US2584994A - Nonemissive electrode and method of manufacturing - Google Patents

Nonemissive electrode and method of manufacturing Download PDF

Info

Publication number
US2584994A
US2584994A US766980A US76698047A US2584994A US 2584994 A US2584994 A US 2584994A US 766980 A US766980 A US 766980A US 76698047 A US76698047 A US 76698047A US 2584994 A US2584994 A US 2584994A
Authority
US
United States
Prior art keywords
electrode
coating
zirconium
carbon
emission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US766980A
Inventor
Everett Kenneth Edward
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Standard Electric Corp
Original Assignee
International Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Standard Electric Corp filed Critical International Standard Electric Corp
Application granted granted Critical
Publication of US2584994A publication Critical patent/US2584994A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/30Non-electron-emitting electrodes; Screens characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2893/00Discharge tubes and lamps
    • H01J2893/0001Electrodes and electrode systems suitable for discharge tubes or lamps
    • H01J2893/0012Constructional arrangements
    • H01J2893/0019Chemical composition and manufacture
    • H01J2893/002Chemical composition and manufacture chemical
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/923Physical dimension
    • Y10S428/924Composite
    • Y10S428/925Relative dimension specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/934Electrical process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/922Static electricity metal bleed-off metallic stock
    • Y10S428/9335Product by special process
    • Y10S428/937Sprayed metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12625Free carbon containing component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component

Definitions

  • This invention relates to improved electrode and a method of manufacture thereof for electron discharge devices whereby electronemission from said electrodes is inhibited.
  • the method is of particular application to the grids of high power tubes.
  • high power vacuum tubes such as transmitting valves it is common for the control grid to dissipate considerable power. Under such conditions difllculties have arisen in the past through electron emission from the surface of the electrode. Such emission is objectionable in most valves, although the problem is more acute in those of the high power class in which it is intended that grid current shall flow.
  • the electron emission arises from two sourcesthermi- Ohio or primary emission due to the heating of the electrode and secondary emission due to bombardment, ionic or electronic, of the atoms in the surface layer of the electrode.
  • Fig. 1 is a graph showing the emissivity of an electrode under various conditions of coatings including that type by my invention
  • Fig. 2 is a perspective view of a portion of an electrode partly in section, made in accordance with this invention.
  • curve A shows the measured relationship between the primary emission from a particular grid electrode and the power dissipation therein.
  • Curve B shows the improvement obtained when a similar grid was coated with zirconium and curve C for a third 8 Claims. 01. 313-407) 2 similar electrode coated with lamp black, 'while curve D shows the result obtained with'a double coating in accordance with the present invention. In all the cases, B, C and D, the weight of total coating was the same.
  • an electrode for an electron discharge device comprising coating the electrode with zirconium and then coating the coated electrode with carbon.
  • the method of .manufacturing an electrode for an electron discharge device comprising the steps of causing the migration of suspended parti- 3 cles of zirconium exclusively to said electrode to coat same under the influence oi an electric field and then applying a coating of carbon thereover to reduce electron emission from said electrode when said electron discharge device is in operation.
  • Method of manufacturing an electrode for an electron discharge device comprising coating the electrode exclusively with zirconium, then applying a coating or carbon and firing the coated electrode in vacuo so as to reduce electron emission from said electrode when said electron discharge device is in operation.
  • An electrode for an electron discharge device comprising a base structure having a portion from which "electron emission is to be inhibited, a first coating of zirconium exclusively upon said portion, and a coating of carbon upon said first mentioned coating, the proportion by weight of zirconium and carbon applied to said electrode being of the order of 8 to 1, respectively 5.
  • An electrode for an electron discharge device comprising a base structure having a stratified coating of carbon deposited upon a prior exclusive coating of zirconium to inhibit electron emission from said electrode.
  • An electrode for an electron discharge device comprising a portion from which electron emission is to be prevented, a layer of zirconium exclusively coated upon said portion, and a stratifled coating of carbon upon said first-mentioned yer.
  • An electrode for an electron discharge device comprising a portion havinga stratifled coating to inhibit electron emission therefrom, said coating comprising an exclusive layer of zirconium treated with an overlying stratified coating of carbon.
  • a non-emissive composite electrode structure that includes a metal base bearing a coating of zirconium exclusively with a superficial stratifled coating of carbon overlying said zirconium.

