being carried out in many different ways, so as to produce many different articles therefrom, in the accompanying drawings I have shown only certain methods of accomplishing the same and certain of the products which may be obtained thereby, in which- Fig. 1 is an elevation showing the marking of the foot in the first step of the process for making the shoe, etc.;
Fig. 2 is a perspective view showing the position of the foot and leg while suspended as hereinafter described during the molding operation;
Fig. 2a is an elevation of a foot showing the casings in which the different castings are made;
Fig. 3 is an elevation showing the positive of the foot made in the molding process;
Fig. 4 is a perspective view of an all-rigid slipper made therefrom and mounted on front and rear supports or stilts;
Fig. 5 is a view of the same slipper shown as applied to a roller-skate without the stilts;
Fig. 6 is an underneath view of the heel-piece adapted to be used in a shoe as a corrective arch support; b
Fig. '1 is an elevation 01 a toe-piece adapted to be used in shoes for toe dancers;
Fig. 8 is a side elevation of a slipper madeof a heel-piece and toe-piece hinged together with a flat spring and flexible joint;
Fig. 9 is a similar view showing an interposed hard section opposite the ball of the foot, to which the heel-piece and toe-piece are each independently hinged;
Fig. 10 is an underneath view of the same;
Fig. 11 is a fragmental plane view showing the socket form of hinge of Figs. 9 and 10;
Fig. 12 is a plan view of a shoe made with the slipper of Fig. 8 incorporated therein;
Fig. 13 is a perspective view of a shoe made similarly but with a considerable number of separable hard parts joined together by flexible parts;
Fig. 14 is a side elevation of an all-hard slipper comprised of a metal skate with a vuicanite slipper vulcanized thereto and having a plurality of .lackets around the same and laced over the oo Fig. 15 is a similar side elevation but showing a dlfierent way of attaching the upper to the slipper; a
Fig. 16 is a vertical section showing another method of attaching the slipper to the upper;
and
Fig. 17 is a cross-section of the type of construction such as is shown, for example, in any one of the Figs. 14, 15, and 16, with the lining materials present therein, which, of course, are entirely optional.
In the drawings, in carrying the most important procedure is to obtain a correct impression of the foot. For this purpose it must be realized that the foot is soft and pliant in many of its parts and in order to obtain an out iny invention,
' impression of the foot without the latter being deformed it is desired to obtain an impression without exerting any deforming pressure on the foot from the molding materials. For this'purpose, therefore, as shown in Fig. 1, the patient I is made to stand erect on the floor near a table or chair on which he rests his two hands. He then stands with his. weight on the foot, ot which the impression is to be made, the other foot touching the floor lightly but carrying very little weight. The operator may make any adjustment of the arch of the foot by inserting a small amount of molding clay under the arch. The sensationin the 'foot is now considered as an aid in obtaining a normal placement of the arch and at its natural height. The appearance of the body and leg can be taken into consideration in bringing this about. When the patient's arch is thus placed the patient is told to assume, accurately, a vertical standing position, standing on the said foot of which the impression is to be made. With an ordinary square 2, one arm of which rests horizontally against the floor and the other arm of which is then moved so that its edge is in line with the Achilles tendon, a vertical line 3 is drawn with an indelible pencil on the foot down the tendon and. over the heel to the floor. This indelible line will be found to be imprinted in the cast to be made of the foot, as
hereinafter described. In this way the slipper or shoe made therefrom can be placed at exactly the right angle under the foot with regard to the supports of ti e shoe or slipper under the heel and sole. Thus, the sole and heel, for example, will be at right angles to the vertical line 3. Of course, if desired, lifting or correction of a flat arch can be secured by pressing the arch higher with the molding clay before the vertical line 3 is drawn. The patient, with the heel so marked, will now sit on a stool 4 which is provided with an adjustable U-shaped leg cradle 5 swiveled to the top of a screw 6 which has at its lower end an operating handle 1, the said screw being threaded in a screw socket 8 carried on an arm 9 attached to the side of the stool. A pan I is placed beneath the foot, said pan Ill having two transversely removable straight stiff wires II and I2 which extend through holes in the sides of the pan III at such a difference in height from the floor, respectively, as to allow for the inclination of the bottom of the foot to the horizontal when in a shoe having a sole and heel. The leg is then lowered by the screw handle I until the heel of the foot just touches the wire ll without resting thereon, and the foot will rest lightly against the wire l2. Prior to 'the first pouring operation the front part of the pan I0 is filled in with a mass 13 of plastic molding clay so as to occupy the front part of the pan II) forwardly of the ball of the foot. If necessary, the cradle can now be readjusted in case there has been found to be an error in the initial placing of the foot so that the patient feels that his foot just lightly touches the wire II and rests lightly against the wire ii. A liquid or plastic material, comprised of plaster of Paris mixed with water to a consistency of a fiowable material, or which. instead, may be comprised of any liquid that will set under ordinary temperatures, will then flow around the foot to the level of the highest part of the under-cut line, that is, theirregular line around the side of the foot where the downward and inward curvatures of the foot meet the upward and inward curvatures of the foot. The foot is then removed when the plaster has partly set and after the molding material is cut down to the undercut line. The wires ii and I2 can now be withdrawn and if the wires have left any marks, these can be eliminated to make the contours exactly correct where the wires were located. At the same time the inner edge of the molded material can be beveled by dishing downwardly and inwardly within the pan Ill. The second pouring operation can now take place. For this purpose the foot is re-inserted in the same position in the mold and at this time the body of molding clay l3 from the ball of the foot forward is removed and instead a. smaller body of plastic molding clay l3a is inserted in the pan l0 merely at the end thereof, and just extending around the end of the pan above and below the toes of the patient, to build up for the second pouring a wall of removable clay which can be later removed for the third pouring. At this time, if desired, corrections can be made in the positions of the' toes to correct for'any deformities therein. Also, an amount of rise that takes place in using the toes in walking, skating, etc., can be taken into account by adjusting the toes upwardly somewhat, if desired, according to the use to which the slipper is to be put, as, for example, in walking, skating, etc. The second body of the thin liquid plaster of Paris made as 'above, is now poured into the pan l0 between the wall l3a of the molding clay and the first body of plaster of Paris which has set. This second body of plaster of Paris which'extends up to the new wall of molding material I311 is then allowed to set and the patient again removes his foot, a sloping plane or beveling being made in the second body of plaster of Paris as was madedn the case of the first body of plaster of Paris, the same sloping down to the undercut line, above referred to, on the foot, from the edge of the pan. The third pouring is now in order. For this purpose the body of molding material He added to form the wall opposite the toes is removed. The third body of thin liquid plaster of Paris is now poured in opposite the toes with the foot in the mold,
which is then allowed to set, the foot being removed and the plaster of Paris beveled substantially as before. The three bodies of plaster of Paris will be found to have completely coalesced,
although, if desired, adjacent surfaces may be roughened to strengthen the joint between the second and third pourings. If desired, the second and third pourings may be accomplished at the same time, especially in the case of normal feet. Also, if desired, still further similar pourings and similar adjustments can take place. If preferred, a cutting down to the undercut line and bevelling can be done for all of these castings, simultaneously prior to the fourth and fifth pourings. The patient can now stand on the hardened cast to fully test it. If desired, the ends of the toes of the cast can be scraped out larger and repoured. In case of deformities, even the standing of the patient in the cast so made will be found to have a marked orthopedic value and would be very beneficial when repeated from day to day. In order to obtain a complete impression of the foot it is necessary to take an impression of the upper heel section as well as the upper surface of the foot. For this purpose the mold which has been obtained as above is greased at the edge with Vaseline or some other separating material. A hollow heel section I I with a vertical front end as shown in Fig. 2a is now applied, fitting around the top of the rear portion of the pan ill and a dam of plastic molding clay is built up along the sides of the ankle along and in front of vertical lines, passing through the center of the large ankle joint. The heel section of a fourth pouring of the same plaster of Paris liquid material is then poured in and allowed to set. Thereafter the same procedure is followed by casting against the upper portion of the foot, the edges of the upper heel-piece of the cast, if present, being greased or faced with separating material. For the molding of the upper part of the foot an upper hollow section IS with a rear vertical end is applied above the pan l0 and if the heel casting is not present, temporary dams of plastic molding material are built up at the free ends thereof along and to the rear of the same vertical lines, passing through the middle of the main ankle joint. A fifth pouring of the same kind of liquid plaster of Paris is then poured into the section l5, which is also allowed to set. A three-piece shell, containing an exact reproduction of the contours of the foot or modified as intended by the operator, is thus obtained in the form of a negative. A positive can now be obtained from this by pouring any suitable material into the same. The shape of this positive can be altered to slightly enlarge the toe section, where desired, by coating with a layer of wax or any other suitable material. Also, any excessive detail between the toes can be obliterated in this manner. It has been found, by experience, that a slight enlargement with respect to the length.
- raised line on the positive, providing a permanent record. From a master positive duplicates can be made in the same way as the negative was made from the original foot, although in this case no suspension is necessary, and negative forms from any of such positives may be made by swedging, molding or vulcanizing, as to any part or all of the parts of the foot formed, from metal, vulcanite or any other desired material. These may be very thin, if desired, especially if they are made of metal. Such thin forms, made of any desired material, when made in the form of a slipper in one or a plurality of parts, will preferably have the upper edge extending to a height slightly above but preferably, paralleling, the undercut line, and when so made the slipper will stay on the foot securely without any other securing means whatever.