Description

Feb. 12, 1952 K. E. EVERETT NONEIM'ISSIVE ELECTRODE AND METHOD OF MANUFACTURING Filed Aug. '7, 1947 E R M W E D m 0 m m -w 6 z v 0- w o w. w m w m a v 3 (12/0 o/ss/PA TION (WATTS) lNVENTOR KENNETH E. EVERETT ATTORNEY Patented Feb. 12, 1952 NONEMISSIVE ELECTRODE AND METHOD OF MANUFACTURING Kenneth-Edward Everett, London, England, assignor to International Standard Electric Corporation, New York, N. Y., a corporation of Delaware Application August 7, 1947, Serial No. 766,980.
In Great Britain March 15, 1946 Section 1, Public Law 690, August 8, 1946 Patent expires March 15, 1966 This invention relates to improved electrode and a method of manufacture thereof for electron discharge devices whereby electronemission from said electrodes is inhibited. The method is of particular application to the grids of high power tubes. In high power vacuum tubes such as transmitting valves it is common for the control grid to dissipate considerable power. Under such conditions difllculties have arisen in the past through electron emission from the surface of the electrode. Such emission is objectionable in most valves, although the problem is more acute in those of the high power class in which it is intended that grid current shall flow. The electron emission arises from two sourcesthermi- Ohio or primary emission due to the heating of the electrode and secondary emission due to bombardment, ionic or electronic, of the atoms in the surface layer of the electrode.
It has been known for some time that primary emission may be reduced by applying to the grid coating of carbon, usually inthe form of lamp black. More recently, it has been found that a coating of zirconium is very effective in preventing secondary emission, more so than carbon. A carbon coating however, is more effective in preventing primary emission than one of zirconium alone. Although both types of coating effect a considerable reduction in primary emission, the reduction so obtained is not as great as would be desired. Since thermionic emission is largely a surface phenomenon it might be expected that no advantage would arise in applying superimposed coatings of carbon and zirconium. Applicant has found, however, that this is not the case and that, particularly if a double coating be applied in the manner to be described, a double coating is, out of all proportion, more effective in reducing primary emission. For a better understanding of the present invention reference may be had to the following description taken in connection with the accompanying drawing, in which,
Fig. 1 is a graph showing the emissivity of an electrode under various conditions of coatings including that type by my invention,
Fig. 2 is a perspective view of a portion of an electrode partly in section, made in accordance with this invention.
InFig. 1 of the attached drawing, curve A shows the measured relationship between the primary emission from a particular grid electrode and the power dissipation therein. Curve B shows the improvement obtained when a similar grid was coated with zirconium and curve C for a third 8 Claims. 01. 313-407) 2 similar electrode coated with lamp black, 'while curve D shows the result obtained with'a double coating in accordance with the present invention. In all the cases, B, C and D, the weight of total coating was the same.
It should be noted that it is already known in the art to coat an electrode with carbon and then topaint on a zirconium coating for the purpose of removing residual gases from the evacuated valve by absorption of the gases by the highly oxidizable zirconium. Carbon is here used merely to bind the metallic coating to the electrode structure. For the purpose of reducing primary and secondary emission I have found it not only more effective, but a more convenient process to apply the carbon on top of the zirconium coating.
According to the present invention there is provided a method of manufacturing an electrode for an electron discharge device comprising coating the electrode with zirconium and then coating the coated electrode with carbon.
For application to the grid of high power valves, I have found it preferable to apply a coating of zirconium to the clean metal of the grid by means of electrophoresis, the process being continued until the grid is seen to be just covered uniformly with zirconium. The zirconium-coated grid is then sprayed with lamp black until it is seen that a uniform coating which just covers the previous coating has been obtained. In order to obtain a uniform product there may be selected any suitable air pressure applied to the spraying pistol together with a desired number and speed of passes of the spray over the article under treatment. Finally, the coated grid is fixed in vacuo at a very high temperature-about 1600 C. being suitable. Fig. 2 shows an electrode wire coated with zirconium and then with a stratifiedreduction of primary emission to be obtained is not understood but it is thought that during heat treatment the surface is changed so that it is no longer carbon, or else that a semi-conducting layer is formed between the two coatings of zirconium and carbon.
What is claimed is:
1. The method of .manufacturing an electrode for an electron discharge device comprising the steps of causing the migration of suspended parti- 3 cles of zirconium exclusively to said electrode to coat same under the influence oi an electric field and then applying a coating of carbon thereover to reduce electron emission from said electrode when said electron discharge device is in operation.
2. Method of manufacturing an electrode for an electron discharge device comprising coating the electrode exclusively with zirconium, then applying a coating or carbon and firing the coated electrode in vacuo so as to reduce electron emission from said electrode when said electron discharge device is in operation.
3. Method of manufacturing an electrode for an electron discharge device according to claim 2, in which said first coating step comprises applyin zirconium to said electrode by electrophoresis, said second coating step comprises spraying carbon onto said coated electrode and said firing step comprises finally firing the coated electrode in a vacuum at a temperature 01 substantially 1600" C.
4. An electrode for an electron discharge device comprising a base structure having a portion from which "electron emission is to be inhibited, a first coating of zirconium exclusively upon said portion, and a coating of carbon upon said first mentioned coating, the proportion by weight of zirconium and carbon applied to said electrode being of the order of 8 to 1, respectively 5. An electrode for an electron discharge device comprising a base structure having a stratified coating of carbon deposited upon a prior exclusive coating of zirconium to inhibit electron emission from said electrode.
8. An electrode for an electron discharge device comprising a portion from which electron emission is to be prevented, a layer of zirconium exclusively coated upon said portion, and a stratifled coating of carbon upon said first-mentioned yer.
7. An electrode for an electron discharge device comprising a portion havinga stratifled coating to inhibit electron emission therefrom, said coating comprising an exclusive layer of zirconium treated with an overlying stratified coating of carbon. v
8. A non-emissive composite electrode structure that includes a metal base bearing a coating of zirconium exclusively with a superficial stratifled coating of carbon overlying said zirconium.
KENNETH EDWARD EVERETT.
REFERENCES CITED The following references are of record in the file oi this patent:
I UNITED STATES PATENTS Number