If desired, the outer forms of the complete shoe can be built up outside of the one or more thin negative forms obtained as above, as to the whole or different-parts of the foot formed, by molding the shoe with said thin negative foot form parts of hard material molded into plastic and flexible material, as shown, for example, in Fig. 13. For this purpose the positive foot forms could be taken as the core on which to mold the shoe and the plastic material to make the shoe form might be any synthetic composition containing, for example, cotton linters and rubber, or any other composition used in making flexible shoe materials. I
The forms made in accordance with my invention may be utilized and appliedin many different ways. For example, I may make of hard vulcanite a single piece slipper H to which the usual skate fixture |8 may be vulcanized as in Fig. 14 to the front and rear of the slipper but on the axial balance line of the foot preferably, although, if desired, in this instance the skate fixture axis may be slightly nearer the center of the body than the line 3 above referred to. These slippers will stay securely on the feet without any other securing means than that their edge is slightly above the undercut foot-line. Instead of the skate fixture I8 I may apply thereto stanchions l9 and 20, thus making a set of mules, which will be found useful in correcting abnormal conditions of the foot, and useful in many other ways, as the patient can exercise or walk while the slipper fully supports every portion of the foot to the best advantage. Instead, I may make, also, if desired, a metal heel plate support 2| which extends from the heel to the ball of the foot and conforms completely to the shape thereof, as desired, and as above pointed out, especially with regard to the arch of the foot, and this-heelplate may have a height up to the undercut line, but. preferably below that line, that is to say merely up to the top of the callous or pad of the foot. This height and margin tends to hold it in place against the foot. jThis heel plate 2| may be provided on the under-surface thereof with a ring-shaped body of vulcanite 22 having varying thicknesses at the two sides thereof, chosen so as to support the heel of the foot on the heel plate 2| withinany shoe in which the plate 2| is placed, so asto secure the position of the heel of the foot obtained in making the vertical line 3. However, this body 22 may be omitted and then the plate 2| would have a three point suspension, one at the heel and the other two at the front of the plate which may be bent, as desired, to tilt the plate to the position of the enclosing shoe.
Again, if desired, I may make a toe-piece 23 similarly on said positive which encloses the toes of the foot and which, if desired, may have a small flat circular supporting plate 24 welded to the metal of the toe-piece 23 so that when used for toe dancing the flat piece 24 will be parallel with the floor when the toe dancer's foot is in its normal position in toe dancing. Again, if desired, I may make a slipper 25, as shown in Fig. 8, comprising the two parts 2| and. 23 similar to the said parts above described but ending on their adjacent edges as shown in Fig. 8 and hinged together by means of a torsional hinge 26 in the form of a flat steel spring having riveting or welding 21 for securing the parts together. Opposite to the spring 26 there is, furthermore, secured to the two parts 2| and 23, in any desired manner, a zone of flexible material 28, such, for instance, as soft rubber or rubber containing cotton linters, -et c. As shown in Fig. 9, I may make the same kind of a slipper, except in this instance having the ball of the foot resting on a third section 29 of the same hard material, as
metal for example, and on which there are slightly torsional hinges 30 and 3| shown in detail in Fig. 11, and except that there are two inserts 32 and 33 of the same kind of soft material as the material 28. Another kind of hinge that can be used in either form shown in Fig. 8 or the form in Fig. 9, is the form shown in detail in Fig. 11, in which the toe-piece 23, for example, has a socket 34 into which there is received a tongue 35 extending from the heel-piece 2|. As shown in Fig. 12, the slipper constructed as indicated in Fig. 8 may be embodied in a shoe 36 having an enclosing upper 31 molded of any desired flexible material around the heel and toe supports 2| and 23, as above described. It will be understood, as shown in Fig. 13, that the number of these hard parts, conforming to the foot shape and size, may
be greatly increased in the shoe, such as in Fig.
12, and hard inserts 38, 39, 40, 4|, 42, 43, 44, 45, and 46 may be molded into the shoe together with an upper 41 of the same flexible material as the material 28, 32, 33, and 31. In this instance a flat sole 48, having ventilating holes .4811 leading to the inside of the shoe, and a fiat heel 49 are provided perpendicular to the line 3 so as to obtain the exact required balance of the foot. Again, as shown in Fig. 14, the hard vulcanite slipper l1 may be vulcanized by any suitable wellknown attaching method within a metal slipper 50, also made to conform to the outside of the slipper by any method above described, and whichis welded to an ice skate 5|. While the fit of the vulcanite slipper H to the foot is so complete that a sock of any ordinary thickness may be inserted therein without exerting undesirable pressure on the foot, with or without such a sock the skater may readily skate with his foot in the slipper l1 without the need of any uppers whatsoever thereon. However, if desired, leather uppers, in the form of three pieces 52,
skate and the foot of the wearer, the same hav- 53, and 54, v may be used, extending completely around the ing lacing holes 55, by means of which all three of the parts 52, 53, and 54 may be laced together in the usual way. Many other ways of attaching uppers may be provided, if desired. For example, in Fig. 15 I have shown the vulcanized slipper I! having attached thereto an upper 56 of leather or other suitable material, having eyelets 51 into which lacings may extend and thence into angular holes 58 in a shoulder 59 on the slipper [1 at successive points around the slipper l1. Instead, if desired, as shown in Fig. 16, the upper 56 may have a bead 60 around its edge adapted to fit within a channel 6| located around the hard vulcanite slipper l1, provided with a soft rubber upper edge 62, and of such a size as to just permit the head 60 to be squeezed in As shown in Fig. 17, I may provide any of the constructions hereinaboveand out of the recess.
referred'to and more particularly the construction shown in Figs. 14 to 16, with any suitable lining, which, in this figure, is shown as applied to the skate having the metal slipper 50 welded thereto, here shown without the vulcanite slipper I! which may not be present and on either side of which there may be located felt layers 63 and 64, the felt layer 63 being overlaid inside the slipper with a cloth layer 65 and the layer 64 being overlaid on the outside with a leather layer 66.
In fact it will be seen that by providing the shoe with a plurality of hard portions conforming to the shape of the human foot and with interconnected soft or flexible parts, the slipper or shoe can be adapted to the making of either custom or ready-made shoes. For instance, once a set of dies is made for a person, any number of duplicates can be made of the shoe or slipper and at an extraordinarily low cost. Also, by making up a number of sizes and shapes of the different individual hard parts, these parts can be made into a great many different combinations of different sizes and shapes so that therefrom a wide range of shoes can be made with the parts united together with the flexible material and yet such as to far better fit the feet of the public than can be accomplished by the present practice of only making a very limited number of sizes which vary little or not at all in shape for the ready-made shoe trade. In fact, if desired, a theoretically required series of sizes and shapes of each of the different hardparts of a shoe may be made, adapted to fit the ideal feet of different sizes, or a set of ideal feet of different sizes, and thereby eflective adaptations of ready-made shoes to the feet of the public couldbe obtained. The range of materials used in the construction could be very extensive. In addition to those above named, the hard parts, in many instances, could be made of stainless steel or cast chromium cobalt composition, which would be especially useful in connection with the toe-pieces for toe-dancers, the
same being well known as a dental metal under the name of vitallum. In fact almost any hard materials could be used for the hard parts and any flexible soft materials with suflicient wear and which could be joined effectively to the hard parts, could be used. The uppers, of course, could be of leather or any other shoe material. It will be readily seen, in fact, that the entire slipper, if desired, could be made out of any suitable semi-hard yet flexible substance or composition capable of being set or molded into the desired form, as, for instance, a steam-hose fabric impregnated with vulcanizible rubber or any other form-holding substance. Any other usual fastening means could, of course, be used instead of the eyelaces, wherever they appear above.
It will be found that none of the slippers or shoes as above referred to, requires any linings as, due to the contour, the needed softness or its equivalent in comfort, is provided for.
All of these sandal shoes and portions thereof made as above, have such a fit as to constitute a corrective and preventative for many ills of the feet. For example, it is found that the forms made as above have normally a deep hollow shape at the ball of the foot and that the arch of the foot is hollowed much more deeply in conformation to the usual foot than in the usual type of shoes. These facts, for instance, have the advantage of preventing the foot from sliding within the shoe made in accordance with my invention.
While I have described my invention above in detail I wish it to be understood that many changes may be made therein without departing from the spirit of the same.
I claim:
1. The method of constructing a skate and shoe combination which comprises conforming a rigid slipper exactly to the contours of a cast of the foot when in normal position and unsupported from below at the heel, securing a skate to the underside of said slipper, and constructing a shoe embodying said slipper as a part thereof.
2. The method of constructing a shoe which comprises conforming a rigid slipper exactly to the contours of a cast of the foot when in normal position and unsupported from below at the heel, and constructing a shoe embodying said slipper as a part thereof.
3. An orthopedic shoe constructed about a rigid slipper having its walls conforming exactly to the shape of the foot when in normal position and unsupported from below at the heel.
4. A combined orthopedic shoe and skate comprising a shoe constructed about a .rigid slipper having its walls conforming exactly to the shape of the foot when in normal position and unsupported from below at the heel and a skate fastened directly .to. said rigid slipper.
. ALAN E. MURRAY.