Claims (1)

  1. 8. A NON-EMISSIVE COMPOSITE ELECTRODE STRUCTURE THAT INCLUDES A METAL BASE BEARING A COATING OF ZIRCONIUM EXCLUSIVELY WITH A SUPERFICIAL STRATIFIED COATING OF CARBON OVERLYING SAID ZIRCONIUM.
US766980A 1946-03-15 1947-08-07 Nonemissive electrode and method of manufacturing Expired - Lifetime US2584994A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB2584994X 1946-03-15

Publications (1)

Publication Number Publication Date
US2584994A true US2584994A (en) 1952-02-12

Family

ID=10910796

Family Applications (1)

Application Number Title Priority Date Filing Date
US766980A Expired - Lifetime US2584994A (en) 1946-03-15 1947-08-07 Nonemissive electrode and method of manufacturing

Country Status (1)

Country Link
US (1) US2584994A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688566A (en) * 1950-12-07 1954-09-07 Wacker Chemie Gmbh Coated article and process of making
DE1007891B (en) * 1954-01-09 1957-05-09 Telefunken Gmbh Process for the production of grids provided with carbon black or graphite for electron tubes
US4257909A (en) * 1977-09-26 1981-03-24 Danfoss A/S Non-aromatic hydrocarbon containing cleaning fluid

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1862138A (en) * 1928-05-03 1932-06-07 Westinghouse Electric & Mfg Co Carbonized electrode and method of producing same
US2035003A (en) * 1933-08-31 1936-03-24 Rca Corp Electron discharge device
GB444723A (en) * 1934-08-08 1936-03-26 Philips Nv Improvements in or relating to methods of applying a top layer to an article, more particularly to the surface of an electric device
US2166984A (en) * 1936-03-24 1939-07-25 Philips Nv Electric discharge tube having an oxide cathode
US2232083A (en) * 1937-09-06 1941-02-18 Lorenz C Ag Method of producing surfaces of high heat radiation
US2282098A (en) * 1940-10-17 1942-05-05 Warren G Taylor Carbon electrode

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1862138A (en) * 1928-05-03 1932-06-07 Westinghouse Electric & Mfg Co Carbonized electrode and method of producing same
US2035003A (en) * 1933-08-31 1936-03-24 Rca Corp Electron discharge device
GB444723A (en) * 1934-08-08 1936-03-26 Philips Nv Improvements in or relating to methods of applying a top layer to an article, more particularly to the surface of an electric device
US2166984A (en) * 1936-03-24 1939-07-25 Philips Nv Electric discharge tube having an oxide cathode
US2232083A (en) * 1937-09-06 1941-02-18 Lorenz C Ag Method of producing surfaces of high heat radiation
US2282098A (en) * 1940-10-17 1942-05-05 Warren G Taylor Carbon electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688566A (en) * 1950-12-07 1954-09-07 Wacker Chemie Gmbh Coated article and process of making
DE1007891B (en) * 1954-01-09 1957-05-09 Telefunken Gmbh Process for the production of grids provided with carbon black or graphite for electron tubes
US4257909A (en) * 1977-09-26 1981-03-24 Danfoss A/S Non-aromatic hydrocarbon containing cleaning fluid

Similar Documents

Publication Publication Date Title
US3355617A (en) Reduction of arcing between electrodes in a cathode ray tube by conducting coating of resistance material on inner wall of tube neck
SE7612832L (en) PROCEDURE FOR COATING A SUBSTRATE WITH A LAYER OF AN OXIDE OF AT LEAST ONE METAL
US2584994A (en) Nonemissive electrode and method of manufacturing
CA1145384A (en) Crt with means for suppressing arcing therein
US2879583A (en) Method of fabricating electron discharge devices
US3776762A (en) Dry lubrication
US3979632A (en) Cathode ray tube having surface charge inhibiting means therein
US1981652A (en) Method of coating electrodes
US2417730A (en) Electron tube and method of making same
US1926846A (en) Electrode for electron discharge devices
US1865449A (en) Thermionically inactive electrode
US2428043A (en) Method of manufacturing metal electric rectifiers
US2171230A (en) Insulating coating
US2476590A (en) Cathode coating
US2677070A (en) Coated grid tube
US2613164A (en) Method of coating electron emissive cathodes
US1934477A (en) Electrostatically controlled electric discharge device
GB652742A (en) Gaseous electron discharge device
US2690982A (en) Coated electrode
US2526574A (en) Secondary emitter
US2873218A (en) Method of making an electron emitter
KR100403393B1 (en) Method for depositing conductive film for cathode ray tube
JPS58216331A (en) Manufacture of cathode ray tube
GB978786A (en) Improvements in electron tubes
US1897480A (en) Process of making electron discharge device