US34888A 1935-08-06 1935-08-06 Process of producing orthopedic shoes and product thereof Expired - Lifetime US2120987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US34888A US2120987A (en) 1935-08-06 1935-08-06 Process of producing orthopedic shoes and product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US34888A US2120987A (en) 1935-08-06 1935-08-06 Process of producing orthopedic shoes and product thereof

Publications (1)

Publication Number Publication Date
US2120987A true US2120987A (en) 1938-06-21

Family

ID=21879234

Family Applications (1)

Application Number Title Priority Date Filing Date
US34888A Expired - Lifetime US2120987A (en) 1935-08-06 1935-08-06 Process of producing orthopedic shoes and product thereof

Country Status (1)

Country Link
US (1) US2120987A (en)

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2487965A (en) * 1947-06-27 1949-11-15 Frank G Dresser Manufacture of shoe lasts
US2495402A (en) * 1945-09-17 1950-01-24 Solar Aircraft Co Method of making patterns for sheet stamping dies
US2611170A (en) * 1946-11-13 1952-09-23 Irene H Theis Mold for forming plaques
US2652595A (en) * 1950-01-24 1953-09-22 Kish Plastic Products Inc Method of making industrial models and fixtures
US3903621A (en) * 1974-09-26 1975-09-09 Benjamin B Dubner Conforming supportive innersole device
FR2560517A1 (en) * 1984-03-01 1985-09-06 Sipse METHOD OF MAKING A CORRELATE SOLE AND / OR MOLDING ASSISTANCE; INTERMEDIATE PRODUCT AND SOLE OBTAINED BY CARRYING OUT SAID METHOD
US4662079A (en) * 1983-05-10 1987-05-05 Graf Peter M Process and apparatus for forming customized footwear
US4783911A (en) * 1986-08-25 1988-11-15 Brown Dennis N Skate boot assembly
US5317819A (en) * 1988-09-02 1994-06-07 Ellis Iii Frampton E Shoe with naturally contoured sole
US5437466A (en) * 1993-07-19 1995-08-01 K-2 Corporation In-line roller skate
US5689849A (en) * 1994-05-12 1997-11-25 Charles; Robert Bio Mechanical corrective devices
US5928673A (en) * 1996-03-14 1999-07-27 Ryan; Daniel M. Apparatus for molding shoe insert
US6079128A (en) * 1993-11-30 2000-06-27 Bauer Nike Hockey Inc. Skate boot construction with integral plastic insert
US6082744A (en) * 1997-10-24 2000-07-04 K-2 Corporation Double hinged skate
US6120040A (en) * 1997-10-24 2000-09-19 K-2 Corporation Flexing base skate
US6308439B1 (en) 1989-08-30 2001-10-30 Anatomic Research, Inc. Shoe sole structures
US6314662B1 (en) 1988-09-02 2001-11-13 Anatomic Research, Inc. Shoe sole with rounded inner and outer side surfaces
US6360453B1 (en) 1989-10-03 2002-03-26 Anatomic Research, Inc. Corrective shoe sole structures using a contour greater than the theoretically ideal stability plan
US6487795B1 (en) 1990-01-10 2002-12-03 Anatomic Research, Inc. Shoe sole structures
US6609312B1 (en) 1990-01-24 2003-08-26 Anatomic Research Inc. Shoe sole structures using a theoretically ideal stability plane
US20030217482A1 (en) * 1988-07-15 2003-11-27 Ellis Frampton E. Shoe sole structures using a theoretically ideal stability plane
US6662470B2 (en) 1989-08-30 2003-12-16 Anatomic Research, Inc. Shoes sole structures
US6666463B2 (en) 1997-10-24 2003-12-23 K-2 Corporation Flexing base skate
US6668470B2 (en) 1988-09-02 2003-12-30 Anatomic Research, Inc. Shoe sole with rounded inner and outer side surfaces
US6675498B1 (en) 1988-07-15 2004-01-13 Anatomic Research, Inc. Shoe sole structures
US6708424B1 (en) 1988-07-15 2004-03-23 Anatomic Research, Inc. Shoe with naturally contoured sole
US6736412B1 (en) 2000-10-04 2004-05-18 K2 Corporation Klop skate having pushing and pulling capabilities
US6763616B2 (en) 1990-06-18 2004-07-20 Anatomic Research, Inc. Shoe sole structures
US6789331B1 (en) 1989-10-03 2004-09-14 Anatomic Research, Inc. Shoes sole structures
US20040250447A1 (en) * 1990-01-24 2004-12-16 Ellis Frampton E. Shoe sole structures using a theoretically ideal stability plane
US20050288133A1 (en) * 2003-05-07 2005-12-29 Elliot Rudell Ball with internal impact detector and an indicator to indicate impact
US20080086916A1 (en) * 2004-11-22 2008-04-17 Ellis Frampton E Devices with internal flexibility sipes, including siped chambers for footwear
US20080119765A1 (en) * 2006-11-21 2008-05-22 Meckel Christopher M Post-knee-surgery/injury range-of-motion improvement
US7419187B2 (en) 1997-10-24 2008-09-02 K-2 Corporation Double klap flex base boot with heel linkage
US7546699B2 (en) 1992-08-10 2009-06-16 Anatomic Research, Inc. Shoe sole structures
US8141276B2 (en) 2004-11-22 2012-03-27 Frampton E. Ellis Devices with an internal flexibility slit, including for footwear
US8291618B2 (en) 2004-11-22 2012-10-23 Frampton E. Ellis Devices with internal flexibility sipes, including siped chambers for footwear
US8670246B2 (en) 2007-11-21 2014-03-11 Frampton E. Ellis Computers including an undiced semiconductor wafer with Faraday Cages and internal flexibility sipes
US8732230B2 (en) 1996-11-29 2014-05-20 Frampton Erroll Ellis, Iii Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network
USD984096S1 (en) * 2021-05-17 2023-04-25 Interbasic Holding S.R.L. Footwear

Cited By (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2495402A (en) * 1945-09-17 1950-01-24 Solar Aircraft Co Method of making patterns for sheet stamping dies
US2611170A (en) * 1946-11-13 1952-09-23 Irene H Theis Mold for forming plaques
US2487965A (en) * 1947-06-27 1949-11-15 Frank G Dresser Manufacture of shoe lasts
US2652595A (en) * 1950-01-24 1953-09-22 Kish Plastic Products Inc Method of making industrial models and fixtures
US3903621A (en) * 1974-09-26 1975-09-09 Benjamin B Dubner Conforming supportive innersole device
US4662079A (en) * 1983-05-10 1987-05-05 Graf Peter M Process and apparatus for forming customized footwear
EP0160585A1 (en) * 1984-03-01 1985-11-06 SOCIETE INDUSTRIELLE DE PRODUCTION DE SYSTEME ENERGETIQUES Dite SIPSE Casting method for forming corrective and/or supporting insoles
FR2560517A1 (en) * 1984-03-01 1985-09-06 Sipse METHOD OF MAKING A CORRELATE SOLE AND / OR MOLDING ASSISTANCE; INTERMEDIATE PRODUCT AND SOLE OBTAINED BY CARRYING OUT SAID METHOD
US4783911A (en) * 1986-08-25 1988-11-15 Brown Dennis N Skate boot assembly
US7127834B2 (en) 1988-07-15 2006-10-31 Anatomic Research, Inc. Shoe sole structures using a theoretically ideal stability plane
US6708424B1 (en) 1988-07-15 2004-03-23 Anatomic Research, Inc. Shoe with naturally contoured sole
US20030217482A1 (en) * 1988-07-15 2003-11-27 Ellis Frampton E. Shoe sole structures using a theoretically ideal stability plane
US6675498B1 (en) 1988-07-15 2004-01-13 Anatomic Research, Inc. Shoe sole structures
US6877254B2 (en) 1988-07-15 2005-04-12 Anatomic Research, Inc. Corrective shoe sole structures using a contour greater than the theoretically ideal stability plane
US20030070320A1 (en) * 1988-09-02 2003-04-17 Ellis Frampton E. Shoe sole with rounded inner and outer side surfaces
US20060032086A1 (en) * 1988-09-02 2006-02-16 Ellis Frampton E Iii Shoe sole with rounded inner and outer surfaces
US6668470B2 (en) 1988-09-02 2003-12-30 Anatomic Research, Inc. Shoe sole with rounded inner and outer side surfaces
US7093379B2 (en) 1988-09-02 2006-08-22 Anatomic Research, Inc. Shoe sole with rounded inner and outer side surfaces
US6314662B1 (en) 1988-09-02 2001-11-13 Anatomic Research, Inc. Shoe sole with rounded inner and outer side surfaces
US5317819A (en) * 1988-09-02 1994-06-07 Ellis Iii Frampton E Shoe with naturally contoured sole
US6591519B1 (en) 1989-08-30 2003-07-15 Anatomic Research, Inc. Shoe sole structures
US6675499B2 (en) 1989-08-30 2004-01-13 Anatomic Research, Inc. Shoe sole structures
US7168185B2 (en) 1989-08-30 2007-01-30 Anatomic Research, Inc. Shoes sole structures
US6308439B1 (en) 1989-08-30 2001-10-30 Anatomic Research, Inc. Shoe sole structures
US6662470B2 (en) 1989-08-30 2003-12-16 Anatomic Research, Inc. Shoes sole structures
US6729046B2 (en) 1989-08-30 2004-05-04 Anatomic Research, Inc. Shoe sole structures
US20040134096A1 (en) * 1989-08-30 2004-07-15 Ellis Frampton E. Shoes sole structures
US20050016020A1 (en) * 1989-10-03 2005-01-27 Ellis Frampton E. Corrective shoe sole structures using a contour greater than the theoretically ideal stability plane
US7287341B2 (en) 1989-10-03 2007-10-30 Anatomic Research, Inc. Corrective shoe sole structures using a contour greater than the theoretically ideal stability plane
US6789331B1 (en) 1989-10-03 2004-09-14 Anatomic Research, Inc. Shoes sole structures
US6360453B1 (en) 1989-10-03 2002-03-26 Anatomic Research, Inc. Corrective shoe sole structures using a contour greater than the theoretically ideal stability plan
US6487795B1 (en) 1990-01-10 2002-12-03 Anatomic Research, Inc. Shoe sole structures
US7334356B2 (en) 1990-01-10 2008-02-26 Anatomic Research, Inc. Shoe sole structures
US7174658B2 (en) 1990-01-10 2007-02-13 Anatomic Research, Inc. Shoe sole structures
US6918197B2 (en) 1990-01-10 2005-07-19 Anatomic Research, Inc. Shoe sole structures
US20050241183A1 (en) * 1990-01-10 2005-11-03 Ellis Frampton E Iii Shoe sole structures
US20040250447A1 (en) * 1990-01-24 2004-12-16 Ellis Frampton E. Shoe sole structures using a theoretically ideal stability plane
US6609312B1 (en) 1990-01-24 2003-08-26 Anatomic Research Inc. Shoe sole structures using a theoretically ideal stability plane
US6748674B2 (en) 1990-01-24 2004-06-15 Anatomic Research, Inc. Shoe sole structures using a theoretically ideal stability plane
US7082697B2 (en) 1990-01-24 2006-08-01 Anatomic Research, Inc. Shoe sole structures using a theoretically ideal stability plane
US6763616B2 (en) 1990-06-18 2004-07-20 Anatomic Research, Inc. Shoe sole structures
US7647710B2 (en) 1992-08-10 2010-01-19 Anatomic Research, Inc. Shoe sole structures
US7546699B2 (en) 1992-08-10 2009-06-16 Anatomic Research, Inc. Shoe sole structures
US5437466A (en) * 1993-07-19 1995-08-01 K-2 Corporation In-line roller skate
US6598888B2 (en) 1993-07-19 2003-07-29 K-2 Corporation In-line roller skate
US6367818B2 (en) 1993-07-19 2002-04-09 K-2 Corporation In-line roller skate
US20040207164A1 (en) * 1993-07-19 2004-10-21 K-2 Corporation In-line roller skate
US6749203B2 (en) 1993-07-19 2004-06-15 K-2 Corporation In-line roller skate
US5452907A (en) * 1993-07-19 1995-09-26 K-2 Corporation Skate with adjustable base and frame
US6254110B1 (en) 1993-07-19 2001-07-03 K-2 Corporation In-line roller skate
US6152459A (en) * 1993-07-19 2000-11-28 K-2 Corporation In-line roller skate
US6139030A (en) * 1993-07-19 2000-10-31 K-2 Corporation In-line roller skate
US5848796A (en) * 1993-07-19 1998-12-15 K-2 Corporation In-line roller skate
US6079128A (en) * 1993-11-30 2000-06-27 Bauer Nike Hockey Inc. Skate boot construction with integral plastic insert
US5689849A (en) * 1994-05-12 1997-11-25 Charles; Robert Bio Mechanical corrective devices
US5928673A (en) * 1996-03-14 1999-07-27 Ryan; Daniel M. Apparatus for molding shoe insert
US8732230B2 (en) 1996-11-29 2014-05-20 Frampton Erroll Ellis, Iii Computers and microchips with a side protected by an internal hardware firewall and an unprotected side connected to a network
US6120040A (en) * 1997-10-24 2000-09-19 K-2 Corporation Flexing base skate
US7419187B2 (en) 1997-10-24 2008-09-02 K-2 Corporation Double klap flex base boot with heel linkage
US6082744A (en) * 1997-10-24 2000-07-04 K-2 Corporation Double hinged skate
US20060038362A1 (en) * 1997-10-24 2006-02-23 K-2 Corporation Flexing base skate
US20040135328A1 (en) * 1997-10-24 2004-07-15 K-2 Corporation Flexing base skate
US6921093B2 (en) 1997-10-24 2005-07-26 K-2 Corporation Flexing base skate
US6666463B2 (en) 1997-10-24 2003-12-23 K-2 Corporation Flexing base skate
US6325394B1 (en) 1997-10-24 2001-12-04 K-2 Corporation Flexing base skate
US6736412B1 (en) 2000-10-04 2004-05-18 K2 Corporation Klop skate having pushing and pulling capabilities
US20040262861A1 (en) * 2000-10-04 2004-12-30 K2 Corporation Klop skate having pushing and pulling capabilities
US20050288133A1 (en) * 2003-05-07 2005-12-29 Elliot Rudell Ball with internal impact detector and an indicator to indicate impact
US8732868B2 (en) 2004-11-22 2014-05-27 Frampton E. Ellis Helmet and/or a helmet liner with at least one internal flexibility sipe with an attachment to control and absorb the impact of torsional or shear forces
US11039658B2 (en) 2004-11-22 2021-06-22 Frampton E. Ellis Structural elements or support elements with internal flexibility sipes
US8205356B2 (en) 2004-11-22 2012-06-26 Frampton E. Ellis Devices with internal flexibility sipes, including siped chambers for footwear
US8256147B2 (en) 2004-11-22 2012-09-04 Frampton E. Eliis Devices with internal flexibility sipes, including siped chambers for footwear
US8291618B2 (en) 2004-11-22 2012-10-23 Frampton E. Ellis Devices with internal flexibility sipes, including siped chambers for footwear
US8494324B2 (en) 2004-11-22 2013-07-23 Frampton E. Ellis Wire cable for electronic devices, including a core surrounded by two layers configured to slide relative to each other
US8561323B2 (en) 2004-11-22 2013-10-22 Frampton E. Ellis Footwear devices with an outer bladder and a foamed plastic internal structure separated by an internal flexibility sipe
US8567095B2 (en) 2004-11-22 2013-10-29 Frampton E. Ellis Footwear or orthotic inserts with inner and outer bladders separated by an internal sipe including a media
US11503876B2 (en) 2004-11-22 2022-11-22 Frampton E. Ellis Footwear or orthotic sole with microprocessor control of a bladder with magnetorheological fluid
US20080086916A1 (en) * 2004-11-22 2008-04-17 Ellis Frampton E Devices with internal flexibility sipes, including siped chambers for footwear
US8873914B2 (en) 2004-11-22 2014-10-28 Frampton E. Ellis Footwear sole sections including bladders with internal flexibility sipes therebetween and an attachment between sipe surfaces
US8141276B2 (en) 2004-11-22 2012-03-27 Frampton E. Ellis Devices with an internal flexibility slit, including for footwear
US9107475B2 (en) 2004-11-22 2015-08-18 Frampton E. Ellis Microprocessor control of bladders in footwear soles with internal flexibility sipes
US8959804B2 (en) 2004-11-22 2015-02-24 Frampton E. Ellis Footwear sole sections including bladders with internal flexibility sipes therebetween and an attachment between sipe surfaces
US8925117B2 (en) 2004-11-22 2015-01-06 Frampton E. Ellis Clothing and apparel with internal flexibility sipes and at least one attachment between surfaces defining a sipe
US9271538B2 (en) 2004-11-22 2016-03-01 Frampton E. Ellis Microprocessor control of magnetorheological liquid in footwear with bladders and internal flexibility sipes
US9339074B2 (en) 2004-11-22 2016-05-17 Frampton E. Ellis Microprocessor control of bladders in footwear soles with internal flexibility sipes
US10021938B2 (en) 2004-11-22 2018-07-17 Frampton E. Ellis Furniture with internal flexibility sipes, including chairs and beds
US9642411B2 (en) 2004-11-22 2017-05-09 Frampton E. Ellis Surgically implantable device enclosed in two bladders configured to slide relative to each other and including a faraday cage
US9681696B2 (en) 2004-11-22 2017-06-20 Frampton E. Ellis Helmet and/or a helmet liner including an electronic control system controlling the flow resistance of a magnetorheological liquid in compartments
US20080119765A1 (en) * 2006-11-21 2008-05-22 Meckel Christopher M Post-knee-surgery/injury range-of-motion improvement
US9568946B2 (en) 2007-11-21 2017-02-14 Frampton E. Ellis Microchip with faraday cages and internal flexibility sipes
US8670246B2 (en) 2007-11-21 2014-03-11 Frampton E. Ellis Computers including an undiced semiconductor wafer with Faraday Cages and internal flexibility sipes
USD984096S1 (en) * 2021-05-17 2023-04-25 Interbasic Holding S.R.L. Footwear

Similar Documents

Publication Publication Date Title
US2120987A (en) Process of producing orthopedic shoes and product thereof
US4520581A (en) Custom footbed support and method and apparatus for manufacturing same
US4662079A (en) Process and apparatus for forming customized footwear
US4669142A (en) Method for making footwear insole
US2917757A (en) Method of fitting an orthopedic article of footwear
US4124946A (en) Built-in insole and article of footwear containing same
US2924849A (en) Tray for making a corrective footmolded appliance
McPoil Jr Footwear
US4112600A (en) Orthopedic shoes
US4563787A (en) Production of insoles
US4522777A (en) Method and apparatus for making corrected custom foot molds
US4868945A (en) Biomechanically adapted custom footwear
US4747989A (en) Method and apparatus for making corrected custom foot molds
US2207437A (en) Shoe and the manufacture thereof
US5327664A (en) Postural control foot orthotic with a forefoot posting shim
US7367074B1 (en) Customized molded orthotic shoe insert method and apparatus
US3545447A (en) Heel stabilizer
US2096500A (en) Sandal
US2973529A (en) Technique for making shoes
CA1219412A (en) Mold for forming orthopedic soles and planter moldings adapted to the feet of patients
US2177304A (en) Process of obtaining effective foot impressions and product thereof
US7125509B1 (en) Apparatus and method for prescribing and manufacturing orthotic foot devices
TW201729706A (en) Fitting system and method for customizable footwear
US2033758A (en) Foot appliance
US4216778A (en) Orthopedic appliance